WorldWideScience

Sample records for reaction identification assay

  1. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3

    OpenAIRE

    Sharma, Deepa K.; Nalavade, Uma P.; Deshpande, Jagadish M.

    2015-01-01

    Background & objectives: The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Methods: Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolat...

  2. A duplex polymerase chain reaction assay for the identification of goat cashmere and sheep wool.

    Science.gov (United States)

    Geng, Qing-Rong

    2016-05-01

    In this article attempts were made to establish one-step duplex PCR assay for the identification of goat cashmere and sheep wool. Primers were selected from published papers or designed in the well-conserved region of mitochondrial D-loop genes after alignment of the available sequences in the GenBank database. A fragment of 294 bp from cashmere goat was amplified and three PCR fragments including a bright main band of approximately 404 bp in length were obtained from sheep. The duplex PCR was found to be effective in detecting mixed samples precisely when sheep wool was mixed to goat cashmere with the relative proportion of over 9.09%. The duplex PCR could be considered as a simple and promising method in identification of goat cashmere and sheep wool.

  3. Identification of aflatoxigenic fungi using polymerase chain reaction-based assay

    Directory of Open Access Journals (Sweden)

    Šošo Vladislava M.

    2014-01-01

    Full Text Available As the aflatoxins represent a health-risk for humans because of their proven carcinogenicity, food-borne fungi that produce them as secondary metabolites, mainly Aspergillus flavus and Aspergillus parasiticus, have to be isolated and identified. The best argument for identifying problem fungi is that it indicates control points within the food system as part of a hazard analysis critical control point (HACCP approach. This assumes there is a close link between fungus and toxin. Conventional methods for isolation and identification of fungi are time consuming and require admirably dedicated taxonomists. Hence, it is imperative to develop methodologies that are relatively rapid, highly specific and as an alternative to the existing methods. The polymerase chain reaction (PCR facilitates the in vitro amplification of the target sequence. The main advantages of PCR is that organisms need not be cultured, at least not for a long time, prior to their detection, target DNA can be detected even in a complex mixture, no radioactive probes are required, it is rapid, sensitive and highly versatile. The gene afl-2 has been isolated and shown to regulate aflatoxin biosynthesis in A. flavus. Also, the PCR reaction was targeted against aflatoxin synthesis regulatory gene (aflR1 since these genes are nearly identical in A. flavus and A. parasiticus in order to indicate the possibility of detection of both the species with the same PCR system (primers/reaction. [Projekat Ministarstva nauke Republike Srbije, br. III46009

  4. Development of a polymerase chain reaction assay for species identification of goose and mule duck in foie gras products.

    Science.gov (United States)

    Rodrı X0301 Guez, Miguel A; Garcı X0301 A, Teresa; González, Isabel; Asensio, Luis; Mayoral, Belén; López-Calleja, Inés; Hernández, Pablo E; Martı X0301 N, Rosario

    2003-12-01

    Polymerase chain reaction amplification of a conserved region of the α-actin gene has been used for the specific identification of goose (Anser anser) and mule duck (Anas platyrhynchos×Cairina moschata) foie gras. Universal primers were used for the amplification of a DNA fragment containing three introns and four exons of the α-actin gene in goose and mule duck. Sequence analysis of the amplified fragments was necessary for the design of forward species-specific primers in the goose and mule duck α-actin genes. The use of species-specific forward primers, together with a reverse universal primer, produced amplicons of different length, allowing clear identification of goose and mule duck foie gras samples. Analysis of experimental mixtures demonstrated that 1% of duck can be easily detected in goose foie gras using the PCR method developed here. This genetic marker can be very useful for the accurate identification of these two species in foie gras products.

  5. Polymerase chain reaction assay for rapid, sensitive detection, and identification of Colletotrichum gloeosporioides causing greater yam anthracnose.

    Science.gov (United States)

    Raj, Mithun; Jeeva, M L; Hegde, V; Vidyadharan, Pravi; Archana, P V; Senthil alias Sankar, M; Nath, S Vishnu

    2012-11-01

    Anthracnose caused by Colletotrichum gloeosporioides is an economically important disease which affects greater yam (Dioscorea alata L.) worldwide. Apart from airborne conidia, the pathogen propagules surviving in soil and planting material are the major sources of inoculum. A nested PCR assay has been developed for specific detection of C. gloeosporioides in soil and planting material. In conventional (single-round) PCR, the limit of detection was 20 pg, whereas in nested PCR the detection limit increased to 0.2 pg of DNA. The primers designed were found to be highly specific and could be used for accurate identification of the pathogen up to species level. The protocol was standardized for detection of the pathogen in artificially and naturally infected field samples.

  6. A new multiplex polymerase chain reaction assay for the identification a panel of bacteria involved in bacteremia

    Directory of Open Access Journals (Sweden)

    Hossein Fazzeli

    2013-01-01

    Conclusions: The presented multiplex PCR offers a rapid and accurate molecular diagnostic tool for simultaneous detection of some pathogenic microorganisms. The IC exists in the multiplex PCR accompanied by other primers in the system, can serve as a simple, cost- effective internal control for the multiplex PCR assay.

  7. Development of a multiplex polymerase chain reaction assay for simultaneous identification of human enterovirus 71 and coxsackievirus A16

    OpenAIRE

    Thao, Nguyen Thi Thanh; Ngoc, Nguyen Thi Kim; Tú, Phan Văn; Thúy, Trần Thi; Cardosa, Mary Jane; McMinn, Peter Charles; Phuektes, Patchara

    2010-01-01

    Human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16) are two major aetiological agents of hand, foot and mouth disease (HFMD) in children. Recently there have been several large outbreaks of HFMD in Vietnam and the Asia-Pacific region. In this study, a multiplex RT-PCR assay was developed in order to detect simultaneously HEV71, CVA16 and other human enteroviruses. Enterovirus detection was performed with a mixture of three pairs of oligonucleotide primers: one pair of published primer...

  8. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    Toma, Claudia; Lu, Yan; Higa, Naomi; Nakasone, Noboru; Isabel CHINEN; Baschkier, Ariela; Rivas, Marta; Iwanaga, Masaaki

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  9. Multiplex PCR Assay for Identification of Human Diarrheagenic Escherichia coli

    OpenAIRE

    2003-01-01

    A multiplex PCR assay for the identification of human diarrheagenic Escherichia coli was developed. The targets selected for each category were eae for enteropathogenic E. coli, stx for Shiga toxin-producing E. coli, elt and est for enterotoxigenic E. coli, ipaH for enteroinvasive E. coli, and aggR for enteroaggregative E. coli. This assay allowed the categorization of a diarrheagenic E. coli strain in a single reaction tube.

  10. Polymerase chain reaction assay for avian polyomavirus.

    OpenAIRE

    Phalen, D.N.; Wilson, V G; Graham, D L

    1991-01-01

    A polymerase chain reaction assay was developed for detection of budgerigar fledgling disease virus (BFDV). The assay used a single set of primers complementary to sequences located in the putative coding region for the BFDV VP1 gene. The observed amplification product had the expected size of 550 bp and was confirmed to derive from BFDV DNA by its restriction digestion pattern. This assay was specific for BFDV and highly sensitive, being able to detect as few as 20 copies of the virus. By us...

  11. Molecular identification of the light brown apple moth (Lepidoptera: Tortricidae) in California using a polymerase chain reaction assay of the internal transcribed spacer 2 locus.

    Science.gov (United States)

    Barr, N B; Ledezma, L A; Vasquez, J D; Epstein, M; Kerr, P H; Kinnee, S; Sage, O; Gilligan, T M

    2009-12-01

    A molecular protocol using a hemi-nested polymerase chain reaction (PCR) of the internal transcribed spacer region 2 (ITS2) is reported for the diagnosis of light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), in California. This protocol distinguishes the light brown apple moth from other moths in California based on size differences of PCR amplicons that are visualized on agarose gels. The molecular diagnostic tool generated no false negatives based on analysis of 337 light brown apple moths collected from California, Hawaii, England, New Zealand, and Australia. Analysis of a data set including 424 moths representing other tortricid species generated correct identification for >95% of the samples and only two false positives. Of the 761 moths tested only fourteen produced no PCR amplicons and five generated inconclusive data.

  12. rDNA-ITS2 based species-diagnostic polymerase chain reaction assay for identification of sibling species of Anopheles fluviatilis in Iran.

    Science.gov (United States)

    Dezfouli, S R Naddaf; Oshaghi, M A; Vatandoost, H; Assmar, M

    2003-01-01

    A species-specific polymerase chain reaction (PCR) assay using primers already designed, based on differences in the nucleotides of the second internal transcribed spacer (ITS2), was used to identify the species composition of the Anopheles fluviatilis complex in Iran. All the amplified DNA samples obtained from specimens collected from different areas using different collection methods yielded to a fragment of 450 bp size, a PCR product corresponding to the species denoted as Y. Some 21 ITS2 region of Iranian specimens were sequenced and compared with the already published sequence data of species Y from India. The sequence data of the Iranian specimens were 100% identical to that of the Indian specimens, and hence confirmed the PCR assay results. Species Y is presumably species T in India, which has no role in the transmission of malaria, whereas mosquitos of An. fluviatilis are known as a secondary vector in Iran. This conflict will remain to be solved by further biological and molecular studies.

  13. Polymerase chain reaction assay for avian polyomavirus.

    Science.gov (United States)

    Phalen, D N; Wilson, V G; Graham, D L

    1991-05-01

    A polymerase chain reaction assay was developed for detection of budgerigar fledgling disease virus (BFDV). The assay used a single set of primers complementary to sequences located in the putative coding region for the BFDV VP1 gene. The observed amplification product had the expected size of 550 bp and was confirmed to derive from BFDV DNA by its restriction digestion pattern. This assay was specific for BFDV and highly sensitive, being able to detect as few as 20 copies of the virus. By using the polymerase chain reaction, BFDV was detected in adult, nestling, and embryo budgerigar (Melopsitticus undulatus) tissue DNAs and in sera from adult and nestling budgerigars. These results suggest the possibility of persistent infections in adult birds and lend further support to previously described evidence of possible in ovo transmission. BFDV was also detected in chicken embryo fibroblast cell cultures and chicken eggs inoculated with the virus. A 550-bp product with identical restriction enzyme sites was amplified from a suspected polyomavirus isolated from a peach-faced lovebird (Agapornis pesonata) and from tissue DNA from a Hahn's macaw (Ara nobilis) and a sun conure (Aratinga solstitialis) with histological lesions suggestive of polyomavirus infection. These fragments also hybridized with a BFDV-derived probe, proving that they were derived from a polyomavirus very similar, if not identical, to BFDV.

  14. Identification of irradiated pepper with comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Prieto Miranda, Enrique Fco.; Moreno Alvarez, Damaris L.; Carro Palacio, Sandra [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear. (CEADEN), Ciudad de La Habana (Cuba)]. E-mail: efprieto@ceaden.edu.cu; damaris@ceaden.edu.cu; Iglesia Enriquez, Isora [Instituto de Investigacion para la Industria Alimenticia (IIIA), Ciudad de La Habana (Cuba)

    2007-07-01

    The treatment of foods with ionizing radiations is a technological process utilized in order to increase the hygienic quality and the storage time of the foods. Several methods of detection of irradiated foods have been recommended. The comet assay of DNA is one fast and economical technique for the qualitative identification of irradiated foods. The objective of the present paper was to identify with the comet assay technique the modifications of the DNA molecule of irradiated pepper storage at environment and refrigeration temperatures and different post-irradiation times for different absorbed dose values, (0.1, 0.3 and 0.5 kGy). It was demonstrated that for the high absorbed dose values was observed a greater break into fragments of the DNA molecule, which shows the application of this technique for the identification of irradiated foods. (author)

  15. Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies

    DEFF Research Database (Denmark)

    Hum, S.; Quinn, K.; Brunner, J.

    1997-01-01

    Objective To evaluate a polymerase chain reaction assay for identification of Campylobacter fetus and differentiation of the defined subspecies. Design Characterisation of bacterial strains by traditional phenotyping, polymerase chain reaction, a probabilistic identification scheme and macrorestr......Objective To evaluate a polymerase chain reaction assay for identification of Campylobacter fetus and differentiation of the defined subspecies. Design Characterisation of bacterial strains by traditional phenotyping, polymerase chain reaction, a probabilistic identification scheme...... and macrorestriction profiling using pulsed field gel electrophoresis. Procedure The results of identification of 99 bacterial strains as determined by conventional phenotyping or by polymerase chain reaction were compared. Two of these were type strains of C fetus subsp fetus and C fetus subsp venerealis......; the remaining strains were field isolates putatively identified as C fetus. In cases where the subspecies identity was disputed, isolates were identified by means of a probabilistic identification scheme and by macrorestriction profiling. Results The agreement between strain identities initially suggested...

  16. Study and application of polymerase chain reaction assay on Brucella identification%布鲁氏菌PCR鉴定方法的研究与应用

    Institute of Scientific and Technical Information of China (English)

    钟旗; 易新萍; 李博; 吴冬玲; 刘丽娅; 叶锋; 闫晶华; 李金平; 王力俭

    2011-01-01

    The purpose of this study was to apply PCR and PCR-SSCP assay method to identify Brucella and specific type of Brucella. In order to analyze a great number of partition Brucella of types sequence which have been issued as specific genotype and search for the distributing role of genotype-specific nucleotides, the specific primers were designed and PCR method was applied to identify specific type of Brucella. PCR-SSCP method was established to distinguish vaccine strain Al9 from other specific types of Brucella. Results indicated that the established PCR method could be used to conduct the diagnosis of Brucellosis and identify specific type of Brucella. And PCR-SSCP assay could detect vaccine strain Al9, It's suggested that PCR and PCR-SSCP assay is a reliable and convenient method to identify specific type of Brucella and vaccine strain Al9.%目的 采用PCR、PCR-SSCP方法对布鲁氏菌进行快速鉴定,并对其种、型鉴别.方法 分析已发表布鲁氏菌属、种、型基因序列,寻找出不同布鲁氏菌的种、型特异性碱基分布规律,设计特异性引物,用于布鲁氏菌属、种、型的鉴定;根据聚合酶链反应-单链构象多态性(PCR-SSCP)分析原理,建立PCR-SSCP方法,用于区分牛种A19疫苗株与其他型布鲁氏菌.结果 所建立的PCR方法能高效、准确鉴定出布鲁氏菌,并能对其种、型进行区分;PCR-SSCP方法可将A19疫苗株从其他型布鲁氏菌中区分出来.结论 利用PCR、PCR-SSCP方法能快速、准确地进行布鲁氏菌属、种、型以及疫苗株A19的鉴别,且简便、可靠,便于临床应用.

  17. Identifikasi Brucella abortus Isolat Lokal dengan Brucella abortus Strain Specific-Polymerase Chain Reaction (IDENTIFICATION OF LOCAL ISOLATES OF BRUCELLA ABORTUS USING BRUCELLA ABORTUS STRAIN SPECIFIC-POLYMERASE CHAIN REACTION ASSAY

    Directory of Open Access Journals (Sweden)

    Susan Maphilindawati Noor

    2014-10-01

    Full Text Available Brucella abortus Strain Specific-Polymerase Chain Reaction (BaSS-PCR is a single multiplex PCRtechnique which able to identify and differentiate between Brucella abortus field strains (biovar 1, 2, and4, B. abortus vaccine strains, Brucella species, and non-Brucella species. In this study, BaSS-PCR wasapplied to identify local isolates of B. abortus in order to investigate the B. abortus strains that infectedcattle in Indonesia. Fifty local strains of B.abortus isolated from infected cattle in Java (Jakarta andBandung, South Sulawesi (Maros, East Nusa Tenggara (Kupang and Belu were used in this study. TheDNA bands were observed by agarose gel in the presence of ethidium bromide. Identification was performedbased on the size and number of DNA products amplified by PCR from each isolates. The results showedthat the 50 isolates were of B. abortus field strains. This finding showed that the cause of bovine brucellosisin Indonesia is B. abortus field strains.

  18. A diagnostic polymerase chain reaction assay for Zika virus.

    Science.gov (United States)

    Balm, Michelle N D; Lee, Chun Kiat; Lee, Hong Kai; Chiu, Lily; Koay, Evelyn S C; Tang, Julian W

    2012-09-01

    Zika virus (ZIKV) is a mosquito-borne flavivirus. Infection results in a dengue-like illness with fever, headache, malaise, and a maculopapular rash. Nearly all cases are mild and self-limiting but in 2007, a large outbreak of ZIKV was reported from the island of Yap (in Micronesia, northwest of Indonesia). Singapore is already endemic for dengue, and its impact on public health and economic burden is significant. Other dengue-like infections (e.g., Chikungunya virus) are present. Yet only 10% of reported dengue cases have laboratory confirmation. The identification and control of other dengue-like, mosquito-transmitted infections is thus important for the health of Singapore's population, as well as its economy. Given that ZIKV shares the same Aedes mosquito vector with both dengue and Chikungunya, it is possible that this virus is present in Singapore and causing some of the mild dengue-like illness. A specific and sensitive one-step, reverse transcription polymerase chain reaction (RT-PCR) with an internal control (IC) was designed and tested on 88 archived samples of dengue-negative, Chikungunya-negative sera from patients presenting to our hospital with a dengue-like illness, to determine the presence of ZIKV in Singapore. The assay was specific for detection of ZIKV and displayed a lower limit of detection (LoD) of 140 copies viral RNA/reaction when tested on synthetic RNA standards prepared using pooled negative patient plasma. Of the 88 samples tested, none were positive for ZIKV RNA, however, the vast majority of these were from patients admitted to hospital and further study may be warranted in community-based environments.

  19. Acanthamoeba can be differentiated by the polymerase chain reaction and simple plating assays.

    Science.gov (United States)

    Khan, N A; Jarroll, E L; Paget, T A

    2001-09-01

    Acanthamoeba are opportunistic pathogens with invasive and noninvasive species. For clinical purposes it is important to differentiate potentially pathogenic from nonpathogenic isolates. For the rapid and sensitive identification of Acanthamoeba at the genus level, we used a polymerase chain reaction (PCR)-based method which detected as few as five cells. Further, we tested nine isolates of Acanthamoeba for their ability to produce cytopathic effects (CPE) on corneal epithelial cells. On the basis of the results, Acanthamoeba were divided into pathogenic or nonpathogenic groups. However, because CPE assays are not available to every diagnostic laboratory, we developed a simple plating assay based on osmotolerance which correlated well with the CPE assays. Pathogenic Acanthamoeba showed growth on higher osmolarity (agar plates containing one molar mannitol), while growth of nonpathogens was inhibited on these plates. In conclusion, we have developed methods for the rapid identification and differentiation of Acanthamoeba.

  20. Rapid electrochemiluminescence assays of polymerase chain reaction products.

    Science.gov (United States)

    Kenten, J H; Casadei, J; Link, J; Lupold, S; Willey, J; Powell, M; Rees, A; Massey, R

    1991-09-01

    We demonstrate the first use of an electrochemiluminescent (ECL) label, [4-(N-succimidyloxycarbonylpropyl)-4'-methyl-2,2'- bipyridine]ruthenium(II) dihexafluorophosphate (Origen label; IGEN Inc.), in DNA probe assays. This label allows rapid (less than 25 min) quantification and detection of polymerase chain reaction (PCR)-amplified products from oncogenes, viruses, and cloned genes. For the PCR, we used labeled oligonucleotide primers complementary to human papiloma virus and the Ha-ras oncogene. These samples were followed by ECL analysis or hybridization with specific, Origen-labeled oligonucleotide probes. These studies demonstrate the speed, specificity, and effectiveness of the new ECL labels, compared with 32P, for nucleic acid probe applications. We describe formats involving conventional methodologies and a new format that requires no wash step, allowing simple and rapid sample analysis. These rapid assays also reduce PCR contamination, by requiring less sample handling. Improvements in ECL detectability are currently under investigation for use in DNA probe assays without amplification.

  1. A novel high-throughput format assay for HIV-1 integrase strand transfer reaction using magnetic beads

    Institute of Scientific and Technical Information of China (English)

    Hong-qiu HE; Xiao-hui MA; Bin LIU; Wei-zu CHEN; Cun-xin WANG; Shao-hui CHENG

    2008-01-01

    Aim:To develop a novel high-throughput format assay to monitor the integrase (IN) strand transfer (ST) reaction in vitro and apply it to a reaction character study and the identification of antiviral drugs.Methods:The donor DNA duplex,with a sequence identical to the U5 end of HIV-1 long terminal repeats,is labeled at its 5' end with biotin (BIO).The target DNA duplex is labeled at its 3' end with digoxin (DIG).IN mediates the integration of donor DNA into target DNA and results in a 5' BIO and 3' DIG-labeled duplex DNA product.Streptavidin-coated magnetic beads were used to capture the product,and the amount of DIG was measured as the ST reaction product.The assay was optimized in 96-well microplate format for high-throughput screening purpose.Moreover,the assay was applied in a ST reaction character study,and the efficiency of the assay in the identification of antiviral compounds was tested.Results:The end-point values,measured as absorbance at 405 nm was approximately 1.5 for the IN-mediated ST reaction as compared with no more than 0.05 of background readings.The ST reaction char-acter and the half maximal inhibitory concentration (IC50) values of 2 known IN inhibitors obtained in our assay were similar to previously reported results using other assays.The evaluation parameter Z' factor for this assay ranged from 0.6 to 0.9.Conclusion:The assay presented here has been proven to be rapid,sensitive,and specific for the detection of IN ST activity,the reaction character study,as well as for the identification of antiviral drugs targeting IN.

  2. 茶树酯型儿茶素水解酶鉴定及其检测体系的建立%Identification and Reaction Assay of Galloylated Catechins Hydrolase in Tea Plant

    Institute of Scientific and Technical Information of China (English)

    聂志银; 刘亚军; 刘莉; 高丽萍; 夏涛

    2011-01-01

    In this experiment, high activity of galloylated catechins hydrolase (GCH) was detected existing in tea plant (Camellia sinensis (L.) O. Kuntze) by enzymology analysis in vitro, combining thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. The galloylated catechins could be hydrolyzed to ungalloylated catechins and gallic acid (GA) with the GCH action. The optimum reaction assay of GCH has been established. The 2.5 mL enzyme reaction assay included 0.1 mol/L phosphate buffer (pH 6.5), 0.2 mmol/L EGCG, 2.4 mmol/L sodium ascorbate, crude enzyme extract (0.1 mg total protein), and then it was incubated at 30 ℃ for 30 min. Besides, the crude enzyme extract was partially purified via ammonium sulfate fractionation, anion exchange chromatography on Q Sepharose Fast Flow column and gel filtration chromatography on superdex 200 sequentially.%本试验利用体外酶学方法,结合薄层层析( TLC)、高效液相色谱(HPLC)和液相色谱-串联质谱(LC-MS/MS)分析,首次从茶树中检测到活性较高的酯型儿茶素水解酶(Galloylated Catechins Hydrolase,GCH)的存在.在酯型儿茶素水解酶催化下,酯型儿茶素发生水解反应,生成没食子酸(GA)和非酯型儿茶素.试验确立了酯型儿茶素水解酶的最适检测体系,在2.5 mL反应体系中包含0.2 mmol/L酯型儿茶素、2.4 mmol/L抗坏血酸、粗酶提取液若干(含0.1 mg酶蛋白)和0.1 mol/L磷酸缓冲液(pH6.5),在30℃下,反应30 min.此外,试验利用硫酸铵分级沉淀、阴离子交换层析和凝胶过滤层析对该酶进行了初步纯化.

  3. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    Science.gov (United States)

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min.

  4. Validation of a multiplex PCR assay for the forensic identification of Indian crocodiles.

    Science.gov (United States)

    Meganathan, Poorlin Ramakodi; Dubey, Bhawna; Jogayya, Kothakota Naga; Haque, Ikramul

    2011-09-01

    A dependable and efficient wildlife species identification system is essential for swift dispensation of the justice linking wildlife crimes. Development of molecular techniques is befitting the need of the time. The forensic laboratories often receive highly ill-treated samples for identification purposes, and thus, validation of any novel methodology is necessary for forensic usage. We validate a novel multiplex polymerase chain reaction assay, developed at this laboratory for the forensic identification of three Indian crocodiles, Crocodylus palustris, Crocodylus porosus, and Gavialis gangeticus, following the guidelines of Scientific Working Group on DNA Analysis Methods. The multiplex PCR was tested for its specificity, reproducibility, sensitivity, and stability. This study also includes the samples treated with various chemical substances and exposed to various environmental regimes. The result of this validation study promises this technique to be an efficient identification tool for Indian crocodiles and therefore is recommended for forensic purposes.

  5. Pyrosequencing assay for rapid identification of Mycobacterium tuberculosis complex species

    Directory of Open Access Journals (Sweden)

    Boukadida Jalel

    2011-10-01

    Full Text Available Abstract Background Identification of the Mycobacterium tuberculosis complex organisms to the species level is important for diagnostic, therapeutic and epidemiologic perspectives. Indeed, isolates are routinely identified as belonging to the M. tuberculosis complex without further discrimination in agreement with the high genomic similarity of the M. tuberculosis complex members and the resulting complex available identification tools. Findings We herein develop a pyrosequencing assay analyzing polymorphisms within glpK, pykA and gyrB genes to identify members of the M. tuberculosis complex at the species level. The assay was evaluated with 22 M. tuberculosis, 21 M. bovis, 3 M. caprae, 3 M. microti, 2 M. bovis BCG, 2 M. pinnipedii, 1 M. canettii and 1 M. africanum type I isolates. The resulted pyrograms were consistent with conventional DNA sequencing data and successfully identified all isolates. Additionally, 127 clinical M. tuberculosis complex isolates were analyzed and were unambiguously identified as M. tuberculosis. Conclusion We proposed a pyrosequencing-based scheme for the rapid identification of M. tuberculosis complex isolates at the species level. The assay is robust, specific, rapid and can be easily introduced in the routine activity.

  6. An optimized polymerase chain reaction assay to identify avian virus vaccine contamination with Chicken anemia virus.

    Science.gov (United States)

    Amer, Haitham M; Elzahed, Hanan M; Elabiare, Elham A; Badawy, Ahmed A; Yousef, Ausama A

    2011-01-01

    The use of embryonating chicken eggs in preparation of avian virus vaccines is the principle cause for contamination with Chicken anemia virus (CAV). Identification of CAV in contaminated vaccines relies on the expensive, tedious, and time-consuming practice of virus isolation in lymphoblastoid cell lines. The experience of the last 2 decades indicates that polymerase chain reaction is extending to replace most of the classic methods for detection of infectious agents. In the present report, a simple, rapid, and accurate polymerase chain reaction method for detection of CAV in poultry vaccines is described. Oligonucleotide primers homologous to highly conserved sequences of the VP1 gene were used to amplify a fragment of 676 bp. The developed assay was specific for detecting CAV from different sources, with no cross reactivity with many avian viruses. No inter- and intra-assay variations were observed. The analytical sensitivity of the test was high enough to detect 5 TCID(50) (50% tissue culture infective dose) of the virus per reaction; however, different factors related to the vaccine matrix showed considerable effects on the detection limit. In conclusion, this method may represent a suitable alternative to virus isolation for identification of CAV contamination of poultry virus vaccines.

  7. Mycobacteria mobility shift assay: a method for the rapid identification of Mycobacterium tuberculosis and nontuberculous mycobacteria

    Directory of Open Access Journals (Sweden)

    Letícia Muraro Wildner

    2014-06-01

    Full Text Available The identification of mycobacteria is essential because tuberculosis (TB and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA that was designed for Mycobacterium tuberculosis complex (MTC and nontuberculous mycobacteria (NTM species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2% to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.

  8. Development of a PCR ELISA assay for the identification of Campylobacter jejuni and Campylobacter coli.

    Science.gov (United States)

    Sails, A D; Fox, A J; Bolton, F J; Wareing, D R; Greenway, D L; Borrow, R

    2001-10-01

    A polymerase chain reaction (PCR) assay was developed based on a solution-hybridization colorimetric end-point detection format (PCR ELISA) for the identification of Campylobacter jejuni and Campylobacter coli. PCR primers were designed to target a gene sequence with species-specific motifs. Five biotin-labelled probes targeted to the species-specific motifs were investigated for the detection of digoxygenin-labelled PCR products from C. jejuni and C. coli using the PCR ELISA format. Two probes were identified, one which reacts with both the C. jejuni and C. coli target sequences (probe CC2) and one probe which reacts with the C. jejuni target sequence only (probe CJ2). The specificity of the assay with the CJ2 and CC2 probes was investigated with a range of Campylobacter spp., Arcobacter spp., Helicobacter spp. and a range of unrelated organisms. The PCR ELISA assay and probes were demonstrated to be specific for C. jejuni and C. coli. The sensitivity of the PCR ELISA assay was demonstrated to be 10-100-fold more sensitive than a gel-based PCR method using the same primers. This PCR ELISA assay is sensitive, specific and significantly reduces the time needed for the identification of C. jejuni and C. coli and has the potential to facilitate early detection of these important gastro-intestinal pathogens. Copyright 2001 Academic Press.

  9. Automated 5 ' nuclease PCR assay for identification of Salmonella enterica

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Ahrens, Peter; Rådström, P.

    2000-01-01

    A simple and ready-to-go test based on a 5' nuclease (TaqMan) PCR technique was developed for identification of presumptive Salmonella enterica isolates. The results were compared with those of conventional methods. The TaqMan assay was evaluated for its ability to accurately detect 210 S. enterica...... isolates, including 100 problematic "rough" isolates. An internal positive control was designed to use the same Salmonella primers for amplification of a spiked nonrelevant template (116 bp) in the sample tube. The PCR test correctly identified all the Salmonella strains by resulting in positive end...... Salmonella strains tested resulted in positive FAM and TET signals. In addition, it was found that the complete PCR mixture, predispensed in microwell plates, could be stored for up to 3 months at -20 degrees C, Thus, the diagnostic TaqMan assay developed can be a useful and simple alternative method...

  10. Multiple reaction monitoring and multiple reaction monitoring cubed based assays for the quantitation of apolipoprotein F.

    Science.gov (United States)

    Kumar, Abhinav; Gangadharan, Bevin; Zitzmann, Nicole

    2016-10-15

    Apolipoprotein F (APO-F) is a novel low abundance liver fibrosis biomarker and its concentration decreases in human serum and plasma across liver fibrosis stages. Current antibody based assays for APO-F suffer from limitations such as unspecific binding, antibody availability and undetectable target if the protein is degraded; and so an antibody-free assay has the potential to be a valuable diagnostic tool. We report an antibody-free, rapid, sensitive, selective and robust LC-MS/MS (MRM and MRM(3)) method for the detection and quantitation of APO-F in healthy human plasma. With further analysis of clinical samples, this LC-MS based method could be established as the first ever antibody-free biomarker assay for liver fibrosis. We explain the use of Skyline software for peptide selection and the creation of a reference library to aid in true peak identification of endogenous APO-F peptides in digests of human plasma without protein or peptide enrichment. Detection of a glycopeptide using MRM-EPI mode and reduction of interferences using MRM3 are explained. The amount of APO-F in human plasma from a healthy volunteer was determined to be 445.2ng/mL, the coefficient of variation (CV) of precision for 20 injections was <12% and the percentage error of each point along the calibration curve was calculated to be <8%, which is in line with the assay requirements for clinical samples.

  11. Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples.

    Science.gov (United States)

    Irenge, Léonid M; Durant, Jean-François; Tomaso, Herbert; Pilo, Paola; Olsen, Jaran S; Ramisse, Vincent; Mahillon, Jacques; Gala, Jean-Luc

    2010-11-01

    A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.

  12. An allele-specific polymerase chain reaction assay for the differentiation of members of the Anopheles culicifacies complex

    Indian Academy of Sciences (India)

    O P Singh; Geeta Goswami; N Nanda; K Raghavendra; D Chandra; S K Subbarao

    2004-09-01

    Anopheles culicifacies, the principal vector of malaria in India, is a complex of five cryptic species which are morphologically indistinguishable at any stage of life. In view of the practical difficulties associated with classical cytotaxonomic method for the identification of members of the complex, an allele-specific polymerase chain reaction (ASPCR) assay targeted to the D3 domain of 28S ribosomal DNA was developed. The assay discriminates An. culicifacies species A and D from species B, C and E. The assay was validated using chromosomally-identified specimens of An. culicifacies from different geographical regions of India representing different sympatric associations. The assay correctly differentiates species A and D from species B, C and E. The possible use of this diagnostic assay in disease vector control programmes is discussed.

  13. Capillary electrophoresis and 5-channel LIF detection of a 26plex autosomal STR assay for human identification.

    Science.gov (United States)

    Hill, Carolyn R

    2012-01-01

    Multiplex polymerase chain reaction (PCR) is a common method used for DNA typing in forensic and paternity cases. There are numerous commercial short tandem repeat (STR) multiplex assays currently available to the forensic community. These assays amplify the core Combined DNA Index System (CODIS) STR loci for entry into the US. DNA database. Additional non-CODIS loci, which are considered genetically unlinked to the CODIS loci, can be useful in resolving challenging cases such as missing persons and mass disaster victim identification, paternity testing, and immigration testing. An STR multiplex has been successfully developed with 25 non-CODIS autosomal loci plus the sex-typing locus amelogenin for a total of 26 loci in a single 26plex amplification reaction. This chapter will focus on the preparation and the use of the 26plex assay with DNA samples for the purpose of human identification.

  14. Detection of Alternaria fungal contamination in cereal grains by a polymerase chain reaction-based assay.

    Science.gov (United States)

    Zur, Gideon; Shimoni, Eyal; Hallerman, Eric; Kashi, Yechezkel

    2002-09-01

    Alternaria sp. are important fungal contaminants of grain products; they secrete four structural classes of compounds that are toxic or carcinogenic to plants and animals and cause considerable economic losses to growers and the food-processing industry. Alternaria toxins have been detected by high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent assay, and other techniques. Here, we report the development of a polymerase chain reaction (PCR)-based method for the detection of Alternaria DNA. PCR primers were designed to anneal to the ITS1 and ITS2 regions of the 5.8S rDNA gene of Alternaria alternata or Alternaria solani but not to other microbial or plant DNA. We compared the sensitivity of PCR in detecting Alternaria DNA, that of the HPLC method in detecting Alternaria alternariol and alternariol methyl ether toxins, and that of the morphological examination of mycelia and conidia in experimentally infested corn samples. The sensitivity of toxin detection for HPLC was above the level of contamination in a set of commercially obtained grain samples, resulting in negative scores for all samples, while the PCR-based method and mold growth plating followed by morphological identification of Alternaria gave parallel, positive results for 8 of 10 samples. The PCR assay required just 8 h, enabling the rapid and simultaneous testing of many samples at a low cost. PCR-based evidence for the presence of Alternaria DNA followed by positive assay results for Alternaria toxins would support the rejection of a shipment of grain.

  15. The review of identification and assay methods of β-blockers

    Directory of Open Access Journals (Sweden)

    Ольга Олександрівна Віслоус

    2015-10-01

    Full Text Available Every year the number of β-blockers on the pharmaceutical market is increasing, requiring systematization of their standardization methods.Aim of research. The aim of our research is to study literature data about identification and assay methods of β-blockers with different direction of action – selective (praktolol, metoprolol, atenolol, acebutolol, betaxolol, bevantolol, bisoprolol, celiprolol, esmolol, epanolol, esatenolol, nebivolol, Talinolol, non-selective (alprenolol, Oxprenololum, pindolol, propranolol, timolol, sotalol, nadolol, mepindolol, karteol, tertatolol, bopindolol, bupranolol, penbutolol, kloranolol and combined (labetalol, carvedilol.Methods. The analytical review of literature sources about β-blockers analysis by physical, chemical, and physicochemical methods.Results. After literature sources’ analyzing it was found that physical and physicochemical constants are basically used for β-blockers pharmacopoeial analysis; both physicochemical values and chemical reactions are used in forensic analysis, resulting in the article.It was founded that titration methods, mostly acid-base titration method, are used for β-blockers assay in the analysis of substances. For β-blockers detection in biological fluids and dosage forms, active pharmaceutical ingredients and metabolites mixture separation one should prefer physicochemical methods, such as gas chromatography and liquid chromatography, absorption UV-Visible spectroscopy, fluorometry, etc.Conclusion. The results have shown can be used for the further search of the identification and assay optimal methods of β-blockers both pure and mixed with other active substances and excipients

  16. Improved PCR assay for the species-specific identification and quantitation of Legionella pneumophila in water.

    Science.gov (United States)

    Cho, Min Seok; Ahn, Tae-Young; Joh, Kiseong; Lee, Eui Seok; Park, Dong Suk

    2015-11-01

    Legionellosis outbreak is a major global health care problem. However, current Legionella risk assessments may be compromised by uncertainties in Legionella detection methods, infectious dose, and strain infectivity. These limitations may place public health at significant risk, leading to significant monetary losses in health care. However, there are still unmet needs for its rapid identification and monitoring of legionellae in water systems. Therefore, in the present study, a primer set was designed based on a LysR-type transcriptional regulator (LTTR) family protein gene of Legionella pneumophila subsp. pneumophila str. Philadelphia 1 because it was found that this gene is structurally diverse among species through BLAST searches. The specificity of the primer set was evaluated using genomic DNA from 6 strains of L. pneumophila, 5 type strains of other related Legionella species, and other 29 reference pathogenic bacteria. The primer set used in the PCR assay amplified a 264-bp product for only targeted six strains of L. pneumophila. The assay was also able to detect at least 1.39 × 10(3) copies/μl of cloned amplified target DNA using purified DNA or 7.4 × 10(0) colony-forming unit per reaction when using calibrated cell suspension. In addition, the sensitivity and specificity of this assay were confirmed by successful detection of Legionella pneumophila in environmental water samples.

  17. Rapid Identification and Drug Susceptibility Testing of Mycobacterium tuberculosis: Standard Operating Procedure for Non-Commercial Assays: Part 2: Nitrate Reductase Assay v1.3.12

    Directory of Open Access Journals (Sweden)

    Sarman Singh

    2012-01-01

    Full Text Available In the previous part, we presented the standard operating procedure (SOP of the microscopic observation drug susceptibility assay drug susceptibility testing (DST for Mycobacterium tuberculosis. The present SOP is devoted to another non-commercial culture and DST method known as nitrate reductase assay (NRA. As the name implies, the NRA detects the ability of M. tuberculosis to reduce nitrate to nitrite. In the assay, the presence of nitrite is detected by the addition of p-nitrobenzoate into the growth yield. The reaction is detected by the naked eye. The incorporation of drugs in the medium allows to use the test for DST, which can be interpreted with naked eyes. The identification and drug susceptibility results can be obtained in 2-3 weeks. This SOP document has been developed through the culture and DST subgroup of the STOP tuberculosis (TB Partnership New Diagnostic Working Group. It is intended for laboratories that would want to use or already using this rapid non-commercial method for culture identification and DST of M. tuberculosis, notably in resource-constraint settings in Asia and Africa.

  18. An epidermal equivalent assay for identification and ranking potency of contact sensitizers

    NARCIS (Netherlands)

    Gibbs, S.; Corsini, E.; Spiekstra, S.W.; Galbiati, V.; Fuchs, H.W.; Degeorge, G.; Troese, M.; Hayden, P.; Deng, W.; Roggen, E.

    2013-01-01

    The purpose of this study was to explore the possibility of combining the epidermal equivalent (EE) potency assay with the assay which assesses release of interleukin-18 (IL-18) to provide a single test for identification and classification of skin sensitizing chemicals, including chemicals of low

  19. Evaluation of 11 PCR assays for species-level identification of Campylobacter jejuni and Campylobacter coli

    DEFF Research Database (Denmark)

    On, Stephen L.W.; Jordan, Penelope J.

    2003-01-01

    We examined the sensitivity and specificity of 11 PCR assays described for the species identification of Campylobacter jejuni and Campylobacter coli by using 111 type, reference, and field strains of C. jejuni, C. coli, and Campylobacter lari. For six assays, an additional 21 type strains...

  20. Rapid genotyping assays for the identification and differentiation of Yersinia ruckeri biotype 2 strains

    Science.gov (United States)

    Novel assays for the identification and differentiation of biotype 2 phenotype-causing alleles among emerging strains of Yersinia ruckeri are presented. Assays were validated against isolates previously genotyped by DNA sequencing. The methods employed are simple to perform and interpret and thus co...

  1. Identification of the species origin of fresh meat using an enzyme-linked immunosorbent assay procedure.

    Science.gov (United States)

    Kang'ethe, E K; Jones, S J; Patterson, R L

    1982-11-01

    A modification of indirect enzyme-linked immunosorbent assay (ELISA) has been successfully applied to the detection of horse meat and beef. This technically simple assay requiring species specific antibody, conjugated enzyme anti-IgG and a polystyrene protein-binding solid phase, can be adapted for the identification of meat species in circumstances where laboratory facilities are minimal.

  2. Test and Evaluation of Field-Deployable Infectious Disease Diagnostic Assays in Support of the Joint Biological Agent Identification and Diagnosis System (JBAIDS): Malaria (Plasmodium/JBAIDS)

    Science.gov (United States)

    2012-05-31

    Disease Diagnostic Assays in Support of the Joint Biological Agent Identification and Diagnosis System 5b. GRANT NUMBER (JBAIDS): Malaria ( Plasmodium ...Texas (MOA 2007-2012 Agreement No.: DODI 4000.19· AFI 25-201). 14.ABSTRACT A Plasmodium genus dual-fluorogenic, hydrolysis probe (TaqMan) polymerase...chain reaction (PCR) assay was developed using real-time PCR instrumentation (MiniOpticon Real-Time PCR System, Bio-Rad, Hercules, CA). The Plasmodium

  3. PCR-Reverse Blot Hybridization Assay for Screening and Identification of Pathogens in Sepsis

    OpenAIRE

    Choi, Yeonim; Wang, Hye-young; Lee, Gyusang; Park, Soon-Deok; Jeon, Bo-Young; Uh, Young; Kim, Jong Bae; Lee, Hyeyoung

    2013-01-01

    Rapid and accurate identification of the pathogens involved in bloodstream infections is crucial for the prompt initiation of appropriate therapy, as this can decrease morbidity and mortality rates. A PCR-reverse blot hybridization assay for sepsis, the reverse blot hybridization assay (REBA) Sepsis-ID test, was developed; it uses pan-probes to distinguish Gram-positive and -negative bacteria and fungi. In addition, the assay was designed to identify bacteria and fungi using six genus-specifi...

  4. Detection of mutations by fill-in ligation reaction with enzyme-linked immunosorbent assay for rapid medical diagnosis.

    Science.gov (United States)

    Tang, Yi-Tong; Xiao, Na; Li, Zhi-Shan; Zou, Jiu-Ming; Cao, Rui; Zhao, Xue-Hong; Shao, Jin-Hui

    2014-01-01

    Several approaches for parallel genotyping have been developed with increasingly available information on DNA variation. However, these methods require either complex laboratory procedures or expensive instrumentation. None of these procedures is readily performed in local clinical laboratories. In this study, we developed a flexible genotyping method involving fill-in ligation reaction with enzyme-linked immunosorbent assay successfully applied to detect important single-nucleotide polymorphisms (SNPs) for EGFR c.2573T > G (L858R), EGFR c.2582T > A (L861Q), and EGFR c.2155G > T (G719C). This assay exhibited excellent specificity, with a sensitivity as low as 0.5%. Eight out of 62 clinical samples were identified as heterozygotes for the SNP site of L858R, whereas only two samples were identified as heterozygotes by direct sequencing. The developed method enabled accurate identification of SNP in a simple and cost-effective manner adapted to routine analysis.

  5. A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Erickson

    2017-08-01

    Full Text Available We report a simple and inexpensive electrochemical assay using a custom built hand-held potentiostat for the identification of explosives. The assay is based on a wipe test and is specifically designed for use in the field. The prototype instrument designed to run the assay is capable of performing time-resolved electrochemical measurements including cyclic square wave voltammetry using an embedded microcontroller with parts costing roughly $250 USD. We generated an example library of cyclic square wave voltammograms of 12 compounds including 10 nitroaromatics, a nitramine (RDX, and a nitrate ester (nitroglycine, and designed a simple discrimination algorithm based on this library data for identification.

  6. Novel and sensitive qPCR assays for the detection and identification of aspergillosis causing species.

    Science.gov (United States)

    Paholcsek, Melinda; Leiter, Eva; Markovics, Arnold; Biró, Sándor

    2014-09-01

    Despite concerted efforts, diagnosis of aspergillosis is still a great challenge to clinical microbiology laboratories. Along with the requirement for high sensitivity and specificity, species-specific identification is important. We developed rapid, sensitive and species-specific qPCR assays using the TaqMan technology for the detection and identification of Aspergillus fumigatus and Aspergillus terreus. The assays were designed to target orthologs of the Streptomyces factor C gene that are only found in a few species of filamentous fungi. Fungi acquired this gene through horizontal gene transfer and divergence of the gene allows identification of species. The assays have potential as a molecular diagnosis tool for the early detection of fungal infection caused by Aspergillus fumigatus and Aspergillus terreus, which merits future diagnostic studies. The assays were sensitive enough to detect a few genomic equivalents in blood samples.

  7. A multiplex real-time polymerase chain reaction assay to diagnose Epiphyas postvittana (Lepidoptera: Tortricidae).

    Science.gov (United States)

    Barr, N B; Ledezma, L A; Farris, R E; Epstein, M E; Gilligan, T M

    2011-10-01

    A molecular assay for diagnosis of light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), in North America is reported. The assay multiplexes two TaqMan real-time polymerase chain reaction (RT-PCR) probe systems that are designed to target DNA segments of the internal transcribed spacer region 2 (ITS2) and 18S rRNA gene. The RT-PCR probe designed for the 18S target recognizes a DNA sequence conserved in all of the moths included in the study and functions as a control in the assay. The second probe recognizes a segment of the ITS2 specifically found in E. postvittana and not found in the other moths included in the study, i.e., this segment is not conserved. Inclusion of the two markers in a single multiplex reaction did not affect assay performance. The assay was tested against 637 moths representing > 90 taxa in 15 tribes in all three subfamilies in the Tortricidae. The assay generated no false negatives based on analysis of 355 E. postvittana collected from California, Hawaii, England, New Zealand, and Australia. Analysis of a data set including 282 moths representing 41 genera generated no false positives. Only three inconclusive results were generated from the 637 samples. Spike experiments demonstrated that DNA contamination in the assay can affect samples differently. Contaminated samples analyzed with the ITS2 RT-PCR assay and DNA barcode methodology by using the cytochrome oxidase I gene can generate contradictory diagnoses.

  8. Development of a polymerase chain reaction assay for the detection of pseudorabies virus in clinical samples

    OpenAIRE

    Lester J Pérez; Heidy Díaz de Arce

    2009-01-01

    Aujeszky's disease, also known as pseudorabies causes severe economic losses in swine industry and affects the pig husbandry all over the world. The conventional diagnostic procedure is time-consuming and false-negative results may occur in submissions from latently infected animals. The development, optimization and evaluation of a polymerase chain reaction (PCR) assay are presented for the diagnosis of pseudorabies infection. This assay was based on the amplification of a highly conserved v...

  9. A reverse transcription-polymerase chain reaction assay for the detection of avian pneumovirus (Colorado strain).

    Science.gov (United States)

    Ali, A; Reynolds, D L

    1999-01-01

    A reverse transcription-polymerase chain reaction assay was developed for the detection of avian pneumovirus (Colorado strain) (APV-Col). The specific primers were designed from the published sequence of the matrix protein gene of APV-Col. The primers amplified a product of 631 nucleotides from APV-Col. The assay identified only APV-Col and did not react with Newcastle disease virus and infectious bronchitis virus.

  10. Identification of irradiated refrigerated pork with the DNA comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.M. E-mail: villavic@net.ipen.br; Marin-Huachaca, N.S.; Mancini-Filho, J. E-mail: jmancini@usp.br; Delincee, H.; Villavicencio, A.L.C.H. E-mail: henry.delincee@bfe.uni-karlsruhe.de

    2004-10-01

    Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells ('Comet Assay') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a {sup 60}Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sao Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5 kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6 deg. C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA 'Comet Assay'. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.

  11. Microbial identification by immunohybridization assay of artificial RNA labels

    Science.gov (United States)

    Kourentzi, Katerina D.; Fox, George E.; Willson, Richard C.

    2002-01-01

    Ribosomal RNA (rRNA) and engineered stable artificial RNAs (aRNAs) are frequently used to monitor bacteria in complex ecosystems. In this work, we describe a solid-phase immunocapture hybridization assay that can be used with low molecular weight RNA targets. A biotinylated DNA probe is efficiently hybridized in solution with the target RNA, and the DNA-RNA hybrids are captured on streptavidin-coated plates and quantified using a DNA-RNA heteroduplex-specific antibody conjugated to alkaline phosphatase. The assay was shown to be specific for both 5S rRNA and low molecular weight (LMW) artificial RNAs and highly sensitive, allowing detection of as little as 5.2 ng (0.15 pmol) in the case of 5S rRNA. Target RNAs were readily detected even in the presence of excess nontarget RNA. Detection using DNA probes as small as 17 bases targeting a repetitive artificial RNA sequence in an engineered RNA was more efficient than the detection of a unique sequence.

  12. Identification of irradiated refrigerated pork with the DNA comet assay

    Science.gov (United States)

    Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.; Villavicencio, A. L. C. H.

    2004-09-01

    Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells (``Comet Assay'') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a 60Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sa~o Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6°C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA ``Comet Assay''. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.

  13. Chemiluminescence assay of lipase activity using a synthetic substrate as proenhancer for luminol chemiluminescence reaction.

    Science.gov (United States)

    Ichibangase, Tomoko; Ohba, Yoshihito; Kishikawa, Naoya; Nakashima, Kenichiro; Kuroda, Naotaka

    2004-01-01

    A novel chemiluminescence (CL) assay method for lipase (triacylglycerol lipase, E.C.3.1.1.3) activity was developed by using the lauric acid ester of 2-(4-hydroxyphenyl)-4,5-diphenylimidazole (HDI) as a substrate. The method is based on the enhanced CL reaction of luminol-hydrogen peroxide-horseradish peroxidase (HRP) with HDI that is liberated from the substrate by enzymatic hydrolysis. To simplify the assay procedure, both the hydrolysis of the substrate and the enhanced CL reaction were performed in the same reaction mixture. Lipases from Candida cylindracea and porcine pancreas were successfully determined with the detection limits (blank signal + 3 SD) of 0.05 and 50.0 mU/tube, respectively. The method is simple and rapid, permitting the completion of single assay within 5 min. The reproducibilities obtained with replicate assays were relative standard deviations (RSDs) of 4.7% for within-day and 6.0% for between-day assays.

  14. A polymerase chain reaction assay for ascosporic inoculum of Sclerotinia species

    Science.gov (United States)

    A PCR assay was developed which amplified a 170-bp fragment of the intergenic spacer region of Sclerotinia sclerotiorum, the cause of white mould. Sensitivity was 10 S. sclerotiorum ascospores per DNA extraction (0.2 ascospores per PCR reaction). The presence of soil did not affect sensitivity a...

  15. Study of the optimal reaction conditions for assay of the mouse alternative complement pathway

    NARCIS (Netherlands)

    Dijk, H. van; Rademaker, P.M.; Klerx, J.P.A.M.; Willers, J.M.M.

    1985-01-01

    The optimal reaction conditions for hemolytic assay of alternative complement pathway activity in mouse serum were investigated. A microtiter system was used, in which a number of 7.5×106 rabbit erythrocytes per test well appeared to be optimal. Rabbit erythrocytes were superior as target cells over

  16. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  17. Identification of irradiated refrigerated poultry with the DNA comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Villavicencio, A.L.C.H. E-mail: villavic@net.ipen.br; Araujo, M.M.; Marin-Huachaca, N.S.; Mancini-Filho, J. E-mail: jmancini@usp.br; Delincee, H. E-mail: henry.delincee@bfe.uni-karlsruhe.de

    2004-10-01

    Food irradiation could make a significant contribution to the reduction of food-borne diseases caused by harmful bacteria such as Salmonella and parasites. In fact these organisms cause an increasing number of diseases and eventually deaths all over the world, also in industrialized countries. Radiation processing has the advantage that in addition to eliminating pathogens, thereby enhancing food safety, it also extends shelf life through destruction of spoilage organisms. The DNA molecule because of its big size is an easy target for ionizing radiation, therefore, changes in DNA offer potential to be used as a detection method for the irradiation treatment. In our study, poultry has been irradiated and changes in DNA analyzed by the Comet Assay. Samples were packed in plastic bags and irradiated. Doses were 0, 1.5, 3.0 and 4.5 kGy. Immediately after irradiation the samples were returned to the refrigerator (4 deg. C). Samples were analyzed 1 and 10 days after irradiation. This method proved to be an inexpensive and rapid screening technique for qualitative detection of irradiation treatment.

  18. Identification of irradiated refrigerated poultry with the DNA comet assay

    Science.gov (United States)

    Villavicencio, A. L. C. H.; Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.

    2004-09-01

    Food irradiation could make a significant contribution to the reduction of food-borne diseases caused by harmful bacteria such as Salmonella and parasites. In fact these organisms cause an increasing number of diseases and eventually deaths all over the world, also in industrialized countries. Radiation processing has the advantage that in addition to eliminating pathogens, thereby enhancing food safety, it also extends shelf life through destruction of spoilage organisms. The DNA molecule because of its big size is an easy target for ionizing radiation, therefore, changes in DNA offer potential to be used as a detection method for the irradiation treatment. In our study, poultry has been irradiated and changes in DNA analyzed by the Comet Assay. Samples were packed in plastic bags and irradiated. Doses were 0, 1.5, 3.0 and 4.5kGy. Immediately after irradiation the samples were returned to the refrigerator (4°C). Samples were analyzed 1 and 10 days after irradiation. This method proved to be an inexpensive and rapid screening technique for qualitative detection of irradiation treatment.

  19. POSSIBILITIES OF THE POLYMERASE CHAIN REACTION IN THE HUMAN IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Zoran Budimlija

    2001-05-01

    Full Text Available Biological traces can be found in various forms. The basic question to deal withduring the biological traces' analysis is the one about their origin, that is, the questionof identity of the person to whom such samples belong. Up to now the most precisemethod of the DNA is the PCR of Polymerase Chain Reaction.The generalassumptions about applying the method for the purpose of human identification aredescribed, namely, the one that is used in the Institute for Forensic Medicine in NoviSad.

  20. Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM).

    Science.gov (United States)

    Schiffmann, Christian; Hansen, Rasmus; Baumann, Sven; Kublik, Anja; Nielsen, Per Halkjær; Adrian, Lorenz; von Bergen, Martin; Jehmlich, Nico; Seifert, Jana

    2014-01-01

    Targeted absolute protein quantification yields valuable information about physiological adaptation of organisms and is thereby of high interest. Especially for this purpose, two proteomic mass spectrometry-based techniques namely selective reaction monitoring (SRM) and precursor reaction monitoring (PRM) are commonly applied. The objective of this study was to establish an optimal quantification assay for proteins with the focus on those involved in housekeeping functions and putative reductive dehalogenase proteins from the strictly anaerobic bacterium Dehalococcoides mccartyi strain CBDB1. This microbe is small and slow-growing; hence, it provides little biomass for comprehensive proteomic analysis. We therefore compared SRM and PRM techniques. Eleven peptides were successfully quantified by both methods. In addition, six peptides were solely quantified by SRM and four by PRM, respectively. Peptides were spiked into a background of Escherichia coli lysate and the majority of peptides were quantifiable down to 500 amol absolute on column by both methods. Peptide quantification in CBDB1 lysate resulted in the detection of 15 peptides using SRM and 14 peptides with the PRM assay. Resulting quantification of five dehalogenases revealed copy numbers of <10 to 115 protein molecules per cell indicating clear differences in abundance of RdhA proteins during growth on hexachlorobenzene. Our results indicated that both methods show comparable sensitivity and that the combination of the mass spectrometry assays resulted in higher peptide coverage and thus more reliable protein quantification.

  1. A positive assay for identification of cagA negative strains of Helicobacter pylori.

    Science.gov (United States)

    Sicinschi, Liviu A; Correa, Pelayo; Bravo, Luis E; Schneider, Barbara G

    2003-12-01

    A new PCR protocol was developed for the positive identification of cagA negative Helicobacter pylori strains. Amplification of a portion of the genome across the insertion point of the cag pathogenicity island (the ES-"empty site") generated a 106-bp fragment, which produces a positive signal for cagA negative strains. Combined with the results of the cagA assay, the signals for ES allowed the complete characterization of the patients' cagA status. DNA sequencing analysis confirmed the identity of the ES fragment. The new protocol and cagA assay were applied to 22 DNA preparations isolated from stools from H. pylori infected adult patients and to 21 DNA preparations isolated from stools from H. pylori infected children. The same analysis was also performed on nine colonies of H. pylori derived from gastric biopsies of nine of the adult patients. The total number of cagA positive cases from adult patients was 14 or 63.6% (11 mono- and 3 mixed) and of the cagA negative cases (or ES positive) was 9 or 40.9% (6 mono- and 3 mixed). Of the 21 stool DNA samples from children, 6 (28.6%) were cagA positive, 12 (57.1%) were cagA negative and 3 (14.3%) were positive for cagA and for the ES simultaneously. The proportions of mixed cagA positive and cagA negative H. pylori infections were almost equal in adults and children (13.6% and 14.3%, respectively). No reaction products of the proper fragment sizes for cagA or the empty site (ES) were obtained from any of the stool DNA samples of 10 H. pylori uninfected subjects (100% specificity). This noninvasive assay discriminates consistently cagA negative cases from cagA positive strains and from amplification failures. It can be a useful tool for clinical and epidemiological studies of H. pylori infection.

  2. Evaluation of the ANSR for Salmonella assay for identification of Salmonella spp. from colony picks from selective/differential agar media: first action 2013.14.

    Science.gov (United States)

    Mozola, Mark; Botimer, Maximilian; Jagadics, Carolyn; Norton, Paul; Caballero, Oscar; Enslin, Nicole; Biswas, Preetha; Rice, Jennifer

    2014-01-01

    A collaborative study was conducted to evaluate performance of the ANSR for Salmonella assay for identification of Salmonella spp. from colony picks taken from selective/differential agar media. The ANSR Salmonella assay is an isothermal nucleic acid amplification test based on the nicking enzyme amplification reaction chemistry. The test can be completed in less than 40 min including sample preparation. A total of 18 laboratories representing industry, government, academic, and commercial testing laboratories participated in the study. Each collaborator tested up to 84 samples, comprised of colony picks of six Salmonella spp. and six non-salmonellae taken from six selective/differential agar media as well as tryptic soy agar. A total of 1441 analyses were performed, 1416 of which gave the correct identification, for overall accuracy of 98.3%. For identification of Salmonella spp., 755 of 756 tests (99.9%) produced the correct result. For identification of non-salmonellae as such, 661 of 685 assays (96.5%) produced the correct result. Of the 18 laboratories, 15 produced data sets with 99-100% accuracy. The majority of false-positive results were clustered in three laboratories; analysis of raw data suggests procedural difficulties in at least two cases, which may explain the atypical data from these collaborators. The ANSR Salmonella assay can be used as a rapid, accurate adjunct or alternative to biochemical testing for identification of presumptive Salmonella spp. isolates.

  3. A Simple Reverse Transcription-Polymerase Chain Reaction for Dengue Type 2 Virus Identification

    Directory of Open Access Journals (Sweden)

    Figueiredo Luiz Tadeu M

    1997-01-01

    Full Text Available We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique

  4. Demonstration of DSI-semen--A novel DNA methylation-based forensic semen identification assay.

    Science.gov (United States)

    Wasserstrom, Adam; Frumkin, Dan; Davidson, Ariane; Shpitzen, Moshe; Herman, Yael; Gafny, Ron

    2013-01-01

    Determining whether the source tissue of biological material is semen is important in confirming sexual assaults, which account for a considerable percentage of crime cases. The gold standard for confirming the presence of semen is microscopic identification of sperm cells, however, this method is labor intensive and operator-dependent. Protein-based immunologic assays, such as PSA, are highly sensitive and relatively fast, but suffer from low specificity in some situations. In addition, proteins are less stable than DNA under most environmental insults. Recently, forensic tissue identification advanced with the development of several approaches based on mRNA and miRNA for identification of various body fluids. Herein is described DNA source identifier (DSI)-semen, a DNA-based assay that determines whether the source tissue of a sample is semen based on detection of semen-specific methylation patterns in five genomic loci. The assay is comprised of a simple single tube biochemical procedure, similar to DNA profiling, followed by automatic software analysis, yielding the identification (semen/non-semen) accompanied by a statistical confidence level. Three additional internal control loci are used to ascertain the reliability of the results. The assay, which aims to replace microscopic examination, can easily be integrated by forensic laboratories and is automatable. The kit was tested on 135 samples of semen, saliva, venous blood, menstrual blood, urine, and vaginal swabs and the identification of semen vs. non-semen was correct in all cases. In order to test the assay's applicability in "real-life" situations, 33 actual casework samples from the forensic biological lab of the Israeli police were analyzed, and the results were compared with microscopic examination performed by Israeli police personnel. There was complete concordance between both analyses except for one sample, in which the assay identified semen whereas no sperm was seen in the microscope. This

  5. Identification of co-occurring Branchinecta fairy shrimp species from encysted embryos using multiplex polymerase chain reaction

    Science.gov (United States)

    Vandergast, A.G.; Wood, D.A.; Simovich, M.; Bohonak, A.J.

    2009-01-01

    Morphological identification of many fairy shrimp species is difficult because distinguishing characters are restricted to adults. We developed two multiplex polymerase chain reaction assays that differentiate among three Branchinecta fairy shrimp with distributional overlap in southern California vernal pools. Two of the species are federally listed as threatened. Molecular identification of Branchinecta from cysts allows for species surveys to be conducted during the dry season, expanding the timeframe for population assessment and providing a less intrusive method of sampling sensitive vernal pool habitats. ?? Published 2009. This article is a US Government work and is in the public domain in the USA.

  6. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    Science.gov (United States)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  7. Rapid identification of drug-type strains in Cannabis sativa using loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2017-01-01

    In Cannabis sativa L., tetrahydrocannabinol (THC) is the primary psychoactive compound and exists as the carboxylated form, tetrahydrocannabinolic acid (THCA). C. sativa is divided into two strains based on THCA content-THCA-rich (drug-type) strains and THCA-poor (fiber-type) strains. Both strains are prohibited by law in many countries including Japan, whereas the drug-type strains are regulated in Canada and some European countries. As the two strains cannot be discriminated by morphological analysis, a simple method for identifying the drug-type strains is required for quality control in legal cultivation and forensic investigation. We have developed a novel loop-mediated isothermal amplification (LAMP) assay for identifying the drug-type strains of C. sativa. We designed two selective LAMP primer sets for on-site or laboratory use, which target the drug-type THCA synthase gene. The LAMP assay was accomplished within approximately 40 min. The assay showed high specificity for the drug-type strains and its sensitivity was the same as or higher than that of conventional polymerase chain reaction. We also showed the effectiveness of melting curve analysis that was conducted after the LAMP assay. The melting temperature values of the drug-type strains corresponded to those of the cloned drug-type THCA synthase gene, and were clearly different from those of the cloned fiber-type THCA synthase gene. Moreover, the LAMP assay with simple sample preparation could be accomplished within 1 h from sample treatment to identification without the need for special devices or techniques. Our rapid, sensitive, specific, and simple assay is expected to be applicable to laboratory and on-site detection.

  8. Diagnosis of herpes simplex virus-1 keratitis using Giemsa stain, immunofluorescence assay, and polymerase chain reaction assay on corneal scrapings

    Science.gov (United States)

    Farhatullah, S; Kaza, S; Athmanathan, S; Garg, P; Reddy, S B; Sharma, S

    2004-01-01

    Aims: To evaluate three tests used routinely for the diagnosis of herpes simplex virus (HSV) keratitis. Methods: Corneal scrapings from 28 patients with clinically typical dendritic corneal ulcer suggestive of HSV keratitis, and 30 patients with clinically non-viral corneal ulcers, were tested by (i) Giemsa stain for multinucleated giant cells, (ii) immunofluorescence assay (IFA) for HSV-1 antigen, and (iii) polymerase chain reaction (PCR) for HSV-1 DNA, by investigators masked to clinical diagnosis. The control subjects were also investigated by smears and cultures for bacteria, fungus, and Acanthamoeba. Results: The specificity and positive predictive values of all three tests for the diagnosis of HSV keratitis were between 95–100%. The sensitivity of IFA and PCR was 78.6% and 81.2%, respectively, and the difference was not significant; however, their sensitivity and negative predictive value were significantly higher than Giemsa stain. Conclusions: While a combination of IFA and PCR constitute the choice of tests in clinically suspected cases of HSV keratitis, multinucleated giant cells in Giemsa stain can pre-empt testing by IFA and PCR in otherwise atypical cases of HSV keratitis. PMID:14693792

  9. Multiplex quantification of Escherichia coli, Salmonella typhi and Vibrio cholera with three DNA targets in single reaction assay.

    Science.gov (United States)

    Jangampalli Adi, Pradeepkiran; Naidu, Jagadish R; Matcha, Bhaskar

    2017-09-01

    Escherichia coli (E. coli), Salmonella typhi and Vibrio cholera harmful pathogens, which causes various diseases in humans. Rapid diagnosis of bacterial infection is an important for patient management and appropriate therapy during the early phase of the bacterial infected diseases. Among the existing techniques for identifying pathogens were less sensitive and time-consuming processes. In the present study total, 48 clinical 31 blood and 17 urine samples of patients suspected with the infections were collected from SVRR Hospital and used to detect the pathogens. Multiplex polymerase chain reaction (PCR) assay was set to design for the identification of Escherichia coli, Salmonella typhi and Vibrio cholera from the different clinical samples. Rapid diagnosis of Escherichia coli (E. coli), Salmonella and Vibrio cholera pathogens can be done with simultaneously in a single multiplex PCR assay by using specific primers with adjusted PCR conditions. Through this approach, the results represented with out of 31 blood samples 1-15 shows the positive with E. coli and remaining 14 only 11 were correlated with multiplex results of Vibrio cholera, remaining the urine samples all are positive with 17 samples correlate with the Salmonella typhi. Through the high specificity benefits of excellent sensitivity, with high resolution and reproducibility. This method of results proved and illustrates the best potential system for diagnosing the infectious disease with modern trendy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Real-Time PCR Assay for the Identification of the Brown Marmorated Stink Bug (Halyomorpha halys

    Directory of Open Access Journals (Sweden)

    Manpreet K Dhami

    2016-02-01

    Full Text Available The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae, is a gregarious crop pest that has rapidly spread across the world in the last two decades. It is an excellent hitchhiker species, especially as an over-wintering adult. During this period it is often associated with non-biological commodities such as shipping containers and machinery that travel long distances. Inadequate identification keys and similarity to common species has assisted its spread across Europe, while accurate identification from immature stages or eggs is not possible. We developed a real-time TaqMan PCR assay for the accurate and sensitive detection of the brown marmorated stink bug from all life stages. The assay performance against required diagnostic criterion and within a quarantine framework are described.

  11. Identification of Haemophilus influenzae type b by a monoclonal antibody coagglutination assay.

    OpenAIRE

    Hamel, J.; Brodeur, B R; Belmaaza, A; Montplaisir, S; Musser, J M; Selander, R K

    1987-01-01

    A coagglutination assay using monoclonal antibody is described for the identification of Haemophilus influenzae type b. An immunoglobulin G2a monoclonal antibody, Hb-2, directed against a serotype-specific outer membrane protein of H. influenzae type b was adsorbed to Staphylococcus aureus Cowan 1 cells. In a dot enzyme immunoassay, Hb-2 reacted with 453 of 455 H. influenzae type b isolates and did not react with H. influenzae of other serotypes, untypeable H. influenzae strains, or other bac...

  12. Combined genetic transformation and nutritional assay for identification of Moraxella nonliquefaciens.

    OpenAIRE

    1987-01-01

    A combined genetic transformation and nutritional assay is described that permits definitive identification of clinically isolated strains of Moraxella nonliquefaciens. Crude DNA preparations of strains of various Moraxella species were used to transform nutritional mutants of a stably competent strain of M. nonliquefaciens for ability to grow on a defined medium (Mn-B). DNA samples from 24 independently isolated strains of M. nonliquefaciens all resulted in massive (4+) transformation of eac...

  13. Global parameter identification of stochastic reaction networks from single trajectories.

    Science.gov (United States)

    Müller, Christian L; Ramaswamy, Rajesh; Sbalzarini, Ivo F

    2012-01-01

    We consider the problem of inferring the unknown parameters of a stochastic biochemical network model from a single measured time-course of the concentration of some of the involved species. Such measurements are available, e.g., from live-cell fluorescence microscopy in image-based systems biology. In addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy (FCS) provide additional information about the system dynamics that can be used to more robustly infer parameters than when considering only mean concentrations. Estimating model parameters from a single experimental trajectory enables single-cell measurements and quantification of cell-cell variability. We propose a novel combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation (GaA), and efficient exact stochastic simulation algorithms (SSA) that allows parameter identification from single stochastic trajectories. We benchmark the proposed method on a linear and a non-linear reaction network at steady state and during transient phases. In addition, we demonstrate that the present method also provides an ellipsoidal volume estimate of the viable part of parameter space and is able to estimate the physical volume of the compartment in which the observed reactions take place.

  14. Combined genetic transformation and nutritional assay for identification of Moraxella nonliquefaciens.

    Science.gov (United States)

    Juni, E; Heym, G A; Maurer, M J; Miller, M L

    1987-09-01

    A combined genetic transformation and nutritional assay is described that permits definitive identification of clinically isolated strains of Moraxella nonliquefaciens. Crude DNA preparations of strains of various Moraxella species were used to transform nutritional mutants of a stably competent strain of M. nonliquefaciens for ability to grow on a defined medium (Mn-B). DNA samples from 24 independently isolated strains of M. nonliquefaciens all resulted in massive (4+) transformation of each of two mutant assay strains. DNA samples from strains of M. bovis and M. lacunata frequently gave weak (1+) transformation of one of the mutant assay strains (Mn64) but almost always failed to transform another assay strain (Mn136). DNA samples from eight other Moraxella species failed completely to transform either of the mutant assay strains. When streaked on the defined medium used for the transformation assay (Mn-B), 23 of the 24 strains of M. nonliquefaciens grew well, but all strains of M. bovis and M. lacunata failed to grow on this medium.

  15. A modified molecular beacons-based multiplex real-time PCR assay for simultaneous detection of eight foodborne pathogens in a single reaction and its application.

    Science.gov (United States)

    Hu, Qinghua; Lyu, Dongyue; Shi, Xiaolu; Jiang, Yixiang; Lin, Yiman; Li, Yinghui; Qiu, Yaqun; He, Lianhua; Zhang, Ran; Li, Qingge

    2014-03-01

    Foodborne disease outbreaks are often caused by one of the major pathogens. Early identification of the causal pathogen is crucial for disease control and prevention. We describe a real-time polymerase chain reaction (rtPCR) assay that can identify, in a single reaction, up to eight common foodborne bacterial pathogens, including Salmonella enterica subsp. enterica, Listeria monocytogenes, Escherichia coli O157, Vibrio parahaemolyticus, V. vulnificus, Campylobacter jejuni, Enterobacter sakazakii, and Shigella spp. This multiplex rtPCR assay takes advantage of modified molecular beacons and the multicolor combinational probe coding strategy to discriminate each pathogen and the homo-tag assisted non-dimer (HAND) system to prevent dimer formation. The detection limits of the assay ranged from 1.3×10(3) colony-forming units (CFU)/g stool (L. monocytogenes) to 1.6×10(4) CFU/g stool (Shigella spp.). The target genes were 100% specific as assessed on 986 reference strains covering 41 species since no cross-reactions were observed. The assay was applied to the detection of foodborne pathogens in 11,167 clinical samples and the results were compared with culture methods for further validation. The sensitivity and specificity of the rtPCR were 100% and 99%, respectively. When performed in a 96-well rtPCR system, more than 90 samples could be analyzed within 3 h. Given the high accuracy, sensitivity, specificity, and short turn-around time, the established assay could be used for the rapid and reliable identification of the causative pathogens responsible for a certain foodborne disease outbreak and rapid screening of these major foodborne pathogens in laboratory-based surveillance of outpatient clinical samples or even food samples.

  16. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    Science.gov (United States)

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Database of Reaction Monitoring Mass Spectrometry Assays for Elucidating Therapeutic Response in Cancer

    Science.gov (United States)

    Remily-Wood, Elizabeth R.; Liu, Richard Z.; Xiang, Yun; Chen, Yi; Thomas, C. Eric; Rajyaguru, Neal; Kaufman, Laura M.; Ochoa, Joana E.; Hazlehurst, Lori; Pinilla-Ibarz, Javier; Lancet, Jeffrey; Zhang, Guolin; Haura, Eric; Shibata, David; Yeatman, Timothy; Smalley, Keiran S.M.; Dalton, William S.; Huang, Emina; Scott, Ed; Bloom, Gregory C.; Eschrich, Steven A.; Koomen, John M.

    2012-01-01

    Purpose The Quantitative Assay Database (QuAD), http://proteome.moffitt.org/QUAD/, facilitates widespread implementation of quantitative mass spectrometry in cancer biology and clinical research through sharing of methods and reagents for monitoring protein expression and modification. Experimental Design Liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) assays are developed using SDS-PAGE fractionated lysates from cancer cell lines. Pathway maps created using GeneGO Metacore provide the biological relationships between proteins and illustrate concepts for multiplexed analysis; each protein can be selected to examine assay development at the protein and peptide level. Results The coupling of SDS-PAGE and LC-MRM screening has been used to detect 876 peptides from 218 cancer-related proteins in model systems including colon, lung, melanoma, leukemias, and myeloma, which has led to the development of 95 quantitative assays including stable-isotope labeled peptide standards. Methods are published online and peptide standards are made available to the research community. Protein expression measurements for heat shock proteins, including a comparison with ELISA and monitoring response to the HSP90 inhibitor, 17-DMAG, are used to illustrate the components of the QuAD and its potential utility. Conclusions and Clinical Relevance This resource enables quantitative assessment of protein components of signaling pathways and biological processes and holds promise for systematic investigation of treatment responses in cancer. PMID:21656910

  18. Evaluation of an immunochromatographic assay for rapid identification of Mycobacterium tuberculosis complex in clinical isolates.

    Science.gov (United States)

    Marzouk, Manel; Kahla, Imen Ben; Hannachi, Naila; Ferjeni, Asma; Salma, Walid Ben; Ghezal, Samira; Boukadida, Jalel

    2011-04-01

    Identification of Mycobacterium tuberculosis complex (MTC) remains slow. Over the years, several new technologies have been proposed to accelerate and simplify the detection of MTC. In this context, we evaluated an immunochromatographic assay (ICA) (BIO-LINE SD Ag MPT64 TB) for rapid identification of MTC, based on detection of a specific MPT64 antigen of MTC. We have tested it on i) mycobacterial cultures: 210 MTC strains and 28 nontuberculous mycobacteria; ii) M. bovis bacille Calmette-Guérin strain SSI (Statens Serum Institut, Denmark); and iii) 22 microorganisms other than mycobacteria, isolated from cultures. We concluded that this kit has an excellent specificity (100%) and sensitivity (99%) from isolated cultures. The ICA (BIO-LINE SD Ag MPT64 TB) allows excellent MTC identification from clinical isolates. It is a rapid, simple, and inexpensive test, and has a definite contribution in the rapid laboratory diagnosis of tuberculosis.

  19. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr in human poliovirus receptor gene

    Directory of Open Access Journals (Sweden)

    Shyam Sundar Nandi

    2016-01-01

    Results: A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150 of DNA samples tested by both SNP detection assay and sequencing. Interpretation & conclusions: The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.

  20. Multiplex polymerase chain reaction-capillary gel electrophoresis: a promising tool for GMO screening--assay for simultaneous detection of five genetically modified cotton events and species.

    Science.gov (United States)

    Nadal, Anna; Esteve, Teresa; Pla, Maria

    2009-01-01

    A multiplex polymerase chain reaction assay coupled to capillary gel electrophoresis for amplicon identification by size and color (multiplex PCR-CGE-SC) was developed for simultaneous detection of cotton species and 5 events of genetically modified (GM) cotton. Validated real-time-PCR reactions targeting Bollgard, Bollgard II, Roundup Ready, 3006-210-23, and 281-24-236 junction sequences, and the cotton reference gene acp1 were adapted to detect more than half of the European Union-approved individual or stacked GM cotton events in one reaction. The assay was fully specific (PCR-CGE-SC assay to allow simultaneous detection of 6 cotton and 5 maize targets (two endogenous genes and 9 GM events) in two multiplex PCRs and a single CGE, making the approach more economic. Besides allowing simultaneous detection of many targets with adequate specificity and sensitivity, the multiplex PCR-CGE-SC approach has high throughput and automation capabilities, while keeping a very simple protocol, e.g., amplification and labeling in one step. Thus, it is an easy and inexpensive tool for initial screening, to be complemented with quantitative assays if necessary.

  1. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    Science.gov (United States)

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  2. Development and validation of a Myxoma virus real-time polymerase chain reaction assay.

    Science.gov (United States)

    Albini, Sarah; Sigrist, Brigitte; Güttinger, Regula; Schelling, Claude; Hoop, Richard K; Vögtlin, Andrea

    2012-01-01

    To aid in the rapid diagnosis of myxomatosis in rabbits, a real-time polymerase chain reaction (PCR) for the specific detection of Myxoma virus is described. Primers and probe were designed to amplify a 147-bp fragment within the Serp2 gene. The assay was able to detect 23 copies of a synthesized oligo indicating a reliable sensitivity. In addition, the real-time PCR did not detect the Rabbit fibroma virus used in myxomatosis vaccines. The novel PCR was shown to be able to detect Myxoma virus in fresh and paraffin-embedded rabbit tissues originating from myxomatosis cases from various regions in Switzerland.

  3. Development and validation of a Myxoma virus real-time polymerase chain reaction assay

    OpenAIRE

    Albini, S; Sigrist, B; Guttinger, R; Schelling, C; Hoop, R K; Vogtlin, A

    2012-01-01

    To aid in the rapid diagnosis of myxomatosis in rabbits, a real-time polymerase chain reaction (PCR) for the specific detection of Myxoma virus is described. Primers and probe were designed to amplify a 147-bp fragment within the Serp2 gene. The assay was able to detect 23 copies of a synthesized oligo indicating a reliable sensitivity. In addition, the real-time PCR did not detect the Rabbit fibroma virus used in myxomatosis vaccines. The novel PCR was shown to be able to detect Myxoma virus...

  4. Cyanidin-horseradish peroxidase-hydroperoxide reaction system and its application in enzyme linked immunosensing assays

    Institute of Scientific and Technical Information of China (English)

    GONG FuChun; LI DingZhong; YANG Rong; WEI JianKe; CAO Zhong; TAN ShuZhen; TAN YaFei

    2009-01-01

    A cyanidin-based horseradish peroxidase(HRP)-catalyzed reaction system was established in this work.In B-R buffer solutions(pH 6.8),a UV-visible ebsorbance peak of cyanidin(CAG)at 540 nm(Ap1)appeared.After the oxidation reaction of CAG catalyzed by HRP in the presence of H2O2,a significant absorbance peak at 482 nm(Ap2)occurred.The ratio R(Ap2/Ap1)was proportional to the HRP concentration.The application of CAG in the enzyme-linked immunosensing assays was investigated using food and mouth disease virus antigen(FMDVAg)as e model analyte.in sandwich immunoreaction,the analyte FMDVAg and food and mouth disease virus antibody(FMDVAb)-modified magnetic nanoparticles bound the supported conconvalina(Con A)bound with HRP-FMDVAb.After de-absorbing and separating,the HRP-FMDVAb-FMDVAg-FMDVAb-magnetic nanoparticles complexes were subject to enzymatic reaction and UV-visible absorbance measurements.The HRP moiety of the immunoreaction complexes can catalyze the oxidation reaction of CAG by H2O2,and the substrate CAG is converted to products.Based on this principle,a sandwich assay model has been employed to determine FMDVAg in rabbit serum samples with the aid of FMDVAb-Fe3O4 magnetic nanoparticles.The linear range of the FMDVAg determination is 1.5×10-8-2.7×10-6 g/mL with the relatively standard deviation of 3.7%(n=11).The detection limit is 3.1×10 g/mL.Additional advantages of the typical substrate such as OPD,OAP and TMB are good water-solubility and stability.

  5. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii with a multiplex PCR assay.

    Science.gov (United States)

    Chen, Te-Li; Lee, Yi-Tzu; Kuo, Shu-Chen; Yang, Su-Pen; Fung, Chang-Phone; Lee, Shou-Dong

    2014-09-01

    Acinetobacter baumannii, Acinetobacter nosocomialis and Acinetobacter pittii are clinically relevant members of the Acinetobacter calcoaceticus-A. baumannii (Acb) complex and important nosocomial pathogens. These three species are genetically closely related and phenotypically similar; however, they differ in their epidemiology, antibiotic resistance and pathogenicity. In this study, we investigated the use of a multiplex PCR-based assay designed to detect internal fragments of the 16S-23S rRNA intergenic region and the gyrB and recA genes. The assay was capable of differentiating A. baumannii, A. nosocomialis and A. pittii in a reliable manner. In 23 different reference strains and 89 clinical isolates of Acinetobacter species, the assay accurately identified clinically relevant Acb complex species except those 'between 1 and 3' or 'close to 13TU'. None of the non-Acb complex species was misidentified. In an analysis of 1034 positive blood cultures, the assay had a sensitivity of 92.4 % and specificity of 98.2 % for Acb complex identification. Our results show that a single multiplex PCR assay can reliably differentiate clinically relevant Acb complex species. Thus, this method may be used to better understand the clinical differences between infections caused by these species.

  6. Identification of goose, mule duck, chicken, turkey, and swine in foie gras by species-specific polymerase chain reaction.

    Science.gov (United States)

    Rodríguez, Miguel A; García, Teresa; González, Isabel; Asensio, Luis; Mayoral, Belén; López-Calleja, Inés; Hernández, Pablo E; Martín, Rosario

    2003-03-12

    A specific Polymerase Chain Reaction (PCR) has been developed for the identification of goose (Anser anser), mule duck (Anas platyrhynchos x Cairina moschata), chicken (Gallus gallus), turkey (Meleagris gallopavo), and swine (Sus scrofa domesticus) in foie gras. A forward common primer was designed on a conserved DNA sequence in the mitochondrial 12S ribosomal RNA gene (rRNA), and reverse primers were designed to hybridize on species-specific DNA sequences of each species considered. The different sizes of the species-specific amplicons, separated by agarose gel electrophoresis, allowed clear identification of goose, mule duck, chicken, turkey, and swine in foie gras. Analysis of experimental mixtures demonstrated that the detection limit of the assay was approximately 1% for each species analyzed. This genetic marker can be very useful for the accurate identification of these species, avoiding mislabeling or fraudulent species substitution in foie gras.

  7. Detection of Staphylococcus aureus in Dairy Products by Polymerase Chain Reaction Assay

    Institute of Scientific and Technical Information of China (English)

    YANG Yang; SU Xu-dong; YUAN Yao-wu; KANG Chun-yu; LI Ying-jun; ZHANG wei; ZHONG Xiao-ying

    2007-01-01

    A polymerase chain reaction (PCR) assay was employed for direct detection of Staphylococcus aureus without enrichment in dairy products. A solvent extraction procedure was successfully modified for the extraction of Staphylococcus aureus DNA from artificially contaminated whole milk, skim milk, and cheese. A primer targeting the thermostable nuclease gene (nuc) was used in the PCR. A DNA fragment of 279 bp was amplified. The PCR product was confirmed by DNA sequencing. In this study, the PCR, GB- 4789.10-94, Perifilm RSA.Count Plate, and Baird-Parker + RPF Agar were compared.The sensitivity of the PCR was 10 CFU mL-1 of whole milk, skim milk, and 55 CFU g-1 of cheese. The developed methodology allowed for detection of Staphylococcus aureus in dairy products in less than 6 h. The time taken for the development of this PCR assay was 12-24 h, less than the time taken by the general PCR assay using the enrichment method, and the coincidence rate of this developed PCR was 94.3%, the sensitivity was 100%. It was a rapid, sensitive, and effective method for PCR to detect Staphylococcus aureus in milk and milk products.

  8. Molecular Identification of an Invasive Wood-Boring Insect Lyctus brunneus (Coleoptera: Bostrichidae: Lyctinae) Using Frass by Loop-Mediated Isothermal Amplification and Nested PCR Assays.

    Science.gov (United States)

    Ide, Tatsuya; Kanzaki, Natsumi; Ohmura, Wakako; Okabe, Kimiko

    2016-03-27

    Lyctus brunneus(Stephens) is one of the most destructive and worldwide invasive pests of seasoned woods for wooden products. This and other pestLyctusspecies have had their distribution expanded by international and domestic human transportation of infested wood and wood products. Rapid detection and accurate identification ofLyctusspecies are effective tools for helping to eradicate them in new introduction sites. The accurate species-level identification of adults requires expert knowledge about their morphology. However, it takes much time and effort to recover suitable adult specimens because they are borers inside wood. Frass ofLyctusspecies can easily be detected and recovered in and around infested wood. Thus, frass was tested to see if it was a suitable sample to allow development of a rapid and technically easy molecular detection and identification method forL.brunneus.Species-specific primers were designed from the cytochrome c oxidase subunit I region ofL.brunneusand used in development and testing of methods for successfully identifying them from their frass using the loop-mediated isothermal amplification (LAMP) or species-specific nested polymerase chain reaction (PCR) assays. The LAMP assay was faster and more sensitive for detecting the presence of DNA derived fromL.brunneusin their frass than the nested PCR assay. These methodologies will be applicable for the rapid detection and identification of other wood-boring invasive pests in regulatory applications.

  9. Molecular identification of python species: development and validation of a novel assay for forensic investigations.

    Science.gov (United States)

    Ciavaglia, Sherryn A; Tobe, Shanan S; Donnellan, Stephen C; Henry, Julianne M; Linacre, Adrian M T

    2015-05-01

    Python snake species are often encountered in illegal activities and the question of species identity can be pertinent to such criminal investigations. Morphological identification of species of pythons can be confounded by many issues and molecular examination by DNA analysis can provide an alternative and objective means of identification. Our paper reports on the development and validation of a PCR primer pair that amplifies a segment of the mitochondrial cytochrome b gene that has been suggested previously as a good candidate locus for differentiating python species. We used this DNA region to perform species identification of pythons, even when the template DNA was of poor quality, as might be the case with forensic evidentiary items. Validation tests are presented to demonstrate the characteristics of the assay. Tests involved the cross-species amplification of this marker in non-target species, minimum amount of DNA template required, effects of degradation on product amplification and a blind trial to simulate a casework scenario that provided 100% correct identity. Our results demonstrate that this assay performs reliably and robustly on pythons and can be applied directly to forensic investigations where the presence of a species of python is in question.

  10. Simple Identification of Human Taenia Species by Multiplex Loop-Mediated Isothermal Amplification in Combination with Dot Enzyme-Linked Immunosorbent Assay.

    Science.gov (United States)

    Nkouawa, Agathe; Sako, Yasuhito; Okamoto, Munehiro; Ito, Akira

    2016-06-01

    For differential detection of Taenia solium, Taenia saginata, and Taenia asiatica, loop-mediated isothermal amplification (LAMP) assay targeting the cytochrome c oxidase subunit 1 gene has been recently developed and shown to be sensitive, specific, and effective. However, to achieve differential identification, one specimen requires three reaction mixtures containing a primer set of each Taenia species separately, which is complex and time consuming and increases the risk of cross-contamination. In this study, we developed a simple differential identification of human Taenia species using multiplex LAMP (mLAMP) in combination with dot enzyme-linked immunosorbent assay (dot-ELISA). Forward inner primers of T. solium, T. saginata, and T. asiatica labeled with fluorescein isothiocyanate (FITC), digoxigenin (DIG), and tetramethylrhodamine (TAMRA), respectively, and biotin-labeled backward inner primers were used in mLAMP. The mLAMP assay succeeded in specific amplification of each respective target gene in a single tube. Furthermore, the mLAMP product from each species was easily distinguished by dot-ELISA with an antibody specific for FITC, DIG, or TAMRA. The mLAMP assay in combination with dot-ELISA will make identification of human Taenia species simpler, easier, and more practical.

  11. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays.

    Science.gov (United States)

    Henriksen, S T; Liu, J; Estiu, G; Oltvai, Z N; Wiest, O

    2010-07-15

    The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking, followed by ensemble rescoring, that is sufficiently accurate to justify immediate testing of the identified compounds by whole-cell assays, avoiding the need for time-consuming and often difficult intermediary enzyme assays. This novel strategy is demonstrated for three key enzymes of the S. aureus histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of approximately 10(6) compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus- and two Escherichia coli strains in standard disk inhibition assays. Thirteen compounds are inhibitors of some or all of the S. aureus strains, while 14 compounds weakly inhibit growth in one or both E. coli strains. The high hit rate obtained from a fast virtual screen demonstrates the applicability of this novel strategy to the histidine biosynthesis pathway.

  12. Identification multiplex assay of 19 terrestrial mammal species present in New Zealand.

    Science.gov (United States)

    Ramón-Laca, Ana; Linacre, Adrian M T; Gleeson, Dianne M; Tobe, Shanan S

    2013-12-01

    An identification assay has been developed that allows accurate detection of 19 of the most common terrestrial mammals present in New Zealand (cow, red deer, goat, dog, horse, hedgehog, cat, tammar wallaby, mouse, weasel, ferret, stoat, sheep, rabbit, Pacific rat, Norway rat, ship rat, pig, and brushtail possum). This technique utilizes species-specific primers that, combined in a multiplex PCR, target small fragments of the mitochondrial cytochrome b gene. Each species, except hedgehog, produces two distinctive species-specific fragments, making the assay self-confirmatory and enabling the identification of multiple species simultaneously in DNA mixtures. The multiplex assay detects as little as 100 copies of mitochondrial DNA, which makes it a very reliable tool for degraded and trace samples. Reliability, accuracy, reproducibility, and sensitivity tests to validate the technique were performed. The technique featured here enabled a prompt response in a predation specific event, but can also be useful for wildlife management and conservation, pest incursions detection, forensic, and industrial purposes in a very simple and cost-effective manner.

  13. Mycoplasma bovis real-time polymerase chain reaction assay validation and diagnostic performance.

    Science.gov (United States)

    Clothier, Kristin A; Jordan, Dianna M; Thompson, Curtis J; Kinyon, Joann M; Frana, Timothy S; Strait, Erin L

    2010-11-01

    Mycoplasma bovis is an important bacterial pathogen in cattle, producing a variety of clinical diseases. The organism, which requires specialized culture conditions and extended incubation times to isolate and identify, is frequently associated with concurrent infection with other pathogens which can potentially be more easily identified. Real-time polymerase chain reaction (real-time PCR) is a valuable diagnostic technique that can rapidly identify infectious agents in clinical specimens. A real-time PCR assay was designed based on the uvrC gene to identify M. bovis in diagnostic samples. Using culture as the gold standard test, the assay performed well in a variety of diagnostic matrices. Initial validation testing was conducted on 122 milk samples (sensitivity: 88.9% [95% confidence interval (CI): 68.4-100%], specificity: 100%); 154 lung tissues (sensitivity: 89.0% [95% CI: 83.1-94.9%], specificity: 97.8% [95% CI: 93.5-100%]); 70 joint tissue/fluid specimens (sensitivity: 92.3% [95% CI: 82.1-100%], specificity: 95.5% [95% CI: 89.3-100%]); and 26 nasal swabs (sensitivity: 75.0% [95% CI: 45.0-100%], specificity: 83.3% [95% CI: 66.1-100%]). Low numbers of other sample matrices showed good agreement between results of culture and PCR. A review of clinical cases from 2009 revealed that, in general, PCR was used much more frequently than culture and provided useful diagnostic information in conjunction with clinical signs, signalment, and gross and histopathologic lesions. Diagnostic performance of the real-time PCR assay developed as a testing method indicates that it is a rapid, accurate assay that is adaptable to a variety of PCR platforms and can provide reliable results on an array of clinical samples.

  14. Triplex PCR assay for the rapid identification of 3 major Vibrio species, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio fluvialis.

    Science.gov (United States)

    Vinothkumar, Kittappa; Bhardwaj, Ashima Kushwaha; Ramamurthy, Thandavarayan; Niyogi, Swapan Kumar

    2013-08-01

    A triplex PCR assay was developed for the identification of 3 major Vibrio spp., Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio fluvialis by targeting their haemolysin, haem-utilizing, and central regulatory genes, respectively. This simple, rapid, sensitive, and specific assay using cell lysates from 227 samples established its usefulness in research and epidemiology. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Sensitive non-isotopic DNA hybridisation assay or immediate-early antigen detection for rapid identification of human cytomegalovirus in urine.

    Science.gov (United States)

    Kimpton, C P; Morris, D J; Corbitt, G

    1991-04-01

    A sensitive non-radioactive DNA hybridisation assay employing digoxigenin-labelled probes was compared with immediate-early antigen detection and conventional virus isolation for the identification of human cytomegalovirus (HCMV) in 249 urine samples. Of 44 specimens yielding HCMV by virus isolation, more were positive by DNA hybridisation (32; 73%) than by immediate-early antigen detection (25; 52%) (P = 0.05). The specificity of the hybridisation assay in 45 apparently falsely positive specimens was supported by detection of HCMV DNA in 40 of these specimens using the polymerase chain reaction. Many urine specimens may thus contain large amounts of non-viable virus or free viral DNA. Evaluation of various protocols for the extraction and denaturation of virus DNA prior to hybridisation showed that proteinase K digestion with phenol/chloroform extraction was the most sensitive and reliable procedure. We conclude that the non-radioactive DNA hybridisation assay described is a potentially valuable routine diagnostic test.

  16. Isolation and polymerase chain reaction-based identification of Riemerella anatipestifer from ducks in Kerala, India

    Directory of Open Access Journals (Sweden)

    Manju Soman

    2014-10-01

    Full Text Available Aim: The aim was to isolate and characterize Riemerella anatipestifer organisms from disease outbreaks in ducks in Kerala. Materials and Methods: Ducklings, suspected of Riemerella infection, were sacrificed and subjected to post-mortem examination. Heart blood smears and impression smears from liver and spleen were examined for the presence of pathogenic organisms. Heart blood, lung, liver, and spleen collected aseptically from the birds were subjected to isolation trials in brain heart infusion agar and 10% bovine blood agar. The isolates were characterized based on morphology, cultural characteristics and biochemical tests, and their identity were confirmed by polymerase chain reaction (PCR and the PCR amplified DNA was sequenced. The antibiotic sensitivity testing of the isolates were carried out using six antibiotics viz ciprofloxacin, chloramphenicol, enrofloxacin, amoxycillin, cotrimoxazole, and gentamicin. Results: Colonies suggestive of Riemerella organisms could be isolated on blood agar. Biochemical characterization and PCR confirmed the identity of isolates as R. anatipestifer. The nucleotide sequence of the PCR product showed 99% homology to the R. anatipestifer sequences in the NCBI. The antibiogram revealed that the organisms were sensitive to ciprofloxacin, enrofloxacin, and gentamicin. Conclusion: The present study suggests that the PCR assay can facilitate fast and proper identification of R. anatipestifer infection in ducks. The assay can also differentiate between R. anatipestifer and Pasteurella multocida and can replace the traditional methods of differentiation which are cumbersome and time-consuming.

  17. Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identification of the parasite species.

    Science.gov (United States)

    Graça, Grazielle Cardoso da; Volpini, Angela Cristina; Romero, Gustavo Adolfo Sierra; Oliveira Neto, Manoel Paes de; Hueb, Marcia; Porrozzi, Renato; Boité, Mariana Côrtes; Cupolillo, Elisa

    2012-08-01

    In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70) regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL). A total of 70 Leishmania strains were analysed, including seven reference strains (RS) and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region), internal transcribed spacer (ITS)1 and glucose-6-phosphate dehydrogenase (G6pd). A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.

  18. A Multi-Species TaqMan PCR Assay for the Identification of Asian Gypsy Moths (Lymantria spp.) and Other Invasive Lymantriines of Biosecurity Concern to North America

    Science.gov (United States)

    Stewart, Donald; Zahiri, Reza; Djoumad, Abdelmadjid; Freschi, Luca; Lamarche, Josyanne; Holden, Dave; Cervantes, Sandra; Ojeda, Dario I.; Potvin, Amélie; Nisole, Audrey; Béliveau, Catherine; Capron, Arnaud; Kimoto, Troy; Day, Brittany; Yueh, Hesther; Duff, Cameron; Levesque, Roger C.; Hamelin, Richard C.; Cusson, Michel

    2016-01-01

    Preventing the introduction and establishment of forest invasive alien species (FIAS) such as the Asian gypsy moth (AGM) is a high-priority goal for countries with extensive forest resources such as Canada. The name AGM designates a group of closely related Lymantria species (Lepidoptera: Erebidae: Lymantriinae) comprising two L. dispar subspecies (L. dispar asiatica, L. dispar japonica) and three closely related Lymantria species (L. umbrosa, L. albescens, L. postalba), all considered potential FIAS in North America. Ships entering Canadian ports are inspected for the presence of suspicious gypsy moth eggs, but those of AGM are impossible to distinguish from eggs of innocuous Lymantria species. To assist regulatory agencies in their identification of these insects, we designed a suite of TaqMan® assays that provide significant improvements over existing molecular assays targeting AGM. The assays presented here can identify all three L. dispar subspecies (including the European gypsy moth, L. dispar dispar), the three other Lymantria species comprising the AGM complex, plus five additional Lymantria species that pose a threat to forests in North America. The suite of assays is built as a “molecular key” (analogous to a taxonomic key) and involves several parallel singleplex and multiplex qPCR reactions. Each reaction uses a combination of primers and probes designed to separate taxa through discriminatory annealing. The success of these assays is based on the presence of single nucleotide polymorphisms (SNPs) in the 5’ region of mitochondrial cytochrome c oxidase I (COI) or in its longer, 3’ region, as well as on the presence of an indel in the “FS1” nuclear marker, generating North American and Asian alleles, used here to assess Asian introgression into L. dispar dispar. These assays have the advantage of providing rapid and accurate identification of ten Lymantria species and subspecies considered potential FIAS. PMID:27513667

  19. A Multi-Species TaqMan PCR Assay for the Identification of Asian Gypsy Moths (Lymantria spp.) and Other Invasive Lymantriines of Biosecurity Concern to North America.

    Science.gov (United States)

    Stewart, Donald; Zahiri, Reza; Djoumad, Abdelmadjid; Freschi, Luca; Lamarche, Josyanne; Holden, Dave; Cervantes, Sandra; Ojeda, Dario I; Potvin, Amélie; Nisole, Audrey; Béliveau, Catherine; Capron, Arnaud; Kimoto, Troy; Day, Brittany; Yueh, Hesther; Duff, Cameron; Levesque, Roger C; Hamelin, Richard C; Cusson, Michel

    2016-01-01

    Preventing the introduction and establishment of forest invasive alien species (FIAS) such as the Asian gypsy moth (AGM) is a high-priority goal for countries with extensive forest resources such as Canada. The name AGM designates a group of closely related Lymantria species (Lepidoptera: Erebidae: Lymantriinae) comprising two L. dispar subspecies (L. dispar asiatica, L. dispar japonica) and three closely related Lymantria species (L. umbrosa, L. albescens, L. postalba), all considered potential FIAS in North America. Ships entering Canadian ports are inspected for the presence of suspicious gypsy moth eggs, but those of AGM are impossible to distinguish from eggs of innocuous Lymantria species. To assist regulatory agencies in their identification of these insects, we designed a suite of TaqMan® assays that provide significant improvements over existing molecular assays targeting AGM. The assays presented here can identify all three L. dispar subspecies (including the European gypsy moth, L. dispar dispar), the three other Lymantria species comprising the AGM complex, plus five additional Lymantria species that pose a threat to forests in North America. The suite of assays is built as a "molecular key" (analogous to a taxonomic key) and involves several parallel singleplex and multiplex qPCR reactions. Each reaction uses a combination of primers and probes designed to separate taxa through discriminatory annealing. The success of these assays is based on the presence of single nucleotide polymorphisms (SNPs) in the 5' region of mitochondrial cytochrome c oxidase I (COI) or in its longer, 3' region, as well as on the presence of an indel in the "FS1" nuclear marker, generating North American and Asian alleles, used here to assess Asian introgression into L. dispar dispar. These assays have the advantage of providing rapid and accurate identification of ten Lymantria species and subspecies considered potential FIAS.

  20. A multiplex, internally controlled real-time PCR assay for detection of toxigenic Clostridium difficile and identification of hypervirulent strain 027/ST-1

    DEFF Research Database (Denmark)

    Hoegh, A M; Nielsen, J B; Lester, A

    2012-01-01

    The purpose of this study was to validate a multiplex real-time PCR assay capable of detecting toxigenic Clostridium difficile and simultaneously identifying C. difficile ribotype 027/ST-1 by targeting the toxin genes tcdA, tcdB and cdtA in one reaction and in a separate reaction identifying the Δ...... to confirm the correct identification of the Δ117 deletion in tcdC and C. difficile ribotype 027/ST-1, respectively. The PCR assay displayed a sensitivity, specificity, PPV and NPV of 99.0%, 97.4%, 87.4% and 99.8%, respectively, compared to toxigenic culture on 665 samples evaluable both by PCR and culture....... Sequencing of tcdC, ribotyping and MLST of cultured isolates validated the genotyping assay and confirmed the ability of the assay to correctly identify C. difficile ribotype 027/ST-1 in our current epidemiological setting. We describe the use of a combination of two separate PCR assays for sensitive...

  1. Polymerase chain reaction-based assays for the diagnosis of human brucellosis.

    Science.gov (United States)

    Wang, Ying; Wang, Zhanli; Zhang, Yaxian; Bai, Liyun; Zhao, Yue; Liu, Chunfang; Ma, An; Yu, Hui

    2014-08-01

    Polymerase chain reaction (PCR) is an in vitro technique for the nucleic acid amplification, which is commonly used to diagnose infectious diseases. The use of PCR for pathogens detection, genotyping and quantification has some advantages, such as high sensitivity, high specificity, reproducibility and technical ease. Brucellosis is a common zoonosis caused by Brucella spp., which still remains as a major health problem in many developing countries around the world. The direct culture and immunohistochemistry can be used for detecting infection with Brucella spp. However, PCR has the potential to address limitations of these methods. PCR are now one of the most useful assays for the diagnosis in human brucellosis. The aim of this review was to summarize the main PCR techniques and their applications for diagnosis and follow-up of patients with brucellosis. Moreover, advantages or limitation of the different PCR methods as well as the evaluation of PCR results for treatment and follow-up of human brucellosis were also discussed.

  2. A capsid gene-based real-time reverse transcription polymerase chain reaction assay for the detection of marine vesiviruses in the Caliciviridae

    Science.gov (United States)

    McClenahan, Shasta D.; Bok, Karin; Neill, John D.; Smith, Alvin W.; Rhodes, Crystal R.; Sosnovtsev, Stanislav V.; Green, Kim Y.; Romero, Carlos H.

    2009-01-01

    A real-time reverse transcription polymerase chain reaction (rtRT-PCR) assay was developed for the identification of marine vesiviruses. The primers were designed to target a 176-nucleotide fragment within a highly conserved region of the San Miguel sea lion viruses (SMSVs) capsid gene. The assay detected viral RNA from nine marine vesivirus serotypes described previously, including two serotypes (SMSV-8 and SMSV-12) not identified with presently available molecular assays, a highly-related bovine vesivirus strain (Bos-1), a mink vesivirus strain (MCV), and two novel genotypes isolated recently from Steller sea lions (SSL V810 and V1415). The real-time assay did not amplify sequences from the corresponding genomic regions of feline calicivirus (also in the genus Vesivirus) and representative members of the genus Norovirus. The rtRT-PCR assay described below may prove useful as a diagnostic tool for the detection of currently circulating, emerging and previously described marine vesiviruses in clinical samples, especially when large numbers are screened in surveillance studies of these restricted viruses. PMID:19410604

  3. Development of conventional and real-time reverse transcription polymerase chain reaction assays to detect Tembusu virus in Culex tarsalis mosquitoes.

    Science.gov (United States)

    Petz, Lawrence N; Turell, Michael J; Padilla, Susana; Long, Lewis S; Reinbold-Wasson, Drew D; Smith, Darci R; O'Guinn, Monica L; Melanson, Vanessa R; Lee, John S

    2014-10-01

    Tembusu virus (TMUV) is an important emerging arthropod-borne virus that may cause encephalitis in humans and has been isolated in regions of southeast Asia, including Malaysia, Thailand, and China. Currently, detection and identification of TMUV are limited to research laboratories, because quantitative rapid diagnostic assays for the virus do not exist. We describe the development of sensitive and specific conventional and real-time quantitative reverse transcription polymerase chain reaction assays for detecting TMUV RNA in infected cell culture supernatant and Culex tarsalis mosquitoes. We used this assay to document the replication of TMUV in Cx. tarsalis, where titers increased 1,000-fold 5 days after inoculation. These assays resulted in the detection of virus-specific RNA in the presence of copurified mosquito nucleic acids. The use of these rapid diagnostic assays may have future applications for field pathogen surveillance and may assist in early detection, diagnosis, and control of the associated arthropod-borne pathogens. © The American Society of Tropical Medicine and Hygiene.

  4. Investigation of polymerase chain reaction assays to improve detection of bacterial involvement in bovine respiratory disease.

    Science.gov (United States)

    Bell, Colin J; Blackburn, Paul; Elliott, Mark; Patterson, Tony I A P; Ellison, Sean; Lahuerta-Marin, Angela; Ball, Hywel J

    2014-09-01

    Bovine respiratory disease (BRD) causes severe economic losses to the cattle farming industry worldwide. The major bacterial organisms contributing to the BRD complex are Mannheimia haemolytica, Histophilus somni, Mycoplasma bovis, Pasteurella multocida, and Trueperella pyogenes. The postmortem detection of these organisms in pneumonic lung tissue is generally conducted using standard culture-based techniques where the presence of therapeutic antibiotics in the tissue can inhibit bacterial isolation. In the current study, conventional and real-time polymerase chain reaction (PCR) assays were used to assess the prevalence of these 5 organisms in grossly pneumonic lung samples from 150 animals submitted for postmortem examination, and the results were compared with those obtained using culture techniques. Mannheimia haemolytica was detected in 51 cases (34%) by PCR and in 33 cases (22%) by culture, H. somni was detected in 35 cases (23.3%) by PCR and in 6 cases (4%) by culture, Myc. bovis was detected in 53 cases (35.3%) by PCR and in 29 cases (19.3%) by culture, P. multocida was detected in 50 cases (33.3%) by PCR and in 31 cases (20.7%) by culture, and T. pyogenes was detected in 42 cases (28%) by PCR and in 31 cases (20.7%) by culture, with all differences being statistically significant. The PCR assays indicated positive results for 111 cases (74%) whereas 82 cases (54.6%) were culture positive. The PCR assays have demonstrated a significantly higher rate of detection of all 5 organisms in cases of pneumonia in cattle in Northern Ireland than was detected by current standard procedures.

  5. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip.

    Science.gov (United States)

    Zhong, Ran; Xie, Haiyang; Kong, Fanzhi; Zhang, Qiang; Jahan, Sharmin; Xiao, Hua; Fan, Liuyin; Cao, Chengxi

    2016-09-21

    In this work, we developed the concept of enzyme catalysis-electrophoresis titration (EC-ET) under ideal conditions, the theory of EC-ET for multiplex enzymatic assay (MEA), and a related method based on a moving reaction boundary (MRB) chip with a collateral channel and cell phone imaging. As a proof of principle, the model enzymes horseradish peroxidase (HRP), laccase and myeloperoxidase (MPO) were chosen for the tests of the EC-ET model. The experiments revealed that the EC-ET model could be achieved via coupling EC with ET within a MRB chip; particularly the MEA analyses of catalysis rate, maximum rate, activity, Km and Kcat could be conducted via a single run of the EC-ET chip, systemically demonstrating the validity of the EC-ET theory. Moreover, the developed method had these merits: (i) two orders of magnitude higher sensitivity than a fluorescence microplate reader, (ii) simplicity and low cost, and (iii) fairly rapid (30 min incubation, 20 s imaging) analysis, fair stability (<5.0% RSD) and accuracy, thus validating the EC-ET method. Finally, the developed EC-ET method was used for the clinical assay of MPO activity in blood samples; the values of MPO activity detected via the EC-ET chip were in agreement with those obtained by a traditional fluorescence microplate reader, indicating the applicability of the EC-ET method. The work opens a window for the development of enzymatic research, enzyme assay, immunoassay, and point-of-care testing as well as titration, one of the oldest methods of analysis, based on a simple chip.

  6. Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase pehX gene.

    Science.gov (United States)

    Kovtunovych, Gennadiy; Lytvynenko, Tetyana; Negrutska, Valentyna; Lar, Olena; Brisse, Sylvain; Kozyrovska, Natalia

    2003-10-01

    Bacteria of the genus Klebsiella are important opportunistic pathogens responsible for nosocomial infections that are increasingly resistant to antimicrobial agents. Distinctive identification of the species K. oxytoca, K. pneumoniae, K. planticola, K. ornithinolytica and K. terrigena is difficult based on phenotypic tests and misidentifications are frequent in routine clinical microbiology. We developed a specific method to discriminate K. oxytoca from the other species of the genus Klebsiella, based on the PCR amplification of the polygalacturonase (pehX) gene. A PCR amplicon of 344 bp was obtained in all 35 K. oxytoca strains tested, but in none of the 29 K. pneumoniae, 12 K. planticola/K. ornithinolytica and 7 K. terrigena strains tested. The test was also negative for polygalacturonate-degrading species of the genus Erwinia. Analysis of 24 strains designated as K. pneumoniae from international collections (NCTC, PZH) revealed previous misidentification of six K. oxytoca strains. Key biochemical tests fully confirmed the pehX PCR results. The new K. oxytoca identification assay should be useful for both clinical and ecological monitoring of K. oxytoca strains, as well as for controlling the previous identification of collection strains.

  7. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages.

    Science.gov (United States)

    Simpson, David J; Sacher, Jessica C; Szymanski, Christine M

    2016-01-11

    Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  8. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Science.gov (United States)

    Simpson, David J.; Sacher, Jessica C.; Szymanski, Christine M.

    2016-01-01

    Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages. PMID:26761028

  9. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages

    Directory of Open Access Journals (Sweden)

    David J. Simpson

    2016-01-01

    Full Text Available Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs. These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.

  10. Identification of duck plague virus by polymerase chain reaction

    Science.gov (United States)

    Hansen, W.R.; Brown, Sean E.; Nashold, S.W.; Knudson, D.L.

    1999-01-01

    A polymerase chain reaction (PCR) assay was developed for detecting duck plague virus. A 765-bp EcoRI fragment cloned from the genome of the duck plague vaccine (DP-VAC) virus was sequenced for PCR primer development. The fragment sequence was found by GenBank alignment searches to be similar to the 3a?? ends of an undefined open reading frame and the gene for DNA polymerase protein in other herpesviruses. Three of four primer sets were found to be specific for the DP-VAC virus and 100% (7/7) of field isolates but did not amplify DNA from inclusion body disease of cranes virus. The specificity of one primer set was tested with genome templates from other avian herpesviruses, including those from a golden eagle, bald eagle, great horned owl, snowy owl, peregrine falcon, prairie falcon, pigeon, psittacine, and chicken (infectious laryngotracheitis), but amplicons were not produced. Hence, this PCR test is highly specific for duck plague virus DNA. Two primer sets were able to detect 1 fg of DNA from the duck plague vaccine strain, equivalent to five genome copies. In addition, the ratio of tissue culture infectious doses to genome copies of duck plague vaccine virus from infected duck embryo cells was determined to be 1:100, making the PCR assay 20 times more sensitive than tissue culture for detecting duck plague virus. The speed, sensitivity, and specificity of this PCR provide a greatly improved diagnostic and research tool for studying the epizootiology of duck plague. /// Se desarroll?? una prueba de reacci??n en cadena por la polimerasa para detectar el virus de la peste del pato. Un fragmento EcoRI de 765 pares de bases clonado del genoma del virus vacunal de la peste del pato fue secuenciado para la obtenci??n de los iniciadores de la prueba de la reacci??n en cadena por la polimerasa. En investigaciones de alineaci??n en el banco de genes ('GenBank') se encontr?? que la secuencia del fragmento era similar a los extremos 3a?? de un marco de lectura abierto

  11. Loop-Mediated Isothermal Amplification Assay for Identification of Five Human Plasmodium Species in Malaysia.

    Science.gov (United States)

    Lau, Yee-Ling; Lai, Meng-Yee; Fong, Mun-Yik; Jelip, Jenarun; Mahmud, Rohela

    2016-02-01

    The lack of rapid, affordable, and accurate diagnostic tests represents the primary hurdle affecting malaria surveillance in resource- and expertise-limited areas. Loop-mediated isothermal amplification (LAMP) is a sensitive, rapid, and cheap diagnostic method. Five species-specific LAMP assays were developed based on 18S rRNA gene. Sensitivity and specificity of LAMP results were calculated as compared with microscopic examination and nested polymerase chain reaction. LAMP reactions were highly sensitive with the detection limit of one copy for Plasmodium vivax, Plasmodium falciparum, and Plasmodium malariae and 10 copies for Plasmodium knowlesi and Plasmodium ovale. LAMP positively detected all human malaria species in all positive samples (N = 134; sensitivity = 100%) within 35 minutes. All negative samples were not amplified by LAMP (N = 67; specificity = 100%). LAMP successfully detected two samples with very low parasitemia. LAMP may offer a rapid, simple, and reliable test for the diagnosis of malaria in areas where malaria is prevalent.

  12. Prevention of a systematic underestimation of antioxidant activity in competition assays. The impact of unspecific reactions of the reactive species.

    Science.gov (United States)

    Beljaars, Christiaan P; Balk, Jiska M; Bast, Aalt; Haenen, Guido R M M

    2010-02-12

    In antioxidant competition assays, an antioxidant (A) and a detector compound (D) compete for a reactive species (R). In the evaluation of these assays, it is tacitly assumed that all of R is captured by either D or A. Due to the - by definition - high reactivity of R, unspecific reactions of R are likely to occur and neglecting these reactions will result in a systematic underestimation of antioxidant activity. It was shown that in the standard hydroxyl radical scavenging assay this was indeed the case; the inaccurate mathematical evaluation resulted in an underestimation of antioxidant activity of 25% in this competition assay. The systematic underestimation of antioxidant activity can be prevented by using an adjusted Stern-Volmer equation that takes into account that only part of R is captured by D or A.

  13. A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes.

    Science.gov (United States)

    Warner, J P; Barron, L H; Brock, D J

    1993-06-01

    The Huntington's Disease (HD) Collaborative Research Group has recently published the sequence of a new cDNA, IT15, containing a polymorphic trinucleotide (CAG)n repeat that is expanded and unstable on HD chromosomes. There is a correlation between the repeat size and the age of onset of symptoms. The suggested polymerase chain reaction (PCR) assay of the (CAG)n repeat requires unusual reaction components and primer concentrations and the use of 5% polyacrylamide sequencing gels to resolve the amplification products. We present a simple PCR assay that produces a smaller product using standard reaction conditions. This gives better resolution of the (CAG)n expansion observed on HD chromosomes by acrylamide gel electrophoresis and allows sufficient product to be obtained to perform assays using agarose gels. This will allow diagnostic labs to do rapid and accurate presymptomatic testing of HD in high risk families.

  14. Evaluation of a new multiplex polymerase chain reaction assay STDFinder for the simultaneous detection of 7 sexually transmitted disease pathogens.

    Science.gov (United States)

    Muvunyi, Claude Mambo; Dhont, Nathalie; Verhelst, Rita; Crucitti, Tania; Reijans, Martin; Mulders, Brit; Simons, Guus; Temmerman, Marleen; Claeys, Geert; Padalko, Elizaveta

    2011-09-01

    We evaluated a new multiplex polymerase chain reaction (mPCR), "STDFinder assay", a novel multiplex ligation-dependent probe amplification (MLPA) assay for the simultaneous detection of 7 clinically relevant pathogens of STDs, i.e., Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, Mycoplasma genitalium, Treponema pallidum, and herpes simplex virus type 1 and 2 (HSV-1 and HSV-2). An internal amplification control was included in the mPCR reaction. The limits of detection for the STDFinder assay varied among the 7 target organisms from 1 to 20 copies per MLPA assay. There were no cross-reactions among any of the probes. Two hundred and forty-two vaginal swabs and an additional 80 specimens with known results for N. gonorrhoeae and C. trachomatis, obtained from infertile women seen at an infertility research clinic at the Kigali Teaching Hospital in Rwanda, were tested by STDFinder assay and the results were confirmed by single real-time PCR using different species-specific targets. Compared to the reference standard, the STDFinder assay showed specificities and sensitivities of 100% and 100%, respectively, for N. gonorrhoeae, C. trachomatis, and M. genitalium; 90.2% and 100%, respectively, for Trichomonas vaginalis; and 96.1% and 100%, respectively, for HSV-2. No specimen was found to be positive for HSV-1 by either the STDFinder assay or the comparator method. Similarly, the sensitivity for Treponema pallidum could not be calculated due to the absence of any Treponema pallidum-positive samples. In conclusion, the STDFinder assays have comparable clinical sensitivity to the conventional mono and duplex real-time PCR assay and are suitable for the routine detection of a broad spectrum of these STDs at relatively low cost due to multiplexing.

  15. Development of an event-specific hydrolysis probe quantitative real-time polymerase chain reaction assay for Embrapa 5.1 genetically modified common bean (Phaseolus vulgaris).

    Science.gov (United States)

    Treml, Diana; Venturelli, Gustavo L; Brod, Fábio C A; Faria, Josias C; Arisi, Ana C M

    2014-12-10

    A genetically modified (GM) common bean event, namely Embrapa 5.1, resistant to the bean golden mosaic virus (BGMV), was approved for commercialization in Brazil. Brazilian regulation for genetically modified organism (GMO) labeling requires that any food containing more than 1% GMO be labeled. The event-specific polymerase chain reaction (PCR) method has been the primary trend for GMO identification and quantitation because of its high specificity based on the flanking sequence. This work reports the development of an event-specific assay, named FGM, for Embrapa 5.1 detection and quantitation by use of SYBR Green or hydrolysis probe. The FGM assay specificity was tested for Embrapa 2.3 event (a noncommercial GM common bean also resistant to BGMV), 46 non-GM common bean varieties, and other crop species including maize, GM maize, soybean, and GM soybean. The FGM assay showed high specificity to detect the Embrapa 5.1 event. Standard curves for the FGM assay presented a mean efficiency of 95% and a limit of detection (LOD) of 100 genome copies in the presence of background DNA. The primers and probe developed are suitable for the detection and quantitation of Embrapa 5.1.

  16. Identification and assay of the flavonoids in medicinal plants with hepatoprotective action

    Directory of Open Access Journals (Sweden)

    Maria A. Cojocaru-Toma

    2015-05-01

    Full Text Available The article describes the identification and assay of the flavonoids in medicinal plants with hepatoprotective action, harvested as a culture at the Cultivation Center of the Medicinal Plants within State University of Medicine and Pharmacy „Nicolae Testemițanu” from the Republic of Moldova, using Pharmacopoeia methods. The flavonoids, found in the examined medicinal product, are responsible for hepatoprotective activity due to antioxidant activity, exhibited by neutralizing free radicals. The flavonoids were identified by using the Chinode method and thin layer chromatography, operating with 3 systems of solvents, and as biomarkers rutine, quercetine and luteolin ewere used. The results of the quantitative analysis point out that the content of the flavonoids determined by using spectrophotometric method is in the range of 0,620% to 1,204%, in studied vegetal products.

  17. Predicting adverse drug reactions using publicly available PubChem BioAssay data.

    Science.gov (United States)

    Pouliot, Y; Chiang, A P; Butte, A J

    2011-07-01

    Adverse drug reactions (ADRs) can have severe consequences, and therefore the ability to predict ADRs prior to market introduction of a drug is desirable. Computational approaches applied to preclinical data could be one way to inform drug labeling and marketing with respect to potential ADRs. Based on the premise that some of the molecular actors of ADRs involve interactions that are detectable in large, and increasingly public, compound screening campaigns, we generated logistic regression models that correlate postmarketing ADRs with screening data from the PubChem BioAssay database. These models analyze ADRs at the level of organ systems, using the system organ classes (SOCs). Of the 19 SOCs under consideration, nine were found to be significantly correlated with preclinical screening data. With regard to six of the eight established drugs for which we could retropredict SOC-specific ADRs, prior knowledge was found that supports these predictions. We conclude this paper by predicting that SOC-specific ADRs will be associated with three unapproved or recently introduced drugs.

  18. Detection of Listeria monocytogenes in cheese with the magnetic immuno-polymerase chain reaction assay.

    Science.gov (United States)

    Fluit, A C; Torensma, R; Visser, M J; Aarsman, C J; Poppelier, M J; Keller, B H; Klapwijk, P; Verhoef, J

    1993-05-01

    A new detection system, the magnetic immuno-polymerase chain reaction (PCR) assay (MIPA) has been developed to detect Listeria monocytogenes in food. This method separates Listeria cells from PCR-inhibitory factors present in enrichment broths containing food samples by using magnetic beads coated with specific monoclonal antibodies (MAbs). The separated bacteria were lysed, and the supernatant containing the bacterial DNA was subjected to the PCR. Detection of L. monocytogenes in three naturally contaminated cheese samples with two different MAbs and PCR primers specific for the gene encoding the delayed-hypersensitivity factor showed that with MAb 55 all three samples were positive whereas with MAb A two samples were positive. A further improvement of the method was obtained by using a PCR step based on the listeriolysin O gene. A MIPA employing MAb 55 and the listeriolysin O gene primer set detected L. monocytogenes after 24 h of culture in Listeria Enrichment Broth samples from Port Salut artificially contaminated with 40 CFU/25 g. We could detect 1 CFU of L. monocytogenes per g of cheese after a second enrichment for 24 h in Fraser broth. The analysis time including both enrichments is approximately 55 h.

  19. An epidermal equivalent assay for identification and ranking potency of contact sensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Susan, E-mail: S.Gibbs@VUMC.nl [Department of Dermatology, VU University Medical Centre, Dept of Oral Cell Biology, ACTA, Amsterdam (Netherlands); Corsini, Emanuela [Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano (Italy); Spiekstra, Sander W. [Department of Dermatology, VU University Medical Centre, Dept of Oral Cell Biology, ACTA, Amsterdam (Netherlands); Galbiati, Valentina [Laboratory of Toxicology, DiSFeB, Università degli Studi di Milano (Italy); Fuchs, Horst W. [CellSystems GmbH, Troisdorf (Germany); DeGeorge, George; Troese, Matthew [MB Research Labs, Spinnerstown, PA (United States); Hayden, Patrick; Deng, Wei [MatTek Corporation, Ashland, MA (United States); Roggen, Erwin [3Rs Management and Consultancy (Denmark)

    2013-10-15

    The purpose of this study was to explore the possibility of combining the epidermal equivalent (EE) potency assay with the assay which assesses release of interleukin-18 (IL-18) to provide a single test for identification and classification of skin sensitizing chemicals, including chemicals of low water solubility or stability. A protocol was developed using different 3D-epidermal models including in house VUMC model, epiCS® (previously EST1000™), MatTek EpiDerm™ and SkinEthic™ RHE and also the impact of different vehicles (acetone:olive oil 4:1, 1% DMSO, ethanol, water) was investigated. Following topical exposure for 24 h to 17 contact allergens and 13 non-sensitizers a robust increase in IL-18 release was observed only after exposure to contact allergens. A putative prediction model is proposed from data obtained from two laboratories yielding 95% accuracy. Correlating the in vitro EE sensitizer potency data, which assesses the chemical concentration which results in 50% cytotoxicity (EE-EC{sub 50}) with human and animal data showed a superior correlation with human DSA{sub 05} (μg/cm{sup 2}) data (Spearman r = 0.8500; P value (two-tailed) = 0.0061) compared to LLNA data (Spearman r = 0.5968; P value (two-tailed) = 0.0542). DSA{sub 05} = induction dose per skin area that produces a positive response in 5% of the tested population Also a good correlation was observed for release of IL-18 (SI-2) into culture supernatants with human DSA{sub 05} data (Spearman r = 0.8333; P value (two-tailed) = 0.0154). This easily transferable human in vitro assay appears to be very promising, but additional testing of a larger chemical set with the different EE models is required to fully evaluate the utility of this assay and to establish a definitive prediction model. - Highlights: • A potential epidermal equivalent assay to label and classify sensitizers • Il-18 release distinguishes sensitizers from non sensitizers • IL-18 release can rank sensitizer potency

  20. A single nucleotide polymorphism assay for the identification of unisexual Ambystoma salamanders.

    Science.gov (United States)

    Greenwald, Katherine R; Lisle Gibbs, H

    2012-03-01

    Unisexual (all female) salamanders in the genus Ambystoma are animals of variable ploidy (2N-5N) that reproduce via a unique system of 'leaky' gynogenesis. As a result, these salamanders have a diverse array of nuclear genome combinations from up to five sexual species: the blue-spotted (A. laterale), Jefferson (A. jeffersonianum), smallmouth (A. texanum), tiger (A. tigrinum) and streamside (A. barbouri) salamanders. Identifying the genome complement, or biotype, is a critical first step in addressing a broad range of ecological and evolutionary questions about these salamanders. Previous work relied upon genome-related differences in allele size distributions for specific microsatellite loci, but overlap in these distributions among different genomes makes definitive identification and ploidy determination in unisexuals difficult or impossible. Here, we develop the first single nucleotide polymorphism assay for the identification of unisexual biotypes, based on species-specific nucleotide polymorphisms in noncoding DNA loci. Tests with simulated and natural unisexual DNA samples show that this method can accurately identify genome complement and estimate ploidy, making this a valuable tool for assessing the genome composition of unisexual samples.

  1. Auxotrophy-based High Throughput Screening assay for the identification of Bacillus subtilis stringent response inhibitors

    Science.gov (United States)

    Andresen, Liis; Varik, Vallo; Tozawa, Yuzuru; Jimmy, Steffi; Lindberg, Stina; Tenson, Tanel; Hauryliuk, Vasili

    2016-01-01

    The stringent response is a central adaptation mechanism that allows bacteria to adjust their growth and metabolism according to environmental conditions. The functionality of the stringent response is crucial for bacterial virulence, survival during host invasion as well as antibiotic resistance and tolerance. Therefore, specific inhibitors of the stringent response hold great promise as molecular tools for disarming and pacifying bacterial pathogens. By taking advantage of the valine amino acid auxotrophy of the Bacillus subtilis stringent response-deficient strain, we have set up a High Throughput Screening assay for the identification of stringent response inhibitors. By screening 17,500 compounds, we have identified a novel class of antibacterials based on the 4-(6-(phenoxy)alkyl)-3,5-dimethyl-1H-pyrazole core. Detailed characterization of the hit compounds as well as two previously identified promising stringent response inhibitors – a ppGpp-mimic nucleotide Relacin and cationic peptide 1018 – showed that neither of the compounds is sufficiently specific, thus motivating future application of our screening assay to larger and more diverse molecular libraries. PMID:27775002

  2. High-throughput real-time assay based on molecular beacons for HIV-1 integrase 3'-processing reaction

    Institute of Scientific and Technical Information of China (English)

    Hong-qiu HE; Xiao-hui MA; Bin LIU; Xiao-yi ZHANG; Wei-zu CHEN; Cun-xin WANG; Shao-hui CHENG

    2007-01-01

    Aim: To develop a high-throughput real-time assay based on molecular beacons to monitor the integrase 3'-processing reaction in vitro and apply it to inhibitor screening.Methods: The recombinant human immunodeficiency virus (HIV)-1 integrase (IN) is incubated with a 38 mer oligonucleotide substrate, a sequence identical to the U5 end of HIV-1 long terminal repeats (LTR). Based on the fluores-cence properties of molecular beacons, the substrate is designed to form a stem-loop structure labeled with a fluorophore at the 5' end and a quencher at the 3'end.IN cleaves the terminal 3'-dinucleotide containing the quencher, resulting in an increase in fluorescence which can be monitored on a spectrofluorometer. To optimize this assay, tests were performed to investigate the effects of substrates, enzyme and the metal ion concentrations on the IN activity and optimal param-eters were obtained. Moreover, 2 IN inhibitors were employed to test the perfor-mance of this assay in antiviral compound screening.Results: The fluorescent intensity of the reaction mixture varies linearly with time and is proportional to the velocity of the 3'-processing reaction. Tests were performed and the results showed that the optimal rate was obtained for a reaction mixture containing 50 mg/L recom-binant HIV-1 IN, 400 nmol/L substrate, and 10 mmol/L Mn2+. The IN 3'-processing reaction under the optimal conditions showed a more than 18-fold increase in the fluorescence intensity compared to the enzyme-free control. The IC50 values of the IN inhibitors obtained in our assay were similar to the values obtained from a radiolabeled substrate assay.Conclusion: Our results demonstrated that this is a fast, reliable, and sensitive method to monitor HIV IN 3'-processing reaction and that it can be used for inhibitor screening.

  3. Performance of an in-house real-time polymerase chain reaction for identification of Mycobacterium tuberculosis isolates in laboratory routine diagnosis from a high burden setting.

    Science.gov (United States)

    Gallo, Juliana Failde; Pinhata, Juliana Maira Watanabe; Chimara, Erica; Gonçalves, Maria Gisele; Fukasawa, Lucila Okuyama; Oliveira, Rosangela Siqueira de

    2016-09-01

    Brazil is one of the high burden countries for tuberculosis, and a rapid diagnosis is essential for effective control of the disease. In the present study, an in-house real-time polymerase chain reaction (PCR) assay targeting the mpt64 gene for identification of Mycobacterium tuberculosis complex isolates was evaluated under routine diagnosis conditions in a reference laboratory. From May 2011 to July 2012, 1,520 isolates of mycobacteria were prospectively submitted for phenotypic and/or PRA-hsp65 identification and to real-time PCR. The mpt64 real-time PCR showed 99.7% sensitivity and 96% specificity and detected 79.4% of the cases missed by phenotypic and PRA-hsp65 identification. The in-house real-time PCR assay showed high sensitivity and specificity and was successfully implemented in the routine diagnosis of tuberculosis in a reference laboratory from a high burden setting.

  4. Performance of an in-house real-time polymerase chain reaction for identification of Mycobacterium tuberculosis isolates in laboratory routine diagnosis from a high burden setting

    Science.gov (United States)

    Gallo, Juliana Failde; Pinhata, Juliana Maira Watanabe; Chimara, Erica; Gonçalves, Maria Gisele; Fukasawa, Lucila Okuyama; de Oliveira, Rosangela Siqueira

    2016-01-01

    Abstract Brazil is one of the high burden countries for tuberculosis, and a rapid diagnosis is essential for effective control of the disease. In the present study, an in-house real-time polymerase chain reaction (PCR) assay targeting the mpt64 gene for identification of Mycobacterium tuberculosis complex isolates was evaluated under routine diagnosis conditions in a reference laboratory. From May 2011 to July 2012, 1,520 isolates of mycobacteria were prospectively submitted for phenotypic and/or PRA-hsp65 identification and to real-time PCR. The mpt64 real-time PCR showed 99.7% sensitivity and 96% specificity and detected 79.4% of the cases missed by phenotypic and PRA-hsp65 identification. The in-house real-time PCR assay showed high sensitivity and specificity and was successfully implemented in the routine diagnosis of tuberculosis in a reference laboratory from a high burden setting. PMID:27598243

  5. A multiplex reverse transcription-polymerase chain reaction assay for Newcastle disease virus and avian pneumovirus (Colorado strain).

    Science.gov (United States)

    Ali, A; Reynolds, D L

    2000-01-01

    Newcastle disease virus (NDV) and avian pneumovirus (APV) cause Newcastle disease and rhinotracheitis respectively, in turkeys. Both of these viruses infect the respiratory system. A one-tube, multiplex, reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of both NDV and Colorado strain of APV (APV-Col) was developed and evaluated. The primers, specific for each virus, were designed from the matrix protein gene of APV-Col and the fusion protein gene of NDV to amplify products of 631 and 309 nucleotides, respectively. The multiplex RT-PCR assay, for detecting both viruses simultaneously, was compared with the single-virus RT-PCR assays for its sensitivity and specificity. The specific primers amplified products of predicted size from each virus in the multiplex as well as the single-virus RT-PCR assays. The multiplex RT-PCR assay was determined to be equivalent to the single-virus RT-PCR assays for detecting both NDV and APV-Col. This multiplex RT-PCR assay proved to be a sensitive method for the simultaneous and rapid detection of NDV and APV-Col. This assay has the potential for clinical diagnostic applications.

  6. Nested polymerase chain reaction (PCR) targeting 16S rDNA for bacterial identification in empyema.

    Science.gov (United States)

    Prasad, Rajniti; Kumari, Chhaya; Das, B K; Nath, Gopal

    2014-05-01

    Empyema in children causes significant morbidity and mortality. However, identification of organisms is a major concern. To detect bacterial pathogens in pus specimens of children with empyema by 16S rDNA nested polymerase chain reaction (PCR) and correlate it with culture and sensitivity. Sixty-six children admitted to the paediatric ward with a diagnosis of empyema were enrolled prospectively. Aspirated pus was subjected to cytochemical examination, culture and sensitivity, and nested PCR targeting 16S rDNA using a universal eubacterial primer. Mean (SD) age was 5·8 (1·8) years (range 1-13). Analysis of aspirated pus demonstrated total leucocyte count >1000×10(6)/L, elevated protein (≧20 g/L) and decreased glucose (≤2·2 mmol/L) in 80·3%, 98·5% and 100%, respectively. Gram-positive cocci were detected in 29 (43·9%) and Gram-negative bacilli in two patients. Nested PCR for the presence of bacterial pathogens was positive in 50·0%, compared with 36·3% for culture. 16S rDNA PCR improves rates of detection of bacteria in pleural fluid, and can detect bacterial species in a single assay as well as identifying unusual and unexpected causal agents.

  7. Extent-based incremental identification of reaction systems using concentration and calorimetric measurements

    OpenAIRE

    Srinivasan, Sriniketh; Bhatt, Nirav Pravinbhai; Billeter, Julien; Bonvin, Dominique

    2012-01-01

    Extent-based Incremental Model Identification (IMI) uses the concept of extent of reaction and the integral method of parameter estimation to identify reaction kinetics from transient concentration measurements. This study proposes to incorporate calorimetric measurements into the extent-based IMI approach. Calorimetric measurements are added to concentrationmeasurements for two main purposes: (i) to be able to estimate the reaction enthalpies when all the concentrations are measured, and (ii...

  8. A fluorescence turn on assay for alkaline phosphatase based on the Cu(2+) catalyzed Fenton-like reaction.

    Science.gov (United States)

    Zhang, Qingfeng; Zhang, Cuiyun; Shahzad, Sohail Anjum; Yu, Cong

    2016-09-01

    A fluorescence turn-on assay was established for ALP (alkaline phosphatase) based on Cu(2+) catalyzed Fenton-like reaction and Graphene Oxide (GO). GO was utilized to quench the fluorescence of fluorescein (FAM) labeled single strand DNA (F-DNA). ALP can remove the phosphate group in sodium ascorbyl phosphate (SAP), and convert it into reducing ascorbate. Highly reactive hydroxyl radicals (·OH) were generated in the presence of ascorbate and Cu(2+) through the Fenton-like reaction. The reactive radicals generated in situ caused the cleavage of F-DNA into small fragments. When GO was added, the fluorescence emission of the sample without ALP was quenched and fluorescence emission recovered in the presence of ALP. The intensity of the recovered fluorescence was directly related to the concentration of ALP in the assay solution, and a sensitive and selective facile ALP assay is therefore established.

  9. Pentaplex PCR as screening assay for jellyfish species identification in food products.

    Science.gov (United States)

    Armani, Andrea; Giusti, Alice; Castigliego, Lorenzo; Rossi, Aurelio; Tinacci, Lara; Gianfaldoni, Daniela; Guidi, Alessandra

    2014-12-17

    Salted jellyfish, a traditional food in Asian Countries, is nowadays spreading on the Western markets. In this work, we developed a Pentaplex PCR for the identification of five edible species (Nemopilema nomurai, Rhopilema esculentum, Rhizostoma pulmo, Pelagia noctiluca, and Cotylorhiza tuberculata), which cannot be identified by a mere visual inspection in jellyfish products sold as food. A common degenerated forward primer and five specie-specific reverse primers were designed to amplify COI gene regions of different lengths. Another primer pair targeted the 28SrRNA gene and was intended as common positive reaction control. Considering the high level of degradation in the DNA extracted from acidified and salted products, the maximum length of the amplicons was set at 200 bp. The PCR was developed using 66 reference DNA samples. It gave successful amplifications in 85.4% of 48 ready to eat products (REs) and in 60% of 30 classical salted products (CPs) collected on the market.

  10. The sensitivity and specificity of a reverse transcription-polymerase chain reaction assay for the avian pneumovirus (Colorado strain).

    Science.gov (United States)

    Pedersen, J C; Reynolds, D L; Ali, A

    2000-01-01

    A reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of avian pneumovirus (APV), Colorado strain (US/CO), was evaluated for sensitivity and specificity. The single-tube RT-PCR assay utilized primers developed from the matrix (M) gene sequence of the US/CO APV. The RT-PCR amplified the US/CO APV but did not amplify other pneumoviruses, including the avian pneumoviruses subgroups A and B. The RT-PCR was capable of detecting between 10(0.25) mean tissue culture infective dose (TCID50) and 10(-0.44) TCID50 of the US/CO APV. These results have demonstrated that the single-tube RT-PCR assay is a specific and sensitive assay for the detection of US/CO APV.

  11. Identification and assay of underivatized urinary acylcarnitines by paper spray tandem mass spectrometry.

    Science.gov (United States)

    Naccarato, Attilio; Moretti, Sacha; Sindona, Giovanni; Tagarelli, Antonio

    2013-10-01

    A new analytical approach, using paper spray tandem mass spectrometry, has been developed for assay of carnitine and acylcarnitines in urine. Paper spray (PS) is a very promising technique, especially in clinical investigations, because of its simplicity, low cost, and rapid sample preparation. A home-made paper spray device was used for assay of urinary acylcarnitines (C2-C18). The performance of solvents with different elution efficiency and paper substrates with different porosity grade and structure were tested by use of spiked synthetic urine. Tandem mass spectrometry in multiple reaction monitoring (MRM) mode was optimized to obtain better specificity and sensitivity. Analyte signals were evaluated for stability and reproducibility. Calibration with [(2)H3]propionylcarnitine (C3-d3), [(2)H3]octanoylcarnitine (C8-d3), and [(2)H3] palmitoylcarnitine (C16-d3) as internal standards was used for quantification. Very good linearity was obtained, with correlation coefficients >0.99 for C0-C12 and C16 acylcarnitines and >0.96 for C14 and C18 acylcarnitines. Accuracy and precision (RSD, %) of the proposed procedure were tested at concentrations of 0.8, 8, and 20 mg L(-1) with very satisfactory results: overall mean accuracy was 98.9% and overall mean relative standard deviation 1%. Limits of detection (LOD) between 6 and 208 μg L(-1) for propionylcarnitine and tetradecanoylcarnitine, respectively, can be regarded as very satisfactory. Application of the method to real urine proved that paper spray tandem mass spectrometry is a simple, rapid, and direct tool (no derivatization is required) for assay of carnitine and C2-C12 acylcarnitines in urine.

  12. Isolation, identification and differentiation of Campylobacter spp. using multiplex PCR assay from goats in Khartoum State, Sudan.

    Science.gov (United States)

    Elbrissi, Atif; Sabeil, Y A; Khalifa, Khalda A; Enan, Khalid; Khair, Osama M; El Hussein, A M

    2017-03-01

    The aim of this study was to identify and characterize thermophilic Campylobacter species in faecal samples from goats in Khartoum State, Sudan, by application of multiplex polymerase chain reaction. Campylobacteriosis is a zoonotic disease of global concern, and the organisms can be transmitted to human via food, water and through contact with farm animals and pets. There are five clinically related Campylobacter species: Campylobacter jejuni (C. jejuni). Campylobacter coli, Campylobacter lari, Campylobacter upsaliensis and Campylobacter fetus. Conventional cultural methods to diagnose campylobacteriosis are tedious and time consuming. Wide ranges of genes have been reported to be used for PCR-based identification of Campylobacter spp. We used a multiplex PCR assay to simultaneously detect genes from the major five clinically significant Campylobacter spp. The genes selected were hipO (hippuricase) and 23S rRNA from glyA (serine hydroxymethyl transferase) from each of C. jejuni. C. coli, C. lari, and C. upsaliensis; and sapB2 (surface layer protein) from C. fetus subsp. fetus. The assay was used to identify Campylobacter isolates recovered from 336 cultured faecal samples from goats in three localities in Khartoum State. C. coli was the most predominant isolate (234; 69.6%), followed by C. jejuni (19; 5.7%), C. upsaliensis (13; 3.9%), C. fetus subsp. fetus (7; 2.1%) and C. lari (6; 1.8%). Twenty-nine goats showed mixed infection with Campylobacter spp., 21 of which harbored two Campylobacter spp., while eight animals were infected with three species. Ten out of twelve goats that displayed diarrhea harbored C. coli only. C. coli, C. jejuni and C. upsaliensis showed significant variation with localities. The prevalence of C. coli was significantly higher (87; 25.9%) in goats from Omdurman, whereas C. jejuni and C. upsaliensis were significantly higher (11; 3.3%, 9; 2.7%) in goats from Khartoum. The multiplex PCR assay was found to be rapid and easy to perform and

  13. Diagnosis of Avian bornavirus infection in psittaciformes by serum antibody detection and reverse transcription polymerase chain reaction assay using feather calami.

    Science.gov (United States)

    de Kloet, Arne H; Kerski, Anelle; de Kloet, Siwo R

    2011-05-01

    Avian bornavirus (ABV) is the causative agent of proventricular dilatation disease (PDD), a highly devastating and contagious disease of psittacines (parrots and parakeets), which has resulted in the death of many captive birds. Accurate diagnosis of bornavirus infection is therefore important for the identification and isolation of infected birds. The current study showed that nonvascular contour (chest) feather calami provide a ready and minimally invasive source of RNA for the detection of ABV by reverse transcription polymerase chain reaction (RT-PCR). Storage of the feathers at room temperature for at least a month did not affect the results. Serological analysis by enzyme-linked immunosorbent assay (ELISA) showed that identification of anti-bornaviral nucleoprotein P40 antibodies can identify many birds with a past or present infection. The presence of anti-avian bornaviral P24 phosphoprotein and P16 matrix protein antibodies was quite variable, rendering these antibodies less useful for diagnosis of ABV infection. The significance of the present findings is that the use of nonvascular feathers as a source of RNA allows sample collection under conditions where storage of other samples would be difficult. Serum detection by ELISA of anti-P40 antibodies allows the identification of infected birds when RT-PCR fails. © 2011 The Author(s)

  14. Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays

    DEFF Research Database (Denmark)

    Wainø, M; Bang, Dan; Lund, Marianne;

    2003-01-01

    To validate a phenotypic Campylobacter species identification method employed to identify campylobacters in broilers by comparison with campylobacterial species identification using various species-specific PCR analyses....

  15. Novel assay of competitively differentiated polymerase chain reaction for screening point mutation of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Xiao-Mou Peng; Xue-Juan Chen; Jian-Guo Li; Lin Gu; Yang-Su Huang; Zhi-Liang Gao

    2003-01-01

    AIM: Point mutation, one of the commonest gene mutations,is the most important molecular pathogenesis of cancer and chronic infection. The commonest methods for detection of point mutation are based on polymerase chain reaction (PCR). These techniques, however, cannot be used in large scale screening since they are neither accurate nor simple.For this reason, this study established a novel method of competitively differentiated PCR (CD-PCR) for screening point mutation in clinical practice.METHODS: Two competitively differentiated primers for mutant-type and wild-type templates respectively with an identically complemented region in 3′ end except for last 2base pairs and a different non-complemented region in 5′end were designed. Thus, competitive amplification might be carried out at a lower annealing temperature at first, and then differentiated amplification at a higher annealing temperature when primers could not combine with initial templates. The amplification was performed in one-tube.The products of CD-PCR were detected using microplate hybridization assay. CD-PCR was evaluated by detecting G1896A variant of hepatitis B virus (HBV) in form of recombinant plasmids and in sera from patients with hepatitis B, and compared with allele-specific PCR (AS-PCR) and competitive AS-PCR.RESULTS: CD-PCR was successfully established. It could clearly distinguish wild-type and mutant-type plasmid DNA of G1896A variant when the amount of plasmid DNA was between 102-108copies/reaction, while for AS-PCR and competitive AS-PCR, the DNA amount was between 102-104copies/reaction. CD-PCR could detect one copy of G1896A variant among 10-100 copies of wild-type plasmid DNA. The specificity of CD-PCR was higher than those of AS-PCR and competitive AS-PCR in the detection of HBV G1896A variant in sera from patients with hepatitis B. CD-PCR was independent of the amount of HBV DNA in serum. HBV G1896A variant was more often found in HBeAg (-) patients with a lower level of

  16. Accuracy of a rapid real-time polymerase chain reaction assay for diagnosis of group B Streptococcus colonization in a cohort of HIV-infected pregnant women.

    Science.gov (United States)

    Gouvea, Maria Isabel S; Joao, Esau C; Teixeira, Maria de Lourdes B; Read, Jennifer S; Fracalanzza, Sergio E L; Souza, Claudia T V; Souza, Maria José de; Torres Filho, Helio M; Leite, Cassiana C F; do Brasil, Pedro E A A

    2017-05-01

    There are limited data regarding Xpert performance to detect Group B Streptococcus (GBS) in HIV-infected pregnant women. We evaluated the accuracy of a rapid real-time polymerase chain reaction (PCR) test in a cohort of HIV-infected women. At 35-37 weeks of pregnancy, a pair of combined rectovaginal swabs were collected for two GBS assays in a cohort of sequentially included HIV-infected women in Rio de Janeiro: (1) culture; and (2) real-time PCR assay [GeneXpert GBS (Cepheid, Sunnyvale, CA)]. Using culture as the reference, sensitivity, specificity, positive and negative-likelihood ratios were estimated. From June 2012 to February 2015, 337 pregnant women met inclusion criteria. One woman was later excluded, due to failure to obtain a result in the index test; 336 were included in the analyses. The GBS colonization rate was 19.04%. Sensitivity and specificity of the GeneXpert GBS assay were 85.94% (95% CI: 75.38-92.42) and 94.85% (95% CI: 91.55-96.91), respectively. Positive and negative predictive values were 79.71% (95% CI: 68.78-87.51) and 96.63% (95% CI: 93.72-98.22), respectively. GeneXpert GBS is an acceptable test for the identification of GBS colonization in HIV-infected pregnant women and represents a reasonable option to detect GBS colonization in settings where culture is not feasible.

  17. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Science.gov (United States)

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  18. Rapid identification and differentiation of Theileria sergenti and Theileria sinensis using a loop-mediated isothermal amplification (LAMP) assay.

    Science.gov (United States)

    Liu, Aihong; Guan, Guiquan; Du, Pengfei; Gou, Huitian; Zhang, Jun; Liu, Zhijie; Ma, Milin; Ren, Qiaoyun; Liu, Junlong; Yang, Jifei; Li, Youquan; Niu, Qinli; Bai, Qi; Yin, Hong; Luo, Jianxun

    2013-01-16

    The present study developed and validated a species-specific loop-mediated isothermal amplification (LAMP) assay for the rapid detection and discrimination of two benign bovine Theileria species -T. sergenti and T. sinensis. The LAMP assay is inexpensive and easy to perform and involves a rapid reaction-the amplification can be performed in 55 min or 50 min under isothermal conditions of 61°C or 63°C, respectively, by employing a set of four species-specific primer mixtures. The results can be checked using agarose gels. The optimal assay conditions, under which the assay exhibited with no cross-reaction with other closely related tick-borne parasites (T. annulata, Babesia bovis, B. bigemina, B. major, B. ovata, B. U. sp., Anaplasma marginale) or between the two Theileria species of interest, was established. The assay is approximately 10-fold more sensitive than the conventional specific PCR assay. The LAMP assay was validated using DNA from 6 standard stocks in the laboratory and was evaluated for its diagnostic utility using blood samples collected from experimentally and naturally infection cattle or yaks in China. These findings indicate that this Theileria species-specific LAMP assay may have potential clinical applications for the detection and differentiation of two benign bovine Theileria species -T. sergenti and T. sinensis, especially in endemic countries.

  19. Serologic assays for the detection and strain identification of Pteropine orthoreovirus.

    Science.gov (United States)

    Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Fukuma, Aiko; Tani, Hideki; Yoshikawa, Tomoki; Taniguchi, Satoshi; Yang, Ming; Sugamata, Masami; Morikawa, Shigeru; Saijo, Masayuki

    2016-05-11

    Pteropine orthoreovirus (PRV), potentially of bat origin, is reported to be a causative agent of emerging respiratory tract infections among humans in Southeast Asia. We evaluated the efficacy of serologic assays using the major outer capsid and cell attachment proteins (CAP) of PRV strains in the screening, confirmation and identification of three groups of human PRV infections; Indonesian/Japanese, Indonesian/Hong Kong and Malaysian strains. The different serologic assays were tested using rabbit polyclonal antisera raised against these proteins of selected PRV strains, and validation was carried out using sera from a Miyazaki-Bali/2007 PRV-infected patient and the patient's contacts. The results of this study showed that rabbit polyclonal antisera raised against the CAP of the Miyazaki-Bali/2007 PRV strain showed the highest reactivity to the Miyazaki-Bali/2007 PRV and to a lesser extent, cross-reactivity with the HK23629/07 and Melaka PRVs, respectively. Neutralization activity against the Miyazaki-Bali/2007 PRV was observed using rabbit anti-Miyazaki-Bali/2007 PRV CAP (320) but not with rabbit anti-HK23629/07 (Melaka (<20) PRV CAP. This lack of cross-neutralization, suggests the potential for human reinfection with different strains. The use of sera collected from contacts of the Miyazaki-Bali/2007 PRV-infected patient suggested that human-to-human infections with PRV are unlikely. Previously reported cases of PRV infections among human have been mild. However, the expanding geographic distribution of these viruses, of which its virulence remains unknown, warrants close monitoring to enable the development of prevention and control strategies in the event that a change in virulence occurs.

  20. Rapid and High-throughout Identification of Recombinant Bacteria with Mass Spectrometry Assay

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Objective To construct a rapid and high-throughput assay for identifying recombinant bacteria based on mass spectrometry. Methods Matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques were used to identify 12 recombinant proteins (10 of Yersinia pestis, 1 of Campylobacter jejuni and 1 of Helicobacter pylori). A classification model for the various phase of recombinant bacteria was established, optimized and validated, using MALDI-TOF MS-CIinProTools system. The differences in the peptide mass spectra were analyzed by using Biotyper and FIexAnalysis softwares. Results Models of GA, SNN, and QC were established. After optimizing the parameters, the GA recognition model showed good classification capabilities: RC=100%, mean CVA=98.7% (the CVA was 96.4% in phase 1, 100% in phase 2, 98.4% in phase 3, and 100% in phase 4, respectively) and PPV=95}. This model can be used to classify the bacteria and their recombinant, which only requires 3.7x103 cells for analysis. The total time needed is only 10 min from protein extraction to reporting the result for one sample. Furthermore, this assay can automatically detect and test 96 samples concurrently. A total of 48 specific peaks (9, 16, 9, and 14 for the four stages, respectively) was found in the various phase of recombinant bacteria. Conclusion MALDI-TOF MS can be used as a fast, accurate, and high-throughput method to identify recombinant bacteria, which provide a new ideas not only for recombinant bacteria but also for the identification of mutant strains and bioterrorism pathogens.

  1. A high throughput screening assay system for the identification of small molecule inhibitors of gsp.

    Directory of Open Access Journals (Sweden)

    Nisan Bhattacharyya

    Full Text Available Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT or mutant Gsα proteins (R201C and R201H. Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT or higher (R201C and R201H cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET-based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses.

  2. Use of Existing Diagnostic Reverse-Transcription Polymerase Chain Reaction Assays for Detection of Ebola Virus RNA in Semen.

    Science.gov (United States)

    Pettitt, James; Higgs, Elizabeth S; Adams, Rick D; Jahrling, Peter B; Hensley, Lisa E

    2016-04-15

    Sexual transmission of Ebola virus in Liberia has now been documented and associated with new clusters in regions previously declared Ebola free. Assays that have Emergency Use Authorization (EUA) and are routinely used to detect Ebola virus RNA in whole blood and plasma specimens at the Liberian Institute for Biomedical Research were tested for their suitability in detecting the presence of Ebola virus RNA in semen. Qiagen AVL extraction protocols, as well as the Ebola Zaire Target 1 and major groove binder quantitative reverse-transcription polymerase chain reaction assays, were demonstrably suitable for this purpose and should facilitate epidemiologic investigations, including those involving long-term survivors of Ebola.

  3. Identification of heme oxygenase-1 stimulators by a convenient ELISA-based bilirubin quantification assay.

    Science.gov (United States)

    Rücker, Hannelore; Amslinger, Sabine

    2015-01-01

    lipopolysaccharide and the specific HO-1 inhibitor tin protoporphyrin IX. Taken together, we developed a convenient and highly sensitive ELISA-based HO-1 enzyme activity assay, allowing the identification and characterization of molecules potentially useful for the treatment of inflammatory and autoimmune diseases.

  4. Development of an enzyme-linked immunosorbent assay (ELISA) for identification of venoms from snakes in the Agkistrodon genus.

    Science.gov (United States)

    Li, Q; Ownby, C L

    1994-11-01

    An enzyme-linked immunosorbent assay (ELISA) using a purified myotoxin from the venom of Agkistrodon contortrix laticintus (broad-banded copperhead) as immunogen was developed for potential use in the identification of envenomation by snakes belonging to the genus Agkistrodon native to North America. The specificity of the assay was tested using a total of 43 venom samples from snakes of diverse geographic locations. Venom samples used for cross-reactivity determination represent eight snake families including 14 species from the genus Crotalus. The assay detected venom from all Agkistrodon species tested without significant cross-reactivity with other venoms except for samples from two species of Bothrops which do not occur naturally north of Southern Mexico. The detection limit of the assay was 2 ng/ml for homologous crude venom dissolved in normal human serum. The assay was highly accurate in correlating optical densities with venom concentrations (r = 0.997). The presence of the antigen in experimental envenomations was readily detected by the assay at an i.m. injection dosage of 0.1 microgram/g. This ELISA is a promising test for identification of envenomations by species of Agkistrodon found in most of North America. It can also be used to study the kinetics of the myotoxin in experimental envenomations.

  5. Point Mutation Identification Using On-Chip Ligase Detection Reaction

    Institute of Scientific and Technical Information of China (English)

    李艳; 曾令文; 程京

    2004-01-01

    An efficient method was developed to detect point mutations using oligonucleotide microarrays and the ligase detection reaction (LDR).Allele-specific LDR primers were immobilized on polylysine-coated glass slides to perform LDR on a chip.The spotting concentration and detection limit were analyzed using a synthesized oligonucleotide as a template.The optimal primer spotting concentration was 20 (mol/L and the lowest detectable template concentration was 0.33 nmol/L.The method was successfully employed to identify malignant mutations of hypertrophic cardiomyopathy.Asymmetric polymerase chain reaction was employed to prepare single stranded DNA as LDR templates from cloned plasmids.The discrimination ratios for AC,TC,GT,TT,GA,and AA mismatches are 32.82,44.24,17.75,18.34,11.66,and 8.91,respectively.This method may allow construction of multiple mutation detection systems.

  6. The Analytical method (HPLC) used for identification, assay of triclabendazole, related substances and preservatives used in finished product Tricladem 5, in SC Delos Impex 96 SRL

    OpenAIRE

    Maria Neagu,; Cristina I. Marinescu; Roxana M. Covaci; Catalina S. Macovei

    2012-01-01

    Because, triclabendazole is an active pharmaceutical ingredient without compendial monography (European Pharmacopoeia, United Stated Pharmacopoeia) in SC Delos Impex ’96 SRL, the API identification, assay, related substances, and, preservatives, assay and identification is efectuated used the method presented below. It permit, all these determination in a relative short time (the chromatogram time recorded is 25 min.).

  7. The Analytical method (HPLC used for identification, assay of triclabendazole, related substances and preservatives used in finished product Tricladem 5, in SC Delos Impex 96 SRL

    Directory of Open Access Journals (Sweden)

    Maria Neagu

    2012-12-01

    Full Text Available Because, triclabendazole is an active pharmaceutical ingredient without compendial monography (European Pharmacopoeia, United Stated Pharmacopoeia in SC Delos Impex ’96 SRL, the API identification, assay, related substances, and, preservatives, assay and identification is efectuated used the method presented below. It permit, all these determination in a relative short time (the chromatogram time recorded is 25 min..

  8. Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay.

    Science.gov (United States)

    Zhao, H X; Li, Z J; Hu, S W; Sun, G L; Chang, J J; Zhang, Z H

    2010-08-01

    Cytoplasmic male sterility (CMS) has widely been used as an efficient pollination control system in rapeseed hybrid production. Identification of cytoplasm type of rapeseed accessions is becoming the most important basic work for hybrid-rapeseed breeding. In this study, we report a simple multiplex PCR method to distinguish the existing common cytoplasm resources, Pol, Nap, Cam, Ogu and Ogu-NWSUAF cytoplasm, in rapeseed. Cytoplasm type of 35 F(1) hybrids and 140 rapeseed open pollinated varieties or breeding lines in our rapeseed breeding programme were tested by this method. The results indicated that 10 of 35 F(1) hybrids are the Nap, and 25 the Pol cytoplasm type, which is consistent with the information provided by the breeders. Out of 140 accessions tested, 100 (71.4%), 21 (15%) and 19 (13.6%) accessions possess Nap, Cam and Pol cytoplasm, respectively. All 19 accessions with Pol cytoplasm are from China. Pedigree analysis indicated that these accessions with Pol cytoplasm were either restorers for Pol CMS, including Shaan 2C, Huiyehui, 220, etc. or derived from hybrids with Pol CMS as female parent. Our molecular results are consistent with those of the classical testcross, suggesting the reliability of this method. The multiplex PCR assay method can be applied to CMS "three-line" breeding, selection and validation of hybrid rapeseed.

  9. Development of a Polymerase Chain Reaction Assay for Detection of Burkholderia mallei, a Potent Biological Warfare Agent

    Directory of Open Access Journals (Sweden)

    Vijai Pal

    2016-09-01

    Full Text Available Burkholderia mallei is the etiological agent of glanders, primarily a disease of equines. B. mallei is closely related to B. pseudomallei, the causative agent of melioidosis. Therefore, detection of B. mallei and its differentiation from B. pseudomallei, has always been troublesome. In present investigation, a B. mallei specific DNA sequence was identified by performing BLASTn search using ~3000 ORFs of B. mallei NCTC 10229. A polymerase chain reaction (PCR assay with internal amplification control (IAC was developed for detection of B. mallei and its differentiation from B. pseudomallei. The PCR assay could amplify a specific 224-bp fragment from all the six B. mallei strains used in the study, whereas other closely related organisms were tested negative. The detection limit of the assay was found to be 10 pg of purified DNA of B. mallei. Incorporation of IAC in the assay makes the results reliable as false negative results which may arise due to presence of PCR inhibitors, can be avoided. For validation, the assay was tested on tap water, Bengal gram and grass artificially spiked with B. mallei. The developed assay can be used as a simple and rapid tool for detection of B. mallei.

  10. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.

    Science.gov (United States)

    Börner, Tim; Grey, Carl; Adlercreutz, Patrick

    2016-08-01

    Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes.

  11. Chlorination of parabens: reaction kinetics and transformation product identification.

    Science.gov (United States)

    Mao, Qianhui; Ji, Feng; Wang, Wei; Wang, Qiquan; Hu, Zhenhu; Yuan, Shoujun

    2016-11-01

    The reactivity and fate of parabens during chlorination were investigated in this work. Chlorination kinetics of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were studied in the pH range of 4.0 to 11.0 at 25 ± 1 °C. Apparent rate constants (k app) of 9.65 × 10(-3) M(-0.614)·s(-1), 1.77 × 10(-2) M(-1.019)·s(-1), 2.98 × 10(-2) M(-0.851)·s(-1), and 1.76 × 10(-2) M(-0.860)·s(-1) for MeP, EtP, PrP, and BuP, respectively, were obtained at pH 7.0. The rate constants depended on the solution pH, temperature, and NH4(+) concentration. The maximum k app was obtained at pH 8.0, and the minimum value was obtained at pH 11.0. The reaction rate constants increased with increasing temperature. When NH4(+) was added to the solution, the reaction of parabens was inhibited due to the rapid formation of chloramines. Two main transformation products, 3-chloro-parabens and 3,5-dichloro-parabens, were identified by GC-MS and LCMS-IT-TOF, and a reaction pathway was proposed. Dichlorinated parabens accumulated in solution, which is a threat to human health and the aqueous environment.

  12. Specific PCR-based assays for the identification of Fasciola species: their development, evaluation and potential usefulness in prevalence surveys.

    Science.gov (United States)

    Ai, L; Dong, S J; Zhang, W Y; Elsheikha, H M; Mahmmod, Y S; Lin, R Q; Yuan, Z G; Shi, Y L; Huang, W Y; Zhu, X Q

    2010-01-01

    Among the helminths infecting ruminants in China are three taxa belonging to the genus Fasciola: F. hepatica, F. gigantica and the so-called 'intermediate form' that appears to lie between these two species. Based on the sequences of the second internal-transcribed spacers (ITS-2) within the parasites' nuclear ribosomal DNA (rDNA), a pair of primers (DSJf/DSJ3) specific for F. hepatica and a pair (DSJf/DSJ4) specific for F. gigantica were designed and used to develop PCR-based assays. These assays allowed the identification and differentiation of F. hepatica, F. gigantica and the 'intermediate' Fasciola, with no amplicons produced from heterologous DNA samples. The results of sequencing confirmed the species-specific identity of the amplified products. The assays showed good sensitivity, giving positive results with as little as 0.11 ng of F. hepatica DNA and 0.35 ng of F. gigantica DNA. This meant that the DNA from a single Fasciola egg or a single infected snail was sufficient for identification of the Fasciola taxon. The developed PCR assays could provide useful tools for the detection, identification and epidemiological investigation of Fasciola infection in humans, other mammals and snails.

  13. A clinical comparative study of polymerase chain reaction assay for diagnosis of pneumocystis pneumonia in non-AIDS patients

    Institute of Scientific and Technical Information of China (English)

    MU Xiang-dong; WANG Guang-fa; SU Li

    2011-01-01

    Background Pneurnocystis jirovecii pneumonia (PCP) is one of the most common and fatal infections in non-AIDS immunocompromised patients,which is difficult to diagnose by traditional morphologic methods.This study evaluated polymerase chain reaction (PCR) assays of Pneumocystis jirovecii mitochondrial large subunits ribosomal RNA in sputum and bronchioalveolar lavage fluid (BALF) for diagnosing PCP.Methods Sputum and BALF specimens from two groups were collected:one group (PCP group) included 20 patients definitely diagnosed of PCP by Gomori methenamine silver (GMS) stains of BALF;the other group (non-PCP group) included 40 patients.Each specimen was examined by GMS stains and PCR assays.Results GMS stains of BALF in PCP group were 100% positive (20/20),GMS stains of sputum in PCP group were 35% positive (7/20);GMS stains of BALF in non-PCP group were 100% negative (40/40),GMS stains of sputum in non-PCP group were 100% negative (40/40).PCR assays of BALF in PCP group were 100% positive (20/20),PCR assays of sputum in PCP group were 100% positive (20/20);PCR assays of BALF in non-PCP group were 100% negative (40/40),PCR assays of sputum in non-PCP group were 100% negative (40/40).Sensitivity and specificity of PCR assays of sputum and BALF were both 100%;positive and negative predictive values were also both 100%.Conclusion The diagnostic value of PCR assays of Pneumocystisjirovecii mitochondrial large subunits ribosomal RNA on sputum and BALF for pneumocystis pneumonia are both high and equivalent.

  14. Multiplex polymerase chain reaction assay for the detection of minute virus of mice and mouse parvovirus infections in laboratory mice.

    Science.gov (United States)

    Wang, K W; Chueh, L L; Wang, M H; Huang, Y T; Fang, B H; Chang, C Y; Fang, M C; Chou, J Y; Hsieh, S C; Wan, C H

    2013-04-01

    Mouse parvoviruses are among the most prevalent infectious pathogens in contemporary mouse colonies. To improve the efficiency of routine screening for mouse parvovirus infections, a multiplex polymerase chain reaction (PCR) assay targeting the VP gene was developed. The assay detected minute virus of mice (MVM), mouse parvovirus (MPV) and a mouse housekeeping gene (α-actin) and was able to specifically detect MVM and MPV at levels as low as 50 copies. Co-infection with the two viruses with up to 200-fold differences in viral concentrations can easily be detected. The multiplex PCR assay developed here could be a useful tool for monitoring mouse health and the viral contamination of biological materials.

  15. Rapid Detection/pathotyping of Newcastle disease virus isolates in clinical samples using real time polymerase chain reaction assay

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Abdul Wajid, Muhammad Wasim, Tahir Yaqub, Shafqat F Rehmani, Tasra Bibi, Nadia Mukhtar, Javed Muhammad, Umar Bacha, Suliman Qadir Afridi, Muhammad Nauman Zahid, Zia u ddin, Muhammad Zubair Shabbir, Kamran Abbas & Muneer Ahmad ### Abstract In the present protocol we describe the real time reverse transcription polymerase chain reaction (rRT-PCR) assay for the rapid detection/pathotyping of Newcastle disease virus (NDV) isoaltes in clinical samples. Fusion gene and matrix ...

  16. Development of a Polymerase Chain Reaction Assay for Detection of Burkholderia mallei, a Potent Biological Warfare Agent

    OpenAIRE

    2016-01-01

    Burkholderia mallei is the etiological agent of glanders, primarily a disease of equines. B. mallei is closely related to B. pseudomallei, the causative agent of melioidosis. Therefore, detection of B. mallei and its differentiation from B. pseudomallei, has always been troublesome. In present investigation, a B. mallei specific DNA sequence was identified by performing BLASTn search using ~3000 ORFs of B. mallei NCTC 10229. A polymerase chain reaction (PCR) assay with internal amplification ...

  17. Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation.

    Science.gov (United States)

    Gérard-Monnier, D; Erdelmeier, I; Régnard, K; Moze-Henry, N; Yadan, J C; Chaudière, J

    1998-10-01

    Under acidic and mild-temperature conditions, 1-methyl-2-phenylindole was found to react with malondialdehyde (MDA) and 4-hydroxyalkenals to yield a stable chromophore with intense maximal absorbance at 586 nm. The use of methanesulfonic acid results in optimal yields of chromophore produced from MDA as well as from 4-hydroxynonenal. By contrast, the use of hydrochloric acid results in an optimal yield of chromophore produced from MDA and a negligible reaction of 4-hydroxynonenal. Taking advantage of such chromogenic reactions, we developed a new colorimetric assay of lipid peroxidation. Using a methanesulfonic acid-based medium, MDA and 4-hydroxyalkenals can be measured at the 586 nm wavelength. However, the presence of endogenous inhibitors of the reaction with 4-hydroxyalkenals is common, and this means that the latter may be underestimated in some biological samples. The assay performed in a hydrochloric acid-based medium enables the specific measurement of MDA in the presence of 4-hydroxyalkenals. Upon hydrolysis of Schiff bases in hydrochloric acid (pH 1.5), either assay can be used to specifically measure the amount of total MDA in biological samples because 4-hydroxyalkenals undergo an irreversible cyclization reaction under the hydrochloric acid-based conditions of hydrolysis. The two assays were applied to the determination of the amount of MDA alone and of MDA and 4-hydroxyalkenals in an in vitro model of lipid peroxidation. This methodology was also used to clarify complex patterns of tissue-specific MDA production in vivo, following hydrolysis of Schiff bases, in rodents treated with doxorubicin.

  18. A Color-Reaction-Based Biochip Detection Assay for RIF and INH Resistance of Clinical Mycobacterial Specimens.

    Science.gov (United States)

    Xue, Wenfei; Peng, Jingfu; Yu, Xiaoli; Zhang, Shulin; Zhou, Boping; Jiang, Danqing; Chen, Jianbo; Ding, Bingbing; Zhu, Bin; Li, Yao

    2016-01-01

    The widespread occurrence of drug-resistant Mycobacterium tuberculosis places importance on the detection of TB (tuberculosis) drug susceptibility. Conventional drug susceptibility testing (DST) is a lengthy process. We developed a rapid enzymatic color-reaction-based biochip assay. The process included asymmetric multiplex PCR/templex PCR, biochip hybridization, and an enzymatic color reaction, with specific software for data operating. Templex PCR (tem- PCR) was applied to avoid interference between different primers in conventional multiplex- PCR. We applied this assay to 276 clinical specimens (including 27 sputum, 4 alveolar lavage fluid, 2 pleural effusion, and 243 culture isolate specimens; 40 of the 276 were non-tuberculosis mycobacteria specimens and 236 were M. tuberculosis specimens). The testing process took 4.5 h. A sensitivity of 50 copies per PCR was achieved, while the sensitivity was 500 copies per PCR when tem-PCR was used. Allele sequences could be detected in mixed samples at a proportion of 10%. Detection results showed a concordance rate of 97.46% (230/236) in rifampicin resistance detection (sensitivity 95.40%, specificity 98.66%) and 96.19% (227/236) in isoniazid (sensitivity 93.59%, specificity 97.47%) detection with those of DST assay. Concordance rates of testing results for sputum, alveolar lavage fluid, and pleural effusion specimens were 100%. The assay provides a potential choice for TB diagnosis and treatment.

  19. Identification of campylobacteria isolated from Danish broilers by phenotypic tests and species-specific PCR assays

    DEFF Research Database (Denmark)

    Wainø, M.; Bang, Dang Duong; Lund, Marianne

    2003-01-01

    Aims: To validate a phenotypic Campylobacter species identification method employed to identify campylobacters in broilers by comparison with campylobacterial species identification using various species-specific PCR analyses. Methods and Results: From a collection of 2733 phenotypically identifi...

  20. Development of a SYBR Green quantitative polymerase chain reaction assay for rapid detection and quantification of infectious laryngotracheitis virus.

    Science.gov (United States)

    Mahmoudian, Alireza; Kirkpatrick, Naomi C; Coppo, Mauricio; Lee, Sang-Won; Devlin, Joanne M; Markham, Philip F; Browning, Glenn F; Noormohammadi, Amir H

    2011-06-01

    Infectious laryngotracheitis is an acute viral respiratory disease of chickens with a worldwide distribution. Sensitive detection of the causative herpesvirus is particularly important because it can persist in the host at a very low copy number and be transmitted to other birds. Quantification of viral genome copy number is also useful for clinical investigations and experimental studies. In the study presented here, a quantitative polymerase chain reaction (qPCR) assay was developed using SYBR Green chemistry and the viral gene UL15a to detect and quantify infectious laryngotracheitis virus (ILTV) in ILTV-inoculated chicken embryos or naturally infected birds. The specificity of the assay was confirmed using a panel of viral and bacterial pathogens of poultry. The sensitivity of the assay was compared with two conventional PCR assays, virus titration and an antigen-detecting enzyme-linked immunosorbent assay. The qPCR developed in this study was highly sensitive and specific, and has potential for quantification of ILTV in tissues from naturally and experimentally infected birds and embryos.

  1. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs.

    Directory of Open Access Journals (Sweden)

    Kelsey Haist

    Full Text Available Arenaviruses are bi-segmented, single-stranded RNA viruses that cause significant human disease. The manner in which they regulate the replication of their genome is not well-understood. This is partly due to the absence of a highly sensitive assay to measure individual species of arenavirus replicative RNAs. To overcome this obstacle, we designed a quantitative reverse transcription (RT-PCR assay for selective quantitation of each of the lymphocytic choriomeningitis virus (LCMV genomic or antigenomic RNAs. During the course of assay design, we identified a nonspecific priming phenomenon whereby, in the absence of an RT primer, cDNAs complementary to each of the LCMV replicative RNA species are generated during RT. We successfully circumvented this nonspecific priming event through the use of biotinylated primers in the RT reaction, which permitted affinity purification of primer-specific cDNAs using streptavidin-coated magnetic beads. As proof of principle, we used the assay to map the dynamics of LCMV replication at acute and persistent time points and to determine the quantities of genomic and antigenomic RNAs that are incorporated into LCMV particles. This assay can be adapted to measure total S or L segment-derived viral RNAs and therefore represents a highly sensitive diagnostic platform to screen for LCMV infection in rodent and human tissue samples and can also be used to quantify virus-cell attachment.

  2. Identification of inhibitors of Plasmodium falciparum phosphoethanolamine methyltransferase using an enzyme-coupled transmethylation assay

    Directory of Open Access Journals (Sweden)

    Voelker Dennis R

    2010-01-01

    Full Text Available Abstract Background The phosphoethanolamine methyltransferase, PfPMT, of the human malaria parasite Plasmodium falciparum, a member of a newly identified family of phosphoethanolamine methyltransferases (PMT found solely in some protozoa, nematodes, frogs, and plants, is involved in the synthesis of the major membrane phospholipid, phosphatidylcholine. PMT enzymes catalyze a three-step S-adenosylmethionine-dependent methylation of the nitrogen atom of phosphoethanolamine to form phosphocholine. In P. falciparum, this activity is a limiting step in the pathway of synthesis of phosphatidylcholine from serine and plays an important role in the development, replication and survival of the parasite within human red blood cells. Results We have employed an enzyme-coupled methylation assay to screen for potential inhibitors of PfPMT. In addition to hexadecyltrimethylammonium, previously known to inhibit PfPMT, two compounds dodecyltrimethylammonium and amodiaquine were also found to inhibit PfPMT activity in vitro. Interestingly, PfPMT activity was not inhibited by the amodiaquine analog, chloroquine, or other aminoquinolines, amino alcohols, or histamine methyltransferase inhibitors. Using yeast as a surrogate system we found that unlike wild-type cells, yeast mutants that rely on PfPMT for survival were sensitive to amodiaquine, and their phosphatidylcholine biosynthesis was inhibited by this compound. Furthermore NMR titration studies to characterize the interaction between amoidaquine and PfPMT demonstrated a specific and concentration dependent binding of the compound to the enzyme. Conclusion The identification of amodiaquine as an inhibitor of PfPMT in vitro and in yeast, and the biophysical evidence for the specific interaction of the compound with the enzyme will set the stage for the development of analogs of this drug that specifically inhibit this enzyme and possibly other PMTs.

  3. Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays

    OpenAIRE

    Mukherjee, Sourav; Alicia M Hanson; Shadrick, William R.; Ndjomou, Jean; Sweeney, Noreena L.; Hernandez, John J.; Bartczak, Diana; Li, Kelin; Frankowski, Kevin J.; Heck, Julie A.; Arnold, Leggy A.; Schoenen, Frank J.; Frick, David N.

    2012-01-01

    Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma’s Library of Pharmacologically Active Compounds (LOPAC) for c...

  4. Polymerase chain reaction-restriction fragment length polymorphism assays to distinguish Liriomyza huidobrensis (Diptera: Agromyzidae) from associated species on lettuce cropping systems in Italy.

    Science.gov (United States)

    Masetti, Antonio; Luchetti, Andrea; Mantovani, Barbara; Burgio, Giovanni

    2006-08-01

    The pea leafminer, Liriomyza huidobrensis (Blanchard) (Diptera: Agromyzidae), is a serious insect pest infesting open field lettuce plantings in northern Italy. In these cropping systems, it coexists with several other agromyzid species that have negligible economic importance on open field vegetables. The rapid detection of L. huidobrensis is crucial for effective management strategies, but the identification of agromyzids to species can be very difficult at adult as well at immature stages. In this study, a polymerase chain reaction (PCR)-restriction fragment length polymorphism assay is proposed to separate L. huidobrensis from Liriomyza bryoniae (Kaltenbach), Liriomyza trifolii (Burgess), and Chromatomyia horticola (Goureau), which usually occur in the same lettuce plantings. An approximately 1,031-bp region of the mitochondrial genome encompassing the 3' region of cytochrome oxidase I, the whole leucine tRNA, and all of the cytochrome oxidase II was amplified by PCR and digested using the enzymes PvuII and SnaBI separately. Both endonucleases cut the amplicons of L. huidobrensis in two fragments, whereas the original band was not cleaved in the other analyzed species. The presence of Dacnusa spp. DNA does not bias the assay, because the PCR conditions and the primer set here described do not amplify any tract of this endoparasitic wasp genome.

  5. Development of a high-throughput replicon assay for the identification of respiratory syncytial virus inhibitors.

    Science.gov (United States)

    Tiong-Yip, Choi-Lai; Plant, Helen; Sharpe, Paul; Fan, Jun; Rich, Kirsty; Gorseth, Elise; Yu, Qin

    2014-01-01

    Respiratory syncytial virus (RSV) drug discovery has been hindered by the lack of good chemistry starting points and would benefit from robust and convenient assays for high-throughput screening (HTS). In this paper, we present the development and optimization of a 384-well RSV replicon assay that enabled HTS for RSV replication inhibitors with a low bio-containment requirement. The established replicon assay was successfully implemented for high-throughput screening. A validation screen was performed which demonstrated high assay performance and reproducibility. Assay quality was further confirmed via demonstration of appropriate pharmacology for different classes of RSV replication tool inhibitors. RSV replicon and cytotoxicity assays were further developed into a multiplexed format that measured both inhibition of viral replication and cytotoxicity from the same well. This provided a time and cost efficient approach to support lead optimization. In summary, we have developed a robust RSV replicon assay to help expedite the discovery of novel RSV therapeutics.

  6. Development and use of a real-time polymerase chain reaction assay for the detection of Ophidiomyces ophiodiicola in snakes.

    Science.gov (United States)

    Allender, Matthew C; Bunick, David; Dzhaman, Elena; Burrus, Lucienne; Maddox, Carol

    2015-03-01

    Fungal pathogens threatening the conservation of wildlife are becoming increasingly common. Since 2008, free-ranging snakes across North America have been experiencing a marked increase in the prevalence of snake fungal disease associated with Ophidiomyces ophiodiicola. Diagnosis has historically relied on histology, microbiology, and conventional polymerase chain reaction (PCR). More sensitive methods are needed to adequately characterize the epidemiology. The current study describes the development of a real-time PCR (qPCR) assay for detecting a segment of the internal transcribed spacer 1 region between the 18S and 5.8S ribosomal RNA gene. The assay was able to detect as few as 1.05 × 10(1) gene copies per reaction. An additional 4 positive cases were detected when comparing a conventional PCR (n = 3) and the qPCR (n = 7) when used on swab samples from 47 eastern massasauga rattlesnakes. The newly developed assay is a sensitive and specific tool for surveillance and monitoring in the conservation of free-ranging snakes.

  7. High throughput microwell spectrophotometric assay for olmesartan medoxomil in tablets based on its charge-transfer reaction with DDQ

    Directory of Open Access Journals (Sweden)

    Darwish Ibrahim A.

    2014-03-01

    Full Text Available The study describes the development and validation of a new microwell-based spectrophotometric assay for determination of olmesartan medoxomil (OLM in tablets. The formation of a colored charge-transfer (CT complex between OLM as an n-electron donor and 2,3-dichloro- -5,6-dicyano-1,4-benzoquinone (DDQ as a p-electron acceptor was investigated, and employed as the basis for the development of the new assay. The proposed assay was conducted in 96-microwell plates. The absorbance of the colored-CT complex was measured at 460 nm with a microplate reader. Optimum conditions of the reaction and the analytical procedures of the assay were established. Under the optimum conditions, a linear relationship with a good correlation coefficient was found between the absorbance and the concentration of OLM in the range of 2-200 μg per well. The limits of detection and quantitation were 0.53 and 1.61 μg per well, respectively. No interference was observed from the excipients present in OLM tablets or from hydrochlorothiazide and amlodipine besylate that were co-formulated with OLM in some of its formulations. The assay was successfully applied to the analysis of OLM in tablets with good accuracy and precision. The assay described herein has a great practical value in the routine analysis of OLM in quality control laboratories, since it has a high throughput property and consumes low volumes of organic solvent. It thus offers a reduction in the exposure of analysts to the toxic effects of organic solvents, as well as a reduction in the cost of analysis.

  8. Rapid Detection of Filoviruses by Real-time TaqMan Polymerase Chain Reaction Assays

    Institute of Scientific and Technical Information of China (English)

    Yi Huang; Hongping Wei; Yunpeng Wang; Zhengli Shi; Herve Raoul; Zhiming Yuan

    2012-01-01

    Ebola virus (EBOV) and Marburg virus (MARV) are causative agents of severe hemorrhagic fever with high mortality rates in humans and non-human primates and there is currently no licensed vaccine or therapeutics.To date,there is no specific laboratory diagnostic test in China,while there is a national need to provide differential diagnosis during outbreaks and for instituting acceptable quarantine procedures.In this study,the TaqMan RT-PCR assays targeting the nucleoprotein genes of the Zaire Ebolavirus (ZEBOV) and MARV were developed and their sensitivities and specificities were investigated.Our results indicated that the assays were able to make reliable diagnosis over a wide range of virus copies from 103 to 109,corresponding to the threshold of a standard RNA transcript.The results showed that there were about 1010 RNA copies per milliliter of virus culture supernatant,equivalent to 10,000 RNA molecules per infectious virion,suggesting the presence of many non-infectious particles.These data indicated that the TaqMan RT-PCR assays developed in this study will be suitable for future surveillance and specific diagnosis of ZEBOV and MARV in China.

  9. Plasmodium Genus Assay Transition to the Joint Biological Agent Identification and Diagnostic System (JBAIDS)

    Science.gov (United States)

    2012-07-12

    AFRIMS), Bangkok, Thailand Final Report AFMSA O&M FY09 Project (FWH20090036H): Plasmodium Genus Assay Transition to the Joint Biological Agent...evaluation data to support AFPMB approval of the RAPID- based Plasmodium genus assay for use in vector/vector-borne disease surveillance on the RAPID...Objective 1 Results: Plasmodium genus RAPID/JBAIDS assay development activities conducted during the FY09 study did not resolve cross-reactivity

  10. Evaluation of a commercial real-time polymerase chain reaction assay for detection of environmental contamination with Clostridium difficile.

    Science.gov (United States)

    Deshpande, A; Kundrapu, S; Sunkesula, V C K; Cadnum, J L; Fertelli, D; Donskey, C J

    2013-09-01

    Contaminated environmental surfaces are an important source for transmission of Clostridium difficile. However, there are no efficient and easy methods to assess contamination. The performance of a commercial real-time polymerase chain reaction (PCR) assay was evaluated for detection of environmental toxigenic C. difficile in comparison with anaerobic culture followed by toxin testing of isolates. For 66 sites sampled, PCR had a sensitivity of 17.39%, specificity 100%, positive predictive value 100% and negative predictive value 69.35%. Increasing the PCR cycle threshold (CT) value to 45 increased sensitivity to 52% without decreasing specificity. The commercial PCR assay is not sufficiently sensitive for environmental monitoring, but improved sensitivity might be possible through CT value modification.

  11. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction.

    Science.gov (United States)

    Kopra, Kari; Ligabue, Alessio; Wang, Qi; Syrjänpää, Markku; Blaževitš, Olga; Veltel, Stefan; van Adrichem, Arjan J; Hänninen, Pekka; Abankwa, Daniel; Härmä, Harri

    2014-07-01

    A quenching resonance energy transfer (QRET) assay for small GTPase nucleotide exchange kinetic monitoring is demonstrated using nanomolar protein concentrations. Small GTPases are central signaling proteins in all eukaryotic cells acting as a "molecular switches" that are active in the GTP-state and inactive in the GDP-state. GTP-loading is highly regulated by guanine nucleotide exchange factors (GEFs). In several diseases, most prominently cancer, this process in misregulated. The kinetics of the nucleotide exchange reaction reports on the enzymatic activity of the GEF reaction system and is, therefore, of special interest. We determined the nucleotide exchange kinetics using europium-labeled GTP (Eu-GTP) in the QRET assay for small GTPases. After GEF catalyzed GTP-loading of a GTPase, a high time-resolved luminescence signal was found to be associated with GTPase bound Eu-GTP, whereas the non-bound Eu-GTP fraction was quenched by soluble quencher. The association kinetics of the Eu-GTP was measured after GEF addition, whereas the dissociation kinetics could be determined after addition of unlabeled GTP. The resulting association and dissociation rates were in agreement with previously published values for H-Ras(Wt), H-Ras(Q61G), and K-Ras(Wt), respectively. The broader applicability of the QRET assay for small GTPases was demonstrated by determining the kinetics of the Ect2 catalyzed RhoA(Wt) GTP-loading. The QRET assay allows the use of nanomolar protein concentrations, as more than 3-fold signal-to-background ratio was achieved with 50 nM GTPase and GEF proteins. Thus, small GTPase exchange kinetics can be efficiently determined in a HTS compatible 384-well plate format.

  12. Comparison of nested and ELISA based polymerase chain reaction assays for detecting Chlamydia trachomatis in pregnant women with preterm complications.

    Science.gov (United States)

    Sulaiman, S; Chong, P P; Mokhtarudin, R; Lye, M S; Wan Hassan, W H

    2014-03-01

    Identification of pregnant women infected with Chlamydia trachomatis is essential to allow early antibiotic treatment in order to prevent adverse pregnancy outcomes. In this study, two nucleic acid amplification tests (NAAT) namely nested PCR (BioSewoom, Korea) and Amplicor CT/NG (Roche Diagnostic, USA) were evaluated in terms of sensitivity and specificity for the detection of C. trachomatis DNA in pregnant women with preterm complications. A cross-sectional study was carried out in two public hospitals in Southern Selangor, Malaysia. Endocervical swabs obtained were subjected to DNA amplification using nested PCR (BioSewoom, Korea) and Amplicor CT/NG (Roche Diagnostic, USA). A total of 83 endocervical swabs obtained from pregnant women of less than 37 weeks gestation and presented with preterm complications were subjected to chlamydial DNA detection using both assays. The study shows that Amplicor CT/NG assay is more effective in the detection of C. trachomatis DNA from endocervical swabs compared to Biosewoom nested PCR kit. Agreement between the two assays were poor (kappa=0.094) with nested PCR showing a low sensitivity of 10.81% and a 97.83% specificity when compared to Amplicor CT/NG. The results obtained indicated that BioSewoom nested PCR was less sensitive than Amplicor CT/ NG for detecting C. trachomatis in endocervical specimens and that another more reliable test is required for confirmatory result.

  13. [Development of a real-time polymerase chain reaction method for the identification of Candida species].

    Science.gov (United States)

    Ağca, Harun; Dalyan Cilo, Burcu; Özmerdiven, Gülşah Ece; Sağlam, Sezcan; Ener, Beyza

    2015-01-01

    Candida species are one of the major causes of nosocomial infections and are the fourth most common agent involved in bloodstream infections. The impact of non-albicans Candida species is increasing, however C.albicans is still the most common species. Since the antifungal susceptibility pattern among Candida spp. may be different, rapid diagnosis and identification of non-albicans Candida spp. are important for the determination of antifungal agents that will be used for treatment. The aim of the study was to describe a real-time polymerase chain reaction (Rt-PCR) assay that rapidly detects, identifies and quantitates Candida species from blood culture samples. A total of 50 consecutive positive blood culture bottles (BACTEC, Beckton Dickinson, USA) identified at our laboratory between June-November 2013, were included in the study. Reference strains of Candida spp. (C.albicans ATCC 10231, C.glabrata ATCC 90030, C.tropicalis ATCC 1021, C.krusei ATCC 6258, C.parapsilosis ATCC 22019 and C. dubliniensis CD36) grown on Sabouraud dextrose agar were used for quality control. BACTEC bottles that were positive for Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were also studied to search the cross-reactivity. A commercial kit (Zymo Research, USA) was used for DNA extraction. Real-time PCR was performed on LightCycler 480 (Roche, Germany) with primers and probes specific for 18S rRNA of Candida species. Twenty microlitres of the reaction mix contained 2 μl of extracted DNA, 2 μl of LightCycler Fast Start DNA Master Probe (Roche Diagnostics, Germany), 2 μl of MgCl(2) (5 mmol), 2 μl of 10x PCR buffer (Roche Diagnostics, Germany), 0.5 μl of each primer (0.01 nmol/μl) and 1 μl of each probe (0.1 μmol/μl) (TibMolBiol, Germany). Amplification was performed using the following conditions; 95°C for 10 mins and 50 cycles of denaturation at 95°C for 10 secs, annealing at 62°C for 10 secs and polymerisation at 72°C for 20 secs. A melting curve was

  14. A Highly Sensitive Spectrophotometric Assay of Bleomycins Based on the Fading Reaction of Some Halofluorescein Dyes

    Institute of Scientific and Technical Information of China (English)

    LIU,Jiang-Tao; LIU,Zhong-Fang; HU,Xiao-Li; Kong,Ling; LIU,Shao-Pu

    2007-01-01

    In weak acidic medium, anticancer antibiotics bleomycin A5 (BLMA5) and bleomycin A2 (BLMA2) can react with halofluorescein dyes such as erythrosin (Ery), eosin Y (EY), eosin B (EB) and rose bengal (RB) by virtue of electrostatic attraction and hydrophobic force to form the ion-association complexes, which can result in the fading reactions of four halofluorescein dyes. The maximum fading wavelengths of these four dyes were located at 527 nm for Ery, 515 nm for EY, 517 nm for EB and 546 nm for RB, respectively. The decrements of absorbance (△A) were directly proportional to the concentrations of bleomycin in a certain range. A new method for the determination of bleomycins anticancer drugs based on fading reactions of halofluorescein dyes has been developed. The method was not only highly sensitive but also simple and rapid. The molar absorptivities (ε) ranged from 1.5 × 105 to 7.5 ×105 L·mol-1·cm-1. It was applied to determination of the bleomycins in human serum, urine and rabbit serum samples. In this work, the spectral properties and the optimum reaction conditions were investigated. The structure of ion-association complexes and the reaction mechanism were discussed.

  15. Duplex real-time PCR assay for rapid identification of Staphylococcus aureus isolates from dairy cow milk.

    Science.gov (United States)

    Pilla, Rachel; Snel, Gustavo G M; Malvisi, Michela; Piccinini, Renata

    2013-05-01

    Staphylococcus aureus isolates from dairy cow mastitis are not always consistent with the characteristic morphology described, and molecular investigation is often needed. The aim of the study was to develop a duplex real-time PCR assay for rapid identification of Staph. aureus isolates, targeting both nuc and Sa442. Overall, 140 isolates collected from dairy cow mastitis in 90 different herds, were tested. All strains had been identified using morphological and biochemical characteristics. DNA from each strain was amplified in real-time PCR assay, to detect nuc or Sa442. Thereafter, a duplex real-time PCR assay was performed, and specificity of the amplified products was assessed by high resolution melting curve analysis. Out of 124 Staph. aureus isolates, 33 did not show the typical morphology or enzymic activity; in 118 strains, the two melt-curve peaks consistent with nuc and Sa442 were revealed, while 2 isolates showed only the peak consistent with Sa442. Four isolates bacteriologically identified as Staph. aureus, were PCR-negative and were further identified as Staph. pseudintermedius by sequencing. Staph. pseudintermedius and coagulase-negative staphylococci did not carry nuc or Sa442. The results showed the correct identification of all isolates, comprehending also coagulase-or nuc-negative Staph. aureus, while other coagulase-positive Staphylococci were correctly identified as non-Staph. aureus. Both sensitivity and specificity were 100%. High resolution melting analysis allowed easy detection of unspecific products. Finally, the duplex real-time PCR was applied directly to 40 milk samples, to detect infected mammary quarters. The assay confirmed the results of bacteriological analysis, on Staph. aureus-positive or-negative samples. Therefore, the proposed duplex real-time PCR could be used in laboratory routine as a cost-effective and powerful tool for high-throughput identification of atypical Staph. aureus isolates causing dairy cow mastitis. Also, it

  16. Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays.

    Science.gov (United States)

    Page, Brent T; Shields, Christine E; Merz, William G; Kurtzman, Cletus P

    2006-09-01

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. Large-subunit rRNA domains 1 and 2 (D1/D2) gene sequence analysis was also performed and served as the reference for correct strain identification. A panel of 88 clinical isolates was tested that included representatives of nine commonly encountered species and six infrequently encountered species. The PA included germ tube production, fermentation of seven carbohydrates, morphology on corn meal agar, urease and phenoloxidase activities, and carbohydrate assimilation tests when needed. The FC method (Luminex) employed species-specific oligonucleotides attached to polystyrene beads, which were hybridized with D1/D2 amplicons from the unidentified isolates. The PA identified 81 of 88 strains correctly but misidentified 4 of Candida dubliniensis, 1 of C. bovina, 1 of C. palmioleophila, and 1 of C. bracarensis. The FC method correctly identified 79 of 88 strains and did not misidentify any isolate but did not identify nine isolates because oligonucleotide probes were not available in the current library. The FC assay takes approximately 5 h, whereas the PA takes from 2 h to 5 days for identification. In conclusion, PA did well with the commonly encountered species, was not accurate for uncommon species, and takes significantly longer than the FC method. These data strongly support the potential of FC technology for rapid and accurate identification of medically important yeasts. With the introduction of new antifungals, rapid, accurate identification of pathogenic yeasts is more important than ever for guiding antifungal chemotherapy.

  17. Reaction Product Identification in Extreme Chemical Environments by Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    Molecular rotational spectroscopy has several advantages for detection of reaction intermediates and products under extreme laboratory conditions. Rotational spectroscopy has high sensitivity to the molecular structure and provides high spectral resolution in low pressure environments. Furthermore, quantum chemistry provides accurate estimates of the spectroscopic parameters. As a result, rotational spectroscopy can identify molecular species in complex reaction mixtures without the need for chromatographic separation and without the need for a previously recorded ``library spectrum'' of the molecule. The application of chirped pulse Fourier transform rotational spectroscopy methods for the identification of molecules of astrochemical interest formed in pulsed discharge sources will be described including recent advances for high-throughput mm-wave spectroscopy. The set of reaction products created in the experiment can provide insight into the reaction mechanism. Reactions involving the CN radical will be discussed. These reactions can be barrierless making them candidates for interstellar gas reactions. The possibility that interstellar cyanomethanimine is produced by gas phase radical-neutral reactions instead of surface chemistry on grain-supported ices will be discussed using recent spatially resolved chemical images in Sagittarius B2 observed with the Jansky Very Large Array. This work supported by NSF CHE 1213200.

  18. Rapid and specific identification of Brucella abortus using the loop-mediated isothermal amplification (LAMP) assay.

    Science.gov (United States)

    Kang, Sung-Il; Her, Moon; Kim, Ji-Yeon; Lee, Jin Ju; Lee, Kichan; Sung, So-Ra; Jung, Suk Chan

    2015-06-01

    A rapid and accurate diagnosis of brucellosis is required to reduce and prevent the spread of disease among animals and the risk of transfer to humans. In this study, a Brucella abortus-specific (Ba) LAMP assay was developed, that had six primers designed from the BruAb2_0168 region of chromosome I. The specificity of this LAMP assay was confirmed with Brucella reference strains, B. abortus vaccine strains, B. abortus isolates and phylogenetically or serologically related strains. The detection limit of target DNA was up to 20 fg/μl within 60 min. The sensitivity of the new LAMP assay was equal to or slightly higher than other PCR based assays. Moreover, this Ba-LAMP assay could specifically amplify all B. abortus biovars compared to previous PCR assays. To our knowledge, this is the first report of specific detection of B. abortus using a LAMP assay. The Ba-LAMP assay can offer a rapid, sensitive and accurate diagnosis of bovine brucellosis in the field.

  19. Identification of Acute Phase Proteins and Assays Applicable in Nondomesticated Mammals

    DEFF Research Database (Denmark)

    Bertelsen, M. F.; Kjelgaard-Hansen, M.; Grøndahl, C.

    2009-01-01

    ), and chimpanzee (Pan troglodytes), as did an SAA enzyme-linked immunosorbent assay (ELISA) in the impala. For CRP, both TIA and ELISA had significant detective abilities in the chimpanzee. For Hp, a colorimetric assay demonstrated significant detective abilities in impala, musk ox, sitatunga (Tragelaphus spekeii...

  20. Exploiting Bacterial Whole-Genome Sequencing Data for Evaluation of Diagnostic Assays: Campylobacter Species Identification as a Case Study.

    Science.gov (United States)

    Jansen van Rensburg, Melissa J; Swift, Craig; Cody, Alison J; Jenkins, Claire; Maiden, Martin C J

    2016-12-01

    The application of whole-genome sequencing (WGS) to problems in clinical microbiology has had a major impact on the field. Clinical laboratories are now using WGS for pathogen identification, antimicrobial susceptibility testing, and epidemiological typing. WGS data also represent a valuable resource for the development and evaluation of molecular diagnostic assays, which continue to play an important role in clinical microbiology. To demonstrate this application of WGS, this study used publicly available genomic data to evaluate a duplex real-time PCR (RT-PCR) assay that targets mapA and ceuE for the detection of Campylobacter jejuni and Campylobacter coli, leading global causes of bacterial gastroenteritis. In silico analyses of mapA and ceuE primer and probe sequences from 1,713 genetically diverse C. jejuni and C. coli genomes, supported by RT-PCR testing, indicated that the assay was robust, with 1,707 (99.7%) isolates correctly identified. The high specificity of the mapA-ceuE assay was the result of interspecies diversity and intraspecies conservation of the target genes in C. jejuni and C. coli Rare instances of a lack of specificity among C. coli isolates were due to introgression in mapA or sequence diversity in ceuE The results of this study illustrate how WGS can be exploited to evaluate molecular diagnostic assays by using publicly available data, online databases, and open-source software.

  1. Exploiting Bacterial Whole-Genome Sequencing Data for Evaluation of Diagnostic Assays: Campylobacter Species Identification as a Case Study

    Science.gov (United States)

    Jansen van Rensburg, Melissa J.; Swift, Craig; Cody, Alison J.; Jenkins, Claire

    2016-01-01

    The application of whole-genome sequencing (WGS) to problems in clinical microbiology has had a major impact on the field. Clinical laboratories are now using WGS for pathogen identification, antimicrobial susceptibility testing, and epidemiological typing. WGS data also represent a valuable resource for the development and evaluation of molecular diagnostic assays, which continue to play an important role in clinical microbiology. To demonstrate this application of WGS, this study used publicly available genomic data to evaluate a duplex real-time PCR (RT-PCR) assay that targets mapA and ceuE for the detection of Campylobacter jejuni and Campylobacter coli, leading global causes of bacterial gastroenteritis. In silico analyses of mapA and ceuE primer and probe sequences from 1,713 genetically diverse C. jejuni and C. coli genomes, supported by RT-PCR testing, indicated that the assay was robust, with 1,707 (99.7%) isolates correctly identified. The high specificity of the mapA-ceuE assay was the result of interspecies diversity and intraspecies conservation of the target genes in C. jejuni and C. coli. Rare instances of a lack of specificity among C. coli isolates were due to introgression in mapA or sequence diversity in ceuE. The results of this study illustrate how WGS can be exploited to evaluate molecular diagnostic assays by using publicly available data, online databases, and open-source software. PMID:27733632

  2. Avian haemosporidian parasites (Haemosporida): A comparative analysis of different polymerase chain reaction assays in detection of mixed infections.

    Science.gov (United States)

    Bernotienė, Rasa; Palinauskas, Vaidas; Iezhova, Tatjana; Murauskaitė, Dovilė; Valkiūnas, Gediminas

    2016-04-01

    Mixed infections of different species and genetic lineages of haemosporidian parasites (Haemosporida) predominate in wildlife, and such infections are particularly virulent. However, currently used polymerase chain reaction (PCR)-based detection methods often do not read mixed infections. Sensitivity of different PCR assays in detection of mixed infections has been insufficiently tested, but this knowledge is essential in studies addressing parasite diversity in wildlife. Here, we applied five different PCR assays, which are broadly used in wildlife avian haemosporidian research, and compared their sensitivity in detection of experimentally designed mixed infections of Haemoproteus and Plasmodium parasites. Three of these PCR assays use primer sets that amplify fragments of cytochrome b gene (cyt b), one of cytochrome oxidase subunit I (COI) gene, and one target apicoplast genome. We collected blood from wild-caught birds and, using microscopic and PCR-based methods applied in parallel, identified single infections of ten haemosporidian species with similar parasitemia. Then, we prepared 15 experimental mixes of different haemosporidian parasites, which often are present simultaneously in wild birds. Similar concentration of total DNA was used in each parasite lineage during preparation of mixes. Positive amplifications were sequenced, and the presence of mixed infections was reported by visualising double-base calling in sequence electropherograms. This study shows that the use of each single PCR assay markedly underestimates biodiversity of haemosporidian parasites. The application of at least 3 PCR assays in parallel detected the majority, but still not all lineages present in mixed infections. We determined preferences of different primers in detection of parasites belonging to different genera of haemosporidians during mixed infections.

  3. Development of a Multiplex-PCR assay for the rapid identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus.

    Science.gov (United States)

    Pennacchia, Carmela; Breeuwer, Pieter; Meyer, Rolf

    2014-10-01

    The presence of thermophilic bacilli in dairy products is indicator of poor hygiene. Their rapid detection and identification is fundamental to improve the industrial reactivity in the implementation of corrective and preventive actions. In this study a rapid and reliable identification of Geobacillus stearothermophilus and Anoxybacillus flavithermus was achieved by species-specific PCR assays. Two primer sets, targeting the ITS 16S-23S rRNA region and the rpoB gene sequence of the target species respectively, were employed. Species-specificity of both primer sets was evaluated by using 53 reference strains of DSMZ collection; among them, 13 species of the genus Geobacillus and 15 of the genus Anoxybacillus were represented. Moreover, 99 wild strains and 23 bulk cells collected from 24 infant formula powders gathered from several countries worldwide were included in the analyses. Both primer sets were highly specific and the expected PCR fragments were obtained only when DNA from G. stearothermophilus or A. flavithermus was used. After testing their specificity, they were combined in a Multiplex-PCR assay for the simultaneous identification of the two target species. The specificity of the Multiplex-PCR was evaluated by using both wild strains and bulk cells. Every analysis confirmed the reliable identification results provided by the single species-specific PCR methodology. The easiness, the rapidity (about 4 h from DNA isolation to results) and the reliability of the PCR procedures developed in this study highlight the advantage of their application for the specific detection and identification of the thermophilic species G. stearothermophilus and A. flavithermus.

  4. Cyanidin-horseradish peroxidase-hydroperoxide reaction system and its application in enzyme-linked immunosensing assays

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A cyanidin-based horseradish peroxidase(HRP)-catalyzed reaction system was established in this work.In B-R buffer solutions(pH 6.8),a UV-visible absorbance peak of cyanidin(CAG) at 540 nm(Ap1) appeared.After the oxidation reaction of CAG catalyzed by HRP in the presence of H2O2,a significant absorbance peak at 482 nm(Ap2) occurred.The ratio R(AP2/AP1)was proportional to the HRP concentration.The application of CAG in the enzyme-linked immunosensing assays was investigated using food and mouth disease virus antigen(FMDVAg) as a model analyte.In sandwich immunoreaction,the analyte FMDVAg and food and mouth disease virus antibody(FMDVAb)-modified magnetic nanoparticles bound the supported conconvalina(Con A) bound with HRP-FMDVAb.After de-absorbing and separating,the HRP-FMDVAb-FMDVAg-FMDVAb-magnetic nanoparticles complexes were subject to enzymatic reaction and UV-visible absorbance measurements.The HRP moiety of the immunoreaction complexes can catalyze the oxidation reaction of CAG by H2O2,and the substrate CAG is converted to products.Based on this principle,a sandwich assay model has been employed to determine FMDVAg in rabbit serum samples with the aid of FMDVAb-Fe3O4 magnetic nanoparticles.The linear range of the FMDVAg determination is 1.5×10-8-2.7×10-6 g/mL with the relatively standard deviation of 3.7%(n = 11).The detection limit is 3.1×10-9 g/mL.Additional advantages of the typical substrate such as OPD,OAP and TMB are good water-solubility and stability.

  5. Evaluation of a Novel PCR-Based Assay for Detection and Identification of Chlamydia trachomatis Serovars in Cervical Specimens▿

    Science.gov (United States)

    Quint, Koen; Porras, Carolina; Safaeian, Mahboobeh; González, Paula; Hildesheim, Allan; Quint, Wim; van Doorn, Leen-Jan; Silva, Sandra; Melchers, Willem; Schiffman, Mark; Rodríguez, Ana Cecilia; Wacholder, Sholom; Freer, Enrique; Cortes, Bernal; Herrero, Rolando

    2007-01-01

    The aims of this study were to compare a novel PCR-based Chlamydia trachomatis detection and genotyping (Ct-DT) assay with the FDA-approved, commercially available C. trachomatis detection Hybrid Capture 2 (HC2) assay and to investigate the C. trachomatis serovar distribution among young women in a rural Costa Rican study population. A total of 5,828 sexually active women participating in a community-based trial in Costa Rica were tested for C. trachomatis by HC2. A sample of 1,229 specimens consisting of 100% HC2 C. trachomatis-positive specimens (n = 827) and a random sample of 8% HC2 C. trachomatis-negative specimens (n = 402) were tested with the Ct-DT assay. Agreement between the two assays was determined by the unweighted kappa statistic. Discrepant specimens were tested with a second commercially available test (COBAS TaqMan). The Ct-DT-positive specimens were further analyzed with the Ct-DT genotyping step to investigate the distribution of 14 different C. trachomatis serovars (A, B/Ba, C, D/Da, E, F, G/Ga, H, I/Ia, J, K, L1, L2/L2a, and L3). After accounting for the sampling fraction selected for Ct-DT testing, crude agreement with the HC2 assay was 98% and the kappa was 0.92 (95% confidence interval [CI], 0.89 to 0.97). The 33 discordant samples that were further analyzed with the COBAS TaqMan test showed better agreement with the Ct-DT assay (31/33, P < 0.001). Among the 806 Ct-DT-positive samples, serovar E was the most common serovar (31%), followed by serovars F and D (both 21%) and serovar I (15%). In conclusion, the novel Ct-DT assay permits reliable detection and identification of C. trachomatis serovars. PMID:17959760

  6. Biophysical assay for tethered signaling reactions reveals tether-controlled activity for the phosphatase SHP-1

    Science.gov (United States)

    Goyette, Jesse; Salas, Citlali Solis; Coker-Gordon, Nicola; Bridge, Marcus; Isaacson, Samuel A.; Allard, Jun; Dushek, Omer

    2017-01-01

    Tethered enzymatic reactions are ubiquitous in signaling networks but are poorly understood. A previously unreported mathematical analysis is established for tethered signaling reactions in surface plasmon resonance (SPR). Applying the method to the phosphatase SHP-1 interacting with a phosphorylated tether corresponding to an immune receptor cytoplasmic tail provides five biophysical/biochemical constants from a single SPR experiment: two binding rates, two catalytic rates, and a reach parameter. Tether binding increases the activity of SHP-1 by 900-fold through a binding-induced allosteric activation (20-fold) and a more significant increase in local substrate concentration (45-fold). The reach parameter indicates that this local substrate concentration is exquisitely sensitive to receptor clustering. We further show that truncation of the tether leads not only to a lower reach but also to lower binding and catalysis. This work establishes a new framework for studying tethered signaling processes and highlights the tether as a control parameter in clustered receptor signaling.

  7. Development of a multiplex PCR assay for identification of Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalis subsp. hyointestinalis, Campylobacter jejuni, Campylobacter lari and Campylobacter upsaliensis

    National Research Council Canada - National Science Library

    Yamazaki-Matsune, Wataru; Taguchi, Masumi; Seto, Kazuko; Kawahara, Ryuji; Kawatsu, Kentaro; Kumeda, Yuko; Kitazato, Miyoshi; Nukina, Masafumi; Misawa, Naoaki; Tsukamoto, Teizo

    2007-01-01

    ...{at}iph.pref.osaka.jp Received 26 April 2007 Accepted 9 July 2007 A multiplex PCR assay has been developed for the identification of the six common Campylobacter taxa associated with human gastroenteritis...

  8. Identification of Chemical Vascular Disruptors During Development Using An Integrative Predictive Toxicity Model and Zebrafish and in Vitro Functional Angiogenesis Assays.

    Science.gov (United States)

    Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...

  9. Identification of Chemical Vascular Disruptors During Development Using An Integrative Predictive Toxicity Model and Zebrafish and in Vitro Functional Angiogenesis Assays.

    Science.gov (United States)

    Identification of chemical vascular disruptors during development using an integrative predictive toxicity model and zebrafish and in vitro functional angiogenesis assays Chemically-induced vascular toxicity during embryonic development can result in a wide range of adverse pre...

  10. ViriChip: a solid phase assay for detection and identification of viruses by atomic force microscopy

    Science.gov (United States)

    Nettikadan, Saju R.; Johnson, James C.; Vengasandra, Srikanth G.; Muys, James; Henderson, Eric

    2004-03-01

    Bionanotechnology can be viewed as the integration of tools and concepts in nanotechnology with the attributes of biomolecules. We report here on an atomic force microscopy-immunosensor assay (AFMIA) that couples AFM with solid phase affinity capture of biological entities for the rapid detection and identification of group B coxsackievirus particles. Virus identification is based on type-specific immunocapture and the morphological properties of the captured viruses as obtained by the AFM. Representatives of the six group B coxsackieviruses have been specifically captured from 1 µl volumes of clarified cell lysates, body fluids and environmental samples. Concentration and kinetic profiles for capture indicate that detection is possible at 103 TCID50 µl-1 and the dynamic range of the assay spans three logs. The results demonstrate that the melding of a nanotechnological tool (AFM) with biotechnology (solid phase immunocapture of virus particles) can create a clinically relevant platform, useful for the detection and identification of enterovirus particles in a variety of samples.

  11. Development of a FLIPR Assay for the Simultaneous Identification of MrgD Agonists and Antagonists from a Single Screen

    Directory of Open Access Journals (Sweden)

    Seena K. Ajit

    2010-01-01

    Full Text Available MrgD, a member of the Mas-related gene family, is expressed exclusively in small diameter IB4+ neurons in the dorsal root ganglion. This unique expression pattern, the presence of a single copy of MrgD in rodents and humans, and the identification of a putative ligand, beta-alanine, make it an experimentally attractive therapeutic target for pain with limited likelihood of side effects. We have devised a high throughput calcium mobilization assay that enables identification of both agonists and antagonists from a single screen for MrgD. Screening of the Library of Pharmacologically Active Compounds (LOPAC validated this assay approach, and we identified both agonists and antagonists active at micromolar concentrations in MrgD expressing but not in parental CHO-DUKX cell line. Further characterization was performed using a subset of these screening hits. Our results demonstrated that the dual agonist/antagonist assay format is feasible and likely can be extended to most GPCRs with known agonist.

  12. Higher Sensitivity and Earlier Identification of Celiac Disease Autoimmunity by a Nonradioactive Assay for Transglutaminase Autoantibodies

    Directory of Open Access Journals (Sweden)

    Zhiyuan Zhao

    2016-01-01

    Full Text Available Higher sensitive transglutaminase autoantibody (TGA assay will detect the onset of celiac disease (CD autoimmunity earlier. In developing a nonradioactive assay for TGA, we utilized electrochemiluminescence (ECL technology and compared it to a high-performance radioimmunoassay (RIA currently being used to screen patients with type 1 diabetes (T1D and genetically at-risk individuals for CD. We selected 183 T1D patients with 60 patients having received biopsy and analyzed 396 sequential samples from 73 young children longitudinally followed up with TGA seroconversion, with 27 undergoing biopsy. In addition, 112 age-matched healthy control subjects were included in the study. With the 99th percentile of specificity, the ECL assay detected significantly more TGA positivity among patients with T1D (133/183 than RIA (114/183 and more of the sequential samples (34% from 73 children than RIA (18%. The TGA assay performed by ECL was positive in all 59 subjects with villous atrophy. Among 73 longitudinally followed up children, ECL assay had earlier detection of TGA on 34 children by a mean of 2.5 years. In conclusion, the new TGA assay by ECL has a higher sensitivity than the current RIA assay and may better predict the onset of CD.

  13. Understanding colonization and proliferation potential of endophytes and pathogen in planta via plating, polymerase chain reaction, and ergosterol assay

    Directory of Open Access Journals (Sweden)

    Yiing Yng Chow

    2017-01-01

    Full Text Available This study aimed to establish the colonization behavior and proliferation potential of three endophytes and one pathogen Ganoderma boninense (Gb introduced into oil palm ramets (host model. The endophytes selected were Diaporthe phaseolorum (WAA02, Trichoderma asperellum (T2, and Penicillium citrinum (BTF08. Ramets were first inoculated with 100 mL of fungal cells (106 cfu mL−1 via soil drenching. For the next 7 days, ramets were sampled and subjected to three different assays to detect and identify fungal colonization, and establish their proliferation potential in planta. Plate assay revealed the presence of endophytes in root, stem and leaf tissues within 7 days after inoculation. Polymerase Chain Reaction (PCR detected and identified the isolates from the plant tissues. The ergosterol assay (via high-performance liquid chromatography, HPLC confirmed the presence of endophytes and Gb in planta. The increase in ergosterol levels throughout 49 days was however insignificant, suggesting that proliferation may be absent or may occur very slowly in planta. This study strongly suggests that the selected endophytes could colonize the host upon inoculation, but proliferation occurs at a slower rate, which may subsequently influence the biocontrol expression of endophytes against the pathogen.

  14. Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification.

    Science.gov (United States)

    Torrente-Rodríguez, R M; Campuzano, S; Montiel, V Ruiz-Valdepeñas; Montoya, J J; Pingarrón, J M

    2016-12-15

    A novel electrochemical approach for determination of miRNAs involving a sandwich hybridization assay onto streptavidin-magnetic beads (Strep-MBs), hybridization chain reaction (HCR) amplification and amperometric detection at disposable screen-printed carbon electrodes is reported. Using miRNA-21 as the target analyte, a dynamic linear range from 0.2 to 5.0nM with a 60pM (1.5fmol in 25μL) detection limit was obtained. The achieved sensitivity is 24-fold higher than a non-HCR amplification approach involving conventional sandwich type assay onto MBs. Moreover, the whole assay time lasted 1h 45min which is remarkably shorter than other reported methodologies. The methodology exhibited full selectivity against other non-complementary miRNAs as well as an acceptable discrimination between homologous miRNA family members. The applicability of this novel approach was demonstrated by determining mature miRNA-21 in total RNA (RNAt) extracted from tumor cells and human tissues.

  15. Application of a real time Polymerase Chain Reaction (PCR) assay for the early diagnosis of human leptospirosis in Sri Lanka.

    Science.gov (United States)

    Denipitiya, D T H; Chandrasekharan, N V; Abeyewickreme, W; Hartskeerl, C M; Hartskeerl, R A; Jiffrey, A M; Hapugoda, M D

    2016-11-01

    Leptospirosis has a major impact on health in Sri Lanka but is probably grossly under-recognized due to difficulties in clinical diagnosis and lack of diagnostic laboratory services. The objective of this study was to establish and evaluate a SYBR Green-based real-time Polymerase Chain Reaction (rt-PCR) assay for early, rapid and definitive laboratory diagnosis of leptospirosis in Sri Lanka. The rt-PCR assay was established and analytical specificity and sensitivity were determined using reference DNA samples. Evaluation of the assay for diagnosis of clinical samples was performed using two panels of serum samples obtained from 111 clinically suspected adult patients. Patients were confirmed as leptospirosis (n = 65) and non-leptospirosis (n = 30) by the Patoc - MAT. Other 16 samples gave ambiguous results. The analytical sensitivity of the rt-PCR was approximately 60 genome copies and no cross-reactivity was observed with saprophytic Leptospira spp. and other pathogenic microorganisms. Based on confirmation with Patoc-MAT on paired samples this corresponds to a diagnostic sensitivity and specificity of 67.7% (44/65) and 90.0% (27/30), respectively. This study showed that rt-PCR has the potential to facilitate rapid and definitive diagnosis of leptospirosis during early phase of infection in Sri Lanka. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  16. A real time polymerase chain reaction assay for quantification of Edwardsiella ictaluri in catfish pond water and genetic homogeneity of diagnostic case isolates from Mississippi

    Science.gov (United States)

    A quantitative polymerase chain reaction (qPCR) assay was developed for the detection and quantification of Edwardsiella ictaluri in channel catfish Ictalurus punctatus pond water using modifications to a published E. ictaluri–specific qPCR assay and previously established protocols for the molecula...

  17. Detection of infectious bursal disease virus in various lymphoid tissues of experimentally infected specific pathogen free chickens by different reverse transcription polymerase chain reaction assays

    DEFF Research Database (Denmark)

    Kabell, Susanne; Handberg, Kurt; Kusk, Mette;

    2005-01-01

    transcription polymerase chain reaction (RT-PCR) assays, including two recently developed strain-specific assays, were employed for detection of ribonucleic acid (RNA) from three different IBDV strains in bursa tissue samples from experimentally infected specific pathogen free chickens. The virus strains...

  18. Use of a high resolution melt real-time polymerase chain reaction (PCR) assay for the environmental monitoring of Vibrio cholerae

    CSIR Research Space (South Africa)

    Le Rouw, Wouter J

    2011-10-01

    Full Text Available A real-time polymerase chain reaction (PCR) assay utilizing high resolution melt (HRM) curve analysis was developed and tested for the monitoring of Vibrio cholerae in water samples. The assay utilized previously published primers that are specific...

  19. Evaluation of a latex agglutination assay for the identification of Burkholderia pseudomallei and Burkholderia mallei.

    Science.gov (United States)

    Duval, Brea D; Elrod, Mindy G; Gee, Jay E; Chantratita, Narisara; Tandhavanant, Sarunporn; Limmathurotsakul, Direk; Hoffmaster, Alex R

    2014-06-01

    Cases of melioidosis and glanders are rare in the United States, but the etiologic agents of each disease (Burkholderia pseudomallei and Burkholderia mallei, respectively) are classified as Tier 1 select agents because of concerns about their potential use as bioterrorism agents. A rapid, highly sensitive, and portable assay for clinical laboratories and field use is required. Our laboratory has further evaluated a latex agglutination assay for its ability to identify B. pseudomallei and B. mallei isolates. This assay uses a monoclonal antibody that specifically recognizes the capsular polysaccharide produced by B. pseudomallei and B. mallei, but is absent in closely related Burkholderia species. A total of 110 B. pseudomallei and B. mallei were tested, and 36 closely related Burkholderia species. The latex agglutination assay was positive for 109 of 110 (99.1% sensitivity) B. pseudomallei and B. mallei isolates tested.

  20. A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Saccaggi, D L; Krüger, K; Pietersen, G

    2008-02-01

    Molecular species identification is becoming more wide-spread in diagnostics and ecological studies, particularly with regard to insects for which morphological identification is difficult or time-consuming. In this study, we describe the development and application of a single-step multiplex PCR for the identification of three mealybug species (Hemiptera: Pseudococcidae) associated with grapevine in South Africa: Planococcus ficus (vine mealybug), Planococcus citri (citrus mealybug) and Pseudococcus longispinus (longtailed mealybug). Mealybugs are pests on many commercial crops, including grapevine, in which they transmit viral diseases. Morphological identification of mealybug species is usually time-consuming, requires a high level of taxonomic expertise and usually only adult females can be identified. The single-step multiplex PCR developed here, based on the mitochondrial cytochrome c oxidase subunit 1 (CO I) gene, is rapid, reliable, sensitive, accurate and simple. The entire identification protocol (including DNA extraction, PCR and electrophoresis) can be completed in approximately four hours. Successful DNA extraction from laboratory and unparasitized field-collected individuals stored in absolute ethanol was 97%. Specimens from which DNA could be extracted were always correctly identified (100% accuracy). The technique developed is simple enough to be implemented in any molecular laboratory. The principles described here can be extended to any organism for which rapid, reliable identification is needed.

  1. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-11-01

    Full Text Available In this work, system identification method is used to capture the reactor characteristics of production rate of polyethylene (PE based on published experimental data. The identification method is used to measure the percentage effect on the production rate of PE by measuring the effect of input factors of temperature of reaction, hydrogen concentration, and [Al]/[Ti] molar catalyst ratio. Temperature of reaction has big effects equal 52.4 % on the output of the system and 47.6 % on interaction of the system's parameters compare to other two factors. Also, hydrogen concentration has big effect equal 45.66 % on the output of the system and 14.7 % on interaction of the system's parameters. [Al]/[Ti] molar catalyst ratio has big effect on interaction of the system equal 28.6 and 1.94 % on the output of the system but less than the reaction temperature and hydrogen concentration. All these results depend on experiment results and these results are very important in industrial plants. ©2011 BCREC UNDIP. All rights reserved(Received: 13rd May 2011; Revised: 27th July 2011; Accepted: 22th September 2011[How to Cite: Ahmmed S. Ibrehem. (2011. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 137-146. doi:10.9767/bcrec.6.2.874.137-146][How to Link / DOI: http://dx,doi.org/10.9767/bcrec.6.2.874.137-146 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/874 ] | View in 

  2. Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay.

    Science.gov (United States)

    Tang, Tuo-Xian; Xiong, Wen; Finkielstein, Carla V; Capelluto, Daniel G S

    2017-01-01

    The protein-lipid overlay assay is an inexpensive, easy-to-implement, and high-throughput methodology that employs nitrocellulose membranes to immobilize lipids in order to rapid screen and identify protein-lipid interactions. In this chapter, we show how this methodology can identify potential modulators of protein-lipid interactions by screening water-soluble lipid competitors or even the introduction of pH changes during the binding assay to identify pH-dependent lipid binding events.

  3. Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays.

    Science.gov (United States)

    Mukherjee, Sourav; Hanson, Alicia M; Shadrick, William R; Ndjomou, Jean; Sweeney, Noreena L; Hernandez, John J; Bartczak, Diana; Li, Kelin; Frankowski, Kevin J; Heck, Julie A; Arnold, Leggy A; Schoenen, Frank J; Frick, David N

    2012-09-01

    Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma's Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50=1.4 μM), suramin sodium salt (IC50=3.6 μM), NF 023 hydrate (IC50=6.2 μM) and tyrphostin AG 538 (IC50=3.6 μM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.

  4. A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Gergely Torda

    Full Text Available Pocillopora damicornis (Linnaeus, 1758; Scleractinia, Pocilloporidae has recently been found to comprise at least five distinct genetic lineages in Eastern Australia, some of which likely represent cryptic species. Due to similar and plastic gross morphology of these lineages, field identification is often difficult. Here we present a quick, cost effective genetic assay as well as three novel microsatellite markers that distinguish the two most common lineages found on the Great Barrier Reef. The assay is based on PCR amplification of two regions within the mitochondrial putative control region, which show consistent and easily identifiable fragment size differences for the two genetic lineages after Alu1 restriction enzyme digestion of the amplicons.

  5. Multiplex time-reducing quantitative polymerase chain reaction assay for determination of telomere length in blood and tissue DNA.

    Science.gov (United States)

    Jiao, Jingjing; Kang, Jing X; Tan, Rui; Wang, Jingdong; Zhang, Yu

    2012-04-01

    In this paper we describe a multiplex time-reducing quantitative polymerase chain reaction (qPCR) method for determination of telomere length. This multiplex qPCR assay enables two pairs of primers to simultaneously amplify telomere and single copy gene (albumin) templates, thus reducing analysis time and labor compared with the previously established singleplex assay. The chemical composition of the master mix and primers for the telomere and albumin were systematically optimized. The thermal cycling program was designed to ensure complete separation of the melting processes of the telomere and albumin. Semi-log standard curves of DNA concentration versus cycle threshold (C (t)) were established, with a linear relationship over an 81-fold DNA concentration range. The well-performed intra-assay (RSD range 2.4-4.7%) and inter-assay (RSD range: 3.1-5.0%) reproducibility were demonstrated to ensure measurement stability. Using wild-type, Lewis lung carcinoma and H22 liver carcinoma C57BL/6 mouse models, significantly different telomere lengths among different DNA samples were not observed in wild-type mice. However, the relative telomere lengths of the tumor DNA in the two strains of tumor-bearing mice were significantly shorter than the lengths in the surrounding non-tumor DNA of tumor-bearing mice and the tissue DNA of wild-type mice. These results suggest that the shortening of telomere lengths may be regarded as an important indicator for cancer control and prevention. Quantification of telomere lengths was further confirmed by the traditional Southern blotting method. This method could be successfully used to reduce the time needed for rapid, precise measurement of telomere lengths in biological samples.

  6. Use of high-resolution melting and melting temperature-shift assays for specific detection and identification of Bacillus anthracis based on single nucleotide discrimination.

    Science.gov (United States)

    Derzelle, Sylviane; Mendy, Christiane; Laroche, Séverine; Madani, Nora

    2011-11-01

    Single nucleotide polymorphisms (SNPs) are important diagnostic markers for the detection and differentiation of Bacillus anthracis. High-Resolution Melting (HRM) and Melting Temperature (Tm)-shift methods are two approaches that enable SNP detection without the need for expensive labeled probes. We evaluated the potential diagnostic capability of those methods to discriminate B. anthracis from the other members of the B. cereus group. Two assays targeting B. anthracis-specific SNPs in the plcR and gyrA genes were designed for each method and used to genotype a panel of 155 Bacilli strains. All B. anthracis isolates (n=65) were correctly and unambiguously identified. Assays also proved to be appropriate for the direct genotyping of biological samples. They could reliably detect B. anthracis in contaminated organs containing as little as 10(3)CFU/ml, corresponding to a few genome equivalents per reaction. The HRM and Tm-shift applications described here represent valuable tools for specific identification of B. anthracis at reduced cost.

  7. Identification and differentiation of Staphylococcus carnosus and Staphylococcus simulans by species-specific PCR assays of sodA genes.

    Science.gov (United States)

    Blaiotta, Giuseppe; Casaburi, Annalisa; Villani, Francesco

    2005-08-01

    The aim of this study was to design species-specific PCR assays for rapid and reliable identification and differentiation of Staphylococcus (S.) carnosus and S. simulans strains. Two different sets of primers, targeting the manganese-dependent superoxide dismutase (sodA) gene of S. carnosus and S. simulans, respectively, were designed. Species-specificity of both sets of primers was evaluated by using 93 strains, representing 26 different species of the genus Staphylococcus, 3 species of the genus Kocuria (K.), 1 species of the genus Micrococcus (Mic.) and 1 species of the genus Macrococcus (Mac.) as reference. By using primers simF and simR the expected PCR fragment was obtained only when purified DNA from S. simulans strains was used. Amplification performed by using primers carF and carR produced a PCR fragment of the expected length, when DNA from strains of S. carnosus and S. condimenti were used as template. Nevertheless, DraI digestion of the carF/carR PCR fragment allowed a clear differentiation of strains of these two species. Species-specific PCR assays designed during this study, overcoming many of the limitations of the traditional identification procedures, can be considered a valid strategy for detection and identification of S. carnosus and S. simulans strains. The rapidity (about 4h from DNA isolation to results), the reliability and low cost of the PCR procedures established suggests that the methods may be profitably applied for specific detection and identification of S. carnosus, S. condimenti and S. simulans strains in starter cultures and meat products.

  8. The IRIDICA BAC BSI Assay: Rapid, Sensitive and Culture-Independent Identification of Bacteria and Candida in Blood.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available Bloodstream infection (BSI and sepsis are rising in incidence throughout the developed world. The spread of multi-drug resistant organisms presents increasing challenges to treatment. Surviving BSI is dependent on rapid and accurate identification of causal organisms, and timely application of appropriate antibiotics. Current culture-based methods used to detect and identify agents of BSI are often too slow to impact early therapy and may fail to detect relevant organisms in many positive cases. Existing methods for direct molecular detection of microbial DNA in blood are limited in either sensitivity (likely the result of small sample volumes or in breadth of coverage, often because the PCR primers and probes used target only a few specific pathogens. There is a clear unmet need for a sensitive molecular assay capable of identifying the diverse bacteria and yeast associated with BSI directly from uncultured whole blood samples. We have developed a method of extracting DNA from larger volumes of whole blood (5 ml per sample, amplifying multiple widely conserved bacterial and fungal genes using a mismatch- and background-tolerant PCR chemistry, and identifying hundreds of diverse organisms from the amplified fragments on the basis of species-specific genetic signatures using electrospray ionization mass spectrometry (PCR/ESI-MS. We describe the analytical characteristics of the IRIDICA BAC BSI Assay and compare its pre-clinical performance to current standard-of-care methods in a collection of prospectively collected blood specimens from patients with symptoms of sepsis. The assay generated matching results in 80% of culture-positive cases (86% when common contaminants were excluded from the analysis, and twice the total number of positive detections. The described method is capable of providing organism identifications directly from uncultured blood in less than 8 hours.The IRIDICA BAC BSI Assay is not available in the United States.

  9. An improved Bathocuproine assay for accurate valence identification and quantification of copper bound by biomolecules.

    Science.gov (United States)

    Chen, Dinglong; Darabedian, Narek; Li, Zhiqiang; Kai, Tianhan; Jiang, Dianlu; Zhou, Feimeng

    2016-03-15

    Copper is an essential metal in all organisms. Reliably quantifying and identifying the copper content and oxidation state is crucial, since the information is essential to understanding protein structure and function. Chromophoric ligands, such as Bathocuproine (BC) and its water-soluble analog, Bathocuproinedisulfonic acid (BCS), preferentially bind Cu(I) over Cu(II), and therefore have been widely used as optical probes to determine the oxidation state of copper bound by biomolecules. However, the BCS assay is commonly misused, leading to erroneous conclusions regarding the role of copper in biological processes. By measuring the redox potential of Cu(II)-BCS2 and conducting UV-vis absorption measurements in the presence of oxidizable amino acids, the thermodynamic origin of the potential artifacts becomes evident. The BCS assay was improved by introducing a strong Cu(II) chelator EDTA prior to the addition of BCS to prevent interference that might arise from Cu(II) present in the sample. The strong Cu(II) chelator rids of all the potential errors inherent in the conventional BCS assay. Applications of the improved assay to peptides and protein containing oxidizable amino acid residues confirm that free Cu(II) no longer leads to artifacts, thereby resolving issues related to this persistently misused colorimetric assay of Cu(I) in biological systems.

  10. Diagnosis of enzootic pneumonia in Danish cattle: reverse transcription-polymerase chain reaction assay for detection of bovine respiratory syncytial virus in naturally and experimentally infected cattle

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Tjørnehøj, Kirsten; Viuff, B.;

    1999-01-01

    A reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for detection of bovine respiratory syncytial virus (BRSV) in lung tissue of naturally and experimentally infected cattle. Primers were selected from the gene coding the F fusion protein, which is relatively conserved...... among BRSV isolates. The RT-PCR assay was highly specific, it yielded positive reactions only when performed on BRSV-infected cell cultures or tissues. The detection limit of the RT-PCR assay was assessed as 5 TCID50. BRSV was detected in tissues of the respiratory tract and in the tracheobroncheal....... (7%), and Pasteurella haemolytica (7%) were the most common bacterial agents found in the lungs. BRSV was identified using a conventional antigen enzyme-linked immunosorbent assay (ELISA) in 23 (17%) animals. The established BRSV-specific RT-PCR assay yielded positive results for the same 23 animals...

  11. Diagnosis of enzootic pneumonia in Danish cattle: reverse transcription-polymerase chain reaction assay for detection of bovine respiratory syncytial virus in naturally and experimentally infected cattle

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Tjørnehøj, Kirsten; Viuff, B.

    1999-01-01

    A reverse transcription-polymerase chain reaction (RT-PCR) assay was developed for detection of bovine respiratory syncytial virus (BRSV) in lung tissue of naturally and experimentally infected cattle. Primers were selected from the gene coding the F fusion protein, which is relatively conserved...... among BRSV isolates. The RT-PCR assay was highly specific, it yielded positive reactions only when performed on BRSV-infected cell cultures or tissues. The detection limit of the RT-PCR assay was assessed as 5 TCID50. BRSV was detected in tissues of the respiratory tract and in the tracheobroncheal....... (7%), and Pasteurella haemolytica (7%) were the most common bacterial agents found in the lungs. BRSV was identified using a conventional antigen enzyme-linked immunosorbent assay (ELISA) in 23 (17%) animals. The established BRSV-specific RT-PCR assay yielded positive results for the same 23 animals...

  12. Electrochemical branched-DNA assay for polymerase chain reaction-free detection and quantification of oncogenes in messenger RNA.

    Science.gov (United States)

    Lee, Ai-Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-15

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcripts in the population of messenger ribonucleic acid (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify the target signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-naphthyl phosphate. The voltammetric characteristics of substrate and enzymatic product as well as the parameters of SWV analysis were systematically optimized. A detection limit of 1 fM (1 x 10(-19) mol of target transcripts in 100 microL) and a 3-order-wide dynamic range of target concentration were achieved by the electrochemical bDNA assay. Such limit corresponded to approximately 17 fg of the p185 BCR-ABL fusion transcripts. The specificity and sensitivity of assay enabled direct detection of target transcripts in as little as 4.6 ng of mRNA population without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcripts in mRNA population. A mean transcript copy number of 62,900/ng of mRNA was determined, which was at least 50-fold higher than that of real-time quantitative PCR (qPCR). The finding was consistent with the underestimation of targets by qPCR reported earlier. In addition, the unique design based on bDNA technology increases the assay specificity as only the p185 BCR-ABL fusion transcripts will respond to the detection. The approach thus provides a simple, sensitive, accurate, and quantitative tool alternative to the qPCR for early disease diagnosis.

  13. A novel multiplex polymerase chain reaction assay for profile analyses of gene expression in peripheral blood

    Directory of Open Access Journals (Sweden)

    Jia Xingwang

    2012-07-01

    Full Text Available Abstract Background Studies have demonstrated that inflammation has a key role in the pathogenesis of atherosclerosis due to the abnormal gene expressions of multiple cytokines. We established an accurate and precise method to observe gene expression in whole blood that might provide specific diagnostic information for coronary artery disease (CAD and other related diseases. Methods The fifteen selected CAD-related genes (IL1B, IL6, IL8, IFNG, MCP-1, VWF, MTHFR, SELL, TNFalpha, ubiquitin, MCSF, ICAM1, ID2, HMOX1 and LDLR and two housekeeping genes (ACTB and GK as internal references have been measured simultaneously with a newly developed multiplex polymerase chain reaction (multi-PCR method. Moreover, the precision was evaluated, and a procedure for distinguishing patients from the normal population has been developed based upon analyses of peripheral blood. A total of 148 subjects were divided into group A (control group without plaques, group B (calcified plaques and group C (non-calcified plaques, and combination group according dual-source CT criteria. Gene expression in blood was analyzed by multi-PCR, and levels of glucose and lipids measured in 50 subjects to explore the relationship among them. Results The precision results of the multi-PCR system revealed within-run and between-run CV values of 3.695–12.537% and 4.405–13.405%, respectively. The profiles of cytokine gene expression in peripheral blood were set: a positive correlation between glucose and MCSF, HMOX1 or TNFalpha were found. We also found that triglyceride levels were negatively correlated with SELL gene expression in 50 subjects. Compared with controls, gene expression levels of IL1B, IL6, IL8 and MCP-1 increased significantly in group C. Conclusions A new multiple gene expression analysis system has been developed. The primary data suggested that gene expression was related to CAD. This system might be used for risk assessment of CVDs and other related diseases.

  14. Conformational gating of the electron transfer reaction QA−⋅QB → QAQB−⋅ in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay

    Science.gov (United States)

    Graige, M. S.; Feher, G.; Okamura, M. Y.

    1998-01-01

    The mechanism of the electron transfer reaction, QA−⋅QB → QAQB−⋅, was studied in isolated reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides by replacing the native Q10 in the QA binding site with quinones having different redox potentials. These substitutions are expected to change the intrinsic electron transfer rate by changing the redox free energy (i.e., driving force) for electron transfer without affecting other events that may be associated with the electron transfer (e.g., protein dynamics or protonation). The electron transfer from QA−⋅ to QB was measured by three independent methods: a functional assay involving cytochrome c2 to measure the rate of QA−⋅ oxidation, optical kinetic spectroscopy to measure changes in semiquinone absorption, and kinetic near-IR spectroscopy to measure electrochromic shifts that occur in response to electron transfer. The results show that the rate of the observed electron transfer from QA−⋅ to QB does not change as the redox free energy for electron transfer is varied over a range of 150 meV. The strong temperature dependence of the observed rate rules out the possibility that the reaction is activationless. We conclude, therefore, that the independence of the observed rate on the driving force for electron transfer is due to conformational gating, that is, the rate limiting step is a conformational change required before electron transfer. This change is proposed to be the movement, controlled kinetically either by protein dynamics or intermolecular interactions, of QB by ≈5 Å as observed in the x-ray studies of Stowell et al. [Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E. & Feher, G. (1997) Science 276, 812–816]. PMID:9751725

  15. Identification of Acute Phase Proteins and Assays Applicable in Nondomesticated Mammals

    DEFF Research Database (Denmark)

    Bertelsen, M. F.; Kjelgaard-Hansen, M.; Grøndahl, C.

    2009-01-01

    The serum concentration of acute phase proteins (APPs) increases dramatically in response to inflammation and tissue injury. APPs are clinically useful in a range of domesticated mammals; however, knowledge is limited in nondomesticated mammals. The detective ability of two assays for each of thr...

  16. Identification of total reversible cysteine oxidation in an atherosclerosis model using a modified biotin switch assay.

    Science.gov (United States)

    Li, Ru; Huang, Jiqing; Kast, Juergen

    2015-05-01

    Oxidative stress due to the imbalance of reactive oxygen species (ROS) and the resulting reversible cysteine oxidation (CysOX) are involved in the early proatherogenic aspect of atherosclerosis. Given that the corresponding redox signaling pathways are still unclear, a modified biotin switch assay was developed to quantify the reversible CysOX in an atherosclerosis model established by using a monocytic cell line treated with platelet releasate. The accumulation of ROS was observed in the model system and validated in human primary monocytes. Through the application of the modified biotin switch assay, we obtained the first reversible CysOX proteome for this model. A total of 75 peptides, corresponding to 53 proteins, were quantified with oxidative modification. The bioinformatics analysis of these CysOX-containing proteins highlighted biological processes including glycolysis, cytoskeleton arrangement, and redox regulation. Moreover, the reversible oxidation of three glycolysis enzymes was observed using this method, and the regulation influence was verified by an enzyme activity assay. NADPH oxidase (NOX) inhibition treatment, in conjunction with the modified biotin switch method, was used to evaluate the global CysOX status. In conclusion, this versatile modified biotin switch assay provides an approach for the quantification of all reversible CysOX and for the study of redox signaling in atherosclerosis as well as in diseases in other biological systems.

  17. Genomic Assays for Identification of Chikungunya Virus in Blood Donors, Puerto Rico, 2014.

    Science.gov (United States)

    Chiu, Charles Y; Bres, Vanessa; Yu, Guixia; Krysztof, David; Naccache, Samia N; Lee, Deanna; Pfeil, Jacob; Linnen, Jeffrey M; Stramer, Susan L

    2015-08-01

    A newly developed transcription-mediated amplification assay was used to detect chikungunya virus infection in 3 of 557 asymptomatic donors (0.54%) from Puerto Rico during the 2014-2015 Caribbean epidemic. Viral detection was confirmed by using PCR, microarray, and next-generation sequencing. Molecular clock analysis dated the emergence of the Puerto Rico strains to early 2013.

  18. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay.

    Science.gov (United States)

    Chen, Yanling; Sakamuru, Srilatha; Huang, Ruili; Reese, David H; Xia, Menghang

    2016-04-01

    In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling.

  19. Relative analytical sensitivity of donor nucleic acid amplification technology screening and diagnostic real-time polymerase chain reaction assays for detection of Zika virus RNA.

    Science.gov (United States)

    Stone, Mars; Lanteri, Marion C; Bakkour, Sonia; Deng, Xutao; Galel, Susan A; Linnen, Jeffrey M; Muñoz-Jordán, Jorge L; Lanciotti, Robert S; Rios, Maria; Gallian, Pierre; Musso, Didier; Levi, José E; Sabino, Ester C; Coffey, Lark L; Busch, Michael P

    2017-03-01

    Zika virus (ZIKV) has spread rapidly in the Pacific and throughout the Americas and is associated with severe congenital and adult neurologic outcomes. Nucleic acid amplification technology (NAT) assays were developed for diagnostic applications and for blood donor screening on high-throughput NAT systems. We distributed blinded panels to compare the analytical performance of blood screening relative to diagnostic NAT assays. A 25-member, coded panel (11 half-log dilutions of a 2013 French Polynesia ZIKV isolate and 2015 Brazilian donor plasma implicated in transfusion transmission, and 3 negative controls) was sent to 11 laboratories that performed 17 assays with 2 to 12 replicates per panel member. Results were analyzed for the percentage reactivity at each dilution and by probit analysis to estimate the 50% and 95% limits of detection (LOD50 and LOD95 , respectively). Donor-screening NAT assays that process approximately 500 µL of plasma into amplification reactions were comparable in sensitivity (LOD50 and LOD95 , 2.5 and 15-18 copies/mL) and were approximately 10-fold to 100-fold more sensitive than research laboratory-developed and diagnostic reverse transcriptase-polymerase chain reaction tests that process from 10 to 30 µL of plasma per amplification. Increasing sample input volume assayed with the Centers for Disease Control and Prevention reverse transcriptase-polymerase chain reaction assays increased the LODs by 10-fold to 30-fold. Blood donor-screening ZIKV NAT assays demonstrate similar excellent sensitivities to assays currently used for screening for transfusion-transmitted viruses and are substantially more sensitive than most other laboratory-developed and diagnostic ZIKV reverse transcriptase-polymerase chain reaction assays. Enhancing sensitivities of laboratory-developed and diagnostic assays may be achievable by increasing sample input. © 2017 AABB.

  20. Clinical validation of a real-time polymerase chain reaction assay for rapid detection of Acinetobacter baumannii colonization.

    Science.gov (United States)

    Blanco-Lobo, P; González-Galán, V; García-Quintanilla, M; Valencia, R; Cazalla, A; Martín, C; Alonso, I; Pérez-Romero, P; Cisneros, J M; Aznar, J; McConnell, M J

    2016-09-01

    Real-time polymerase chain reaction (PCR)-based approaches have not been assessed in terms of their ability to detect patients colonized by Acinetobacter baumannii during active surveillance. This prospective, double-blind study demonstrated that a real-time PCR assay had high sensitivity (100%) and specificity (91.2%) compared with conventional culture for detecting A. baumannii in 397 active surveillance samples, and provided results within 3h. Receiver-operator curve analyses demonstrated that the technique has diagnostic accuracy of 97.7% (95% confidence interval 96.0-99.3%). This method could facilitate the rapid implementation of infection control measures for preventing the transmission of A. baumannii.

  1. Screening of Riboflavin-Producing Lactobacilli by a Polymerase-Chain-Reaction-Based Approach and Microbiological Assay.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; Brahma, Biswajit; De, Sachinandan

    2016-03-01

    Riboflavin has an important role in various cellular metabolic activities through its participation in oxidation-reduction reactions. In this study, as many as 60 lactobacilli were screened for the presence or absence of riboflavin biosynthesis genes and riboflavin production. Of these, only 14 strains were able to grow in a commercial riboflavin-free medium. We observed that the presence of riboflavin biosynthesis genes is strain-specific across different species of lactobacilli. The microbiological assay was found to be appreciably reproducible, sensitive, rapid, and inexpensive and, hence, can be employed for screening the riboflavin-producing strains. The study thus represents a convenient and efficient method for selection of novel riboflavin producers. These riboflavin(+) strains thus identified and characterized could be explored as potent candidates for the development of a wide range of dairy- and cereal-based foods for the delivery of in situ riboflavin to consumers.

  2. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  3. Development of a real-time PCR assay (SYBR Green I) for rapid identification and quantification of scyphomedusae Aurelia sp.1 planulae

    Science.gov (United States)

    Wang, Jianyan; Zhen, Yu; Mi, Tiezhu; Yu, Zhigang; Wang, Guoshan

    2015-07-01

    The complicated life cycle of Aurelia spp., comprising benthic asexually-reproducing polyps and sexually-reproducing medusae, makes it hard for researchers to identify and track them, especially for early stage individuals, such as planulae. To solve this problem, we developed a real-time PCR assay (SYBR Green I) to identify planulae in both cultured and natural seawater samples. Species-specific primers targeting Aurelia sp.1 mitochondrial 16S rDNA (mt 16S rDNA) regions were designed. Using a calibration curve constructed with plasmids containing the Aurelia sp.1 mt 16S rDNA fragment and a standard curve for planulae, the absolute number of mt 16S rDNA copies per planula was determined and from that the total number of planulae per sample was estimated. For the field samples, a 100-fold dilution of the sample DNA combined with a final concentration of 0.2 μg/μL BSA in the PCR reaction mixture was used to remove real-time PCR inhibitors. Samples collected in Jiaozhou Bay from July to September 2012 were subsequently analyzed using this assay. Peak Aurelia sp.1 planula abundance occurred in July 2012 at stations near Hongdao Island and Qingdao offshore; abundances were very low in August and September. The real-time PCR assay (SYBR Green I) developed here negates the need for traditional microscopic identification, which is laborious and time-consuming, and can detect and quantify jellyfish planulae in field plankton samples rapidly and specifically.

  4. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus

    Science.gov (United States)

    Das, Sanchita; Rundell, Mark S.; Mirza, Aashiq H.; Pingle, Maneesh R.; Shigyo, Kristi; Garrison, Aura R.; Paragas, Jason; Smith, Scott K.; Olson, Victoria A.; Larone, Davise H.; Spitzer, Eric D.; Barany, Francis; Golightly, Linnie M.

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  5. Oral candidiasis: a comparison between conventional methods and multiplex polymerase chain reaction for species identification.

    Science.gov (United States)

    Liguori, G; Di Onofrio, V; Lucariello, A; Gallé, F; Signoriello, G; Colella, G; D'Amora, M; Rossano, F

    2009-02-01

    Oral candidiasis is the most common fungal infection in dental practice, and is caused by yeasts that are normally present in the endogenous flora. To evaluate a rapid diagnostic method for identification of Candida oral isolates, a multiplex polymerase chain reaction (PCR) was carried out on colonies and on oral rinse solutions from 95 subjects with suspected oral candidiasis and results were compared with those from seven commonly used phenotypic identification systems. Between four and nine species were characterized in the samples by the phenotypic methods. PCR identified the same species in 60 (74%) samples from both colony and oral rinse solutions. Statistical analysis, carried out only for the three most frequently isolated species (Candida albicans, Candida glabrata, and Candida tropicalis), showed good concordance in the comparison of multiplex PCR with API 20C AUX and with the Rapid Yeast Identification Panel; conversely, significant differences were registered in the comparison between the molecular method and other phenotypic systems, including four chromogenic media and the automated system Vitek2. Multiplex PCR was rapid and effective in the identification of Candida species and allowed the detection of more than one species in the same sample.

  6. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay.

    Science.gov (United States)

    Drabovich, Andrei P; Pavlou, Maria P; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P

    2012-08-01

    To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells.

  7. Development of a new duplex real-time polymerase chain reaction assay for detection of dicer in G. gallus.

    Science.gov (United States)

    Ji, Xiaolin; Wang, Qi; Gao, Yulong; Wang, Yongqiang; Qin, Liting; Qi, Xiaole; Gao, Honglei; Wang, Xiaomei

    2013-05-01

    Recently, there has been a growing body of evidence showing that cellular microRNAs (miRNAs) are involved in virus-host interactions. Numerous studies have focused on analyses of the expression profiles of cellular miRNAs, but the expression patterns of Dicer, which is responsible for the generation of miRNAs, have only rarely been explored in Gallus gallus. We developed a duplex realtime reverse transcriptase polymerase chain reaction (RTPCR) assay for the relative quantification of the mRNAs of Dicer and beta-actin in G. gallus. To apply this method, the expression of Dicer in avian cells after infection with avian leukosis virus subgroup J (ALV-J) was detected using our established duplex real-time RT-PCR. The duplex realtime RT-PCR assay is sufficiently sensitive, specific, accurate, reproducible, and cost-effective for the detection of Dicer in G. gallus. Furthermore, this study, for the first time, demonstrated that ALV-J can induce differential expression of Dicer mRNA in the ALV-J-infected cells.

  8. Development of a quantitative polymerase chain reaction assay for detection of Kudoa septempunctata in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Harada, Tetsuya; Kawai, Takao; Sato, Hiroshi; Yokoyama, Hiroshi; Kumeda, Yuko

    2012-05-15

    Kudoa septempunctata is a newly identified myxosporean parasite that infects the trunk muscles of olive flounder (Paralichthys olivaceus) and a causative agent of the increasing number of foodborne gastroenteritis outbreaks with unknown etiology which have occurred in Japan over the last few years. Here, we developed a quantitative polymerase chain reaction (QPCR) assay for the detection of K. septempunctata 18S rDNA in olive flounder muscle tissue samples. Additionally, we compared the relative efficacy of four DNA extraction methods, including two commercial kits, and assessed intrafish variability in the distribution of K. septempunctata spores in flounder using this QPCR method in order to establish a more accurate quantitative measurement. Our QPCR assay displayed high sensitivity, specificity, and reproducibility, and had good correlation with a microscopic detection method. Our data also indicated that the DNeasy® Blood & Tissue Kit was more efficient method for the extraction of K. septempunctata DNA than the three other methods (heating, alkaline lysis, and FastDNA® SPIN Kit method). We believe that our method would be useful for investigating foodborne outbreaks caused by K. septempunctata and for the monitoring and quantification of this parasite in retail or aquacultured olive flounders to prevent such outbreaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Development of real-time quantitative polymerase chain reaction assays to track treatment response in retinoid resistant acute promyelocytic leukemia

    Directory of Open Access Journals (Sweden)

    Jelena V Jovanovic

    2011-10-01

    Full Text Available Molecular detection of minimal residual disease (MRD has become established to assess remission status and guide therapy in patients with PML-RARA+ acute promyelocytic leukemia (APL. However, there are few data on tracking disease response in patients with rarer retinoid resistant subtypes of APL, characterized by PLZF-RARA and STAT5b-RARA. Despite their relative rarity (<1% of APL we identified 6 cases (PLZF-RARA, n=5; STAT5b-RARA, n=1, established the respective breakpoint junction regions and designed real-time quantitative polymerase chain reaction (RQ-PCR assays to detect leukemic transcripts. The relative level of fusion gene expression in diagnostic samples was comparable to that observed in t(15;17-associated APL, affording assay sensitivities of ~1 in 104-105. Serial samples were available from 2 PLZF-RARA APL patients. One showed persistent PCR positivity, predicting subsequent relapse, and remains in CR2, ~11 years post-autograft. The other, achieved molecular remission (CRm with combination chemotherapy, remaining in CR1 at 6 years. The STAT5b-RARA patient failed to achieve CRm following frontline combination chemotherapy and ultimately proceeded to allogeneic transplant on the basis of a steadily rising fusion transcript level. These data highlight the potential of RQ-PCR detection of MRD to facilitate development of more individualized approaches to the management of rarer molecularly-defined subsets of acute leukemia.

  10. Rv1458c: a new diagnostic marker for identification of Mycobacterium tuberculosis complex in a novel duplex PCR assay.

    Science.gov (United States)

    Shrivastava, Kamal; Garima, Kushal; Narang, Anshika; Bhattacharyya, Kausik; Vishnoi, Ekta; Singh, Roshan Kumar; Chaudhry, Anil; Prasad, Rajendra; Bose, Mridula; Varma-Basil, Mandira

    2017-03-01

    We explored the efficiency of Rv1458c, the gene encoding a putative ABC drug transporter specific for the Mycobacterium tuberculosis complex (MTBC), as a diagnostic marker. A 190 bp region of Rv1458c and a 300 bp region of hsp65 were targeted in a novel duplex PCR assay and the results were compared with those for PCR restriction analysis(PRA) using the restriction enzymes NruI and BamHI. Species identification of a subset of the isolates (n=50) was confirmed by sequencing. Clinical isolates of M. tuberculosis (n=426) obtained from clinically suspected patients of pulmonary tuberculosis and mycobacterial (n=13) and non-mycobacterial (n=8) reference strains were included in the study. The duplex PCR assay correctly identified 320/426 isolates as MTBC and 106/426 isolates as non-tuberculous mycobacteria(NTM). The test was 100 % specific and sensitive when compared with NruI/BamHI PCR restriction analysis and highlighted the use of Rv1458c as a diagnostic marker for MTBC. The duplex PCR assay could be developed for use as a screening test to identify MTBC in clinical specimens in peripheral laboratories with limited resources.

  11. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    Science.gov (United States)

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  12. Fluorescence polarization assay for identification of lox-1 ligand through high throughput screening

    Institute of Scientific and Technical Information of China (English)

    Tian-taiZHANG; Zhen-taiHUANG; PingZHU; Guan-huaDU

    2004-01-01

    AIM: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was identified as special receptor for oxidized lowdensity lipoprotein (oxLDL) in endothelial cells. LOX-1 critically mediated oxLDL stimulating the progression of atherosclerosis. Identification and discovery LOX-1 antagonist to therapy atherosclerosis will be an interested exploration. METHODS: Human LOX-1 was expressed as a His-fusion inbacteria and purified by metal ion affinity and gel filtration

  13. Testing the feasibility of DNA typing for human identification by PCR and an oligonucleotide ligation assay

    Energy Technology Data Exchange (ETDEWEB)

    Delahunty, C.; Ankener, W.; Deng, Qiang [Univ. of Washington, Seattle, WA (United States)] [and others

    1996-06-01

    The use of DNA typing in human genome analysis is increasing and finding widespread application in the area of forensic and paternity testing. In this report, we explore the feasibility of typing single nucleotide polymorphisms (SNPs) by using a semiautomated method for analyzing human DNA samples. In this approach, PCR is used to amplify segments of human DNA containing a common SNP. Allelic nucleotides in the amplified product are then typed by a calorimetric implementation of the oligonucleotide ligation assay (OLA). The results of the combined assay, PCR/OLA, are read directly by a spectrophotometer; the absorbances are compiled and the genotypes are automatically determined. A panel of 20 markers has been developed for DNA typing and has been tested using a sample panel from the CEPH pedigrees (CEPH parents). The results of this typing, as well as the potential to apply this method to larger populations, are discussed. 62 refs., 2 figs., 4 tabs.

  14. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    Science.gov (United States)

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  15. Identification of IgM as a contaminant in lectin-FLISA assays for HCC detection.

    Science.gov (United States)

    Wang, Mengjun; Comunale, Mary Ann; Herrera, Harmin; Betesh, Lucy; Kono, Yuko; Mehta, Anand

    2016-07-29

    Liver disease, in the form of hepatocellular carcinoma (HCC) accounts for > 700,000 deaths worldwide. A major reason for this is late diagnosis of HCC. The currently used biomarker, serum alpha-fetoprotein (AFP) is elevated in 40-60% of those with HCC and other markers that can either compliment or replace AFP are desired. Our previous work has identified a number of proteins that contain altered glycans in HCC. Specifically, these altered glycans were increased levels of core and outer arm fucosylation. To determine the clinical usefulness of those identified glycoproteins, a plate based assay was developed that allowed for the detection of fucosylated glycoforms. While this method was applicable to a number of independent patient sets, it was unable to specifically detect fucosylated glycoforms in many patient samples. That is, some material was present in serum that led to non-specific signal in the lectin- fluorescence -linked immunosorbent assay (lectin-FLISA). To address this issue, a systematic process was undertaken to identify the material. This material was found to be increased levels of lectin reactive IgM. Removal of both IgG and IgM using a multi-step protein A/G incubation and filtration step removed the contaminating signal and allowed for the analysis of specific protein glycoforms. This assay was subsequently used on two sample sets, one that was shown previously to be unable to be tested via a lectin FLISA and in a larger independent sample set. The clinical usefulness of this assay in the early detection of HCC is discussed.

  16. Kinetic method for assaying the halogenating activity of myeloperoxidase based on reaction of celestine blue B with taurine halogenamines.

    Science.gov (United States)

    Sokolov, A V; Kostevich, V A; Kozlov, S O; Donskyi, I S; Vlasova, I I; Rudenko, A O; Zakharova, E T; Vasilyev, V B; Panasenko, O M

    2015-06-01

    Myeloperoxidase (MPO) is a challenging molecular target which, if put under control, may allow regulating the development of inflammatory reactions associated with oxidative/halogenative stress. In this paper, a new kinetic method for assaying the halogenating activity of MPO is described. The method is based on measuring the rate of iodide-catalyzed oxidation of celestine blue B (CB) by oxygen and taurine N-chloramine (bromamine). The latter is produced in a reaction of taurine with HOCl (HOBr). CB is not a substrate for the peroxidase activity of MPO and does not react with hydrogen peroxide and superoxide anion radical. Taurine N-chloramine (bromamine) reacts with CB in molar ratio of 1:2. Using the new method, we studied the dependence of MPO activity on concentration of substrates and inhibitors. The specificity of MPO inhibition by non-proteolyzed ceruloplasmin is characterized. The inhibition of taurine N-chloramine production by neutrophils and HL-60 cells in the presence of MPO-affecting substances is demonstrated. The new method allows determining the kinetic parameters of MPO halogenating activity and studying its inhibition by various substances, as well as screening for potential inhibitors of the enzyme.

  17. Direct identification of chlamydiae from clinical samples using a DNA microarray assay: a validation study.

    Science.gov (United States)

    Borel, Nicole; Kempf, Evelyne; Hotzel, Helmut; Schubert, Evelyn; Torgerson, Paul; Slickers, Peter; Ehricht, Ralf; Tasara, Taurai; Pospischil, Andreas; Sachse, Konrad

    2008-02-01

    While DNA microarrays have become a widely accepted tool for mRNA expression monitoring, their use in rapid diagnosis of bacterial and viral pathogens is only emerging. So far, insufficient sensitivity and high costs have been the major limiting factors preventing more widespread use of microarray platforms in direct testing of clinical samples. In the present study, a total of 339 samples, among them 293 clinical specimens from animals and humans, were examined by the ArrayTube (AT) DNA microarray assay to detect chlamydial DNA and identify the species of Chlamydia and Chlamydophila involved. Samples included nasal and conjunctival swabs, formalin-fixed, paraffin-embedded and fresh organ tissue, milk, feces and cell culture. Notably, the AT test was shown to detect mixed infections in clinical samples. The calculated median sensitivity of 0.81 over the entire panel of clinical samples was comparable to conventional 16S PCR, but slightly lower than real-time PCR and other PCR assays. However, when a panel of long-time stored swab samples was excluded from the calculation, the sensitivity was clearly higher (0.87) and equivalent to that of real-time PCR. Altogether, the data demonstrate the suitability of this DNA microarray assay for routine diagnosis.

  18. [Identification of the causative agents of glanders and melioidosis by polymerase chain reaction].

    Science.gov (United States)

    Tkachenko, G A; Antonov, V A; Zamaraev, V S; Iliukhin, V I

    2003-01-01

    Burkholderia mallei and B. pseudomallei are causative agents of glanders and melioidosis, respectively, i.e. severe and fatal infection diseases of man and animal. The computer-based analysis of the 23S rRNA gene sites was used for selecting the primers. Two pairs of primers were chosen for the identification of B. mallei and Bpseudomallei. DNAs from 48 B. pseudomallei and 15 strains of B. mallei, unlike from other geterological bacteria, were positively amplified. Therefore, the method of polymerase chain reaction can be used in laboratory diagnosis of glanders and melioidosis.

  19. Sex Identification of Red-crowned Crane by the Polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Jian-hong; LI Shu-ling; BAO Jun; BAI Xiu-juan

    2004-01-01

    Sex determining gene primers of Oriental White Stork were used to amplify sex-linked gene of the Red-crowned Crane's W chromosome-specific by PCR for sex identification. The sexes of 7 couples of grown Red-crowned Cranes and 15 youngs were identified. Through DNA sequence analysis, the identity is 94.77% between Red-crowned Crane and Oriental White Stork. The results of this study suggest that the application of the polymerase chain reaction technique is practicable for determining sex in the Red-crowned Crane.

  20. A 50 SNP-multiplex mass spectrometry assay for human identification

    DEFF Research Database (Denmark)

    2008-01-01

    ) multiplex reaction. Two different strategies were used to design the SBE multiplex: (1) Small 5'-tags (3-8ánt) that increased the masses of the SBE primers without changing the annealing temperature; (2) Cleavable primers with one RNA nucleotide which was later cleaved by a mixture of RNases. The SBE...... primers were extended with biotin labelled ddNTPs and purified on avidin beads ensuring that only the extended SBE primers were isolated and spotted on the MALDI-TOF anchor target. Detection of the 50 extended primers from the SBE reaction was performed in a mass range between 3000 and 10,000 m/z...

  1. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction

    Science.gov (United States)

    Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel

    2017-05-01

    The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.

  2. Comparison of Parasite Burden Using Real-Time Polymerase Chain Reaction Assay and Limiting Dilution Assay in Leishma-nia major Infected Mouse

    Directory of Open Access Journals (Sweden)

    Somayeh GHOTLOO

    2015-12-01

    Full Text Available Background:Limiting dilution assay is considered as the gold standard method for quantifying the number of parasites in the animal model of Leishmania infection. Nowadays, real-time PCR is being increasingly applied to quantify infectious agents. In the present study, a real-time PCR assay was developed to estimate para­site burdens in lymph nodes of Leishmania major infected BALB/C mice. Enumera­tion of parasites was also performed by limiting dilution assay and compared with the results of real-time PCR based quantification.Methods:The SYBR Green based real- time PCR assay was performed to amplify a 75 bp fragment of superoxide dismutase B1 gene in the lymph nodes of L. major infected BALB/C mice 8 weeks post infection. Mice were infected subcutaneously at the base of their tail with 2 × 105L. major promastigotes in the stationary phase of growth. To compare parasite burdens obtained by real-time PCR assay with those of limiting dilution assay, twelve 8-fold serial dilutions of the lymph node homoge­nates were prepared in the Schneider medium and incubated at 26°C.After 7 days, wells containing motile parasites were identified by direct observation under an inverted light microscope and the total number of parasites was estimated using the ELIDA software.Results:Spearman's correlation coefficient of the parasite burdens between real-time PCR and limiting dilution assay was 0.72 (Pvalue = 0.008.Conclusion:Real-time PCR assay is an appropriate replacement to existing limit­ing dilution assay in quantifying parasite burden in the experimental model of Leishma­nia infection.

  3. Evaluation of quantitative assays for the identification of direct signal transducer and activator of transcription 3 (STAT3) inhibitors.

    Science.gov (United States)

    Furtek, Steffanie L; Matheson, Christopher J; Backos, Donald S; Reigan, Philip

    2016-11-22

    In many forms of cancer the signal transducer and activator of transcription 3 (STAT3) transcription factor remains constitutively active, driving cancer survival and progression. The critical role of STAT3 in tumorigenesis has prompted a campaign of drug discovery programs to identify small molecules that disrupt the function of STAT3, with more recent efforts focusing on direct STAT3 inhibition. There are two target binding sites for direct STAT3 inhibitors: the SH2 dimerization domain and the DNA-binding domain. An in vitro fluorescence polarization assay, using recombinant STAT3 protein, has successfully identified compounds that target the SH2 domain; however, no assay has been reported to identify inhibitors that bind the DNA-binding domain. The lack of such a quantitative assay has limited the identification and development of STAT3 DNA-binding domain inhibitors. Here, we report a modified DNA-binding ELISA to incorporate recombinant STAT3 protein to evaluate small molecules that prevent STAT3-DNA binding. The concomitant use of the ELISA and fluorescence polarization assay enables the classification of direct STAT3 inhibitors by their site of action. Our data provide further support that niclosamide inhibits STAT3 through interaction with the DNA-binding domain. Furthermore, the ELISA can support medicinal chemistry efforts by identifying DNA-binding domain inhibitors and allowing the determination of an IC50 value, supporting the ranking of inhibitors and development of structure-activity relationships. Therefore, we propose a tandem evaluation approach to identify small molecules that target the SH2 domain or the DNA-binding domain of STAT3, which allows for quantitative evaluation of candidate STAT3 inhibitors.

  4. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    Directory of Open Access Journals (Sweden)

    Meng Shuang

    2010-06-01

    Full Text Available Abstract Background The hepatitis C virus (HCV genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM, at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP/COBAS TaqMan (CTM assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection.

  5. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay.

    Science.gov (United States)

    Braun, Sascha D; Monecke, Stefan; Thürmer, Alexander; Ruppelt, Antje; Makarewicz, Oliwia; Pletz, Mathias; Reiβig, Annett; Slickers, Peter; Ehricht, Ralf

    2014-01-01

    Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL) and narrow spectrum (NSBL) beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13), blaGIM (2/2), blaKPC (27/27), blaNDM (5/5), blaIMP-2/4/7/8/13/14/15/16/31 (10/10), blaOXA-23 (12/13), blaOXA-40-group (7/7), blaOXA-48-group (32/33), blaOXA-51 (1/1) and blaOXA-58 (1/1). Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16), blaOXA-2 (4/4), blaOXA-9 (33/33), OXA-10 (3/3), blaOXA-51 (25/25), blaOXA-58 (2/2), CTX-M1/M15 (17/17) and blaVIM (1/1)]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4%) isolates, including Acinetobacter baumannii (28/28), Enterobacter spec. (5/5), Escherichia coli (4/4), Klebsiella pneumoniae (62/63), Klebsiella oxytoca (0/2), Pseudomonas aeruginosa (12/12), Citrobacter freundii (1/1) and

  6. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay.

    Directory of Open Access Journals (Sweden)

    Sascha D Braun

    Full Text Available Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL and narrow spectrum (NSBL beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13, blaGIM (2/2, blaKPC (27/27, blaNDM (5/5, blaIMP-2/4/7/8/13/14/15/16/31 (10/10, blaOXA-23 (12/13, blaOXA-40-group (7/7, blaOXA-48-group (32/33, blaOXA-51 (1/1 and blaOXA-58 (1/1. Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16, blaOXA-2 (4/4, blaOXA-9 (33/33, OXA-10 (3/3, blaOXA-51 (25/25, blaOXA-58 (2/2, CTX-M1/M15 (17/17 and blaVIM (1/1]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4% isolates, including Acinetobacter baumannii (28/28, Enterobacter spec. (5/5, Escherichia coli (4/4, Klebsiella pneumoniae (62/63, Klebsiella oxytoca (0/2, Pseudomonas aeruginosa (12/12, Citrobacter freundii (1/1 and Citrobacter

  7. Rapid Identification of Carbapenemase Genes in Gram-Negative Bacteria with an Oligonucleotide Microarray-Based Assay

    Science.gov (United States)

    Braun, Sascha D.; Monecke, Stefan; Thürmer, Alexander; Ruppelt, Antje; Makarewicz, Oliwia; Pletz, Mathias; Reißig, Annett; Slickers, Peter; Ehricht, Ralf

    2014-01-01

    Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL) and narrow spectrum (NSBL) beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13), blaGIM (2/2), blaKPC (27/27), blaNDM (5/5), blaIMP-2/4/7/8/13/14/15/16/31 (10/10), blaOXA-23 (12/13), blaOXA-40-group (7/7), blaOXA-48-group (32/33), blaOXA-51 (1/1) and blaOXA-58 (1/1). Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16), blaOXA-2 (4/4), blaOXA-9 (33/33), OXA-10 (3/3), blaOXA-51 (25/25), blaOXA-58 (2/2), CTX-M1/M15 (17/17) and blaVIM (1/1)]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4%) isolates, including Acinetobacter baumannii (28/28), Enterobacter spec. (5/5), Escherichia coli (4/4), Klebsiella pneumoniae (62/63), Klebsiella oxytoca (0/2), Pseudomonas aeruginosa (12/12), Citrobacter freundii (1/1) and

  8. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Liu, J.; Estiu, G.;

    2010-01-01

    in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking...... histidine biosynthesis pathway, which is predicted to be essential for bacterial biomass productions. Virtual screening of a library of similar to 10(6) compounds identified 49 potential inhibitors of three enzymes of this pathway. Eighteen representative compounds were directly tested on three S. aureus...... of this novel strategy to the histidine biosynthesis pathway....

  9. Cell-based semiquantitative assay for sulfated glycosaminoglycans facilitating the identification of chondrogenesis.

    Science.gov (United States)

    Yen, Ching-Yu; Wu, Yu-Wei; Hsiung, Chao-Nan; Yeh, Min-I; Lin, Yi-Ming; Lee, Sheng-Yang

    2015-10-01

    Glycosaminoglycans (GAGs), in particular chondroitin sulfate, are an accepted marker of chondrogenic cells. In this study, a cell-based sulfated GAG assay for identifying the chondrogenesis of mesenchymal stem cells was developed. Based on fluorescent staining using safranin O and 4',6-diamidino-2-phenylindole (DAPI), this method was highly sensitive. The results were both qualitative and quantitative. The method is suitable for identifying the chondrogenic process and also for screening compounds. The method may be helpful for discovering novel bioactive compounds for cartilage regeneration.

  10. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    Full Text Available Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (--arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases.

  11. Identification of low level gamma-irradiation of meats by high sensitivity comet assay

    Science.gov (United States)

    Miyahara, Makoto; Saito, Akiko; Ito, Hitoshi; Toyoda, Masatake

    2002-03-01

    The detection of low levels of irradiation in meats (pork, beef, and chicken) using the new comet assay was investigated in order to assess the capability of the procedure. The new assay includes a process that improves its sensitivity to irradiation and a novel evaluation system for each slide (influence score and comet-type distribution). Samples used were purchased at retailers and were irradiated at 0.5 and 2kGy at 0°C. The samples were processed to obtain comets. Slides were evaluated by typing comets, calculating the influence score and analyzing the comet-type distribution chart of shown on the slide. Influence scores of beef, pork, and chicken at 0kGy were 287(SD=8.0), 305 (SD=12.9), and 320 (SD=21.0), respectively. Those at 500Gy, were 305 (SD=5.3), 347 (SD=10.6), and 364 (12.6), respectively. Irradiation levels in food were successfully determined. Sensitivity to irradiation differed among samples (chicken>pork>beef).

  12. Development of Immunochromatographic Assay for Identification of Organophosphate Pesticides in Environmental Samples.

    Science.gov (United States)

    Srivastava, Shruti; Ghorpade, Ramrao; Sathe, Manisha

    2016-01-01

    Microtiter plate enzyme linked immunoassay (ELISA) experiments in competitive format were performed utilizing polyclonal antibody for establishing a detection system for organophosphate pesticides. IC50 value of and limit of detection (LOD) value was determined by standard inhibition curve and value obtained were 0.05 μgmL(-1) and 0.001 μgmL(-1), respectively. Specificity of antibody was investigated with different organophosphate pesticides. Immunochromatographic assay (ICA) experiments were also designed in competitive format by making use of immunochromatographic strip which was assembly of three main components: conjugate pad, membrane and adsorbent pad. Membrane was coated with hapten-OVA conjugate (test line) and antirabbit IgG (control line). ICA experiments were performed by employing gold-labeled antibody as a detector reagent which was applied over conjugate pad. Visual detection limit obtained from ICA was 0.5 μgmL(-1). Major advantage of strip assay was rapid result, i.e., less than 10 min. which makes it suitable for onsite applications.

  13. Identification of Adiponectin Receptor Agonist Utilizing a Fluorescence Polarization Based High Throughput Assay

    Science.gov (United States)

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  14. Identification of inhibitors of a bacterial sigma factor using a new high-throughput screening assay.

    Science.gov (United States)

    El-Mowafi, S A; Sineva, E; Alumasa, J N; Nicoloff, H; Tomsho, J W; Ades, S E; Keiler, K C

    2015-01-01

    Gram-negative bacteria are formidable pathogens because their cell envelope presents an adaptable barrier to environmental and host-mediated challenges. The stress response pathway controlled by the alternative sigma factor σ(E) is critical for maintenance of the cell envelope. Because σ(E) is required for the virulence or viability of several Gram-negative pathogens, it might be a useful target for antibiotic development. To determine if small molecules can inhibit the σ(E) pathway, and to permit high-throughput screening for antibiotic lead compounds, a σ(E) activity assay that is compatible with high-throughput screening was developed and validated. The screen employs a biological assay with positive readout. An Escherichia coli strain was engineered to express yellow fluorescent protein (YFP) under negative regulation by the σ(E) pathway, such that inhibitors of the pathway increase the production of YFP. To validate the screen, the reporter strain was used to identify σ(E) pathway inhibitors from a library of cyclic peptides. Biochemical characterization of one of the inhibitory cyclic peptides showed that it binds σ(E), inhibits RNA polymerase holoenzyme formation, and inhibits σ(E)-dependent transcription in vitro. These results demonstrate that alternative sigma factors can be inhibited by small molecules and enable high-throughput screening for inhibitors of the σ(E) pathway.

  15. Evaluation of a novel real-time fluorescent polymerase chain reaction assay for high-risk human papilloma virus DNA genotypes in cytological cervical screening

    OpenAIRE

    Cheng, Jiaoying; BIAN, MEILU; CONG, XIAO; SUN, AIPING; Li, Min; Ma, Li; Chen, Ying; Liu,Jun

    2012-01-01

    It has been confirmed that detection of high-risk human papillomavirus (HR HPV) DNA is useful in cervical cancer (CC) screening. Recently, a new real-time fluorescent polymerase chain reaction (PCR) assay was developed to detect HR HPV. This assay can synchronize nucleic acid amplification and testing using specific primers for 13 types of HR HPV genomes, combined with specific TaqMan fluorescent marker probe techniques through the fluorescence automatic PCR instrument. Furthermore, it uses T...

  16. Utility of a single nasal polymerase chain reaction assay in predicting absence of skin and environmental contamination in hospitalized patients with past methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Guerrero, Dubert M; Wagner, Matthew; Carson, Grace; Hanish, Christine; Thompson, Jody; Orr, Megan; Roth, Felix; Carson, Paul J

    2016-06-01

    We evaluated hospitalized patients with a history of methicillin-resistant Staphylococcus aureus (MRSA) for persistent colonization and need for contact precautions. Up to 3 daily cultures of nares, skin, and any present wounds were compared with a single nasal polymerase chain reaction (PCR) assay. Most patients (76.2%) were no longer colonized with MRSA. A single PCR assay was sufficient to exclude persistent colonization and environmental contamination and remove the contact precautions.

  17. Molecular identification of Amazonian stingless bees using polymerase chain reaction single-strand conformation polymorphism.

    Science.gov (United States)

    Souza, M T; Carvalho-Zilse, G A

    2014-07-25

    In countries containing a mega diversity of wildlife, such as Brazil, identifying and characterizing biological diversity is a continuous process for the scientific community, even in face of technological and scientific advances. This activity demands initiatives for the taxonomic identification of highly diverse groups, such as stingless bees, including molecular analysis strategies. This type of bee is distributed in all of the Brazilian states, with the highest species diversity being found in the State of Amazônia. However, the estimated number of species diverges among taxonomists. These bees are considered the main pollinators in the Amazon rainforest, in which they obtain food and shelter; however, their persistence is constantly threatened by deforestation pressure. Hence, it is important to classify the number and abundance of bee specie, to measure their decline and implement meaningful, priority conservation strategies. This study aims to maximize the implementation of more direct, economic and successful techniques for the taxonomic identification of stingless bees. Specifically, the genes 16S rRNA and COI from mitochondrial DNA were used as molecular markers to differentiate 9 species of Amazonian stingless bees based on DNA polymorphism, using the polymerase chain reaction-single-strand conformation polymorphism technique. We registered different, exclusive SSCP haplotypes for both genes in all species analyzed. These results demonstrate that SSCP is a simple and cost-effective technique that is applicable to the molecular identification of stingless bee species.

  18. An enzyme-linked immunosorbent assay (ELISA) for the identification of Naegleria fowleri in environmental water samples.

    Science.gov (United States)

    Reveiller, Fabienne L; Varenne, Marie-Pierre; Pougnard, Claire; Cabanes, Pierre-Andre; Pringuez, Emmanuelle; Pourima, Benedicte; Legastelois, Stephane; Pernin, Pierre

    2003-01-01

    Naegleria fowleri, a free-living amoeba, is the causative agent of primary amoebic meningoencephalitis, a fatal human disease of the central nervous system often contracted after swimming in fresh water. Identifying sites contaminated by N. fowleri is important in order to prevent the disease. An Enzyme-Linked ImmunoSorbent Assay (ELISA) has been developed for the specific identification of N. fawleri in primary cultures of environmental water samples. Of 939 samples isolated from artificially heated river water and screened by ELISA, 283 were positive. These results were subsequently confirmed by isoelectric focusing, the established reference method. A sensitivity of 97.4% and a specificity of 97% were obtained. These results indicate that this ELISA method is reliable and can be considered as a powerful tool for the detection of N. fowleri in environmental water samples.

  19. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  20. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    Science.gov (United States)

    Richter, C.A.; Wright-Osment, Maureen K.; Zajicek, J.L.; Honeyfield, D.C.; Tillitt, D.E.

    2009-01-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity.

  1. Spontaneous meningitis due to Streptococcus salivarius subsp. salivarius: cross-reaction in an assay with a rapid diagnostic kit that detected Streptococcus pneumoniae antigens.

    Science.gov (United States)

    Shirokawa, Taijiro; Nakajima, Jun; Hirose, Kazuhito; Suzuki, Hiromichi; Nagaoka, Shoko; Suzuki, Masatsune

    2014-01-01

    Streptococcus salivarius subsp. salivarius occasionally causes meningitis associated with iatrogenic or traumatic events. We herein describe a case of meningitis caused by this organism in a patient without any apparent risk factors. In an assay of the patient's cerebrospinal fluid, cross-reaction occurred with Streptococcus pneumoniae antigen-coated latex particles in the Pastorex Meningitis Kit. In the in vitro assays, three of the five clinically isolated S. salivarius strains showed cross-reactions with the kit, indicating that these strains expressed pneumococcal antigen-like antigens. This case shows that meningitis caused by S. salivarius can occur spontaneously and it may sometimes be misdiagnosed as S. pneumoniae infection.

  2. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis.

    Science.gov (United States)

    Sales, Mariana L; Fonseca Júnior, Antônio Augusto; Orzil, Lívia; Alencar, Andrea Padilha; Silva, Marcio Roberto; Issa, Marina Azevedo; Soares Filho, Paulo Martins; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2014-01-01

    Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method.

  3. Performance of a real-time PCR assay for the rapid identification of Mycobacterium species.

    Science.gov (United States)

    Wang, Hye-young; Kim, Hyunjung; Kim, Sunghyun; Kim, Do-kyoon; Cho, Sang-Nae; Lee, Hyeyoung

    2015-01-01

    Mycobacteria cause a variety of illnesses that differ in severity and public health implications. The differentiation of Mycobacterium tuberculosis (MTB) from nontuberculous mycobacteria (NTM) is of primary importance for infection control and choice of antimicrobial therapy. The diagnosis of diseases caused by NTM is difficult because NTM species are prevalent in the environment and because they have fastidious properties. In the present study, we evaluated 279 clinical isolates grown in liquid culture provided by The Catholic University of Korea, St. Vincent's Hospital using real-time PCR based on mycobacterial rpoB gene sequences. The positive rate of real-time PCR assay accurately discriminated 100% (195/195) and 100% (84/84) between MTB and NTM species. Comparison of isolates identified using the MolecuTech REBA Myco-ID(®) and Real Myco-ID® were completely concordant except for two samples. Two cases that were identified as mixed infection (M. intracellulare-M. massiliense and M. avium-M. massiliense co-infection) by PCRREBA assay were only detected using M. abscessus-specific probes by Real Myco-ID(®). Among a total of 84 cases, the most frequently identified NTM species were M. intracellulare (n=38, 45.2%), M. avium (n=18, 23.7%), M. massiliense (n=10, 13.2%), M. fortuitum (n=5, 6%), M. abscessus (n=3, 3.9%), M. gordonae (n=3, 3.9%), M. kansasii (n=2, 2.4%), M. mucogenicum (n=2, 2.4%), and M. chelonae (n= 1, 1.2%). Real Myco-ID(®) is an efficient tool for the rapid detection of NTM species as well as MTB and sensitive and specific and comparable to conventional methods.

  4. Identification of unsafe human induced pluripotent stem cell lines using a robust surrogate assay for pluripotency.

    Science.gov (United States)

    Polanco, Juan Carlos; Ho, Mirabelle S H; Wang, Bei; Zhou, Qi; Wolvetang, Ernst; Mason, Elizabeth; Wells, Christine A; Kolle, Gabriel; Grimmond, Sean M; Bertoncello, Ivan; O'Brien, Carmel; Laslett, Andrew L

    2013-08-01

    Human induced pluripotent stem cells (hiPSC) have the potential to generate healthy cells and tissues for the study and medical treatment of a large number of diseases. The utility of putative hiPSC-based therapies is constrained by a lack of robust quality-control assays that address the stability of the cells or their capacity to form teratomas after differentiation. Here we report that virally derived hiPSC, but not human embryonic stem cells (hESC) or hiPSC derived using episomal nonintegrating vectors, exhibit a propensity to revert to a pluripotent phenotype following differentiation. This instability was revealed using our published method to identify pluripotent cells undergoing very early-stage differentiation in standard hESC cultures, by fluorescence activated cell sorting (FACS) based on expression of the cell surface markers TG30 (CD9) and GCTM-2. Differentiated cells cultured post-FACS fractionation from virally derived hiPSC lines reacquired immunoreactivity to TG30 (CD9) and GCTM-2, formed stem cell-like colonies, and re-expressed canonical pluripotency markers. Furthermore, differentiated cells from pluripotency-reverting hiPSC lines generated teratomas in immunocompromised mice, raising concerns about their safety in downstream applications. In contrast, differentiated cell populations from hESC and episomally derived hiPSC did not show any of these abnormalities. Our assays may be used to identify "unsafe" hiPSC cell lines and this information should be considered when selecting hiPSC lines for clinical use and indicate that experiments using these "unsafe" hiPSC lines should be interpreted carefully.

  5. Identification of human dopamine D1-like receptor agonist using a cell-based functional assay

    Institute of Scientific and Technical Information of China (English)

    Nan JIANG; Ke-qing OU-YANG; Shao-xi CAI; Ying-he HU; Zhi-liang XU

    2005-01-01

    Aim: To establish a cell-based assay to screen human dopamine D1 and D5 receptor agonists against compounds from a natural product compound library.Methods: Synthetic responsive elements 6×cAMP response elements (CRE) and a mini promoter containing a TATA box were inserted into the pGL3 basic vector to generate the reporter gene construct pCRE/TA/Luci. CHO cells were co-transfected with the reporter gene construct and human D1 or D5 receptor cDNA in mammalian expression vectors. Stable cell lines were established for agonist screening. A natural product compound library from over 300 herbs has been established. The extracts from these herbs were used for human D1 and D5 receptor agonist screenings. Results: A number of extracts were identified that activated both D1 and D5 receptors. One of the herb extracts, SBG492, demonstrated distinct pharmacological characteristics with human D1 and D5 receptors.The EC50 values of SBG492 were 342.7 μg/mL for the D1 receptor and 31.7 μg/mL for the D5 receptor. Conclusion: We have established a cell-based assay for high-throughput drug screening to identify D 1-like receptor agonists from natural products. Several extracts that can active D1-like receptors were discovered.These compounds could be useful tools for studies on the functions of these receptors in the brain and could potentially be developed into therapeutic drugs for the treatment of central nervous system diseases.

  6. Clinical validation of 3 commercial real-time reverse transcriptase polymerase chain reaction assays for the detection of Middle East respiratory syndrome coronavirus from upper respiratory tract specimens.

    Science.gov (United States)

    Mohamed, Deqa H; AlHetheel, AbdulKarim F; Mohamud, Hanat S; Aldosari, Kamel; Alzamil, Fahad A; Somily, Ali M

    2017-04-01

    Since discovery of Middle East respiratory syndrome coronavirus (MERS-CoV), a novel betacoronavirus first isolated and characterized in 2012, MERS-CoV real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays represent one of the most rapidly expanding commercial tests. However, in the absence of extensive evaluations of these assays on positive clinical material of different sources, evaluating their diagnostic effectiveness remains challenging. We describe the diagnostic performance evaluation of 3 common commercial MERS-CoV rRT-PCR assays on a large panel (n = 234) of upper respiratory tract specimens collected during an outbreak episode in Saudi Arabia. Assays were compared to the RealStar® MERS-CoV RT-PCR (Alton Diagnostics, Hamburg, Germany) assay as the gold standard. Results showed i) the TIB MolBiol® LightMix UpE and Orf1a assays (TIB MolBiol, Berlin, Germany) to be the most sensitive, followed by ii) the Anyplex™ Seegene MERS-CoV assay (Seegene, Seoul, Korea), and finally iii) the PrimerDesign™ Genesig® HCoV_2012 assay (PrimerDesign, England, United Kingdom). We also evaluate a modified protocol for the PrimerDesign™ Genesig® HCoV_2012 assay.

  7. Establishment and Application of a TaqMan Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Rubella Virus RNA

    Institute of Scientific and Technical Information of China (English)

    Li-Hong ZHAO; Yu-Yan MA; Hong WANG; Shu-Ping ZHAO; Wei-Ming ZHAO; Hua LI; Lei-Yi WANG

    2006-01-01

    The aim of this study was to establish and apply a real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) for rubella virus (RV) RNA. First, the primer and TaqMan probe concentrations, as well as reaction temperatures were optimized to establish an efficient real-time quantitative RT-PCR assay for RV RNA. Next, an RV-specific PCR amplicon was made as an external standard to estimate the linearity, amplification efficiency, analytical sensitivity and reproducibility of the real time quantitative assay. Finally, the assay was applied to quantify RVRNA in clinical samples for rubella diagnosis.The RV-specific PCR amplicon was prepared for evaluation of the assay at 503 bp, and its original concentration was 2.75×109 copies/μl. The real time quantitative assay was shown to have good linearity (R2=0.9920), high amplification efficiency (E=1.91), high sensitivity (275 copies/ml), and high reproducibility (variation coefficient range, from 1.25% to 3.58%). Compared with the gold standard, the specificity and sensitivity of the assay in clinical samples was 96.4% and 86.4%, respectively. Therefore, the established quantitative RT-PCR method is a simple, rapid, less-labored, quantitative, highly specific and sensitive assay for RV RNA.

  8. Medical devices; immunology and microbiology devices; classification of multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures. Final order.

    Science.gov (United States)

    2015-05-27

    The Food and Drug Administration (FDA) is classifying multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures into class II (special controls). The special controls that will apply to this device are identified in this order and will be part of the codified language for the multiplex nucleic acid assay for identification of microorganisms and resistance markers from positive blood cultures. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device.

  9. Evaluation of prostate-specific antigen (PSA) membrane test assays for the forensic identification of seminal fluid.

    Science.gov (United States)

    Hochmeister, M N; Budowle, B; Rudin, O; Gehrig, C; Borer, U; Thali, M; Dirnhofer, R

    1999-09-01

    Prostate specific antigen (PSA, also known as p30), a glycoprotein produced by the prostatic gland and secreted into seminal plasma, is a marker used for demonstrating the presence of seminal fluid. Methods for the detection of PSA include Ouchterlony double diffusion, crossover electrophoresis, rocket immuno-electrophoresis, radial immunodiffusion, and ELISA. The extremely sensitive ELISA technique can detect PSA in concentrations as low as approximately 4 ng/mL. However, all these techniques are cumbersome and time consuming to perform in forensic laboratories, especially when only a few samples per week are processed. Various membrane tests are currently used in clinical settings to screen a patient's serum for the presence of PSA at levels greater than 4 ng/mL. In this study we evaluated three immunochromatographic PSA membrane tests by analyzing semen stains stored at room temperature for up to 30 years, post-coital vaginal swabs taken at different time after intercourse, semen-free vaginal swabs, and various female and male body fluids, including urine. The data demonstrate that PSA membrane test assays offer the same sensitivity as ELISA-based tests and provide a rapid approach for the forensic identification of seminal fluid. Furthermore, when the supernatant from a DNA extraction is used for the assay, there is essentially no DNA consumption for determining the presence of PSA in a forensic sample.

  10. Evaluation of the AID carbapenemase line probe assay for rapid detection and identification of carbapenemase genes in Gram-negative bacilli.

    Science.gov (United States)

    Bloemberg, Guido V; Braun-Kiewnick, Andrea; Tedrup, Jan; Meijerink, Carla; Durer, Elena; Ritter, Claudia; Keller, Peter M; Hombach, Michael

    2017-04-11

    This study evaluated the AID carbapenemase line probe assay (LPA) for the detection and identification of carbapenem resistance genes in Enterobacteriaceae and other Gram-negative bacilli (GNB) using bacterial cultures and DNA extracts directly from patient urine samples. The AID carbapenemase LPA detects 13 different carbapenemase genes. Test probe accuracy was verified for using clinical Enterobacteriaceae isolates harbouring bla KPC , bla VIM , bla NDM , bla GIM , bla AIM , bla SPM , bla IMP and bla OXA-48 and a well-characterized set of Escherichia coli DH5α strains transformed with the vector plasmid pUC57- kan harbouring bla BIC , bla SIM , bla DIM , bla IMI-3 , bla IMI-1 and bla NMC-A . Sensitivity and specificity was determined by testing 151 clinical GNB strains previously characterized for the production of carbapenemase activity and carbapenemase genes. Direct detection of carbapenemase genes using the LPA was determined using 299 clinical urine specimens. Analytical sensitivity for detection in urine was determined by testing serial dilutions of bla KPC and bla NDM in clinical Klebsiella pneumoniae strains. All carbapenemase gene probes showed 100% accuracy without cross-reactions. Sensitivity and specificity of the LPA using clinical isolates was 100% for each. Analytical sensitivity for detection of bla KPC and bla NDM in urine was 10 1 -10 2 cfu. The LPA detected carbapenemase genes in 20 urines, which were confirmed in 12 samples by conventional multiplex PCR. Remarkably, 0 of the 20 urines grew carbapenemase-suspicious GNB applying EUCAST recommendations. : The AID carbapenemase LPA is an accurate, sensitive and easy-to-use test for the detection and identification of carbapenemase genes, which can readily be implemented in any diagnostic laboratory.

  11. Translation of a laboratory-validated equine herpesvirus-1 specific real-time PCR assay into an insulated isothermal polymerase chain reaction (iiPCR) assay for point-of-need diagnosis using POCKIT™ nucleic acid analyzer.

    Science.gov (United States)

    Balasuriya, Udeni B R; Lee, Pei-Yu Alison; Tsai, Yun-Long; Tsai, Chuan-Fu; Shen, Yu-Han; Chang, Hsiao-Fen Grace; Skillman, Ashley; Wang, Hwa-Tang Thomas; Pronost, Stéphane; Zhang, Yan

    2017-03-01

    Equine herpesvirus myeloencephalopathy (EHM), a major problem for the equine industry in the United States, is caused by equine herpesvirus-1 (EHV-1). In addition, EHV-1 is associated with upper respiratory disease, abortion, and chorioretinal lesions in horses. Here we describe the development and evaluation of an inexpensive, user-friendly insulated isothermal PCR (iiPCR) method targeting open reading 30 (ORF30) to detect both neuropathogenic and non-neuropathogenic strains on the field-deployable POCKIT™ device for point-of-need detection of EHV-1. The analytical sensitivity of the EHV-1 iiPCR assay was 13 genome equivalents per reaction. The assay did not cross react with ten non-target equine viral pathogens. Performance of the EHV-1 iiPCR assay was compared to two previously described real-time PCR (qPCR) assays in two laboratories by using 104 archived clinical samples. All 53 qPCR-positive and 46 of the 51 qPCR-negative samples tested positive and negative, respectively, by the iiPCR. The agreement between the two assays was 95.19% (confidence interval 90.48-99.90%) with a kappa value of 0.90. In conclusion, the newly developed EHV-1 iiPCR assay is robust to provide specificity and sensitivity comparable to qPCR assays for the detection of EHV-1 nucleic acid in clinical specimens.

  12. Identification and expression of Babesia ovis secreted antigen 1 and evaluation of its diagnostic potential in an enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Sevinc, Ferda; Cao, Shinuo; Xuan, Xuenan; Sevinc, Mutlu; Ceylan, Onur

    2015-05-01

    In order to identify immunoreactive proteins that are usable for the immunological diagnosis of Babesia ovis infections, a phage lambda cDNA expression library was constructed and screened using parasite-specific immune serum. Immunoscreening resulted in the identification of a full-length cDNA clone encoding a secreted protein designated Babesia ovis secreted antigen 1 (BoSA1). The full-length BoSA1 cDNA contained a 1,137-bp open reading frame that encoded a protein of 378 amino acids, with a signal peptide and 2 internal repeat domains. The theoretical molecular mass of the mature protein was 42.5 kDa. Recombinant BoSA1 (rBoSA1) protein was expressed in Escherichia coli strain DH5α cells as a glutathione S-transferase (GST) fusion protein and was purified by affinity chromatography. Purified rBoSA1 was tested for reactivity with sera from animals experimentally or naturally infected with B. ovis, in an indirect enzyme-linked immunosorbent assay (ELISA). The results showed that specific antibodies against rBoSA1 were detectable on days 7 and 8 of the experimental infection and were maintained during the sampling period. Additionally, 38 field sera taken from sheep naturally infected with B. ovis gave strong positive reactions in the ELISA between day 20 and day 30 of treatment. As a result, the identified recombinant BoSA1 protein seems to be a promising diagnostic antigen that is usable for the development of serological assays for the diagnosis of ovine babesiosis. This is the first report on the molecular cloning, expression, and potential use of a recombinant antigen for the diagnosis of ovine babesiosis.

  13. Simulating henipavirus multicycle replication in a screening assay leads to identification of a promising candidate for therapy.

    Science.gov (United States)

    Porotto, Matteo; Orefice, Gianmarco; Yokoyama, Christine C; Mungall, Bruce A; Realubit, Ronald; Sganga, Michael L; Aljofan, Mohamad; Whitt, Michael; Glickman, Fraser; Moscona, Anne

    2009-05-01

    Nipah (NiV) and Hendra (HeV) viruses are emerging zoonotic paramyxoviruses that cause encephalitis in humans, with fatality rates of up to 75%. We designed a new high-throughput screening (HTS) assay for inhibitors of infection based on envelope glycoprotein pseudotypes. The assay simulates multicycle replication and thus identifies inhibitors that target several stages of the viral life cycle, but it still can be carried out under biosafety level 2 (BSL-2) conditions. These features permit a screen for antivirals for emerging viruses and select agents that otherwise would require BSL-4 HTS facilities. The screening of a small compound library identified several effective molecules, including the well-known compound chloroquine, as highly active inhibitors of pseudotyped virus infection. Chloroquine inhibited infection with live HeV and NiV at a concentration of 1 microM in vitro (50% inhibitory concentration, 2 microM), which is less than the plasma concentrations present in humans receiving chloroquine treatment for malaria. The mechanism for chloroquine's antiviral action likely is the inhibition of cathepsin L, a cellular enzyme that is essential for the processing of the viral fusion glycoprotein and the maturation of newly budding virions. Without this processing step, virions are not infectious. The identification of a compound that inhibits a known cellular target that is important for viral maturation but that had not previously been shown to have antiviral activity for henipaviruses highlights the validity of this new screening assay. Given the established safety profile and broad experience with chloroquine in humans, the results described here provide an option for treating individuals infected by these deadly viruses.

  14. A novel single-step multiplex polymerase chain reaction assay for the detection of diarrheagenic Escherichia coli.

    Science.gov (United States)

    Fujioka, Miyuki; Otomo, Yoshimitsu; Ahsan, Chowdhury Rafiqul

    2013-03-01

    Escherichia coli that causes diarrhea in humans is referred to as diarrheagenic E. coli (DEC), and has been categorized into the following 5 groups: shigatoxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli (EAggEC), and enterotoxigenic E. coli (ETEC). In this study, we developed a novel one-step multiplex polymerase chain reaction (mPCR) for the rapid detection of 10 pathogenic genes (stx1, stx2, eae, bfpA, invE, aggR, esth, estp, elt, and astA) of DEC. Five categorized strains were used as positive controls for DEC harboring each pathogenic gene, and 828 DEC-like strains, isolated from diarrheal stool samples and assumed to be DEC on the basis of serotyping, were used in the mPCR-based detection of the pathogenic genes. To demonstrate the utility of mPCR, the 828 strains were subjected to our optimized protocol, and the results obtained were compared with those obtained by monoplex PCR. The results showed agreement for all strains. Using mPCR, we also detected 65 DEC and 41 astA-positive E. coli, and 7 of these DEC strains were "O antigen untypable" (OUT). This novel mPCR protocol allowed for rapid, convenient, and economical pathogenicity-based identification of the DEC.

  15. Polymerase chain reaction assay of ureaplasma strains isolated from high vaginal swabs of women in Ibadan, Nigeria.

    Science.gov (United States)

    Agbakoba, N R; Adetosoye, A I; Adesina, O A; Adewole, I F

    2008-09-01

    Human ureaplasma previously had one species known as Ureaplasma urealyticum but was recently separated into 2 species, U. urealyticum and U. parvum. This study was carried out to separate the ureaplasma strains isolated from women attending a tertiary-care hospital in Nigeria. Thirty (30) Ureaplasma strains isolated from the vaginal tracts of 13 pregnant and 17 non-pregnant women were assayed. The polymerase chain reaction (PCR) technique was employed using two primer pairs: UMS-170/UMA-263 specific for U. urealyticum and UMS-57/UMA-222 specific for U. parvum. The positivity bands of the primer pairs were 476 bp and 326 bp for U. urealyticum and U. parvum respectively. All isolates were found to be U. urealyticumn (100%). Eleven (84.6%) of the 13 U. urealyticum from pregnant women were from asymptomatic women while from the non-pregnant women; 6 (35.3%) were from women with complaint of infertility problems; 5 (29.4%) from those who complained of vaginal discharge, one (5.9%) was asymptomatic while the remaining 5 (29.4%) had various other complaints. U. urealyticum is thus the prevalent species of Ureaplasma among pregnant and non-pregnant women in the study population and this to the best of our knowledge is a pioneer study to speciate human ureaplasmas in this country.

  16. Identification of irradiated wheat by germination test, DNA comet assay and electron spin resonance

    Science.gov (United States)

    Barros, Adilson C.; Freund, Maria Teresa L.; Villavicencio, Ana Lúcia C. H.; Delincée, Henry; Arthur, Valter

    2002-03-01

    In several countries, there has been an increase in the use of radiation for food processing thus improving the quality and sanitary conditions, inhibiting pathogenic microorganisms, delaying the natural aging process and so extending product lifetime. The need to develop analytical methods to detect these irradiated products is also increasing. The goal of this research was to identify wheat irradiated using different radiation doses. Seeds were irradiated with a gamma 60Co source (Gammacell 220 GC) in the Centro de Energia Nuclear na Agricultura and the Instituto de Pesquisas Energéticas e Nucleares. Dose rate used were 1.6 and 5.8kGy/h. Applied doses were 0.0, 0.10, 0.25, 0.50, 0.75, 1.0, and 2.0kGy. After irradiation, seeds were analysed over a 6 month period. Three different detection methods were employed to determine how irradiation had modified the samples. Screening methods consisted of a germination test measuring the inhibition of shooting and rooting and analysis of DNA fragmentation. The method of electron spin resonance spectroscopy allowed a better dosimetric evaluation. These techniques make the identification of irradiated wheat with different doses possible.

  17. Charge-transfer reaction of 1,4-benzoquinone with crizotinib: spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib.

    Science.gov (United States)

    Darwish, Ibrahim A; Alshehri, Jamilah M; Alzoman, Nourah Z; Khalil, Nasr Y; Abdel-Rahman, Hamdy M

    2014-10-15

    The reaction of 1,4-benzoquinone (BQ) with crizotinib (CZT); a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction resulted in the formation of a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge-transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9425 and 0.8340, respectively. The stoichiometric ratio of BQ:CZT was found to be 2:1 and the association constant of the complex was found to be 0.26×10(3)lmol(-1). The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between BQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT. The assay limits of detection and quantitation were 5.2 and 15.6μgml(-1), respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes minimum volume of organic solvent thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. A multiplex real-time polymerase chain reaction (TaqMan) assay for the simultaneous detection of Meloidogyne chitwoodi and M-fallax

    NARCIS (Netherlands)

    Zijlstra, C.; Hoof, van R.A.

    2006-01-01

    This study describes a multiplex real-time polymerase chain reaction (PCR) approach for the simultaneous detection of Meloidogyne chitwoodi and M. fallax in a single assay. The approach uses three fluorogenic minor groove binding (MGB) TaqMan probes: one FAM-labeled to detect M. chitwoodi, one VIC-l

  19. Preliminary input to the space shuttle reaction control subsystem failure detection and identification software requirements (uncontrolled)

    Science.gov (United States)

    Bergmann, E.

    1976-01-01

    The current baseline method and software implementation of the space shuttle reaction control subsystem failure detection and identification (RCS FDI) system is presented. This algorithm is recommended for conclusion in the redundancy management (RM) module of the space shuttle guidance, navigation, and control system. Supporting software is presented, and recommended for inclusion in the system management (SM) and display and control (D&C) systems. RCS FDI uses data from sensors in the jets, in the manifold isolation valves, and in the RCS fuel and oxidizer storage tanks. A list of jet failures and fuel imbalance warnings is generated for use by the jet selection algorithm of the on-orbit and entry flight control systems, and to inform the crew and ground controllers of RCS failure status. Manifold isolation valve close commands are generated in the event of failed on or leaking jets to prevent loss of large quantities of RCS fuel.

  20. Single assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants.

    Directory of Open Access Journals (Sweden)

    David Metzgar

    Full Text Available For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based or remarkably insensitive (antibody-based. Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A

  1. Microbial receptor assay for rapid detection and identification of seven families of antimicrobial drugs in milk: collaborative study

    Energy Technology Data Exchange (ETDEWEB)

    Charm, S.E.; Chi, R.

    A microbial competitive receptor assay for detecting residues of antibiotic families in milk was studied collaboratively by 13 laboratories. In this method, microbial cells added to a milk sample provide specific binding sites for which /sup 14/C or /sup 3/H labeled drug competes with drug resides in the sample. The /sup 14/C or /sup 3/H binding to the specific binding sites is measured in a scintillation counter and compared with a zero standard milk. If the sample is statistically different from the zero standard, it is positive. The assay takes about 15 min. The binding reaction occurs between the receptor site and the drug functional group, so all members of a drug family are detected. In this case, beta-lactams, tetracyclines, macrolides, aminoglycosides, novobiocin, chloramphenicol, and sulfonamides, including p-amino-benzoic acid (PABA) and its other analogs, are detectable. The incidence of false negative determinations among samples is about 1%; the incidence of false positives is about 3%. For negative cases, the relative standard deviations for repeatability ranged from 0 to 5% and for reproducibility from 0 to 6%. For positive cases, relative standard deviations ranged from 0 to 13% for repeatability and from 0 to 14% for reproducibility. The method has been adopted official first action.

  2. Loop-mediated isothermal amplification (LAMP) assays for detection and identification of aquaculture pathogens: current state and perspectives.

    Science.gov (United States)

    Biswas, Gouranga; Sakai, Masahiro

    2014-04-01

    Since its invention in 2000, loop-mediated isothermal amplification (LAMP) assay has been one of the most extensively used molecular diagnostic tools in bio-medical fields due to the rapidity, accuracy, and cost-effectiveness of the technique. This technique has also earned popularity in aquaculture disease diagnosis. Aquaculture, as a result of its rapid intensification and expansion, experiences increased infectious disease occurrences. For maintenance of economic viability, rapid, sensitive and efficient diagnosis of disease causing agents is an important step prior to undertaking effective prevention and control measures in aquaculture. Constraints on time and expertise required for conventional biochemical, serological and polymerase chain reaction (PCR)-based techniques offer avenues in adoption of the LAMP by the aquaculturists at field conditions. This assay has been successfully applied in detection of several bacterial, viral and parasitic pathogens causing serious diseases in aquaculture. In this review, we endeavored to accommodate the LAMP methodology with its different recent improvements and an overview of its application for the detection of aquaculture-associated pathogens.

  3. Identification of fungemia agents using the polymerase chain reaction and restriction fragment length polymorphism analysis.

    Science.gov (United States)

    Santos, M S; Souza, E S; S Junior, R M; Talhari, S; Souza, J V B

    2010-08-01

    Prompt and specific identification of fungemia agents is important in order to define clinical treatment. However, in most cases conventional culture identification can be considered to be time-consuming and not without errors. The aim of the present study was to identify the following fungemia agents: Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata, Cryptococcus neoformans, Cryptococcus gattii, and Histoplasma capsulatum using the polymerase chain reaction and restriction fragment length polymorphism analysis (PCR/RFLP). More specifically: a) to evaluate 3 different amplification regions, b) to investigate 3 different restriction enzymes, and c) to use the best PCR/RFLP procedure to indentify 60 fungemia agents from a culture collection. All 3 pairs of primers (ITS1/ITS4, NL4/ITS5 and Primer1/Primer2) were able to amplify DNA from the reference strains. However, the size of these PCR products did not permit the identification of all the species studied. Three restriction enzymes were used to digest the PCR products: HaeIII, Ddel and Bfal. Among the combinations of pairs of primers and restriction enzymes, only one (primer pair NL4/ITS5 and restriction enzyme Ddel) produced a specific RFLP pattern for each microorganism studied. Sixty cultures of fungemia agents (selected from the culture collection of Fundação de Medicina Tropical do Amazonas--FMTAM) were correctly identified by PCR/RFLP using the prime pair NL4/ITS5 and Ddel. We conclude that the method proved to be both simple and reproducible, and may offer potential advantages over phenotyping methods.

  4. Identification of four squid species by quantitative real-time polymerase chain reaction.

    Science.gov (United States)

    Ye, Jian; Feng, Junli; Liu, Shasha; Zhang, Yanping; Jiang, Xiaona; Dai, Zhiyuan

    2016-02-01

    Squids are distributed worldwide, including many species of commercial importance, and they are often made into varieties of flavor foods. The rapid identification methods for squid species especially their processed products, however, have not been well developed. In this study, quantitative real-time PCR (qPCR) systems based on specific primers and TaqMan probes have been established for rapid and accurate identification of four common squid species (Ommastrephes bartramii, Dosidicus gigas, Illex argentinus, Todarodes pacificus) in Chinese domestic market. After analyzing mitochondrial genes reported in GenBank, the mitochondrial cytochrome b (Cytb) gene was selected for O. bartramii detection, cytochrome c oxidase subunit I (COI) gene for D. gigas and T. Pacificus detection, ATPase subunit 6 (ATPase 6) gene for I. Argentinus detection, and 12S ribosomal RNA (12S rDNA) gene for designing Ommastrephidae-specific primers and probe. As a result, all the TaqMan systems are of good performance, and efficiency of each reaction was calculated by making standard curves. This method could detect target species either in single or mixed squid specimen, and it was applied to identify 12 squid processed products successfully. Thus, it would play an important role in fulfilling labeling regulations and squid fishery control.

  5. Detection and identification of dengue virus isolates from Brazil by a simplified reverse transcription-polymerase chain reaction (RT-PCR) method.

    Science.gov (United States)

    Figueiredo, L T; Batista, W C; Igarashi, A

    1997-01-01

    We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 microliters assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37 degrees C for reverse transcription followed by 30 cycles of two-step PCR amplification (92 degrees C for 60 seconds, 53 degrees C for 60 seconds) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10(3, 6) TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination.

  6. Detection and identification of dengue virus isolates from Brazil by a simplified reverse transcription - polymerase chain reaction (RT-PCR method

    Directory of Open Access Journals (Sweden)

    FIGUEIREDO Luiz Tadeu Moraes

    1997-01-01

    Full Text Available We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination

  7. Determination and identification of estrogenic compounds generated with biosynthetic enzymes using hyphenated screening assays, high resolution mass spectrometry and off-line NMR

    NARCIS (Netherlands)

    Vlieger, de J.S.B.; Kolkman, A.J.; Ampt, K.A.M.; Commandeur, J.N.M.; Vermeulen, N.P.E.; Kool, J.; Wijmenga, S.S.; Niessen, W.M.A.; Irth, H.; Honing, M.

    2010-01-01

    This paper describes the determination and identification of active and inactive estrogenic compounds produced by biosynthetic methods. A hyphenated screening assay towards the human estrogen receptor ligand binding domain (hER)α and hERβ integrating target–ligand interactions and liquid chromatogra

  8. Identification of hydrogen peroxide as a major cytotoxic component in Maillard reaction mixtures and coffee.

    Science.gov (United States)

    Hegele, Jörg; Münch, Gerald; Pischetsrieder, Monika

    2009-06-01

    The cytotoxic activity of Maillard reaction products and coffee was studied using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and the neutral red uptake (NRU) assay. Equimolar mixtures of sugars and lysine were heated at 120 degrees C and used to stimulate bovine aorta endothelial cells for 24 h. The cytotoxic activity increased with increase in educt concentration and heating time. Mixtures containing ribose were most active, followed by lactose and glucose. Hydrogen peroxide, which was present in the Maillard mixtures in concentrations between 7 and 87 microM, was identified as one of their major cytotoxic components. H2O2-concentrations increased further up to 130 microM under cell culture conditions. Filter coffee, espresso, and green coffee extract reduced cell viability significantly to 10, 19, and 83% of PBS-treated control. The effect was largely attenuated by the addition of catalase. Nil, 33, and 41 microM H2O2 was measured in green coffee extract, filter coffee, and espresso, respectively, increasing to 13, 369, and 333 microM during cell culture conditions. No additional H2O2 formation was detected when coffee was incubated for up to 5 h without further treatment. In conclusion, hydrogen peroxide is a major product in Maillard mixtures and coffee inducing cell death in vitro.

  9. Molecular identification of Giardia duodenalis in Ecuador by polymerase chain reaction-restriction fragment length polymorphism

    Directory of Open Access Journals (Sweden)

    Richard Atherton

    2013-06-01

    Full Text Available The aim of this study was to determine the genetic diversity of Giardia duodenalis present in a human population living in a northern Ecuadorian rain forest. All Giardia positive samples (based on an ELISA assay were analysed using a semi-nested polymerase chain reaction-restriction fragment length polymorphism assay that targets the glutamate dehydrogenase (gdh gene; those amplified were subsequently genotyped using NlaIV and RsaI enzymes. The gdh gene was successfully amplified in 74 of 154 ELISA positive samples; 69 of the 74 samples were subsequently genotyped. Of these 69 samples, 42 (61% were classified as assemblage B (26 as BIII and 16 as BIV, 22 (32% as assemblage A (3 as AI and 19 as AII and five (7% as mixed AII and BIII types. In this study site we observe similar diversity in genotypes to other regions in Latin America, though in contrast to some previous studies, we found similar levels of diarrheal symptoms in those individuals infected with assemblage B compared with those infected with assemblage A.

  10. Development of real-time polymerase chain reaction assay for specific detection of Tsukamurella by targeting the 16S rRNA gene.

    Science.gov (United States)

    Yassin, Atteyet F; Müller, Jens

    2012-03-01

    Recently, members of the genus Tsukamurella have been implicated as important etiologic pathogens contributing to bloodstream and pulmonary infections in immunocompromised patients. Tsukamurella species share many features with other mycolic acid-containing genera of the order Actinomycetales and might therefore be misidentified as belonging to one of these genera. We developed a TaqMan-based real-time polymerase chain reaction assay for the rapid and specific detection of infections due to Tsukamurella species. The assay amplifies and detects a 157-bp segment of the 16S rRNA gene of Tsukamurella. The specificity of the assay was confirmed using a panel of DNAs from 12 Tsukamurella strains and 11 strains belonging to 8 phylogenetic closely related genera. The sensitive and specific nature of the assay provides a valuable tool for the early and precise diagnosis of Tsukamurella infections in clinical diagnostic laboratories. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Detection of egg drop syndrome virus antigen or genome by enzyme-linked immunosorbent assay or polymerase chain reaction.

    Science.gov (United States)

    Dhinakar Raj, G; Sivakumar, S; Matheswaran, K; Chandrasekhar, M; Thiagarajan, V; Nachimuthu, K

    2003-10-01

    Mouse monoclonal antibodies (mAbs) were produced against an Indian isolate of egg drop syndrome (EDS) virus and characterized. Four hybridoma clones were secreting mAbs that bound to a 100 kDa protein, presumably the hexon protein. These mAbs were found to cross-react with two other Indian isolates of EDS virus and to the reference UK 127 strain. Three of these mAbs were mapped to the same epitope compared with the other mAb (F8), which bound to a different epitope. An antigen-capture enzyme-linked immunosorbent assay (AC-ELISA) was developed using the F8 mAbs as capture antibody and polyclonal chicken serum against EDS virus as detection antibody. A polymerase chain reaction (PCR) was used to detect the EDS viral genome. Following experimental infection of oestrogen-treated chickens with EDS virus, cloacal swabs, oviduct, uterus and spleen were collected at different days post-infection and used in both AC-ELISA and PCR, directly and after a single passage in embryonated duck eggs. The sensitivity and specificity of antigen detection by AC-ELISA or PCR was 95% and 98%, respectively. For diagnosis of EDS viral infections, PCR is recommended due to its ease and the lack of requirement of prepared reagents such as mAbs or conjugates. We recommend that PCR be performed directly on boiled tissue homogenates. Any negative samples may be passaged in embryonated duck eggs and the allantoic fluids tested by PCR before a conclusive negative diagnosis is given.

  12. Nested real-time quantitative polymerase chain reaction assay for detection of hepatitis B virus covalently closed circular DNA

    Institute of Scientific and Technical Information of China (English)

    XU Chun-hai; LI Zhao-shen; DAI Jun-ying; ZHU Hai-yang; YU Jian-wu; L(U) Shu-Ian

    2011-01-01

    peripheral blood mononuclear cells; marrow mononuclear cells Background Successful treatment of hepatitis B can be achieved only if the template for hepatitis B virus (HBV) DNA replication, the covalently closed circular HBV DNA (cccDNA) can be completely cleared. To date, detecting cccDNA remains clinically challenging. The purpose of this study was to develop a nested real-time quantitative polymerase chain reaction (PCR) assay for detecting HBV cccDNA in peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (MMNCs).Methods Based on the structural differences between HBV cccDNA and HBV relaxed circular DNA (rcDNA), two pairs of primers were synthesized as well as a downstream TaqMan probe. Blood and bone marrow samples were collected from hepatitis B patients and healthy controls. To remove rcDNA, samples were incubated with mung bean nuclease and the resultant purified HBV cccDNA was then amplified by nested real-time fluorescence quantitative PCR. The cccDNA levels were calculated using a positive standard.Results The nested real-time fluorescence quantitative PCR method for HBV cccDNA was successful, with a linear range of 3.0x102 copies/ml to 3.9x108 copies/ml. Of the 25 PBMC samples and 7 MMNC samples obtained from chronic hepatitis B or liver cirrhosis patients, 3 MMNC samples and 9 PBMC samples were positive for HBV cccDNA, while all of the 21 PBMC samples from healthy controls were negative.Conclusion The nested real-time fluorescence quantitative PCR may be used as an important tool for detecting cccDNA in hepatitis B patients.

  13. A Rapid Field-Deployable Reverse Transcription-Insulated Isothermal Polymerase Chain Reaction Assay for Sensitive and Specific Detection of Bluetongue Virus.

    Science.gov (United States)

    Ambagala, A; Pahari, S; Fisher, M; Lee, P-Y A; Pasick, J; Ostlund, E N; Johnson, D J; Lung, O

    2017-04-01

    Bluetongue is a non-contagious, haemorrhagic, Culicoides-borne disease of ruminants. The causative agent, bluetongue virus (BTV), is a member of the Orbivirus genus of the Reoviridae family. So far, 26 BTV serotypes have been identified worldwide. The global distribution of bluetongue has been expanding, and rapid detection of BTV, preferably in the field, is critical for timely implementation of animal movement restrictions and vector control measures. To date, many laboratory-based, molecular assays for detection of BTV have been developed. These methods require the samples to be shipped to a central laboratory with sophisticated instruments and highly skilled technicians to perform the assays, conduct analyses and interpret the results. Here, we report the development and evaluation of a rapid, portable, user-friendly, pan-BTV reverse transcription-insulated isothermal polymerase chain reaction (RT-iiPCR) assay that can potentially be used in low-resource field conditions. The total length of the assay was <60 min, and at the end of the assay, the results were automatically displayed as '+' or '-' without the need for data interpretation. The RT-iiPCR assay detected 36 BTV isolates and two in vitro transcribed RNA samples representing all 26 BTV serotypes. The assay did not cross-react with other animal viruses tested, including two closely related orbiviruses. The analytical sensitivity of the assay was as low as nine copies of in vitro transcribed double-stranded BTV RNA. Analysis of BTV-infected whole blood samples showed that the BTV RT-iiPCR assay was as sensitive as real-time RT-PCR. The assay can potentially be used for rapid screening of animals for BTV in routine diagnostics and for monitoring bluetongue outbreaks both in ruminants and in Culicoides vectors in the field and in the laboratory.

  14. Detection of the Pandemic H1N1/2009 Influenza A Virus by a Highly Sensitive Quantitative Real-time Reverse-transcription Polymerase Chain Reaction Assay

    Institute of Scientific and Technical Information of China (English)

    Zhu Yang; Guoliang Mao; Yujun Liu; Yuan-Chuan Chen; Chengjing Liu; Jun Luo; Xihan Li

    2013-01-01

    A quantitative real time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers recommended by the World Health Organization (WHO) has been widely used successfully for detection and monitoring of the pandemic H1N 1/2009 influenza A virus.In this study,we report the design and characterization of a novel set of primers to be used in a qRT-PCR assay for detecting the pandemic H1N1/2009 virus.The newly designed primers target three regions that are highly conserved among the hemagglutinin (HA) genes of the pandemic H1N1/2009 viruses and are different from those targeted by the WHO-recommended primers.The qRT-PCR assays with the newly designed primers are highly specific,and as specific as the WHO-recommended primers for detecting pandemic H1N1/2009 viruses and other influenza viruses including influenza B viruses and influenza A viruses of human,swine,and raccoon dog origin.Furthermore,the qRT-PCR assays with the newly designed primers appeared to be at least 10-fold more sensitive than those with the WHO-recommended primers as the detection limits of the assays with our primers and the WHO-recommended primers were 2.5 and 25 copies of target RNA per reaction,respectively.When tested with 83 clinical samples,32 were detected to be positive using the qRT-PCR assays with our designed primers,while only 25 were positive by the assays with the WHO-recommended primers.These results suggest that the qRT-PCR system with the newly designed primers represent a highly sensitive assay for diagnosis of the pandemic H1N1/2009 virus infection.

  15. Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans.

    Science.gov (United States)

    McNamara, David T; Thomson, Jodi M; Kasehagen, Laurin J; Zimmerman, Peter A

    2004-06-01

    The diagnosis of infections caused by Plasmodium species is critical for understanding the nature of malarial disease, treatment efficacy, malaria control, and public health. The demands of field-based epidemiological studies of malaria will require faster and more sensitive diagnostic methods as new antimalarial drugs and vaccines are explored. We have developed a multiplex PCR-ligase detection reaction (LDR) assay that allows the simultaneous diagnosis of infection by all four parasite species causing malaria in humans. This assay exhibits sensitivity and specificity equal to those of other PCR-based assays, identifying all four human malaria parasite species at levels of parasitemias equal to 1 parasitized erythrocyte/microl of blood. The multiplex PCR-LDR assay goes beyond other PCR-based assays by reducing technical procedures and by detecting intraindividual differences in species-specific levels of parasitemia. Application of the multiplex PCR-LDR assay will provide the sensitivity and specificity expected of PCR-based diagnostic assays and will contribute new insight regarding relationships between the human malaria parasite species and the human host in future epidemiological studies.

  16. Evaluation of molecular assays for identification Campylobacter fetus species and subspecies and development of a C. fetus specific real-time PCR assay

    NARCIS (Netherlands)

    Graaf-van Bloois, van der L.; Bergen, van M.A.P.; Wal, van der F.J.; Boer, de A.G.; Duim, B.; Schmidt, T.; Wagenaar, J.A.

    2013-01-01

    Phenotypic differentiation between Campylobacter fetus (C. fetus) subspecies fetus and C. fetus subspecies venerealis is hampered by poor reliability and reproducibility of biochemical assays. AFLP (amplified fragment length polymorphism) and MLST (multilocus sequence typing) are the molecular

  17. Identification of liquid-phase decomposition species and reactions for guanidinium azotetrazolate

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhakarna, Neeraj R.; Shah, Kaushal J.; Chowdhury, Arindrajit; Thynell, Stefan T., E-mail: thynell@psu.edu

    2014-08-20

    Highlights: • Guanidinium azotetrazolate (GzT) is a high-nitrogen energetic material. • FTIR spectroscopy and ToFMS spectrometry were used for species identification. • Quantum mechanics was used to identify transition states and decomposition pathways. • Important reactions in the GzT liquid-phase decomposition process were identified. • Initiation of decomposition occurs via ring opening, releasing N{sub 2}. - Abstract: The objective of this work is to analyze the decomposition of guanidinium azotetrazolate (GzT) in the liquid phase by using a combined experimental and computational approach. The experimental part involves the use of Fourier transform infrared (FTIR) spectroscopy to acquire the spectral transmittance of the evolved gas-phase species from rapid thermolysis, as well as to acquire spectral transmittance of the condensate and residue formed from the decomposition. Time-of-flight mass spectrometry (ToFMS) is also used to acquire mass spectra of the evolved gas-phase species. Sub-milligram samples of GzT were heated at rates of about 2000 K/s to a set temperature (553–573 K) where decomposition occurred under isothermal conditions. N{sub 2}, NH{sub 3}, HCN, guanidine and melamine were identified as products of decomposition. The computational approach is based on using quantum mechanics for confirming the identity of the species observed in experiments and for identifying elementary chemical reactions that formed these species. In these ab initio techniques, various levels of theory and basis sets were used. Based on the calculated enthalpy and free energy values of various molecular structures, important reaction pathways were identified. Initiation of decomposition of GzT occurs via ring opening to release N{sub 2}.

  18. Detection and identification of vegetative insecticidal proteins vip3 genes of Bacillus thuringiensis strains using polymerase chain reaction-high resolution melt analysis.

    Science.gov (United States)

    Li, Haitao; Shu, Changlong; He, Xiaoming; Gao, JiGuo; Liu, Rongmei; Huang, Dafang

    2012-05-01

    In this study, vegetative insecticidal proteins vip3 genes from Bacillus thuringiensis strains were detected based on polymerase chain reaction-high resolution melt (PCR-HRM) analysis. A pair of primers was designed according to the conservative sequences in 150 bp region of the known vip3 subfamily. The 150 bp regions of difference vip3 genes have only a few nucleotide difference vip3 genes were detected in 8 of 11 standard B. thuringiensis strains, and vip3Aa genes, vip3Af genes and vip3Ba gene can be distinguished as different melting curves by this method. The results demonstrate the utility of the HRM assay for mutant screening using vip3 gene. The PCR-HRM method may be a valuable and reliable tool for specific detection and identification of vip3 genes.

  19. Measurement Uncertainty of Chromogenic LAL Assays: Reaction Time and Proportion of Endotoxin and LAL Reagent Affect Release of p-Nitroaniline.

    Science.gov (United States)

    Ostronoff, Celina Silva; Lourenço, Felipe Rebello

    2015-01-01

    Limulus Amebocyte Lysate (LAL) assays are widely used for detection and quantification of bacterial endotoxins in pharmaceuticals and medical devices. However, there are only a few studies on the measurement uncertainty of LAL assays. The aim of this work was to identify and quantify the main sources of measurement uncertainty for end point and kinetic-chromogenic LAL assays. Response surface methodology was used to study how the release of p-nitroaniline (pNA) is affected by reaction time and proportion of endotoxin and LAL reagent in end point and kinetic-chromogenic LAL assays, respectively. Increased release of pNA was observed when reaction time was increased. In addition, if different volumes of sample (or endotoxin standard) and LAL reagent are used, the pNA release rate will be affected. These results may be due to the increased interaction between the bacterial endotoxin and LAL-activated enzyme. Final measurement uncertainties (95% confidence interval) were 90-120% and 90-127% of bacterial endotoxin content for end point and kinetic-chromogenic assays, respectively. These values are reasonable for the scope of the method and allow the application of these measurement uncertainties in routine analysis of pharmaceuticals and medical devices.

  20. Evaluation of environmental sampling methods and rapid detection assays for recovery and identification of Listeria spp. from meat processing facilities.

    Science.gov (United States)

    Kovacević, Jovana; Bohaychuk, Valerie M; Barrios, Pablo Romero; Gensler, Gary E; Rolheiser, Deana L; McMullen, Lynn M

    2009-04-01

    Studies that isolated Listeria spp. from the environment of two meat processing facilities were conducted. Samples were collected in the processing environment of the facilities with three different sampling methods (cotton swab, sterile sponge, and composite-ply tissues) to evaluate their ability to recover Listeria spp. A total of 240 samples for each sampling method were collected and tested. The cotton swab method of sampling was significantly (P 0.05) in their ability to recover Listeria spp. The specificity and sensitivity of four detection methods (conventional culture, Petrifilm Environmental Listeria Plates [ELP], lateral-flow immunoprecipitation [LFI], and automated PCR) were evaluated for identification of Listeria spp. Facilities were visited until a minimum of 100 positive and 100 negative samples per detection method were collected. The LFI and PCR methods were highly sensitive (95.5 and 99.1%, respectively) and specific (100%) relative to the culture method. The ELP method was significantly less efficient (P < 0.01) than LFI and PCR in detection of Listeria spp., with lower sensitivity (50.6%) and specificity (91.5%). Kappa values indicated excellent agreement of the LFI and PCR assays and moderate agreement of the ELP method to the culture method. Overall, ELP was easy to use but less efficient in detection of Listeria spp. from environmental samples, while the LFI and PCR methods were found to be excellent alternatives to culture, considering performance and time and labor inputs.

  1. [Visual detection of H1 subtype and identification of N1, N2 subtype of avian influenza virus by reverse transcription loop-mediated isothermal amplification assay].

    Science.gov (United States)

    Peng, Yi; Xie, Zhi-Xun; Guo, Jie; Zhou, Chen-Yu; Liu, Jia-Bo; Pang, Yao-Shan; Deng, Xian-Wen; Xie, Zhi-Qin; Xie, Li-Ji; Fan, Qing; Luo, Si-Si

    2013-03-01

    In order to visually detect H1, N1 and N2 subtype of avian influenza virus (AIV), three reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed. According to the sequences of AIV gene available in GenBank, three degenerate primer sets specific to HA gene of H1 subtype AIV, NA gene of N1 and N2 subtype AIV were designed, and the reaction conditions were optimized. The results showed that all the assays had no cross-reaction with other subtype AIV and other avian respiratory pathogens, and the detection limit was higher than that of conventional RT-PCR. These assays were performed in water bath within 50 minutes. Without opening tube, the amplification result could be directly determined by inspecting the color change of reaction system as long as these assays were fin-ished. Fourteen specimens of H1N1 subtype and eight specimens of H1N2 subtype of AIV were identified from the 120 clinical samples by RT-LAMP assays developed, which was consistent with that of virus isolation. These results suggested that the three newly developed RT-LAMEP assays were simple, specific and sensitive and had potential for visual detection of H1, N1 and N2 subtype of AIV in field.

  2. Evaluation of three real-time PCR assays for differential identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria species in liquid culture media.

    Science.gov (United States)

    Jung, Yu Jung; Kim, Ji-Youn; Song, Dong Joon; Koh, Won-Jung; Huh, Hee Jae; Ki, Chang-Seok; Lee, Nam Yong

    2016-06-01

    We evaluated the analytical performance of M. tuberculosis complex (MTBC)/nontuberculous mycobacteria (NTM) PCR assays for differential identification of MTBC and NTM using culture-positive liquid media. Eighty-five type strains and 100 consecutive mycobacterial liquid media cultures (MGIT 960 system) were analyzed by a conventional PCR assay (MTB-ID(®) V3) and three real-time PCR assays (AdvanSure™ TB/NTM real-time PCR, AdvanSure; GENEDIA(®) MTB/NTM Detection Kit, Genedia; Real-Q MTB & NTM kit, Real-Q). The accuracy rates for reference strains were 89.4%, 100%, 98.8%, and 98.8% for the MTB-ID V3, AdvanSure, Genedia, and Real-Q assays, respectively. Cross-reactivity in the MTB-ID V3 assay was mainly attributable to non-mycobacterium Corynebacterineae species. The diagnostic performance was determined using clinical isolates grown in liquid media, and the overall sensitivities for all PCR assays were higher than 95%. In conclusion, the three real-time PCR assays showed better performance in discriminating mycobacterium species and non-mycobacterium Corynebacterineae species than the conventional PCR assay.

  3. Polymerase Chain Reaction (PCR)-based methods for detection and identification of mycotoxigenic Penicillium species using conserved genes

    Science.gov (United States)

    Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of d...

  4. Simultaneous detection of five enteric viruses associated with gastroenteritis by use of a PCR assay: a single real-time multiplex reaction and its clinical application.

    Science.gov (United States)

    Jiang, Yixiang; Fang, Lin; Shi, Xiaolu; Zhang, Hailong; Li, Yinghui; Lin, Yiman; Qiu, Yaqun; Chen, Qingliang; Li, Hui; Zhou, Li; Hu, Qinghua

    2014-04-01

    We developed a highly sensitive reverse transcription and multiplex real-time PCR (rtPCR) assay that can identify five viruses, including six genogroups, in a single reaction: norovirus genogroups I and II; sapovirus genogroups I, II, IV, and V; human rotavirus A; adenovirus serotypes 40 and 41; and human astrovirus. In comparison to monoplex rtPCR assays, the sensitivities and specificities of the multiplex rtPCR ranged from 75% to 100% and from 99% to 100%, respectively, evaluated on 812 clinical stool specimens.

  5. Evaluation of two real-time polymerase chain reaction assays for Porcine epidemic diarrhea virus (PEDV) to assess PEDV transmission in growing pigs.

    Science.gov (United States)

    Miller, Laura C; Crawford, Kimberly K; Lager, Kelly M; Kellner, Steven G; Brockmeier, Susan L

    2016-01-01

    In April 2013, a Porcine epidemic diarrhea virus (PEDV) epidemic began in the United States. As part of the response, real-time reverse transcription polymerase chain reaction (RT-PCR) assays to detect PEDV were developed by several veterinary diagnostic laboratories. Our study evaluated RT-PCR PEDV assays that detect the N gene (gN) and S gene (gS) for their ability to detect PEDV infection and the transmission potential of pigs experimentally exposed to PEDV. Detection limits and quantification cycle (Cq) values of real-time RT-PCR were assayed for PEDV samples and positive controls for both gN and gS. The limit of detection for the gN assay was 10(-6) (mean Cq: 39.82 ± 0.30) and 10(-5) (mean Cq: 39.39 ± 0.72) for the gS assay with PEDV strain USA/Colorado/2013. Following recommended guidelines, rectal swabs (n = 1,064) were tested; 354 samples were positive by gN assay and 349 samples were positive by gS assay (Cq ≤ 34.99), 710 samples were negative by gN assay and 715 were negative by gS assay (Cq > 34.99) of which 355 and 344 were "undetermined" (i.e., undetected within a threshold of 40 RT-PCR cycles, by gN and gS assays, respectively). The coefficient of variation (intra-assay variation) ranged from 0.00% to 2.65% and interassay variation had an average of 2.75%. PEDV could be detected in rectal swabs from all pigs for ~2 weeks postinfection at which time the prevalence began to decrease until all pigs were RT-PCR negative by 5 weeks postinfection. Our study demonstrated that RT-PCR assays functioned well to detect PEDV and that the gN assay was slightly better. © 2015 The Author(s).

  6. Droplet digital polymerase chain reaction assay for screening of ESR1 mutations in 325 breast cancer specimens.

    Science.gov (United States)

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Inao, Toko; Sueta, Aiko; Fujiwara, Saori; Omoto, Yoko; Iwase, Hirotaka

    2015-12-01

    Droplet digital polymerase chain reaction (ddPCR), which could perform thousands of PCRs on a nanoliter scale simultaneously, would be an attractive method to massive parallel sequencing for identifying and studying the significance of low-frequency rare mutations. Recent evidence has shown that the key potential mechanisms of the failure of aromatase inhibitors-based therapy involve identifying activating mutations affecting the ligand-binding domain of the ESR1 gene. Therefore, the detection of ESR1 mutations may be useful as a biomarker predicting an effect of the treatment. We aimed to develop a ddPCR-based method for the sensitive detection of ESR1 mutations in 325 breast cancer specimens, in which 270 primary and 55 estrogen receptor-positive (ER+) metastatic breast cancer (MBC) specimens. Our ddPCR assay could detect the ESR1 mutant molecules with low concentration of 0.25 copies/μL. According to the selected cutoff, ESR1 mutations occurred in 7 (2.5%) of 270 primary breast cancer specimens and in 11 (20%) of 55 ER+ MBC specimens. Among the 11 MBC specimens, 5 specimens (45.5%) had the most common ESR1 mutation, Y537S, 4 specimens (36.3%) each had D538G, Y537N, and Y537C. Interestingly, 2 patients had 2 ESR1 mutations, Y537N/D538G and Y537S/Y537C, and 2 patients had 3 ESR1 mutations, Y537S/Y537N/D538G. Biopsy was performed in heterochrony in 8 women twice. In 8 women, 4 women had primary breast cancer and MBC specimens and 4 women had 2 specimens when treatment was failure. Four of these 8 women acquired ESR1 mutation, whereas no ESR1 mutation could be identified at first biopsy. ddPCR technique could be a promising tool for the next-generation sequencing-free precise detection of ESR1 mutations in endocrine therapy resistant cases and may assist in determining the treatment strategy.

  7. Access to a polymerase chain reaction assay method targeting 13 respiratory viruses can reduce antibiotics: a randomised, controlled trial

    Directory of Open Access Journals (Sweden)

    Lindh Magnus

    2011-04-01

    Full Text Available Abstract Background Viral respiratory infections are common worldwide and range from completely benign disease to life-threatening illness. Symptoms can be unspecific, and an etiologic diagnosis is rarely established because of a lack of suitable diagnostic tools. Improper use of antibiotics is common in this setting, which is detrimental in light of the development of bacterial resistance. It has been suggested that the use of diagnostic tests could reduce antibiotic prescription rates. The objective of this study was to evaluate whether access to a multiplex polymerase chain reaction (PCR assay panel for etiologic diagnosis of acute respiratory tract infections (ARTIs would have an impact on antibiotic prescription rate in primary care clinical settings. Methods Adult patients with symptoms of ARTI were prospectively included. Nasopharyngeal and throat swabs were analysed by using a multiplex real-time PCR method targeting thirteen viruses and two bacteria. Patients were recruited at 12 outpatient units from October 2006 through April 2009, and samples were collected on the day of inclusion (initial visit and after 10 days (follow-up visit. Patients were randomised in an open-label treatment protocol to receive a rapid or delayed result (on the following day or after eight to twelve days. The primary outcome measure was the antibiotic prescription rate at the initial visit, and the secondary outcome was the total antibiotic prescription rate during the study period. Results A total sample of 447 patients was randomised. Forty-one were excluded, leaving 406 patients for analysis. In the group of patients randomised for a rapid result, 4.5% (9 of 202 of patients received antibiotics at the initial visit, compared to 12.3% (25 of 204 (P = 0.005 of patients in the delayed result group. At follow-up, there was no significant difference between the groups: 13.9% (28 of 202 in the rapid result group and 17.2% (35 of 204 in the delayed result group (P

  8. An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Yiyan; Landry, James P.; Zhu, X. D., E-mail: xdzhu@physics.ucdavis.edu [Department of Physics, University of California, One Shields Avenue, Davis, California 95616 (United States); Li, Yanhong; Yu, Hai; Lau, Kam; Huang, Shengshu; Chokhawala, Harshal A.; Chen, Xi [Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616 (United States)

    2013-11-15

    A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400–10 000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.

  9. Evaluation of a microarray-based assay for rapid identification of Gram-positive organisms and resistance markers in positive blood cultures.

    Science.gov (United States)

    Samuel, Linoj P; Tibbetts, Robert J; Agotesku, Adam; Fey, Margaret; Hensley, Rhonda; Meier, Frederick A

    2013-04-01

    Rapid identification of pathogens directly from positive blood cultures can play a major role in reducing patient mortality rates. We evaluated the performance of the Verigene Gram-Positive Blood Culture (BC-GP) assay (Nanosphere Inc., Northbrook, IL) for detection of commonly isolated Gram-positive organisms as well as associated resistance markers from positive blood cultures. Positive blood cultures (VersaTREK; Trek Diagnostic Systems, Independence, OH) from 203 patients with Gram-positive organism infections were analyzed using the BC-GP assay within 12 h for the detection of 12 different organisms, including staphylococci, streptococci, and enterococci, as well as for the presence of 3 resistance markers (mecA, vanA, and vanB). Results were compared to those of routine laboratory methods for identification and susceptibility testing. For identification of organisms and detection of resistance markers in 178 monomicrobial positive blood cultures, the BC-GP assay showed 94% and 97% concordance, respectively, with routine methods. After 25 polymicrobial cultures were included, the results showed 92% and 96% agreement for identification and resistance markers, respectively, for a total of 203 positive cultures. In 6/25 polymicrobial cultures, at least 1 isolate was not detected. Concordance levels for detection of major pathogens such Staphylococcus aureus (n = 45) and enterococci (n = 19) were 98% and 95%, respectively. Agreement levels for detection of resistance markers such as mecA and vanA/B were 92% and 100%, respectively. The BC-GP assay is capable of providing rapid identification of Gram-positive cocci as well as detection of resistance markers directly from positive blood cultures at least 24 to 48 h earlier than conventional methods.

  10. Evaluation of a single round polymerase chain reaction assay using dried blood spots for diagnosis of HIV-1 infection in infants in an African setting

    Directory of Open Access Journals (Sweden)

    Ng'ayo Musa

    2011-02-01

    Full Text Available Abstract Background The aim of this study was to develop an economical 'in-house' single round polymerase chain reaction (PCR assay using filter paper-dried blood spots (FP-DBS for early infant HIV-1 diagnosis and to evaluate its performance in an African setting. Methods An 'in-house' single round PCR assay that targets conserved regions in the HIV-1 polymerase (pol gene was validated for use with FP-DBS; first we validated this assay using FP-DBS spiked with cell standards of known HIV-1 copy numbers. Next, we validated the assay by testing the archived FP-DBS (N = 115 from infants of known HIV-1 infection status. Subsequently this 'in-house' HIV-1 pol PCR FP-DBS assay was then established in Nairobi, Kenya for further evaluation on freshly collected FP-DBS (N = 186 from infants, and compared with findings from a reference laboratory using the Roche Amplicor® HIV-1 DNA Test, version 1.5 assay. Results The HIV-1 pol PCR FP-DBS assay could detect one HIV-1 proviral copy in 38.7% of tests, 2 copies in 46.9% of tests, 5 copies in 72.5% of tests and 10 copies in 98.1% of tests performed with spiked samples. Using the archived FP-DBS samples from infants of known infection status, this assay was 92.8% sensitive and 98.3% specific for HIV-1 infant diagnosis. Using 186 FP-DBS collected from infants recently defined as HIV-1 positive using the commercially available Roche Amplicor v1.5 assay, 178 FP-DBS tested positive by this 'in-house' single-round HIV-1 pol PCR FP-DBS PCR assay. Upon subsequent retesting, the 8 infant FP-DBS samples that were discordant were confirmed as HIV-1 negative by both assays using a second blood sample. Conclusions HIV-1 was detected with high sensitivity and specificity using both archived and more recently collected samples. This suggests that this 'in-house' HIV-1 pol FP-DBS PCR assay can provide an alternative cost-effective, reliable and rapid method for early detection of HIV-1 infection in infants.

  11. Rapid identification of Gram-positive anaerobic coccal species originally classified in the genus Peptostreptococcus by multiplex PCR assays using genus- and species-specific primers.

    Science.gov (United States)

    Song, Yuli; Liu, Chengxu; McTeague, Maureen; Vu, Ann; Liu, Jia Yia; Finegold, Sydney M

    2003-07-01

    Here, a rapid and reliable two-step multiplex PCR assay for identifying 14 Gram-positive anaerobic cocci (GPAC) species originally classified in the genus Peptostreptococcus (Anaerococcus hydrogenalis, Anaerococcus lactolyticus, Anaerococcus octavius, Anaerococcus prevotii, Anaerococcus tetradius, Anaerococcus vaginalis, Finegoldia magna, Micromonas micros, Peptostreptococcus anaerobius, Peptoniphilus asaccharolyticus, Peptoniphilus harei, Peptoniphilus indolicus, Peptoniphilus ivorii and Peptoniphilus lacrimalis) is reported. Fourteen type strains representing 14 GPAC species were first identified to the genus level by multiplex PCR (multiplex PCR-G). Since three of these genera (Finegoldia, Micromonas and Peptostreptococcus) contain only a single species, F. magna, M. micros and P. anaerobius, respectively, these organisms were identified to the species level directly by using the multiplex PCR-G. Then six species of the genus Anaerococcus (A. hydrogenalis, A. lactolyticus, A. octavius, A. prevotii, A. vaginalis and A. tetradius) were further identified to the species level using multiplex PCR assays (multiplex PCR-Ia and multiplex PCR-Ib). Similarly, five species of the genus Peptoniphilus (Pn. asaccharolyticus, Pn. harei, Pn. indolicus, Pn. ivorii and Pn. lacrimalis) were identified to the species level using multiplex PCR-IIa and multiplex PCR-IIb. The established two-step multiplex PCR identification scheme was applied to the identification of 190 clinical isolates of GPAC species that had been identified previously to the species level by 16S rRNA sequencing and phenotypic tests. The identification obtained from multiplex PCR assays showed 100 % agreement with 16S rDNA sequencing identification, but only 65 % (123/190) agreement with the identification obtained by phenotypic tests. The multiplex PCR scheme established in this study is a simple, rapid and reliable method for the identification of GPAC species. It will permit a more accurate assessment of the

  12. Improvement and optimization of a multiplex real-time reverse transcription polymerase chain reaction assay for the detection and typing of Vesicular stomatitis virus.

    Science.gov (United States)

    Hole, Kate; Velazquez-Salinas, Lauro; Velazques-Salinas, Lauro; Clavijo, Alfonso

    2010-05-01

    An improvement to a previously reported real-time reverse transcription polymerase chain reaction (real-time RT-PCR) assay for the detection of Vesicular stomatitis virus (VSV) is described. Results indicate that the new assay is capable of detecting a panel of genetically representative strains of VSV present in North, Central, and South America. The assay is specific for VSV and allows for simultaneous differentiation between Vesicular stomatitis Indiana virus and Vesicular stomatitis New Jersey virus. This real-time RT-PCR is able to detect current circulating strains of VSV and can be used for rapid diagnosis of VSV and differentiation of VSV from other vesicular diseases, such as foot-and-mouth disease.

  13. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis.

    Science.gov (United States)

    Balne, P K; Basu, S; Rath, S; Barik, M R; Sharma, S

    2015-01-01

    This study is a comparative evaluation (Chi-square test) of a closed tube loop mediated isothermal amplification assay using hydroxy naphthol blue dye (HNB-LAMP), real-time polymerase chain reaction (PCR) and conventional PCR in the diagnosis of intraocular tuberculosis. Considering clinical presentation as the gold standard in 33 patients, the sensitivity of HNB-LAMP assay (75.8%) was higher (not significant, P value 0.2) than conventional PCR (57.6%) and lower than real-time PCR (90.9%). Specificity was 100% by all three methods. No amplification was observed in negative controls (n = 20) by all three methods. The cost of the HNB-LAMP assay was Rs. 500.00 and it does not require thermocycler, therefore, it can be used as an alternative to conventional PCR in resource-poor settings.

  14. Loop mediated isothermal amplification assay using hydroxy naphthol blue, conventional polymerase chain reaction and real-time PCR in the diagnosis of intraocular tuberculosis

    Directory of Open Access Journals (Sweden)

    P K Balne

    2015-01-01

    Full Text Available This study is a comparative evaluation (Chi-square test of a closed tube loop mediated isothermal amplification assay using hydroxy naphthol blue dye (HNB-LAMP, real-time polymerase chain reaction (PCR and conventional PCR in the diagnosis of intraocular tuberculosis. Considering clinical presentation as the gold standard in 33 patients, the sensitivity of HNB-LAMP assay (75.8% was higher (not significant, P value 0.2 than conventional PCR (57.6% and lower than real-time PCR (90.9%. Specificity was 100% by all three methods. No amplification was observed in negative controls (n = 20 by all three methods. The cost of the HNB-LAMP assay was Rs. 500.00 and it does not require thermocycler, therefore, it can be used as an alternative to conventional PCR in resource-poor settings.

  15. A novel polymerase chain reaction (PCR based assay for authentication of cell lines or tissues from human, pig and chicken origin

    Directory of Open Access Journals (Sweden)

    MARIO GORENJAK

    2012-01-01

    Full Text Available A polymerase chain reaction based assay was developed for authentication of cell lines or tissues from human, pig and chicken origin. Specificity was achieved by species specific primer design targeting the mitochondrial D-loop sequence. Amplicon sizes were 114 bp, 169 bp and 645-648 bp for chicken, human and pig derived cell lines, respectively. Primers were tested for species specificity and non-specificity between haplogroups of the same organisms using BLAST tool and subsequently for cross amplification DNA extracted from human, chicken and pig venous blood as a positive control. Primers were also amplifying specific products in DNA extracted from individual cell line in both functional cell models and intentionally mixed cell lines consisting functional cell models. The PCR assay developed in this study represents a low-cost species specific end-point PCR based assay of the mitochondrial D-loop for the authentication of the cell line origin.

  16. Identification of hantavirus infection by Western blot assay and TaqMan PCR in patients hospitalized with acute kidney injury.

    Science.gov (United States)

    Oldal, Miklós; Németh, Viktória; Madai, Mónika; Kemenesi, Gábor; Dallos, Bianka; Péterfi, Zoltán; Sebők, Judit; Wittmann, István; Bányai, Krisztián; Jakab, Ferenc

    2014-06-01

    Hantaviruses, one of the causative agents of viral hemorrhagic fevers, represent a considerable healthcare threat. In Hungary, Dobrava-Belgrade virus (DOBV) and Puumala virus (PUUV) are the main circulating hantavirus species, responsible for the clinical picture known as hemorrhagic fever with renal syndrome, a disease that may be accompanied by acute kidney injury (AKI), requiring hospitalization with occasionally prolonged recovery phase. A total of 20 patient sera were collected over a 2-year period from persons hospitalized with AKI, displaying clinical signs and laboratory findings directly suggestive for hantavirus infection. Samples were tested using an immunoblot assay, based on complete viral nucleocapsid proteins to detect patients' IgM and IgG antibodies against DOBV and PUUV. In parallel, all specimens were also tested by 1-step real-time TaqMan reverse-transcriptase polymerase chain reaction to confirm infection and to determine the causative hantavirus genotype. We present here the first Hungarian clinical study spanning across 2 years and dedicated specifically to assess acute kidney injuries, in the context of hantavirus prevalence.

  17. Detection of Morganella morganii, a prolific histamine former, by the polymerase chain reaction assay with 16S rDNA-targeted primers.

    Science.gov (United States)

    Kim, Shin-Hee; An, Haejung; Field, Katharine G; Wei, Cheng-I; Velazquez, Jorge Barros; Ben-Gigirey, Begoña; Morrissey, Michael T; Price, Robert J; Pitta, Thomas P

    2003-08-01

    A polymerase chain reaction (PCR) assay for the rapid and sensitive detection of the most prolific histamine former, Morganella morganii, was developed. 16S rDNA targeted PCR primers were designed, and the primer specificity and sensitivity of the PCR assay were evaluated. The 16S rDNA sequence (1,503 bp) for M. morganii showed 95% identity to those for enteric bacteria, i.e., Enterobacter spp., Klebsiella spp., Citrobacter spp., Hafnia alvei, Proteus spp., and Providencia spp. The unique primers for M. morganii were designed on the basis of the variable regions in the 16S rDNA sequence. The primers showed positive reactions with all M. morganii strains tested. However, PCR amplification was not detected when the primers were tested with other enteric or marine bacteria. When the sensitivity of the assay was evaluated, M. morganii was detected at levels ranging from 10(6) to 10(8) CFU/ml in albacore homogenate after the PCR amplification. The sensitivity of the assay was greatly improved with the enrichment of samples, and 9 CFU of M. morganii per ml of albacore homogenate was detected after 6 h of enrichment at 37 degrees C.

  18. Identification of Leptospira spp. carriers among seroreactive goats and sheep by polymerase chain reaction.

    Science.gov (United States)

    Lilenbaum, W; Varges, R; Ristow, P; Cortez, A; Souza, S O; Richtzenhain, L J; Vasconcellos, S A

    2009-08-01

    Few studies were conducted on the diagnosis and control of small ruminants' leptospirosis. Thirteen goat herds and seven sheep flocks located in the state of Rio de Janeiro, Brazil, were screened for leptospirosis. From the three herds and three flocks with greatest seroreactivity by MAT (Microscopic Agglutination Test), 19 and 40 seropositive goats and sheep, respectively, were selected, and urine samples were collected for bacteriology and PCR. For both species of animals, the most prevalent reactions were due to serogroups Sejroe and Shermani. Although leptospires were observed by darkfield microscopy in eight samples, pure isolates were obtained by bacteriological culture from only two samples. However, twelve urine samples (six goats and six sheep) were positive by PCR. Based on these findings, we consider that the combined use of MAT as a screening test followed by urine PCR for the direct detection of Leptospira spp. DNA was adequate for the identification of carrier animals among goats and sheep. These are valuable tools for the control of leptospirosis in small ruminants.

  19. An indirect enzyme-linked immunosorbent assay for the identification of antibodies to Senecavirus A in swine.

    Science.gov (United States)

    Dvorak, Cheryl M T; Akkutay-Yoldar, Zeynep; Stone, Suzanne R; Tousignant, Steven J P; Vannucci, Fabio A; Murtaugh, Michael P

    2017-02-15

    Senecavirus A (SVA), a member of the family Picornaviridae, genus Senecavirus, is a recently identified single-stranded RNA virus closely related to members of the Cardiovirus genus. SVA was originally identified as a cell culture contaminant and was not associated with disease until 2007 when it was first observed in pigs with Idiopathic Vesicular Disease (IVD). Vesicular disease is sporadically observed in swine, is not debilitating, but is significant due to its resemblance to foreign animal diseases, such as foot-and-mouth disease (FMD), whose presence would be economically devastating to the United States. IVD disrupts swine production until foreign animal diseases can be ruled out. Identification and characterization of SVA as a cause of IVD will help to quickly rule out infection by foreign animal diseases. We have developed and characterized an indirect ELISA assay to specifically identify serum antibodies to SVA. Viral protein 1, 2 and 3 (VP1, VP2, VP3) were expressed, isolated, and purified from E. coli and used to coat plates for an indirect ELISA. Sera from pigs with and without IVD symptoms as well as a time course following animals from an infected farm, were analyzed to determine the antibody responses to VP1, VP2, and VP3. Antibody responses to VP2 were higher than VP1 and VP3 and showed high affinity binding on an avidity ELISA. ROC analysis of the SVA VP2 ELISA showed a sensitivity of 94.2% and a specificity of 89.7%. Compared to IFA, the quantitative ELISA showed an 89% agreement in negative samples and positive samples from 4-60 days after appearance of clinical signs. Immune sera positive for FMDV, encephalomyocarditis virus, and porcine epidemic diarrhea virus antibodies did not cross-react. A simple ELISA based on detection of antibodies to SVA VP2 will help to differentially diagnose IVD due to SVA and rule out the presence of economically devastating foreign animal diseases.

  20. Diagnostic Molecular Mycobacteriology in Regions With Low Tuberculosis Endemicity: Combining Real-time PCR Assays for Detection of Multiple Mycobacterial Pathogens With Line Probe Assays for Identification of Resistance Mutations.

    Science.gov (United States)

    Deggim-Messmer, Vanessa; Bloemberg, Guido V; Ritter, Claudia; Voit, Antje; Hömke, Rico; Keller, Peter M; Böttger, Erik C

    2016-07-01

    Molecular assays have not yet been able to replace time-consuming culture-based methods in clinical mycobacteriology. Using 6875 clinical samples and a study period of 35months we evaluated the use of PCR-based assays to establish a diagnostic workflow with a fast time-to-result of 1-2days, for 1. detection of Mycobacterium tuberculosis complex (MTB), 2. detection and identification of nontuberculous mycobacteria (NTM), and 3. identification of drug susceptible MTB. MTB molecular-based detection and culture gave concordant results for 97.7% of the specimens. NTM PCR-based detection and culture gave concordant results for 97.0% of the specimens. Defining specimens on the basis of combined laboratory data as true positives or negatives with discrepant results resolved by clinical chart reviews, we calculated sensitivity, specificity, PPV and NPV for PCR-based MTB detection as 84.7%, 100%, 100%, and 98.7%; the corresponding values for culture-based MTB detection were 86.3%, 100%, 100%, and 98.8%. PCR-based detection of NTM had a sensitivity of 84.7% compared to 78.0% of that of culture-based NTM detection. Molecular drug susceptibility testing (DST) by line-probe assay was found to predict phenotypic DST results in MTB with excellent accuracy. Our findings suggest a diagnostic algorithm to largely replace lengthy culture-based techniques by rapid molecular-based methods.

  1. Development of two real-time polymerase chain reaction assays to detect Actinobacillus pleuropneumoniae serovars 1-9-11 and serovar 2.

    Science.gov (United States)

    Marois-Créhan, Corinne; Lacouture, Sonia; Jacques, Mario; Fittipaldi, Nahuel; Kobisch, Marylène; Gottschalk, Marcelo

    2014-01-01

    Two real-time, or quantitative, polymerase chain reaction (qPCR) assays were developed to detect Actinobacillus pleuropneumoniae serovars 1-9-11 (highly related serovars with similar virulence potential) and serovar 2, respectively. The specificity of these assays was verified on a collection of 294 strains, which included all 16 reference A. pleuropneumoniae strains (including serovars 5a and 5b), 263 A. pleuropneumoniae field strains isolated between 1992 and 2009 in different countries, and 15 bacterial strains other than A. pleuropneumoniae. The detection levels of both qPCR tests were evaluated using 10-fold dilutions of chromosomal DNA from reference strains of A. pleuropneumoniae serovars 1 and 2, and the detection limit for both assays was 50 fg per assay. The analytical sensitivities of the qPCR tests were also estimated by using pure cultures and tonsils experimentally spiked with A. pleuropneumoniae. The detection threshold was 2.5 × 10(4) colony forming units (CFU)/ml and 2.9 × 10(5) CFU/0.1 g of tonsil, respectively, for both assays. These specific and sensitive tests can be used for the serotyping of A. pleuropneumoniae in diagnostic laboratories to control porcine pleuropneumonia.

  2. Incremental Model Identification of Fluid-Fluid Reaction Systems – Dynamic Accumulation and Reactions in the Diffusion Layer

    OpenAIRE

    2013-01-01

    The identification of kinetic models is an important step for the monitoring, control and optimization of industrial processes. This is particularly the case for highly competitive business sectors such as chemical and pharmaceutical industries, where the current trend of changing markets and strong competition leads to a reduction in the process development costs [1]. Moreover, the PAT initiative of the FDA advocates a better understanding and control of manufacturing processes by the use of...

  3. Development of Candida-Specific Real-Time PCR Assays for the Detection and Identification of Eight Medically Important Candida Species

    OpenAIRE

    Jing Zhang; Guo-Chiuan Hung; Kenjiro Nagamine; Bingjie Li; Shien Tsai; Shyh-Ching Lo

    2016-01-01

    Culture-based identification methods have been the gold standard for the diagnosis of fungal infection. Currently, molecular technologies such as real-time PCR assays with short turnaround time can provide desirable alternatives for the rapid detection of Candida microbes. However, most of the published PCR primer sets are not Candida specific and likely to amplify DNA from common environmental contaminants, such as Aspergillus microbes. In this study, we designed pan-Candida primer sets base...

  4. Science Letters:Evaluation of a kinetic uricase method for serum uric acid assay by predicting background absorbance of uricase reaction solution with an integrated method

    Institute of Scientific and Technical Information of China (English)

    LIAO Fei; ZHAO Yun-sheng; ZHAO Li-na; TAO Jia; ZHU Xiao-yun; LIU Lan

    2006-01-01

    A patented kinetic uricase method was evaluated for serum uric acid assay. Initial absorbance of the reaction mixture before uricase action (A0) was obtained by correcting the absorbance at 293 nm measured before the addition of uricase solution,and background absorbance (Ab) was predicted by an integrated method. Uric acid concentration in reaction solution was calculated from △A, the difference between A0 and Ab, using the absorptivity preset for uric acid. This kinetic uricase method exhibited CV<4.3% and recovery of 100%. Lipids, bilirubin, hemoglobin, ascorbic acid, reduced glutathione and xanthine <0.32 mmol/L in serum had no significant effects. △A linearly responded to 1.2 to 37.5 μmol/L uric acid in reaction solution containing 15 μl serum.The slope of linear response was consistent with the absorptivity preset for uric acid while the intercept was consistent with that for serum alone. Uric acid concentrations in clinic sera by different uricase methods positively correlated to each other. By Bland-Altman analysis, this kinetic uricase method accorded with that by quantifying the total change of UV absorbance on the completion of uricase reaction. These results demonstrated that this kinetic uricase method is reliable for serum uric acid assay with enhanced resistance to both xanthine and other common errors, wider range of linear response and much lower cost.

  5. Evaluation of a novel real-time fluorescent polymerase chain reaction assay for high-risk human papilloma virus DNA genotypes in cytological cervical screening.

    Science.gov (United States)

    Cheng, Jiaoying; Bian, Meilu; Cong, Xiao; Sun, Aiping; Li, Min; Ma, Li; Chen, Ying; Liu, Jun

    2013-03-01

    It has been confirmed that detection of high-risk human papillomavirus (HR HPV) DNA is useful in cervical cancer (CC) screening. Recently, a new real-time fluorescent polymerase chain reaction (PCR) assay was developed to detect HR HPV. This assay can synchronize nucleic acid amplification and testing using specific primers for 13 types of HR HPV genomes, combined with specific TaqMan fluorescent marker probe techniques through the fluorescence automatic PCR instrument. Furthermore, it uses TaqGold™ DNA polymerase, which minimizes the amount of non-specific amplification and increases the sensitivity of the assay. The aim of this study was to evaluate the analytical and clinical performance of the real-time fluorescent PCR assay in CC screening, compared to the Qiagen Hybrid Capture(®) II High-Risk HPV DNA test(®) (HC II). In total, 1,252 cervical specimens were collected from women between 19 and 71 years of age. The specimens were examined with three different assays, real-time fluorescent PCR assay and HC II for HR HPV detection combined with liquid-based cytology. Women with cytological abnormalities or HR HPV-positive results underwent colposcopy and cervical biopsy. This study demonstrated good overall agreement between HC II and real-time fluorescent PCR assay (overall agreement, 92.25%; Cohen's κ=0.814). For the detection of high-grade cervical intraepithelial neoplasias (CIN) and CC, the sensitivity of HC II and real-time fluorescent PCR was 94.48 and 92.82%, respectively, and the negative predictive value was 98.85 and 98.54%, respectively. High HR HPV infection rate of the high-grade CIN and CC group was detected (PHPV detection and could be used in CC screening in clinic.

  6. Triplex real-time polymerase chain reaction assay for detection and quantification of norovirus (GI and GII) and sapovirus.

    Science.gov (United States)

    Niwa, Shoichi; Tsukagoshi, Hiroyuki; Ishioka, Taisei; Sasaki, Yoshiko; Yoshizumi, Masakazu; Morita, Yukio; Kimura, Hirokazu; Kozawa, Kunihisa

    2014-01-01

    To improve detection of norovirus (NoVGI, NoVGII) and sapovirus (SaV), a simultaneous quantitative RT-PCR method was established. This triplex real-time PCR method was evaluated using a combination of optimized specific primers and probes. The performance of the developed PCR assay was equivalent to that of monoplex real-time PCR across a broad dynamic range of 10(2) -10(7) copies/assay using plasmid DNA standards. The limit of detection was 10(2) copies/assay. The quantitative value was comparable with that of monoplex real-time PCR of stool samples. Our triplex real-time PCR is useful for detection of NoV and SaV infections. © 2013 The Societies and Wiley Publishing Asia Pty Ltd.

  7. Adverse Drug Reaction Identification and Extraction in Social Media: A Scoping Review.

    Science.gov (United States)

    Lardon, Jérémy; Abdellaoui, Redhouane; Bellet, Florelle; Asfari, Hadyl; Souvignet, Julien; Texier, Nathalie; Jaulent, Marie-Christine; Beyens, Marie-Noëlle; Burgun, Anita; Bousquet, Cédric

    2015-07-10

    The underreporting of adverse drug reactions (ADRs) through traditional reporting channels is a limitation in the efficiency of the current pharmacovigilance system. Patients' experiences with drugs that they report on social media represent a new source of data that may have some value in postmarketing safety surveillance. A scoping review was undertaken to explore the breadth of evidence about the use of social media as a new source of knowledge for pharmacovigilance. Daubt et al's recommendations for scoping reviews were followed. The research questions were as follows: How can social media be used as a data source for postmarketing drug surveillance? What are the available methods for extracting data? What are the different ways to use these data? We queried PubMed, Embase, and Google Scholar to extract relevant articles that were published before June 2014 and with no lower date limit. Two pairs of reviewers independently screened the selected studies and proposed two themes of review: manual ADR identification (theme 1) and automated ADR extraction from social media (theme 2). Descriptive characteristics were collected from the publications to create a database for themes 1 and 2. Of the 1032 citations from PubMed and Embase, 11 were relevant to the research question. An additional 13 citations were added after further research on the Internet and in reference lists. Themes 1 and 2 explored 11 and 13 articles, respectively. Ways of approaching the use of social media as a pharmacovigilance data source were identified. This scoping review noted multiple methods for identifying target data, extracting them, and evaluating the quality of medical information from social media. It also showed some remaining gaps in the field. Studies related to the identification theme usually failed to accurately assess the completeness, quality, and reliability of the data that were analyzed from social media. Regarding extraction, no study proposed a generic approach to easily

  8. A Quantitative Polymerase Chain Reaction Assay for the Detection and Quantification of Epizootic Epitheliotropic Disease Virus (EEDV; Salmonid Herpesvirus 3).

    Science.gov (United States)

    Glenney, Gavin W; Barbash, Patricia A; Coll, John A

    2016-03-01

    Epizootic epitheliotropic disease virus (EEDV; salmonid herpesvirus [SalHV3]; family Alloherpesviridae) causes a systemic disease of juvenile and yearling Lake Trout Salvelinus namaycush. No cell lines are currently available for the culture and propagation of EEDV, so primary diagnosis is limited to PCR and electron microscopy. To better understand the pervasiveness of EEDV (carrier or latent state of infection) in domesticated and wild Lake Trout populations, we developed a sensitive TaqMan quantitative PCR (qPCR) assay to detect the presence of the EEDV terminase gene in Lake Trout tissues. This assay was able to detect a linear standard curve over nine logs of plasmid dilution and was sensitive enough to detect single-digit copies of EEDV. The efficiency of the PCR assay was 99.4 ± 0.06% (mean ± SD), with a 95% confidence limit of 0.0296 (R(2) = 0.994). Methods were successfully applied to collect preliminary data from a number of species and water bodies in the states of Pennsylvania, New York, and Vermont, indicating that EEDV is more common in wild fish than previously known. In addition, through the development of this qPCR assay, we detected EEDV in a new salmonid species, the Cisco Coregonus artedi. The qPCR assay was unexpectedly able to detect two additional herpesviruses, the Atlantic Salmon papillomatosis virus (ASPV; SalHV4) and the Namaycush herpesvirus (NamHV; SalHV5), which both share high sequence identity with the EEDV terminase gene. With these unexpected findings, we subsequently designed three primer sets to confirm initial TaqMan qPCR assay positives and to differentiate among EEDV, ASPV, and NamHV by detecting the glycoprotein genes via SYBR Green qPCR. Received April 20, 2015; accepted November 10, 2015.

  9. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens.

    Science.gov (United States)

    Saponari, Maria; Loconsole, Giuliana; Liao, Hui-Hong; Jiang, Bo; Savino, Vito; Yokomi, Raymond K

    2013-11-01

    A number of important citrus pathogens are spread by graft propagation, arthropod vector transmission and inadvertent import and dissemination of infected plants. For these reasons, citrus disease management and clean stock programs require pathogen detection systems which are economical and sensitive to maintain a healthy industry. To this end, multiplex quantitative real-time PCR (qPCR) assays were developed allowing high-throughput and simultaneous detection of some major invasive citrus pathogens. Automated high-throughput extraction comparing several bead-based commercial extraction kits were tested and compared with tissue print and manual extraction to obtain nucleic acids from healthy and pathogen-infected citrus trees from greenhouse in planta collections and field. Total nucleic acids were used as templates for pathogen detection. Multiplex reverse transcription-qPCR (RT-qPCR) assays were developed for simultaneous detection of six targets including a virus, two viroids, a bacterium associated with huanglongbing and a citrus RNA internal control. Specifically, two one-step TaqMan-based multiplex RT-qPCR assays were developed and tested with target templates to determine sensitivity and detection efficiency. The first assay included primers and probes for 'Candidatus Liberibacter asiaticus' (CLas) and Citrus tristeza virus (CTV) broad spectrum detection and genotype differentiation (VT- and T3-like genotypes). The second assay contained primers and probes for Hop stunt viroid (HSVd), Citrus exocortis viroid (CEVd) and the mitochondrial NADH dehydrogenase (nad5) mRNA as an internal citrus host control. Primers and TaqMan probes for the viroids were designed in this work; whereas those for the other pathogens were from reports of others. Based on quantitation cycle values, automated high-throughput extraction of samples proved to be as suitable as manual extraction. The multiplex RT-qPCR assays detected both RNA and DNA pathogens in the same dilution series

  10. Establishment of a novel one-step reverse transcription loop-mediated isothermal amplification assay for rapid identification of RNA from the severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Xu, Haihong; Zhang, Lei; Shen, Guangqiang; Feng, Cen; Wang, Xinying; Yan, Jie; Zhang, Yanjun

    2013-12-01

    As an emerging infectious disease, severe fever with thrombocytopenia syndrome virus (SFTSV) infection has been found in many areas of China. Suitable laboratory diagnostic method is urgently needed in clinical detections and epidemiological investigations. In this study, a modified, low-cost and rapid visualized one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of RNA from the SFTSV has been established. In order to avoid the risk of aerosol contamination and facilitate the naked eye to observe, a microcrystalline wax-dye capsule wrapping the highly sensitive DNA fluorescence dye SYBR Green I was added to the RT-LAMP reaction tube before the initiation of the assay. The detection limit of the established RT-LAMP assay was 10 fg template RNA per reaction mixture. The RT-LAMP assay was confirmed to be high specific to SFTSV, and no cross-reaction was found with the detection of the Chikungunya fever virus, Hemorrhagic Fever with Renal Syndrome virus (HFRSV), and Dengue fever virus. The assay was then applied for the detection of SFTSV RNA in 32 clinical serum samples and showed 94.4% consistence with the detection results of the real-time RT-PCR. The whole process, from sample preparation to result reporting, can be completed within 2h. This adapted, cost efficient and quick visualized RT-LAMP method is feasible for SFTSV field diagnosis in resource-limited field settings.

  11. SHARP: genome-scale identification of gene-protein-reaction associations in cyanobacteria.

    Science.gov (United States)

    Krishnakumar, S; Durai, Dilip A; Wangikar, Pramod P; Viswanathan, Ganesh A

    2013-11-01

    Genome scale metabolic model provides an overview of an organism's metabolic capability. These genome-specific metabolic reconstructions are based on identification of gene to protein to reaction (GPR) associations and, in turn, on homology with annotated genes from other organisms. Cyanobacteria are photosynthetic prokaryotes which have diverged appreciably from their nonphotosynthetic counterparts. They also show significant evolutionary divergence from plants, which are well studied for their photosynthetic apparatus. We argue that context-specific sequence and domain similarity can add to the repertoire of the GPR associations and significantly expand our view of the metabolic capability of cyanobacteria. We took an approach that combines the results of context-specific sequence-to-sequence similarity search with those of sequence-to-profile searches. We employ PSI-BLAST for the former, and CDD, Pfam, and COG for the latter. An optimization algorithm was devised to arrive at a weighting scheme to combine the different evidences with KEGG-annotated GPRs as training data. We present the algorithm in the form of software "Systematic, Homology-based Automated Re-annotation for Prokaryotes (SHARP)." We predicted 3,781 new GPR associations for the 10 prokaryotes considered of which eight are cyanobacteria species. These new GPR associations fall in several metabolic pathways and were used to annotate 7,718 gaps in the metabolic network. These new annotations led to discovery of several pathways that may be active and thereby providing new directions for metabolic engineering of these species for production of useful products. Metabolic model developed on such a reconstructed network is likely to give better phenotypic predictions.

  12. Identification of Endosymbionts in Ticks by Broad-Range Polymerase Chain Reaction and Electrospray Ionization Mass Spectrometry

    OpenAIRE

    ROUNDS, MEGAN A.; Crowder, Christopher D; MATTHEWS, HEATHER E.; PHILIPSON, CURTIS A.; Scoles, Glen A.; Ecker, David J.; Schutzer, Steven E.; Eshoo, Mark W.

    2012-01-01

    Many organisms, such as insects, filarial nematodes, and ticks, contain heritable bacterial endosymbionts that are often closely related to transmissible tickborne pathogens. These intracellular bacteria are sometimes unique to the host species, presumably due to isolation and genetic drift. We used a polymerase chain reaction/electrospray ionization-mass spectrometry assay designed to detect a wide range of vectorborne microorganisms to characterize endosymbiont genetic signatures from Ambly...

  13. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments

    Science.gov (United States)

    Erdner, D. L.; Percy, L.; Keafer, B.; Lewis, J.; Anderson, D. M.

    2010-02-01

    top 1 cm contains more recent cysts while those in the next 1-3 cm may have been in the sediments for many years. Comparison of the cyst densities obtained by both methods shows that a majority (56.6%) of the values are within a two-fold range of each other and almost all of the samples (96.9%) are within an order of magnitude. Thus, the qPCR method described here represents a promising alternative to primulin-staining for the identification and enumeration of cysts. The qPCR method has a higher throughput, enabling the extraction and assay of 24 samples in the time required to process and count 8-10 samples by primulin-staining. Both methods require prior expertise, either in taxonomy or molecular biology. Fewer person-hours per sample are required for qPCR, but primulin-staining has lower reagent costs. The qPCR method might be more desirable for large-scale cyst mapping, where large numbers of samples are generated and a higher sample analysis rate is necessary. While the qPCR and primulin-staining methods generate similar data, the choice of counting method may be most influenced by the practical issue of the different relative costs of labor and materials between the two methods.

  14. Comparative evaluation of polymerase chain reaction assay with microscopy for detection of asymptomatic carrier state of theileriosis in a herd of crossbred cattle

    Science.gov (United States)

    Charaya, Gaurav; Rakha, N. K.; Maan, Sushila; Kumar, Aman; Kumar, Tarun; Jhambh, Ricky

    2016-01-01

    Aim: This study aims to develop and to standardize a polymerase chain reaction (PCR) assay that will diagnose clinical as well as carrier state of the disease and to compare the results with conventional microscopy technique. Materials and Methods: A herd of crossbred cattle with the previous history of theileriosis in village Lahli, district Rohtak, Haryana, was selected for this study. A total of 29 blood samples were collected randomly from cows including five clinically ill cattle. Blood smears from all animals and lymph node biopsy smears from animal with swollen lymph nodes were examined microscopically after conventional Giemsa staining. Phenol chloroform isoamyl alcohol method was used for extracting DNA from blood. Previously published primers targeting cytochrome b gene sequence of Theileria annulata were used in the PCR assay that was standardized to use in the laboratory. Results: Out of 29 samples tested,18 (62.06%) were found positive for theileriosis by PCR assay, whereas only 10 (34.48%) samples were detected positive by conventional microscopic technique using Giemsa staining method. Conclusions: On the basis results of comparative studies, it can be concluded that PCR assay is a more sensitive than microscopic examination for detection of theileriosis. This can be attributed to the ability of PCR assay to detect small amounts of genomic DNA of T. annulata or low parasitemia in cows. Therefore, PCR assay can serve as a more sensitive tool to detect Theileria for detection of theileriosis even in asymptomatic carrier cattle which is important for the implementation of successful control programs. PMID:27733810

  15. Comparative evaluation of polymerase chain reaction assay with microscopy for detection of asymptomatic carrier state of theileriosis in a herd of crossbred cattle

    Directory of Open Access Journals (Sweden)

    Gaurav Charaya

    2016-09-01

    Full Text Available Aim: This study aims to develop and to standardize a polymerase chain reaction (PCR assay that will diagnose clinical as well as carrier state of the disease and to compare the results with conventional microscopy technique. Materials and Methods: A herd of crossbred cattle with the previous history of theileriosis in village Lahli, district Rohtak, Haryana, was selected for this study. A total of 29 blood samples were collected randomly from cows including five clinically ill cattle. Blood smears from all animals and lymph node biopsy smears from animal with swollen lymph nodes were examined microscopically after conventional Giemsa staining. Phenol chloroform isoamyl alcohol method was used for extracting DNA from blood. Previously published primers targeting cytochrome b gene sequence of Theileria annulata were used in the PCR assay that was standardized to use in the laboratory. Results: Out of 29 samples tested,18 (62.06% were found positive for theileriosis by PCR assay, whereas only 10 (34.48% samples were detected positive by conventional microscopic technique using Giemsa staining method. Conclusions: On the basis results of comparative studies, it can be concluded that PCR assay is a more sensitive than microscopic examination for detection of theileriosis. This can be attributed to the ability of PCR assay to detect small amounts of genomic DNA of T. annulata or low parasitemia in cows. Therefore, PCR assay can serve as a more sensitive tool to detect Theileria for detection of theileriosis even in asymptomatic carrier cattle which is important for the implementation of successful control programs.

  16. Evaluation of the nanosphere Verigene BC-GN assay for direct identification of gram-negative bacilli and antibiotic resistance markers from positive blood cultures and potential impact for more-rapid antibiotic interventions.

    Science.gov (United States)

    Hill, Joseph T; Tran, Kim-Dung T; Barton, Karen L; Labreche, Matthew J; Sharp, Susan E

    2014-10-01

    The Verigene BC-GN assay correctly identified all 51 Gram-negative bacilli (GNB) from positive blood cultures and all 14 carbapenemase enzymes tested. The assay gave organism identification (ID) results an average of 24 h faster compared to conventional identifications. Medical management could have been modified for 31.8% of patients an average 33 h sooner. In conclusion, the BC-GN assay is a very accurate, rapid assay which would allow for more-immediate medical management decisions in patients with bacteremia from GNB. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Development of a diagnostic real-time polymerase chain reaction assay for the detection of invasive Haemophilus influenzae in clinical samples.

    LENUS (Irish Health Repository)

    Meyler, Kenneth L

    2012-12-01

    Since the introduction of the Haemophilus influenzae serotype b vaccine, invasive H. influenzae disease has become dominated by nontypeable (NT) strains. Several widely used molecular diagnostic methods have been shown to lack sensitivity or specificity in the detection of some of these strains. Novel real-time assays targeting the fucK, licA, and ompP2 genes were developed and evaluated. The fucK assay detected all strains of H. influenzae tested (n = 116) and had an analytical sensitivity of 10 genome copies\\/polymerase chain reaction (PCR). This assay detected both serotype b and NT H. influenzae in 12 previously positive specimens (culture and\\/or bexA PCR) and also detected H. influenzae in a further 5 of 883 culture-negative blood and cerebrospinal fluid (CSF) samples. The fucK assay has excellent potential as a diagnostic test for detection of typeable and nontypeable strains of invasive H. influenzae in clinical samples of blood and CSF.

  18. Development of a real-time polymerase chain reaction assay for the detection of the invasive Mediterranean fanworm, Sabella spallanzanii, in environmental samples.

    Science.gov (United States)

    Wood, Susanna A; Zaiko, Anastasija; Richter, Ingrid; Inglis, Graeme J; Pochon, Xavier

    2017-07-01

    The Mediterranean fanworm, Sabella spallanzanii Gmelin 1791, was first detected in the Southern Hemisphere in the 1990s and is now abundant in many parts of southern Australia and in several locations around northern New Zealand. Once established, it can proliferate rapidly, reaching high densities with potential ecological and economic impacts. Early detection of new S. spallanzanii incursions is important to prevent its spread, guide eradication or control efforts and to increase knowledge on the species' dispersal pathways. In this study, we developed a TaqMan probe real-time polymerase chain reaction assay targeting a region of the mitochondrial cytochrome oxidase I gene. The assay was validated in silico and in vitro using DNA from New Zealand and Australian Sabellidae with no cross-reactivity detected. The assay has a linear range of detection over seven orders of magnitude with a limit of detection reached at 12.4 × 10(-4) ng/μL of DNA. We analysed 145 environmental (water, sediment and biofouling) samples and obtained positive detections only from spiked samples and those collected at a port where S. spallanzanii is known to be established. This assay has the potential to enhance current morphological and molecular-based methods, through its ability to rapidly and accurately identify S. spallanzanii in environmental samples.

  19. Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens.

    Science.gov (United States)

    Cheng, Fang; Wu, Jiajie; Zhang, Jin; Pan, Aihu; Quan, Sheng; Zhang, Dabing; Kim, HaeYeong; Li, Xiang; Zhou, Shan; Yang, Litao

    2016-05-15

    Food allergies cause health risks to susceptible consumers and regulations on labeling of food allergen contents have been implemented in many countries and regions. To achieve timely and accurate food allergen labeling, the development of fast and effective allergen detection methods is very important. Herein, a decaplex polymerase chain reaction (PCR) assay combined with capillary electrophoresis was developed to detect simultaneously 10 common food allergens from hazelnut, pistachio, oat, sesame, peanut, cashew, barley, wheat, soybean and pecan. The absolute limit of detection (LODa) of this system is between 2 and 20 copies of haploid genome, and the relative LOD (LODr) is as low as 0.005% (w/w) in simulated food mixtures. The developed assay was subsequently applied to 20 commercial food products and verified the allergen ingredients stated on the labels. Furthermore, results using this decaplex PCR assay was successfully replicated in three other laboratories, demonstrating the repeatability and applicability of this assay in routine analysis of the 10 food allergens.

  20. Development of a multiplex PCR assay based on the 16S-23S rRNA internal transcribed spacer for the detection and identification of rodent Pasteurellaceae.

    Science.gov (United States)

    Benga, Laurentiu; Benten, W Peter M; Engelhardt, Eva; Bleich, André; Gougoula, Christina; Sager, Martin

    2013-11-01

    The rodents Pasteurellaceae have to be excluded from the specified pathogen free experimental animal facilities. Despite the biological and economic importance of Pasteurellaceae in relation to experimental animals just a few molecular based methods are available for their detection and identification. The aim of the present investigation was to develop a multiplex PCR assay allowing detection of all rodent Pasteurellaceae and identification of [Pasteurella] pneumotropica biotype Jawetz, [P.] pneumotropica biotype Heyl and [Actinobacillus] muris, as the most prevalent members of the group. For this, a Pasteurellaceae common forward primer located on the 16S rRNA gene was used in conjunction with four different reverse primers specific for [P.] pneumotropica biotype Jawetz, [P.] pneumotropica biotype Heyl, [A.] muris and a common reverse primer for all rodent Pasteurellaceae, all targeting the 16S-23S rRNA internal transcribed spacer sequences. The performance characteristics of the assay were tested against 125 Pasteurellaceae isolates belonging to eleven different species and including 34 strains of [P.] pneumotropica biotype Jawetz, 44 strains of [P.] pneumotropica biotype Heyl and 37 strains of [A.] muris. Additionally, eight other mouse associated bacterial species which could pose a diagnostic problem were included. The assay showed 100% sensitivity and specificity. Identification of the clinical isolates was validated by ITS profiling and when necessary by 16S rRNA gene sequencing. This multiplex PCR represents the first molecular tool able to detect and differentiate in a single assay among the Pasteurellaceae found in laboratory mouse and may become a reliable alternative to the present diagnostic methods. © 2013.

  1. Rapid detection and identification of viral and bacterial fish pathogens using a DNA array‐based multiplex assay

    DEFF Research Database (Denmark)

    Lievens, B.; Frans, I.; Heusdens, C.

    2011-01-01

    for the simultaneous detection and identification of all cyprinid herpesviruses (CyHV‐1, CyHV‐2 and CyHV‐3) and some of the most important fish pathogenic Flavobacterium species, including F. branchiophilum, F. columnare and F. psychrophilum. For virus identification, the DNA polymerase and helicase genes were...

  2. Novel TaqMan real-time polymerase chain reaction assay for verifying the authenticity of meat and commercial meat products from game birds.

    Science.gov (United States)

    Rojas, María; González, Isabel; Pavón, Miguel Angel; Pegels, Nicolette; Lago, Adriana; Hernández, Pablo E; García, Teresa; Martín, Rosario

    2010-06-01

    Species-specific real-time polymerase chain reaction (PCR) assays using TaqMan probes have been developed for verifying the labeling of meat and commercial meat products from game birds, including quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock and song thrush. The method combines the use of species-specific primers and TaqMan probes that amplify small fragments (amplicons <150 base pairs) of the mitochondrial 12S rRNA gene, and an endogenous control primer pair that amplifies a 141-bp fragment of the nuclear 18S rRNA gene from eukaryotic DNA. Analysis of experimental raw and heat-treated binary mixtures as well as of commercial meat products from the target species demonstrated the suitability of the assay for the detection of the target DNAs.

  3. Giardia and Cryptosporidium spp. dissemination during wastewater treatment and comparative detection via immunofluorescence assay (IFA), nested polymerase chain reaction (nested PCR) and loop mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Gallas-Lindemann, Carmen; Sotiriadou, Isaia; Plutzer, Judit; Noack, Michael J; Mahmoudi, Mohammad Reza; Karanis, Panagiotis

    2016-06-01

    Environmental water samples from the Lower Rhine area in Germany were investigated via immunofluorescence assays (IFAs), nested polymerase chain reaction (nested PCR) and loop-mediated isothermal amplification (LAMP) to detect the presence of Giardia spp. (n=185) and Cryptosporidium spp. (n=227). The samples were concentrated through filtration or flocculation, and oocysts were purified via centrifugation through a sucrose density gradient. For all samples, IFA was performed first, followed by DNA extraction for the nested PCR and LAMP assays. Giardia cysts were detected in 105 samples (56.8%) by IFA, 62 samples (33.5%) by nested PCR and 79 samples (42.7%) by LAMP. Cryptosporidium spp. were detected in 69 samples (30.4%) by IFA, 95 samples (41.9%) by nested PCR and 99 samples (43.6%) by LAMP. According to these results, the three detection methods are complementary for monitoring Giardia and Cryptosporidium in environmental waters.

  4. Development of a locked nucleic acid real-time polymerase chain reaction assay for the detection of Pinus armandii in mixed species pine nut samples associated with dysgeusia.

    Science.gov (United States)

    Handy, Sara M; Timme, Ruth E; Jacob, Salena M; Deeds, Jonathan R

    2013-02-01

    Recent work has shown that the presence of the species Pinus armandii , even when occurring as species mixtures of pine nuts, is correlated with taste disturbance (dysgeusia), also referred to as "pine mouth". Because of this known possibility of pine nut mixtures, a need was identified for a rapid streamlined assay to detect the presence of this species in the presence of other types of pine nuts. A locked nucleic acid probe was employed in a real-time polymerase chain reaction (RT-PCR) format to detect a single nucleotide polymorphism (SNP) unique to this species. This assay was able to detect P. armandii in homogenates down to ∼1% concentration (the lowest level tested) in the presence of several commonly co-occurring and closely related species of pine and should prove to be a useful tool for the detection of this species in food products.

  5. Evaluation of a novel PCR-based assay for detection and identification of Chlamydia trachomatis serovars in cervical specimens.

    NARCIS (Netherlands)

    Quint, K.D.; Porras, C.; Safaeian, M.; Gonzalez, P.; Hildesheim, A.; Quint, W.G.V.; Doorn, L.J. van; Silva, S.; Melchers, W.J.G.; Schiffman, M.; Rodriguez, A.C.; Wacholder, S.; Freer, E.; Cortes, B.; Herrero, R.

    2007-01-01

    The aims of this study were to compare a novel PCR-based Chlamydia trachomatis detection and genotyping (Ct-DT) assay with the FDA-approved, commercially available C. trachomatis detection Hybrid Capture 2 (HC2) assay and to investigate the C. trachomatis serovar distribution among young women in a

  6. Identification of Hantavirus serotypes by testing of post-infection sera in immunofluorescence and enzyme-linked immunosorbent assays.

    NARCIS (Netherlands)

    J. Groen (Jan); H.G.M. Jordans; J.P.G. Clement; E.J.M. Rooijakkers; F.G.C.M. Uytdehaag (Fons); J.M. Dalrymple; G. van der Groen (Guido); A.D.M.E. Osterhaus (Albert)

    1991-01-01

    textabstractSerum samples were collected from 27 individuals who had been infected with a member of the genus Hantavirus in the Netherlands or Belgium during the last 15 years. These samples were tested in an immunofluorescence assay (IFA) and two enzyme-linked immunosorbent assay (ELISA) systems, u

  7. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    Science.gov (United States)

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence.

  8. In the eyes of the beholder: National identification predicts differential reactions to ethnic identity expressions.

    Science.gov (United States)

    Yogeeswaran, Kumar; Adelman, Levi; Parker, Michael T; Dasgupta, Nilanjana

    2014-07-01

    Two studies examined how perceivers' national identification influences their implicit and explicit attitudes toward White and non-White ethnic groups whose members express their ethnic identity overtly in public or discreetly in private spaces. Results revealed that at a conscious level, White American perceivers' national identification elicited more negative attitudes toward both White and non-White ethnic groups when members embraced their ethnic heritage in public rather than in private. However, at an unconscious level, White perceivers' identification with the national group led to less favorable attitudes toward non-White ethnic groups, but not White ethnic groups, when their group members embraced ethnic identity in public. By integrating research on national identification, ethnic identity expression, and prejudice, the present research highlights some conditions under which majority group members' national identification affects how they perceive ethnic subgroups within the nation.

  9. Real-time PCR assays for detection of Brucella spp. and the identification of genotype ST27 in bottlenose dolphins (Tursiops truncatus).

    Science.gov (United States)

    Wu, Qingzhong; McFee, Wayne E; Goldstein, Tracey; Tiller, Rebekah V; Schwacke, Lori

    2014-05-01

    Rapid detection of Brucella spp. in marine mammals is challenging. Microbiologic culture is used for definitive diagnosis of brucellosis, but is time consuming, has low sensitivity and can be hazardous to laboratory personnel. Serological methods can aid in diagnosis, but may not differentiate prior exposure versus current active infection and may cross-react with unrelated Gram-negative bacteria. This study reports a real-time PCR assay for the detection of Brucella spp. and application to screen clinical samples from bottlenose dolphins stranded along the coast of South Carolina, USA. The assay was found to be 100% sensitive for the Brucella strains tested, and the limit of detection was 0.27fg of genomic DNA from Brucella ceti B1/94 per PCR volume. No amplification was detected for the non-Brucella pathogens tested. Brucella DNA was detected in 31% (55/178) of clinical samples tested. These studies indicate that the real-time PCR assay is highly sensitive and specific for the detection of Brucella spp. in bottlenose dolphins. We also developed a second real-time PCR assay for rapid identification of Brucella ST27, a genotype that is associated with human zoonotic infection. Positive results were obtained for Brucella strains which had been identified as ST27 by multilocus sequence typing. No amplification was found for other Brucella strains included in this study. ST27 was identified in 33% (18/54) of Brucella spp. DNA-positive clinical samples. To our knowledge, this is the first report on the use of a real-time PCR assay for identification of Brucella genotype ST27 in marine mammals.

  10. Evaluation of Capilia TB assay for rapid identification of Mycobacterium tuberculosis complex in BACTEC MGIT 960 and BACTEC 9120 blood cultures

    Directory of Open Access Journals (Sweden)

    Muchwa Christopher

    2012-01-01

    Full Text Available Abstract Background Capilia TB is a simple immunochromatographic assay based on the detection of MPB64 antigen specifically secreted by the Mycobacterium tuberculosis complex (MTC. Capilia TB was evaluated for rapid identification of MTC from BACTEC MGIT 960 and BACTEC 9120 systems in Kampala, Uganda. Since most studies have mainly dealt with respiratory samples, the performance of Capilia TB on blood culture samples was also evaluated. Methods One thousand samples from pulmonary and disseminated tuberculosis (TB suspects admitted to the JCRC clinic and the TB wards at Old Mulago hospital in Kampala, Uganda, were cultured in automated BACTEC MGIT 960 and BACTEC 9120 blood culture systems. BACTEC-positive samples were screened for purity by sub-culturing on blood agar plates. Two hundred and fifty three (253 samples with Acid fast bacilli (AFB, 174 BACTEC MGIT 960 and 79 BACTEC 9120 blood cultures were analyzed for presence of MTC using Capilia TB and in-house PCR assays. Results The overall Sensitivity, Specificity, Positive and Negative Predictive values, and Kappa statistic for Capilia TB assay for identification of MTC were 98.4%, 97.6%, 97.7%, 98.4% and 0.96, respectively. Initially, the performance of in-house PCR on BACTEC 9120 blood cultures was poor (Sensitivity, Specificity, PPV, NPV and Kappa statistic of 100%, 29.3%,7%, 100% and 0.04, respectively but improved upon sub-culturing on solid medium (Middlebrook 7H10 to 100%, 95.6%, 98.2%, 100% and 0.98, respectively. In contrast, the Sensitivity and Specificity of Capilia TB assay was 98.4% and 97.9%, respectively, both with BACTEC blood cultures and Middlebrook 7H10 cultured samples, revealing that Capilia was better than in-house PCR for identification of MTC in blood cultures. Additionally, Capilia TB was cheaper than in-house PCR for individual samples ($2.03 vs. $12.59, respectively, and was easier to perform with a shorter turnaround time (20 min vs. 480 min, respectively

  11. An investigation of genital ulcers in Jackson, Mississippi, with use of a multiplex polymerase chain reaction assay: high prevalence of chancroid and human immunodeficiency virus infection.

    Science.gov (United States)

    Mertz, K J; Weiss, J B; Webb, R M; Levine, W C; Lewis, J S; Orle, K A; Totten, P A; Overbaugh, J; Morse, S A; Currier, M M; Fishbein, M; St Louis, M E

    1998-10-01

    In 1994, an apparent outbreak of atypical genital ulcers was noted by clinicians at the sexually transmitted disease clinic in Jackson, Mississippi. Of 143 patients with ulcers tested with a multiplex polymerase chain reaction (PCR) assay, 56 (39%) were positive for Haemophilus ducreyi, 44 (31%) for herpes simplex virus, and 27 (19%) for Treponema pallidum; 12 (8%) were positive for > 1 organism. Of 136 patients tested for human immunodeficiency virus (HIV) by serology, 14 (10%) were HIV-seropositive, compared with none of 200 patients without ulcers (P genital ulcers and HIV infection in this population highlights the urgency of preventing genital ulcers in the southern United States.

  12. Analytical validation of a quantitative reverse transcriptase polymerase chain reaction assay for evaluation of T-cell targeted immunosuppressive therapy in the dog.

    Science.gov (United States)

    Riggs, C; Archer, T; Fellman, C; Figueiredo, A S; Follows, J; Stokes, J; Wills, R; Mackin, A; Bulla, C

    2013-12-15

    Cyclosporine is an immunosuppressive agent that inhibits T-cell function by decreasing production of cytokines such as interleukin-2 (IL-2) and interferon-γ(IFN-γ). In dogs, there is currently no reliable analytical method for determining effective cyclosporine dosages in individual patients. Our laboratory has developed a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay that measures IL-2 and IFN-γ gene expression, with the goal of quantifying immunosuppression in dogs treated with cyclosporine. This study focuses on analytical validation of our assay, and on the effects of sample storage conditions on cyclosporine-exposed samples. Heparinized whole blood collected from healthy adult dogs was exposed to a typical post-treatment blood concentration for cyclosporine(500 ng/mL) for 1 h, and then stored for 0, 24, and 48 h at both room temperature and 4 ◦C.The study was then repeated using a cyclosporine concentration of 75 ng/mL, with sample storage for 0, 24, and 48 h at 4 ◦C. Cytokine gene expression was measured using RT-qPCR,and assay efficiency and inter- and intra-assay variability were determined. Storage for upto 24 h at room temperature, and up to 48 h at 4 ◦C, did not significantly alter results compared to samples that were processed immediately. Validation studies showed our assay to be highly efficient and reproducible and robust enough to be feasible under standard practice submission conditions. © 2013 Elsevier B.V. All rights reserved.

  13. Real-time polymerase chain reaction detection of cauliflower mosaic virus to complement the 35S screening assay for genetically modified organisms.

    Science.gov (United States)

    Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa

    2005-01-01

    Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.

  14. A sensitive and quantitative polymerase chain reaction-based cell free in vitro non-homologous end joining assay for hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Lijian Shao

    Full Text Available Hematopoietic stem cells (HSCs are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism. Maintenance of genomic stability is crucial for the preservation of HSCs, which depends on their efficient repair of DNA damage, particularly DNA double strand breaks (DSBs. Because of the paucity of HSCs and lack of sensitive assays, directly measuring the ability of HSCs to repair DSBs has been difficult. Therefore, we developed a sensitive and quantitative cell free in vitro non-homologous end joining (NHEJ assay using linearized plasmids as the substrates and quantitative polymerase chain reaction (qPCR technique. This assay can sensitively detect DSB repair via NHEJ in less than 1 µg 293T cell nuclear proteins or nuclear extracts from about 5,000 to 10,000 human BM CD34(+ hematopoietic cells. Using this assay, we confirmed that human bone marrow HSCs (CD34(+CD38(- cells are less proficient in the repair of DSBs by NHEJ than HPCs (CD34(+CD38(+ cells. In contrast, mouse quiescent HSCs (Pyronin-Y(low LKS(+ cells and cycling HSCs (Pyronin-Y(hi LKS(+ cells repaired the damage more efficiently than HPCs (LKS(- cells. The difference in the abilities of human and mouse HSCs and HPCs to repair DSBs through NHEJ is likely attributed to their differential expression of key NHEJ DNA damage repair genes such as LIG4. These findings suggest that the qPCR-based cell free in vitro NHEJ assay can be used to sensitively measure the ability of human and mouse HSCs to repair DSBs.

  15. Interlaboratory comparison of three microbial source tracking quantitative polymerase chain reaction (qPCR) assays from fecal-source and environmental samples

    Science.gov (United States)

    Stelzer, Erin A.; Strickler, Kriston M.; Schill, William B.

    2012-01-01

    During summer and early fall 2010, 15 river samples and 6 fecal-source samples were collected in West Virginia. These samples were analyzed by three laboratories for three microbial source tracking (MST) markers: AllBac, a general fecal indicator; BacHum, a human-associated fecal indicator; and BoBac, a ruminant-associated fecal indicator. MST markers were analyzed by means of the quantitative polymerase chain reaction (qPCR) method. The aim was to assess interlaboratory precision when the three laboratories used the same MST marker and shared deoxyribonucleic acid (DNA) extracts of the samples, but different equipment, reagents, and analyst experience levels. The term assay refers to both the markers and the procedure differences listed above. Interlaboratory precision was best for all three MST assays when using the geometric mean absolute relative percent difference (ARPD) and Friedman's statistical test as a measure of interlaboratory precision. Adjustment factors (one for each MST assay) were calculated using results from fecal-source samples analyzed by all three laboratories and applied retrospectively to sample concentrations to account for differences in qPCR results among labs using different standards and procedures. Following the application of adjustment factors to qPCR results, ARPDs were lower; however, statistically significant differences between labs were still observed for the BacHum and BoBac assays. This was a small study and two of the MST assays had 52 percent of samples with concentrations at or below the limit of accurate quantification; hence, more testing could be done to determine if the adjustment factors would work better if the majority of sample concentrations were above the quantification limit.

  16. Development of a multiplex real-time PCR assay for the detection of Bordetella pertussis and Bordetella parapertussis in a single tube reaction.

    Science.gov (United States)

    Arbefeville, Sophie; Levi, Michael H; Ferrieri, Patricia

    2014-02-01

    Pertussis is an infectious respiratory disease caused by the fastidious bacterium Bordetella pertussis, which may infect unvaccinated, previously vaccinated children, and adults in whom immunity has waned. Infants are at a particular risk for severe disease and complications. Bordetella parapertussis may cause a similar illness, however the symptoms are less severe and of shorter duration. Pertussis is a highly contagious disease and early diagnosis is essential. Studies have shown that PCR is 2-4 times more likely than culture to detect Bordetella pertussis. We developed a multiplex, real-time PCR assay using analyte-specific reagent (ASR) primers and probes dispensed in a convenient lyophilized bead format that targeted the multi-copy insertion sequences IS481 and IS1001 of B. pertussis and B. parapertussis, respectively. These specific ASRs were used in conjunction with Cepheid Smartmix. Included in the ASRs is a competitive internal control to evaluate the performance of the PCR reaction. After DNA extraction, amplification and detection were done on the Smart Cycler System, which performs integrated amplification and detection automatically in a single step. Specificity of the assay was confirmed using multiple distinct bacterial strains. Sensitivity of the assay and extraction efficiency were evaluated on DNA isolated from pure bacterial cultures and on spiked respiratory specimens. We also spiked different swab types and transport media to evaluate for interfering substances. To assess accuracy, we studied different patient specimen types received from two outside laboratories that used similar or different methods to detect B. pertussis and B. parapertussis. The sensitivity and the specificity of the assay for B. pertussis were 90% and 96%, respectively, and for B. parapertussis 71% (only 7 positive specimens were available for testing) and 100%, respectively. Our assay was found to be a valid method for the simultaneous detection of B. pertussis and B

  17. A Pentaplex Real-Time Polymerase Chain Reaction Assay for Detection of Four Species of Soil-Transmitted Helminths

    OpenAIRE

    Basuni, Madihah; Muhi, Jamail; Othman, Nurulhasanah; Verweij, Jaco J.; Ahmad, Maimunah; Miswan, Noorizan; Rahumatullah, Anizah; Aziz, Farhanah Abdul; Zainudin, Nurul Shazalina; Noordin, Rahmah

    2011-01-01

    Soil-transmitted helminth infections remain a major public health burden in low- and middle-income countries. The traditional diagnosis by microscopic examination of fecal samples is insensitive and time-consuming. In this study, a pentaplex real-time polymerase chain reaction (PCR) was evaluated for the simultaneous detection of Ancylostoma, Necator americanus, Ascaris lumbricoides, and Strongyloides stercoralis. The results were compared with those obtained by conventional parasitological d...

  18. Novel patient cell-based HTS assay for identification of small molecules for a lysosomal storage disease.

    Directory of Open Access Journals (Sweden)

    Haifeng Geng

    Full Text Available Small molecules have been identified as potential therapeutic agents for lysosomal storage diseases (LSDs, inherited metabolic disorders caused by defects in proteins that result in lysosome dysfunctional. Some small molecules function assisting the folding of mutant misfolded lysosomal enzymes that are otherwise degraded in ER-associated degradation. The ultimate result is the enhancement of the residual enzymatic activity of the deficient enzyme. Most of the high throughput screening (HTS assays developed to identify these molecules are single-target biochemical assays. Here we describe a cell-based assay using patient cell lines to identify small molecules that enhance the residual arylsulfatase A (ASA activity found in patients with metachromatic leukodystrophy (MLD, a progressive neurodegenerative LSD. In order to generate sufficient cell lines for a large scale HTS, primary cultured fibroblasts from MLD patients were transformed using SV40 large T antigen. These SV40 transformed (SV40t cells showed to conserve biochemical characteristics of the primary cells. Using a specific colorimetric substrate para-nitrocatechol sulfate (pNCS, detectable ASA residual activity were observed in primary and SV40t fibroblasts from a MLD patient (ASA-I179S cultured in multi-well plates. A robust fluorescence ASA assay was developed in high-density 1,536-well plates using the traditional colorimetric pNCS substrate, whose product (pNC acts as "plate fluorescence quencher" in white solid-bottom plates. The quantitative cell-based HTS assay for ASA generated strong statistical parameters when tested against a diverse small molecule collection. This cell-based assay approach can be used for several other LSDs and genetic disorders, especially those that rely on colorimetric substrates which traditionally present low sensitivity for assay-miniaturization. In addition, the quantitative cell-based HTS assay here developed using patient cells creates an

  19. Potential biomarkers for identification of mycobacterial cultures by proton transfer reaction mass spectrometry analysis

    NARCIS (Netherlands)

    Crespo, E.; de Ronde, H.; Kuijper, S.; Pol, A.; Kolk, A.H.J.; Cristescu, S. M.; Anthony, R.M.; Harren, F. J. M.

    2012-01-01

    RATIONALE Several mycobacterial species can produce serious infections in humans, and the treatment required depends on the infecting species. Fast identification, ideally with minimal manipulation of the infecting species, is therefore critical; here, we propose a method potentially allowing cultur

  20. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells.

    Directory of Open Access Journals (Sweden)

    Brett J Hilton

    Full Text Available The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR. The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP gene only in the presence of an effective PR Inhibitor (PI. Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells.

  1. Serotype specific primers and gel-based RT-PCR assays for 'typing' African horse sickness virus: identification of strains from Africa.

    Directory of Open Access Journals (Sweden)

    Narender S Maan

    Full Text Available African horse sickness is a devastating, transboundary animal disease, that is 'listed' by the Office International des Epizooties (OIE. Although attenuated, inactivated and subunit vaccines have been developed for African horse sickness virus (AHSV, these are serotype-specific and their effective deployment therefore relies on rapid and reliable identification of virus type. AHSV serotype is controlled by the specificity of interactions between neutralising antibodies, and components of the outer-capsid, particularly protein VP2 (encoded by AHSV genome segment 2 (Seg-2. We report the development and evaluation of novel gel based reverse transcription-PCR (RT-PCR assays targeting AHSV Seg-2, which can be used to very significantly increase the speed and reliability of detection and identification (compared to virus neutralisation tests of the nine serotypes of AHSV. Primer sets were designed targeting regions of Seg-2 that are conserved between strains within each of the AHSV serotype (types 1 to 9. These assays were evaluated using multiple AHSV strains from the orbivirus reference collection at IAH (www.reoviridae.org/dsRNA_virus_proteins/ReoID/AHSV-isolates.htm. In each case the Seg-2 primers showed a high level of specificity and failed to cross-amplify the most closely related heterologous AHSV types, or other related orbiviruses (such as bluetongue virus (BTV, or equine encephalosis virus (EEV. The assays are rapid and sensitive, and can be used to detect and type viral RNA in blood, tissue samples, or cultivated viral suspensions within 24 h. They were used to identify AHSV strains from recent outbreaks in sub-Saharan African countries. These methods also generate cDNAs suitable for sequencing and phylogenetic analyses of Seg-2, identifying distinct virus lineages within each virus-type and helping to identify strain movements/origins. The RT-PCR methods described here provide a robust and versatile tool for rapid and specific detection

  2. Parallel Evaluation of the MALDI Sepsityper and Verigene BC-GN Assays for Rapid Identification of Gram-Negative Bacilli from Positive Blood Cultures.

    Science.gov (United States)

    Arroyo, Miguel A; Denys, Gerald A

    2017-09-01

    Rapid identification of microorganisms from positive blood cultures has improved clinical management and antimicrobial stewardship. The advent of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has reduced the time to identification of cultured isolates and is now often the definitive method used in the clinical microbiology laboratory. The commercial in vitro diagnostic MALDI Sepsityper (Sepsityper) kit has the potential for standardization and clinical routine use for the rapid identification of a broad range of bacteria from positive blood cultures. In this study, we performed a parallel evaluation of the Sepsityper (Bruker Daltonics, Billerica, MA) and the Verigene BC-GN (BC-GN) assays (Nanosphere, Inc., Northfield, IL) for the identification of Gram-negative bacilli. A total of 210 Bactec bottles demonstrating Gram-negative bacilli were prospectively enrolled for this study. Among these, 200 monomicrobial cultures were included in the comparative analysis. For monomicrobial cultures, the BC-GN detected 85% (170/200) compared to that detected by routine culture while the Sepsityper detected 94% (188/200) and 91% (181/200) to the genus and species levels, respectively. Comparable positive percentage agreement and negative percentage agreement were observed between the Sepsityper (96.5% and 98.8%, respectively) and the BC-GN (99.4% and 99.8%, respectively) when only (n = 170, 85%) organisms targeted by the latter test were included in the analysis. In conclusion, the two methods evaluated in this study showed excellent performance characteristics for the identification of Gram-negative bacilli commonly isolated from blood cultures. The Sepsityper showed a broader identification range capability that may further improve clinical management and antimicrobial stewardship in patients with less frequent Gram-negative bacilli bloodstream infections. Copyright © 2017 American Society for Microbiology.

  3. Detection and identification of Leishmania species from clinical specimens by using a real-time PCR assay and sequencing of the cytochrome B gene.

    Science.gov (United States)

    Foulet, Françoise; Botterel, Françoise; Buffet, Pierre; Morizot, Gloria; Rivollet, Danièle; Deniau, Michèle; Pratlong, Francine; Costa, Jean-Marc; Bretagne, Stéphane

    2007-07-01

    Visceral and cutaneous leishmaniases are heterogenous entities. The Leishmania species that a given patient harbors usually cannot be determined clinically, and this identification is essential to prescribe the best species-specific therapeutic regimen. Our diagnosis procedure includes a real-time PCR assay targeted at the 18S rRNA gene, which detects all Leishmania species but which is not specific for a given Leishmania species. We developed a species identification based on sequencing of the cytochrome b (cyt b) gene directly from the DNA extracted from the clinical specimen. The sequences were analyzed using the Sequence Analysis/Seqscape v2.1 software (Applied Biosystems). This software is designed to automatically identify the closest sequences from a reference library after analysis of all known or unknown polymorphic positions. The library was built with the Leishmania cyt b gene sequences available in GenBank. Fifty-three consecutive real-time PCR-positive specimens were studied for species identification. The cyt b gene was amplified in the 53 specimens. Sequencing resulted in the identification of six different species with >or=99% identity with the reference sequences over 872 nucleotides. The identification was obtained in two working days and was in accordance with the multilocus enzyme electrophoresis identification when available. Real-time PCR followed by sequencing of the cyt b gene confirmed the diagnosis of leishmaniasis and rapidly determined the infecting species directly from the clinical specimen without the need for the isolation of parasites. This technique has the potential to significantly accelerate species-adapted therapeutic decisions regarding treatment of leishmaniasis.

  4. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    Science.gov (United States)

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  5. Antibiotic treatment algorithm development based on a microarray nucleic acid assay for rapid bacterial identification and resistance determination from positive blood cultures.

    Science.gov (United States)

    Rödel, Jürgen; Karrasch, Matthias; Edel, Birgit; Stoll, Sylvia; Bohnert, Jürgen; Löffler, Bettina; Saupe, Angela; Pfister, Wolfgang

    2016-03-01

    Rapid diagnosis of bloodstream infections remains a challenge for the early targeting of an antibiotic therapy in sepsis patients. In recent studies, the reliability of the Nanosphere Verigene Gram-positive and Gram-negative blood culture (BC-GP and BC-GN) assays for the rapid identification of bacteria and resistance genes directly from positive BCs has been demonstrated. In this work, we have developed a model to define treatment recommendations by combining Verigene test results with knowledge on local antibiotic resistance patterns of bacterial pathogens. The data of 275 positive BCs were analyzed. Two hundred sixty-three isolates (95.6%) were included in the Verigene assay panels, and 257 isolates (93.5%) were correctly identified. The agreement of the detection of resistance genes with subsequent phenotypic susceptibility testing was 100%. The hospital antibiogram was used to develop a treatment algorithm on the basis of Verigene results that may contribute to a faster patient management.

  6. Discriminating complement-mediated acute transfusion reaction for type O+ red blood cells transfused into a B+ recipient with the complement hemolysis using human erythrocytes (CHUHE) assay.

    Science.gov (United States)

    Cunnion, Kenji M; Hair, Pamela S; Krishna, Neel K; Whitley, Pamela H; Goldberg, Corinne L; Fadeyi, Emmanuel A; Maes, Lanne Y

    2016-07-01

    A patient with B+ sickle cell disease received 3 units of red blood cells (RBCs) from two O+ donors and developed fever and hypotension after the first unit, consistent with an acute transfusion reaction (ATR). Anti-B titers in plasma from each O+ donor were markedly elevated and nondiscriminatory. In order to evaluate the potential for the transfused units to produce complement-mediated hemolysis of B+ RBCs, hemolytic complement testing was performed. Plasma from each donor was diluted in veronal buffer and incubated with B+ RBCs, and free hemoglobin was measured by spectrophotometer in the complement hemolysis using human erythrocytes (CHUHE) assay. Peptide inhibitor of complement C1 (PIC1) was used to confirm antibody-initiated complement pathway activation. A 96-fold difference (p = 0.014) in hemolysis was measured between plasma samples from the two O+ donors using the CHUHE assay. The extremely high degree of hemolysis produced by the one plasma was inhibited by PIC1 in a dose-dependent manner. These results indicate that hemolytic complement testing with the CHUHE assay can be used to assess the risk of antibody-initiated, complement-mediated hemolysis from a transfusion beyond what can be achieved with antibody titers alone. © 2016 AABB.

  7. Screening for JH1 genetic defect carriers in Jersey cattle by a polymerase chain reaction and restriction fragment length polymorphism assay.

    Science.gov (United States)

    Zhang, Yi; Guo, Gang; Huang, Hetian; Lu, Lu; Wang, Lijie; Fang, Lingzhao; Liu, Lin; Wang, Yachun; Zhang, Shengli

    2015-09-01

    An autosomal recessive genetic defect termed JH1 has been associated with early embryonic loss in the Jersey cattle breed. The genetic basis has been identified as a cytosine to thymine mutation in the CWC15 gene that changes an amino acid from arginine to a stop code. To screen for JH1 carriers in an imported Jersey population in China, a method based on a polymerase chain reaction amplification followed by a restriction fragment length polymorphism assay (PCR-RFLP) was developed for the accurate diagnosis of the JH1 allele. A total of 449 randomly chosen cows were examined with the PCR-RFLP assay, and 31 were identified as JH1 carriers, corresponding to a carrier frequency of 6.9%. The PCR-RFLP method was validated by DNA sequencing of 8 positive and 13 negative samples, with all 21 samples giving the expected DNA sequence. In addition, 3 negative and 3 positive samples were confirmed by a commercial microarray-based single nucleotide polymorphism assay. Finally, samples from 9 bulls in the United States of known status were correctly identified as carriers (5 bulls) or noncarriers (4 bulls). As the JH1 defect has most likely spread worldwide, implementing routine screening is necessary to avoid the risk of carrier-to-carrier matings and to gradually eradicate the deleterious gene.

  8. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees.

    Science.gov (United States)

    Meena, Ram Prasnna; Baranwal, V K

    2016-09-01

    Citrus trees harbor a large number of viral and bacterial pathogens. Citrus yellow vein clearing virus (CYVCV), Indian citrus ringspot virus (ICRSV), Citrus yellow mosaic virus (CYMV), Citrus tristeza virus (CTV) and a bacterium, Candidatus Liberibacter asiaticus (CLa) associated with huanglongbing (HLB) disease, the most prevalent pathogens in citrus orchards of different regions in India and are responsible for debilitating citriculture. For detection of these viral and bacterial pathogens a quick, sensitive and cost effective detection method is required. With this objective a multiplex polymerase chain reaction (mPCR) assay was developed for simultaneous detection of four viruses and a bacterium in citrus. Several sets of primers were designed for each virus based on the retrieved reference sequences from the GenBank. A primer pair published previously was used for greening bacterium. Each pair of primers was evaluated for their sensitivity and differentiation by simplex and mPCR. The constant amplified products were identified on the basis of molecular size in mPCR and were compared with standard PCR. The amplicons were cloned and results were confirmed with sequencing analysis. The mPCR assay was validated using naturally infected field samples for one or more citrus viruses and the huanglongbing bacterium. The mPCR assay developed here will aid in the production of virus free planting materials and rapid indexing for certification of citrus budwood programme. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of a real-time polymerase chain reaction (PCR) assay for detection of anisakis simplex parasite as a food-borne allergen source in seafood products.

    Science.gov (United States)

    Lopez, Itziar; Pardo, Miguel Angel

    2010-02-10

    Anisakis simplex has been recognized as an important cause of disease in humans and as a food-borne allergen source. Actually, this food-borne parasite was recently identified as an emerging food safety risk. An A. simplex -specific primer-probe system based on a real-time polymerase chain reaction (PCR) detection assay has been successfully optimized and validated with seafood samples. In addition, a DNA extraction procedure has been optimized to detect the presence of the nematode in food samples. The assay is a very reliable, specific, and sensitive methodology to detect the presence of traces of this parasite in seafood products, including highly processed samples. As a result, 13 sequences of cytochrome c oxidase II gene were obtained and scrutinized to calculate intra- and interspecific variabilities of 0 and 35-67%, respectively. Finally, an efficiency of 2.07 +/- 0.14 of the assay was calculated, and a limit of detection of 40 ppm parasite in 25 g of sample was also optimized. Actually, the presence of this parasite in several seafood products has been demonstrated, enforcing the necessity of a design for a good manufacturing practice protocol for the processing industry to minimize the presence of this parasite as a food-borne allergen source in seafood products.

  10. Variation in Bluetongue virus real-time reverse transcription polymerase chain reaction assay results in blood samples of sheep, cattle, and alpaca.

    Science.gov (United States)

    Brito, Barbara P; Gardner, Ian A; Hietala, Sharon K; Crossley, Beate M

    2011-07-01

    Bluetongue is a vector-borne viral disease that affects domestic and wild ruminants. The epidemiology of this disease has recently changed, with occurrence in new geographic areas. Various real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) assays are used to detect Bluetongue virus (BTV); however, the impact of biologic differences between New World camelids and domestic ruminant samples on PCR efficiency, for which the BTV real-time qRT-PCR was initially validated are unknown. New world camelids are known to have important biologic differences in whole blood composition, including hemoglobin concentration, which can alter PCR performance. In the present study, sheep, cattle, and alpaca blood were spiked with BTV serotypes 10, 11, 13, and 17 and analyzed in 10-fold dilutions by real-time qRT-PCR to determine if species affected nucleic acid recovery and assay performance. A separate experiment was performed using spiked alpaca blood subsequently diluted in 10-fold series in sheep blood to assess the influence of alpaca blood on performance efficiency of the BTV real-time qRT-PCR assay. Results showed that BTV-specific nucleic acid detection from alpaca blood was consistently 1-2 logs lower than from sheep and cattle blood, and results were similar for each of the 4 BTV serotypes analyzed.

  11. A cAMP Biosensor-Based High-Throughput Screening Assay for Identification of Gs-Coupled GPCR Ligands and Phosphodiesterase Inhibitors

    DEFF Research Database (Denmark)

    Vedel, Line; Bräuner-Osborne, Hans; Mathiesen, Jesper Mosolff

    2015-01-01

    resulted in prolonged signaling and enabled detection of weak partial agonists and/or ligands with low potency, which is highly advantageous in large HTS settings and hit identification. In addition, the assay enabled detection of β2AR inverse agonists and PDE inhibitors. High signal-to-noise ratios were...... in living cells. We used the β2-adrenergic receptor (β2AR) as a representative Gs-coupled receptor and characterized two cell lines with different expression levels. Low receptor expression allowed detection of desensitization kinetics and delineation of partial agonism, whereas high receptor expression...

  12. Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays.

    Science.gov (United States)

    Goay, Yuan Xin; Chin, Kai Ling; Tan, Clarissa Ling Ling; Yeoh, Chiann Ying; Ja'afar, Ja'afar Nuhu; Zaidah, Abdul Rahman; Chinni, Suresh Venkata; Phua, Kia Kien

    2016-01-01

    Salmonella Typhi (S. Typhi) causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S. Typhi with other enteric pathogens was performed, and 6 S. Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico. Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro. The diagnostic sensitivities and specificities of each assay were determined using 39 S. Typhi, 62 non-Typhi Salmonella, and 10 non-Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39) and 100% specificity (0/72). The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.

  13. Novel multiplex real-time PCR diagnostic assay for identification and differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis complex strains.

    Science.gov (United States)

    Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas

    2011-02-01

    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC.

  14. Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays

    Directory of Open Access Journals (Sweden)

    Yuan Xin Goay

    2016-01-01

    Full Text Available Salmonella Typhi (S. Typhi causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S. Typhi with other enteric pathogens was performed, and 6 S. Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico. Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro. The diagnostic sensitivities and specificities of each assay were determined using 39 S. Typhi, 62 non-Typhi Salmonella, and 10 non-Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39 and 100% specificity (0/72. The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.

  15. QUANTITATION OF DNA TOPOISOMERASE-II-ALPHA MESSENGER-RIBONUCLEIC-ACID LEVELS IN A SMALL-CELL LUNG-CANCER CELL-LINE AND 2 DRUG-RESISTANT SUBLINES USING A POLYMERASE CHAIN REACTION-AIDED TRANSCRIPT TITRATION ASSAY

    NARCIS (Netherlands)

    WITHOFF, S; SMIT, EF; MEERSMA, GJ; van den Berg, Anke; TIMMERBOSSCHA, H; KOK, K; POSTMUS, PE; MULDER, NH; DEVRIES, EGE; BUYS, CHCM

    1994-01-01

    BACKGROUND: We have modified a polymerase chain reaction (PCR)-aided transcript titration assay (1) in order to allow quantitation of low amounts of DNA topoisomerase II alpha mRNA in small RNA samples. EXPERIMENTAL DESIGN: The titration assay was used to quantitate the amount of DNA topoisomerase I

  16. Two novel nonradioactive polymerase chain reaction-based assays of dried blood spots, genomic DNA, or whole cells for fast, reliable detection of Z and S mutations in the alpha 1-antitrypsin gene

    DEFF Research Database (Denmark)

    Andresen, B S; Knudsen, I; Jensen, P K;

    1992-01-01

    Two new nonradioactive polymerase chain reaction (PCR)-based assays for the Z and S mutations in the alpha 1-antitrypsin gene are presented. The assays take advantage of PCR-mediated mutagenesis, creating new diagnostic restriction enzyme sites for unambiguous discrimination between test samples...

  17. Development of a quantitative real-time polymerase chain reaction assay to target a novel group of ammonia-producing bacteria found in poultry litter.

    Science.gov (United States)

    Rothrock, M J; Cook, K L; Lovanh, N; Warren, J G; Sistani, K

    2008-06-01

    Ammonia production in poultry houses has serious implications for flock health and performance, nutrient value of poultry litter, and energy costs for running poultry operations. In poultry litter, the conversion of organic N (uric acid and urea) to NH(4)-N is a microbially mediated process. The urease enzyme is responsible for the final step in the conversion of urea to NH(4)-N. Cloning and analysis of 168 urease sequences from extracted genomic DNA from poultry litter samples revealed the presence of a novel, dominant group of ureolytic microbes (representing 90% of the urease clone library). Specific primers and a probe were designed to target this novel poultry litter urease producer (PLUP) group, and a new quantitative real-time PCR assay was developed. The assay allowed for the detection of 10(2) copies of target urease sequences per PCR reaction (approximately 1 x 10(4) cells per gram of poultry litter), and the reaction was linear over 8 orders of magnitude. Our PLUP group was present only in poultry litter and was not present in environmental samples from diverse agricultural settings. This novel PLUP group represented between 0.1 to 3.1% of the total microbial populations (6.0 x 10(6) to 2.4 x 10(8) PLUP cells per gram of litter) from diverse poultry litter types. The PLUP cell concentrations were directly correlated to the total cell concentrations in the poultry litter and were found to be influenced by the physical parameters of the litters (bedding material, moisture content, pH), as well as the NH(4)-N content of the litters, based on principal component analysis. Chemical parameters (organic N, total N, total C) were not found to be influential in the concentrations of our PLUP group in the diverse poultry litters Future applications of this assay could include determining the efficacy of current NH(4)-N-reducing litter amendments or in designing more efficient treatment protocols.

  18. Mn(II) Oxidation in Fenton and Fenton Type Systems: Identification of Reaction Efficiency and Reaction Products.

    Science.gov (United States)

    van Genuchten, Case M; Peña, Jasquelin

    2017-03-07

    Efficient and low-cost methods of removing aqueous Mn(II) are required to improve the quality of impacted groundwater supplies. In this work, we show that Fe(0) electrocoagulation (EC) permits the oxidative removal of Mn(II) from solution by reaction with the reactive oxidant species produced through Fe(II) oxidation. Manganese(II) removal was enhanced when the accumulation of aqueous Fe(II) was minimized, which was achieved at low Fe(II) production rates, high pH, the presence of H2O2 instead of O2 as the initial Fe(II) oxidant, or a combination of all three. In addition, in the EC-H2O2 system, Mn(II) removal efficiency increased as pH decreased from 6.5 to 4.5 and as pH increased from 6.5 to 8.5, which implicates different reactive oxidants in acidic and alkaline solutions. Chemical analyses and X-ray absorption spectroscopy revealed that Mn(II) removal during Fe(0) EC leads to the formation of Mn(III) (0.02 to >0.26 Mn·Fe(-1) molar ratios) and its incorporation into the resulting Fe(III) coprecipitates (lepidocrocite and hydrous ferric oxide for EC-O2 and EC-H2O2, respectively), regardless of pH and Fe(II) production rate. The Mn(II) oxidation pathways elucidated in this study set the framework to develop kinetic models on the impact of Mn(II) during EC treatment and in other Fenton type systems.

  19. Identification of endosymbionts in ticks by broad-range polymerase chain reaction and electrospray ionization mass spectrometry.

    Science.gov (United States)

    Rounds, Megan A; Crowder, Christopher D; Matthews, Heather E; Philipson, Curtis A; Scoles, Glen A; Ecker, David J; Schutzer, Steven E; Eshoo, Mark W

    2012-07-01

    Many organisms, such as insects, filarial nematodes, and ticks, contain heritable bacterial endosymbionts that are often closely related to transmissible tickborne pathogens. These intracellular bacteria are sometimes unique to the host species, presumably due to isolation and genetic drift. We used a polymerase chain reaction/electrospray ionization-mass spectrometry assay designed to detect a wide range of vectorborne microorganisms to characterize endosymbiont genetic signatures from Amblyomma americanum (L.), Amblyomma maculatum Koch, Dermacentor andersoni Stiles, Dermacentor occidentalis Marx, Dermacentor variabilis (Say), Ixodes scapularis Say, Ixodes pacificus Cooley & Kohls, Ixodes ricinus (L.), and Rhipicephalus sanguineus (Latreille) ticks collected at various sites and of different stages and both sexes. The assay combines the abilities to simultaneously detect pathogens and closely related endosymbionts and to identify tick species via characterization of their respective unique endosymbionts in a single test.

  20. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  1. A New Nanocatalytic Spectrophotometric Assay for Cationic Surfactant Using Phosphomolybdic Acid-Formic Acid-Nanogold as Indicator Reaction%A New Nanocatalytic Spectrophotometric Assay for Cationic Surfactant Using Phosphomolybdic Acid-Formic Acid-Nanogold as Indicator Reaction

    Institute of Scientific and Technical Information of China (English)

    蒋治良; 覃惠敏; 梁爱惠

    2012-01-01

    In the pH 7.4 Na2HPO4-NaH2PO4 buffer solution, the cationic surfactant (CS) interacted with nanogold particles (NG) to form NG aggregations (NGA) that resulted in its color changing from wine red to blue-violet. NG has a strong catalysis on the formic acid-phosphomolybdic acid (PMo) colored reaction, but that of the NGA catalysis is weak. With the increase of CS concentration, the NGA increased and the NG decreased, the catalysis decreased and the absorption value at 700 nm decreased linearly. The concentrations of 6.25-250 nmol/L tetradecyl dimethyl benzyl ammonium chloride (TDBAC), 0.625-250 nmol/L cetyltrimethyl ammonium bromide (CTMAB) and 12.5 -500 nmol-L 1 dodecyldimethylbenzyl ammonium chloride (DDBAC) had good linear responses to the decreased absorption value (AA70o nm), with molar absorption coefficients of 2.2 × 106, 2.1 × 106 and 9 ×105 Lomol 1.cm 1 respectively. This method was simple, highly sensitive and low-cost.

  2. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide

    Directory of Open Access Journals (Sweden)

    Yuexia Wang

    2015-09-01

    Full Text Available Real-time polymerase chain reaction (PCR allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at −18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 103 CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 100 CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach.

  3. Longitudinal study of the detection of Bluetongue virus in bull semen and comparison of real-time polymerase chain reaction assays.

    Science.gov (United States)

    Gu, Xingnian; Davis, Rodney J; Walsh, Susan J; Melville, Lorna F; Kirkland, Peter D

    2014-01-01

    Infection with Bluetongue virus (BTV) is a significant impediment to the global movement of bovine semen. Repeat testing of blood from donor animals is specified in the World Organization for Animal Health (OIE) Manual for the export of semen from regions where BTV may be present. Screening of blood or semen samples has usually been carried out by virus isolation (VI) either by inoculation of chicken embryos followed by passage onto insect and mammalian cell cultures or in vivo inoculation of sheep followed by serology to detect seroconversion. Direct testing of semen for BTV would enable earlier release of semen samples and avoid repeat testing of the donor, as well as provide an option for releasing batches of semen that were collected without certification of the donor. Quantitative (real-time) reverse transcription polymerase chain reaction (qRT-PCR) assays overcome most of the limitations of other methods and have the potential to provide higher sensitivity. The present study compared 5 qRT-PCR assays, including 2 commercially available kits, for the detection of BTV in semen serially collected from 8 bulls over a period of 90 days after experimental infection. The results of the study show that at least one of the qRT-PCR assays is extremely reproducible and has both very high sensitivity and specificity to reliably detect all available serotypes. The preferred qRT-PCR gave consistently superior results to VI, sheep inoculation, and conventional RT-PCR. Therefore, the assay can be recommended for the screening of bovine semen for freedom from BTV.

  4. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    Science.gov (United States)

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10(3) CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10(0) CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  5. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    Science.gov (United States)

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  6. Comparison of the Diagnostic Value Between Real-Time Reverse Transcription-Polymerase Chain Reaction Assay and Histopathologic Examination in Sentinel Lymph Nodes for Patients With Gastric Carcinoma.

    Science.gov (United States)

    Kwak, Yoonjin; Nam, Soo Kyung; Shin, Eun; Ahn, Sang-Hoon; Lee, Hee Eun; Park, Do Joong; Kim, Woo Ho; Kim, Hyung-Ho; Lee, Hye Seung

    2016-05-01

    Sentinel lymph node (SLN)-based diagnosis in gastric cancers has shown varied sensitivities and false-negative rates in several studies. Application of the reverse transcription-polymerase chain reaction (RT-PCR) in SLN diagnosis has recently been proposed. A total of 155 SLNs from 65 patients with cT1-2, N0 gastric cancer were examined. The histopathologic results were compared with results obtained by real-time RT-PCR for detecting molecular RNA (mRNA) of cytokeratin (CK)19, carcinoembryonic antigen (CEA), and CK20. The sensitivity and specificity of the multiple marker RT-PCR assay standardized against the results of the postoperative histological examination were 0.778 (95% confidence interval [CI], 0.577-0.914) and 0.781 (95% CI, 0.700-0.850), respectively. In comparison, the sensitivity and specificity of intraoperative diagnosis were 0.819 (95% CI, 0.619-0.937) and 1.000 (95% CI, 0.972-1.000), respectively. The positive predictive value of the multiple-marker RT-PCR assay was 0.355 (95% CI, 0.192-0.546) for predicting non-SLN metastasis, which was lower than that of intraoperative diagnosis (0.813, 95% CI, 0.544-0.960). The real-time RT-PCR assay could detect SLN metastasis in gastric cancer. However, the predictive value of the real-time RT-PCR assay was lower than that of precise histopathologic examination and did not outweigh that of our intraoperative SLN diagnosis. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification.

    Science.gov (United States)

    Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata

    2017-08-01

    Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.

  8. Discordance between MTB/RIF and Real-Time Tuberculosis-Specific Polymerase Chain Reaction Assay in Bronchial Washing Specimen and Its Clinical Implications

    Science.gov (United States)

    Jo, Yong Suk; Park, Ju-Hee; Lee, Jung Kyu; Heo, Eun Young; Chung, Hee Soon

    2016-01-01

    The prevalence and clinical implications of discordance between Xpert MTB/RIF assays and the AdvanSure TB/NTM real-time polymerase chain reaction (PCR) for bronchial washing specimens have not been studied in pulmonary TB (PTB) patients. The discordant proportion and its clinical impact were evaluated in 320 patients from the bronchoscopy registry whose bronchial washing specimens were tested simultaneously with Xpert MTB/RIF and the TB/NTM PCR assay for three years, and the accuracy of the assays, including the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were studied. The clinical risk factors for discordance and false positivity of assays were also studied. Among 130 patients who were clinically diagnosed with PTB, 64 patients showed positive acid-fast bacilli culture results, 56 patients showed positive results in molecular methods and clinician diagnosed PTB without results of microbiology in 10 patients. The sensitivity, specificity, PPV, and NPV were 80.0%, 98.95%, 98.1%, and 87.9%, respectively, for Xpert MTB/RIF and 81.5%, 92.6%, 88.3%, and 88.0%, respectively, for TB/NTM PCR. The discordant proportion was 16.9% and was higher in culture-negative PTB compared to culture-confirmed PTB (24.3% vs. 9.4%, p = 0.024). However, there were no significant differences in the clinical characteristics, regardless of the discordance. The diagnostic yield increased with an additional assay (7.7% for Xpert MTB/RIF and 9.2% for TB/NTM PCR). False positivity was less common in patients tested with Xpert MTB/RIF (1.05% vs. 7.37%, p = 0.0035). No host-related risk factor for false positivity was identified. The Xpert MTB/RIF and TB/NTM PCR assay in bronchial washing specimens can improve the diagnostic yields for PTB, although there were considerable discordant results without any patient-related risk factors. PMID:27760181

  9. Spectrophotometric method for the quantitative assay of N-hydroxysulfosuccinimide esters including extinction coefficients and reaction kinetics.

    Science.gov (United States)

    Presentini, Rivo

    2017-05-15

    A quantitative spectrophotometric method has been developed for the analysis of N-hydroxysulfosuccinimide (sulfo-NHS), a chromophore with a maximum absorbance at 268 nm. The extinction coefficients were determined between pH 6.0 and 8.0 and found to vary in a nonlinear manner. This spectrophotometric profile is not present in its esters which however release an equimolar amount of sulfo-NHS when they react with nucleophilic groups or hydrolyze in aqueous solution. This fact facilitates the determination in solution of the concentration and purity of bis(sulfosuccinimidyl) suberate (BS3) used as a model, as well as the examination of hydrolysis and aminolysis half-lives in different reaction conditions, these parameters being valuable in optimization of the use of the active esters. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The impact of polymerase chain reaction assays for the detection of hepatitis C virus infection in a hemodialysis unit.

    Science.gov (United States)

    Hussein, Magdi M; Mooij, Jaap M; Hegazy, Mohamed S; Bamaga, Mohammed S

    2007-03-01

    Hepatitis C virus (HCV) infection is most often diagnosed by detection of antibodies against the virus (HCV Ab). However, it has been reported that some HCV Ab negative patients test positive for HCV-RNA. Over a study period of 30 months, all patients on hemodialysis at the Al Hada Armed Forces Hospital in Taif, Saudi Arabia were tested monthly for HCV Ab and twice per year for HCV-RNA. HCV Ab was tested by a third generation microparticle enzyme immunoassay (MEIA), and HCV-RNA by a qualitative hepatitis-RNA assay, second version (COBAS Amplicor PCR), which was recently introduced in the Molecular Pathology Laboratory of our hospital. Of the 180 patients studied, 34 (18.9%) had positive HCV Ab, and of the 146 HCV Ab negative patients, five patients tested positive for HCV-RNA (3.42%). Our study further finds that, when applying HCV Ab testing only, some patients with HCV viremia may be undetected. For better HCV infection control, routine HCV-RNA testing of dialysis patients should be considered, particularly in areas where the infection is common and in units applying isolation policies.

  11. Diagnostic accuracy of two multiplex real-time polymerase chain reaction assays for the diagnosis of meningitis in children in a resource-limited setting

    Science.gov (United States)

    Khumalo, Jermaine; Nicol, Mark; Hardie, Diana; Muloiwa, Rudzani; Mteshana, Phindile

    2017-01-01

    Introduction Accurate etiological diagnosis of meningitis is important, but difficult in resource-limited settings due to prior administration of antibiotics and lack of viral diagnostics. We aimed to develop and validate 2 real-time multiplex PCR (RT-PCR) assays for the detection of common causes of community-acquired bacterial and viral meningitis in South African children. Methods We developed 2 multiplex RT- PCRs for detection of S. pneumoniae, N. meningitidis, H. influenzae, enteroviruses, mumps virus and herpes simplex virus. We tested residual CSF samples from children presenting to a local paediatric hospital over a one-year period, whose CSF showed an abnormal cell count. Results were compared with routine diagnostic tests and the final discharge diagnosis. We calculated accuracy of the bacterial RT-PCR assay compared to CSF culture and using World Health Organisation definitions of laboratory-confirmed bacterial meningitis. Results From 292 samples, bacterial DNA was detected in 12 (4.1%) and viral nucleic acids in 94 (32%). Compared to CSF culture, the sensitivity and specificity of the bacterial RT-PCR was 100% and 97.2% with complete agreement in organism identification. None of the cases positive by viral RT-PCR had a bacterial cause confirmed on CSF culture. Only 9/90 (10%) of patients diagnosed clinically as bacterial meningitis or partially treated bacterial meningitis tested positive with the bacterial RT-PCR. Discussion In this population the use of 2 multiplex RT-PCRs targeting 6 common pathogens gave promising results. If introduced into routine diagnostic testing, these multiplex RT-PCR assays would supplement other diagnostic tests, and have the potential to limit unnecessary antibiotic therapy and hospitalisation. PMID:28346504

  12. Identification of the five human Plasmodium species including P. knowlesi by real-time polymerase chain reaction.

    Science.gov (United States)

    Oddoux, O; Debourgogne, A; Kantele, A; Kocken, C H; Jokiranta, T S; Vedy, S; Puyhardy, J M; Machouart, M

    2011-04-01

    Recently, Plasmodium knowlesi has been recognised as the fifth Plasmodium species causing malaria in humans. Hundreds of human cases infected with this originally simian Plasmodium species have been described in Asian countries and increasing numbers are reported in Europe from travellers. The growing impact of tourism and economic development in South and Southeast Asia are expected to subsequently lead to a further increase in cases both among locals and among travellers. P. knowlesi is easily misidentified in microscopy as P. malariae or P. falciparum. We developed new primers for the rapid and specific detection of this species by low-cost real-time polymerase chain reaction (PCR) and added this method to an already existing panel of primers used for the molecular identification of the other four species in one reaction. Reference laboratories should now be able to identify undisputably and rapidly P. knowlesi, as it is a potentially fatal pathogen.

  13. Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR.

    Science.gov (United States)

    Salvadó, Nati; Butí, Salvador; Nicholson, James; Emerich, Hermann; Labrador, Ana; Pradell, Trinitat

    2009-07-15

    Synchrotron radiation X-ray diffraction (micro-SR-XRD) and Fourier transform infrared spectroscopy (micro-SR-FTIR) are used in the non-destructive identification of reaction and aging compounds from micrometric ancient painting layers. The combination of the micrometer size and non-destructive nature of the techniques together with the high resolution and brilliance of the synchrotron radiation has proved to be a procedure most advantageous for the study of reaction, aging and degradation processes. Copper, lead and calcium carboxylates and oxalates are determined in the chromatic, preparation and alteration layers from 15th century egg tempera and oil paintings. Their nature and crystallinity have been assessed. Some hypothesis about the mechanisms of development of both carboxylates and oxalates are presented.

  14. Assessment of the ribose-induced Maillard reaction as a means of gelatine powder identification and quality control.

    Science.gov (United States)

    Tan, Thuan-Chew; AlKarkhi, Abbas F M; Easa, Azhar Mat

    2012-10-15

    The addition of ribose to bovine or porcine gelatine solutions followed by heating at 95 °C yielded brown solutions with different pH, colour (CIE L(*) and b(*)) and absorbance (A(420*) values. These differences were used for gelatine powder identification, differentiation and quality control. Differentiation analysis of the Maillard reaction parameters was conducted using cluster analysis (CA) and confidence intervals (CI). The potential use of the method as a quality control procedure was evaluated by using statistical process control (SPC). CA revealed that the two types of gelatine could be classified into two different groups. CI (95% confidence) revealed that the absorbance and colour values could be used as indicators for differentiation between the two types of gelatine because the intervals between the Maillard reaction parameters of the samples were far apart. The methodology demonstrated good reproducibility because it behaved predictably based on the X¯-S charts generated from the SPC charts.

  15. Correlation between API 50 CH and multiplex polymerase chain reaction for the identification of vaginal lactobacilli in isolates

    Directory of Open Access Journals (Sweden)

    Eliane Melo Brolazo

    2011-03-01

    Full Text Available Identification of Lactobacillus sp. strains by phenotypic methods may lead to doubtful results possibly interfering in the reliability of the epidemiological and probiotics studies. Therefore this study aimed to determine the best methodology for the identification of the large diversity of lactobacilli species found in the vagina by comparing two techniques, one based on their biochemical profile and other employing molecular biology. A carbohydrate fermentation test (API 50 CH was compared with multiplex polymerase chain reaction (PCR for the identification of species of vaginal lactobacilli from 135 healthy women. The kappa index was used to evaluate agreement between the methods. Using the molecular technique, L. crispatus (32.6%, L. jensenii (25% and L. gasseri (20.6% were the most frequent species. However, using the biochemical technique, the most frequent species were: L. acidophilus (34.8%, L. crispatus (27.2% and L. fermentum (13%. Although L. acidophilus was the most frequent specie found by biochemical tests, no strain of this microorganism was detected by PCR. Agreement between the methods was low for identification of all the most common species. Although rates of L. crispatus detected were similar using both methods (32.6% and 27.2%, agreement between them was relatively low (kappa = 0.52. Conclusions: Our results confirmed the limitation of the biochemical method and the applicability of a previously published molecular method (Multiplex PCR for the identification of lactobacilli in the vaginal tract, focusing on further necessity of its improvement for also targeting L. vaginalis and L. iners.

  16. Multiplex PCR Assay for Identification of Six Different Staphylococcus spp. and Simultaneous Detection of Methicillin and Mupirocin Resistance

    Science.gov (United States)

    Campos-Peña, E.; Martín-Nuñez, E.; Pulido-Reyes, G.; Martín-Padrón, J.; Caro-Carrillo, E.; Donate-Correa, J.; Lorenzo-Castrillejo, I.; Alcoba-Flórez, J.; Machín, F.

    2014-01-01

    We describe a new, efficient, sensitive, and fast single-tube multiple-PCR protocol for the identification of the most clinically significant Staphylococcus spp. and the simultaneous detection of the methicillin and mupirocin resistance loci. The protocol identifies at the species level isolates belonging to S. aureus, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, and S. saprophyticus. PMID:24829244

  17. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes

    Science.gov (United States)

    TaqMan primer-probe sets were developed for the detection and identification of potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis using two-tube, multiplex real-time PCR. One tube contained a primer-probe set specific for G. pallida (pale cyst nematode) multiplexed with another prim...

  18. Multiplex PCR assay for identification of six different Staphylococcus spp. and simultaneous detection of methicillin and mupirocin resistance.

    Science.gov (United States)

    Campos-Peña, E; Martín-Nuñez, E; Pulido-Reyes, G; Martín-Padrón, J; Caro-Carrillo, E; Donate-Correa, J; Lorenzo-Castrillejo, I; Alcoba-Flórez, J; Machín, F; Méndez-Alvarez, S

    2014-07-01

    We describe a new, efficient, sensitive, and fast single-tube multiple-PCR protocol for the identification of the most clinically significant Staphylococcus spp. and the simultaneous detection of the methicillin and mupirocin resistance loci. The protocol identifies at the species level isolates belonging to S. aureus, S. epidermidis, S. haemolyticus, S. hominis, S. lugdunensis, and S. saprophyticus.

  19. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.

    Science.gov (United States)

    Michaelides, Angelos; Liu, Z-P; Zhang, C J; Alavi, Ali; King, David A; Hu, P

    2003-04-02

    The activation energy to reaction is a key quantity that controls catalytic activity. Having used ab inito calculations to determine an extensive and broad ranging set of activation energies and enthalpy changes for surface-catalyzed reactions, we show that linear relationships exist between dissociation activation energies and enthalpy changes. Known in the literature as empirical Brønsted-Evans-Polanyi (BEP) relationships, we identify and discuss the physical origin of their presence in heterogeneous catalysis. The key implication is that merely from knowledge of adsorption energies the barriers to catalytic elementary reaction steps can be estimated.

  20. Potential for the G2/M arrest assay to predict patient susceptibility to severe reactions following radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Perez, A.; Grabenbauer, G.G.; Sauer, R.; Distel, L.V.R. [Dept. of Radiation Oncology, Friedrich Alexander Univ. Erlangen-Nuremberg (Germany); Sprung, C.N. [Div. of Research, Peter MacCallum Cancer Centre, and Dept. of Biochemistry and Molecular Biology, Melbourne Univ., VIC (Australia)

    2007-02-15

    Background and purpose: cell-cycle regulation and checkpoint activation are crucial factors for radiation-induced DNA damage processing. The G2/M phase arrest was assessed in lymphoblastoid cell lines and phytohemagglutinin-stimulated T-lymphocytes of different radiosensitivities to study the relationship of G2/M arrest to radiosensitivity. Material and methods: G2/M arrest was analyzed after in vitro irradiation by 2 and 5 Gy of ionizing radiation up to 6 days using 17 lymphoblastoid cell lines from healthy individuals, ataxia-telangiectasia (AT) patients, Nijmegen breakage syndrome (NBS) patients and cancer patients with clinically increased radiosensitivity. In a second approach, phytohemagglutinin-stimulated T-lymphocytes from 15 healthy individuals, twelve cancer patients, and five cancer patients hypersensitive to ionizing radiation were studied. Image cytometry was performed to analyze G2/M arrest. Results: two of the three AT cell lines showed markedly increased G2/M arrest compared to controls. NBS cells were comparable to controls up to day 3, but then demonstrated a slightly increased G2/M arrest. Two of the six radiosensitive lymphoblast cell lines and the five radiosensitive cancer patients' T-lymphocytes assayed showed a reduction in G2/M arrest, while healthy individuals showed no difference from cancer patients. Conclusion: the interrelation between G2/M arrest and radiosensitivity is not readily apparent since a variety of radiosensitive cells from patients with radiosensitive syndromes and patients identified as radiosensitive following radiation treatment showed inconsistent G2/M arrest dynamics. Secondary effects, like loss of clonogenicity, G1/S phase arrest and failure of G2/M arrest may contribute to variation of the G2/M arrest endpoint and obscure assessment of cellular radiosensitivity using this method. (orig.)

  1. Quantitation of viable Coxiella burnetii in milk using an integrated cell culture-polymerase chain reaction (ICC-PCR) assay.

    Science.gov (United States)

    Stewart, Diana; Shieh, Y-Carol; Tortorello, Mary; Kukreja, Ankush; Shazer, Arlette; Schlesser, Joseph

    2015-11-01

    The obligate intracellular pathogen Coxiella burnetii has long been considered the most heat resistant pathogen in raw milk, making it the reference pathogen for determining pasteurisation conditions for milk products. New milk formulations and novel non-thermal processes require validation of effectiveness which requires a more practical method for analysis than using the currently used animal model for assessing Coxiella survival. Also, there is an interest in better characterising thermal inactivation of Coxiella in various milk formulations. To avoid the use of the guinea pig model for evaluating Coxiella survival, an Integrated Cell Culture-PCR (ICC-PCR) method was developed for determining Coxiella viability in milk. Vero cell cultures were directly infected from Coxiella-contaminated milk in duplicate 24-well plates. Viability of the Coxiella in milk was shown by a ≥ 0.5 log genome equivalent (ge)/ml increase in the quantity of IS111a gene from the baseline post-infection (day 0) level after 9-11 d propagation. Coxiella in skim, 2%, and whole milk, and half and half successfully infected Vero cells and increased in number by at least 2 logs using a 48-h infection period followed by 9-d propagation time. As few as 125 Coxiella ge/ml in whole milk was shown to infect and propagate at least 2 logs in the optimised ICC-PCR assay, though variable confirmation of propagation was shown for as low as 25 Coxiella ge/ml. Applicability of the ICC-PCR method was further proven in an MPN format to quantitate the number of viable Coxiella remaining in whole milk after 60 °C thermal treatment at 0, 20, 40, 60 and 90 min.

  2. A fluorescence polarization based screening assay for identification of small molecule inhibitors of the PICK1 PDZ domain

    DEFF Research Database (Denmark)

    Thorsen, Thor S; Madsen, Kenneth L; Dyhring, Tino

    2011-01-01

    domain in PICK1 (protein interacting with C kinase 1). We screened 43,380 compounds for their ability to inhibit binding of an Oregon Green labeled C-terminal dopamine transporter peptide (OrG-DAT C13) to purified PICK1 in solution. The assay was highly reliable with excellent screening assay parameters...... (Z'˜0.7 and Z˜0.6). Out of ~200 compounds that reduced FP to less than 80% of the control wells, six compounds were further characterized. The apparent affinities of the compounds were determined in FP competition binding experiments and ranged from ~5.0 µM to ~193 µM. Binding to the PICK1 PDZ domain...... was confirmed for five of the compounds (CSC-03, CSC-04, CSC-43, FSC-231 and FSC-240) in a non-fluorescence based assay by their ability to inhibit pull-down of PICK1 by a C-terminal DAT GST fusion protein. CSC-03 displayed the highest apparent affinity (5.0 µM) in the FP assay, and was according...

  3. A fluorescence polarization based screening assay for identification of small molecule inhibitors of the PICK1 PDZ domain

    DEFF Research Database (Denmark)

    Thorsen, Thor S; Madsen, Kenneth L; Dyhring, Tino

    2011-01-01

    PDZ (PSD-95/Discs-large/ZO-1 homology) domains represent putative targets in several diseases including cancer, stroke, addiction and neuropathic pain. Here we describe the application of a simple and fast screening assay based on fluorescence polarization (FP) to identify inhibitors of the PDZ...

  4. Field Evaluation of a Deployable RT-PCR Assay System for Real-Time Identification of Dengue Virus

    Science.gov (United States)

    2004-06-01

    strains of dengue serotypes 1-4, yellow fever, Japanese encephalitis, West Nile, and St. Louis encephalitis viruses as well as dengue virus infected...JA, Pyke A, Smith GA. Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes . J Med Virol. 2002 April; 66(4

  5. Identification of allergenic potency of Latex-chemicals in the auricular lymph node assay in the mouse

    NARCIS (Netherlands)

    de Jong WH; Tentij M; Legtenberg RJ; van de Vliet H; Vandebriel RJ; van Loveren H; LPI

    1997-01-01

    De laatste jaren is het voorkomen van latexallergie toegenomen ten gevolge van een stijging in het preventieve gebruik van latex handschoenen. In dit onderzoek werd nagegaan of de auriculaire lymfklier assay (ALNA) gebruikt kon worden om allergene eigenschappen van latex handschoenen te detecteren.

  6. Quantitative multiplex assay for simultaneous detection and identification of Indiana and New Jersey serotypes of vesicular stomatitis virus

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Uttenthal, Åse; Fernandez, Jovita;

    2005-01-01

    In order to establish a rapid and reliable system for the detection of vesicular stomatitis virus (VSV), we developed a quantitative reverse transcription-PCR assay for the detection, quantification, and differentiation of the major serotypes, VSV Indiana and VSV New Jersey, using a closed...

  7. A real-time PCR assay for the specific identification of serotype O : 9 of Yersinia enterocolitica

    DEFF Research Database (Denmark)

    Jacobsen, N.R.; Bogdanovich, T.; Skurnik, M.

    2005-01-01

    A real-time PCR assay was developed based on a 18 1 -bp fragment of the recently cloned per gene, including an internal amplification control (124 bp), for the detection of Yersinia enterocolitica 0:9 (Ye 0:9). The validation included 48 Ye 0:9, 33 Y enterocolitica non-0:9 and 35 other closely...

  8. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    Science.gov (United States)

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  9. Specific detection and identification of mulberry-infecting strains of Xylella fastidiosa by polymerase chain reaction

    Science.gov (United States)

    X. fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular land...

  10. Identification of spoilage yeasts in a food-production chain by microsatellite polymerase chain reaction fingerprinting

    NARCIS (Netherlands)

    Baleiras Couto, M.M.; Hartog, B.J.; Veld, J.H.J. Huis in 't; Hofstra, H.; Vossen, J.M.B.M. van der

    1996-01-01

    A survey of yeast strains present in the production chain of mayonnaise and salad dressings was carried out over a period of 14 months. Attempts were made to identify the isolated yeasts with the API system, but identification of all species involved was not possible. In the investigation the

  11. A quantitative polymerase chain reaction assay for the enumeration of brown tide algae Aureococcusanophagefferens in coastal waters of Qinhuangdao

    Institute of Scientific and Technical Information of China (English)

    GUO Hao; LIU Yongjian; ZHANG Qi; YUAN Xiutang; ZHANG Weiwei; ZHANG Zhifeng

    2015-01-01

    Aureococcus anophagefferens, a small pelagophyte algae, has caused brown tide blooms in coastal waters of Qinhua-ngdao in recent years, presenting significant negative impacts on the shellfish mariculture industry. Under standard light microscopy, it is visually indistinguishable from other small algae in field samples due to its extremely small size. In this study, quantitative polymerase chain reaction (qPCR) based on 18S rDNA sequences was developed and used to detect and enumerate A. anophagefferens. A linear regression (R2=0.91) was generated based on cycle thr-esholds value (Ct) versus known concentrations of A. anophagefferens. Twenty-two field samples collected in coastal waters of Qinhuangdao were subjected to DNA extraction and then analyzed using qPCR. Results showed that A. anophagefferens had a wide distribution in coastal waters along Qinhuangdao. Elevated A. anophagefferens abun-dance, category 3 brown tide blooms (>200 000 cells/mL) occurred at Dongshan Beach and Tiger-stone Beach in August in 2013. In shellfish mariculture areas along coastal waters of Qinhuangdao, 4 stations had category 3 blooms, and 6 stations had category 2 blooms (35 000–200 000 cells/mL) in August and all stations had category 1 blooms (>0 to ≤35 000 cells/mL) in October. Quantitative PCR allows for detection of A. anophagefferens cells at low levels in filed samples, which is essential to effective management and prediction of brown tide blooms.

  12. Models for identification of erroneous atom-to-atom mapping of reactions performed by automated algorithms.

    Science.gov (United States)

    Muller, Christophe; Marcou, Gilles; Horvath, Dragos; Aires-de-Sousa, João; Varnek, Alexandre

    2012-12-21

    Machine learning (SVM and JRip rule learner) methods have been used in conjunction with the Condensed Graph of Reaction (CGR) approach to identify errors in the atom-to-atom mapping of chemical reactions produced by an automated mapping tool by ChemAxon. The modeling has been performed on the three first enzymatic classes of metabolic reactions from the KEGG database. Each reaction has been converted into a CGR representing a pseudomolecule with conventional (single, double, aromatic, etc.) bonds and dynamic bonds characterizing chemical transformations. The ChemAxon tool was used to automatically detect the matching atom pairs in reagents and products. These automated mappings were analyzed by the human expert and classified as "correct" or "wrong". ISIDA fragment descriptors generated for CGRs for both correct and wrong mappings were used as attributes in machine learning. The learned models have been validated in n-fold cross-validation on the training set followed by a challenge to detect correct and wrong mappings within an external test set of reactions, never used for learning. Results show that both SVM and JRip models detect most of the wrongly mapped reactions. We believe that this approach could be used to identify erroneous atom-to-atom mapping performed by any automated algorithm.

  13. Topo-optical reactions for the identification of O-acyl sugars in amyloid deposits.

    Science.gov (United States)

    Richter, Susann; Makovitzky, Josef

    2009-01-01

    The aldehyde bisulfite toluidine blue (ABT) reaction with former saponification (KOH-ABT) and periodic acid-borohydride reduction-saponification (PB-KOH-ABT) were applied to sections of human amyloid deposits in the respiratory tract. The saponification-induced increase in ABT-reactivity was confined to the presence of O-acyl sugars associated with the amyloid fibrils. The anisotropic and metachromatic effect in the ABT and KOH-ABT reaction was reduced in the corresponding PB-KOH-ABT reaction, a difference attributed to the removal of staining due to neutral carbohydrate residues. Since the periodic acid-borohydride reduction abolishes all pre-existing ABT-reactivity of neutral sugar vicinal diols, the isolated KOH-effect could be shown using the PB-KOH-ABT reaction. By application of this sequence, the problem identifying small quantities of O-acyl sugars was solved. It is suggested that the KOH-effect depends upon the removal of O-acyl substituents located on the polyhydroxy side chain (C7, C8, C9) of sialic acid residues. An advantage of such topo-optical reactions over biochemical techniques is the exact localization of O-acyl sugars in tissue sites. By means of the KOH-ABT and PB-KOH-ABT reactions we have demonstrated, for the first time, that O-acyl sugars occur within amyloid deposits.

  14. Leishmania spp. identification by polymerase chain reaction-restriction fragment length polymorphism analysis and its applications in French Guiana.

    Science.gov (United States)

    Simon, Stéphane; Veron, Vincent; Carme, Bernard

    2010-02-01

    Leishmania (Viannia) guyanensis was for many years the only species commonly identified in French Guiana, but precise species identifications were quite rare. We describe a new restriction fragment length polymorphism-polymerase chain reaction technique using a 615-bp fragment of the RNA polymerase II gene and 2 restriction enzymes, TspRI and HgaI. Seven reference strains (Leishmania (Leishmania) amazonensis, Leishmania (Viannia) lainsoni, Leishmania (Viannia) braziliensis, L. (V.) guyanensis, Leishmania (Viannia) naiffi, Leishmania (Leishmania) major, Leishmania (Leishmania) infantum) and 112 clinical samples from positive lesions were used for the development of the technique. The rates of positive species identification were 85.7% for punch skin biopsy specimens, 93.1% for positive Giemsa-stained smears, and 100% for positive culture supernatants. In the framework of cutaneous leishmaniasis species surveillance for the 2006 to 2008 period, parasite identification was carried out for 199 samples from different patients. The prevalence of the various Leishmania spp. was 84.4% for L. (V.) guyanensis, 8.0% for L. (V.) braziliensis, 5.0% for L. (L.) amazonensis, and 2.6% for L. (V.) lainsoni. L. (V.) braziliensis seems to be locally an emerging pathogen.

  15. SRIdent: A novel pipeline for real-time identification of species from high-throughput sequencing reads in Metagenomics and clinical diagnostic assays.

    Science.gov (United States)

    Karimi, Ramin; Hajdu, Andras

    2015-01-01

    New advances in rapid sequencing of large amounts of DNA have brought a great potential for the study of complex communities of microorganisms. One of the challenging problems is rapid identification of species from sequenced reads. Delays in the identification of pathogens are a barrier to the early diagnosis and proper treatment of infectious diseases. In this paper we proposed SRIdent (Short Read Identifier), an effective pipeline for real-time identification of species from high-throughput sequencing reads in Metagenomics and clinical diagnostic assays. This pipeline is based on generating k-mers from the short reads and searching the existence of DNA signatures in the Reads k-mers, by using Apache Hive data-warehousing. RkmerG (Read k-mers Generator) is a software program presented in this paper, for producing k-mers of the short reads, in order to use in the pipeline. The purpose of this study is to identify the species in a sample, directly from the reads without assembling and alignment.

  16. Identification of Clostridium beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum isolated from silage, raw milk and hard cheese by a multiplex PCR assay.

    Science.gov (United States)

    Cremonesi, Paola; Vanoni, Laura; Silvetti, Tiziana; Morandi, Stefano; Brasca, Milena

    2012-08-01

    Late blowing, caused by the outgrowth of clostridial spores present in raw milk and originating from silage, can create considerable product loss, especially in the production of hard and semi-hard cheeses. The conventional method for the isolation of Clostridium spp. from cheeses with late-blowing symptoms is very complicated and the identification of isolates is problematic. The aim of this work was the development of a multiplex PCR method for the detection of the main dairy-related clostridia such as: Cl. beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum. Samples derived from silage, raw milk and hard cheese were analysed by the most probable number (MPN) enumeration. Forty-four bacterial strains isolated from gas positive tubes were used to check the reliability of the multiplex PCR assay. The specificity of the primers was tested by individually analysing each primer pair and the primer pair combined in the multiplex PCR. It was interesting to note that the samples not identified by the multiplex PCR assay were amplified by V2-V3 16S rRNA primer pair and the sequencing revealed the aligned 16S rRNA sequences to be Paenibacillus and Bacillus spp. This new molecular assay provides a simple promising alternative to traditional microbiological methods for a rapid, sensitive detection of clostridia in dairy products.

  17. Identification of Tight-Binding Plasmepsin II and Falcipain 2 Inhibitors in Aqueous Extracts of Marine Invertebrates by the Combination of Enzymatic and Interaction-Based Assays

    Science.gov (United States)

    Salas-Sarduy, Emir; Guerra, Yasel; Covaleda Cortés, Giovanni; Avilés, Francesc Xavier; Chávez Planes, María A.

    2017-01-01

    Natural products from marine origin constitute a very promising and underexplored source of interesting compounds for modern biotechnological and pharmaceutical industries. However, their evaluation is quite challenging and requires specifically designed assays to reliably identify the compounds of interest in a highly heterogeneous and interfering context. In the present study, we describe a general strategy for the confident identification of tight-binding protease inhibitors in the aqueous extracts of 62 Cuban marine invertebrates, using Plasmodium falciparum hemoglobinases Plasmepsin II and Falcipain 2 as model enzymes. To this end, we first developed a screening strategy that combined enzymatic with interaction-based assays and then validated screening conditions using five reference extracts. Interferences were evaluated and minimized. The results from the massive screening of such extracts, the validation of several hits by a variety of interaction-based assays and the purification and functional characterization of PhPI, a multifunctional and reversible tight-binding inhibitor for Plasmepsin II and Falcipain 2 from the gorgonian Plexaura homomalla, are presented. PMID:28430158

  18. Probe-free real-time reverse transcription polymerase chain reaction assays for the detection and typing of porcine reproductive and respiratory syndrome virus in Canada.

    Science.gov (United States)

    Eschbaumer, Michael; Li, Wansi May; Wernike, Kerstin; Marshall, Frank; Czub, Markus

    2015-07-01

    Porcine reproductive and respiratory syndrome (PRRS) has tremendous impact on the pork industry in North America. The molecular diagnosis of infection with PRRS virus (PRRSV) is hampered by its considerable strain diversity. In this study, 43 previously published or newly developed primers for probe-free real-time reverse transcription polymerase chain reaction (RT-PCR) were evaluated on their sensitivity, specificity, reproducibility, and repeatability, using a diverse panel of 36 PRRSV strains as well as other arteriviruses and unrelated porcine viruses. Three primer pairs had excellent diagnostic and analytical sensitivity on par with a probe-based reference assay, absolute specificity to virus genotype and species, as well as over 95% reproducibility and repeatability across a wide dynamic range.

  19. A Multi-detection Assay for Malaria Transmitting Mosquitoes

    Science.gov (United States)

    Lee, Yoosook; Weakley, Allison M.; Nieman, Catelyn C.; Malvick, Julia; Lanzaro, Gregory C.

    2015-01-01

    The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays. PMID:25867057

  20. Real-time detection and identification of Chlamydophila species in veterinary specimens by using SYBR green-based PCR assays.

    Science.gov (United States)

    Nordentoft, Steen; Kabell, Susanne; Pedersen, Karl

    2011-09-01

    Infections caused by members of the Chlamydiaceae family have long been underestimated due to the requirement of special laboratory facilities for the detection of this group of intracellular pathogens. Furthermore, new studies of this group of intracellular pathogens have revealed that host specificity of different species is not as clear as recently believed. As most members of the genus Chlamydophila have shown to be transmissible from animals to humans, sensitive and fast detection methods are required. In this study, SYBR green-based real-time assays were developed that detect all members of Chlamydiaceae and differentiate the most prevalent veterinary Chlamydophila species: Cp. psittaci, Cp. abortus, Cp. felis, and Cp. caviae. By adding bovine serum albumin to the master mixes, target DNA could be detected directly in crude lysates of enzymatically digested conjunctival or pharyngeal swabs or tissue specimens from heart, liver, and spleen without further purification. The assays were evaluated on veterinary specimens where all samples were screened using a family-specific PCR, and positive samples were further tested using species-specific PCRs. Cp. psittaci was detected in 47 birds, Cp. felis was found in 10 cats, Cp. caviae was found in one guinea pig, and Cp. abortus was detected in one sheep. The screening assay appeared more sensitive than traditional microscopical examination of stained tissue smears. By combining a fast, robust, and cost-effective method for sample preparation with a highly sensitive family-specific PCR, we were able to screen for Chlamydiaceae in veterinary specimens and confirm the species in positive samples with additional PCR assays.

  1. Varicella Zoster Virus Myelitis in Two Elderly Patients: Diagnostic Value of Nested Polymerase Chain Reaction Assay and Antibody Index for Cerebrospinal Fluid Specimens

    Directory of Open Access Journals (Sweden)

    Teruyuki Takahashi

    2013-04-01

    Full Text Available Background: Myelitis is one of the rarest neurological complications of the varicella zoster virus (VZV infection. Focal muscle weakness with or without sensory disturbance occurs in approximately 5% of the cases after acute VZV infection, with complete recovery in 50-70%. Case Presentation: This report describes two rare cases of elderly patients with VZV myelitis secondary to dermatomal zoster rash. Patient 1 was a 79-year-old woman who developed paraplegia, numbness and decreased sensation in the left arm and below thoracic (Th-10 after sacral zoster. Spinal cord MRI showed a high-signal-intensity lesion at the cervical spinal nerve 2 on a T2-weighted image. Patient 2 was a 73-year-old man who developed right flaccid leg weakness and urinary retention after right dorsal Th 5-8 zoster. Spinal cord MRI showed a high-signal-intensity lesion at Th 3-4 on a T2-weighted image. In both cases, although the conventional single polymerase chain reaction (PCR assays all showed negative results, the original nested PCR assay detected VZV DNA in the cerebrospinal fluid (CSF specimen collected on admission. In addition, the anti-VZV IgG antibody by enzyme immunoassay and antibody index were elevated in the CSF specimens during the clinical courses of both patients. On the basis of these findings, both patients were diagnosed with VZV myelitis and were treated with high-dose acyclovir and corticosteroid. This combined treatment was appropriate and effective for the improvement of their functional outcomes. Conclusion: The detection of VZV DNA in CSF by nested PCR assay and the evaluation of the antibody index to VZV had significant diagnostic value.

  2. Varicella zoster virus myelitis in two elderly patients: diagnostic value of nested polymerase chain reaction assay and antibody index for cerebrospinal fluid specimens.

    Science.gov (United States)

    Takahashi, Teruyuki; Tamura, Masato; Miki, Kenji; Yamaguchi, Mai; Kanno, Akira; Nunomura, Satoshi; Ra, Chisei; Tamiya, Takashi; Kamei, Satoshi; Takasu, Toshiaki

    2013-01-01

    Myelitis is one of the rarest neurological complications of the varicella zoster virus (VZV) infection. Focal muscle weakness with or without sensory disturbance occurs in approximately 5% of the cases after acute VZV infection, with complete recovery in 50-70%. This report describes two rare cases of elderly patients with VZV myelitis secondary to dermatomal zoster rash. Patient 1 was a 79-year-old woman who developed paraplegia, numbness and decreased sensation in the left arm and below thoracic (Th)-10 after sacral zoster. Spinal cord MRI showed a high-signal-intensity lesion at the cervical spinal nerve 2 on a T2-weighted image. Patient 2 was a 73-year-old man who developed right flaccid leg weakness and urinary retention after right dorsal Th 5-8 zoster. Spinal cord MRI showed a high-signal-intensity lesion at Th 3-4 on a T2-weighted image. In both cases, although the conventional single polymerase chain reaction (PCR) assays all showed negative results, the original nested PCR assay detected VZV DNA in the cerebrospinal fluid (CSF) specimen collected on admission. In addition, the anti-VZV IgG antibody by enzyme immunoassay and antibody index were elevated in the CSF specimens during the clinical courses of both patients. On the basis of these findings, both patients were diagnosed with VZV myelitis and were treated with high-dose acyclovir and corticosteroid. This combined treatment was appropriate and effective for the improvement of their functional outcomes. The detection of VZV DNA in CSF by nested PCR assay and the evaluation of the antibody index to VZV had significant diagnostic value.

  3. Evaluation of multiplex ligation-dependent probe amplification analysis versus multiplex polymerase chain reaction assays in the detection of dystrophin gene rearrangements in an Iranian population subset

    Directory of Open Access Journals (Sweden)

    Nayereh Nouri

    2014-01-01

    Full Text Available Background: The Duchenne muscular dystrophy (DMD gene is located in the short arm of the X chromosome (Xp21. It spans 2.4 Mb of the human genomic DNA and is composed of 79 exons. Mutations in the Dystrophin gene result in DMD and Becker muscular dystrophy. In this study, the efficiency of multiplex ligation-dependent probe amplification (MLPA over multiplex polymerase chain reaction (PCR assays in an Iranian population was investigated. Materials and Methods: Multiplex PCR assays and MLPA analysis were carried out in 74 patients affected with DMD. Results: Multiplex PCR detected deletions in 51% of the patients with DMD. MLPA analysis could determine all the deletions detected by the multiplex PCR. Additionally, MLPA was able to identify one more deletion and duplication in patients without detectable mutations by multiplex PCR. Moreover, MLPA precisely determined the exact size of the deletions. Conclusion: Although MLPA analysis is more sensitive for detection of deletions and duplications in the dystrophin gene, multiplex PCR might be used for the initial analysis of the boys affected with DMD in the Iranian population as it was able to detect 95% of the rearrangements in patients with DMD.

  4. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR) Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4

    Science.gov (United States)

    Lin, Yi-Jia; Chang, Tsai-De; Hong, Li-Ling; Chen, Tzu-Yu; Chang, Pi-Fang Linda

    2016-01-01

    This study developed a novel and inexpensive detection method based on a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) method for the rapid detection of Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc) race 4, which is currently among the most serious fungal vascular diseases worldwide. By using the portable POCKIT™ device with the novel primer set iiFoc-1/iiFoc-2, the Foc race 4 iiPCR assay (including DNA amplification and signal monitoring) could be completed within one hour. The developed Foc race 4 iiPCR assay is thus a user-friendly and efficient platform designed specifically for the detection of Foc race 4. The detection limit of this optimized Foc iiPCR system was estimated to be 1 copy of the target standard DNA as well as 1 fg of the Foc genomic DNA. This approach can serve as a rapid detection method for in planta detection of Foc race 4 in field-infected banana. It was concluded that this molecular detection procedure based on iiPCR has good potential for use as an efficient detection method. PMID:27448242

  5. Ethamsylate (Dicynone) interference in determination of serum creatinine, uric acid, triglycerides, and cholesterol in assays involving the Trinder reaction; in vivo and in vitro.

    Science.gov (United States)

    Dastych, Milan; Wiewiorka, Ondrej; Benovská, Miroslava

    2014-01-01

    The aim of our research was the quantification of interfering properties of the haemostatic drug Dicynone (ethamsylate) in serum creatinine, uric acid, cholesterol, and triglyceride assays using the Trinder reaction. Blood from patients was collected before and 15 minutes after administration of 500 mg Dicynone dose i.v. and the above mentioned analytes were quantified using Roche assays (Cobas 8000). In our in vitro experiment, we measured concentrations of the analytes in pooled serum aliquots with final concentrations of Dicynone additions 0, 30, 60, 150, and 300 mg/L. Aliquots with 60 mg/L Dicynone were also measured at 2, 6, and 8 hours after initial measurement when stored in 22 degrees C and 4 degrees C for comparison. Concentrations of the measured analytes in samples from patients administered with a 500 mg dose of Dicynone were lower in all cases (n = 10) when compared to values in samples taken immediately before treatment. The in vitro samples showed that considerable negative interference occurred even with the low concentrations of Dicynone additions (30 and 60 mg/L), showing the strongest negative interference in creatinine values, followed by uric acid, triglycerides, and cholesterol. Using in vitro samples, we showed strong time and temperature dependence on Dicynone interference. We found and proved significant negative interference of the drug Dicynone (ethamsylate) in the clinical analysis of blood using in vivo and in vitro experiments. Furthermore, we observed a change of this effect in serum matrix over time and at different storage temperatures.

  6. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4.

    Directory of Open Access Journals (Sweden)

    Ying-Hong Lin

    Full Text Available This study developed a novel and inexpensive detection method based on a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR method for the rapid detection of Panama disease caused by Fusarium oxysporum f. sp. cubense (Foc race 4, which is currently among the most serious fungal vascular diseases worldwide. By using the portable POCKIT™ device with the novel primer set iiFoc-1/iiFoc-2, the Foc race 4 iiPCR assay (including DNA amplification and signal monitoring could be completed within one hour. The developed Foc race 4 iiPCR assay is thus a user-friendly and efficient platform designed specifically for the detection of Foc race 4. The detection limit of this optimized Foc iiPCR system was estimated to be 1 copy of the target standard DNA as well as 1 fg of the Foc genomic DNA. This approach can serve as a rapid detection method for in planta detection of Foc race 4 in field-infected banana. It was concluded that this molecular detection procedure based on iiPCR has good potential for use as an efficient detection method.

  7. Identification of Moraxella bovis and related species from calves with IBK and goats by qualitative genetic transformation assay.

    Science.gov (United States)

    Kodjo, A; Exbrayat, P; Richard, Y

    1994-07-01

    Eight Moraxella bovis strains isolated from bovine pink eye, 16 Moraxella bovis related strains isolated from healthy goats nasal flora, one nonhemolytic Moraxella sp. isolated from bovine conjunctivitis and different collection strains of Moraxella and Branhamella genus were studied through the combined use of qualitative genetic transformation assay and the ability to grow on a moraxella bovis defined medium (medium MB). Crude DNA extracted from the strains studied were used to transform two mutant auxotroph competent strains of Moraxella bovis CIP 103741 and CIP 103743. Non-specific positive transformation was obtained with mutant assay strain CIP 103743 when treated with DNA from caprine or bovine Moraxella strains, collection strains of Moraxella bovis, Moraxella lacunata, Moraxella nonliquefaciens and strains of Branhamella genus, whereas specific transformation was observed with mutant assay CIP 103741 when treated only with DNA from all the Moraxella bovis (collection and clinical isolates) and 14 of the 16 caprine Moraxella bovis related strains. The specificity and the simplicity of the test make it suitable for use in clinical laboratories.

  8. Progesterone receptor chaperone complex-based highthroughput screening assay: identification of capsaicin as inhibitor of Hsp90 machine

    Science.gov (United States)

    Patwardhan, Chaitanya A.; Alfa, Eyad; Lu, Su; Chadli, Ahmed

    2016-01-01

    Hsp90 and its co-chaperones are known to be important for cancer cell survival. The N-terminal inhibitors of Hsp90 that are in ongoing clinical trials as anti-tumor agents have unfortunately shown disappointing efficacies in the clinic. Thus, novel inhibitors of the Hsp90 machine with different mechanism of action are urgently needed. We report here the development of a novel high-throughput drug-screening (HTS) assay platform to identify small molecule inhibitors of Hsp90 and its co-chaperones. This assay quantitatively measures the ability of Hsp90 and its co-chaperones to refold/protect the progesterone receptor (PR), a physiological client of Hsp90, in 96-well plate format. We screened the NIH clinical collection drug library and identified capsaicin as a hit molecule. Capsaicin is an FDA-approved drug for topical use in pain management. Cell survival assays showed that capsaicin selectively kills cancer cells and destabilizes several Hsp90 client proteins. Thus, our data may explain the seemingly pleotropic effect of capsaicin. PMID:25184514

  9. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si[sub 3]N[sub 4] during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, [approximately] 10 Si[sub 3]N[sub 4] nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si[sub 3]N[sub 4] growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  10. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si{sub 3}N{sub 4} during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, {approximately} 10 Si{sub 3}N{sub 4} nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si{sub 3}N{sub 4} growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  11. Isolation and identification of a novel aromatic amine mutagen produced by the Maillard reaction.

    Science.gov (United States)

    Nishigaki, Rena; Watanabe, Tetsushi; Kajimoto, Tetsuya; Tada, Atsuko; Takamura-Enya, Takeji; Enomoto, Shigeki; Nukaya, Haruo; Terao, Yoshiyasu; Muroyama, Atsushi; Ozeki, Minoru; Node, Manabu; Hasei, Tomohiro; Totsuka, Yukari; Wakabayashi, Keiji

    2009-09-01

    To clarify the formation of mutagens in the Maillard reaction of glucose and amino acids, 20 amino acids were separately incubated with glucose in the presence or absence of hydroxyl radicals produced by the Fenton reaction. After 1 week at 37 degrees C and pH 7.4, the reaction mixtures of glucose and tryptophan with and without the Fenton reagent showed mutagenicity toward Salmonella typhimurium YG1024 in the presence of a mammalian metabolic system (S9 mix). To identify mutagens in the reaction mixture, blue rayon-adsorbed material from a mixture of glucose, tryptophan, and the Fenton reagent was separated by column chromatography using various solid and mobile phases, and one mutagen, which accounted for 18% of the total mutagenicity of the reaction mixture, was isolated. The chemical structure of the mutagen was determined to be 5-amino-6-hydroxy-8H-benzo[6,7]azepino[5,4,3-de]quinolin-7-one (ABAQ) on the basis of ESI mass, high-resolution APCI mass, (1)H NMR, (13)C NMR, and IR spectral analyses and chemical synthesis of the mutagen. The novel aromatic amine showed high mutagenicity toward S. typhimurium TA98 and YG1024 with S9 mix, inducing 857 revertants of TA98 and 6007 revertants of YG1024/microg, respectively. The mutagenicity of ABAQ was comparable to that of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, which is a mutagenic and carcinogenic hetrocyclic amine in cooked meat and fish formed through the Maillard reaction at high temperature.

  12. A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA.

    Science.gov (United States)

    Moynié, Lucile; Hope, Anthony G; Finzel, Kara; Schmidberger, Jason; Leckie, Stuart M; Schneider, Gunter; Burkart, Michael D; Smith, Andrew D; Gray, David W; Naismith, James H

    2016-01-16

    Eukaryotes and prokaryotes possess fatty acid synthase (FAS) biosynthetic pathways that comprise iterative chain elongation, reduction, and dehydration reactions. The bacterial FASII pathway differs significantly from human FAS pathways and is a long-standing target for antibiotic development against Gram-negative bacteria due to differences from the human FAS, and several existing antibacterial agents are known to inhibit FASII enzymes. N-Acetylcysteamine (NAC) fatty acid thioesters have been used as mimics of the natural acyl carrier protein pathway intermediates to assay FASII enzymes, and we now report an assay of FabV from Pseudomonas aeruginosa using (E)-2-decenoyl-NAC. In addition, we have converted an existing UV absorbance assay for FabA, the bifunctional dehydration/epimerization enzyme and key target in the FASII pathway, into a high-throughput enzyme coupled fluorescence assay that has been employed to screen a library of diverse small molecules. With this approach, N-(4-chlorobenzyl)-3-(2-furyl)-1H-1,2,4-triazol-5-amine (N42FTA) was found to competitively inhibit (pIC50=5.7±0.2) the processing of 3-hydroxydecanoyl-NAC by P. aeruginosa FabA. N42FTA was shown to be potent in blocking crosslinking of Escherichia coli acyl carrier protein and FabA, a direct mimic of the biological process. The co-complex structure of N42FTA with P. aeruginosa FabA protein rationalises affinity and suggests future design opportunities. Employing NAC fatty acid mimics to develop further high-throughput assays for individual enzymes in the FASII pathway should aid in the discovery of new antimicrobials.

  13. Development of a reliable assay protocol for identification of diseases (RAPID)-bioactive amplification with probing (BAP) for detection of Newcastle disease virus.

    Science.gov (United States)

    Wang, Chi-Young; Hsu, Chia-Jen; Chen, Heng-Ju; Chulu, Julius L C; Liu, Hung-Jen

    2008-07-27

    Due to appearance of new genotypes of Newcastle disease virus (NDV) with no cross-protection and with vaccine strains, some outbreaks have been reported in Taiwan that caused significant damage to the poultry industry. A reliable assay protocol, (RAPID)-bioactive amplification with probing (BAP), for detection of NDV that uses a nested PCR and magnetic bead-based probe to increase sensitivity and specificity, was developed. Primers and probes were designed based on the conserved region of the F protein-encoding gene sequences of all NDV Taiwan isolates. The optimal annealing temperature for nested reverse transcription-polymerase chain reaction (RT-PCR) to amplify the gene was 61 degrees C and optimal hybridization occurred when buffer 1x SSC and 0.5% SDS were used at 50 degrees C. The sensitivity of RAPID-BAP was 1 copy/microl for standard plasmids and 10 copy/mul for transcribed F protein-encoding gene of NDV with comparable linearity (R(2)=0.984 versus R(2)=0.99). This sensitivity was superior to that of other techniques currently used. The assay was also highly specific because the negative controls, including classical swine fever virus, avian influenza virus, avian reovirus, and infectious bursa disease virus could not be detected. Thirty-four field samples were tested using conventional RT-PCR, nested RT-PCR, real-time quantitative RT-PCR, and RAPID-BAP assay and the positive rates were 24%, 30%, 41%, and 53%, respectively. The developed assay allows for rapid, correct, and sensitive detection of NDV and fulfils all of the key requirements for clinical applicability. It could reliably rule out false negative results from antibody-based assays and also facilitate a rapid diagnosis in the early phase of the disease for emergency quarantine that may help prevent large-scale outbreaks.

  14. Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells.

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.

  15. Relative efficiency of polymerase chain reaction and enzyme-linked immunosorbant assay in determination of viral etiology in congenital cataract in infants

    Directory of Open Access Journals (Sweden)

    Shyamala G

    2008-01-01

    Full Text Available Background: Perinatal viral infections of fetus are among the leading causes of congenital cataract and identifying the viral etiology is important. Objectives: To detect the presence of Rubella virus (RV, herpes simplex virus (HSV and cytomegalovirus (CMV in lens aspirate specimens obtained from patients with congenital cataract and relate the results with serology. Setting and Design: Prospective study carried out in tertiary care hospital. Materials and Methods: Fifty lens aspirates from 50 infants with congenital cataract were subjected to HSV, RV isolation and polymerase chain reaction (PCR for detection of HSV and CMV. Reverse transcription polymerase chain reaction (RT-PCR was applied for RV detection. Peripheral blood specimens were screened for anti-HSV, RV and CMV antibodies by enzyme-linked immunosorbant assay (ELISA. Results: Rubella virus was detected in nine (18% lens aspirates, by nRT-PCR which includes six positive by culture. HSV-2 DNA was detected in nine other lens aspirates, while CMV was not detected by PCR. Serological results did not correlate with the presence of viruses in the lens aspirates. This is the first report of detection of HSV-2 DNA in cases of congenital cataract. Conclusions: Cytomegalovirus may not be playing a significant role in causation of congenital cataract. The role of serology in identifying causative viral infection for congenital cataract needs to be re-evaluated.

  16. Identification of traumatic stress reactions in women at increased risk for breast cancer.

    Science.gov (United States)

    Lindberg, Nangel M; Wellisch, David K

    2004-01-01

    It has been shown that the diagnosis and treatment of cancer may constitute a traumatic event that generates in patients and some of their family members traumatic reactions that are consistent with the symptom profile of posttraumatic stress disorder (PTSD). The present study was conducted to establish the degree to which women at increased familial risk for breast cancer showed such traumatic reactions and to establish which demographic or psychological variables may contribute to the experience of such traumatic reactions in at-risk individuals. Seventy-three women from the Revlon UCLA Breast Center High Risk Clinic were assessed for traumatic reactions that might be consistent with the DSM-IV criteria for PTSD. The results showed that women at increased risk for breast cancer exhibited traumatic responses similar to those reported by cancer patients. When the authors used a self-report instrument that maps onto DSM-IV criteria, 4% of the study subjects reported symptoms consistent with criteria for a potential diagnosis of PTSD, and an additional 7% of the subjects reported symptoms consistent with potentially subclinical levels of PTSD, according to DSM-IV criteria.

  17. Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids: Product identification and reaction mechanisms

    Science.gov (United States)

    Deng, Yiwei; Zhang, Kai; Chen, Hao; Wu, Taixing; Krzyaniak, Metthew; Wellons, Amina; Bolla, Dawn; Douglas, Kenneth; Zuo, Yuegang

    This study investigated iron-catalyzed photochemical oxidation of benzoic acid (BA), one of the major photodegradation products of petroleum hydrocarbons, under sunlight or monochromatic light irradiation in a wavelength range of 254-419 nm. The photochemical degradation of BA in the absence of iron (III) occurred at irradiation wavelengths below 300 nm. The photochemical transformation of BA in the presence Fe(III) was observed at both 254, 350, 419 nm and under solar irradiation. The half-life for the photodegradation of BA (100 μM) was 160±20 min in the presence of 20 μM Fe(III) at pH 3.20 on sunny August days at noon time. The degradation rate increased with increasing concentration of Fe(III). The reaction products were separated and identified using capillary electrophoresis (CE), gas chromatography/mass spectrometry (GC/MS) and UV-Visible spectrophotometry. The major reaction products were 2-hydroxybenzoic, 3-hydroxybenzoic and 4-hydroxybenzoic acids. Hydrogen peroxide (H 2O 2) and Fe(II) species were also formed during the photochemical reactions. The proposed reaction mechanisms include the photoexcitation of Fe(III) hydroxide complexes to form Fe(II) ions and hydroxyl radicals (OH rad ) that attack ortho, meta and para positions of BA to form corresponding monohydroxybenzoic acids and H 2O 2. The monohydroxybenzoic acids formed further react with hydroxyl and surperoxide radicals (HO 2- rad /O 2- rad ) to yield dihydroxybenzoic acids in atmospheric water droplets.

  18. Identification of a Critical Intermediate in Galvanic Exchange Reactions by Single-Nanoparticle Resolved Kinetics

    Science.gov (United States)

    Smith, Jeremy George; Jain, Prashant

    2014-06-01

    The realization of common materials transformations in nanocrystalline systems is fostering the development of novel nanostructures and allowing a deep look into the atomistic mechanisms involved. Galvanic corrosion is one such transformation. We studied galvanic replacement within individual metal nanoparticles by using plasmonic spectroscopy. This proved to be a powerful approach to studying materials transformations in the absence of ensemble averaging. Individual nanoscale units act as domains that can be interrogated optically in isolation, whereas the averaging of all such domains provides a bulk reaction trajectory. Single-nanoparticle reaction trajectories showed that a Ag nanoparticle exposed to Au3+ makes an abrupt transition into a nanocage structure. The transition is limited by a critical structural event, which we identified by electron microscopy to comprise the formation of a nanosized void, similar to the pitting process commonly observed in the corrosion of metals. Trajectories also revealed a surprisingly strong nonlinearity of the reaction kinetics, which we explain by a model involving the critical coalescence of vacancies into a growing void. The critical void size for galvanic exchange to spontaneously proceed was found to be 20 atomic vacancies. In the future we hope to extend this approach to examine a wide variety of materials transformations and chemical reactions.

  19. Production of monoclonal antibodies for detection of Citrus leprosis virus C in enzyme-linked immuno-assays and immunocapture reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Choudhary, Nandlal; Roy, Avijit; Govindarajulu, A; Nakhla, M K; Levy, L; Brlansky, R H

    2014-09-01

    Citrus leprosis virus C (CiLV-C) causes damage in citrus production in the South and Central America. Since closely related types of citrus viruses have recently been described monoclonal antibodies (MAbs) are needed for accurate and sensitive diagnosis of CiLV-C. In this study, MAbs to the expressed coat protein of CiLV-C were produced for serological detection of CiLV-C in crude extracts of infected tissues in double antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA), dot blot immunosorbent assays (DBIA) and immuonocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) procedures. Monoclonal antibodies were developed in mice to the purified expressed coat protein of CiLV-C. The published standard protocols of DAS-ELISA, DBIA and IC-RT-PCR were followed for the detection of coat protein p29 of CiLV-C in the crude extracts of CiLV-C infected tissues. Two monoclonal antibodies, designated G10 and C11, were identified from four potential candidates for the specific and sensitive detection of coat protein p29 of CiLV-C in the crude citrus extracts of CiLV-C infected tissues in DAS-ELISA, whereas G10 was also selected based on performance for use in the DBIA and IC-RT-PCR diagnostic assays. Sensitivity analysis comparing the three methods for detection of coat protein p29 of CiLV-C determined that IC-RT-PCR was more sensitive than DAS-ELISA and DBIA. The creation of MAbs to CiLV-C allows for the sensitive and accurate detection of the virus from CiLV-C infected citrus leaf tissues. Successful detection of the virus in three diagnostic assays formats provides flexibility to diagnosticians who can use either ELISA or DBIA for screening large numbers of samples, and IC-RT-PCR for rapid, sensitive confirmation testing. Published by Elsevier B.V.

  20. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bin [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@csiro.au [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhao Jianliang; Zhang Lijuan; Fang Yixiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Nghiem, Long Duc [School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2011-02-15

    Research highlights: {yields} Triclosan reacted rapidly with ferrate. {yields} Oxidation resulted in a decrease in algal toxicity. {yields} No inhibition of algae growth from ferrate. - Abstract: The oxidation of triclosan by commercial grade aqueous ferrate (Fe(VI)) was investigated and the reaction kinetics as a function of pH (7.0-10.0) were experimentally determined. Intermediate products of the oxidation process were characterized using both GC-MS and RRLC-MS/MS techniques. Changes in toxicity during the oxidation process of triclosan using Fe(VI) were investigated using Pseudokirchneriella subcapitata growth inhibition tests. The results show that triclosan reacted rapidly with Fe(VI), with the apparent second-order rate constant, k{sub app}, being 754.7 M{sup -1} s{sup -1} at pH 7. At a stoichiometric ratio of 10:1 (Fe(VI):triclosan), complete removal of triclosan was achieved. Species-specific rate constants, k, were determined for reaction of Fe(VI) with both the protonated and deprotonated triclosan species. The value of k determined for neutral triclosan was 6.7({+-}1.9) x 10{sup 2} M{sup -1} s{sup -1}, while that measured for anionic triclosan was 7.6({+-}0.6) x 10{sup 3} M{sup -1} s{sup -1}. The proposed mechanism for the oxidation of triclosan by the Fe(VI) involves the scission of ether bond and phenoxy radical addition reaction. Coupling reaction may also occur during Fe(VI) degradation of triclosan. Overall, the degradation processes of triclosan resulted in a significant decrease in algal toxicity. The toxicity tests showed that Fe(VI) itself dosed in the reaction did not inhibit green algae growth.

  1. Real-Time Detection and Identification of Chlamydophila Species in Veterinary Specimens by Using SYBR Green-Based PCR Assays

    DEFF Research Database (Denmark)

    Nordentoft, Steen; Kabell, Susanne; Pedersen, Karl

    2011-01-01

    specificity of different species is not as clear as recently believed. As most members of the genus Chlamydophila have shown to be transmissible from animals to humans, sensitive and fast detection methods are required. In this study, SYBR green-based real-time assays were developed that detect all members...... of Chlamydiaceae and differentiate the most prevalent veterinary Chlamydophila species: Cp. psittaci, Cp. abortus, Cp. felis, and Cp. caviae. By adding bovine serum albumin to the master mixes, target DNA could be detected directly in crude lysates of enzymatically digested conjunctival or pharyngeal swabs...

  2. Modal Techniques for Remote Identification of Nonlinear Reactions at Gap-Supported Tubes under Turbulent Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Delaune, X.; Piteau, Ph.; Borsoi, L. [CEA Saclay, Laboratoire d' Etudes de Dynamique, CEA, DEN, DM2S, SEMT, 91 - Gif-sur-Yvette (France); Antunes, J.; Debut, V. [Applied Dynamics Laboratory, Instituto Tecnologico e Nuclear, ITN/ADL, Estrada Nacional 10, 2686 Sacavem Codex (Portugal)

    2010-06-15

    Predictive computation of the nonlinear dynamical responses of gap-supported tubes subjected to flow excitation has been the subject of very active research. Nevertheless, there is a need for robust techniques capable of extracting, from the actual vibratory response data, information which is relevant for asserting the components integrity. The dynamical contact/impact (vibro-impact) forces are of paramount significance, as are the tube/support gaps. Following our previous studies in this field using wave-propagation techniques, we apply modal methods in the present paper for extracting such information. The dynamical support forces, as well as the vibratory responses at the support locations, are identified from one or several vibratory response measurements at remote transducers, from which the support gaps can be inferred. As for most inverse problems, the identification results prove quite sensitive to noise and modeling error problems. Therefore, topics discussed in the paper include regularization techniques to mitigate the effects of non-measured noise perturbations. In particular, a method is proposed to improve the identification of contact forces at the supports when the system is excited by an unknown distributed turbulence force field. The important topic of dealing with the imperfect knowledge of the modal parameters used to build the inverted transfer functions is addressed elsewhere. Here, the extensive identifications presented are based on the exact modal parameters and performed on realistic numerical simulations of gap-supported tubes subjected to flow excitation. We can thus confront the identified dynamical support contact forces and vibratory motions at the gap-support with the actual values stemming from the original nonlinear computations, with overall satisfying results. (authors)

  3. [Evaluation of rapid genotype assay for the identification of gram-positive cocci from blood cultures and detection of mecA and van genes].

    Science.gov (United States)

    Gülhan, Barış; Atmaca, Selahattin; Ozekinci, Tuncer; Suay, Adnan

    2011-10-01

    Rapid and accurate identification of bacterial pathogens grown in blood cultures of patients with sepsis is crucial for prompt initiation of appropriate therapy in order to decrease related morbidity and mortality rates. Although current automated blood culture systems led to a significant improvement in bacterial detection time, more rapid identification systems are still needed to optimise the establishment of treatment. Novel genotype technology which is developed for the rapid diagnosis of sepsis, is a molecular genetic assay based on DNA multiplex amplification with biotinylated primers followed by hybridization to membrane bound probes. The aim of this study was to evaluate the performance of "Genotype® BC gram-positive” test for the identification of gram-positive cocci grown in blood cultures and rapid detection of mecA and van genes. This test uses DNA.STRIP® technology which includes a panel of probes for identification of 17 gram-positive bacterial species and is able to determinate the methicillin and vancomycin resistance mediating genes (mecA and vanA, vanB, vanC1, vanC2/C3) simultaneously, in a single test run. A total of 55 positive blood cultures from BACTECTM Plus/F (Becton Dickinson, USA) aerobic and pediatric blood culture vials were included in the study. The isolates which exhibit gram-positive coccus morphology by Gram staining were identified by Genotype ® BC gram-positive test (Hain Life Science, Germany). All of the samples were also identified with the use of Phoenix PMIC/ID Panel (Becton Dickinson, USA) and antibiotic susceptibilities were determined. Of the 55 blood culture isolates, 17 were identified as Staphylococcus epidermidis [all were methicillin-resistant (MR)], 9 were S.aureus (one was MR), 18 were S.hominis (10 were MR), 4 were E.faecalis, 3 were E. faecium (one was vanconycin-resistant), 2 were S.saprophyticus (one was MR), 1 was S.warneri and 1 was S.haemolyticus, by Phoenix automated system. Genotype® BC gram

  4. Detection of proline-rich proteins for the identification of saliva by enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Igoh, Akihisa; Tomotake, Sho; Doi, Yusuke

    2015-05-01

    Saliva is one of the most common body fluids found at a crime scene. Therefore, identifying saliva is important in forensic science. However, the current protein marker assays used to identify saliva are not sufficiently specific. Although proline-rich proteins (PRPs) are highly specific for saliva, their forensic potential has not yet been investigated. In this study, we developed enzyme-linked immunosorbent assays (ELISAs) to detect acidic salivary PRP HaeIII subfamily 1/2 (PRH1/2) and basic salivary PRP 2 (PRB2). The specificity, sensitivity, and efficiency of the ELISAs for PRH1/2 and PRB2 were compared with those of the ELISA for statherin (STATH), a known protein marker for saliva. The levels of PRH1/2 were significantly higher in saliva and saliva stains than in other body fluids (nasal secretions, urine, semen, vaginal fluid, blood, and sweat). PRB2 and STATH were detected in both nasal secretions and saliva. The PRH1/2 ELISA showed sensitivity similar to that of STATH ELISA. The detection rate of PRH1/2 ELISA was almost similar to that of STATH ELISA, followed by the ELISA for PRB2. The PRH1/2 ELISA had higher specificity for saliva than STATH ELISA. Therefore, the PRH1/2 ELISA has potential as a method to identify saliva for forensic investigation.

  5. Phenolation of ±catechin with mineral acids. II. Identification of new reaction products

    Science.gov (United States)

    Weiling Peng; Anthony H. Conner; Richard W. Hemingway

    1997-01-01

    To investigate the reactions that occur in the flavanoid unit during the liquefaction of tannin in phenol, the phenolysis of ±catechin was studied using either H2SO4, HCl, or BF3 2H2O as acid catalyst. In addition to 2-[3-(3,4-dihydroxyphenyl)-2-hydroxy-3-(4-hydroxyphenyl)propyl]-1,3,5-benzenetriol (1) and 2-[(3,4-dihydroxyphenyl)(4-hydroxyphenyl)methyl]-2,3-dihydro-4,...

  6. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    Science.gov (United States)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  7. Evaluation of a new commercial real-time PCR assay for diagnosis of Pneumocystis jirovecii pneumonia and identification of dihydropteroate synthase (DHPS) mutations.

    Science.gov (United States)

    Montesinos, Isabel; Delforge, Marie-Luce; Ajjaham, Farida; Brancart, Françoise; Hites, Maya; Jacobs, Frederique; Denis, Olivier

    2017-01-01

    The PneumoGenius® real-time PCR assay is a new commercial multiplex real-time PCR method, which detects the Pneumocystis mitochondrial ribosomal large subunit (mtLSU) and two dihydropteroate synthase (DHPS) point mutations. To evaluate the clinical performance of this new real-time PCR assay we tested 120 extracted DNA samples from bronchoalveolar lavage specimens. These set of extracted DNA samples had already tested positive for Pneumocystis and patients had been classified in probable and unlikely PCP in a previous study. To evaluate de accuracy of the DHPS mutant's identification, an "in house" PCR and sequencing was performed. The sensitivity and specificity of PneumoGenius® PCR in discriminating between probable and unlikely Pneumocystis pneumonia (PCP) were 70% and 82% respectively. PneumoGenius® PCR was able to genotype more samples than "in house" DHPS PCR and sequencing. The same DHPS mutations were observed by both methods in four patients: two patients with a single mutation in position 171 (Pro57Ser) and two patients with a double mutation in position 165 (Thr55Ala) and in position 171 (Pro57Ser). A low rate of P. jirovecii (4.5%) harboring DHPS mutations was found, comparable to rates observed in other European countries. The PneumoGenius® real-time PCR is a suitable real-time PCR for PCP diagnosis and detection of DHPS mutants. The added value of DHPS mutation identification can assist in understanding the role of these mutations in prophylaxis failure or treatment outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Use of hybrid discrete cellular models for identification of macroscopic nutrient loss in reaction-diffusion models of tissues.

    Science.gov (United States)

    Aristotelous, Andreas C; Haider, Mansoor A

    2014-08-01

    Macroscopic models accounting for cellular effects in natural or engineered tissues may involve unknown constitutive terms that are highly dependent on interactions at the scale of individual cells. Hybrid discrete models, which represent cells individually, were used to develop and apply techniques for modeling diffusive nutrient transport and cellular uptake to identify a nonlinear nutrient loss term in a macroscopic reaction-diffusion model of the system. Flexible and robust numerical methods were used, based on discontinuous Galerkin finite elements in space and a Crank-Nicolson temporal discretization. Scales were bridged via averaging operations over a complete set of subdomains yielding data for identification of a macroscopic nutrient loss term that was accurately captured via a fifth-order polynomial. Accuracy of the identified macroscopic model was demonstrated by direct, quantitative comparisons of the tissue and cellular scale models in terms of three error norms computed on a mesoscale mesh. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Comparison of two commercial broadrange PCR and sequencing assays for identification of bacteria in culture-negative clinical samples

    DEFF Research Database (Denmark)

    Stavnsbjerg, Camilla; Frimodt-Moller, Niels; Moser, Claus Ernst

    2017-01-01

    Background Culturing has long been the gold standard for detecting aetiologic agents in bacterial infections. In some cases, however, culturing fails to detect the infection. To further investigate culture-negative samples, amplification and subsequent sequencing of the 16S rRNA gene is often...... applied. The aim of the present study was to compare the current method used at our Department of Clinical Microbiology, based on the MicroSeq ID system (Applied Biosystems, USA) with the Universal Microbe Detection (UMD) SelectNA kit (Molzym, Germany). Methods 76 culture-negative samples were first...... in a real-time PCR and sequenced. Results 22 of 76 samples (28.9%) were positive for bacteria with the UMD SelectNA, which was significantly more (p = 0.0055) than the MicroSeq ID where 11 of 76 samples (14.5%) were positive. The UMD SelectNA assay identified more relevant bacterial pathogens than the Micro...

  10. IDENTIFICATION OF GLUCOSE TRANSPORTER-1 AND ITS FUNCTIONAL ASSAY IN MOUSE GLOMERULAR MESANGIAL CELLS CULTURED IN VITRO

    Institute of Scientific and Technical Information of China (English)

    章精; 刘志红; 刘栋; 黎磊石

    2001-01-01

    Objective. To evaluate the role of glucose transporter-l (GLUT1) in the glucose uptake of glomerular mesangial cells. Methods. Cultured C57/SJL mouse mesangial cells were used in the study. The expression of GLUT1 mRNA was detected by RT-PCR. The expression of GLUT1 protein was detected by immunofluorescence and flow cytometry. The uptake of glucose and its kinetics were determined by 2-deoxy-[3H] -D-glucose uptake. Results. Both GLUT1 mRNA and protein were found in mouse glomerular mesangial cells. 2-deoxy-D-glucose uptake and kinetics assay showed that this glucose transporter had high affinity for glucose and the glucose uptake specificity was further confirmed by phloretin. Conclusion. Functional GLUT1 did present in mouse mesangial cells cultured in vitro and it might be the predominant transporter mediated the uptake of glucose into mesangial cells.

  11. A new real-time PCR assay for rapid identification of the S. aureus/MRSA strains

    Directory of Open Access Journals (Sweden)

    Ivan Manga

    2013-01-01

    Full Text Available The Methicillin-resistant Staphylococcus aureus (MRSA with the livestock-associated MRSA (LA-MRSA are of great interest to scientists and general public. The aim of our study was to present a new more rapid and reliable diagnostic method working on the RT-PCR platform applicable for monitoring of MRSA/S. aureus. The parallel testing of the S. aureus specific nuc gene sequence and the mecA gene sequence was utilised for this purpose. A collection of ten S. aureus/MRSA reference strains, fifteen genetically related non S. aureus reference strains and fifty-six environmental samples was employed for estimation of the assay performance and parameters. The environmental samples acquired in the Czech livestock farms were represented with the livestock and human nasal mucosae or skin swabs, the slaughter meat swabs and were chosen preferentially from individuals with previously confi rmed or suspected positive MRSA/S. aureus cases. The classic selective cultivation approach with the biochemical test and agar disk diffusion test was accepted as reference diagnostic method. As there were no culture positive samples that were negative using RT-PCR, our method featured with 100% sensitivity in comparison to reference method. The limit of detection allowed to identify from tens to hundreds copies of S. aureus/MRSA genome. Further, the RT-PCR assay featured with 100% inclusivity and 95% exclusivity at Cq value below 30. These parameters suggested on powerful and reliable diagnostic method with real potential of practical utilisation. We consider our method as ideal for testing of individual suspected colonies, when the results can be acquired in less than 1.5 hour.

  12. Identification of goose (Anser anser) and mule duck (Anasplatyrhynchos x Cairina moschata) foie gras by multiplex polymerase chain reaction amplification of the 5S RDNA gene.

    Science.gov (United States)

    Rodríguez, M A; García, T; González, I; Asensio, L; Fernández, A; Lobo, E; Hernández, P E; Martín, R

    2001-06-01

    Polymerase chain reaction (PCR) amplification of the nuclear 5S rDNA gene has been used for the identification of goose and mule duck foie gras. Two species-specific reverse primers were designed and used in a multiplex reaction, together with a forward universal primer, to amplify specific fragments of the 5S rDNA in each species. The different sizes of the species-specific amplicons, separated by agarose gel electrophoresis, allowed clear identification of goose and mule duck foie gras samples. This genetic marker can be useful for detecting fraudulent substitution of the duck liver for the more expensive goose liver.

  13. A novel real-time PCR assay for the specific identification and quantification of Weissella viridescens in blood sausages.

    Science.gov (United States)

    Gómez-Rojo, Erica M; Romero-Santacreu, L; Jaime, I; Rovira, J

    2015-12-23

    Weissella viridescens has been identified as one of the lactic acid bacteria (LAB) responsible for the spoilage of "morcilla de Burgos". In order to identify and quantify this bacterium in "morcilla de Burgos", a new specific PCR procedure has been developed. The primers and Taqman probe were designed on the basis of a sequence from the gene recN. To confirm the specificity of the primers, 77 strains from the genera Carnobacterium, Enterococcus, Lactobacillus, Leuconostoc, Pediococcus, Streptococcus, Vagococcus and Weissella were tested by conventional PCR. The specificity of the primers and the correct functioning of the probe was confirmed by performing real-time PCR (qPCR) with 21 W. viridescens strains and 27 strains from other LAB genera. The levels of detection and quantification for the qPCR procedure proposed herein were determined for a pure culture of W. viridescens CECT 283(T) and for "morcilla de Burgos" artificially inoculated with this species. The primers were specific for W. viridescens, with only one product of 91 bp being observed for this species. Similarly, the qPCR reactions were found to be specific, amplifying at a mean CT of 15.0±0.4 only for W. viridescens strains. The limit of detection (LOD) and quantification (LOQ) for this procedure was established in 0.082 pg for genomic DNA from W. viridescens. With regard to the artificially inoculated "morcilla", the limit of quantification was established in 80 CFU/reaction and the limit of detection in 8 CFU/reaction. Consequently, the qPCR developed herein can be considered to be a good, fast, simple and accurate tool for the specific detection and quantification of W. viridescens in meat samples.

  14. Detection of Salmonella enteritidis in pooled poultry environmental samples using a serotype-specific real-time-polymerase chain reaction assay.

    Science.gov (United States)

    Adams, Derek R; Stensland, Wendy R; Wang, Chong H; O'Connor, Annette M; Trampel, Darrell W; Harmon, Karen M; Strait, Erin L; Frana, Timothy S

    2013-03-01

    While real-time-polymerase chain reaction (RT PCR) has been used as a rapid test for detection of Salmonella Enteritidis in recent years, little research has been done to assess the feasibility of pooling poultry environmental samples with a Salmonella Enteritidis-specific RT PCR assay. Therefore the objective of this study was to compare RT PCR Salmonella Enteritidis detection in individual and pooled (in groups of two, three, and four) poultry environmental drag swab samples to traditional cultural methods. The drag swabs were collected from poultry facilities previously confirmed positive for Salmonella Enteritidis and were cultured according to National Poultry Improvement Plan guidelines. Initial, Salmonella Enteritidis-specific RT PCR assay threshold cycle cutoff values of Salmonella Enteritidis was cultured in 7 of 208 environmental samples (3.4%). Individual samples were 99.0%, 100%, and 100% in agreement with the RT PCR at threshold cycle (C(t)) cutoff values of < or = 36, < or = 30, and < or = 28 respectively. The agreement for pooled samples also followed the same trend with highest agreement at C(t) < or = 28 (pool of 2 = 100.0%, pool of 3 = 100.0%, pool of 4 = 100.0%), midrange agreement at C(t) < or = 30 (pool of 2 = 99.0%, pool of 3 = 100.0%, pool of 4 = 100.0%), and lowest agreement at C(t) < or = 36 (pool of 2 = 98.1%, pool of 3 = 97.1%, pool of 4 = 98.1%). In conclusion, regardless of the level of pooling after tetrathionate enrichment, sensitivity was very good, and results would be comparable to what would have been found with individual culture or individual RT PCR at C(t) < or = 36.

  15. Absence of Bacteria on Coronary Angioplasty Balloons from Unselected Patients: Results with Use of a High Sensitivity Polymerase Chain Reaction Assay.

    Science.gov (United States)

    Hansen, Gorm Mørk; Nilsson, Martin; Nielsen, Claus Henrik; Holmstrup, Palle; Helqvist, Steffen; Tolker-Nielsen, Tim; Givskov, Michael; Hansen, Peter Riis

    2015-01-01

    Periodontitis is a chronic, bacterially-induced inflammatory disease of the tooth-supporting tissues, which may result in transient bacteremia and a systemic inflammatory response. Periodontitis is associated with coronary artery disease independently of established cardiovascular risk factors, and translocation of bacteria from the oral cavity to the coronary arteries may play a role in the development of coronary artery disease. Very few studies have used angioplasty balloons for in vivo sampling from diseased coronary arteries, and with varying results. Therefore, the aim of this study was to assess if bacterial DNA from primarily oral bacteria could be detected on coronary angioplasty balloons by use of an optimized sampling process combined with an internally validated sensitive polymerase chain reaction (PCR) assay. Coronary angioplasty balloons and control samples from a total of 45 unselected patients with stable angina, unstable angina/non-ST elevation myocardial infarction, and ST-elevation myocardial infarction (n = 15 in each group) were collected and analyzed using a PCR assay with high sensitivity and specificity for 16S rRNA genes of the oral microbiome. Despite elimination of extraction and purification steps, and demonstration of sensitivity levels of 25-125 colony forming units (CFU), we did not detect bacterial DNA from any of the coronary angioplasty balloons. A subsequent questionnaire indicated that the prevalence of periodontitis in the study cohort was at least 39.5%. Although coronary angioplasty balloons are unlikely to be useful for detection of bacteria with current PCR techniques in unselected patients with coronary artery disease, more studies are warranted to determine the extent to which bacteria contribute to atherosclerosis and its clinical manifestations and whether the presence of bacteria in the arteries is a transient phenomenon.

  16. Enzymatic Characterization of ER Stress-Dependent Kinase, PERK, and Development of a High-Throughput Assay for Identification of PERK Inhibitors.

    Science.gov (United States)

    Pytel, Dariusz; Seyb, Kathleen; Liu, Min; Ray, Soumya S; Concannon, John; Huang, Mickey; Cuny, Gregory D; Diehl, J Alan; Glicksman, Marcie A

    2014-08-01

    PERK is serine/threonine kinase localized to the endoplasmic reticulum (ER) membrane. PERK is activated and contributes to cell survival in response to a variety of physiological stresses that affect protein quality control in the ER, such as hypoxia, glucose depravation, increased lipid biosynthesis, and increased protein translation. Pro-survival functions of PERK are triggered by such stresses, suggesting that development of small-molecule inhibitors of PERK may be efficacious in a variety of disease scenarios. Hence, we have conducted a detailed enzymatic characterization of the PERK kinase to develop a high-throughput-screening assay (HTS) that will permit the identification of small-molecule PERK inhibitors. In addition to establishing the K(m) of PERK for both its primary substrate, eIF2α, and for adenosine triphosphate, further mechanistic studies revealed that PERK targets its substrate via either a random/steady-state ordered mechanism. For HTS, we developed a time-resolved fluorescence resonance energy transfer-based assay that yielded a robust Z' factor and percent coefficient of variation value, enabling the successful screening of 79,552 compounds. This approach yielded one compound that exhibited good in vitro and cellular activity. These results demonstrate the validity of this screen and represent starting points for drug discovery efforts.

  17. Detection and identification of Legionella species in hospital water supplies through Polymerase Chain Reaction (16S rRNA).

    Science.gov (United States)

    Rafiee, Mohammad; Jahangiri-Rad, Mahsa; Hajjaran, Homa; Mesdaghinia, Alireza; Hajaghazadeh, Mohammad

    2014-01-01

    Legionella spp. are important waterborne pathogens that are normally transmitted through aerosols. The present work was conducted to investigate the presence of Legionella spp. and its common species in hospital water supplies. Considering the limitations of culture method, polymerase chain reaction (PCR) assays were developed to detect the gene 16S rRNA irrespective of the bacterial serotype. Four well-established DNA extraction protocols (freeze & thaw and phenol-chloroform as two manual protocols and two commercial kits) were tested and evaluated to release DNA from bacterial cells. A total of 45 samples were collected from seven distinct hospitals' sites during a period of 10 months. The PCR assay was used to amplify a 654-bp fragment of the 16S rRNA gene. Legionella were detected in 13 samples (28.9%) by all of the methods applied for DNA extraction. Significant differences were noted in the yield of extracted nucleic acids. Legionella were not detected in any of the samples when DNA extraction by freeze & thaw was used. Excluding this method and comparing manual protocol with commercial kits, Kappa coefficient was calculated as 0.619 with p < 0.05. Although no meaningful differences were found between the kits, DNA extraction with Bioneer kit exhibited a higher sensitivity than classical Qiagen. Showerheads and cold-water taps were the most and least contaminated sources with 55.5 and 9 percent positive samples, respectively. Moreover two positive samples were identified for species by DNA sequencing and submitted to the Gene Bank database with accession Nos. FJ480932 and FJ480933. The results obtained showed that despite the advantages of molecular assays in Legionella tracing in environmental sources, the use of optimised DNA extraction methods is critical.

  18. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures.

    Science.gov (United States)

    Calderaro, A; Martinelli, M; Motta, F; Larini, S; Arcangeletti, M C; Medici, M C; Chezzi, C; De Conto, F

    2014-08-01

    Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) is a molecular diagnostic tool for the rapid detection of pathogens directly from liquid media. The aim of this study was to prospectively evaluate PNA FISH assays in comparison with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) identification, as a reference method, for both blood and cerebrospinal fluid (CSF) cultures, during a 1-year investigation. On the basis of the Gram stain microscopy results, four different PNA FISH commercially available assays were used ('Staphylococcus aureus/CNS', 'Enterococcus faecalis/OE', 'GNR Traffic Light' and 'Yeasts Traffic Light' PNA FISH assays, AdvanDx). The four PNA FISH assays were applied to 956 positive blood cultures (921 for bacteria and 35 for yeasts) and 11 CSF cultures. Among the 921 blood samples positive for bacteria, PNA FISH gave concordant results with MALDI-TOF MS in 908/921 (98.64%) samples, showing an agreement of 99.4% in the case of monomicrobial infections. As regards yeasts, the PNA FISH assay showed a 100% agreement with the result obtained by MALDI-TOF MS. When PNA FISH assays were tested on the 11 CSF cultures, the results agreed with the reference method in all cases (100%). PNA FISH assays provided species identification at least one work-day before the MALDI-TOF MS culture-based identification. PNA FISH assays showed an excellent efficacy in the prompt identification of main pathogens, yielding a significant reduction in reporting time and leading to more appropriate patient management and therapy in cases of sepsis and severe infections.

  19. Identification of anti-HPA-1a allo-antibodies using IgG platelet antibody detection and crossmatch system assay with Galileo Echo.

    Science.gov (United States)

    Di Cristofaro, Julie; Frassati, Coralie; Montagnie, Rolande; Basire, Agnes; Merieux, Yves; Picard, Christophe

    2015-01-01

    Fetal/neonatal allo-immune thrombocytopenia is the most frequent and the most dangerous clinical condition involving anti-human platelet antigens (HPA)-1a allo-antibodies. Anti-HPA-1a allo-immunization requires rapid and accurate diagnosis to determine appropriate treatment. The Capture-P Ready-Screen assay (C-PRS) is a new qualitative immunoassay to detect IgG anti-human leukocyte antigen (HLA) and anti-HPA allo-antibodies. The aim of this study is to assess the identification of anti-HPA-1a allo-antibodies using the C-PRS assay, associated with HLA class I stripping reagents, on the automated benchtop analyzer Galileo Echo. Forty-nine sera were analyzed: without anti-HLA class I or anti-HPA allo-antibodies, with anti-HLA class I allo-antibodies, with anti-HPA-1a allo-antibodies, among which with anti-HLA class I allo-antibodies. None of the samples without allo-antibodies were reactive. Only anti-HLA antibodies, detected by cytotoxicity-dependent complement and not by Luminex, remained positive before and after stripping reagents. Of the 13 samples, anti-HPA-1a allo-antibodies that were correctly identified before and after incubation with HLA assassin reagent were 70% and 85%, respectively. Anti-glycoprotein auto-antibodies and anti-HLA allo-antibodies do not interfere with the detection of anti-HPA-1a antibodies. This preliminary study indicates that further improvement of the test will be helpful in developing a clinically useful assay in the future.

  20. EVALUATION OF A RAPID SCREENING ASSAY FOR BACTERIAL IDENTIFICATION (DOT-ELISA IN FECAL SAMPLES FROM CHILDREN

    Directory of Open Access Journals (Sweden)

    Etelvina BOCCATTO

    1997-01-01

    Full Text Available With the objective of standardizing a Dot Enzyme-Linked Immunosorbent Assay (Dot-ELISA to detect antigens of fecal bacterial enteropathogens, 250 children, aged under 36 months and of both sexes, were studied; of which 162 had acute gastroenteritis. The efficacy of a rapid screening assay for bacterial enteropathogens (enteropathogenic Escherichia coli "EPEC", enteroinvasive Escherichia coli "EIEC", Salmonella spp. and Shigella spp. was evaluated. The fecal samples were also submitted to a traditional method of stool culture for comparison. The concordance index between the two techniques, calculated using the Kappa (k index for the above mentioned bacterial strains was 0.8859, 0.9055, 0.7932 and 0.7829 respectively. These values express an almost perfect degree of concordance for the first two and substantial concordance for the latter two, thus enabling this technique to be applied in the early diagnosis of diarrhea in infants. With a view to increasing the sensitivity and specificity of this immunological test, a study was made of the antigenic preparations obtained from two types of treatment: 1 deproteinization by heating; 2 precipitation and concentration of the lipopolysaccharide antigen (LPS using an ethanol-acetone solution, which was then heated in the presence of sodium EDTACom o objetivo de padronizar um Dot Enzyme-Linked Immunosorbent Assay (Dot-ELISA para a detecção de antígenos de enteropatógenos bacterianos fecais, estudaram-se 250 crianças, abaixo de 36 meses de idade, de ambos os sexos, 162 portadoras de gastroenterite aguda. Avaliou-se a eficácia de um teste rápido para bactérias enteropatógenas (Escherichia coli enteropatogênica "EPEC", Escherichia coli enteroinvasora" EIEC", Salmonella spp. e Shigella spp.. As amostras fecais foram também submetidas à metodologia tradicional de coprocultura para comparação. Os índices de concordância entre as 2 técnicas, calculado através do índice Kappa (k para as cepas

  1. Identification of two major ammonia-releasing reactions involved in secondary natto fermentation.

    Science.gov (United States)

    Kada, Shigeki; Yabusaki, Masahiro; Kaga, Takayuki; Ashida, Hitoshi; Yoshida, Ken-ichi

    2008-07-01

    Natto is a traditional Japanese food made from soybeans fermented by strains of Bacillus subtilis natto. It gives off a strong ammonia smell during secondary fermentation, and the biochemical basis for this ammonia production was investigated in this study. When natto was fermented by strain r22, ammonia production was shown to involve degradation of soybean proteins releasing amino acids, and only the glutamate contained in the natto obviously decreased, while the other amino acids increased during secondary fermentation. Strain r22 has two active glutamate dehydrogenase genes, rocG and gudB, and inactivating both genes reduced ammonia production by half, indicating that deamination of glutamate was one of the major ammonia-releasing reactions. In addition, urease encoded by ureABC was found to degrade urea during secondary fermentation. A triple mutant lacking rocG, gudB, and ureC exhibited minimal ammonia production, suggesting that the degradation of urea might be a further ammonia-releasing reaction.

  2. Label-Free and Enzyme-Free Homogeneous Electrochemical Biosensing Strategy Based on Hybridization Chain Reaction: A Facile, Sensitive, and Highly Specific MicroRNA Assay.

    Science.gov (United States)

    Hou, Ting; Li, Wei; Liu, Xiaojuan; Li, Feng

    2015-11-17

    Homogenous electrochemical biosensing strategies have attracted substantial attention, because of their advantages of being immobilization-free and having rapid response and improved recognition efficiency, compared to heterogeneous biosensors; however, the high cost of labeling and the strict reaction conditions of tool enzymes associated with current homogeneous electrochemical methods limit their potential applications. To address these issues, herein we reported, for the first time, a simple label-free and enzyme-free homogeneous electrochemical strategy based on hybridization chain reaction (HCR) for sensitive and highly specific detection of microRNA (miRNA). The target miRNA triggers the HCR of two species of metastable DNA hairpin probes, resulting in the formation of multiple G-quadruplex-incorporated long duplex DNA chains. Thus, with the electrochemical indicator Methylene Blue (MB) selectively intercalated into the duplex DNA chain and the multiple G-quadruplexes, a significant electrochemical signal drop is observed, which is dependent on the concentration of the target miRNA. Thus, using this "signal-off" mode, a simple, label-free and enzyme-free homogeneous electrochemical strategy for sensitive miRNA assay is readily realized. This strategy also exhibits excellent selectivity to distinguish even single-base mismatched miRNA. Furthermore, this method also exhibits additional advantages of simplicity and low cost, since both expensive labeling and sophisticated probe immobilization processes are avoided. Therefore, the as-proposed label-free and enzyme-free homogeneous electrochemical strategy may become an alternative method for simple, sensitive, and selective miRNA detection, and it has great potential to be applied in miRNA-related clinical diagnostics and biochemical research.

  3. The development of a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using TaqMan technology for the pan detection of bluetongue virus (BTV).

    Science.gov (United States)

    Mulholland, Catherine; McMenamy, Michael J; Hoffmann, Bernd; Earley, Bernadette; Markey, Bryan; Cassidy, Joseph; Allan, Gordon; Welsh, Michael D; McKillen, John

    2017-07-01

    Bluetongue virus (BTV) is an infectious, non-contagious viral disease of domestic and wild ruminants that is transmitted by adult females of certain Culicoides species. Since 2006, several serotypes including BTV-1, 2, 4, 6, 8, 9 and 16, have spread from the Mediterranean basin into Northern Europe for the first time. BTV-8 in particular, caused a major epidemic in northern Europe. As a result, it is evident that most European countries are at risk of BTV infection. The objective of this study was to develop and validate a real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) assay based on TaqMan technology for the detection of representative strains of all BTV serotypes. Primers and probes were based on genome segment 10 of the virus, the NS3 gene. The assay was tested for sensitivity, and specificity. The analytical sensitivity of the rRT-PCR assay was 200 copies of RNA per reaction. The assay did not amplify the closely related orbivirus epizootic hemorrhagic disease virus (EHDV) but successfully detected all BTV reference strains including clinical samples from animals experimentally infected with BTV-8. This real time RT-PCR assay offers a sensitive, specific and rapid alternative assay for the pan detection of BTV that could be used as part of a panel of diagnostic assays for the detection of all serotypes of BTV. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Identification of Listeria spp. strains isolated from meat products and meat production plants by multiplex polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Roberta Mazza

    2015-12-01

    Full Text Available Listeriosis is a foodborne disease caused by Listeria monocytogenes and is considered as a serious health problem, due to the severity of symptoms and the high mortality rate. Recently, other Listeria species have been associated with disease in human and animals. The aim of this study was to develop a multiplex polymerase chain reaction (PCR in order to simultaneously detect six Listeria species (L. grayi, L. welshimeri, L. ivanovii, L. monocytogenes, L. seeligeri, L. innocua in a single reaction. One hundred eighteen Listeria spp. strains, isolated from meat products (sausages and processing plants (surfaces in contact and not in contact with meat, were included in the study. All the strains were submitted to biochemical identification using the API Listeria system. A multiplex PCR was developed with the aim to identify the six species of Listeria. PCR allowed to uniquely identify strains that had expressed a doubtful profile with API Listeria The results suggest that the multiplex PCR could represent a rapid and sensitive screening test, a reliable method for the detection of all Listeria species, both in contaminated food and in clinical samples, and also a tool that could be used for epidemiological purposes in food-borne outbreaks. A further application could be the development of a PCR that can be directly applied to the pre-enrichment broth.

  5. High-throughput fluorescence screening assay for the identification and comparison of antimicrobial peptides' activity on various yeast species.

    Science.gov (United States)

    Kodedová, Marie; Sychrová, Hana

    2016-09-10

    New antifungal compounds that circumvent the resistance of the pathogen by directly damaging yeast cell surface structures are promising agents for the treatment of fungal infections, due to their different mechanism of action from current clinically used antifungal drugs. We present here a rapid and cost-effective fluorescence method suitable for identifying new potent drugs that directly target yeast cell surface structures, causing cell permeabilization and thus bypassing the multidrug resistance mechanisms of pathogens. The fluorescence assay enabled us to detect with high sensitivity damage to the Candida plasma membrane (its hyperpolarization and permeabilization) as a result of short-term exposure to the antifungal compounds. Results can be obtained in 1-2h with minimal effort and consumption of the tested compounds, also 96 samples can be analysed simultaneously. We used this method to study antimicrobial peptides isolated from the venom of bees and their synthetic analogs, compare the potency of the peptides and determine their minimal effective concentrations. The antimicrobial peptides were able to kill yeast cells at low concentrations within a 15-min treatment, the LL-III peptide exhibited a broad spectrum of antifungal activity on various Saccharomyces, pathogenic Candida and osmotolerant yeast species.

  6. [DNA extraction and identification of Trichophyton rubrum by real-time polymerase chain reaction from direct nail scraping specimens of patients with onycomycosis].

    Science.gov (United States)

    Berk, Elife; Kuştimur, Semra; Kalkancı, Ayşe; Oztaş, O Murat

    2011-01-01

    Trichophyton rubrum is the most frequently encountered dermatophyte species causing onichomycosis. The routine diagnosis of dermatophytes depends on the direct microscopic examination (DME) and culture methods, however due to the phenotypic identification problems related to those agents, the molecular methods come into question. The aim of this study was to evaluate the diagnostic performance of real-time polymerase chain reaction (RT-PCR) for the identification of T.rubrum by comparing to DME and culture methods, from nail samples of patients with the complaints of onychomycosis. A total of 90 patients of whom 58 were male who were admitted to the dermatology outpatients clinics of our hospital with the complaints of color/shape changes in the nails and thickening of the nail, were included in the study, together with the 20 healthy volunteer subjects as controls. The nail scraping samples obtained from the patients and controls were examined with direct microscopy using 15% potassium hydroxide, dimethyl sulphoxide and chlorazole black mixture and cultivated onto Sabouraud dextrose agar with and without cycloheximide. For DNA isolation, after the disruption of nail samples with a steel tool, phenol-chloroform-isoamyl alcohol purification method were used. The amplification and demonstration of the T.rubrum DNA have been performed by using specific primers and probes following TaqMan protocol of RT-PCR (LightCycler-Roche, USA) method. Seventy-two of the patients yielded positive and 18 yielded negative results with DME. Growth of molds was detected in the cultures of 20 (27.8%) of the 72 DME positive patients and all of the isolates were identified as T.rubrum. No fungal growth was seen in the samples of 18 patients who were DME negative. In DME positive group, 67 (93%) patients were found to be positive in RT-PCR, while 8 (44.4%) patients were RT-PCR positive in DME negative group. All of the culture positive samples (n= 20) were also found positive in RT

  7. Identification of Leishmania isolates from Varzaneh city, Isfahan province, Iran using nested polymerase chain reaction method

    Directory of Open Access Journals (Sweden)

    Reza Arjmand

    2014-01-01

    Full Text Available Background: Leishmaniasis, a parasitic disease, is caused by the Leishmania genus, a protozoan parasite transmitted by sand fly arthropods. Cutaneous leishmaniasis (CL in old world is usually caused by L. major, L. tropica, and L. aethiopica complexes. One of the most important hyper endemic areas of CL in Iran is Isfahan province. Varzaneh is a city in the eastern part of Isfahan province. Due to different biological patterns of parasite strains which are distributed in the region, this study was design to identify Leishmania species from human victims using Kinetoplastid DNA as templates in a molecular PCR method. Materials and Methods: Among 186 suspected cases, 50 cases were confirmed positive by direct microscopy after Giemsa staining. Species characterization of the isolates was done using Nested- PCR as a very effective and sensitive tool to reproduce mini circle strands. Results: After Nested-PCR from all 50 cases, 560 bp bands were produced which according to products of reference strains indicate that the infection etiologic agent has been L. major. 22 (44% of patients were females and 28 (56% of them were males. Their age ranges were between 7 months and 60 years. Conclusion: According to the results of the study and the particular pattern of infection prevalent in the region, genetic studies and identification of Leishmania parasites are very important in the disease control and improvement of regional strategy of therapy protocols.

  8. A High-Throughput (HTS) Assay for Enzyme Reaction Phenotyping in Human Recombinant P450 Enzymes Using LC-MS/MS.

    Science.gov (United States)

    Li, Xiaofeng; Suhar, Tom; Glass, Lateca; Rajaraman, Ganesh

    2014-01-01

    Enzyme reaction phenotyping is employed extensively during the early stages of drug discovery to identify the enzymes responsible for the metabolism of new chemical entities (NCEs). Early identification of metabolic pathways facilitates prediction of potential drug-drug interactions associated with enzyme polymorphism, induction, or inhibition, and aids in the design of clinical trials. Incubation of NCEs with human recombinant enzymes is a popular method for such work because of the specificity, simplicity, and high-throughput nature of this approach for phenotyping studies. The availability of a relative abundance factor and calculated intersystem extrapolation factor for the expressed recombinant enzymes facilitates easy scaling of in vitro data, enabling in vitro-in vivo extrapolation. Described in this unit is a high-throughput screen for identifying enzymes involved in the metabolism of NCEs. Emphasis is placed on the analysis of the human recombinant enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2B6, and CYP3A4, including the calculation of the intrinsic clearance for each.

  9. The Application of PCR Reaction for Identification of MHB Bacteria Species

    Directory of Open Access Journals (Sweden)

    Ząbkiewicz Anna

    2014-07-01

    Full Text Available This study characterizes mycorrhiza helper bacteria (MHB from selected unpolluted locations as well as subjected to industrial emissions. To determine the species of bacteria isolated from the roots of ectomycorrhizal pine and birch, a method based on the sequence analysis of a 16S rRNA gene was used. The isolated bacteria were initially characterized by available biochemical methods and phenotypic observation. On the selected bacteria representatives isolation of DNA was performed, on which the PCR reaction was carried out. In this way amplified samples were automatically sequenced and the obtained results were compared to public databases. Among the isolated bacteria Pseudomonas fluorescens SBW25 and Burkholderia xenovorans LB400 species were dominant.

  10. Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity.

    Science.gov (United States)

    Kuang, Jiangmeng; Huang, Jun; Wang, Bin; Cao, Qiming; Deng, Shubo; Yu, Gang

    2013-05-15

    This work aimed to better understand the ozonation process of a typical antibiotic pharmaceutical, trimethoprim in aqueous solution. The parent compound was almost completely degraded with ozone dose up to 3.5 mg/L with no mineralization. Twenty one degradation products were identified using an electrospray quadrupole time-of-flight mass spectrometer. Several ozonation pathways were proposed including hydroxylation, demethylation, carbonylation, deamination and methylene group cleavage. Two species of luminescent bacteria Photobacterium phosphoreum and Vibrio qinghaiensis were selected to assess the toxicity of ozonation products. For P. phosphoreum, higher level of toxicity was observed compared to the parent compound, but a negligible toxicity change was observed for V. qinghaiensis, indicating different modes of action for the same water sample. This was further confirmed by quantitative structure-active relationship analysis. This work proves the dominant role of ozone rather than hydroxyl radicals in the reaction and the potential risk after ozonation.

  11. Polymerase Chain Reaction Identification of a Hymenopteran Insect in the Cornea: a Case Report

    Directory of Open Access Journals (Sweden)

    Hsien-Chung Lin

    2006-03-01

    Full Text Available The type of corneal injuries associated with insect encounters is related to the composition of the foreign body. However, previous reports on corneal foreign bodies as insects were rarely based on scientific evidence. Here, we report on a 49-year-old male who was stung in his left eye by an unknown insect. Emergent keratotomy was performed to remove the embedded corneal foreign body. The removed foreign body was observed under light microscopy, and a fragment of insect was suspected. The sample was sent for molecular analysis. The polymerase chain reaction product was sequenced, subjected to a BLAST search, and identified as an ichneumonoid member of the insect order Hymenoptera.

  12. Identification of Pasteurella multocida isolates of ruminant origin using polymerase chain reaction and their antibiogram study.

    Science.gov (United States)

    Kumar, P; Singh, V P; Agrawal, R K; Singh, S

    2009-04-01

    A total of 100 isolates of Pasteurella multocida from various ruminant species (cattle, buffalo and sheep) belonging to different parts of country were identified using Pasteurella multocida-PCR (PM-PCR) and capsular PCR assays. PM-PCR revealed an amplicon of approximately 460 bp in all the isolates tested. As regards capsular PCR, 36 of 38 cattle isolates and 30 of 34 buffalo isolates were found to belong to capsular serogroup B whereas rest of the cattle and buffalo isolates belonged to serogroup A of P. multocida. In case of sheep, a total of 26 out of 28 isolates were positive for serogroup A specific PCR while remaining 2 amplified a PCR product specific for serogroup F of P. multocida. All the isolates were subjected to antibiotic sensitivity testing using 17 different antibiotics. Enrofloxacin was found to be most potent antibiotic as it was effective against 94% of the isolates followed by ofloxacin (93%), chloramphenicol (93%), doxycycline (89%), tetracycline (86%) and ciprofloxacin (84%). Vancomycin, bacitracin and sulfadiazine were ineffective against P. multocida isolates showing 84%, 75% and 82% resistance, respectively. Further, the antibiogram also revealed the development of resistance against multiple drugs among various isolates of the organism.

  13. Ozonation of benzotriazole and methylindole: Kinetic modeling, identification of intermediates and reaction mechanisms.

    Science.gov (United States)

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldán, Gloria; Rodríguez, Elena

    2015-01-23

    The ozonation of 1H-benzotriazole (BZ) and 3-methylindole (ML), two emerging contaminants that are frequently present in aquatic environments, was investigated. The experiments were performed with the contaminants (1μM) dissolved in ultrapure water. The kinetic study led to the determination of the apparent rate constants for the ozonation reactions. In the case of 1H-benzotriazole, these rate constants varied from 20.1 ± 0.4M(-1)s(-1) at pH=3 to 2143 ± 23 M(-1)s(-1) at pH=10. Due to its acidic nature (pKa=8.2), the degree of dissociation of this pollutant was determined at every pH of work, and the specific rate constants of the un-dissociated and dissociated species were evaluated, being the values of these rate constants 20.1 ± 2.0 and 2.0 ± 0.3 × 10(3)M(-1)s(-1), respectively. On the contrary, 3-methylindole does not present acidic nature, and therefore, it can be proposed an average value for its rate constant of 4.90 ± 0.7 × 10(5)M(-1)s(-1) in the whole pH range 3-10. Further experiments were performed to identify the main degradation byproducts (10 mg L(-1) of contaminants, 0.023 gh(-1) of ozone). Up to 8 intermediates formed in the ozonation of 3-methylindole were identified by LC-TOFMS, while 6 intermediates were identified in the ozonation of 1H-benzotriazole. By considering these intermediate compounds, the reaction mechanisms were proposed and discussed. Finally, evaluated rate constants allowed to predict and modeling the oxidation of these micropollutants in general aquatic systems.

  14. The use of epifluorescent microscopy and quantitative polymerase chain reaction to determine the presence/absence and identification of microorganisms associated with domestic and foreign wallboard samples

    Science.gov (United States)

    Griffin, Dale W.

    2011-01-01

    Epifluorescent microscopy and quantitative polymerase chain reaction (qPCR) were utilized to determine the presence, concentration and identification of bacteria, and more specifically sulfate reducing bacteria (SRB) in subsamples of Chinese and North American wallboard, and wallboard-mine rock. Bacteria were visible in most subsamples, which included wallboard-lining paper from each side of the wallboard, wallboard filler, wallboard tape and fragments of mined wallboard rock via microscopy. Observed bacteria occurred as single or small clusters of cells and no mass aggregates indicating colonization were noted. Universal 16S qPCR was utilized to directly examine samples and detected bacteria at concentrations ranging from 1.4 x 103 to 6.4 x 104 genomic equivalents per mm2 of paper or per gram of wallboard filler or mined rock, in 12 of 41 subsamples. Subsamples were incubated in sulfate reducing broth for ~30 to 60 days (enrichment assay) and then analyzed by universal 16S and SRB qPCR. Enrichment universal 16S qPCR detected bacteria in 32 of 41 subsamples at concentrations ranging from 1.5 x 104 to 4.2 x 107 genomic equivalents per ml of culture broth. Evaluation of enriched subsamples by SRB qPCR demonstrated that SRB were not detectable in most of the samples and if they were detected, detection was not reproducible (an indication of low concentrations, if present). Enrichment universal 16S and SRB qPCR demonstrated that viable bacteria were present in subsamples (as expected given exposure of the samples following manufacture, transport and use) but that SRB were either not present or present at very low numbers. Further, no differences in trends were noted between the various Chinese and North American wallboard samples. In all, the microscopy and qPCR data indicated that the suspected ‘sulfur emissions’ emanating from suspect wallboard samples is not due to microbial activity.

  15. A polymerase chain reaction and enzyme linked immunosorbent assay based approach for diagnosis and differentiation between vaccinated and infected cattle with Mycobacterium bovis

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry

    2014-01-01

    Full Text Available Background: In most African and Arabic countries tuberculosis (TB causes great economic losses in bovine species and constitutes serious zoonotic problem. As the traditional diagnostic method delay the research because of low sensitivity and specificity, a rapid method of diagnosis is of outmost importance. Aim: The study was designed to evaluate the two rapid diagnostic methods of TB in cattle, further to differentiate between infected and bacillus Calmette-Guerin (BCG vaccinated animals. Materials and Methods: Intradermal tuberculin test was applied to 300 cattle. Of these cattle, 15 cattle were vaccinated from cattle negative to tuberculin test with BCG. Blood samples were taken for lymphocyte separation to apply polymerase chain reaction (PCR upon and for serum preparation for the enzyme-linked immunosorbent assay (ELISA application, this blood collected from 65 cattle classified into three groups, viz. positive tuberculin test (35 animals, negative tuberculin test (15 animals, and vaccinated cow with BCG (15 animals. From blood samples lymphocytes were separated and the isolated lymphocytes were subjected to PCR and serum for ELISA application. Blood samples, specimens from lymph nodes and specific tissues were taken for PCR and for cultivation and isolation of Mycobacterium bovis. Results and Conclusions: The results of this study revealed that PCR can be used as rapid efficient and accurate diagnostic test in detection of ruminant TB. Moreover, cattle′s ELISA reading showed higher sensitivity in positive tuberculin animals. However, the differentiations between vaccinated and infected animals not clear by using a single antigen only.

  16. Detection of Campylobacter jejuni and Campylobacter coli in foods by enrichment culture and polymerase chain reaction enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Bolton, F J; Sails, A D; Fox, A J; Wareing, D R A; Greenway, D L A

    2002-05-01

    A polymerase chain reaction (PCR) assay based on a solution hybridization format with colorimetric end-point detection (PCR ELISA) was investigated for the specific detection of Campylobacter jejuni and Campylobacter coli in food samples following enrichment culture. One hundred fifteen samples of raw meat and offal (poultry, porcine, ovine, and bovine), raw shellfish, and artificially contaminated milk were enriched in blood-free Campylobacter Enrichment Broth for 48 h. Enrichment cultures were subcultured to Campylobacter blood-free selective agar plates, and presumptive isolates were identified by phenotypic methods. DNA was extracted from 1-ml aliquots of the enrichment cultures using a rapid extraction method, and the DNA was used as the template in a PCR ELISA. A comparison of the PCR ELISA with the enrichment culture and subculture to selective agar method showed that the results of 112 of the 115 samples tested were in agreement by both methods. Seventy-one of the various food samples were positive in the PCR ELISA, and 70 samples were positive by culture. The PCR ELISA had a sensitivity of 99% and a specificity of 96%, with a positive predictive value of 97% and a negative predictive value of 98%. The PCR ELISA is a rapid, sensitive, and specific method for the detection of C. jejuni and C. coli in foods following enrichment culture and significantly reduces the time required for their detection.

  17. Detection of high-risk subtypes of human papillomavirus in cervical swabs: routine use of the Digene Hybrid Capture assay and polymerase chain reaction analysis.

    LENUS (Irish Health Repository)

    Brennan, M M

    2012-02-03

    Human papillomaviruses (HPVs) are major causative agents in the pathogenesis of cervical cancer, and more than twenty types are associated with its development. With the introduction of liquid-based preparation systems, it is envisaged that large-scale HPV testing will be established in the near future. Preliminary studies demonstrate the accessibility of these samples for DNA testing using both the Digene Hybrid Capture assay (DHCA) and polymerase chain reaction (PCR) techniques. This study aims to assess the validity and sensitivity of the DHCA system to detect high-risk HPV DNA, using two sets of HPV consensus primers (Gp5+\\/Gp6+ and MY09\\/MY11) in tandem with routine assessment of cervical smear and biopsy samples. Results indicate that the combination of DHCA and PCR detects more high-grade lesions than does the DHCA alone. DHCA-negative cases were categorised by subsequent PCR amplification into low-grade HPV-negative (12\\/16) cervical lesions and high-grade HPV-positive (7\\/9) cervical lesions. Gp5+\\/Gp6+ primers were less sensitive in detecting HPV-positive samples than was the MY09\\/MY11 primer set. These results support the use of high-risk HPV testing by DHCA, with subsequent analysis of DHCA-negative samples by PCR using the MY09\\/MY11 primers.

  18. Use of the polymerase chain reaction assay for the detection of Babesia odocoilei 18S ribosomal RNA in formalin-fixed tissues.

    Science.gov (United States)

    Lockerbie, Betty P; Bollinger, Trent K; Burgess, Hilary J

    2014-06-10

    The effect of fixation and storage conditions on the performance of polymerase chain reaction (PCR) assays for Babesia odocoilei were examined using 3 different primer sets targeting the eukaryotic 18S ribosomal RNA gene, with variably sized products of 1,723 base pairs (bp), 483 bp, and 306 bp. All primer sets performed well on fresh-frozen tissue, and storage for 1 year at -20°C did not affect PCR performance. Formalin fixation markedly affected the amplicon length that could be amplified. However, DNA was successfully amplified after storage in formalin for 2 months using the primer set with a 483-bp product, and up to 6 months using the primer set with a 306-bp product. The latter primer set successfully differentiated B. odocoilei and Babesia microti DNA; however, further evaluation is required to confirm its specificity. Treatment of tissues with formic acid, at concentrations typically used to denature prions, degraded the DNA and made it unsuitable for PCR testing.

  19. Commercial enzyme-linked immunosorbent assay versuspolymerase chain reaction for the diagnosis of chronic Chagas disease: a systematic review and meta-analysis.

    Science.gov (United States)

    Brasil, Pedro Emmanuel Alvarenga Americano do; Castro, Rodolfo; Castro, Liane de

    2016-01-01

    Chronic Chagas disease diagnosis relies on laboratory tests due to its clinical characteristics. The aim of this research was to review commercial enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) diagnostic test performance. Performance of commercial ELISA or PCR for the diagnosis of chronic Chagas disease were systematically searched in PubMed, Scopus, Embase, ISI Web, and LILACS through the bibliography from 1980-2014 and by contact with the manufacturers. The risk of bias was assessed with QUADAS-2. Heterogeneity was estimated with the I2 statistic. Accuracies provided by the manufacturers usually overestimate the accuracy provided by academia. The risk of bias is high in most tests and in most QUADAS dimensions. Heterogeneity is high in either sensitivity, specificity, or both. The evidence regarding commercial ELISA and ELISA-rec sensitivity and specificity indicates that there is overestimation. The current recommendation to use two simultaneous serological tests can be supported by the risk of bias analysis and the amount of heterogeneity but not by the observed accuracies. The usefulness of PCR tests are debatable and health care providers should not order them on a routine basis. PCR may be used in selected cases due to its potential to detect seronegative subjects.

  20. Diagnostic accuracy of an IgM enzyme-linked immunosorbent assay and comparison with 2 polymerase chain reactions for early diagnosis of human leptospirosis.

    Science.gov (United States)

    Vanasco, N B; Jacob, P; Landolt, N; Chiani, Y; Schmeling, M F; Cudos, C; Tarabla, H; Lottersberger, J

    2016-04-01

    Enzyme-linked immunosorbent assay (ELISA) tests and polymerase chain reaction (PCR) may play a key role for early detection and treatment of human leptospirosis in developing countries. The aims of this study were to develop and validate an IgM ELISA under field conditions and to compare the diagnostic accuracy among IgG, IgM ELISAs, conventional PCR (cPCR), and real-time PCR (rtPCR) for early detection of human leptospirosis. Overall accuracy of IgM ELISA was sensitivity of 87.9%, specificity of 97.0%, and area under the curve of 0.940. When the 4 methods were compared, IgM ELISA showed the greatest diagnostic accuracy (J=0.6) followed by rtPCR (J=0.4), cPCR (J=0.2) and IgG ELISA (J=0.1). Our results support the use of IgM ELISA and rtPCR for early diagnosis of the disease. Moreover, due to their high specificity, they could be also useful to replace or supplement microscopic agglutination test as a confirmatory test, allowing more confirmations.

  1. A simple real-time polymerase chain reaction (PCR)-based assay for authentication of the Chinese Panax ginseng cultivar Damaya from a local ginseng population.

    Science.gov (United States)

    Wang, H; Wang, J; Li, G

    2016-06-27

    Panax ginseng is one of the most important medicinal plants in the Orient. Owing to its increasing demand in the world market, cultivated ginseng has become the