WorldWideScience

Sample records for reaction cross-section measurement

  1. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  2. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  3. Measurement of reaction cross sections of {sup 129}I induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The cross sections were measured for the {sup 129}I(n,2n){sup 128}I and {sup 129}I(n,{gamma}){sup 130}I reactions by DT neutrons, at OKTAVIAN facility of Osaka University, Japan. The foil activation method was used in the measurement. The sample was a sealed source of {sup 129}I, which was covered with a Cd foil. The irradiations were performed for 75 minutes to obtain the cross section of reaction producing {sup 128}I (T{sub 1/2}=24.99m) and 22 hours for the {sup 130}I (T{sub 1/2}=12.36h), respectively. The gamma-rays emitted from the irradiated sample were measured with a high purity Ge detector. The measured cross sections of {sup 129}I(n,2n){sup 128}I and {sup 129}I(n,{gamma}){sup 130}I reactions were 0.92{+-}0.11 barn and 0.013{+-}0.002 barn, respectively. For the {sup 129}I(n,2n){sup 128}I reaction, the evaluation of JENDL-3.2 overestimates cross section about 60% to the experimental result. However, especially for the {sup 129}I(n,{gamma}) reaction, the measured cross section may include the contribution from the neutrons in MeV region as well as epithermal ones. Also, the obtained cross section of the {sup 129}I(n,{gamma}){sup 130}I reaction was evaluated as an effective production cross section of {sup 130}I including {sup 129}I(n,{gamma}){sup 130m}I reaction. In order to remove the contribution from the epithermal and MeV region neutrons. A new method was proposed for the measurement of (n,{gamma}) reaction cross section. (author)

  4. Measurement of (n,Xn) reaction cross sections at 96 MeV

    International Nuclear Information System (INIS)

    Sagrado Garcia, Melle Inmaculada C.

    2006-10-01

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n,Xn) reactions in this energy range. Neutron double differential cross section measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL Laboratory in Uppsala, Sweden. The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 angle - 98 angle). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100) MeV. The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparison between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its treatment of nucleon-nucleon reactions. (author)

  5. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  6. Cross Section Measurements of the Reaction 23Na(p, γ)24Mg

    Science.gov (United States)

    Boeltzig, Axel; Deboer, Richard James; Macon, Kevin; Wiescher, Michael; Best, Andreas; Imbriani, Gianluca; Gyürky, György; Strieder, Frank

    2017-09-01

    The reaction 23Na(p, γ)24Mg can provide a link from the NeNa to the MgAl cycle in stellar burning and is therefore of interest in nuclear astrophysics. To determine the reaction rates at stellar temperatures, new cross section measurements at low proton energies have been performed recently, and further experiments are underway. The current cross section data implies that the reaction rate up to temperatures of 1 GK is determined by a few narrow resonances and direct capture. Complementary to these experimental efforts at low proton energies, cross section measurements at higher energies can help to constrain the direct capture and broad resonance contributions to the cross section and reduce the uncertainty of the extrapolation towards stellar energies. In this paper we report an experiment to measure the 23Na(p, γ)24Mg cross section with a solid target setup at the St. ANA 5U accelerator at the University of Notre Dame. The experiment and the current status of data analysis will be described. This work benefited from support by the National Science Foundation under Grant No. PHY-1430152 (JINA-CEE), the Nuclear Science Laboratory (NSL), the Istituto Nazionale di Fisica Nucleare (INFN), and the Gran Sasso Science Institute (GSSI).

  7. Estimation of (n,f) Cross-Sections by Measuring Reaction Probability Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Plettner, C; Ai, H; Beausang, C W; Bernstein, L A; Ahle, L; Amro, H; Babilon, M; Burke, J T; Caggiano, J A; Casten, R F; Church, J A; Cooper, J R; Crider, B; Gurdal, G; Heinz, A; McCutchan, E A; Moody, K; Punyon, J A; Qian, J; Ressler, J J; Schiller, A; Williams, E; Younes, W

    2005-04-21

    Neutron-induced reaction cross-sections on unstable nuclei are inherently difficult to measure due to target activity and the low intensity of neutron beams. In an alternative approach, named the 'surrogate' technique, one measures the decay probability of the same compound nucleus produced using a stable beam on a stable target to estimate the neutron-induced reaction cross-section. As an extension of the surrogate method, in this paper they introduce a new technique of measuring the fission probabilities of two different compound nuclei as a ratio, which has the advantage of removing most of the systematic uncertainties. This method was benchmarked in this report by measuring the probability of deuteron-induced fission events in coincidence with protons, and forming the ratio P({sup 236}U(d,pf))/P({sup 238}U(d,pf)), which serves as a surrogate for the known cross-section ratio of {sup 236}U(n,f)/{sup 238}U(n,f). IN addition, the P({sup 238}U(d,d{prime}f))/P({sup 236}U(d,d{prime}f)) ratio as a surrogate for the {sup 237}U(n,f)/{sup 235}U(n,f) cross-section ratio was measured for the first time in an unprecedented range of excitation energies.

  8. Differential cross section measurement for the 6Li(n,t)4He Reaction

    International Nuclear Information System (INIS)

    Zhang Guohui; Tang Guoyou; Chen Jinxiang; Shi Zhaomin

    2002-01-01

    The differential cross sections and integrated cross sections of the 6 Li(n,t) 4 He reaction were measured at 1.85 and 2.67 MeV by using a gridded ionization chamber. Neutrons were produced through the T(p, n) 3 He reaction. The absolute neutron flux was determined through the 238 U(n, f) reaction. Present results are compared with existing data

  9. Measurement of total reaction cross sections of exotic neutron rich nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Chouvel, J.M.; Wen Long, Z.

    1987-01-01

    Total reaction cross-sections of neutron rich nuclei from C to Mg in a thick Si-target have been measured using the detection of the associated γ-rays in a 4Π-geometry. This cross-section strongly increases with neutron excess, indicating an increase of as much as 15% of the reduced strong absorption radius with respect to stable nuclei

  10. Cross section measurements of the (n,2n) reaction with 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Harumi; Shiokawa, Takanobu [Tohoku Univ., Sendai (Japan). Faculty of Science; Suehiro, Teruo; Yagi, Masuo

    1975-07-01

    Cross sections are measured for the reactions /sup 64/Zn(n, 2n)/sup 63/Zn, /sup 75/As(n, 2n)/sup 74/As, /sup 79/Br(n, 2n)/sup 78/Br, /sup 90/Zr(n, 2n)/sup 89/Zr, /sup 141/Pr(n, 2n)/sup 140/Pr and /sup 144/Sm(n, 2n)/sup 143/Sm by activation method in the energy range 13.5-14.8 MeV. The cross sections are determined relatively to the cross section for the /sup 63/Cu(n, 2n)/sup 62/Cu and /sup 19/F(n, 2n)/sup 18/F reactions. Before the cross section measurement, incident-neutron energies are measured by recoil proton method. The results of the cross sections are compared with data existing in the literatures and are discussed with reference to the theory of Weisskopf and Ewing.

  11. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  12. Neutron-capture cross sections from indirect measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2012-02-01

    Full Text Available Cross sections for compound-nuclear reactions reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f reactions, but need to be improved upon for applications to capture reactions.

  13. Alpha-induced reaction cross section measurements on 151Eu for the astrophysical γ-process

    International Nuclear Information System (INIS)

    Gyuerky, Gy.; Elekes, Z.; Farkas, J.; Fueloep, Zs.; Halasz, Z.; Kiss, G.G.; Somorjai, E.; Szuecs, T.; Gueraya, R.T.; Oezkana, N.

    2010-01-01

    Compete text of publication follows. The astrophysical γ-process is the main production mechanism of the p-isotopes, the heavy, proton-rich nuclei not produced by neutron capture reactions in the astrophysical sand r-processes. The γ-process is a poorly known process of nucleosynthesis, the models are not able to reproduce well the p-isotope abundances observed in nature. Experimental data on nuclear reactions involved in γ-process reaction networks are clearly needed to provide input for a more reliable γ-process network calculation. As a continuation of our systematic study of reactions relevant for the γ-process, the cross sections of the 151 Eu(α, γ) 155 Tb and 151 Eu(α,n) 154 Tb reactions have been measured. These reactions have been chosen because α-induced cross section data in the region of heavy p-isotopes are almost completely missing although the calculations show a strong influence of these cross section on the resulting abundances. Since the reaction products of both reactions are radioactive, the cross sections have been measured using the activation technique. The targets have been prepared by evaporating Eu 2 O 3 enriched to 99.2% in 151 Eu onto thin Al foils. The target thicknesses have been measured by weighing and Rutherford Backscattering Spectroscopy. The targets have been irradiated by typically 1-2 μA intensity α-beams from the cyclotron of ATOMKI. The investigated energy range between 12 and 17 MeV was covered with 0.5 MeV steps. This energy range is somewhat higher than the astrophysically relevant one, but the cross section at astrophysical energies is so low that the measurements are not possible there. The γ- activity of the reaction products has been measured by a shielded HPGe detector. The absolute efficiency of the detector was measured with several calibration sources. Since 154 Tb has two long lived isomeric states, partial cross sections of the 151 Eu(α,n) 154 Tb reaction leading to the ground and isomeric states

  14. Measurement of cross-sections of yttrium (n,xn) threshold reactions by means of gamma spectroscopy

    CERN Document Server

    Chudoba, Petr; Wagner, V; Vrzalova, J; Svoboda, O; Majerle, M; Stefanik, M; Suchopar, M; Kugler, A; Bielewicz, M; Strugalska-Gola, E; Szuta, M; Hervas, D; Herman, T; Geier, B

    2014-01-01

    Neutron activation and gamma spectrometry are usable also f or the determination of cross-sections of different neutron reactions. We have studied the cross-sections of yttrium (n, x n) threshold reactions using quasi-monoenergetic neutron source based on the reaction on 7 Li target at Nuclear Physics Institute of ASCR in Rez. Yttrium (n, x n) threshold reactions are suitable candidates for fast neutron field measurement by activation detectors. Fast neutron field monitoring is necessary already today at a wide range of accelerator facilities and will gain on importance in future fast reactors of generation IV, accelerator transmutation systems or fusion reactors. The knowledge of the cross-sections is crucial for such purpose. Unfortunately, the cross-section is sufficiently known only for 89 Y(n,2n) 88 Y reaction. For higher orders of reactions there are almost no experimental data. Special attention was paid to t he 89 Y(n,3n) 87 Y reaction. The cross-sections of both 89 Y(n,2n) 88 Y and 89 Y(n,3n) 87 Y re...

  15. Cross section measurements of proton capture reactions on Se isotopes relevant to the astrophysical p process

    Science.gov (United States)

    Foteinou, V.; Harissopulos, S.; Axiotis, M.; Lagoyannis, A.; Provatas, G.; Spyrou, A.; Perdikakis, G.; Zarkadas, Ch.; Demetriou, P.

    2018-03-01

    Cross sections of proton capture reactions on 74Se, 78Se, and 80Se have been measured at incident beam energies from 2 to 6 MeV, 1.7 to 3 MeV, and 1.5 to 3.5 MeV, respectively. In the case of Se,8078, cross sections were obtained from in-beam γ -angular distribution measurements, whereas for the 74Se isotope they were derived from off-beam activity measurements. The measured cross sections were compared with calculations performed with the nuclear reaction code talys (version 1.6). A good agreement between theory and experiment was found. Astrophysical S factors and reaction rates deduced from the experimental and calculated cross sections were also compared and the impact of different nuclear ingredients in the calculations on the reaction rates was investigated. It was found that, for certain combinations of nuclear input models, the reaction rates obtained at temperatures relevant to p -process nucleosynthesis differ by a factor 2 at the most, differences that are well within the acceptable deviations of calculated p -nuclei abundances and observations.

  16. Measurement of (n,Xn) reaction cross sections at 96 MeV; Measure des sections efficaces (n,Xn) a 96 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sagrado Garcia, Melle Inmaculada C. [Ecole Doctorale: SINEM, U.F.R. de Sciences, Universite de Caen/Basse-Normandie, Esplanade Paix14000 Caen (France)

    2006-10-15

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n,Xn) reactions in this energy range. Neutron double differential cross section measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL Laboratory in Uppsala, Sweden. The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 angle - 98 angle). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100) MeV. The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparison between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its treatment of nucleon-nucleon reactions. (author)

  17. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  18. α -induced reactions on 115In: Cross section measurements and statistical model analysis

    Science.gov (United States)

    Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.

    2018-05-01

    Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also

  19. Measurement of the ${240}$Pu(n,f) reaction cross-section

    CERN Multimedia

    Following proposal CERN-INTC-2010-042 / INTC-P-280 (“Measurement of the fission cross-section of $^{240}$Pu and $^{242}$Pu at CERN’s n_TOF Facility”), the parallel measurement of the $^{240}$Pu(n,f) and $^{242}$Pu(n,f) reaction cross-sections was carried out at n_TOF EAR-1. While the $^{242}$Pu measurement was successful, unexpected sample-induced damage to the detectors caused by the high α-activity of the 240Pu samples resulted in a deterioration of the detector performance over the data taking period of several months, which compromised the measurement. This obstacle can be eliminated by performing the measurement in EAR-2, where the higher neutron flux will allow collecting data in a much shorter time, thus preventing the degradation of the detectors. In addition to this obvious advantage, the measurement would also benefit from the stronger suppression of the sample-induced α-background, due to the shorter times-of-flight involved.

  20. Density distribution of {sup 14}Be from reaction cross-section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Ozawa, A., E-mail: ozawa@tac.tsukuba.ac.jp [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Ishimoto, S. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Abe, Y. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Fukuda, M. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Hachiuma, I. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Ishibashi, Y.; Ito, Y. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Kuboki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Lantz, M. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Namihira, K. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Nishimura, D. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Ohtsubo, T. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Ooishi, H. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Suda, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Suzuki, H. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Takechi, M.; Tanaka, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); and others

    2014-09-15

    We measured the reaction cross sections of the two-neutron halo nucleus {sup 14}Be with proton and carbon targets at about 41 and 76 MeV/nucleon. Based on a Glauber model calculation, we deduced the matter density distribution of {sup 14}Be in which previously measured interaction cross sections at relativistic energies were also included. An s-wave dominance in {sup 14}Be has been confirmed, although the halo tail of {sup 14}Be is not distributed as much as that of {sup 11}Li. Significant mixing of the p-wave in addition to the s- and d-wave is also suggested.

  1. Reference Cross Sections for Charged-particle Monitor Reactions

    Science.gov (United States)

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Tárkányi, F. T.; Verpelli, M.

    2018-02-01

    Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard for cross-section measurements that are performed over a very broad energy range in accelerators in order to produce particular radionuclides for industrial and medical applications. The requirements for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research project was launched in December 2012 to establish or improve the nuclear data required to characterise charged-particle monitor reactions. An international team was assembled to recommend more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-particles. Recommended beam monitor reaction data with their uncertainties are available at the IAEA-NDS medical portal http://www-nds.iaea.org/medical/monitor_reactions.html.

  2. Differential cross section measurement for the {sup 6}Li(n,t){sup 4}He Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Guohui, Zhang; Guoyou, Tang; Jinxiang, Chen; Zhaomin, Shi [Beijing Univ., Beijing (China). Inst. of Heavy Ion Physics and MOE Key Laboratory of Heavy Ion Physics; Zemin, Chen [Tsinghua Univ., Beijing (China). Dept. of Physics; Gledenov, Yu M; Sedysheva, M; Khuukhenkhuu, G [Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna (Russian Federation)

    2002-06-01

    The differential cross sections and integrated cross sections of the {sup 6}Li(n,t){sup 4}He reaction were measured at 1.85 and 2.67 MeV by using a gridded ionization chamber. Neutrons were produced through the T(p, n){sup 3}He reaction. The absolute neutron flux was determined through the {sup 238}U(n, f) reaction. Present results are compared with existing data.

  3. Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu

    Science.gov (United States)

    Luo, Junhua; Jiang, Li; Li, Suyuan

    2017-10-01

    The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  4. First Year Report: Nuclear Reaction Measurements with Radioactive Beams and Targets- Progress in Measurements of the 89Zr (n,xnyp) Reaction Cross Sections

    International Nuclear Information System (INIS)

    Joseph Cerny; Dennis Moltz; Sylvia La; Ed Morse; Larry Ahle; Lee Bernstein; Ken Moody; Kevin Roberts; Margaret Moody; James Powell; Jim O'Neil; Anthony Belian

    2004-01-01

    OAK-B135 During the underground nuclear tests in Nevada, some of the most important information was obtained by radiochemical analysis of post-test excavations. By adding small samples of refractory and rare earth elements not commonly present in the surrounding soil to the device, a detailed look could be had of the actual event. In order to properly analyze these data, several hundred cross sections are needed at a neutron energy of 14 MeV (a d-t-burn product). Although it has always been assumed that these calculations are correct, insufficient experimental data exist to corroborate this assumption. The purpose of this experiment is to measure two reaction cross sections, namely the 89 Zr (n, 2n) 88 Zr and 89 Zr (n, np) 88 Y reactions. Although the former reaction has been measured in an unpublished report ( A. A. Delucchi and W. Goishi, LANL Report LA-7841-C (1977) pp. 33-36), we intend to reduce the experimental error in this cross section. The latter cross section has not been measured. This case is much simplified because these reaction products have half-lives ∼100 days compared with ∼3 days for the target nuclide. Therefore the assay can be accomplished long after the target nuclei have decayed away

  5. Cross section measurement and integral test for several activation reactions using T + d and thick-Li + d sources

    International Nuclear Information System (INIS)

    Dumais, J.R.; Tanaka, S.; Odano, N.; Iwasaki, S.; Sugiyama, K.

    1988-01-01

    Recent activities on the area of the cross section measurement for several activation reactions at Department of Nucl. Eng., Tohoku Univ. are described. The first subject is the cross section measurement for (n,2n) reaction on aluminum using the RTNS-II neutron source. Cross sections with rather small error band were obtained for the incident neutron energies from 14 to 14.7 MeV. The second one is the status of the program for the integral experiments on several reactions using the thick Li + d source at Tohoku Fast Neutron Lab. The experimental results showed the usefullness of the source as a tool for the cross section assessment. (author)

  6. Neutron-induced capture cross sections via the surrogate reaction method

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.

    2011-01-01

    The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)

  7. Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on {sup 132,134}Ba

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Hexi Univ., Zhangye (China). Inst. of New Energy; Wu, Chunlei; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Li, Suyuan [Hexi Univ., Zhangye (China). Inst. of New Energy

    2017-07-01

    Cross sections of the {sup 132}Ba(n,2n){sup 131m,g}Ba and {sup 134}Ba(n,2n){sup 133m,g}Ba reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} have been measured by means of the activation technique at three neutron energies in the range 13-15 MeV. BaCO{sub 3} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The quasimonoenergetic neutrons beam were produced via the {sup 3}H(d,n){sup 4}He reaction at the Pd-300 Neutron Generator of the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  8. Measurement of activation cross sections for quasi-monoenergetic neutron induced reactions of {sup 89}Y

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Nadeem, Muhammad [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Naik, Haladhara [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Lee, Manwoo [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of)

    2017-09-15

    The neutron induced cross sections of the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reactions were measured in the neutron energy range of 15.2 to 37.2 MeV by using an activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutrons used for the above reactions are based on a {sup 9}Be(p, n) reaction. Simulations of the neutron spectra from the Be target were done using the MCNPX 2.6.0 program. Theoretical calculations were performed for the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reaction cross sections using nuclear model code Talys 1.8. The measured and calculated cross sections were compared with the literature data given in EXFOR and the TENDL-2015 data libraries. The present data of the {sup 89}Y(n, xn) reaction were also compared with the similar data of the {sup 89}Y(γ, xn) reaction to examine the effect of the entrance channel parameters as well as the role of projectiles and ejectiles. (orig.)

  9. GRAPhEME: a setup to measure (n, xn γ) reaction cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Greg; Bacquias, A.; Capdevielle, O.; Dessagne, P.; Kerveno, M.; Rudolf, G. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France); Borcea, C.; Negret, A.; Olacel, A. [Nat. Inst. Of Phys. And Nucl. Eng., Bucharest (Romania); Drohe, J.C.; Plompen, A.J.M.; Nyman, M. [EU/ JRC-IRMM, Geel (Belgium)

    2015-07-01

    Most of nuclear reactor developments are using evaluated data base for numerical simulations. However, the considered databases present still large uncertainties and disagreements. To improve their level of precision, new measurements are needed, in particular for (n, xn) reactions, which are of great importance as they modify the neutron spectrum, the neutron population, and produce radioactive species. The IPHC group started an experimental program to measure (n, xn gamma) reaction cross sections using prompt gamma spectroscopy and neutron energy determination by time of flight. Measurements of (n, xn gamma) cross section have been performed for {sup 235,238}U, {sup 232}Th, {sup nat,182,183,184,186}W, {sup nat}Zr. The experimental setup is installed at the neutron beam at GELINA (Geel, Belgium). The setup has recently been upgraded with the addition of a highly segmented 36 pixels planar HPGe detector. Significant efforts have been made to reduce radiation background and electromagnetic perturbations. The setup is equipped with a high rate digital acquisition system. The analysis of the segmented detector data requires a specific procedure to account for cross signals between pixels. An overall attention is paid to the precision of the measurement. The setup characteristic and the analysis procedure will be presented along with the acquisition and analysis challenges. Examples of results and their impact on models will be discussed. (authors)

  10. Measurement of the effective thermal cross section of {sup 134}Cs by triple neutron capture reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro; Kobayashi, Katsutoshi; Motoishi, Shoji; Tanase, Masakazu

    1998-03-01

    The effective thermal cross section ({sigma}{sub eff}) of the {sup 134}Cs(n,{gamma}){sup 135}Cs reaction was measured by the activation method and the {gamma}-ray spectroscopic method in order to obtain fundamental data for research on the transmutation of nuclear wastes. The effective thermal cross section of the reaction {sup 134}Cs(n,{gamma}){sup 135}Cs was found to be 140.6{+-}8.5 barns. (author)

  11. Fission neutron spectrum averaged cross sections for threshold reactions on arsenic

    International Nuclear Information System (INIS)

    Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires

    2006-01-01

    We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)

  12. (n,α reactions cross section research at IPPE

    Directory of Open Access Journals (Sweden)

    Giorginis G.

    2012-02-01

    Full Text Available An experimental set-up based on an ionization chamber with a Frisch grid and wave form digitizer was used for (n,α cross section measurements. Use of digital signal processing allowed us to select a gaseous cell inside the sensitive area of the ionization chamber and determine the target atoms in it with high accuracy. This kind of approach provided us with a powerful method to suppress background arising from the detector structure and parasitic reactions on the working gas components. This method is especially interesting to study neutron reactions with elements for which solid target preparation is difficult (noble gases for example. In the present experiments we used a set of working gases which contained admixtures of nitrogen, oxygen, neon, argon and boron. Fission of 238U was used as neutron flux monitor. The cross section of the (n,α reaction for 16O, 14N, 20Ne, 36Ar, 40Ar and the yield ratio α0/α1 of 10B(n,α0 to 10B(n,α1 reactions was measured for neutron energies between 1.5 and 7 MeV. Additionally a measurement of the 50Cr(n,α cross section using a solid chromium target is also reported.

  13. Angular distribution and cross section measurement for 64Zn(n,α)61Ni reaction

    International Nuclear Information System (INIS)

    Yuan Jing; Chen Zemin; Dledenov, Y.M.; Sedysheva, M.; Khuuknenkhuu, G.

    2001-01-01

    Using a gridded ionization chamber, the differential cross section for 64 Zn(n,α) 61 Ni reaction was measured at 5.0, 5.7 and 6.7 MeV. The neutrons were produced through D(d,n) 3 He reaction. Absolute neutron flux was determined through 238 U(n,f) reaction. The results show obviously backward peak in the center of mass reference system

  14. Energy-differential cross section measurement for the 51V(n,α)48Sc reaction

    International Nuclear Information System (INIS)

    Kanno, I.; Meadows, J.W.; Smith, D.L.

    1984-07-01

    The activation method was used to measure cross sections for the 51 V(n,α) 48 Sc reaction in the threshold region, from 5.515 MeV up to 9.567 MeV. Twenty approximately-monoenergetic cross section values were obtained in this experiment. These data points span the energy region at roughly equal intervals. The experimental resolutions were in the range 0.153 to 0.233 MeV (FWHM). The present differential data cover approx. 50% of the total integral response of this reaction for the standard 235 U thermal-neutron-induced-fission neutron spectrum, and approx. 44% of the corresponding response for the standard 252 Cf spontaneous-fission neutron spectrum. Over the range 7.6 to 9.5 MeV the present experimental cross sections are noticeably larger (e.g., by approx. 50% at approx. 8.6 MeV) than the corresponding values from the ENDF/B-V evaluation. From approx. 6.7 to 7.5 MeV, the present values are somewhat below those of ENDF/B-V. At still lower energies the agreement is reasonably good considering the uncertainties introduced by energy scale definition very near the effective threshold where the cross section varies rapidly with neutron energy. Calculated integral cross sections based in part on the present work agree reasonably well within errors with reported integral results, provided that the reported data are renormalized to conform with recently-accepted values for appropriate standard reactions. 70 references

  15. Secondary standard neutron detector for measuring total reaction cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Gabbard, F.

    1975-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron-production cross sections. The detector consists of a polyethylene sphere of 24'' diameter in which 8- 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies, from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p,n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p,n) 51 Cr and 57 Fe(p,n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for measurement of total neutron yields from neutron producing reactions such as 23 Na(p,n) 23 Mg are given

  16. Direct measurement of the 7Be(n, α4 He reaction cross sections for the cosmological Li problem

    Directory of Open Access Journals (Sweden)

    Kawabata Takahiro

    2017-01-01

    Full Text Available The cross sections of the 7Be(n, α4He reaction for p-wave neutrons were experimentally determined at Ec.m. = 0.20−0.81 MeV close to the Big Bang nucleosynthesis (BBN energy window for the first time on the basis of the detailed balance principle by measuring the time-reverse reaction. The obtained cross sections are much larger than the cross sections for s-wave neutrons inferred from the recent measurement at the n_TOF facility in CERN, but significantly smaller than the theoretical estimation widely used in the BBN calculations. The present results suggest the 7Be(n, α4 He reaction rate is not large enough to solve the cosmological lithium problem

  17. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    OpenAIRE

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. Th...

  18. Neutron-induced cross sections of actinides via the surrogate-reaction method

    Directory of Open Access Journals (Sweden)

    Tveten G. M.

    2013-03-01

    Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method for extracting capture cross sections has to be investigated. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutroninduced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. First results are presented and discussed.

  19. Cross sections for nuclide production in proton- and deuteron-induced reactions on 93Nb measured using the inverse kinematics method

    Directory of Open Access Journals (Sweden)

    Nakano Keita

    2017-01-01

    Full Text Available Isotopic production cross sections were measured for proton- and deuteron-induced reactions on 93Nb by means of the inverse kinematics method at RIKEN Radioactive Isotope Beam Factory. The measured production cross sections of residual nuclei in the reaction 93Nb + p at 113 MeV/u were compared with previous data measured by the conventional activation method in the proton energy range between 46 and 249 MeV. The present inverse kinematics data of four reaction products (90Mo, 90Nb, 88Y, and 86Y were in good agreement with the data of activation measurement. Also, the model calculations with PHITS describing the intra-nuclear cascade and evaporation processes generally well reproduced the measured isotopic production cross sections.

  20. Verification of dosimetry cross sections above 10 MeV based on measurement of activation reaction rates in fission neutron field

    International Nuclear Information System (INIS)

    Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.

    1996-01-01

    To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)

  1. Neutron cross section measurement using the Oak Ridge Electron Linear Accelerator

    International Nuclear Information System (INIS)

    Winters, R.R.

    1991-08-01

    This report discusses: argon-40 -- neutron reaction total cross sections from 6.9 kev to 50 kev; The maxwellian averaged neutron capture cross section of oxygen-16; r-matrix parameter analysis of the lead-208 -- neutron reaction cross section measurement; r-matrix parameter analysis of the ORELA neutron transmission zirconium-90 low energy measurement; porting computer codes from the HP9000 to the IBM RISC/6000;and measurements of neutron reactions with strontium-88, zirconium-90, and calcium-40

  2. Cross section measurement for (n,n{alpha}) reactions by 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Y.; Ikeda, Y.; Uno, Y. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Yamamoto, H.; Kawade, K.

    1997-03-01

    Nine (n,n{alpha}) cross sections for (n,n{alpha}) reactions induced by 13.5-14.9 MeV neutrons were measured for {sup 51}V, {sup 65}Cu, {sup 71}Ga, {sup 76}Ge, {sup 87}Rb, {sup 91}Zr, {sup 93}Nb, {sup 96}Zr and {sup 109}Ag isotopes by using Fusion Neutronics Source (FNS) at JAERI. The reactions for 91Zr and 96Zr were measured for the first time. The evaluated data of JENDL-3 and ENDF/B-VI were compared with the present data. Some of the evaluated values are much different from our data by a factor more than ten. (author)

  3. Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.

    2014-01-01

    We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)

  4. Cross-section and reaction rates for some reactions involved in explosive nucleosynthesis

    International Nuclear Information System (INIS)

    Cheng, C.W.

    1979-03-01

    Total proton-induced and alpha-induced reaction cross sections have been determined for the 24 Mg(α,n), 25 Mg(p,n), 26 Mg(p,n), 27 Al(p,n), 28 Si(α,n), 42 Ca(p,γ), 42 Ca(α,n) and 44 Ca(p,n) reactions from energies near threshold (except the exothermic (p,γ) reaction) to about 3 to 4 MeV above threshold. The product nuclei are all positron emitters with half-lives ranging from about 3 sec to about 4 hours. From the measured cross sections reaction rates have been calculated in the temperature range 1 9 9 =1, at which the discrepancy is large. Included also are analytic forms for (p,n), (α,n), and (p,γ) reactions which can be used to describe the reaction rate within the temperature range 1 9 <=6 and which agree with the experimental rates at the discrete temperatures where the reaction rates have been calculated

  5. Measurement of angle-correlated differential (n,2n) reaction cross section with pencil-beam DV neutron source

    International Nuclear Information System (INIS)

    Takaki, S.; Kondo, K.; Shido, S.; Miyamaru, H.; Murata, I.; Ochiai, Kentaro; Nishitani, Takeo

    2006-01-01

    Angle-correlated differential cross-section for 9 Be(n,2n) reaction has been measured with the coincidence detection technique and a pencil-beam DT neutron source at FNS, JAEA. Energy spectra of two emitted neutrons were obtained for azimuthal and polar direction independently. It was made clear from the experiment that there are noise signals caused by inter-detector scattering. The ratio of the inter-detector scattering components in the detected signals was estimated by MCNP calculation to correct the measured result. By considering the inter-detector scattering components, the total 9 Be(n,2n) reaction cross-section agreed with the evaluated nuclear data within the experimental error. (author)

  6. Cross section of the 197Au(n,2n196Au reaction

    Directory of Open Access Journals (Sweden)

    Kalamara A.

    2017-01-01

    Full Text Available The 197Au(n,2n196Au reaction cross section has been measured at two energies, namely at 17.1 MeV and 20.9 MeV, by means of the activation technique, relative to the 27Al(n,α24Na reference reaction cross section. Quasi-monoenergetic neutron beams were produced at the 5.5 MV Tandem T11/25 accelerator laboratory of NCSR “Demokritos”, by means of the 3H(d,n4He reaction, implementing a new Ti-tritiated target of ∼ 400 GBq activity. The induced γ-ray activity at the targets and reference foils has been measured with HPGe detectors. The cross section for the population of the second isomeric (12− state m2 of 196Au was independently determined. Auxiliary Monte Carlo simulations were performed using the MCNP code. The present results are in agreement with previous experimental data and with theoretical calculations of the measured reaction cross sections, which were carried out with the use of the EMPIRE code.

  7. Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Morel P.

    2011-10-01

    Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.

  8. Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method

    Directory of Open Access Journals (Sweden)

    Tassan-Got L.

    2012-02-01

    Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.

  9. Measurement of multinucleon transfer cross-sections

    Indian Academy of Sciences (India)

    Keywords. Ni(C, ), Fe(C, ), =C, C, B, B, Be, Be, Be, Be, Li, Li; = 60 MeV; measured reaction cross-section; elastic scattering angular distribution; deduced transfer probabilities and enhancement factors.

  10. Gamma-ray emission cross section from proton-incident spallation reaction

    International Nuclear Information System (INIS)

    Iga, Kiminori; Ishibashi, Kenji; Shigyo, Nobuhiro

    1996-01-01

    Gamma-ray emission double differential cross sections from proton-incident spallation reaction have been measured at incident energies of 0.8, 1.5 and 3.0 GeV with Al, Fe, In and Pb targets. The experimental results have been compared with calculate values of HETC-KFA2. The measured cross sections disagree with the calculated results in the gamma ray energies above 10 MeV. (author)

  11. Measurements of neutron cross section of the {sup 243}Am(n,{gamma}){sup 244}Am reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The effective thermal neutron cross section of {sup 243}Am(n,{gamma}){sup 244}Am reaction was measured by the activation method. Highly-purified {sup 243}Am target was irradiated in an aluminum capsule by using a research reactor JRR-3M. The tentative effective thermal neutron cross sections are 3.92 b, and 84.44 b for the production of {sup 244g}Am and {sup 244m}Am, respectively. (author)

  12. Measurement and calculation of cross section for (p,x) reactions on natural Fe for 650 MeV protons

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Pohorecki, W.; Domanska, G.; Loska, L.; Taczanowski, S.; Shvetsov, V.

    2006-01-01

    Cross sections for production of radionuclides in (p,x) reactions on natural iron were measured for protons of 650 ± 4 MeV with the use of HPGe gamma spectrometry and calculated with the MCNPX code. The determined cross section values were compared with the computed and other experimental ones

  13. anti p-3He reaction cross section at 200 MeV/c

    International Nuclear Information System (INIS)

    Balestra, F.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Ferrero, L.; Grasso, A.; Panzieri, D.; Piragino, G.; Tosello, F.; Barbieri, R.; Bendiscioli, G.; Rotondi, A.; Salvini, P.; Venaglioni, A.; Zenoni, A.; Batusov, Yu.A.; Falomkin, I.V.; Pontecorvo, G.B.; Sapozhnikov, M.G.; Tretyak, V.I.; Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1988-01-01

    Inelastic anti p- 3 He events at 192.8 MeV/c are detected with a self-shunted streamer chamber. The measured reaction cross section is 392±23.8 mb. This result is briefly discussed and compared with other reaction cross sections for low-energy anti p with light nuclei. (orig.)

  14. Measurements and systematics studies of the (n,p), (n,α) and (n,2n) reactions cross-sections at 14.5 MeV neutrons

    International Nuclear Information System (INIS)

    Osman, Khalda

    2000-01-01

    Accurate knowledge of the cross-sections for fast neutron-induced reactions utilizing the D-T reaction is important not only because of the wide spread of data observed in the literature, but also because of the world wide demand and requests for such data, in view of the increasing interest in the fusion reactor technology, which is based on the same reactions. Cross-sections are needed also for various practical purposes, including neutron activation analysis and dosimetry. In this work the (n.p), (n,2n) and (n,α) reactions cross-sections were measured at 14.5 MeV for isotopes of the elements: Cr, Ti, Ni, Co, Zr, and Mo using the activation method. The measured cross-sections were compared with recently published data. Good agreement was observed for most of the measurements. The discrepancies observed were attributed to difficulties related to the long half-life of the product nuclei and small abundances of the target isotopes. Attempts were also made to study the dependence of the (n,p), (n,2n) and (n,α) reactions cross-sections on the on the asymmetry parameter (N-Z)/A. The results confirmed the trend theoretically suggested by Levkovskii and experimentally realized by Qaim and co-workers. The isotopic dependence of (n,p) reaction cross-sections and the variation of the ration σ n ,p/σ n ,α with Z-number of the target isotopes were also studied in this work and the results obtained were found to be in agreement with theoretical predictions. In this work studies carried out for the systematics of the (n,p), (n,2n) and (n,α) reactions cross-sections at 14 MeV neutrons and formula based on the statistical model presented, with the aim of improving the systematics of these cross-sections. Comparison of present proposed systematics were for the (n,p), (n,2n) and (n,α) reactions cross-sections with the cross-section values measured in this work was made. Good agreement was generally noted, but some discrepancies were also observed. These discrepancies were

  15. Use of nuclear reaction models in cross section calculations

    International Nuclear Information System (INIS)

    Grimes, S.M.

    1975-03-01

    The design of fusion reactors will require information about a large number of neutron cross sections in the MeV region. Because of the obvious experimental difficulties, it is probable that not all of the cross sections of interest will be measured. Current direct and pre-equilibrium models can be used to calculate non-statistical contributions to neutron cross sections from information available from charged particle reaction studies; these are added to the calculated statistical contribution. Estimates of the reliability of such calculations can be derived from comparisons with the available data. (3 tables, 12 figures) (U.S.)

  16. Cross sections and reaction rates of d+{sup 8}Li reactions involved in Big Bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Balbes, M.J. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Farrell, M.M. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Boyd, R.N. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics]|[Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Gu, X. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Hencheck, M. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Kalen, J.D. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Mitchell, C.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics; Kolata, J.J. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Lamkin, K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Smith, R. [Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 (United States); Tighe, R. [Lawrence Berkeley Laboratory, Berkeley, CA 94720 (United States); Ashktorab, K. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Becchetti, F.D. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Brown, J. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Roberts, D. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Wang, T.F. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Humphrey, D. [Department of Physics, University of Western Kentucky, Bowling Green, KY 42101 (United States); Vourvopoulos, G. [Department of Physics, University of Western Kentucky, Bowling Green, KY 42101 (United States); Islam, M.S. [Department of Physics, Ball State University, Muncie, IN 47306 (United States)

    1995-02-20

    We have measured angular distributions of the {sup 2}H({sup 8}Li, {sup 7}Li){sup 3}H and {sup 2}H({sup 8}Li, {sup 9}Be)n reactions at E{sub c.m.}=1.5 to 2.8 MeV using an {sup 8}Li-radioactive-beam technique. Astrophysical S-factors and reaction rates were calculated from the measured cross sections. Although the {sup 2}H({sup 8}Li, {sup 9}Be)n cross section is small, it can contribute to {sup 9}Be synthesis. The {sup 2}H({sup 8}Li, {sup 7}Li){sup 3}H reaction has a sufficiently large cross section to destroy {sup 8}Li, which may decrease the synthesis of heavier elements. No products from the {sup 2}H({sup 8}Li, {sup 9}Li)p reaction were detected. We also present the results of calculations using the inhomogeneous model of primordial nucleosynthesis in several regions of parameter space. ((orig.))

  17. Surrogate Measurements of Actinide (n,2n) Cross Sections with NeutronSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Akindele, O. A. [Univ. of California, Berkeley, CA (United States); Koglin, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tamashiro, A. [Oregon State Univ., Corvallis, OR (United States)

    2016-09-27

    Directly measuring (n,2n) cross sections on short-lived actinides presents a number of experimental challenges. The surrogate reaction technique is an experimental method for measuring cross sections on short-­lived isotopes, and it provides a unique solution for measuring (n,2n) cross sections. This technique involves measuring a charged-­particle reaction cross section, where the reaction populates the same compound nucleus as the reaction of interest. To perform these surrogate (n,2n) cross section measurements, a silicon telescope array has been placed along a beam line at the Texas A&M University Cyclotron Institute, which is surrounded by a large tank of gadolinium-doped liquid scintillator, which acts as a neutron detector. The combination of the charge-particle and neutron-detector arrays is referred to as NeutronSTARS. In the analysis procedure for calculating the (n,2n) cross section, the neutron detection efficiency and time structure plays an important role. Due to the lack of availability of isotropic, mono-energetic neutron sources, modeling is an important component in establishing this efficiency and time structure. This report describes the NeutronSTARS array, which was designed and commissioned during this project. It also describes the surrogate reaction technique, specifically referencing a 235U(n,2n) commissioning measurement that was fielded during the past year. Advanced multiplicity analysis techniques have been developed for this work, which should allow for efficient analysis of 241Pu(n,2n) and 239Pu(n,2n) cross section measurements

  18. Reaction cross section calculation of some alkaline earth elements

    Science.gov (United States)

    Tel, Eyyup; Kavun, Yusuf; Sarpün, Ismail Hakki

    2017-09-01

    Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  19. (n, Xn) cross sections measurements at 96 MeV

    International Nuclear Information System (INIS)

    Sagrado Garcia, Inmaculada C.

    2006-01-01

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n, Xn) reactions in this energy range. Neutron double differential cross sections measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL laboratory, in Uppsala (Sweden). The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 deg.-98 deg.). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100 MeV). The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparisons between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its original treatment of nucleon-nucleus reactions. (author) [fr

  20. Measurement method of activation cross-sections of reactions producing short-lived nuclei with 14 MeV neutrons

    CERN Document Server

    Kawade, K; Kasugai, Y; Shibata, M; Iida, T; Takahashi, A; Fukahori, T

    2003-01-01

    We describe a method for obtaining reliable activation cross-sections in the neutron energy range between 13.4 and 14.9 MeV for the reactions producing short-lived nuclei with half-lives between 0.5 and 30 min. We noted neutron irradiation fields and measured induced activities, including (1) the contribution of scattered low-energy neutrons, (2) the fluctuation of the neutron fluence rate during the irradiation, (3) the true coincidence sum effect, (4) the random coincidence sum effect, (5) the deviation in the measuring position due to finite sample thickness, (6) the self-absorption of the gamma-ray in the sample material and (7) the interference reactions producing the same radionuclides or the ones emitting the gamma-ray with the same energy of interest. The cross-sections can be obtained within a total error of 3.6%, when good counting statistics are achieved, including an error of 3.0% for the standard cross-section of sup 2 sup 7 Al (n, alpha) sup 2 sup 4 Na. We propose here simple methods for measuri...

  1. Measurements and Evaluation of Nuclear Reaction Cross Sections Leading to Various Practical Applications in Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin; Lee, Young Ouk; Cho, Young Sik

    2008-07-15

    This report contains the measurements and evaluation of production cross sections of some medically and technologically important radionuclides over the energy range 1-40 MeV by using a conventional stacked-foil activation technique combined with high purity germanium (HPGe) -ray spectrometry. The irradiations were done by using the external beam line of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The standard cross sections for monitor reactions were taken from IAEA web site. Integral yields for the investigated radionuclides were deduced using the measured cross-sections. Reported data were compared with the available literature data, theoretical calculations by the codes TALYS and ALICE-IPPE, and a good overall agreement among them was found.

  2. Measurements and Evaluation of Nuclear Reaction Cross Sections Leading to Various Practical Applications in Science and Technology

    International Nuclear Information System (INIS)

    Khandaker, Mayeen Uddin; Lee, Young Ouk; Cho, Young Sik

    2008-07-01

    This report contains the measurements and evaluation of production cross sections of some medically and technologically important radionuclides over the energy range 1-40 MeV by using a conventional stacked-foil activation technique combined with high purity germanium (HPGe) -ray spectrometry. The irradiations were done by using the external beam line of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The standard cross sections for monitor reactions were taken from IAEA web site. Integral yields for the investigated radionuclides were deduced using the measured cross-sections. Reported data were compared with the available literature data, theoretical calculations by the codes TALYS and ALICE-IPPE, and a good overall agreement among them was found

  3. Measurement of the thermal cross section of the reaction 64Zn(n,γ)65Zn in a mixed neutron flux

    International Nuclear Information System (INIS)

    Dorval, E. L; Arribere, M. A; Ribeiro Guevara, S

    2006-01-01

    Zinc is an element that is present in a great variety of biological and geological samples.For its determination by Instrumental Neutron Activation Analysis, the reaction 64 Z n(n,γ) 6 5Zn is used, due to the long half life of the reaction product, the target's bigger isotopic abundance, and an easily measurable 1115 keV main gamma line.In a recent evaluation of thermal cross sections and resonance integrals, a thermal cross section value that is 44.7% bigger than the previous evaluation has been published by the same reference.This difference is not within reported uncertainties.Besides, the relative uncertainty of the new evaluation is much bigger than the one corresponding to the previous evaluation.The adoption of the thermal cross section corresponding to different evaluations may imply, in the case of an irradiation in the peripheral I 6 position at the R A-6 reactor, discrepancies of about 43% in the calculated concentrations.These inconsistencies were evident during the irradiation of certified standard materials.This motivated the measurement of the thermal cross section for the reaction 64 Z n(n,γ) 6 5Zn in the I 6 position at the R A-6 reactor.For the analysis of results, a code was written in order to calculate correction factors from an accurate characterization of the neutron spectrum.The thermal cross section value of the reaction 64 Z n(n,γ) 6 5Zn measured is (0.76± 0.03) b [es

  4. 6,7Li + 28Si total reaction cross sections at near barrier energies

    International Nuclear Information System (INIS)

    Pakou, A.; Musumarra, A.; Pierroutsakou, D.; Alamanos, N.; Assimakopoulos, P.A.; Divis, N.; Doukelis, G.; Gillibert, A.; Harissopulos, S.; Kalyva, G.; Kokkoris, M.; Lagoyannis, A.; Mertzimekis, T.J.; Nicolis, N.G.; Papachristodoulou, C.; Perdikakis, G.; Roubos, D.; Rusek, K.; Spyrou, S.; Zarkadas, Ch.

    2007-01-01

    Total reaction cross section measurements for the 6,7 Li + 28 Si systems have been performed at near-barrier energies. The results indicate that, with respect to the potential anomaly at barrier, 6 Li and 7 Li on light targets exhibit similar energy dependence on the imaginary potential. Comparisons are made with 6,7 Li cross sections on light and heavy targets, extracted via previous elastic scattering measurements and also with CDCC calculations. Energy dependent parametrisations are also obtained for total reaction cross sections of 6,7 Li on Si, as well as on any target, at near barrier energies

  5. Reaction cross section calculation of some alkaline earth elements

    Directory of Open Access Journals (Sweden)

    Tel Eyyup

    2017-01-01

    Full Text Available Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  6. Remarks concerning the accurate measurement of differential cross sections for threshold reactions used in fast-neutron dosimetry for fission reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1976-12-01

    Some remarks are submitted concerning the measurement of differential cross sections for threshold reactions which are used in fast-neutron dosimetry for fission reactors. The objective is to familiarize the reader with some of the problems associated with these measurements and, in the process, to explain why the existence of large discrepancies in the data sets for many of these reactions is not surprising. Limits to the accuracy which can be expected for these cross sections in the near future--using current technology and available resources--are examined in a general way and recommendations for improving the accuracy of the differential data base for dosimetry reactions are presented

  7. Measurement of multinucleon transfer cross-sections in Ni, Fe( C, x ...

    Indian Academy of Sciences (India)

    Measurement of multinucleon transfer cross-sections be treated as a stable particle in participation in nuclear reactions, thus the two-body kine- matics can be applied for the reaction (12C, 8Be) and the outgoing 8Be(g.s.) will have a unique kinetic energy at a given laboratory angle. To measure the cross-section for the.

  8. Total reaction cross section for 12C+16O below the Coulomb barrier

    International Nuclear Information System (INIS)

    Cujec, B.; Barnes, C.A.

    1976-01-01

    The energy dependence of the total reaction cross section, sigma(E), for 12 C+ 16 0 has been measured over the range Esub(c.m.)=4-12 MeV, by detecting γ-rays from the various possible residual nuclei with two large NaI(Tl) detectors placed close to the target. This technique for measuring total reaction cross sections was explored in some detail and shown to yield reliable values for sigma(E). Although the principal emphasis of this work was placed on obtaining reliable cross sections, a preliminary study has been made of the suitability of various methods for extrapolating the cross section to still lower energies. The statistical model provides a good fit with a reasonable value for the strength function, 2 >/ =6.8x10 -2 , over the range Esub(c.m.)=6.5-12 MeV, but predicts cross sections which are much too large for Esub(c.m.)<6.5 MeV. Optical model fits at low energies are especially sensitive to the radius and diffuseness of the imaginary component of the potential and, since these are still poorly known at present, such extrapolations may be wrong by orders of magnitude. A simple barrier penetration model gives a moderately good fit to the data and seems to provide the safest extrapolation to lower energies at the present time. It is clear, however, that our knowledge of the heavy-ion reaction mechanism at low energies is incomplete, and that cross-section measurements at still lower energies are needed to establish the correct procedure for extrapolating heavy-ion reaction cross sections to low energies. (Auth.)

  9. Measurement of the cross section of the 8Li(d,α)6He reaction of possible relevance to big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Sahin, L.; Boyd, R.N.; Cole, A.L.; Famiano, M.; Gueray, R.T.; Murphy, A. St.J.; Oezkan, N.; Kolata, J.J.; Guimaraes, V.; Hencheck, M.

    2002-01-01

    We report measurements of the cross section of the 8 Li(d,α) 6 He reaction in the energy range E c.m. =2.3-3.5 MeV using a 8 Li-radioactive beam on a CD 2 foil. The astrophysical S factor and reaction rate were calculated from the measured cross section. The 6 He nuclei produced in the reaction were detected in solid-state detector telescopes. This reaction might have affected the primordial abundance of 6 Li in big bang nucleosynthesis, since 6 He beta decays to 6 Li. However, several big bang nucleosynthesis network calculations were found to be insensitive to this reaction, suggesting that the 8 Li(d,α) 6 He reaction does not affect 6 Li primordial production

  10. Measurement of neutron captured cross-sections in 1-2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gi Dong; Kim, Young Sek; Kim, Jun Kon; Yang, Tae Keun [Korea Institutes of Geoscience and Mineral Resources, Taejeon (Korea)

    2001-04-01

    The measurement of neutron captured reaction cross sections was performed to build the infra system for the production of nuclear data. MeV neutrons were produced with TiT target and {sup 3}T(p,n){sup 3}He reaction. The characteristics of TiT thin film was analyzed with ERD-TOF and RBS. The results was published at Journal of the Korea Physical Society (SCI registration). The energy, the energy spread and the flux of the produced neutron were measured. The neutron excitation functions of {sup 12}C and {sup 16}O were obtained to confirm the neutron energy and neutron energy spread. The neutron energy spread found to be 1.3 % at the neutron energy of 2.077 MeV. The {sup 197}Au(n,{gamma}) reaction was performed to obtain the nerutron flux. The maximum neutron flux found to be 1 x 10{sup 8} neutrons/sec at the neutron energy of 2 MeV. The absolute efficiency of liquid scintillation detector was obtained in the neutron energy of 1 - 2 MeV. The fast neutron total reaction cross sections of Cu, Fe, and Au were measured with sample in-out method. Also the neutron captured reaction cross sections of {sup 63}Cu were measured with fast neutron activation method. The measurement of neutron total reaction cross sections and the neutron captured reaction cross sections with fast neutrons were first tried in Korea. The beam pulsing system was investigated and the code of calculating the deposition spectrums for primary gamma rays was made to have little errors at nuclear data. 25 refs., 28 figs., 14 tabs. (Author)

  11. The Glauber model and heavy ion reaction and elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)

    2017-05-15

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  12. Measurements of the thermal neutron cross-section and resonance integral for the 108Pd(n,γ)109Pd reaction

    Science.gov (United States)

    Hien, Nguyen Thi; Kim, Guinyun; Kim, Kwangsoo; Do, Nguyen Van; Khue, Pham Duc; Thanh, Kim Tien; Shin, Sung-Gyun; Cho, Moo-Hyun

    2018-06-01

    The thermal neutron capture cross-section (σ0) and resonance integral (I0) of the 108Pd(n,γ)109Pd reaction have been measured relative to that of the monitor reaction 197Au(n,γ)198Au. The measurements were carried out using the neutron activation with the cadmium ratio method. Both the samples and monitors were irradiated with and without cadmium cover of 0.5 mm thickness. The induced activities of the reaction products were measured with a well calibrated HPGe γ-ray detector. In order to improve the accuracy of the results, the necessary corrections for the counting losses were made. The thermal neutron capture cross-section and resonance integral of the 108Pd(n,γ)109Pd reaction were determined to be σ0,Pd = 8.68 ± 0.41 barn and I0,Pd = 245.6 ± 24.8 barn, respectively. The obtained results are compared with literature values and discussed.

  13. Neutron-induced cross sections of actinides via the surrogate-reaction method

    Directory of Open Access Journals (Sweden)

    Ducasse Q.

    2013-12-01

    Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method has to be investigated. In particular, the absence of a compound nucleus formation and the Jπ dependence of the decay probabilities may question the method. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutron-induced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. The first results are hereby presented.

  14. Measurement of 107Ag(α,γ)111In cross sections

    International Nuclear Information System (INIS)

    Baglin, Coral M.; Norman, Eric B.; Larimer, Ruth-Mary; Rech, Gregory A.

    2004-01-01

    Cross sections have been measured for the 107 Ag(α,γ) 111 In reaction at several α-particle energies between 7.8 MeV and 11.9 MeV. This reaction is of interest because it can provide a check on calculations of low-energy (α,γ) cross sections required for stellar nucleosynthesis predictions. Stacks of natural Ag foils of 1 (micro)m thickness and 99.97% purity were bombarded with 4 He + beams. Following irradiation, the yields of the 171-keV and 245-keV photons produced in the 2.805 day electron-capture decay of the 111 In product nucleus were measured off-line. The Ag foils were interleaved with 99.6% purity, 6 (micro)m thick natural Ti foils so that known cross sections for the 48 Ti(α,n) reaction could be used to check the accuracy of the beam current integration. For any given beam energy, beam energy degradation in the foils resulted in lower effective bombarding energies for successive foils in the stack, enabling measurements to be made for several energies per irradiation. The measured cross sections are compared with published statistical-model calculations

  15. Systematics of the (n, t) reaction cross sections at 14 MeV

    International Nuclear Information System (INIS)

    Yao Lishan

    1992-01-01

    The systematic behaviour of the (n, t) reaction cross sections have been studied for medium and heavy mass nuclei at 14 MeV. An analysis of the gross trend, the isotope and odd-even effects are given. Possible reaction mechanisms are also discussed. A set of the systematics parameters have been extracted on the basis of the analyzing and fitting of the available data. The (n, t) reaction cross sections of some nuclei have been predicted and a good agreement with the measured data has been obtained

  16. Cross section asymmetry of deuteron photodesintegration reaction with polarized gamma quanta

    International Nuclear Information System (INIS)

    Gorbenko, V.G.; Zhebrovskij, Yu.V.; Kolesnikov, L.Ya.; Rubashkin, A.L.; Sorokin, P.V.

    1982-01-01

    The parameters of the reaction cross section asymmetry are determined to investigate the γ+d → n+p reaction. The measurements are exercised on a beam of linearly polarized photons of a linear 2 GeV electron accelerator by means of two magnetic spectrometers in the Esub(γ)=80-600 MeV energy range for 75-105 deg angles of proton escape in scm. The flowsheet of an experimental facility is presented. Technique of the experiment execution is presented. The obtained values of the cross section asymmetry parameter are presented in the table form for the 75, 90, 105, 120, 135, 150 deg angles. Calculation of the differential cross sections is carried out in pulse approximation. Energy Dependence and angutar distribUtions of the cross section asymmetry parameter of the investigated reaction are presented graphically. The obtained results are compared with the present experimental and theoretical data at 80 and 300 MeV photon energy. The comparison has revealed that none of the calculation methods is more preferable as well as no simple conclusion can be made on the existence of dibarin resonances

  17. The Trojan Horse Method application on the 10B(p,α0)7Be reaction cross section measurements

    Science.gov (United States)

    Cvetinović, A.; Spitaleri, C.; Spartá, R.; Rapisarda, G. G.; Puglia, S. M.; La Cognata, M.; Cherubini, S.; Guardo, G. L.; Gulino, M.; Lamia, L.; Pizzone, R. G.; Romano, S.; Sergi, M. L.

    2018-01-01

    The 10B(p,α0)7Be reaction cross section has been measured in an wide energy range from 2.2 MeV down to 3 keV in a single experiment applying THM. Optimized experimental set-up ensured good energy resolution leading to a good separation of α0 and α1 contributions to the cross section coming from the 7Be ground and first excited state, respectively.

  18. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  19. Cross section measurements of the 10B(d,n0)11C reaction below 160 keV

    International Nuclear Information System (INIS)

    Stave, S.; Ahmed, M. W.; Blackston, M. A.; Crowell, A. S.; Henshaw, S. S.; Howell, C. R.; Kingsberry, P.; Perdue, B. A.; Weller, H. R.; Antolak, A. J.; Doyle, B. L.; Rossi, P.; Prior, R. M.; Spraker, M. C.

    2008-01-01

    New data were taken at the Triangle Universities Nuclear Laboratory to investigate the plausibility of using low energy deuterons and the 10 B(d,n) 11 C reaction as a portable source of 6.3 MeV neutrons. Analysis of the data at and below incident deuteron energies of 160 keV indicates an n 0 neutron cross section that is lower than previous estimates by at least three orders of magnitude. In separate runs, deuterons with two different energies (160 and 140 keV) were stopped in a 10 B target. The resulting n 0 neutrons of approximately 6.3 MeV were detected at angles between 0 deg. and 150 deg. The angle integrated yields were used to determine the astrophysical S factor for this reaction assuming a constant value for the S factor below 160 keV. The cross sections reported between 130 and 160 keV were calculated using the extracted value of the S factor. The measured n 0 cross section is several orders of magnitude smaller than previous results, thus eliminating 10 B(d,n) 11 C as a portable source of intense neutrons with low energy deuteron beams on the order of tens of microamps. In order to gain insight into the reaction dynamics at these low energies the cross section results have been compared with results from calculations using the distorted wave Born approximation (DWBA) and a detailed Hauser-Feshbach calculation performed by the authors. The angular distribution is consistent with the Hauser-Feshbach calculation suggesting a statistical compound nucleus reaction rather than a direct reaction

  20. Summary of activation cross section measurements at FNS

    International Nuclear Information System (INIS)

    Ikeda, Y.; Konno, C.; Kasugai, Y.; Kumar, A.

    1996-01-01

    Neutron activation cross sections around 14 MeV for seventeen reactions have been measured at the FNS facility in JAERI in order to provide experimental data meeting the requirement in the radioactive wastes disposal assessment in the D-T fusion reactor. This report summarizes contributing data measured in several phases of experiments to the IAEA-CRP on ''Activation Cross sections for the Generation of Long-Lived radionuclides of Importance in Fusion Reactor Technology''. (author). 18 refs, 1 tab

  1. Production cross sections of proton-induced reactions on yttrium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Sung-Chul; Song, Tae-Yung; Lee, Young-Ouk [Nuclear Data Center, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 41566 (Korea, Republic of)

    2017-05-01

    The production cross sections of residual radionuclides such as {sup 86,88,89g}Zr, {sup 86g,87m,87g,88}Y, {sup 83g,85g}Sr, and {sup 83,84g}Rb in the {sup 89}Y(p,x) reaction were measured using a stacked-foil activation and offline γ-ray spectrometric technique with proton energies of 57 MeV and 69 MeV at the 100 MeV proton linac in the Korea Multi-purpose Accelerator Complex (KOMAC), Gyeongju, Korea. The induced activities of the activated samples were measured using a high purity germanium (HPGe) detector, and the proton flux was determined using the {sup nat}Cu(p,x){sup 62}Zn reaction. The measured data was compared with other experimental data and the data from the TENLD-2015 library based on the TALYS code. The present results are generally lower than those in literature, but are found to be in agreement with the shape of the excitation functions. The integral yields for the thick target using the measured cross sections are given.

  2. Measurement of 6Li(n,α)3H reaction cross section

    International Nuclear Information System (INIS)

    Renner, C.

    1979-01-01

    The 6 Li(n,α) 3 H reaction cross section was measured at 12 discrete neutron energies between 80 KeV and 470 KeV by using the Oak Ridge Linear Acelerator (ORELA) as a pulsed neutron source. The neutron beam was filtered through 20 cm or 30 cm of Armco iron which produces several monoenergetic energies groups (iron windows) between 20 KeV and 1000 KeV about 2 KeV wide. The (n,α) events were detected by a 1 mm thick Li-glass scintillator and the neutron flux was measured with a NE110 plastic scintillator 6,6 cm thick and 10 cm in diameter. Multiple scattering corrections in the Li-glass and the NE110 scintillator efficiency were determined theoretically by using Monte Carlo technique. The 6 Li content in the Li-glasses was determined by transmission measurements with low energy neutrons. A theoretical fit was applied to the results by the R-matrix theory. (Author) [pt

  3. Measurement of (n,xn) reaction cross-sections using prompt {gamma} spectroscopy at neutron beams with high instantaneous flux; Mesure de sections efficaces de reaction (n,xn) par spectroscopie {gamma} prompte aupres d'un faisceau a tres haut flux instantane

    Energy Technology Data Exchange (ETDEWEB)

    Lukic, S

    2004-10-15

    The work presented in this thesis is situated in the context of the GEDEON program of neutron cross-section measurements. This program is motivated by the perspectives recently opened by projects of nuclear waste treatment and energy production. There is an obvious lack of experimental data on (n,xn) reactions in the databases, especially in the case of very radioactive isotopes. An important technique to measure cross-sections of these reactions is the prompt {gamma}-ray spectroscopy at white pulsed neutron beams with very high instantaneous flux. In this work, inelastic scattering and (n,xn) reactions cross-section measurements were performed on a lead sample from threshold to 20 MeV by prompt {gamma}-ray spectroscopy at the white neutron beam generated by GELINA facility in Geel, Belgium. Digital methods were developed to treat HPGe CLOVER detector signals and separate {gamma}-rays induced by the fastest neutrons from those belonging to the flash. Partial cross-sections for the production of several transitions in natural lead were measured and analyzed using theoretical calculations in order to separate the contributions of different reactions leading to the same residual isotope. Total cross-sections of the reactions in question were estimated. The results were compared to the TALYSS code theoretical calculations, as well as to other experimental results. This experiment has served to validate the method and it opens the way to measure (n,xn) reactions cross-sections with high instantaneous neutron flux on actinides, particularly the U{sup 233}(n,2n) reaction which is important for the thorium cycle. (author)

  4. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  5. First results of total and partial cross-section measurements of the 107Ag(p,γ)108Cd reaction

    Science.gov (United States)

    Heim, Felix; Mayer, Jan; Scholz, Philipp; Spieker, Mark; Zilges, Andreas

    2018-01-01

    The γ process is assumed to play an important role in the nucleosynthesis of the majority of the p nuclei. Since the network of the γ process includes so many different reactions and - mainly unstable - nuclei, cross-section values are predominantly calculated in the scope of the Hauser-Feshbach statistical model. The values heavily depend on the nuclear-physics input parameters. The results of total and partial cross-section measurements are used to improve the accuracy of the theoretical calculations. In order to extend the experimental database, the 107Ag(p,γ)108Cd reaction was studied via the in-beam method at the high-efficiency HPGe γ-ray spectrometer HORUS at the University of Cologne. Proton beams with energies between 3.5 MeV and 5.0 MeV were provided by the 10 MV FN-Tandem accelerator leading to the determination of four new total cross-section values. After slight adjustments of the nuclear level density and γ-ray strength function an excellent agreement between theoretical calculations and experimentally deduced values for both total and partial cross sections has been obtained.

  6. Measurements of the Fe-54 (n,p) Mn-54 Reaction Cross Section in the Neutron Energy Range 2.3-3.8 MeV

    International Nuclear Information System (INIS)

    Lauber, A.; Malmskog, S.

    1964-10-01

    We have measured the 54 Fe (n, p) 54 Mn reaction cross section using a surface barrier detector to record the number of protons released in the reaction. The neutron flux was determined by means of a hydrogenous radiator, detecting the scattered protons with the solid state detector, and calculating the number of impinging neutrons from the well known n-p scattering cross section. The 54 Fe (n, p) 54 Mn reaction cross section is found to increase from 25 mb at 2.3 MeV to 208 mb at 3.5 MeV

  7. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    International Nuclear Information System (INIS)

    Ray, M.; Mukherjee, A.; Pradhan, M. K.; Kshetri, Ritesh; Sarkar, M. Saha; Dasmahapatra, B.; Palit, R.; Majumdar, I.; Joshi, P. K.; Jain, H. C.

    2008-01-01

    Measurement of fusion cross sections for the 6,7 Li + 24 Mg reactions by the characteristic γ-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these γ-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The relatively large difference between total cross sections and measured fusion cross sections at higher energies is consistent with the fact that other channels, in particular breakup, open up with an increase of bombarding energy. The breakup channel, however, appears not to have any influence on fusion cross sections. The critical angular momenta (l cr ) deduced from the fusion cross sections are found to have an energy dependence similar to other Li-induced reactions

  8. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52MeV.

    Science.gov (United States)

    Ditrói, F; Takács, S; Haba, H; Komori, Y; Aikawa, M

    2016-12-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope 117m Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets 117m Sn, 113 Sn, 110 Sn, 117m,g In, 116m In, 115m In, 114m In, 113m In, 111 In, 110m,g In, 109m In, 108m,g In, 115g Cd and 111m Cd were identified and their excitation functions were derived. The results were compared with the data of the previous measurements from the literature and with the results of the theoretical nuclear reaction model code calculations TALYS 1.8 (TENDL-2015) and EMPIRE 3.2 (Malta). From the cross section curves thick target yields were calculated and compared with the available literature data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Nuclear reactions cross section measurement using Z-pinch technology

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, T; Bystritskij, V; Mesyats, G A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics; and others

    1997-12-31

    Direct experimental estimate of the upper limit of the d + d {yields} {sup 3}He + n cross-section at deuteron energies below the keV region was obtained for the first time. The experiment was performed at the Pulsed Ion Beam Accelerator of the High-Current Electronics Institute in Tomsk, using high intensity, radially converging deuteron beams, generated during implosion of liner plasma. A two-jet liner made of 17% D{sub 2} + 83% N{sub 2} gas was used, with the inner jet serving as the target. The dd-fusion neutrons were registered by time-of-flight scintillator spectrometers and BF{sub 3} detectors of thermal neutrons placed in a polyethylene moderator. The upper limit obtained for the d + d {yields} {sup 3}He + n cross-section for a deuteron energy of 440 eV is {sigma} < 2 x 10{sup -34} cm{sup 2} at the 90% confidence level. The result demonstrates that the liner implosion technique can be used in the investigation of nuclear reactions between light nuclei at infra low energies, previously not accessible in experiments with classical beam accelerators. (author). 7 refs.

  10. Cross sections for the γp→K*+Λ and γp→K*+Σ0 reactions measured at CLAS

    Science.gov (United States)

    Tang, W.; Hicks, K.; Keller, D.; Kim, S. H.; Kim, H. C.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mokeev, V.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rimal, D.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Torayev, B.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-06-01

    The first high-statistics cross sections for the reactions γp→K*+Λ and γp→K*+Σ0 were measured using the CLAS detector at photon energies between threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. Differential cross sections are presented over the full range of the center-of-mass angles, and then fitted to Legendre polynomials to extract the total cross section. Results for the K*+Λ final state are compared with two different calculations in an isobar and a Regge model, respectively. Theoretical calculations significantly underestimate the K*+Λ total cross sections between 2.1 and 2.6 GeV, but are in better agreement with present data at higher photon energies.

  11. Measurement of thermal neutron capture cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong

    2001-01-01

    The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector

  12. Neutron capture cross section measurements: case of lutetium isotopes

    International Nuclear Information System (INIS)

    Roig, O.; Meot, V.; Belier, G.

    2011-01-01

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu 173 , Lu 175 , Lu 176 and Lu 177m , the measurement of the probability of gamma emission in the substitution reaction Yb 174 (He 3 ,pγ)Lu 176 . The measurement of neutron cross sections on Lu 177m have permitted to highlight the process of super-elastic scattering

  13. Measurements of the Fe-54 (n,p) Mn-54 Reaction Cross Section in the Neutron Energy Range 2.3-3.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Malmskog, S

    1964-10-15

    We have measured the {sup 54}Fe (n, p) {sup 54}Mn reaction cross section using a surface barrier detector to record the number of protons released in the reaction. The neutron flux was determined by means of a hydrogenous radiator, detecting the scattered protons with the solid state detector, and calculating the number of impinging neutrons from the well known n-p scattering cross section. The {sup 54}Fe (n, p) {sup 54}Mn reaction cross section is found to increase from 25 mb at 2.3 MeV to 208 mb at 3.5 MeV.

  14. Average cross section measurements in U-235 fission neutron spectrum for some threshold reactions

    International Nuclear Information System (INIS)

    Maidana, N.L.

    1993-01-01

    The average cross section in the 235 U fission spectrum has been measured by the activation technique, for the following thresholds reactions: 115 In(n,n') 115m In, 232 Th(n,f) P.F., 46 , 47 , 48 Ti(n,p) 46,47 , 48 Sc, 55 Mn(n,2 n) 54 Mn, 51 V(n,α) 48 Sc, 90 Zr(n,2 n) 89 Zr, 93 Nb(n,2 n) 92m Nb, 58 Ni(n,2 n) 57 Ni, 24 Mg(n,p) 24 Na, 56 Fe(n,p) 56 Mn, 59 Co(n,α) 56 Mn and 63 Cu(n,α) 60 Co. The activation foils were irradiated close (∼ 4 mm) to the core of the IEA-R1 research reactor in the IPEN-CNEN/SP. The reactor was operated at 2 MW yielding a fast neutron flux around 5 x 10 12 n.cm -2 . s -1 . The neutron flux density was monitored by activation reactions with well known averaged cross sections and with effective thresholds above 1 MeV. The foil activities were measured in a calibrated HPGe spectrometer. The neutron spectrum has been calculated using the SAIPS unfolding system applied to the activation data. A detailed error analysis was performed using the covariance matrix methodology. The results were compared with those from other authors. (author)

  15. Cross Section Measurements of the 76Ge (n ,n' γ) Reaction

    Science.gov (United States)

    Crider, B. P.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2013-10-01

    Neutrinoless double-beta decay (0 νββ) is a topic of great current interest and, as such, is the focus of several experiments and international collaborations. Two of these experiments, Majorana and GERDA, are seeking evidence of 0 νββ in the decay of 76Ge, where the signal would appear as a sharp peak in the energy spectrum at the Q-value of the reaction plus a small amount of recoil energy, or 2039 keV. Due to the high sensitivity of such a measurement, knowledge of background lines is critical. A study of 76Ga β- decay into 76Ge revealed a 2040.70(25)-keV transition from the 3951.70(14)-keV level, which, if populated, could potentially be a background line of concern. In addition to β- decay from 76Ga, a potential population mechanism could be cosmic-ray-induced inelastic neutron scattering. Measurements of the neutron-induced cross section of the 3951.70-keV level have been performed utilizing the 76 Ge (n ,n' γ) reaction at the University of Kentucky at neutron energies ranging from 4.3 to 4.9 MeV. This material is based upon work is supported by the U.S. National Science Foundation under grant no. PHY-0956310.

  16. Investigation of the 10B(n,t) reaction cross-section in the subthreshold energy region

    International Nuclear Information System (INIS)

    Kornilov, N.V.; Balitskij, A.V.; Baryba, V.Ya.; Druzhnin, V.I.; Kagalenko, A.B.; Kharitonov, A.K.

    1991-01-01

    The 10 B(n,t) reaction cross-section has been measured at incident neutron energies of 0.025 eV, 420 KeV and 5 MeV. A detailed description of the experimental technique and the Monte Carlo simulation is given. It was confirmed that the cross-section of this reaction in the subthreshold region is non-zero. The recommended value of the 10 B(n,t) reaction cross-section at thermal is 8.5±2.0 mb. (author). 16 refs, 3 figs

  17. Measurement of 76Se and 78Se (γ, n) cross sections

    International Nuclear Information System (INIS)

    Kitatani, Fumito; Harada, Hideo; Goko, Shinji; Utsunomiya, Hiroaki; Akimune, Hidetoshi; Toyokawa, Hiroyuki; Yamada, Kawakatsu

    2011-01-01

    The (γ, n) cross sections of Se isotopes ( 76 Se, 78 Se) were measured to supply fundamental data for estimating the inverse reaction cross section, i.e., the 79 Se(n, γ) 80 Se cross section. The enriched samples and a reference 197 Au sample were irradiated with laser-Compton scattering (LCS) γ-rays. The excitation function of each (γ, n) cross section was determined for the energy range from each near neutron separation energy to the threshold energy of (γ, 2n) reaction. The energy point corresponding to each cross section was deduced using the accurately determined energy distribution of LCS γ-rays. Systematic (γ, n) cross sections for Se isotopes including 80 Se were compared with those calculated by using a statistical model calculation code TALYS. (author)

  18. Total reaction cross section and foward glory for 12C + 16O

    International Nuclear Information System (INIS)

    Villari, A.C.C.; Lepine-Szily, A.; Lichtenthaler Filho, R.; Portezan Filho, O.; Obuti, M.M.

    1988-12-01

    A model-independent method is proposed for the determination of the total reaction cross section from elastic angular distributions. This method based on the generalized optical theorem, was applied to 16 complete elastic angular distributions of the system 12 C + 16 O at energies between E CM =8.55 MeV and E CM = 26.74 MeV. Some of the angular distributions were measured at the Sao Paulo Pelletron Laboratory. Angular distributions measured by the Erlangen and Saclay groups were also used. The reaction cross section is compared with fusion measurements and with σ R obtained by indirect methods. The existence and conditions for the observation of the nuclear forward glory scattering are investigated. (author) [pt

  19. 26Al/sup g,m/ production cross sections from the 23Na(α,n)26Al reaction

    International Nuclear Information System (INIS)

    Norman, E.B.; Chupp, T.E.; Lesko, K.T.; Schwalbach, P.; Grant, P.J.

    1981-01-01

    Cross sections have been determined for the production of 26 Al/sup g,m/ from the 23 Na(α,n) reaction. Total 26 Al production cross sections were obtained from measurements of the thick-target neutron yield. 26 Al/sup m/ cross sections were measured using an activation technique. 26 Al/sup g/ cross sections were deduced by subtracting the 26 Al/sup m/ cross sections from the total (α,n) cross sections. The principle of detailed balance has been applied to the low energy data to obtain cross sections for the astrophysically interesting 26 Al/sup g/(n,α 0 ) 23 Na reaction. These results are compared with the results of Hauser-Feshbach calculations

  20. Theoretical and experimental cross sections for neutron reactions on 64Zinc

    International Nuclear Information System (INIS)

    Rutherford, D.A.

    1987-01-01

    Accurate measurements of the 64 Zn (n,2n) 64 Cu and 64 Zn (n,p) 63 Zn cross sections at 14.8 MeV have been made using a Texas Nuclear Neutron Generator and the activation technique. A NaI(T1) spectrometer (using two 6'' x 6'' NaI detectors/crystals) was used to measure the gamma radiation emitted in coincidence from the positron-emitting decay products. The measurements were made relative to 65 Cu (n,2n) /64/Cu and 63 Cu (n,2n) 62 Cu cross sections, which have similar half-lives, radiation emission, and were previously measured to high accuracy (2 percent). The value obtained for the (n,2n) measurement was 199 /+-/ 6 millibarns, and a value of 176 /+-/ 4.5 millibarns was obtained for the (n,p) measurement. In concert, a theoretical analysis of neutron induced reactions on /64/Zn was performed at Los Alamos National Laboratory using the Hauser-Feshbach statistical theory in the GNASH code over an energy range of 100 keV to 20 MeV. Calculations included width fluctuation corrections, direct reaction contributions, and preequilibrium corrections above 6 MeV. Neutron optical model potentials were determined for zinc. The theoretical values agree with the new 14.8 MeV measurements approximately within experimental error, with calculations of 201 millibarns for the (n,2n) cross section and 170 millibarns for the (n,p) cross section. Results from the analysis will be made available in National Evaluated Nuclear Data Format (ENDF/B) for fusion energy applications. 50 refs., 34 figs., 10 tabs

  1. Cross section of α-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical γ process

    Directory of Open Access Journals (Sweden)

    T. Szücs

    2018-01-01

    Full Text Available The stellar reaction rates of radiative α-capture reactions on heavy isotopes are of crucial importance for the γ process network calculations. These rates are usually derived from statistical model calculations, which need to be validated, but the experimental database is very scarce. This paper presents the results of α-induced reaction cross section measurements on iridium isotopes carried out at first close to the astrophysically relevant energy region. Thick target yields of 191Ir(α,γ195Au, 191Ir(α,n194Au, 193Ir(α,n196mAu, 193Ir(α,n196Au reactions have been measured with the activation technique between Eα=13.4 MeV and 17 MeV. For the first time the thick target yield was determined with X-ray counting. This led to a previously unprecedented sensitivity. From the measured thick target yields, reaction cross sections are derived and compared with statistical model calculations. The recently suggested energy-dependent modification of the α+nucleus optical potential gives a good description of the experimental data.

  2. Theoretical calculations of the reaction cross-sections for proton-induced reactions on natural copper using ALICE-IPPE code

    International Nuclear Information System (INIS)

    Alharbi, A.A.; Azzam, A.

    2012-01-01

    A theoretical study of the nuclear-reaction cross sections for proton-induced reactions on 63 Cu and 65 Cu was performed in the proton energy range from threshold values up to 50 MeV. The produced nuclei were different isotopes of Zn, Cu, Ni, Co and Mn, some of which have important applications. The reaction cross-section calculations were performed using the ALICE-IPPE code, which depends on the pre-equilibrium compound nucleus model. This code is suitable for the studied energy and isotopic mass ranges. Approximately 14 excitation functions for the different reactions have been constructed from the calculated cross-section values. The excitation function curves for the proton reactions with natural copper targets have been constructed from those for enriched targets using the natural abundance of the copper isotopes. Comparisons between the calculated excitation functions with those previously experimentally measured are given whenever the experimental values were available. Some statistical parameters were introduced to control the quality of the fitting between both the experimental and the theoretical calculated cross-section values. - Highlights: ► We performed reaction cross section calculations using ALICE-IPPE code. ► We constructed 14 excitation functions for nat Cu(p,xn)Zn,Cu,Ni,Co,Mn reactions. ► The available experimental data were fitted to the performed ALICE-IPPE calculations. ► Statistical parameters were introduced to control the quality of the fitting. ► The code failed to fit the experimental data for reactions with large nucleon emissions.

  3. Measurement of thermal neutron cross section for {sup 241}Am(n,f) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Miyoshi, Mitsuharu; Kimura, Itsuro; Kanno, Ikuo; Shinohara, Nobuo

    1997-03-01

    Making use of a standard neutron spectrum field with a pure Maxwellian distribution, the thermal neutron cross section for the {sup 241}Am(n,f) reaction has been measured relative to the reference value of 586.2b for the {sup 235U}(n,f) reaction. For the present measurement, electrodeposited layers of {sup 241}Am and {sup 235}U have been employed as back-to-back type double fission chambers. The present result at neutron energy of 0.0253 eV is 3.15 {+-} 0.097b. The ENDF/B-VI data is in good agreement with the present value, while the JENDL-3.2 data is lower by 4.2%. The evaluated data in JEF-2.2 and by Mughabghab are higher by 0.9% and 1.6%, respectively than the present result. The ratios of the earlier experimental data to the present value are distributed between 0.89 and 1.02. (author)

  4. Activation cross section of 63Cu(n,α)60Co reaction

    International Nuclear Information System (INIS)

    Lu Hanlin; Zhao Wenrong; Yu Weixiang; Yuan Xialin

    1990-01-01

    The mechanical properties of copper during the irradiation with intensive neutron fluence rate are significant for the safe operation of D-T fusion power reactors. The cross sections measured by activation method show a large discrepancy from 36 to 54 mb in 14 MeV region. The cross sections of 69 Cu(n, α) 60 Co reaction were measured by activation method. Two irradiations were carried out at the Cockcroft-wallon and Van de Graaff accelerators of CIAE using T(d, n) 4 He reaction to produce neutrons. The activities of 24 Na and 60 Co γ-rays for monitor and sample foils were determined absolutely by a calibrated Ge(Li) detector system with an accuracy better than 1%. The present results are compared with the others

  5. Cross-Section Measurement of the 169Tm(n,3n)167Tm Reaction and Constraining the Branching Ratio of 167Tm

    Science.gov (United States)

    Champine, Brian; Gooden, Matthew; Thomas, Keenan; Krishichayan, F.; Norman, Eric; Scielzo, Nick; Tonchev, Anton; Tornow, Werner

    2015-10-01

    The cross section of the 169Tm(n,3n)167Tm reaction has been measured from 17.5 to 21.5 MeV using activation technique. This energy region was chosen to resolve the two different trends of the previous (n,3n) cross section measurements on 169Tm. In addition, the branching ratio of the 207.8 keV γ-ray line stemming from electron capture of 167Tm was measured to be 0.419(16). The result of these measurements provide more accurate diagnostic estimation of the so called reaction-in-flight neutrons produced via the internal confinement fusion plasma in deuterium-tritium capsules at the National Ignition Facility.

  6. The cross section measurements for the 51V(n, α)48Sc and 51V(n,p)51Ti reactions

    International Nuclear Information System (INIS)

    Hu Shangbin; Kong Xiangzhong; Yang Jingkang

    1999-01-01

    The cross sections for 51 V(n, α) 48 Sc and 51 V(n,p) 51 Ti have been measured by using the activation method relative to the cross sections of 27 Al(n, α) 24 Na in the neutron energy range 13.4 --14.8 MeV. The results are compared with the published data. The neutron energies were determined by the method of cross section ratios for the reactions 90 Zr(n.2n) 89 Zr by 93 Nb(n,2n) 92m Nb

  7. Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV

    International Nuclear Information System (INIS)

    Ditroi, F.; Tarkanyi, F.; Takacs, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2011-01-01

    Highlights: → Excitation function measurement of deuteron induced reactions on rhodium up to 40 MeV. → Model code calculations with EMPIRE, ALICE and TALYS. → Integral production yield calculation. → Thin layer activation (TLA) with the produced isotopes. - Abstract: In the frame of a systematic study of the activation cross-sections of deuteron induced nuclear reactions, excitation functions of the 103 Rh(d,x) 100,101,103 Pd, 100g,101m,101g,102m,102g Rh and 103g Ru reactions were determined up to 40 MeV. Cross-sections were measured with the activation method using a stacked foil irradiation technique. Excitation functions of the contributing reactions were calculated using the ALICE-IPPE, EMPIRE-II and TALYS codes. From the measured cross-section data integral production yields were calculated and compared with experimental integral yield data reported in the literature. From the measured cross-sections and previous data, activation curves were deduced to support thin layer activation (TLA) on rhodium and Rh containing alloys.

  8. Partial gamma-ray cross section measurements in 109Ag(n, x n y p gamma) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Fotiadis, Nikolaos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Ronald Owen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carroll, James [US Army Research Laboratory, Adelphi, MD (United States)

    2015-06-02

    We report on absolute partial cross sections for production of discrete γ-rays using 109Ag(n, xnypγ) reactions with x ≤ 7 and y ≤ 1 in a total of 12 reaction channels. The data were taken using the GEANIE spectrometer comprised of 20 high-purity Ge detectors with 20 BGO escape-suppression shields. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center’s (LANSCE) WNR facility provided neutrons in the energy range from 0.2 to 300 MeV. The time-of- flight technique was used to determine the incident neutron energies. Partial γ-ray cross sections have been measured for a total of 109 transitions and for neutron energies 0.8 MeV< En<300 MeV. An estimate of the population of isomers in the (n, n'), (n, 2n) and (n, 3n) channels was made.

  9. Differential cross section measurements for the 6Li(n,t)alpha reaction in the few MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, Matthew J [Los Alamos National Laboratory; Taddeucci, Terence N [Los Alamos National Laboratory; Hale, Gerald M [Los Alamos National Laboratory; Haight, Robert C [Los Alamos National Laboratory; O' Donnell, Johhn M [Los Alamos National Laboratory

    2008-01-01

    New measured differential cross sections of tritons and alpha particles following the {sup 6}Li(n,t){alpha} reaction are reported for incident neutron energies between 0.2 and approximately 20 MeV. The neutrons were produced by spallation at the WNR facility at the Los Alamos Neutron Science CEnter (LANSCE), with the incident neutron energy determined by the time-of-flight method. Four E-{Delta}E telescopes were used at eight laboratory angles. These data have been incorporated into a prior R-matrix fit for the compound {sup 7}Li system, and result in an (n,t) reaction cross section that is 4% to 10% higher than previous evaluations in the 1-3 MeV incident neutron energy region.

  10. Differential cross sections measurement of {sup 31}P(p,pγ{sub 1}){sup 31}P reaction for PIGE applications

    Energy Technology Data Exchange (ETDEWEB)

    Jokar, A., E-mail: arezajokar@gmail.com; Kakuee, O.; Lamehi-Rachti, M.

    2016-09-15

    Differential cross sections of proton induced gamma-ray emission from the {sup 31}P(p,pγ{sub 1}){sup 31}P (E{sub γ} = 1266 keV) nuclear reaction were measured in the proton energy range of 1886–3007 keV at the laboratory angle of 90°. For these measurements a thin Zn{sub 3}P{sub 2} target evaporated onto a self-supporting C film was used. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to the beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. Simultaneous collection of gamma-rays and RBS spectra is a great advantage of this approach which makes differential cross-section measurements independent on the collected beam charge. The obtained cross-sections were compared with the previously only measured data in the literature. The validity of the measured differential cross sections was verified through a thick target benchmarking experiment. The overall systematic uncertainty of cross section values was estimated to be better than ±9%.

  11. Differential cross section measurement of the {sup 12}C(e,e{sup '}pp){sup 10}Be{sub g.s.} reaction

    Energy Technology Data Exchange (ETDEWEB)

    Makek, M.; Bosnar, D.; Friscic, I. [University of Zagreb, Department of Physics, Faculty of Science, Zagreb (Croatia); Achenbach, P.; Ayerbe Gayoso, C.; Bernauer, J.C.; Boehm, R.; Denig, A.; Distler, M.O.; Merkel, H.; Mueller, U.; Nungesser, L.; Pochodzalla, J.; Sanches Majos, S.; Schlimme, B.S.; Schwamb, M.; Walcher, T. [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik, Mainz (Germany); Barbieri, C. [University of Surrey, Department of Physics, Guildford (United Kingdom); Giusti, C. [Universita degli Studi di Pavia, Dipartimento di Fisica, Pavia (Italy); INFN, Sezione di Pavia (Italy); Collaboration: A1 Collaboration

    2016-09-15

    The differential cross section was measured for the {sup 12}C(e,e{sup '}pp){sup 10}Be{sub g.s.} reaction at energy and momentum transfers of 163 MeV and 198 MeV/c, respectively. The measurement was performed at the Mainz Microtron by using two high-resolution magnetic spectrometers of the A1 Collaboration and a newly developed silicon detector telescope. The overall resolution of the detector system was sufficient to distinguish the ground state from the first excited state in {sup 10}Be. We chose a super-parallel geometry that minimizes the effect of two-body currents and emphasizes the effect of nucleon-nucleon correlations. The obtained differential cross section is compared to the theoretical results of the Pavia reaction code in which different processes leading to two-nucleon knockout are accounted for microscopically. The comparison shows a strong sensitivity to nuclear-structure input and the measured cross section is seen to be dominated by the interplay between long- and short-range nucleon-nucleon correlations. Microscopic calculations based on the ab initio self-consistent Green's function method give a reasonable description of the experimental cross section. (orig.)

  12. Measurement of cross sections for the 63Cu(α,γ)67Ga reaction from 5.9-8.7 MeV

    International Nuclear Information System (INIS)

    Basunia, M. Shamsuzzoha; Norman, Eric B.; Shugart, Howard A.; Smith, Alan R.; Dolinski, Michelle J.; Quiter, Brian J.

    2004-01-01

    We have measured cross sections for the 63Cu(alpha,gamma)67Ga reaction in the 5.9-8.7 MeV energy range using an activation technique. Natural Cu foils were bombarded with alpha beams from the 88 Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Activated foils were counted using gamma spectrometry system at LBNL's Low Background Facility. The 63Cu(alpha,gamma)67Ga cross-sections were determined and compared with the latest NON-SMOKER theoretical values. Experimental cross sections were found to be in agreement with theoretical values

  13. Angular distribution and cross section measurements of 64Zn(n,α)61Ni reaction for neutron energy 5 MeV

    International Nuclear Information System (INIS)

    Chen Yingtang; Chen Zemin; Qi Huiquan; Li Mingtao

    1995-01-01

    A twin gridded ionization chamber with dual parameter data acquisition system is used to study neutron induced charged particle emission reaction. The angular distribution and cross section of α-particles from the 64 Zn(n,α) 61 Ni reaction are measured at neutron energy 5 MeV

  14. 180Ta/sup g,m/ production cross sections form the 180Hf(p,n) reaction

    International Nuclear Information System (INIS)

    Norman, E.B.; Renner, T.R.; Grant, P.J.

    1981-01-01

    Cross sections have been determined for the production of the J/sup π/ = 1 + 180 Ta/sup g/ and the J/sup π/= 9 - 180 Ta/sup m/ from the 180 Hf(p,n) reaction. The 180 Ta/sup g/ cross sections were determined from measurements of γ-rays emitted following the electron-capture and β-decay of this 8.1-hour state. Total 180 Ta production cross sections were determined from measurements of the thick-target (p,n) yield. 180 Ta/sup m/ cross sections were calculated by subtracting the 180 Ta/sup g/ cross sections from the total (p,n) cross sections. These measurements are compared with the results of a statistical-model evaporation calculation

  15. Measurement of D(d,p)T Reaction Cross Sections in Sm Metal in Low Energy Region (10(≤) Ed(≤)20 keV)

    Institute of Scientific and Technical Information of China (English)

    WANG Tie-Shan; YANG Zhen; H. Yunemura; A. Nakagawa; LV Hui-Yi; CHEN Jian-Yong; LIU Sheng-Jin; J. Kasagi

    2007-01-01

    To study the screening effect of nuclear reactions in metallic environments, the thick target yields, the cross sections and the experimental S(E) factors of the D{d,p)T reaction have been measured on deuterons implanted in Sm metal at 133.2 K for beam energies ranging from 10 to 20keV. The thick target yields of protons emitted in the D(d,p)T reaction are measured and compared with those data extrapolated from cross sections and stopping power data at higher energies. The screening potential in Sm metal at 133.2K is deduced to be 520±56eV. As compared with the value achieved in the gas target, the calculated screening potential values are much larger. This screening potential cannot be simply interpreted only by the electron screening. Energy dependences of the cross section cr(E) and the experimental S(E) factor for D(d,p)T reaction in Sm metal at 133.2K are obtained, respectively.

  16. Measurement of fission cross-section for the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chang-Lin; Fang, Kai-Hong [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lanzhou University, Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou, Gansu Province (China); Liu, Shuang-Tong; Lv, Tao; Wang, Qiang; Zhang, Zheng-Wei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lai, Cai-Feng [Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan Province (China)

    2016-11-15

    The fission cross-section of the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV was measured precisely with the neutron activation and off-line gamma-ray spectrometric technique. Neutron fluence was monitored on-line using the accompanying α-particles from the {sup 3}H({sup 2}H,n){sup 4}He reaction, whereas the neutron energies were measured by the method of cross-section ratios of {sup 90}Zr(n,2n){sup 89}Zr to {sup 93}Nb(n,2n){sup 92m}Nb reactions. The experimentally determined {sup 232}Th(n,f){sup 141}Ba reaction cross-sections were 12.2 ± 0.4 mb at E{sub n} = 14.1 ± 0.3 MeV, 13.0 ± 0.5 mb at E{sub n} = 14.5 ± 0.3 MeV and 13.3 ± 0.5 mb at E{sub n} = 14.7 ± 0.3 MeV, respectively. (orig.)

  17. Cross-sections of 45Sc(n,2n)44m,gSc reaction from the reaction threshold to 20 MeV

    International Nuclear Information System (INIS)

    Luo, J.; Peking Univ., Beijing; Liu, R.; Jiang, L.; Liu, Z.; Sun, G.; Ge, S.

    2013-01-01

    Cross sections of 45 Sc(n,2n) 44m,g Sc reactions and their isomeric cross section ratios σ m /σ g have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the 3 H(d, n) 4 He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  18. Measurement of the helicity-dependent total cross-section for the γn→ p π-π0 reaction

    International Nuclear Information System (INIS)

    Ahrens, J.; Arends, H.J.; Beck, R.; Heid, E.; Jahn, O.; Lang, M.; Martinez-Fabregate, M.; Tamas, G.; Thomas, A.; Altieri, S.; Panzeri, A.; Pinelli, T.; Annand, J.R.M.; McGeorge, J.C.; Protopopescu, D.; Rosner, G.; Blackston, M.A.; Weller, H.R.; Bradtke, C.; Dutz, H.; Klein, F.; Rohlof, C.; Braghieri, A.; Pedroni, P.; Hose, N. d'; Fix, A.; Kondratiev, R.; Lisin, V.; Meyer, W.; Reicherz, G.; Rostomyan, T.; Ryckbosch, D.

    2011-01-01

    The helicity dependence of the total cross-section for the γn→pπ - π 0 reaction has been measured for the first time at incident photon energies from 450 to 800MeV. The measurement was performed with the large-acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. Both the measured unpolarized and the helicity-dependent observables are not well described by the existing theoretical models. (orig.)

  19. Measurement of {sup 27}Al(γ,2pn){sup 24}Na Reaction Cross-sections with 55 -, 60 -, 65 - MeV Bremsstrahlung Employing MCNPX Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y.; Cho, M. H. [POSTECH, Pohang (Korea, Republic of); Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); KIm, G. N.; Kim, K. [Kyungpook National Univ., Daegu (Korea, Republic of); Lee, M. W.; Kang, Y. R. [Dongnam Inst. Of Radiological and Medical Science, Busan (Korea, Republic of)

    2014-05-15

    Aluminum is used for monitoring the photon flux. The photon flux during the activation can be measured by substituting the {sup 27}Al(γ,2pn){sup 24}Na reaction cross-section induced by bremsstrahlung to reactivity equation. Therefore, if this cross-section is more accurate, gamma-ray flux can be measure more accurately. In this work, the {sup 27}Al(γ,2pn){sup 24}Na reaction cross-sections induced by 55 - 65 MeV bremsstrahlung were measured by activation technique at the Pohang Neutron Facility (PNF) which has produced the nuclear data using Time-Of-Flight method and activation technique. In order to get the photon flux, MCNPX was used. These measurement values were compared with the data of Meyer et al (1968)

  20. Vibrational state-resolved differential cross sections for the D + H2 → DH + H reaction

    International Nuclear Information System (INIS)

    Continetti, R.E.

    1989-11-01

    In this thesis, crossed-molecular-beams studies of the reaction D + H 2 → DH + H at collision energies of 0.53 and 1.01 eV are reported. Chapter 1 provides a survey of important experimental and theoretical studies on the dynamics of the hydrogen exchange reaction. Chapter 2 discusses the development of the excimer-laser photolysis D atom beam source that was used in these studies and preliminary experiments on the D + H 2 reaction. In Chapter 3, the differential cross section measurements are presented and compared to recent theoretical predictions. The measured differential cross sections for rotationally excited DH products showed significant deviations from recent quantum scattering calculations, in the first detailed comparison of experimental and theoretical differential cross sections. These results indicate that further work on the H 3 potential energy surface, particularly the bending potential, is in order

  1. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Morcelle, V.

    2010-06-01

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range 6 Li- 238 U, and 158 projectile nuclei from 2 H up to 84 Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  2. A CVD diamond detector for (n,α) cross-section measurements

    International Nuclear Information System (INIS)

    Weiss, C.

    2014-01-01

    A novel detector based on the chemical vapor deposition (CVD) diamond technology has been developed in the framework of this PhD, for the experimental determination of (n,α) cross-sections at the neutron time-of-flight facility n⎽TOF at CERN. The 59 Ni(n,α) 56 Fe cross-section, which is relevant for astrophysical questions as well as for risk-assessment studies in nuclear technology, has been measured in order to validate the applicability of the detector for such experiments. The thesis is divided in four parts. In the introductory part the motivation for measuring (n,α) cross-sections, the experimental challenges for such measurements and the reasons for choosing the CVD diamond technology for the detector are given. This is followed by the presentation of the n⎽TOF facility, an introduction to neutron-induced nuclear reactions and a brief summary of the interaction of particles with matter. The CVD diamond technology and the relevant matters related to electronics are given as well in this first part of the thesis. The second part is dedicated to the design and production of the Diamond Mosaic-Detector (DM-D) and its characterization. The 59 Ni(n,α) 56 Fe cross-section measurement at n⎽TOF and the data analysis are discussed in detail in the third part of the thesis, before the summary of the thesis and an outlook to possible future developments and applications conclude the thesis in the forth part. In this work, the Diamond Mosaic-Detector, which consist of eight single-crystal (sCVD) diamond sensors and one 'Diamond on Iridium' (DOI) sensor has proven to be well suited for (n,α) cross-section measurements for 1 MeV < E α < 22 MeV. The upper limit is given by the thickness of the sensors, d = 150 μm, while the lower limit is dictated by background induced by neutron capture reactions in in-beam materials. The cross-section measurement was focussed on the resonance integral of 59 Ni(n,α) 56 Fe at E n = 203 eV, with the aim of clarifying

  3. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N. [CEA Bruyeres-le-Chatel (DPTA/SPN), 91 (France). Dept. de Physique Theorique et Appliquee; Dore, D. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DAPNIA/SPhN), 91- Gif sur Yvette (France)

    2008-07-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C{sub 6}D{sub 6} detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4{pi} neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  4. Measurement of the D(n,2n)p reaction cross section up to 30 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.; Arnal, N.

    2008-01-01

    This article presents a running experimental program to measure the neutron-induced deuteron break-up reaction between 5 and 10 MeV, and between 20 and 30 MeV. The measurements are performed with a C 6 D 6 detector as deuteron target placed in a beam line of the Tandem 7 MV accelerator in Cea facilities, dedicated to the use of a 4π neutron detector which allows us to measure the two emitted neutrons. The total uncertainty is evaluated from 8.5 to 11 per cent. This experimental work is done in parallel with an ab-initio calculation of the reaction which is sum up in the text. Comparisons to the measured cross section are done together with CENDL2 and Endf/B-VII evaluations. (authors)

  5. Energy dependence of fusion evaporation-residue cross sections in the 28Si+12C reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Mateja, J.F.; Beck, C.; Atencio, S.E.; Dennis, L.C.; Frawley, A.D.; Henderson, D.J.; Janssens, R.V.F.; Kemper, K.W.; Kovar, D.G.; Maguire, C.F.; Padalino, S.J.; Prosser, F.W.; Stephans, G.S.F.; Tiede, M.A.; Wilkins, B.D.; Zingarelli, R.A.

    1993-01-01

    Fusion evaporation-residue cross sections for the 28 Si+ 12 C reaction have been measured in the energy range 18≤E c.m. ≤136 MeV using time-of-flight techniques. Velocity distributions of mass-identified reaction products were used to identify evaporation residues and to determine the complete-fusion cross sections at high energies. The data are in agreement with previously established systematics which indicate an entrance-channel mass-asymmetry dependence of the incomplete-fusion evaporation-residue process. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with earlier measurements and the predictions of existing models

  6. Cross sections for multistep direct reactions

    International Nuclear Information System (INIS)

    Demetriou, Paraskevi; Marcinkowski, Andrzej; Marianski, Bohdan

    2002-01-01

    Inelastic scattering and charge-exchange reactions have been analysed at energies ranging from 14 to 27 MeV using the modified multistep direct reaction theory (MSD) of Feshbach, Kerman and Koonin. The modified theory considers the non-DWBA matrix elements in the MSD cross section formulae and includes both incoherent particle-hole excitations and coherent collective excitations in the continuum, according to the prescriptions. The results show important contributions from multistep processes at all energies considered. (author)

  7. Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica

    2010-06-15

    Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)

  8. Precise 238U(n,2n)237U reaction cross-section measurements using the activation facility at TUNL

    Science.gov (United States)

    Krishichayan, Fnu; Bhike, M.; Tornow, W.

    2014-09-01

    Accurate neutron-induced 238U(n,2n)237U reaction data are required for many practical applications, especially in the field of nuclear energy, including advanced heavy water reactors, where 238U is used as the breeding material to regenerate the fissile material 239Pu. Precise (n,2n) cross-section measurements of 238U are underway at TUNL with mono-energetic neutrons in the 8.0 to 14.0 MeV energy range in steps of 0.25 MeV using the activation technique. After activation of the 0.5 inch diameter and 442 mg 238U foil, the activity of the 208 keV characteristic γ-line is tracked for 6 weeks with a high efficient HPGe clover detector to determine the initial activity needed for the cross-section determination. Results of the cross-section measurements, determined relative to 27Al and 197Au neutron activation monitor foils, and the comparison with theoretical models will be presented during the meeting.

  9. Study of the influence of decay data in activation reaction cross section

    International Nuclear Information System (INIS)

    Huang Xiaolong; Lu Hanlin

    2002-01-01

    The effect of the decay data on the measured activation cross section is investigated carefully and testified by several examples. These decay data include the half-life of the product, γ branching ratio of the product and decay scheme. Present work shows that these effects must be considered carefully when evaluating the activation reaction cross section. Sometimes they are main reason for causing the discrepancies among the experimental data

  10. Measurement of the efficient cross section of the reaction 7Be(p, γ)8B at low energies and implications in the problem of solar neutrinos

    International Nuclear Information System (INIS)

    Hammache, Fairouz

    1999-01-01

    The 8 B produced inside the sun through the reaction 7 Be(p,γ) 8 B is the main, and even unique, source of high energy neutrinos detected in most solar neutrino detection experiments, except with Gallex and Sage. These experiments have all measured a neutrinos flux lower than the one predicted by solar models. Several explanations have been proposed to explain this deficit, but all require a precise knowledge of the efficient cross-section of the reaction 7 Be(p,γ) 8 B, because the neutrinos flux of 8 B is directly proportional to this reaction. The direct measurement of this cross section for the solar energy is impossible because of its low value (about 1 femto-barn). In order to get round this problem, the cross sections are measured at higher energy and extrapolated to the solar energy using a theoretical energy dependence. The 6 previous experimental determinations of the efficient cross section were shared in two distinct groups with differences of about 30% which leads to an uncertainty of the same order on the high energy neutrinos flux. The re-measurement of the cross section of this reaction with a better precision is thus of prime importance. A direct measurement of the cross section in the energy range comprised between 0.35 and 1.4 MeV (cm) has been performed first. These experiments have permitted the precise measurement of each parameter involved in the determination of the cross section. Then, measurements of the cross section have been carried out with the PAPAP accelerator at 185.8, 134.7 and 111.7 keV, the lowest mass center energy never reached before. The results are in excellent agreement with those obtained at higher energies. The value obtained by extrapolation of these data for the astrophysical factor S 17 (0) is 19.21.3 EV-B, which leads to a significant reduction of the uncertainty on the high energy neutrinos flux of 8 B. (J.S.)

  11. Study of sample preparation in the measurement of 36Ar(n, p)36Cl reaction cross section

    International Nuclear Information System (INIS)

    Jiang Songsheng; Hemick, T.K.

    1992-01-01

    The preparation of enriched 36 Ar gas samples and 36 Cl samples for the use in the AMS measurement of 36 Ar(n, p) 36 Cl reaction cross section was described. The 36 Ar samples prepared had the volumes of about 0.4 ml and the weights of about 0.5 mg. The uncertainty in atomic numbers of 36 Ar was (0.3∼0.4)%. The reaction product, 36 Cl, in the 36 Ar was collected and the AgCl samples were prepared

  12. Reference Cross Sections for Charged-particle Monitor Reactions

    Czech Academy of Sciences Publication Activity Database

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, Ondřej; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takacs, S.; Tarkanyi, F. T.; Verpelli, M.

    2018-01-01

    Roč. 148, SI (2018), s. 338-382 ISSN 0090-3752 Institutional support: RVO:61389005 Keywords : deuteron induced reactions * proton induced reactions * cross sections Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.146, year: 2016

  13. Three years of cross-section measurements of (n,xn threshold reactions at TSL Uppsala and NPI Řež

    Directory of Open Access Journals (Sweden)

    Majerle M.

    2010-10-01

    Full Text Available We use (n,xn threshold reactions in various materials to measure high energy neutron flux from spallation reactions. Unfortunately, no experimental cross-section data exist for reactions with x higher than four and neutron energies over ∼  40  MeV. With the support from EFNUDAT we performed seven successful (n,xn cross-section measurements in two campaigns exploiting the quasi-monoenergetic neutron source at The Svedberg Laboratory in Uppsala, Sweden. Neutron energies from the 7Li(p, n7Be based source were in the region 22 to 94 MeV. We carried out additional four irradiations with neutron energies from 17 up to 34 MeV using the quasi-monoenergetic neutron source of the Nuclear Physics Institute in Řež. We studied Al, Au, Bi, I, In, and Ta materials. Although we used different neutron sources, gamma detectors and foil geometries, we obtained consistent results. We observed good agreement with the data in EXFOR, so we believe we have understood and solved all possible sources of uncertainties.

  14. Impact of newly-measured gadolinium cross sections on BWR fuel rod reaction rate distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jatuff, F.; Perret, G.; Murphy, M.; Grimm, P.; Seiler, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Chawla, R. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne (Switzerland)

    2008-07-01

    Recent measurements of capture and total cross sections performed at the Rensselaer Polytechnic Institute in the USA confirmed many of the gadolinium thermal and resonant neutron cross section parameters within uncertainties, but they also showed up important discrepancies well out of uncertainties, such as an approx11% overestimation of the {sup 157}Gd thermal capture cross section in ENDF/B-VI and -VII with respect to the newly measured data. In this work, the impact of the newly measured gadolinium cross sections on BWR reactor physics parameters has been preliminarily evaluated. The comparisons of rod-by-rod fission rate and modified conversion ratio predictions with selected cold critical experiments at the PROTEUS reactor in Switzerland show the potential to resolve long-term unexplained discrepancies. (authors)

  15. Activation cross-section measurements of some proton induced reactions on Ni, Co and Mo for proton activation analysis (PAA) purposes

    International Nuclear Information System (INIS)

    Alharbi, A.A.; Alzahrani, J.; Azzam, A.; Nuclear Research Center, Cairo

    2011-01-01

    The experimental proton induced reaction cross sections on some elements of the Havar alloy were measured using the activation method and the well established stacked-foil technique combined with high resolution gamma-ray spectroscopy. They included the reactions nat Ni(p,x) 57 Ni, nat Co(p,x) 58(m+g) Co and nat Mo(p,x) 94g,95g,96(m+g) Tc, the aim being to obtain reliable data in the proton energy range up to 26 MeV for some important reactions to be used in the proton activation analysis of steel or other alloys. Irradiations were performed using the CS-30 Cyclotron at KFSH and RC, Riyadh, Saudi Arabia. The activity measurements were carried out in PNU laboratories, Riyadh, Saudi Arabia. The experimental excitation functions for the investigated reactions were constructed and compared with the performed computed theoretical nuclear model calculations using two different codes: ALICE-IPPE and TALYS. A comparison between our measured cross-section values and the available published data is also presented, with a view to checking the consistency of the reported experimental work from various laboratories.

  16. Measurement of the cross sections for the 175Lu(n,2n)174m,gLu reaction

    International Nuclear Information System (INIS)

    Yu Weixiang; Zhao Wenrong; Lu Hanlin; Han Xiaogang

    1998-01-01

    The 175 Lu(n,2n) 174m,g Lu reaction is an important indicator. There are 10 sets of measured data since 1960 (total 58 experimental values). Most of the data are finished at 14 MeV with 20%∼30% discrepancy. So the authors measured the cross section by activation method in neutron energies of 14 MeV and 10∼12 MeV. The measurement is carried out at the Cockcroft-Walton and HI-13 Tandem accelerator of CIAE

  17. Integral-capture measurements and cross-section adjustments for Nd, Sm, and Eu

    International Nuclear Information System (INIS)

    Anderl, R.A.; Schmittroth, F.; Harker, Y.D.

    1981-07-01

    Integral-capture reaction rates are reported for 143 Nd, 144 Nd, 145 Nd, 147 Sm, 151 Eu, 152 Eu, 153 Eu, and 154 Eu irradiated in different neutron spectra in EBR-II. These reaction rates are based primarily on mass-spectrometric measurements of the isotopic atom ratios of the capture product to the target nuclide. The neutron spectra are characterized using passive neutron dosimetry and spectrum-unfolding with the FERRET least-squares data analysis code. Reaction rates for the neutron spectrum monitors were determined by the radiometric technique using Ge(Li) spectrometers. These rates are also reported here. The integral data for the rare-earth samples and for the spectrum monitors were used in multigroup flux/cross-section adtustment analyses with FERRET to generate adjustments to 47 group representations of the ENDF/B-IV capture cross sections for the rare-earth isotopes. These adjusted cross sections are in good agreement with recent differential data and with adjusted cross sections based on STEK integral data. Examples are given of the use of the adjusted cross sections and covariance matrices for cross-section evaluation

  18. Measurements of differential cross-section ratios for single-nucleon transfer reaction pairs near A=25

    Energy Technology Data Exchange (ETDEWEB)

    Howard, A J; Moise, T S [Trinity Coll., Hartford, CT (USA). Dept. of Physics; Champagne, A E [Princeton Univ., NJ (USA). Dept. of Physics; Magnus, P V; Smith, M S [Yale Univ., New Haven, CT (USA). Wright Nuclear Structure Lab.

    1991-06-10

    Differential cross sections for the (d,p), ({sup 3}He,d), ({alpha},t) and ({alpha},{sup 3}He) reactions involving seventy-one residual states in {sup 23}Na, {sup 25}Mg, {sup 25}Al, and {sup 27}Al have been measured at a forward angle with incident energies of 17.5, 20.2, and 34.8 MeV, respectively. The ratio of cross-section pairs involving formation of the same residual state is determined for forty-five cases where both the angular momentum transfer and single-particle spectroscopic strength have been previously established. These are compared to values calculated with conventional distorted-wave Born approximation analysis, and the utility of this technique for identifying some levels which are possible s- or p-wave resonances is demonstrated and discussed for states in the vicinity of proton thresholds. An application is made involving proton threshold states in {sup 27}Al. (orig.).

  19. Neutron induced reaction cross-sections on 115In at around 14 MeV

    International Nuclear Information System (INIS)

    Csikai, J.; Lantos, Z.; Buczko, C.M.; Sudar, S.

    1990-01-01

    A systematic investigation was carried out on 115 In isotope to determine the contribution of different reactions to the total non-elastic cross-section in the 13.43 and 14.84 MeV range. All the major component cross-sections of σ NE were measured with exception of the σ g (n,n'). In the knowledge of σ NE , the energy dependence of σ g (n,n') could be deduced. The isomeric cross section ratios both for (n,2n) and (n,n') processes were also determined in the given energy range. The present experiment proves the dependence of σ m /(σ g +σ m ) ratio on the spin value (I m ) of the isomeric state in (n,2n) reaction. Excitation functions of (n,2n), (n,n') and (n,ch) reactions were compared with results calculated by STAPRE code. (author). 37 refs, 5 figs, 4 tabs

  20. Reaction cross section measurements for the production of /sup 6/He(805 ms) and /sup 6/Li(175 ms) with 14. 7 Mev neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-01-01

    The automatic electronic programmer developed to handle the millisecond isomers has been utilized to measure the reaction cross-sections for the production of /sup 6/He from sup(7,6)Li((n,d)+(n,p))/sup 6/He and /sup 9/Be(n,..cap alpha..)/sup 6/He reactions and /sup 9/Li from /sup 9/Be(n,p)/sup 9/Li reaction. An on-line gated G.M. counter has been used to follow the decay curves of beta-activities of /sup 6/He(805 ms.) and /sup 9/Li(175 ms.) produced in the reactions. Values of measured cross sections are 10.4 +- 1.0 mb., 10.6 +- 1.1 mb. and 40.3 +- 4.0 mb respectively for the above the three reactions.

  1. Cross-section calculations for neutron-induced reactions up to 50 MeV

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro.

    1996-01-01

    In the field of accelerator development, medium-energy reaction cross-section data for structural materials of accelerator and shielding components are required, especially for radiation protection purposes. For a d + Li stripping reaction neutron source used in materials research, neutron reaction cross sections up to 50 MeV are necessary for the design study of neutron irradiation facilities. The current version of SINCROS-II is able to calculate neutron and proton-induced reaction cross sections up to ∼ 50 MeV with some modifications and extensions of the cross-section calculation code. The production of isotopes when structural materials and other materials are bombarded with neutrons or protons is calculated using a revised code in the SINCROS-II system. The parameters used in the cross-section calculations are mainly examined with proton-induced reactions because the experimental data for neutrons above 20 MeV are rare. The status of medium mass nuclide evaluations for aluminum, silicon, chromium, manganese, and copper is presented. These data are useful to estimate the radiation and transmutation of nuclei in the materials

  2. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  3. Fusion cross-sections of 16O+16O reaction in pseudonucleon picture

    International Nuclear Information System (INIS)

    Mishra, R.C.; Waghmare, Y.R.

    1991-01-01

    Fusion cross-sections for 16 O+ 16 O reaction are calculated in classical equations of motion approach using the pseudonucleon picture. These calculated fusion cross-sections are very close to measured values than earlier calculated using the same NN interaction. The aim of the paper is to test the pseudonucleon picture. Use of this picture does not require one to consider the number of relative random orientations of the colliding clusters. (author). 22 refs., 2 tabs., 4 figs

  4. Extracting integrated and differential cross sections in low energy heavy-ion reactions from backscattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, V. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Yerevan State University, 0025 Yerevan (Armenia); Adamian, G. G., E-mail: adamian@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Antonenko, N. V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Mathematical Physics Department, Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Diaz-Torres, A. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas, I-38123 Villazzano, Trento (Italy); Gomes, P. R. S. [de Fisica, Universidade Federal Fluminense, Av. Litorânea, s/n, Niterói, R.J. 24210-340 (Brazil); Lenske, H. [Institut für Theoretische Physik der Justus–Liebig–Universität, D–35392 Giessen (Germany)

    2016-07-07

    We suggest new methods to extract elastic (quasi-elastic) scattering angular distribution and reaction (capture) cross sections from the experimental elastic (quasi-elastic) backscattering excitation function taken at a single angle.

  5. Vibrational state-resolved differential cross sections for the D + H sub 2 yields DH + H reaction

    Energy Technology Data Exchange (ETDEWEB)

    Continetti, R.E.

    1989-11-01

    In this thesis, crossed-molecular-beams studies of the reaction D + H{sub 2} {yields} DH + H at collision energies of 0.53 and 1.01 eV are reported. Chapter 1 provides a survey of important experimental and theoretical studies on the dynamics of the hydrogen exchange reaction. Chapter 2 discusses the development of the excimer-laser photolysis D atom beam source that was used in these studies and preliminary experiments on the D + H{sub 2} reaction. In Chapter 3, the differential cross section measurements are presented and compared to recent theoretical predictions. The measured differential cross sections for rotationally excited DH products showed significant deviations from recent quantum scattering calculations, in the first detailed comparison of experimental and theoretical differential cross sections. These results indicate that further work on the H{sub 3} potential energy surface, particularly the bending potential, is in order.

  6. Reaction and total cross sections for low energy π+ and π- on isospin zero nuclei

    International Nuclear Information System (INIS)

    Saunders, A.; Ho/ibraten, S.; Kraushaar, J.J.; Kriss, B.J.; Peterson, R.J.; Ristinen, R.A.; Brack, J.T.; Hofman, G.; Gibson, E.F.; Morris, C.L.

    1996-01-01

    Reaction and total cross sections for π + and π - on targets of 2 H, 6 Li, C, Al, Si, S, and Ca have been measured for beam energies from 42 to 65 MeV. The cross sections are proportional to the target mass at 50 MeV, consistent with transparency to these projectiles. The cross sections are compared to theoretical calculations. copyright 1996 The American Physical Society

  7. Measurements of neutron-induced capture and fission reactions on $^{235}$ U: cross sections and ${\\alpha}$ ratios, photon strength functions and prompt ${\\gamma}$-ray from fission

    CERN Multimedia

    We propose to measure the neutron-induced capture cross section of the fissile isotope $^{235}$U using a fission tagging set-up. This new set-up has been tested successfully in 2010 and combines the n_TOF 4${\\pi}$ Total Absorption Calorimeter (TAC) with MicroMegas (MGAS) fission detectors. It has been proven that such a combination of detectors allows distinguishing with very good reliability the electromagnetic cascades from the capture reactions from dominant ${\\gamma}$-ray background coming from the fission reactions. The accurate discrimination of the fission background is the main challenge in the neutron capture cross section measurements of fissile isotopes. The main results from the measurement will be the associated capture cross section and ${\\alpha}$ ratio in the resolved (0.3-2250 eV) and unresolved (2.25-30 keV) resonance regions. According to the international benchmarks and as it is mentioned in the NEA High Priority Request List (HPRL), the 235U(n,${\\gamma}$) cross section is of utmost impo...

  8. Measurements of the (n,2n) Reaction Cross Section of 181Ta from 8 to 15 MeV

    Science.gov (United States)

    Bhatia, C.; Gooden, M. E.; Tornow, W.; Tonchev, A. P.

    2014-05-01

    The cross section for the reaction 181Ta(n,2n)180Tag was measured from 8 to 15 MeV in small energy steps to resolve inconsistencies in the existing databases. The activation technique was used, and the 93.4 keV γ-ray from the decay of the 180Tag ground state was recorded with a HPGe detector. In addition, the γ-rays from the monitor reactions 27Al(n,α)24Na and 197Au(n,2n)196Au were measured for neutron fluence determination. As a cross check, a calibrated neutron detector was also used. The ENDF/B-VII.1 and TENDL-2011 evaluations are in considerable disagreement with the present data, which in turn agree very well with the majority of the existing data in the 14 MeV energy region.

  9. Indirect measurement of the 15N(p,α)12C reaction cross section through the THM

    International Nuclear Information System (INIS)

    Romano, S.; La Cognata, M.; Spitaleri, C.; Cherubini, S.; Gulino, M.; Lamia, L.; Musumarra, A.; Tribble, R.; Trache, C.L.; Fu, C.

    2005-01-01

    Among the reactions of the stellar CNO cycle, the 15 N(p,α) 12 C plays a crucial role. In particular its reaction rate is important for understanding the CNOI escape towards CNOII. Thus it is important to study its bare nucleus cross section at the energies typical of such astrophysical environments, i.e. few tens of keV. At these energies such a measurement is hard to perform in a direct way because of the electron screening effect as pointed out for several cases. A possibility is then given by indirect methods and in particular the Trojan Horse Method (THM) has been applied in this case. The preliminary validity test for the study of 15 N(p,α) 12 C via the 15 N(d,α 12 C)n three body reaction is reported in this work. A 15 N beam was provided by the cyclotron at Texas A and M University with energy 60 MeV/c and delivered onto a CD 2 target. A ΔE/E telescope (PSD + ionization chamber) and a pair of PSD's were mounted in a coplanar geometry. Coincidences between the detectors were considered and the 15 N-p quasi-free contribution to the overall three-body cross-section was selected. Data analysis and preliminary results will be discussed and compared with direct data. (author)

  10. The measurement of cross sections of inelastic and transfer reactions with gamma-particle coincidence

    International Nuclear Information System (INIS)

    Zagatto, V.A.B.; Oliveira, J.R.B.; Pereira, D.; Allegro, P.R.P.; Chamon, L.C.; Cybulska, E.W.; Medina, N.H.; Ribas, R.V.; Rossi Junior, E.S.; Seale, W.A.; Silva, C.P.; Gasques, L.; Toufen, D.L.; Silveira, M.A.G.; Zahn, G.S.; Genezini, F.A.; Shorto, J.M.B.; Lubian, J.; Linares, R.

    2011-01-01

    Full text: The following work aims to obtain experimental reaction cross sections of inelastic excitation and transfer to excited states reactions (both measured by gamma-particle coincidences) and its comparison with theoretical predictions based in a new model based on the Sao Paulo Potential. The measurements were made at the Pelletron accelerator laboratory of the University of Sao Paulo with the Saci-Perere spectrometer, which consists of 4 a GeHP Compton suppressed gamma detectors and a 4 π charged particle ancillary system with 11ΔΕ - Ε plastic phoswich scintillators (further details about the experimental procedure may be found in: J.R.B. Oliveira et al., XVIII International School on Nuclear Physics, Neutron Physics and Applications (2009). Theoretical angular distribution calculations (using code GOSIA) were performed with a new model based on the Sao Paulo Potential, specifically developed for the inclusion of dissipative processes like deep-inelastic collisions (DIC) considering the Coulomb plus nuclear potential (with the aid of code FRESCO). The experimental cross sections were obtained such as described in J.R.B. Oliveira et al however, in this work, the particle-gamma angular correlations and the vacuum de-alignment effects (caused by hyperfine interaction) were finally added for the 110 Pd inelastic reaction and for the 112 Pd transfer reaction. For these purposes a new code has been developed to assist in the data analysis. We take into account the particle-gamma angular correlations using the scattering amplitudes given by FRESCO, considering the vacuum de-alignment effects as proposed by A. Abragam and R. V. Pound, Phys. Rev. 92, 943 (1953). The theoretical predictions still consider 2 different types of Sao Paulo Potential, the first one has a multiplying factor equals to 1.0 in the real part of the potential and the second considers this factor equals to 0.6, as proposed in D. Pereira, J. Lubian, J.R.B. Oliveira, D.P. de Sousa and L

  11. Benford's law and cross-sections of A(n,α)B reactions

    International Nuclear Information System (INIS)

    Liu, X.J.; Ni, D.D.; Zhang, X.P.; Ren, Z.Z.

    2011-01-01

    Benford's law, also called the first-digit law, states that in lists of numbers from many quite disparate databases, the leading digit is distributed in a non-uniform but actually logarithmic way. We have investigated the first-digit distribution of experimental cross-sections of A(n, α)B reactions. In the case of below-barrier α -particle emission from compound nucleus, it is found that the (n, α) reaction cross-sections approximately follow the first-digit distribution indicated by Benford's law. The origin of this first-digit distribution is discussed within the framework of the statistical model. In addition, Benford's law is used to test the evaluated cross-sections of A(n, α)B reactions. (orig.)

  12. Cross-sections of {sup 45}Sc(n,2n){sup 44m,g}Sc reaction from the reaction threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, J. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Peking Univ., Beijing (China). State Key Laboratory of Nuclear Physics and Technology; Liu, R.; Jiang, L. [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Liu, Z.; Sun, G.; Ge, S. [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering

    2013-07-01

    Cross sections of {sup 45}Sc(n,2n){sup 44m,g}Sc reactions and their isomeric cross section ratios {sigma}{sub m}/{sigma}{sub g} have been measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. The pure cross section of the groundstate was then obtained by utilizing the absolute cross section of the metastable state and analysis methods of residual nuclear decay. The monoenergetic neutron beam was produced via the {sup 3}H(d, n){sup 4}He reaction. The cross sections were also estimated with the TALYS-1.2 nuclear model code using different level density options, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. (orig.)

  13. Determination of reaction cross sections with the aid of α decay in the 12C, 14C + 209Bl reactions

    International Nuclear Information System (INIS)

    Hick, H.

    1980-01-01

    For the reactions 14 C + 209 Bi and 12 C + 209 Bi excitation functions at energies in the range between 57 MeV and 76 MeV are measured. Radiative capture and particle evaporation cross sections were determined by means of α-spectroscopy, and fission cross sections were determined by the measurement of the γ-radiation after the β-decay of the fission products. For the radiative capture for the reaction 14 C + 209 Bi upper limits for the cross section from 21 nbarn to 178 nbarn in the energy interval 61-74 MeV were determined. The fission cross sections were 80 +- 30 mbarn at 490 +- 200 mbarn at 76 MeV. For the reaction 12 C + 209 Bi three new α-lines were found. They were due to the slope at their excitation functions assigned to the decay of isomeric states of following nuclei: 219 Ac Esub(α) = 9419 +- 4 keV Tsub(1/2) = 830 +- 100/μsec, 218 Ac Esub(α) = 9271 +- 4 keV Tsub(1/2) = 810 +- 70/μsec, 217 Ac Eα = 9730 +- 5 keV Tsub(1/2) = 970 +- 190/μsec. For the reactions respectively 12 C + 209 Bi calculations using the statistical model code Grogi of J. Gilat are performed. The calculated branchings of the evaporation channels were compared with the experiment. (orig./HSI) [de

  14. Total and (n, 2n) neutron cross section measurements on 241Am

    International Nuclear Information System (INIS)

    Sage, C.

    2009-01-01

    Neutron induced reaction cross sections on 241 Am have been measured at the IRMM in Geel, Belgium, in the frame of a collaboration between the EC Joint Research Centres IRMM and ITU and French laboratories from CNRS and CEA. Raw material coming from the Atalante facility of CEA Marcoule has been transformed into suitable AmO 2 samples embedded in Al 2 O 3 and Y 2 O 3 matrices. The irradiations for the 241 Am(n, 2n) 240 Am reaction cross section measurement were carried out at the 7 MV Van de Graaff accelerator using the activation technique with quasi mono-energetic neutrons from 8 to 21 MeV produced via the D(d, n) 3 He and the T(d, n) 4 He reactions. The cross section was determined relative to the 27 Al(n, α) 24 Na standard cross section and was investigated for the first time above 15 MeV. The induced activity was measured off-line by standard γ-ray spectrometry using a high purity Ge detector. A special effort was made for the estimation of the uncertainties and the correlations between our experimental points. A different sample of the same isotope 241 Am has been measured in transmission and capture experiments in the resolved resonance region at the neutron ToF facility GELINA. The transmission measurement was performed in two campaigns, with an upgrade of the whole data acquisition system in between, followed by an investigation of its new performances. A preliminary analysis of the resonance parameters tends to confirm the recent evaluation to a higher value for the cross section at the bottom of the first resonances. A new design of C 6 D 6 detectors for capture measurements has been studied, but the data reduction and analysis of the measurement are not part of this work. (author) [fr

  15. Cross Section Measurements of the {sup 58}Ni (n, p) {sup 58}Co and {sup 29}Si (n, alpha) Reactions in the Energy Range 2.2 to 3.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Lauber, A

    1963-08-15

    The Si(n, a) Mg and Ni(n, p) Co reaction cross-sections have been measured using a surface barrier solid state detector to record the charged particles. Absolute measurements of the neutron flux were made, recording the proton recoils from a thin polyethylene radiator with the solid state detector. Both reaction cross-sections show strong fluctuations as a function of energy, which may be due to the statistical fluctuation of the level densities. Estimations of the level densities of the intermediate nuclei from the relative fluctuations of the cross section curves are in good agreement with those expected on theoretical grounds. The agreement with earlier measurements of the nickel reaction is good, while absolute values for the cross-sections on the silicon reaction have not been reported before in this energy region.

  16. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    International Nuclear Information System (INIS)

    Escher, J.E.; Burke, J.T.; Dietrich, F.S.; Lesher, S.R.; Scielzo, N.D.; Thompson, I.J.; Younes, W.

    2009-01-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,γ) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  17. Cross Sections for Neutron-induced Reactions on Actinide Targets Extracted from Surrogate Experiments: A Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Lesher, S R; Scielzo, N D; Thompson, I J; Younes, W

    2009-10-01

    The Surrogate nuclear reactions method, an indirect approach for determining cross sections for compound-nuclear reactions involving difficult-to-measure targets, is reviewed. Focusing on cross sections for neutron-induced reactions on actinides, we review the successes of past and present applications of the method and assess its uncertainties and limitations. The approximations used in the analyses of most experiments work reasonably well for (n,f) cross sections for neutron energies above 1-2 MeV, but lead to discrepancies for low-energy (n,f) reactions, as well as for (n,{gamma}) applications. Correcting for some of the effects neglected in the approximate analyses leads to improved (n,f) results. We outline steps that will further improve the accuracy and reliability of the Surrogate method and extend its applicability to reactions that cannot be approached with the present implementation of the method.

  18. Measurement of fast neutron induced fission cross section of minor-actinide

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    2000-06-01

    In fuel cycles with recycled actinide, core characteristics are largely influenced by minor actinide (MA: Np, Am, Cm). Accurate nuclear data of MA such as fission cross section are required to estimate the effect of MA with high accuracy. In this study, fast neutron induced fission cross section of MA is measured using Dynamitron accelerator in Tohoku University. The followings were performed in this fiscal year; (1) Research of nuclear data of MA, (2) Sample preparation and sample mass assay, (3) Investigation of neutron sources with the energy of several 10 keV, (4) Preliminary measurement of fission cross section using Dynamitron accelerator. As the result, four 237 Np samples were prepared and the sample mass were measured using alpha-spectrometry with the accuracy of 1.2%. Then, it was confirmed that a neutron source via 7 Li(p,n) 7 Be reaction using a Li-thick target is suitable for measuring fission cross section of MA in the energy region of several 10 keV. Furthermore, it was verified by the preliminary measurement that the measurement of fission cross section of MA is available using a fission chamber and electronics developed in this study. (author)

  19. Measurement of isotopic cross sections of the fission fragments produced in 500 AMeV 208Pb + p reaction

    International Nuclear Information System (INIS)

    Fernandez-Dominguez, B.

    2003-03-01

    The aim of this work is the study of the fission fragments produced in the spallation reaction 208 Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z fis , A fis , E* fis ). In addition, the number of post-fission neutrons emitted from the fission fragments, v post , has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)

  20. Cross sections of (p, xn) reactions in the isotopes of lead and bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R E [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Skarsgard, H M [Atomic Energy Research Establishment, Reactor Research Div., Harwell (United Kingdom)

    1956-07-01

    Measurements have been made by the activation method of cross sections of (p, xn) reactions in Bi{sup 209}, Pb{sup 206}, Pb{sup 207}, and Pb{sup 208}. The present results cover x = 3 to 7 in Bi{sup 209}, 2 to 6 in Pb{sup 206}, 2 to 4 in Pb{sup 207}, and 3 and 4 in Pb{sup 208}, over a total proton energy range from 12 to 85 Mev. The absolute accuracy is about 15%. Each cross section plotted as a function of proton energy rises above its threshold to a peak whose height is of the order of one barn, and then falls again to a low and fairly constant value. The results from x = 3 to 7 are consistent with a compound nucleus plus prompt nucleon-nucleon cascade model using reasonable nuclear parameters, but the experimental (p, 2n) cross section appears to be almost double the value so predicted. Since (p, xn) reactions are dominant in the energy range 10 to 40 Mev., their sum approximates the total reaction cross section; the experimental sum fluctuates around the smooth curve computed for the compound nucleus model with r{sub 0} = 1.3 X 10{sup -13} cm. The fluctuations are similar to, but more marked than, those in the total neutron cross section of heavy elements in the same energy range. A more detailed theoretical discussion of these results is given by Jackson in the paper immediately following. (author)

  1. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  2. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  3. Recent cross-section measurements of neutron-induced reactions of importance for background estimates in 0νββ searches

    Science.gov (United States)

    Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan

    2017-09-01

    We report on cross-section measurements for the reactions 76Ge(n,2n)75Ge, 76Ge(n,n'γ)76Ge, 126,127,128Te(n,γ)127,129,131Te, and 136Xe(n,n'γ)136Xe in the neutron energy range between 0.5 MeV and 15 MeV.

  4. Thermal neutron cross section measurements for technetium-99

    International Nuclear Information System (INIS)

    Yates, M.A.; Schroeder, N.C.; Fowler, M.M.

    1993-01-01

    Technetium, because of its long half-like (213,000 years) and ability to migrate in the environment, is a primary contributor to the long-term radioactivity related risk associated with geologic nuclear waste disposal. One proposal for converting technetium to an environmentally benign element investigating transmutation with an accelerator-based system, (i.e., Accelerator Transmutation of Waste, ATW). Planning for efficient processing of technetium through the transmuter will require knowledge of the thermal neutron cross section for the 99 Tc (n,γ) 100 Tc reaction. The authors have recently remeasured this cross section. Weighed aliquots (19-205 μg) of a NIST traceable 99 Tc standard were irradiated for 30-150 sec using the pneumatic open-quotes rabbitclose quotes system of LANL's Omega West Reactor. The two gamma rays from the 15.7-sec half-life product were measured immediately after irradiation on a high-resolution Ge detector. Thermal fluxes were measured using gold foils and Cd wrapped gold foils. The observation cross section is 19 ± 1 b. This agrees well with the 1977 value but has half the uncertainty

  5. Production cross-sections of radionuclides from α-induced reactions on natural copper up to 50 MeV

    International Nuclear Information System (INIS)

    Usman, Ahmed Rufai; Khandaker, Mayeen Uddin; Haba, Hiromitsu; Otuka, Naohiko; Murakami, Masashi; Komori, Yukiko

    2016-01-01

    The excitation functions were measured for the "n"a"tCu(α,x)"6"6","6"7Ga,"6"5Zn,"5"7","5"8","6"0Co reactions in the energy range of 16.5 −50 MeV. A conventional stacked-foil activation technique combined with HPGe γ-ray spectrometry was employed to determine cross-sections. The measured cross-sections were critically compared with relevant previous experimental data and also with the evaluated data in the TENDL-2014 library. Present results confirmed some of the previous experimental data, whereas only a partial agreement was found with the evaluated data. The measured data are useful for reducing the existing discrepancies in the literature, to improve the nuclear reaction model codes, and to enrich the experimental database towards various applications. - Highlights: • New measurements of gallium radionuclides for monitor reactions. • Production of cobalt radionuclides via alpha route on natural Copper. • Extensive critical review of earlier reported cross-sections.

  6. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G. [CEA, DAM, DIF, Arpajon (France)

    2012-06-15

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C{sub 6}D{sub 6} detector as active deuterium target located at the center of a 4{pi} neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the {sup 2}H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  7. Measurement of the neutron-induced deuteron breakup reaction cross-section between 5 and 25 MeV

    International Nuclear Information System (INIS)

    Laborie, J.M.; Ledoux, X.; Varignon, C.; Lazauskas, R.; Morillon, B.; Belier, G.

    2012-01-01

    This article presents a full program devoted to the calculation and the measurement of the neutron-induced deuteron break-up reaction cross-section between 5 and 10 MeV, and between 20 and 25 MeV. Measurements are compared with theoretical calculations based on the solution of the Faddeev equations for a realistic nuclear Hamiltonian. The experiments were performed at the Tandem 7 MV accelerator at CEA, DAM, DIF, France. The measurements were carried out with a C 6 D 6 detector as active deuterium target located at the center of a 4π neutron counter (see C. Varignon et al., Nucl. Instrum. Methods B 248, 329 (2006)) which allows to count the two neutrons emitted in the 2 H(n, 2n)p reaction. Comparisons of the new data and calculations are made with the existing data as well as the CENDL2, JENDL3.3 and ENDF/B-VII evaluations. (orig.)

  8. Studies of combustion reactions at the state-resolved differential cross section level

    Energy Technology Data Exchange (ETDEWEB)

    Houston, P.L.; Suits, A.G.; Bontuyan, L.S.; Whitaker, B.J. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    State-resolved differential reaction cross sections provide perhaps the most detailed information about the mechanism of a chemical reaction, but heretofore they have been extremely difficult to measure. This program explores a new technique for obtaining differential cross sections with product state resolution. The three-dimensional velocity distribution of state-selected reaction products is determined by ionizing the appropriate product, waiting for a delay while it recoils along the trajectory imparted by the reaction, and finally projecting the spatial distribution of ions onto a two dimensional screen using a pulsed electric field. Knowledge of the arrival time allows the ion position to be converted to a velocity, and the density of velocity projections can be inverted mathematically to provide the three-dimensional velocity distribution for the selected product. The main apparatus has been constructed and tested using photodissociations. The authors report here the first test results using crossed beams to investigate collisions between Ar and NO. Future research will both develop further the new technique and employ it to investigate methyl radical, formyl radical, and hydrogen atom reactions which are important in combustion processes. The authors intend specifically to characterize the reactions of CH{sub 3} with H{sub 2} and H{sub 2}CO; of HCO with O{sub 2}; and of H with CH{sub 4}, CO{sub 2}, and O{sub 2}.

  9. Cross-section measurements of the 94Mo(γ,n and 90Zr(γ,n reactions using real photons at the HIγS facility

    Directory of Open Access Journals (Sweden)

    Banu Adriana

    2018-01-01

    Full Text Available The photodisintegration reaction cross-sections for 94Mo(γ,n and 90Zr(γ,n have been experimentally investigated with quasi-monochromatic photon beams at the High Intensity γ-Ray Source (HIγS facility, Triangle University Nuclear Laboratory (TUNL. The measurements were focused primarily on studying the energy dependence of the photoneutron cross sections, which is the most direct way of testing statistical models, and were performed close to the respective neutron thresholds and above up to ~ 20 MeV. Neutrons from the (γ,n reactions were detected using a 4π assembly of 3He proportional counters developed at Los Alamos National Laboratory and presently available at TUNL. While the 94Mo(γ,n cross section measurement aims to contribute to a broader investigation for understanding the γ-process (the mechanism responsible for the nucleosynthesis of the so-called p-nuclei, the information from the 90Zr(γ,n data is relevant to constrain QRPA calculations of γ-ray strength functions in this mass region. In this contribution, we will present our preliminary results of the total (γ,n excitation functions for the two photoneutron reactions on 94Mo and 90Zr.

  10. Cross-section measurements of the 94Mo(γ,n) and 90Zr(γ,n) reactions using real photons at the HIγS facility

    Science.gov (United States)

    Banu, Adriana; Silano, Jack; Karwowski, Hugon; Meekins, Evan; Bhike, Megha; Tornow, Werner; McCleskey, Mathew

    2018-05-01

    The photodisintegration reaction cross-sections for 94Mo(γ,n) and 90Zr(γ,n) have been experimentally investigated with quasi-monochromatic photon beams at the High Intensity γ-Ray Source (HIγS) facility, Triangle University Nuclear Laboratory (TUNL). The measurements were focused primarily on studying the energy dependence of the photoneutron cross sections, which is the most direct way of testing statistical models, and were performed close to the respective neutron thresholds and above up to 20 MeV. Neutrons from the (γ,n) reactions were detected using a 4π assembly of 3He proportional counters developed at Los Alamos National Laboratory and presently available at TUNL. While the 94Mo(γ,n) cross section measurement aims to contribute to a broader investigation for understanding the γ-process (the mechanism responsible for the nucleosynthesis of the so-called p-nuclei), the information from the 90Zr(γ,n) data is relevant to constrain QRPA calculations of γ-ray strength functions in this mass region. In this contribution, we will present our preliminary results of the total (γ,n) excitation functions for the two photoneutron reactions on 94Mo and 90Zr.

  11. Integral cross-section measurements for investigating the emission of complex particles in 14 MeV neutron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Qaim, S.M.

    1981-01-01

    Some of the off-line techniques used for the determination of integral cross-section data are reviewed and, as a critical check, some typical data sets are compared. The systematic trends reported in the cross-section data for (n,d), (n,t), (n, 3 He) and (n,α) reactions are discussed. A brief discussion of the possible reaction mechanisms is given. Some of the applications of the data are outlined. (author)

  12. Determination of the fission-neutron averaged cross sections of some high-energy threshold reactions of interest for reactor dosimetry

    International Nuclear Information System (INIS)

    Arribere, M.A.; Kestelman, A.J.; Korochinsky, S.; Blostein, J.J.

    2003-01-01

    For three high threshold reactions, we have measured the cross sections averaged over a 235 U fission neutron spectrum. The measured reactions, and corresponding averaged cross sections found, are: 127 I(n,2n) 126 I, (1.36±0.12) mb; 90 Zr(n,2n) 89m Zr, (13.86±0.83) μb; and 58 Ni(n,d+np+pn) 57 Co, (274±15) μb; all referred to the well known standard of (111±3) mb for the 58 Ni(n,p) 58m+g Co averaged cross section. The measured cross sections are of interest in nuclear engineering for the characterization of the fast neutron component in the energy distribution of reactor neutrons. (author)

  13. Determination of Cross-Sections of Fast-Muon-Induced Reactions to Cosmogenic Radionuclides

    CERN Multimedia

    Hagner, T; Heisinger, B; Niedermayer, M; Nolte, E; Oberauer, L; Schonert, S; Kubik, P W

    2002-01-01

    %NA54 %title\\\\ \\\\We propose to measure cross-sections for fast muon-induced production of radionuclides. Firstly to study the contribution of fast-muon-induced reactions to the in-situ production of cosmogenic radionuclides in the lithosphere. Concrete is used to simulate the rock and to generate a secondary particle shower. The reaction channels to be measured are: C to $^{10}$Be, O to $^{10}$Be and $^{14}$C, Si to $^{26}$Al, S to $^{26}$Al, Ca to $^{36}$Cl, Fe to $^{53}$Mn and $^{205}$Tl to $^{205}$Pb. The energy dependent cross-section can be described by one single parameter $\\sigma_0$ and the energy dependence $\\rm\\overline{E}^{0.7}$ on the mean energy $\\rm\\overline{E}$. The irradiations of the targets is done at CERN. The produced radionuclides are measured by accelerator mass spectrometry in Munich and Zurich.\\\\ \\\\Secondly, muon induced signals can be a major source of background in experiments with low event rates located deep underground. We intent to study the produced radioactivity by fast-muon-ind...

  14. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  15. Total cross-sections for reactions of high energy particles (including elastic, topological, inclusive and exclusive reactions). Subvol. b

    International Nuclear Information System (INIS)

    Schopper, H.; Moorhead, W.G.; Morrison, D.R.O.

    1988-01-01

    The aim of this report is to present a compilation of cross-sections (i.e. reaction rates) of elementary particles at high energy. The data are presented in the form of tables, plots and some fits, which should be easy for the reader to use and may enable him to estimate cross-sections for presently unmeasured energies. We have analyzed all the data published in the major Journals and Reviews for momenta of the incoming particles larger than ≅ 50 MeV/c, since the early days of elementary particle physics and, for each reaction, we have selected the best cross-section data available. We have restricted our attention to integrated cross-sections, such as total cross-sections, exclusive and inclusive cross-sections etc., at various incident beam energies. We have disregarded data affected by geometrical and/or kinematical cuts which would make them not directly comparable to other data at different energies. Also, in the case of exclusive reactions, we have left out data where not all of the particles in the final state were unambiguously identified. This work contains reactions induced by neutrinos, gammas, charged pions, kaons, nucleons, antinucleons and hyperons. (orig./HSI)

  16. Reaction and fusion cross sections for 32S on 27Al and 48Ti

    International Nuclear Information System (INIS)

    Porto, F.; Sambataro, S.; Kusterer, K.; Liu Ken Pao; Doukellis, G.; Harney, H.L.

    1981-01-01

    Elastic scattering and evaporation residues have been measured for the system 32 S + 27 Al at Esub(c)sub(.)sub(m)sub(.) = 66.4, 73.2 MeV and 32 S + 48 Ti at Esub(c)sub(.)sub(m)sub(.) = 96.0 MeV. Reaction cross sections have been obtained by use of the optical theorem and are found to be about 60% larger than the fusion cross sections. (orig.)

  17. Development of a system of measuring double-differential cross sections for proton-induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Harada, M.; Watanabe, Y.; Sato, K. [Kyushu Univ., Fukuoka (Japan); Meigo, S.

    1997-03-01

    We report the present status of a counter telescope and a data acquisition system which are being developed for the measurement of double-differential cross sections of all light-charged particles emitted from proton-induced reactions on {sup 12}C at incident energies less than 90 MeV. The counter telescope consists of an active collimator made of a plastic scintillator, two thin silicon {Delta}E-detectors and a CsI(Tl) E-detectors with photo-diode readout. Signals from each detector are processed using the data acquisition system consisting of the front-end electronics (CAMAC) and two computers connected with the ethernet LAN: a personal computer as the data collector and server, and a UNIX workstation as the monitor and analyzer. (author)

  18. Recent cross-section measurements of neutron-induced reactions of importance for background estimates in 0νββ searches

    Directory of Open Access Journals (Sweden)

    Tornow W.

    2017-01-01

    Full Text Available We report on cross-section measurements for the reactions 76Ge(n,2n75Ge, 76Ge(n,n′γ76Ge, 126,127,128Te(n,γ127,129,131Te, and 136Xe(n,n′γ136Xe in the neutron energy range between 0.5 MeV and 15 MeV.

  19. Cross section measurement for the reaction /sup 103/Rh (n,n') /sup 103m/Rh

    International Nuclear Information System (INIS)

    Paulsen, A.; Liskien, H.; Vaninbroukx, R.; Widera, R.

    1980-01-01

    The excitation function for the reaction /sup 103/Rh (n,n') /sup 103m/Rh was measured by the activation technique from 0.2 to 6.1 MeV in 0.1-MeV steps and from 13.0 to 16.7 MeV in 1-MeV steps. This excitation function is normalized through an absolute measurement at 1.8 MeV. This measurement is based on n-p scattering for neutron flux determination and on liquid scintillation counting of /sup 103m/Rh separated from /sup 103/Pd solutions for the activity determination. The total uncertainty of the cross-section results is typically + or -5% above 0.5 MeV (about + or -10% above 13 MeV). Concurrence with existing data is good except below 0.35 MeV, where the present results are considerably higher

  20. Measurements of activation cross-sections for the 101Ru(n,p)101Tc reaction for neutrons with energies between 13 and 15 MeV

    International Nuclear Information System (INIS)

    Junhua Luo; Peking University, Beijing; Jiuning Han; Suhong Ge; Zhenlai Liu; Guihua Sun; Rong Liu; Li Jiang

    2013-01-01

    In this study, activation cross-sections were measured for the 101 Ru(n,p) 101 Tc reaction at three different neutron energies from 13.5 to 14.8 MeV. The fast neutrons were produced via the 3 H(d,n) 4 He reaction on K-400 neutron generator. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with high-purity germanium detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The data for 101 Ru(n,p) 101 Tc reaction cross-sections are reported to be 15.7 ± 2.0, 18.4 ± 2.7 and 22.0 ± 2.4 mb at 13.5 ± 0.2, 14.1 ± 0.2, and 14.8 ± 0.2 MeV incident neutron energies, respectively. Results were compared with the previous works. (author)

  1. Absolute measurements of neutron cross sections. Progress report

    International Nuclear Information System (INIS)

    1984-11-01

    In the photoneutron laboratory, we have completed a major refurbishing of experimental facilities and begun work on measurements of the capture cross section in thorium and U-238. In the 14 MeV neutron experimental bay, work continues on the measurement of 14 MeV neutron induced reactions of interest as standards or because of their technological importance. First results have been obtained over the past year, and we are extending these measurements along the lines outlined in our proposal of a year ago

  2. Numerical estimates of multiple reaction corrections in neutron cross-section measurements

    International Nuclear Information System (INIS)

    Magnusson, G.

    1979-04-01

    A method to evaluate the effect of secondary neutrons in 14-15 MeV neutron cross-section measurements is presented. The emission spectra of secondary neutrons are calculated by means of the preequilibrium and statistical models. An expression for the collision probability in a homogenous body has been utilized in the calculations. (author)

  3. Elastic scattering and total reaction cross section for the 6He + 27Al system

    International Nuclear Information System (INIS)

    Benjamim, E.A.; Lepine-Szily, A.; Mendes Junior, D.R.; Lichtenthaeler, R.; Guimaraes, V.; Gomes, P.R.S.; Chamon, L.C.; Hussein, M.S.; Moro, A.M.; Arazi, A.; Padron, I.; Alcantara Nunez, J.; Assuncao, M.; Barioni, A.; Camargo, O.; Denke, R.Z.; Faria, P.N. de; Pires, K.C.C.

    2007-01-01

    The elastic scattering of the radioactive halo nucleus 6 He on 27 Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential (SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6 He on 27 Al are similar to those for stable, weakly bound projectiles as 6,7 Li, 9 Be and larger than stable, tightly bound projectile as 16 O on 27 Al

  4. Differential cross-section measurements at the University of Kentucky - Adventures in analysis

    International Nuclear Information System (INIS)

    Vanhoy, J.R.; Garza, E.A.; Steves, J.L.; Hicks, S.F.; Henderson, S.L.; Sidwell, L.C.; Champine, B.R.; Crider, B.P.; Liu, S.H.; Peters, E.E.; Prados-Estevez, F.M.; McEllistrem, M.T.; Ross, T.J.; Yates, S.W.

    2014-01-01

    Elastic and inelastic neutron scattering cross-sections are determined at the University of Kentucky Accelerator Laboratory (UKAL) 1 using time-of-flight techniques at incident energies in the fast neutron region. Measurements have been completed for scattering from 23 Na and for the 23 Na(n,n'γ) reaction; similar measurements are in progress for 54 Fe. Commencing in the summer of 2014, measurements will address 56 Fe. An overview of the facilities and instrumentation at UKAL is given, and our measurement and analysis procedures are outlined. Of particular concern are portions of the analysis which limit the accuracy and precision of the measurements. We briefly examine detector efficiencies derived from the 3 H(p,n) cross-sections, attenuation and multiple scattering corrections, and neutron and γ-ray cross-sections standardizations. (authors)

  5. Theoretical study of cross sections of proton-induced reactions on cobalt

    Directory of Open Access Journals (Sweden)

    Mustafa Yiğit

    2018-04-01

    Full Text Available Nuclear fusion may be among the strongest sustainable ways to replace fossil fuels because it does not contribute to acid rain or global warming. In this context, activated cobalt materials in corrosion products for fusion energy are significant in determination of dose levels during maintenance after a coolant leak in a nuclear fusion reactor. Therefore, cross-section studies on cobalt material are very important for fusion reactor design. In this article, the excitation functions of some nuclear reaction channels induced by proton particles on 59Co structural material were predicted using different models. The nuclear level densities were calculated using different choices of available level density models in ALICE/ASH code. Finally, the newly calculated cross sections for the investigated nuclear reactions are compared with the experimental values and TENDL data based on TALYS nuclear code. Keywords: Cobalt, Nuclear Structural Materials, Reaction Cross Section, TENDL Database

  6. Measurement of 14 MeV neutron cross section of {sup 129}I with foil activation method

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Nakano, Daisuke; Takahashi, Akito [Osaka Univ., Suita (Japan). Faculty of Engineering

    1997-03-01

    The {sup 129}I, which is one of the most famous fission products (FPs), is of very important concern from the standpoint of waste transmutation due to its extremely long half life. The accurate reaction cross section data of {sup 129}I induced by 14 MeV neutrons are indispensable when evaluating the performance to transmute it in a fusion reactor. However, there was no available experimental data reported until now. We measured 14 MeV neutron induced reaction cross sections of {sup 129}I to give the reference cross section data for evaluation of transmutation performance and nuclear data, using OKTAVIAN facility of Osaka university, Japan. Since the available amount of {sup 129}I as a sample is quite small, probably less than 1 mg, the foil activation method was adopted in the measurement. The sample was a sealed source of {sup 129}I and the {gamma}-rays from the irradiated sample were measured with a Hp-Ge detector. Several {gamma}-rays peaks which could be expected to be caused by two nuclear reactions of {sup 129}I(n,2n) and {sup 129}I(n,{gamma}) were observed. We confirmed that these peaks corresponded to those of {sup 128}I and {sup 130}I through ascertaining each energy and half life. From the measurement, the cross section of {sup 129}I(n,2n) and the effective production cross section of {sup 130}I produced by the {sup 129}I(n,{gamma}){sup 130}I reaction including the contribution of {sup 129}I(n,{gamma}){sup 130m}I reaction, that were estimated to be 1.1{+-}0.1 b and 0.032{+-}0.003 b, respectively at 14.8 MeV, were obtained with an acceptable accuracy of about 10 %, though the errors caused by the uncertainty of {gamma} decay scheme data still existed. The measured cross sections were compared with the evaluated nuclear data of JENDL-3.2 and ENDF/B-VI. For the {sup 129}I(n,2n) reaction, the evaluations overestimate the cross section by 30-40 %, while for the {sup 129}I(n,{gamma}) reaction, the evaluations underestimate by at least one order of magnitude

  7. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the 15N(p,n) reaction as neutron source

    International Nuclear Information System (INIS)

    Poenitz, Erik

    2010-01-01

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The 15 N(p,n) 15 O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the 15 N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure 209 Bi and 181 Ta samples at 4 MeV incident neutron energy. Results are compared with other

  8. Measurements of fusion cross section for 12C +63,65 Cu systems

    International Nuclear Information System (INIS)

    Rocha, C.A. da.

    1987-01-01

    Cross-section measurements for nuclear fusion in the 12 C+ 63.65 Cu system, at 12 C energy range from 0.9 to 1.8 times the Coulomb barrier are presented. In order to detect and to obtain the mass identification of the evaporation residues following the fusion process, the time of flight method was adopted in conjunction with an eletrostatic deflector capable of separating the evaporation residues from the beam particles. The limitation and advantadges of this method of measurement are discussed. The excitation functions were analysed using the unidimensional barrier penetration model with different nuclear potentials. Theoretical fusion cross-section values obtained from this analysis were systematically smaller than our measured values, in the energy region below the Coulomb barrier. In order to discover which channel enhances the fusion cross-section in this region, a coupled channel calculation was performed, with the CCFUS code. The experimental data for the above reactions were compared with the systems 16.18 O+ 63.65 Cu, measured by our group. In this comparison, it was noted that the systems 12 C+ 63.65 Cu, have greater fusion cross section below the Coulomb barrier. The comparison of velocity spectra of the evaporated residues for the two systems shows that 12 C+ 63 Cu has a strong reaction channel that was not present in the 12 C+ 65 Cu system. (author) [pt

  9. Measurement of the differential and total cross sections of the γ d →K0Λ (p ) reaction within the resonance region

    Science.gov (United States)

    Compton, N.; Taylor, C. E.; Hicks, K.; Cole, P.; Zachariou, N.; Ilieva, Y.; Nadel-Turonski, P.; Klempt, E.; Nikonov, V. A.; Sarantsev, A. V.; Adhikari, K. P.; Adhikari, S.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Camp, M.; Cao, Frank Thanh; Cao, T.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Fradi, A.; Gavalian, G.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Holtrop, M.; Hughes, S. M.; Hyde, C. E.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Torayev, B.; Trivedi, A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zhang, J.; CLAS Collaboration

    2017-12-01

    We report the first measurement of differential and total cross sections for the γ d →K0Λ (p ) reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8-3.6 GeV and 0.5- 2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published cross sections for K+Λ photoproduction, provide essential constraints on the nucleon resonance spectrum. A first partial wave analysis was performed that describes the data without the introduction of new resonances.

  10. Measurement of the helicity-dependent total cross-section for the {gamma}n{yields} p {pi}{sup -}{pi}{sup 0} reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Arends, H.J.; Beck, R.; Heid, E.; Jahn, O.; Lang, M.; Martinez-Fabregate, M.; Tamas, G.; Thomas, A. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Altieri, S.; Panzeri, A.; Pinelli, T. [INFN, Sezione di Pavia, Pavia (Italy); Universita di Pavia, Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Annand, J.R.M.; McGeorge, J.C.; Protopopescu, D.; Rosner, G. [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Blackston, M.A.; Weller, H.R. [Duke University, Department of Physics, Durham, NC (United States); Bradtke, C.; Dutz, H.; Klein, F.; Rohlof, C. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Braghieri, A.; Pedroni, P. [INFN, Sezione di Pavia, Pavia (Italy); Hose, N. d' [DSM/DAPNIA/SPhN, CEA Saclay, Gif-sur-Yvette Cedex (France); Fix, A. [Tomsk Polytechnic University, Laboratory of Mathematical Physics, Tomsk (Russian Federation); Kondratiev, R.; Lisin, V. [Academy of Science, INR, Moscow (Russian Federation); Meyer, W.; Reicherz, G. [Ruhr-Universitaet Bochum, Insitut fuer Experimentalphysik, Bochum (Germany); Rostomyan, T. [Universiteit Gent, Subatomaire en Stralingsfysica, Gent (Belgium); INFN, Sezione di Pavia, Pavia (Italy); Ryckbosch, D. [Universiteit Gent, Subatomaire en Stralingsfysica, Gent (Belgium)

    2011-03-15

    The helicity dependence of the total cross-section for the {gamma}n{yields}p{pi}{sup -}{pi}{sup 0} reaction has been measured for the first time at incident photon energies from 450 to 800MeV. The measurement was performed with the large-acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. Both the measured unpolarized and the helicity-dependent observables are not well described by the existing theoretical models. (orig.)

  11. A simple functional form for proton-208Pb total reaction cross sections

    International Nuclear Information System (INIS)

    Majumdar, S.; Deb, P.K.; Amos, K.

    2001-01-01

    A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering from 208 Pb of protons with energies in the range 30 to 300 MeV. The ratios of the total reaction cross sections calculated under this approximations compared well (to within a few percent) to those determined from the microscopic optical model potentials

  12. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    International Nuclear Information System (INIS)

    Tan, V H; Son, P N

    2016-01-01

    The thermal neutron radiative capture cross section for 186 W(n, γ) 187 W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of R cd = 420 and peak energy E n = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197 Au(n, γ) 198 Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations. (paper)

  13. The measurement of cross sections of inelastic and transfer reactions with gamma-particle coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Zagatto, V.A.B.; Oliveira, J.R.B.; Pereira, D.; Allegro, P.R.P.; Chamon, L.C.; Cybulska, E.W.; Medina, N.H.; Ribas, R.V.; Rossi Junior, E.S.; Seale, W.A.; Silva, C.P.; Gasques, L. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Toufen, D.L. [Instituto Federal de Educacao, Ciencia e Tecnologia, Guarulhos, SP (Brazil); Silveira, M.A.G. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Zahn, G.S.; Genezini, F.A.; Shorto, J.M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Lubian, J.; Linares, R. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Fisica; Nobre, G.P. [Lawrence Livermore National Laboratory, Livermore (United States)

    2012-07-01

    Full text: A new method was developed in Pelletron laboratory to measure gamma-particle coincidences and the chosen experiment to test this method was the {sup 18}O +{sup 110} Pd in the 46-60 MeV range. The following work aims to obtain experimental cross sections of inelastic excitation 0{sup +} {yields} 2{sup +} of {sup 110}Pd and transfer to excited states reactions (both measured by gamma-particle coincidences). The measurements were made at the Pelletron accelerator laboratory of the University of Sao Paulo with the Saci-Perere spectrometer [1], which consists of 4 GeHP Compton suppressed gamma detectors and a 4{pi} charged particle ancillary system with 11{Delta}E-E plastic phoswich scintillators (further details about the experimental procedure may be found in [2]). Calculations were performed with a new model based on the Sao Paulo Potential, specifically developed for the inclusion of dissipative processes like deep-inelastic collisions (DIC) [3,4] considering the Coulomb plus nuclear potential (with the aid of FRESCO code [5]). The experimental cross sections were obtained such as described in [6] including particle-gamma angular correlations, finite size of gamma and particle detectors as the vacuum de-alignment effects [7] (caused by hyperfine interaction) for the {sup 110}Pd inelastic reaction and for the {sup 110}Pd 2n transfer reaction. Also the effects of the beam spot size and energy loss in the target were included in these calculations. For these purposes a new code has been developed to assist in the data analysis. The gamma-particle angular correlations are calculated using the scattering amplitudes given by FRESCO. The theoretical predictions still consider 2 different types of normalization factors in its the real part: 1:0, and 0:6 as proposed in [3] for the weakly bound projectile cases. The analyses indicate that the 0:6 factor describes better the experimental data possible due to the large density of states in the transitional region. [1

  14. A CVD Diamond Detector for (n,a) Cross-Section Measurements

    CERN Document Server

    Weiss, Christina; Griesmayer, Erich; Guerrero, Carlos

    A novel detector based on the chemical vapor deposition (CVD) diamond technology has been developed in the framework of this PhD, for the experimental determination of (n,a) cross-sections at the neutron time-of-flight facility n_TOF at CERN. The 59Ni(n,a)56Fe cross-section, which is relevant for astrophysical questions as well as for risk-assessment studies in nuclear technology, has been measured in order to validate the applicability of the detector for such experiments. The thesis is divided in four parts. In the introductory part the motivation for measuring (n,a) cross-sections, the experimental challenges for such measurements and the reasons for choosing the CVD diamond technology for the detector are given. This is followed by the presentation of the n_TOF facility, an introduction to neutron-induced nuclear reactions and a brief summary of the interaction of particles with matter. The CVD diamond technology and the relevant matters related to electronics are given as well in this first part of the t...

  15. High transfer cross sections from reactions with 254Es

    International Nuclear Information System (INIS)

    Schaedel, M.; Bruechle, W.; Bruegger, M.; Gaeggeler, H.; Moody, J.; Schardt, D.; Suemmerer, K.; Hulet, E.K.; Dougan, A.D.; Dougan, R.J.; Landrum, J.H.; Lougheed, R.W.; Wild, J.F.; O'Kelly, G.D.

    1985-08-01

    We report radiochemically determined cross sections for the heaviest known actinides produced in transfer reactions of 101 MeV 16 O, 98 MeV 18 O and 127 MeV 22 Ne with 254 Es as a target. A comparison with data for similar transfers from 248 Cm targets is made. Transfer cross sections are extrapolated for the production of unknown, neutron-rich isotopes of elements 101 through 105, and the unique potential of 254 Es as a target to make these exotic nuclei accessible is demonstrated. (orig.)

  16. Measured and evaluated fast neutron cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Guenther, P.; Smith, A.; Smith, D.; Whalen, J.; Howerton, R.

    1975-07-01

    Fast neutron total and scattering cross sections of elemental nickel are measured. Differential elastic scattering cross sections are determined from incident energies of 0.3 to 4.0 MeV. The cross sections for the inelastic neutron excitation of states at: 1.156 +- 0.015, 1.324 +- 0.015, 1.443 +- 0.015, 2.136 +- 0.013, 2.255 +- 0.030, 2.449 +- 0.030, 2.614 +- 0.020 and 2.791 +- 0.025 MeV are measured to incident neutron energies of 4.0 MeV. The total neutron cross sections are determined from 0.25 to 5.0 MeV. The experimental results are discussed in the context of optical and statistical models. It is shown that resonance width-fluctuation and correlation effects are significant. The present experimental and theoretical results, together with previously reported values, are used to construct a comprehensive evaluated elemental data file in the ENDF format. Some comparisons are made with previously reported evaluated files. In addition, some selected reactions which are widely used in dosimetry and other applications are presented as supplemental evaluated isotopic-data files. The numerical quantities are presented in tabular form. (3 tables, 29 figures)

  17. Measurement of 54Fe(n,2n)53Fe cross section near threshold

    International Nuclear Information System (INIS)

    Smither, R.K.; Greenwood, L.R.

    1984-01-01

    A series of experiments were performed at the Princeton Plasma Physics Laboratory to measure the cross section of the 54 Fe(n,2n) 53 Fe reaction near threshold. Measurements were made at 6 different neutron energies and cover the 1 MeV energy range from threshold (13.64 MeV) to 14.64 MeV. The 54 Fe(n,2n) cross section was measured relative to the 27 Al(n,p) 27 Mg cross section to an accuracy of a few percent. These accurate cross-section measurements will be useful in calculating damage caused by 14 MeV D-T plasma neutrons in Fe and calculating the production of the long-lived 53 Mn nuclei that account for much of the buildup of long-lived radioactivity in steel structures and other ferrous materials used in the construction of fusion reactors. They will also play an important part in a new method for measuring the plasma ion temperature of a D-T plasma

  18. Measurements of fission cross-sections and of neutron production rates

    International Nuclear Information System (INIS)

    Billaud, P.; Clair, C.; Gaudin, M.; Genin, R.; Joly, R.; Leroy, J.L.; Michaudon, A.; Ouvry, J.; Signarbieux, C.; Vendryes, G.

    1958-01-01

    a) Measurements of neutron induced fission cross-sections in the low energy region. The variation of the fission cross sections of several fissile isotopes has been measured and analysed, for neutron energies below 0,025 eV. The monochromator was a crystal spectrometer used in conjunction with a mechanical velocity selector removing higher order Bragg reflections. The fissile material was laid down on the plates of a fission chamber by painting technic. An ionization chamber, having its plates coated with thin 10 B layers, was used as the neutron flux monitor. b) Measurement of the fission cross section of 235 U. We intend to measure the variation of the neutron induced fission cross section of 235 U over the neutron energy range from 1 keV by the time of flight method. The neutron source is the uranium target of a pulsed 28 MeV electron linear accelerator. The detector is a large fission chamber, with parallel plates, containing about 10 g of 235 U (20 deposits of 25 cm diameter). The relative fission data were corrected for the neutron spectrum measured with a set of BF 3 proportional counters. c) Mean number ν of neutrons emitted in neutron induced fission. We measured the value of ν for several fissile isotopes in the case of fission induced by 14 MeV neutrons. The 14 MeV neutrons were produced by D (t, n) α reaction by means of a 300 kV Cockcroft Walton generator. (author) [fr

  19. Measurement of 58Fe (p , n)58Co reaction cross-section within the proton energy range of 3.38 to 19.63 MeV

    Science.gov (United States)

    Ghosh, Reetuparna; Badwar, Sylvia; Lawriniang, Bioletty; Jyrwa, Betylda; Naik, Haldhara; Naik, Yeshwant; Suryanarayana, Saraswatula Venkata; Ganesan, Srinivasan

    2017-08-01

    The 58Fe (p , n)58Co reaction cross-section within Giant Dipole Resonance (GDR) region i.e. from 3.38 to 19.63 MeV was measured by stacked-foil activation and off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron facility at Mumbai. The present data were compared with the existing literature data and found to be in good agreement. The 58Fe (p , n)58Co reaction cross-section as a function of proton energy was also theoretically calculated by using the computer code TALYS-1.8 and found to be in good agreement, which shows the validity of the TALYS-1.8 program.

  20. Kerma factors and reaction cross sections for n + 12C between 15 and 18 MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Chen, Z.M.; Baird, K.; Walter, R.L.

    1988-01-01

    Differential elastic and inelastic (4.44 MeV) neutron scattering cross sections from 12 C are presented at 15.6, 16.8 and 17.3 MeV. The existing 18.2 MeV differential cross-section data were combined with newly measured analysing power data to parametrise neutron scattering at this energy. The 12 C recoil kerma factors were calculated and reaction cross sections were obtained from a phase-shift analysis and coupled channel analyses in the 15.6-18.2 MeV energy range. (author)

  1. Influence of vibrations of gas molecules on neutron reaction cross sections

    Science.gov (United States)

    Bowman, C. D.; Schrack, R. A.

    1980-01-01

    The change in molecular vibrational energy upon absorption of a neutron by a nucleus bound in a free molecule can influence resonance shape and other aspects of neutron reaction cross sections. A formalism is developed for centrosymmetric molecules such as UF6 and applied to the shape of the 6.67 eV resonance in 238U. The ratio of the resonance shape for 238UF6 gas and for solid 238U3O8 has been measured and compared with the calculation. Reasonable agreement is obtained indicating the validity of the calculation and the necessity to include vibration effects to avoid large errors in measurements and calculations on gascontaining systems. NUCLEAR REACTIONS 238U(n,γ) measured at 6.67 eV resonance; Effect of molecular vibrations studied experimentally and theoretically.

  2. Status of (n,2n) cross section measurements at Bruyeres-le-Chatel

    International Nuclear Information System (INIS)

    Frehaut, J.; Bertin, A.; Bois, R.; Jary, J.

    1980-05-01

    Cross sections for the (n,2n) reactions have been measured between threshold and 15 MeV for about 50 elements and separated isotopes using the large gadolinium-loaded liquid scintillator method and the 7 MV tandem Van de Graaff accelerator as a pulsed neutron source. The (n,2n) cross sections have been normalized to the fission cross section of 238 U; they are obtained with a relative accuracy of 4% to 10%. The systematic trends of the data obtained on series of separated isotopes are discussed, and some comparaisons with statistical model calculations are presented

  3. Trojan Horse cross section measurements and their impact on primordial nucleosynthesis

    Science.gov (United States)

    Pizzone, R. G.; Spartá, R.; Bertulani, C.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Mukhamedzhanov, A.; Tumino, A.

    2018-01-01

    Big Bang Nucleosynthesis (BBN) nucleosynthesis requires several nuclear physics inputs and, among them, an important role is played by nuclear reaction rates. They are among the most important input for a quantitative description of the early Universe. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)-factor. The result of these recent measurements is reviewed and compared with the available direct data. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01reaction rate compilations. Their value were therefore used as input physics for primordial nucleosynthesis calculations in order to evaluate their impact on the calculated primordial abundances of D, 3,4He and 7Li. These ones were then compared with the observational primordial abundance estimates in different astrophysical sites. A comparison was also performed with calculations using other reaction rates compilations available in literature.

  4. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    International Nuclear Information System (INIS)

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV

  5. Measurement of differential (n,x{alpha}) cross section using 4{pi} gridded ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Matsuyama, Shigeo; Kiyosumi, Takehide; Nauchi, Yasushi; Saito, Keiichiro; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Kawano, Toshihiko

    1997-03-01

    We carried out the measurements of high resolution {alpha} emission spectra of {sup 58}Ni and {sup nat}Ni between 4.5 and 6.5 MeV, and {sup 12}C(n,x{alpha}) cross section using a 4{pi} gridded ionization chamber. In Ni measurement, overall energy resolution was improved to around 200 keV by optimizing a sample thickness and a neutron source width. Measured alpha spectra showed separate peaks corresponding to the ground and low-lying excited states of the residual nucleus ({sup 55}Fe). These results were compared with another direct measurement and statistical model calculations. In {sup 12}C measurement, GIC was applied for (n,x{alpha}) reactions of light nuclei. This application is difficult to (n,x{alpha}) cross sections of light nuclei, because of the influences of large recoil energy and multi-body break-up. We developed new methods which eliminate the effects of recoil nuclei and multi-body break-up and applied them to {sup 12}C(n,x{alpha}) reaction at En=14.1 MeV. In our experiment, the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be angular differential cross section and {sup 12}C(n,n`3{alpha}) cross section were obtained. (author)

  6. Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Michael E. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-02-01

    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

  7. Approximation of the cross-sections for charged-particle emission reactions near the threshold

    International Nuclear Information System (INIS)

    Badikov, S.A.; Pashchenko, A.B.

    1990-01-01

    We perform an analytical approximation of the energy dependence of the cross-sections for the reactions (n,p) and (n,γ) from the BOSPOR library, correct them for the latest differential and integral experimental data using the common features, characteristic of the energy dependence of the threshold reaction cross-section and making some physical assumptions. 19 refs, 1 fig., 1 tab

  8. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  9. Fission cross section measurements of actinides at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  10. Neutral strange particle production and inelastic cross section in p-bar+Ta reaction at 4 GeV/c

    International Nuclear Information System (INIS)

    Miyano, K.; Noguchi, Y.; Yoshimura, Y.

    1988-01-01

    The inclusive production of K/sub s//sup 0/, /Lambda/ Lambda-bar, and K/sub s//sup 0//Lambda/in the p-barTa reaction at 4 GeV/c was measured and compared with that in the p-barp reaction. The total inelastic and topological cross sections were also measured. The number of /Lambda/s produced in the p-barTa reaction was 11.3 times larger than that expected from the geometrical cross section, which is defined as A/sup 2/3/ times the cross section for the p-barp reaction. The yield ratio Lambda-bar//Lambda/was found to be 2 x 10/sup -2/. These values cannot be accounted for by a straightforward extension of the p-barN reaction. Besides, a correlation of 2 vees like K/sub s//sup 0/-/Lambda/could not prove their simultaneous production. Nuclear temperatures of 135 and 97 MeV were obtained from the kinetic energy spectra of K/sub s//sup 0/ and /Lambda/ respectively. The kinematical characteristics of the K/sub s//sup 0/ and /Lambda/produced were analyzed in terms of the fireball model

  11. Measurement of the doubly differential cross section for π-p → π+π-n near threshold

    International Nuclear Information System (INIS)

    Walter, J.B.

    1980-05-01

    The doubly differential cross sections for the π + from the reaction π - p → π + π - n were measured at about twenty points for each of five energies between 245 MeV and 356 MeV. The experiment was carried out at the Clinton P. Anderson Meson Physics Facility, where a double focusing magnetic spectrometer detected the π + mesons produced in a liquid hydrogen target. The measurements were normalized by comparison with π - p elastic scattering measured with the same apparatus. These are the first such measurements in this energy range, and have an accuracy between 4.7% and 39%. The integrated reaction cross section was determined at each energy with an accuracy of about 5%. These agree with but are an improvement over previous measurements in this energy range. Comparison of the extrapolated threshold value of the mean square modulus of the matrix element with the soft pion calculations favors the symmetry breaking mechanism of Weinberg (xi = 0). It also demonstrates the futility of attempting to determine the symmetry breaking parameter xi from a single measurement of the integrated reaction cross section

  12. Geometrical aspects of reaction cross sections for 3He, 4He and 12C projectiles

    International Nuclear Information System (INIS)

    Ingemarsson, A.; Lantz, M.

    2003-04-01

    A black-disc model combined with accurate matter densities has been used for an investigation of reaction cross sections for 3 He, 4 He and 12 C projectiles. A simple relation is derived between the energy dependence of the reaction cross sections and the strength of the nucleon-nucleon interaction. A comparison is also made of the reaction cross sections for 3 He and 4 He for six different nuclei 12 C, 16 O, 40 Ca, 58,60 Ni and 208 Pb

  13. ZZ RRDF-98, Cross-sections and covariance matrices for 22 neutron induced dosimetry reactions

    International Nuclear Information System (INIS)

    Zolotarev, K.I.; Ignatyuk, A.V.; Mahokhin, V.N.; Pashchenko, A.B.

    2005-01-01

    1 - Description of program or function: Format: ENDF-6 format; Number of groups: Continuous energy; Dosimetry reactions: 6-C-12(n,2n), 8-O-16(n,2n), 9-F-19(n,2n), 12-Mg-24(n,p), 22-Ti-46(n,2n), 22-Ti-46(n,p), 22-Ti-47(n,x), 22-Ti-48(n,p), 22-Ti-48(n,x), 22-Ti-49(n,x), 23-V-51(n,alpha), 26-Fe-54(n,2n), 26-Fe-54(n,alpha), 26-Fe-56(n,p), 27-Co-59(n,alpha), 29-Cu-63(n,alpha), 33-As-75(n,2n), 41-Nb-93(n,2n), 41-Nb-93(n,n'), 45-Rh-103(n,n'), 49-In-115(n,n'), 59-Pr-141(n,2n); Origin: Russian Federation; Weighting spectrum: None. RRDF-98 contains original evaluations of cross section data performed at the Institute of Physics and Power Engineering, Obninsk, for 22 neutron induced dosimetry reactions. The dataset also contains the corresponding covariance matrices. 2 - Methods: The evaluation of excitation functions was performed on the basis of statistical analysis of corrected experimental data in the framework of generalized least squares method and taking into account the results of optical-statistical STAPRE and GNASH calculations. The experimental cross section data including the most recent results were critically reviewed and processed in this study. If necessary, the data were normalized in order to make adjustments in relevant cross sections and decay schemes. The covariance matrices were prepared and the evaluated cross section data are presented in ENDF-6 format (Files 3, 33). For estimation of correlations between experimental data the total uncertainties of measured cross sections have been separated into statistical and systematic parts and correlation coefficients between components of systematic parts were assigned according to information given in the original publications and EXFOR library. Then the correlation matrix of cross sections measured within one experiment was calculated and approximated by matrix with a constant (average) correlation coefficient. The overall correlation matrix was composed of such sub-matrices in the assumption that the cross

  14. Investigation of activation cross-sections of alpha-induced nuclear reactions on natural cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kim, Kwangsoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Lee, Manwoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Research Center, Dongnam Institute of Radiological and Medical Science, Busan 619-953 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2014-08-15

    We measured production cross-sections of Sn, In, and Cd radionuclides from alpha-induced reactions on {sup nat}Cd from their respective threshold to 45 MeV by using a stacked-foil activation technique at the MC-50 cyclotron of the Korea Institute of Radiological and Medical Sciences. The results were compared with the earlier measurements as well as with the theoretical values obtained from the TENDL-2012 library based on the TALYS 1.4 code. Our measurements for the {sup 110,113g,117m}Sn, {sup 108m,108g,109g,110m,110g,111g,113m,114m,115m,116m,117m,117g}In, and {sup 111m,115g}Cd radionuclides in the energy region from the threshold energy to 45 MeV are in general good agreement with the other experimental data and calculated results. The integral yields for thick target were also deduced using the measured cross-sections and the stopping power of natural cadmium target and found in agreement with the directly measured yields available in the literature. The measured cross-sections find importance in various practical applications including nuclear medicine and improvement of nuclear model calculations.

  15. Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay

    Science.gov (United States)

    Cavallaro, M.; Cappuzzello, F.; Agodi, C.; Acosta, L.; Auerbach, N.; Bellone, J.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello-Lewin, T.; Boztosun, I.; Branchina, V.; Bussa, M. P.; Calabrese, S.; Calabretta, L.; Calanna, A.; Calvo, D.; Carbone, D.; Chávez Lomelí, E. R.; Coban, A.; Colonna, M.; D'Agostino, G.; De Geronimo, G.; Delaunay, F.; Deshmukh, N.; de Faria, P. N.; Ferraresi, C.; Ferreira, J. L.; Finocchiaro, P.; Fisichella, M.; Foti, A.; Gallo, G.; Garcia, U.; Giraudo, G.; Greco, V.; Hacisalihoglu, A.; Kotila, J.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lavagno, A.; La Via, F.; Lay, J. A.; Lenske, H.; Linares, R.; Litrico, G.; Longhitano, F.; Lo Presti, D.; Lubian, J.; Medina, N.; Mendes, D. R.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Petrascu, H.; Pinna, F.; Reito, S.; Rifuggiato, D.; Rodrigues, M. R. D.; Russo, A. D.; Russo, G.; Santagati, G.; Santopinto, E.; Sgouros, O.; Solakci, S. O.; Souliotis, G.; Soukeras, V.; Spatafora, A.; Torresi, D.; Tudisco, S.; Vsevolodovna, R. I. M.; Wheadon, R. J.; Yildirin, A.; Zagatto, V. A. B.

    2018-02-01

    Neutrinoless double beta decay (0vββ) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research “beyond Standard Model” and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0vββ decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0vββ Nuclear Matrix Elements. In DCE reactions and ββ decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on ββ matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0vββ.

  16. Parameterization of pion production and reaction cross sections at LAMPF energies

    International Nuclear Information System (INIS)

    Burman, R.L.; Smith, E.S.

    1989-05-01

    A parameterization of pion production and reaction cross sections is developed for eventual use in modeling neutrino production by protons in a beam stop. Emphasis is placed upon smooth parameterizations for proton energies up to 800 MeV, for all pion energies and angles, and for a wide range of materials. The resulting representations of the data are well-behaved and can be used for extrapolation to regions where there are no measurements. 22 refs., 16 figs., 2 tabs

  17. Evaluation of the D(γ,n) reaction cross section

    International Nuclear Information System (INIS)

    Murata, T.

    1994-01-01

    Evaluation was performed for the cross section of photo-disintegration of Deuteron in the photon energy range between the threshold energy of the reaction (2.224 MeV) and pion production threshold (140 MeV). Angular distributions of the emitted neutrons were also evaluated. (author)

  18. Reaction cross section measurements of neutron-rich exotic nuclei in the vicinity of closed shells N=20 and N=28

    International Nuclear Information System (INIS)

    Khouaja, A.

    2003-12-01

    Using the direct method, the mean energy integrated reaction cross section was investigated for a wide range of neutron-rich nuclei (N → Ar) at GANIL. Using the parametrisation of S. Kox, 19 new radii measurements (reaction cross sections) were obtained. By the isotopic, isotonic and isospin dependence, the evolution of the strong reduced radius was studied according to the excess of neutrons. New halo effect is proposed to the nuclei of Mg 35 and S 44 . A quadratic parametrization is also proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. In addition, we used a modified version of the Glauber model for studying the tail and matter distribution of nuclei. Indeed, using our new data the effects of the nuclear size (root mean square radii) and the matter distribution (diffusivity) were de-convoluted for each isotope. The root mean square radii of Na and Mg isotopes obtained so far were consistent with the ones from literature. (author)

  19. Performing Neutron Cross-Section Measurements at RIA

    International Nuclear Information System (INIS)

    Ahle, L.E.

    2003-01-01

    The Rare Isotope Accelerator (RIA) is a proposed accelerator for the low energy nuclear physics community. Its goal is to understand the natural abundances of the elements heavier than iron, explore the nuclear force in systems far from stability, and study symmetry violation and fundamental physics in nuclei. To achieve these scientific goals, RIA promises to produce isotopes far from stability in sufficient quantities to allow experiments. It would also produce near stability isotopes at never before seen production rates, as much as 10 12 pps. Included in these isotopes are many that are important to stockpile stewardship, such as 87 Y, 146-50 Eu, and 231 Th. Given the expected production rates at RIA and a reasonably intense neutron source, one can expect to make ∼10 μg targets of nuclei with a half-life of ∼1 day. Thus, it will be possible at RIA to obtain experimental information on the neutron cross section for isotopes that have to date only been determined by theory. There are two methods to perform neutron cross-section measurements, prompt and delayed. The prompt method tries to measure each reaction as it happens. The exact technique employed will depend on the reaction of interest, (n,2n), (n,γ), (n,p), etc. The biggest challenge with this method is designing a detector system that can handle the gamma ray background from the target. The delayed method, which is the traditional radiochemistry method for determining the cross-section, irradiates the targets and then counts the reaction products after the fact. While this allows one to avoid the target background, the allowed fraction of target impurities is extremely low. This is especially true for the desired reaction product with the required impurity fraction on the order of 10 -9 . This is particularly problematic for (n,2n) and (n,γ) reactions, whose reaction production cannot be chemically separated from the target. In either case, the first step at RIA to doing these measurements is

  20. Surrogate measurement of the 238Pu(n,f) cross section

    International Nuclear Information System (INIS)

    Ressler, J. J.; Burke, J. T.; Escher, J. E.; Bernstein, L. A.; Bleuel, D. L.; Casperson, R. J.; Gostic, J.; Henderson, R.; Scielzo, N. D.; Thompson, I. J.; Wiedeking, M.; Angell, C. T.; Goldblum, B. L.; Munson, J.; Basunia, M. S.; Phair, L. W.; Beausang, C. W.; Hughes, R. O.; Hatarik, R.; Ross, T. J.

    2011-01-01

    The neutron-induced fission cross section of 238 Pu was determined using the surrogate ratio method. The (n,f) cross section over an equivalent neutron energy range 5-20 MeV was deduced from inelastic α-induced fission reactions on 239 Pu, with 235 U(α,α ' f) and 236 U(α,α ' f) used as references. These reference reactions reflect 234 U(n,f) and 235 U(n,f) yields, respectively. The deduced 238 Pu(n,f) cross section agrees well with standard data libraries up to ∼10 MeV, although larger values are seen at higher energies. The difference at higher energies is less than 20%.

  1. The cross-section of the 10B(n,α)7Li reaction measured in the MeV energy range

    International Nuclear Information System (INIS)

    Giorginis, Georgios; Khryachkov, Vitali

    2006-01-01

    The excitation function of the 10 B(n,α) 7 Li reaction was measured between 1.5 and 5.6 MeV within the frame of the IAEA Coordinated Research Project (CRP) on 'Improvement of the Standard Cross Sections for Light Elements'. An ionisation chamber and signal digitisation were used for the spectrometry of the reaction products, which were forwards emitted by bombarding a thin boron target with neutrons produced at the IRMM Van de Graaff accelerator. The neutron flux was determined by measuring the backwards emitted fission fragments from a 238 U sample mounted in a back-to-back geometry relative to the boron target. The highlight of this study was the discovery of the kinematic effect of particle leaking, which is very important for the accurate determination of the number of the boron reaction events. The experiment is described and the results are discussed and compared with evaluations and experimental data of other groups

  2. Measurement of the Ir-191,193(n,2n)Ir-190,192 Reaction Cross Section Between 9.0 and 16.5 MeV

    Science.gov (United States)

    Wildenhain, Elizabeth; Finch, Sean; Tornow, Werner; Krishichayan, F.

    2017-09-01

    Iridium is one of the elements prioritized by Nonproliferation and Homeland Security agencies. In addition, Ir-192 is being used in various medical treatments. Improved data and corresponding evaluations of neutron-induced reactions on the iridium isotopes are required to meet the demands of several applications of societal interest. This study measured the cross section of the Ir-191,193(n, 2n)Ir-190,192 reactions at energies from 9.0 to 16.5 MeV using the activation technique. Natural Ir samples [Ir-191 37.3%, Ir-193 62.7%] were sandwiched between Au-197 monitor foils and irradiated with monoenergetic neutron beams at the tandem facility of the Triangle Universities Nuclear Laboratory (TUNL). Gamma rays from the irradiated samples were counted in TUNL's low background facility using high-efficient HPGe detectors. Measured cross-section data are compared to previous data and to predictions from nuclear data libraries (e.g. ENDF). Research at TUNL funded by the NSF.

  3. Thermal capture cross section for 58Ni (n,γ)59 Ni reaction

    International Nuclear Information System (INIS)

    Carbonari, A.W.; Pecequilo, B.R.S.

    1989-01-01

    The 58 Ni total thermal capture cross section was determined by suming the partial cross sections calculated for the primary transitions of the reaction 58 Ni (n,γ) 59 Ni. The primary transitions energies and intensities were determined from the 58 Ni thermal neutrons prompt gamma capture gamma rays spectrum in the 3.7 to 9.3 MeV region. The obtained value for the total cross section was 4.52 + 0.10b. (author) [pt

  4. Kerma factors and reaction cross sections for n + /sup 12/C between 15 and 18 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Chen, Z.M.; Baird, K.; Walter, R.L.

    1988-07-01

    Differential elastic and inelastic (4.44 MeV) neutron scattering cross sections from /sup 12/C are presented at 15.6, 16.8 and 17.3 MeV. The existing 18.2 MeV differential cross-section data were combined with newly measured analysing power data to parametrise neutron scattering at this energy. The /sup 12/C recoil kerma factors were calculated and reaction cross sections were obtained from a phase-shift analysis and coupled channel analyses in the 15.6-18.2 MeV energy range.

  5. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Jazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but also for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energy part of the resonance 1320 keV onto the cross section. Last experimental data for a wider energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E P = (320 - 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E P = 991 - 365 keV, the accuracy is not worse than 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The theoretical investigation of the given reaction included calculation of cross sections. The cross sections were calculated within the framework of model of direct capture with the using of optical potentials for the description of a channel of scattering. The wave functions of a bound state were generated in a potential reproducing binding energy of a proton in 14 N nucleus. Results of calculations were compared with the experimental data. (author)

  6. {sup 16}O({gamma},n) reaction cross section for 35 MeV

    Energy Technology Data Exchange (ETDEWEB)

    O`Keefe, G.J.; Bates, A.D.; Rassool, R.P.; McLean, D.J.; Thompson, M.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Terasawa, T.; Sugawara, M. [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science

    1994-12-31

    Double differential cross sections for the {sup 16}O({gamma},n) and {sup 16}O({gamma},nn)reactions have been measured with the photon tagging facility at Tohoku University. These measurements provide information on the important aspects of the reaction mechanism at a microscopic level. 6 refs., 4 figs.

  7. Accurate 238U(n , 2 n )237U reaction cross-section measurements from 6.5 to 14.8 MeV

    Science.gov (United States)

    Krishichayan, Bhike, M.; Tornow, W.; Tonchev, A. P.; Kawano, T.

    2017-10-01

    The cross section for the 238U(n ,2 n )237U reaction has been measured in the incident neutron energy range from 6.5 to 14.8 MeV in small energy steps using an activation technique. Monoenergetic neutron beams were produced via the 2H(d ,n )3He and 3H(d ,n )4He reactions. 238U targets were activated along with Au and Al monitor foils to determine the incident neutron flux. The activity of the reaction products was measured in TUNL's low-background counting facility using high-resolution γ -ray spectroscopy. The results are compared with previous measurements and latest data evaluations. Statistical-model calculations, based on the Hauser-Feshbach formalism, have been carried out using the CoH3 code and are compared with the experimental results. The present self-consistent and high-quality data are important for stockpile stewardship and nuclear forensic purposes as well as for the design and operation of fast reactors.

  8. Measurement of the $^{242}$Pu(n,f) reaction cross-section at the CERN n_TOF facility

    CERN Document Server

    AUTHOR|(CDS)2080481; Kokkoris, Michael; Vlachoudis, Vasilis

    The accurate knowledge of relevant nuclear data, such as the neutron-induced fission cross sections of various plutonium isotopes and other minor actinides, is crucial for the design of advanced nuclear systems as well as the development of comprehensive theoretical models of the fission process. The $^{242}$Pu(n,f) cross section was measured at the CERN n_TOF facility taking advantage of the wide energy range and the high instantaneous flux of the neutron beam. In this work, results for the $^{242}$Pu(n,f) measurement are presented along with a detailed description of the experimental setup, Monte-Carlo simulations and the analysis procedure, and a theoretical cross section calculation performed with the EMPIRE code.

  9. Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions.

    Science.gov (United States)

    Badwar, Sylvia; Ghosh, Reetuparna; Lawriniang, Bioletty M; Vansola, Vibha; Sheela, Y S; Naik, Haladhara; Naik, Yeshwant; Suryanarayana, Saraswatula V; Jyrwa, Betylda; Ganesan, Srinivasan

    2017-11-01

    The formation cross-section of medical isotope 99 Mo from the 98 Mo(n,γ) reaction at the neutron energy of 0.025eV and from the 100 Mo(n,2n) reaction at the neutron energies of 11.9 and 15.75MeV have been determined by using activation and off-line γ-ray spectrometric technique. The thermal neutron energy of 0.025eV was used from the reactor critical facility at BARC, Mumbai, whereas the average neutron energies of 11.9 and 15.75MeV were generated using 7 Li(p,n) reaction in the Pelletron facility at TIFR, Mumbai. The experimentally determined cross-sections were compared with the evaluated nuclear data libraries of ENDF/B-VII.1, CENDL-3.1, JENDL-4.0 and JEFF-3.2 and are found to be in close agreement. The 100 Mo(n,2n) 99 Mo reaction cross-sections were also calculated theoretically by using TALYS-1.8 and EMPIRE-3.2 computer codes and compared with the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Measurement of cross sections of threshold detectors with spectrum average technique

    International Nuclear Information System (INIS)

    Agus, Y.; Celenk, I.; Oezmen, A.

    2004-01-01

    Cross sections of the reactions 103 Rh(n, n') 103m Rh, 115 In(n, n') 115m In, 232 Th(n, f), 47 Ti(n, p) 47 Sc, 64 Zn(n, p) 64 Cu, 58 Ni(n, p) 58 Co, 54 Fe(n, p) 54 Mn, 46 Ti(n, p) 46 Sc, 27 Al(n, p) 27 Mg, 56 Fe(n, p) 56 Mn, 24 Mg(n, p) 24 Na, 59 Co(n, α) 56 Mn, 27 Al(n, α) 24 Na and 48 Ti(n, p) 48 Sc were measured with average neutron energies above effective threshold by using the activation method through usage of spectrum average technique in an irradiation system where there are three equivalent Am/Be sources, each of which has 592 GBq activity. The cross sections were determined with reference to the fast neutron fission cross section of 238 U. The measured values and published values are generally in agreement. (orig.)

  11. Ground-state and isomeric-state cross sections for the {sup 138}Ce(n,2n){sup 137}Ce reaction from its threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). Inst. of Theoretical Physics; Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; An, Li; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2015-07-01

    The cross sections of the {sup 138}Ce(n,2n){sup 137}Ce reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} were measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. CeO{sub 2} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beams were formed via the {sup 3}H(d,n){sup 4}He reaction. The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. The cross sections were also estimated using the nuclear model code, TALYS-1.6 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature data.

  12. Binary and tertiary neutron induced reaction cross sections of chromium and iron

    International Nuclear Information System (INIS)

    Garg, S.B.

    1989-01-01

    Investigation has been carried out for the following binary and tertiary reaction cross-sections of Cr-52 and Fe-56: (n,p), (n,pn), (n,np), (n,α), (n, nα), (n, 2n) and (n, 3n), energy spectra of the emitted neutron, proton, α-particle and γ-rays, angle-energy correlated double differential cross-sections for the secondary emitted neutrons and total production cross-sections for neutron, hydrogen, helium and gamma-rays. 12 refs, 20 figs, 1 tab

  13. Measurement of neutron-production double-differential cross sections for intermediate energy pion incident reaction

    International Nuclear Information System (INIS)

    Iwamoto, Yosuke; Shigyo, Nobuhiro; Satoh, Daiki

    2002-01-01

    Neutron-production double-differential cross sections for 870-MeV π + and π - and 2.1-GeV π + mesons incident on iron and lead targets were measured with NE213 liquid scintillators by time-of-flight technique. NE213 liquid scintillators 12.7 cm in diameter and 12.7 cm thick were placed in directions of 15, 30, 60, 90, 120 and 150deg. The typical flight path length was 15 m. Neutron detection efficiencies were derived from the calculation results of SCINFUL and CECIL codes. The experimental results were compared with the JAM code. The double differential cross sections calculated by the JAM code disagree with experimental data at neutron energies below about 30 MeV. JAM overestimates π + -incident neutron-production cross sections in forward angles at neutron energies of 100 to 500 MeV. (author)

  14. Nuclear structure effects on calculated fast neutron reaction cross sections

    International Nuclear Information System (INIS)

    Avrigeanu, V.

    1992-01-01

    The importance of accurate low-lying level schemes for reaction cross section calculation and need for microscopically calculated levels are proved with reference to fast neutron induced reactions in the A = 50 atomic mass range. The uses of the discrete levels both for normalization of phenomenological level density approaches and within Hauser-Feshbach calculations are discussed in this respect. (Author)

  15. Isomeric cross sections of neutron induced reactions on Ge and Ir isotopes

    International Nuclear Information System (INIS)

    Vlastou, R.; Papadopoulos, C.T.; Kokkoris, M.; Perdikakis, G.; Galanopoulos, S.; Patronis, N.; Serris, M.; Perdikakis, G.; Harissopulos, S.; Demetriou, P.

    2008-01-01

    The 72 Ge(n,α) 69m Zn, 74 Ge(n,α) 71m Zn, 76 Ge(n,2n) 75g+m Ge and 191 Ir(n,2n) 190 Ir g+m1 and 191 Ir(n,2n) 190 Ir m2 reaction cross sections were measured from 9.6 to 11.4 MeV relative to the 27 Al(n,α) 24 Na reference reaction via the activation method. The quasi-monoenergetic neutron beams were produced via the 2 H(d,n) 3 He reaction at the 5 MV VdG Tandem T11/25 accelerator of NCSR 'Demokritos'. Statistical model calculations using the codes STAPRE-F and EMPIRE (version 2.19) and taking into account pre-equilibrium emission were performed on the data measured in this work as well as on data reported in literature. (authors)

  16. Re/Os cosmochronometer: measurement of neutron cross sections

    International Nuclear Information System (INIS)

    Mosconi, M.

    2007-01-01

    the first excited level of 187 Os. This additional measurement was performed at the 3.7 MV Van de Graaff of Forschungszentrum Karlsruhe using monoenergetic neutron beams from the 7 Li(p, n) 7 Be reaction at threshold. The improved experimental results were used for the evaluation of the true stellar cross section and for the evaluation of the consequences for the Re/Os clock. It is found that the nuclear input is no longer determining the uncertainty of the derived age. First analyses using a simplified schematic model of the galactic chemical evolution yields a cosmic age of 15.6±1.4 Gyr, but needs to be complemented by a more realistic galactic evolution model. (orig.)

  17. Differential cross section measurement of radiative capture of protons by nuclei 12C

    International Nuclear Information System (INIS)

    Burtebayev, N.; Zazulin, D.M.; Buminskii, V.P.; Zarifov, R.A.; Tohtarov, R.N.; Sagindykov, Sh.Sh.; Baktibayev, M.K.

    2003-01-01

    Measurements of differential cross sections of nuclear reaction 12 C(p, γ) 13 N at 0, 45, 90, 135 Deg. to beam direction of flying protons in the field of E p = 350-1100 KeV with an error it is not worse than 10 % have been carried out. Most important was studied, from the astrophysical point of view, process of capture of protons by nucleuses 12 C on the ground state of a nucleus 13 N. It is experimentally shown isotropy of angular distribution of differential cross sections of reaction 12 C(p, γ) 13 N, in the given field energy of protons

  18. First cross-section measurements of the reactions Ag,109107(p ,γ )Cd,110108 at energies relevant to the p process

    Science.gov (United States)

    Khaliel, A.; Mertzimekis, T. J.; Asimakopoulou, E.-M.; Kanellakopoulos, A.; Lagaki, V.; Psaltis, A.; Psyrra, I.; Mavrommatis, E.

    2017-09-01

    Background: One of the primary objectives of the field of Nuclear Astrophysics is the study of the elemental and isotopic abundances in the universe. Although significant progress has been made in understanding the mechanisms behind the production of a large number of nuclides in the isotopic chart, there are still many open questions regarding a number of neutron-deficient nuclei, the p nuclei. To that end, experimentally deduced nuclear reaction cross sections can provide invaluable input to astrophysical models. Purpose: The reactions Ag,109107(p ,γ )Cd,110108 have been studied at energies inside the astrophysically relevant energy window in an attempt to provide experimental data required for the testing of reaction-rate predictions in terms of the statistical model of Hauser-Feshbach around the p nucleus 108Cd. Methods: The experiments were performed with in-beam γ -ray spectroscopy with proton beams accelerated by the Tandem Van de Graaff Accelerator at NCSR "Demokritos" impinging a target of natural silver. A set of high-purity germanium detectors was employed to record the emitted radiation. Results: A first set of total cross-section measurements in radiative proton-capture reactions involving Ag,109107, producing the p -nucleus 108Cd, inside the astrophysically relevant energy window is reported. The experimental results are compared to theoretical calculations, using talys. An overall good agreement between the data and the theoretical calculations has been found. Conclusions: The results reported in this work add new information to the relatively unexplored p process. The present measurements can serve as a reference point in understanding the nuclear parameters in the related astrophysical environments and for future theoretical modeling and experimental works.

  19. Neutron halo in 14B studied via reaction cross sections

    International Nuclear Information System (INIS)

    Fukuda, M.; Tanaka, M.; Iwamoto, K.; Wakabayashi, S.; Yaguchi, M.; Ohno, J.; Morita, Y.; Kamisho, Y.; Mihara, M.; Matsuta, K.; Nishimura, D.; Suzuki, S.; Nagashima, M.; Ohtsubo, T.; Ogura, T.; Abe, K.; Kikukawa, N.; Sakai, T.; Sera, D.; Takechi, M.; Izumikawa, T.; Suzuki, T.; Yamaguchi, T.; Sato, K.; Furuki, H.; Miyazawa, S.; Ichihashi, N.; Kohno, J.; Yamaki, S.; Kitagawa, A.; Sato, S.; Fukuda, S.

    2014-01-01

    Reaction cross sections (σ R ) for the neutron-rich nucleus 14 B on Be, C, and Al targets have been measured at several energies in the intermediate energy range of 45-120 MeV/nucleon. The present experimental σ R show a significant enhancement relative to the systematics of stable nuclei. The nucleon density distribution was deduced through the fitting procedure with the modified Glauber calculation. The necessity of a long tail in the density distribution was found, which is consistent with the valence neutron in 2s 1/2 orbital with the small empirical one-neutron separation energy in 14 B. (authors)

  20. Neutron cross section measurements at n-TOF for ADS related studies

    Science.gov (United States)

    Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.

    2006-05-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  1. Neutron cross section measurements at n-TOF for ADS related studies

    International Nuclear Information System (INIS)

    Mastinu, P F; Abbondanno, U; Aerts, G

    2006-01-01

    A neutron Time-of-Flight facility (n T OF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n T OF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed

  2. Neutron cross section measurements at n-TOF for ADS related studies

    CERN Document Server

    Mastinu, P F; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, P A; Audouin, L; Badurek, G; Bustreo, N; Aumann, P; Beva, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Segura, M E; Ferrant, L; Ferrari, A; Ferreira-Marques, R; itzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Guerrero, C; Gonçalves, I; Gallino, R; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Massimi, C; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescherand, M; Wisshak, K

    2006-01-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  3. Molecular dynamical and structural studies for the bakelite by neutron cross section measurements

    International Nuclear Information System (INIS)

    Voi, D.L.

    1992-05-01

    Neutron reaction cross sections were determined by transmission and scattering measurements, to study the dynamics and molecular structure of calcined bakelites. Total cross sections were determined, with a deviation smaller than 5%, from the literature values, by neutron transmission method and a specially devised approximation. These cross sections were then correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. Double differential scattering cross sections, scattering law values and frequency distributions were determined with 15% error using the neutron inelastic scattering method. The frequency distributions as well as the overall results from all experimental techniques used in this work allowed to suggest a structural model like polycyclic hydrocarbons, for calcined bakelite at 800 0 C. (author)

  4. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  5. ^{7}Be(n,α)^{4}He Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_TOF at CERN.

    Science.gov (United States)

    Barbagallo, M; Musumarra, A; Cosentino, L; Maugeri, E; Heinitz, S; Mengoni, A; Dressler, R; Schumann, D; Käppeler, F; Colonna, N; Finocchiaro, P; Ayranov, M; Damone, L; Kivel, N; Aberle, O; Altstadt, S; Andrzejewski, J; Audouin, L; Bacak, M; Balibrea-Correa, J; Barros, S; Bécares, V; Bečvář, F; Beinrucker, C; Berthoumieux, E; Billowes, J; Bosnar, D; Brugger, M; Caamaño, M; Calviani, M; Calviño, F; Cano-Ott, D; Cardella, R; Casanovas, A; Castelluccio, D M; Cerutti, F; Chen, Y H; Chiaveri, E; Cortés, G; Cortés-Giraldo, M A; Cristallo, S; Diakaki, M; Domingo-Pardo, C; Dupont, E; Duran, I; Fernandez-Dominguez, B; Ferrari, A; Ferreira, P; Furman, W; Ganesan, S; García-Rios, A; Gawlik, A; Glodariu, T; Göbel, K; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Harada, H; Heftrich, T; Heyse, J; Jenkins, D G; Jericha, E; Katabuchi, T; Kavrigin, P; Kimura, A; Kokkoris, M; Krtička, M; Leal-Cidoncha, E; Lerendegui, J; Lederer, C; Leeb, H; Lo Meo, S; Lonsdale, S J; Losito, R; Macina, D; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P; Mastromarco, M; Mazzone, A; Mendoza, E; Milazzo, P M; Mingrone, F; Mirea, M; Montesano, S; Nolte, R; Oprea, A; Pappalardo, A; Patronis, N; Pavlik, A; Perkowski, J; Piscopo, M; Plompen, A; Porras, I; Praena, J; Quesada, J; Rajeev, K; Rauscher, T; Reifarth, R; Riego-Perez, A; Rout, P; Rubbia, C; Ryan, J; Sabate-Gilarte, M; Saxena, A; Schillebeeckx, P; Schmidt, S; Sedyshev, P; Smith, A G; Stamatopoulos, A; Tagliente, G; Tain, J L; Tarifeño-Saldivia, A; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Vlachoudis, V; Vlastou, R; Vollaire, J; Wallner, A; Warren, S; Weigand, M; Weiß, C; Wolf, C; Woods, P J; Wright, T; Žugec, P

    2016-10-07

    The energy-dependent cross section of the ^{7}Be(n,α)^{4}He reaction, of interest for the so-called cosmological lithium problem in big bang nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of ^{7}Be and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure ^{7}Be, and a specifically designed experimental setup. Coincidences between the two alpha particles have been recorded in two Si-^{7}Be-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 1960s at a nuclear reactor. The energy dependence reported here clearly indicates the inadequacy of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the n_TOF results hint at a minor role of this reaction in BBN, leaving the long-standing cosmological lithium problem unsolved.

  6. Linear response theory applied to the computation of multi-differential cross sections in deep inelastic reactions

    International Nuclear Information System (INIS)

    Ngo, C.

    1978-01-01

    Correlations between observable quantities in deep inelastic reactions, which are observed through multidifferential cross sections measurements, provide a severe test for the models by making strong constraints. Nevertheless these multicorrelated measurements provide hints for the physical features which they have to take into account. (orig.) [de

  7. Differential cross section measurement of radiative capture of protons by nuclei 13C

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebayev, N.; Dzazairov-Kakhramanov, V.; Kadyrzhanov, K.K.; Sagindykov, Sh.Sh.; Zarifov, R.A.; Zazulin, D.M.

    2004-01-01

    Full text: The reaction 13 C(p,γ ) 14 N is the important one for the astrophysics, not only for nuclear synthesis of CNO elements, but and for nuclear synthesis of elements participating in subsequent combustion of helium [1]. The predominant yield of the reaction occurs at protons energies of less than 1 MeV. However, the clearness of the capture mechanism in this energy region is made difficult because of the superposition of the contribution of the low - energetical part of the resonance 1320 keV onto the cross section. Last experimental data for more wide energy region, informed in the work [1], and results of previous works, mentioned in that work, give reason for further continuation of the study of the reaction 13 C(p,γ ) 14 N. Measured data of the work [1] in the region of E ρ = (320 † 900) keV at the angles of 0 o and 90 o are obviously insufficient. In the present work measurements of differential cross sections of the reaction were carried out at protons energies E p = 991, 558 and 365 keV, the accuracy is not worse then 10%. There was studied the most (from the astrophysical point of view) important process of protons capture by 13 C nuclei onto the ground state of the 14 N nucleus. The 13 C (99%) targets, used in the experiment, were sprayed onto copper base. The target thickness was determined by incident protons energy losses in the target. The energy losses were clearly reflected in the corresponding spreading of transitions of radiation capture. The statement about the gamma-lines spreading is valid in this case, because energy losses in the target are here significantly more, than the energetical resolution of the detector. The peak width of the radiation capture gamma-line at half-height corresponds to energy losses of incident protons in the target. From the Table of brake values for protons in carbon [2] there was determined that the thickness of the target was 140 ± 5% μg/cm 2 . The upper part of gamma-lines in the spectrum repeats the

  8. Measurement of nuclear cross sections using radioactive beams

    International Nuclear Information System (INIS)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E.

    1999-01-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a 6 He nuclear radioactive beam (β emitting with half life 806.7 ms) for the study of the reaction 6 + 209 Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  9. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  10. $^7Be(n,\\alpha)^4He$ reaction and the Cosmological Lithium Problem: measurement of the cross section in a wide energy range at n_TOF (CERN)

    CERN Document Server

    Barbagallo, M.; Cosentino, L.; Maugeri, E.; Heinitz, S.; Mengoni, A.; Dressler, R.; Schumann, D.; Käppeler, F.; Colonna, N.; Finocchiaro, P.; Ayranov, M.; Damone, L.; Kivel, N.; Aberle, O.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea-Correa, J.; Barros, S.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cristallo, S.; Diakaki, M.; Domingo-Pardo, C.; Dupont, E.; Duran, I.; Fernandez-Dominguez, B.; Ferrari, A.; Ferreira, P.; Furman, W.; Ganesan, S.; García-Rios, A.; Gawlik, A.; Glodariu, T.; Göbel, K.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heftrich, T.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Katabuchi, T.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lerendegui, J.; Lederer, C.; Leeb, H.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mazzone, A.; Mendoza, E.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Nolte, R.; Oprea, A.; Pappalardo, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Piscopo, M.; Plompen, A.; Porras, I.; Praena, J.; Quesada, J.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Rout, P.; Rubbia, C.; Ryan, J.; Sabate-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Vollaire, J.; Wallner, A.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-01-01

    The energy-dependent cross section of the 7Be(n,alpha)4He reaction, of interest for the so-called Cosmological Lithium Problem in Big Bang Nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges posed by the short half-life of 7Be and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure 7Be, and a specifically designed experimental setup. Coincidences between the two alpha-particles have been recorded in two Si-7Be-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 60's at a nuclear reactor. The energy dependence here reported clearly indicates the inadequacy of the cross section estimates currently used in ...

  11. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  12. Measurements of neutron capture cross sections of wolfram and thulium

    International Nuclear Information System (INIS)

    Xia Yijun; Wang Chunhao; Yang Jingfu; Yang Zhihua; Luo Xiaobing

    1992-01-01

    The neutron capture cross sections of wolfram and thulium were measured in the energy range from 10 to 100 KeV using gold as the standard. Kinematically collimated neutrons were produced via the 7 Li(p, n) 7 Be reaction with a 2.5 MV pulsed Van de Graaff accelerator at Sichuan University. The capture events were detected by a pair of Moxon-Rae detectors. Time-of-flight technique was used to improve the signal-background ratio. The present results are compared with data by other authors. The capture cross section were calculated from 10 to 100 KeV for two nuclides by the Hauser-Feshbach statistical theory with width fluctuation correction. The nonstatistical effects such as potential capture and radiative capture in elastic and inelastic channels of a compound nucleus were included in the calculations. The calculated results show that the nonstatistical contribution to the capture cross sections is negligible compared with that of the statistical effects

  13. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  14. Determination of cross sections of nuclear reactions to use Al as monitoring foil in heavy ion irradiation with 20Ne projectile

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Datta, J.; Guin, R.; Verma, R.

    2009-01-01

    The beam current is generally accurately measured using monitoring foils during the irradiation of thick samples by high energy ion beams. The cross sections of many nuclear reactions induced by light particles are available in literature for use as monitoring foil. However, such cross sections of heavy ion induced reactions are not reported much for their use in applied works. We have determined cross sections of two nuclear reactions, 27 Al ( 20 Ne,2p2n) 43 Sc and 27 Al ( 20 Ne, 2pn) 44m Sc, to use Al as monitoring foil for the irradiation with 20 Ne heavy ion beam. (author)

  15. Energy dependence of fusion evaporation-residue cross sections in the 28Si+28Si reaction

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Bauer, J.S.; Gosdin, C.H.; Trotter, R.S.; Kovar, D.G.; Beck, C.; Henderson, D.J.; Janssens, R.V.F.; Wilkins, B.D.; Rosner, G.; Chowdhury, P.; Ikezoe, H.; Kuhn, W.; Kolata, J.J.; Hinnefeld, J.D.; Maguire, C.F.; Mateja, J.F.; Prosser, F.W.; Stephans, G.S.F.

    1990-01-01

    Velocity distributions of mass-identified evaporation residues produced in the 28 Si+ 28 Si reaction have been measured at bombarding energies of 174, 215, 240, 309, 397, and 452 MeV using time-of-flight techniques. These distributions were used to identify evaporation residues and to separate the complete-fusion and incomplete-fusion components. Angular distributions and total cross sections were extracted at all six bombarding energies. The complete-fusion evaporation-residue cross sections and the deduced critical angular momenta are compared with lower energy data and the predictions of existing models

  16. Validation and upgrading of the recommended cross-section data of charged particle reactions: Gamma emitter radioisotopes

    International Nuclear Information System (INIS)

    Takacs, S.; Tarkanyi, F.; Hermanne, A.

    2005-01-01

    An upgrade and validation test of the recommended cross-section database for production of gamma emitter radioisotopes by charged particle induced reactions, published by the IAEA in 2001, was performed. Experimental microscopic cross-section data published earlier or measured recently and not yet included in the evaluation work were collected and added to the primary database in order to improve the quality of the recommended data. The newly compiled experimental data in general supported the previous recommended data, but in a few cases they influenced the decision and resulted in different selected cross-section data sets. A Spline fitting method was used to calculate the recommended data from the selected data sets. Integral thick target yields were deduced from the newly calculated recommended cross-sections and were critically compared with the available experimental yield data

  17. Accurate measurements of neutron activation cross sections

    International Nuclear Information System (INIS)

    Semkova, V.

    1999-01-01

    The applications of some recent achievements of neutron activation method on high intensity neutron sources are considered from the view point of associated errors of cross sections data for neutron induced reaction. The important corrections in -y-spectrometry insuring precise determination of the induced radioactivity, methods for accurate determination of the energy and flux density of neutrons, produced by different sources, and investigations of deuterium beam composition are considered as factors determining the precision of the experimental data. The influence of the ion beam composition on the mean energy of neutrons has been investigated by measurement of the energy of neutrons induced by different magnetically analysed deuterium ion groups. Zr/Nb method for experimental determination of the neutron energy in the 13-15 MeV energy range allows to measure energy of neutrons from D-T reaction with uncertainty of 50 keV. Flux density spectra from D(d,n) E d = 9.53 MeV and Be(d,n) E d = 9.72 MeV are measured by PHRS and foil activation method. Future applications of the activation method on NG-12 are discussed. (author)

  18. Measurement of the efficient cross section of the reaction {sup 7}Be(p, {gamma}){sup 8}B at low energies and implications in the problem of solar neutrinos; Mesures de la section efficace de la reaction {sup 7}Be(p,{gamma}){sup 8}B a basses energies et implications dans le probleme des neutrinos solaires

    Energy Technology Data Exchange (ETDEWEB)

    Hammache, Fairouz

    1999-07-01

    The {sup 8}B produced inside the sun through the reaction {sup 7}Be(p,{gamma}){sup 8}B is the main, and even unique, source of high energy neutrinos detected in most solar neutrino detection experiments, except with Gallex and Sage. These experiments have all measured a neutrinos flux lower than the one predicted by solar models. Several explanations have been proposed to explain this deficit, but all require a precise knowledge of the efficient cross-section of the reaction {sup 7}Be(p,{gamma}){sup 8}B, because the neutrinos flux of {sup 8}B is directly proportional to this reaction. The direct measurement of this cross section for the solar energy is impossible because of its low value (about 1 femto-barn). In order to get round this problem, the cross sections are measured at higher energy and extrapolated to the solar energy using a theoretical energy dependence. The 6 previous experimental determinations of the efficient cross section were shared in two distinct groups with differences of about 30% which leads to an uncertainty of the same order on the high energy neutrinos flux. The re-measurement of the cross section of this reaction with a better precision is thus of prime importance. A direct measurement of the cross section in the energy range comprised between 0.35 and 1.4 MeV (cm) has been performed first. These experiments have permitted the precise measurement of each parameter involved in the determination of the cross section. Then, measurements of the cross section have been carried out with the PAPAP accelerator at 185.8, 134.7 and 111.7 keV, the lowest mass center energy never reached before. The results are in excellent agreement with those obtained at higher energies. The value obtained by extrapolation of these data for the astrophysical factor S{sub 17}(0) is 19.21.3 EV-B, which leads to a significant reduction of the uncertainty on the high energy neutrinos flux of {sup 8}B. (J.S.)

  19. Activation cross-sections of deuteron induced nuclear reactions on manganese up to 40 MeV

    International Nuclear Information System (INIS)

    Ditroi, F.; Tarkanyi, F.; Takacs, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2011-01-01

    In the frame of a systematic study on activation cross-sections of deuteron induced reactions experimental excitation functions on 55 Mn were measured with the activation method using the stacked foil irradiation technique up to 40 MeV. By using high resolution γ-ray spectrometry, cross-section data for the production of 56,54,52 Mn and 51 Cr were determined. Comparison with the earlier published data and with the results predicted by the ALICE-IPPE and EMPIRE-II theoretical codes - improved for more reliable calculations for d-induced reactions - and with data in the TENDL 2010 libraries are also included. Thick target yields were calculated from a fit to our experimental excitation curves and implications for practical applications in industrial (Thin Layer Activation) accelerator technology are discussed.

  20. Isomeric cross section ratios in 55Mn(α, n)58m,gCo reaction

    International Nuclear Information System (INIS)

    Long Xianguan; He Fuqing; Peng Xiufen; Liu Mantian

    1989-01-01

    The isomeric cross section ratios in 55 Mn(α, n) 58m,g Co reaction are measured for incident alpha-particle energies ranging from 10.4 to 26.5 MeV by using activation method and stacked-foil technique. The measured values are compared with theoretical calculations performed by using Huizenga and Vandenbosch method and the values of spin cutoff factor are obtained for product nucleus 58 Co

  1. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wang, J.G. [Department of Physics and Astronomy, University of Georgia, Athens (United States)

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C{sub x}H{sub y} charge exchange reactions from thermal energies up to several hundreds keV for all C{sub x}H{sub y} molecules with x=1, 2, 3 and 1 {<=} y {<=} 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  2. Re/Os cosmochronometer: measurement of neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mosconi, M.

    2007-12-21

    }) experiments and by an improved measurements of the inelastic scattering cross section for the first excited level of {sup 187}Os. This additional measurement was performed at the 3.7 MV Van de Graaff of Forschungszentrum Karlsruhe using monoenergetic neutron beams from the {sup 7}Li(p, n){sup 7}Be reaction at threshold. The improved experimental results were used for the evaluation of the true stellar cross section and for the evaluation of the consequences for the Re/Os clock. It is found that the nuclear input is no longer determining the uncertainty of the derived age. First analyses using a simplified schematic model of the galactic chemical evolution yields a cosmic age of 15.6{+-}1.4 Gyr, but needs to be complemented by a more realistic galactic evolution model. (orig.)

  3. Two-body interactions in the reaction 9Be(n,ααnn) at 14 MeV. 2. Cross-section measurements

    International Nuclear Information System (INIS)

    Giorni, A.

    1966-11-01

    We measure with a double time of flight spectrometer the momenta k 1 and k 2 of neutrons from the 9 Be(n,nn)αα reaction at E n = 14 MeV. After the analysis of corrections factors for the measurement of differential cross-sections, we appraise the importance of different interactions (nn, 8 Be(0+): 1,8 ± 0.4 mb/sr 2 , mn 8 Be(2+): 2 ± 0,4 mb/sr 2 , n 9 Be, n 8 Be, α-α) observed. Our results are compared with those In the literature. (author) [fr

  4. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  5. Atlas of giant dipole resonances. Parameters and graphs of photonuclear reaction cross sections

    International Nuclear Information System (INIS)

    Varlamov, A.V.; Varlamov, V.V.; Rudenko, D.S.; Stepanov, M.E.

    1999-01-01

    Parameters of giant dipole resonances (GDR) observed in photonuclear reaction cross sections using various beams of incident photons are presented. Data, given for 200 stable isotopes from 2 H to 243 Am including their natural compositions, were collected from papers published over the years 1951-1996. GDR parameters, such as energy positions, amplitudes and widths, are included into the table and organized by element, isotope and reaction. Graphs of the majority of the photonuclear reaction cross sections, included in the international nuclear data library EXFOR by the end of 1998, are presented. The graphs are provided for 182 stable isotopes and natural compositions. (author)

  6. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  7. Evaluation of the 93Nb (n,n')93mNb reaction cross section from the threshold up to 20 MeV

    International Nuclear Information System (INIS)

    Badikov, S.A.; Zolotarev, K.I.; Pashchenko, A.B.

    1992-01-01

    The data base comprising the results of the 93 Nb(n,n') 93m Nb reactions cross section measurements up to 1991 has been compiled. The experimental data have been renormalized to new values of standard cross-sections from the ENDF/B-6 and the IRDF-90 libraries. The evaluation of excitation function for the 93 Nb(n,n') 93m Nb reaction was carried out on the basis of procedure taking the correlation of experimental data into account. The files of evaluated cross-sections and covariance were prepared in the ENDF/B-6 format. The cross-section evaluations from present work and the IRDF-90 library are compared. 37 refs.; 3 figs.; 6 tabs

  8. LHCb cross-section measurements with heavy flavour jets

    CERN Multimedia

    Michielin, Emanuele

    2017-01-01

    Cross-section measurements of jets originating from the hadronization of beauty ($b$) and charm ($c$) quarks at LHCb give the unique opportunity to probe Parton Distribution Functions (PDFs) at low and large momentum fraction and to test the Standard Model in the forward region. In this poster the production of $t\\bar{t}$ pairs in the forward region, the measurement of the $W+b\\bar{b}$ and $W+c\\bar{c}$ cross-section and the measurement of the $Z\\rightarrow b\\bar{b}$ cross-section are presented.

  9. Progress in measurement of (n,x) cross sections at HST in 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bangjiao, Ye; Zhongmin, Wang; Yangmei, Fan; Rongdian, Han; Xiaoqi, Yu; Huaijiang, Du [Department of Modern Physics, Univ. of Sci. and Tech. of China (China)

    1996-06-01

    The measurement of energy spectrum and angular distributions of protons emission from reaction induced by 14.6 MeV neutron bombarding stainless steel has been performed at Univ. of Sci. and Tech. of China, Hefei (HST) by using multitelescope system. 14.6 MeV neutrons were produced by 150 KeV Cockcroft-Walton accelerator. The 1Cr18Ni9Ti (type 321) stainless steel target with 0.8 mm thick and 40 mm height was used. The progress on measurement of {sup nat}Ni(n,x{alpha}) reaction cross sections are introduced. (2 figs.).

  10. Evaluation of photonuclear reaction cross-sections using the reduction method for large systematic uncertainties

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Efimkin, N.G.; Ishkhanov, B.S.; Sapunenko, V.V.

    1994-12-01

    The authors describe a method based on the reduction method for the evaluation of photonuclear reaction cross-sections obtained under conditions where there are large systematic uncertainties (different instrumental functions, calibration and normalization errors). The evaluation method involves using the actual instrumental function (photon spectrum) of each individual experiment to reduce the data to a representation generated by an instrumental function of better quality. The objective is to find the most reasonably achievable monoenergetic representation of the information on the reaction cross-section derived from the results of various experiments and to take into account the calibration and normalization errors in these experiments. The method was used to obtain the evaluated total photoneutron reaction cross-section (γ,xn) for a large number of nuclei. Data obtained for 16 O and 208 Pb are presented. (author). 36 refs, 6 figs, 4 tabs

  11. Reaction cross section for Ne isotopes

    International Nuclear Information System (INIS)

    Panda, R.N.; Sahu, B.K.; Patra, S.K.

    2012-01-01

    In the present contribution, first the bulk properties are calculated, such as binding energy (BE), root mean square charge radius r ch , matter radius r m and quadrupole deformation parameter β 2 for 18-32 Ne isotopes in the Relativistic mean field (RMF) and effective field theory motivated RMF (E-RMF) formalisms . Then the total nuclear reaction cross section σR is analyzes for the scattering of 20 Ne and 28-32 Ne from a 12 C target at 240 MeV/nucleon by using the RMF model. Thus the objective of the present study is to calculate the bulk properties as well as a systematic analysis of σR over a range of neutron rich nuclei in the frame work of Glauber model

  12. (n,2n) reaction cross-sections at 14 MeV

    Indian Academy of Sciences (India)

    The need for fast neutron-induced reaction cross-section data has been increasing in several applied fields; for example, biomedical applications such as production of radioisotopes and cancer therapy, accelerator-driven transmutation of long-lived radioactive nuclear wastes to short-lived or stable isotopes by secondary ...

  13. Cross-section studies of relativistic deuteron reactions obtained by activation method

    CERN Document Server

    Wagner, V; Svoboda, O; Vrzalová, J; Majerle, M; Krása, A; Chudoba, P; Honusek, M; Kugler, A; Adam, J; Baldin, A; Furman, W; Kadykov, M; Khushvaktov, J; Sol-nyskhin, A; Tsoupko-Sitnikov, V; Závorka, L; Tyutyunnikov, S; Vladimirova, N

    2014-01-01

    The cross-sections of relativistic deuteron reactions on natural copper were studied in detail by means of activation method. The copper foils were irradiated during experiments with the big Quinta uranium target at Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The deuteron beams with energies ranging from 1 GeV up to 8 GeV were produced by JINR Nuclotron. Residual nuclides were identified by the gamma spectrometry. Lack of such experimental cross-section values prevents the usage of copper foils from beam integral monitoring.

  14. A neutron detector for measurement of total neutron production cross sections

    International Nuclear Information System (INIS)

    Sekharan, K.K.; Laumer, H.; Kern, B.D.; Gabbard, F.

    1976-01-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight 10 BF 3 counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from 7 Li(p, n) 7 Be. By adjusting the radial positions of the BF 3 counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from 51 V(p, n) 51 Cr and 57 Fe(p, n) 57 Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given. (Auth.)

  15. Effect of γ-ray emission on transuranium element production cross sections in heavy ion reactions

    International Nuclear Information System (INIS)

    Il'inov, A.S.; Oganesyan, Yu.Ts.; Cherepanov, E.A.

    1980-01-01

    The effect of competition of the γ ray emission with neutron evaporation and of compound nuclei fission induced by heavy ion reactions on the production cross sections for transuranium elements is considered. It is shown that taking account of γ ray emission leads to the broadening of the excitation functions of the (HI, xny) reactions such as 18 O+ 238 U, 40 Ar+ 206 Pb, 40 Ar+ 207 Pb and 40 Ar+ 208 Pb reactions and to the displacement of their maximum toward the higher energies as well as to an increase of the absolute cross sections which is especially strong close to the fusion barrier. Cross sections for the radiative capture of heavy ions by a heavy target nucleus in 40 Ar+ 206 Pb, 40 Ar+ 208 Pb, 48 Ca+ 204 Pb and 48 Ca+ 208 Pb reactions are estimated

  16. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Science.gov (United States)

    Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia

    2017-09-01

    The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  17. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Directory of Open Access Journals (Sweden)

    Nyman Markus

    2017-01-01

    Full Text Available The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC method. Experiments for studying neutrinoless double-β decay (2β0ν or other very rare processes require greatly reducing the background radiation level (both intrinsic and external. Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  18. Determination of minor actinides fission cross sections by means of transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Aiche, M.; Barreau, G.; Boyer, S.; Czajkowski, S.; Dassie, D.; Grosjean, C.; Guiral, A.; Haas, B.; Osmanov, B.; Petit, M. [CENBG - UMR 5795 CNRS/IN2P3-Univ. Bordeaux 1- Le Haut Vigneau, 33175 Gradignan (France); Berthoumieux, E.; Gunsing, F.; Perrot, L.; Theisen, Ch. [CEN Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette cedex (France); Bauge, E. [CEA, SPhN, BP12 91680 Bruyeres-le-Chatel (France); Michel-Sendis, F. [IPN, 15 rue G. Clemenceau, 91406 Orsay cedex (France); Billebaud, A. [LPSC, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Wilson, J. N. [IPN, 15 rue G. Clemenceau, 91406 Orsay cedex (France); LPSC, 53 Avenue des Martyrs, 38026 Grenoble cedex (France); Ahmad, I.; Greene, J.P.; Janssens, R. V. F. [ANL, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2005-07-01

    We present an original method that allows to determine neutron-induced cross sections of very short-lived minor actinides. This indirect method, based on the use of transfer reactions, has already been applied with success for the determination of the neutron-induced fission and capture cross section of {sup 233}Pa, a key nucleus in the {sup 232}Th - {sup 233}U fuel cycle. A recent experiment using this technique has been performed to determine the neutron-induced fission cross sections of {sup 242,243,244}Cm and {sup 241}Am which are present in the nuclear waste of the current U-Pu fuel cycle. These cross sections are highly relevant for the design of reactors capable to incinerate minor actinides. The first results will be illustrated. (authors)

  19. 14N + 10B fusion and elastic scattering cross section measurements near the interaction barrier

    International Nuclear Information System (INIS)

    Wu, S.C.; Overley, J.C.; Barnes, C.A.; Switkowski, Z.E.

    1979-01-01

    The 14 N + 10 B fusion reactions were studied at c.m. energies between 2.9 and 7.5 MeV by measuring the yields of γ-rays from the residual nuclei formed by particle evaporation from the compound system. Cross sections for formation of the evaporation residues 16 O, 19 F, 19 Ne, 20 Ne, 21 Ne, 22 Ne, 22 Na, 23 Na and 23 Mg, as well as the total cross section, were deduced from these yields with the aid of statistical model calculations. 14 N + 10 B elastic scattering differential cross sections were measured from 4.3 to 9.1 MeV at THETA 74.4 degrees, and from 3.3 to 8.3 MeV at THETA = 90.0 degrees. The elastic scattering cross sections were analyzed within the framework of the incoming-wave boundary condition (IWBC) model. The fusion cross sections calculated for the real ion-ion potential deduced from the IWBC model fit to the elastic scattering are in good agreement with the measured values

  20. Measurement of aluminum activation cross section and gas production cross section for 0.4 and 3-GeV protons

    Directory of Open Access Journals (Sweden)

    Meigo Shin-ichiro

    2017-01-01

    Full Text Available To estimate the lifetime and the radiation dose of the proton beam window used in the spallation neutron source at J-PARC, it is necessary to understand the accuracy of the production cross section of 3-GeV protons. To obtain data on aluminum, the reaction cross section of aluminum was measured at the entrance of the beam dump placed in the 3-GeV proton synchrotron. Owing to the use of well-calibrated current transformers and a well-collimated beam, the present data has good accuracy. After irradiation, the cross sections of Al(p,x7Be, Al(p,x22Na-22 and Al(p,x24Na were obtained by gamma-ray spectroscopy using a Ge detector. It was found that the evaluated data of JENDL/HE-2007 agree well with the current experimental data, whereas intra-nuclear cascade models (Bertini, INCL-4.6, and JAM with the GEM statistical decay model underestimate by about 30% in general. Moreover, gas production, such as T and He, and the cross sections were measured for carbon, which was utilized as the muon production target in J-PARC. The experiment was performed with 3-GeV proton having beam power of 0.5 MW, and the gasses emitted in the process were observed using a quadrupole mass spectrometer in the vacuum line for beam transport to the mercury target. It was found that the JENDL/HE-2007 data agree well with the present experimental data.

  1. Study of (n,2n reaction on 191,193Ir isotopes and isomeric cross section ratios

    Directory of Open Access Journals (Sweden)

    Vlastou R.

    2017-01-01

    Full Text Available The cross section of 191Ir(n,2n190Irg+m1 and 191Ir(n,2n190Irm2 reactions has been measured at 17.1 and 20.9 MeV neutron energies at the 5.5 MV tandem T11/25 Accelerator Laboratory of NCSR “Demokritos”, using the activation method. The neutron beams were produced by means of the 3H(d,n4He reaction at a flux of the order of 2 × 105 n/cm2s. The neutron flux has been deduced implementing the 27Al(n,α reaction, while the flux variation of the neutron beam was monitored by using a BF3 detector. The 193Ir(n,2n192Ir reaction cross section has also been determined, taking into account the contribution from the contaminant 191Ir(n,γ192Ir reaction. The correction method is based on the existing data in ENDF for the contaminant reaction, convoluted with the neutron spectra which have been extensively studied by means of simulations using the NeusDesc and MCNP codes. Statistical model calculations using the code EMPIRE 3.2.2 and taking into account pre-equilibrium emission, have been performed on the data measured in this work as well as on data reported in literature.

  2. Line-emission cross sections for the charge-exchange reaction between fully stripped carbon and atomic hydrogen in tokamak plasma

    International Nuclear Information System (INIS)

    Ida, K.; Kato, T.

    1992-01-01

    Line-emission cross sections of the charge-exchange reaction between fully stripped carbon and atomic hydrogen are measured in the energy range of 18 - 38 keV/amu in tokamak plasmas. The energy dependence of the emission cross sections for the transition of Δn = 8 - 7 and Δn = 7 - 6 and their ratios are compared with theoretical calculations. (author)

  3. Cross-section of the reaction {sup 7}Li(p,n){sup 7}Be close to the threshold

    Energy Technology Data Exchange (ETDEWEB)

    Shorin, V S [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-06-01

    The status of data on the cross-section of the reaction {sup 7}Li(p,n){sup 7}Be close to the threshold is reviewed. On the basis of recent data on the cross-section of the inverse reaction {sup 7}Be(n,p){sup 7}Li and certain theoretical models, an evaluation is performed of the total cross-section of the {sup 7}Li(p,n)-reaction in the proton energy region up to 2 MeV. (author). 16 refs, 1 fig., 1 tab.

  4. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  5. Impact of New Gadolinium Cross Sections on Reaction Rate Distributions in 10 * 10 BWR Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Perret, G.; Murphy, M.F.; Jatuff, F.; Chawla, R. [Paul Scherrer Inst, CH-5232 Villigen, (Switzerland); Sublet, J.Ch.; Bouland, O. [DEN, Commissariat Energie Atom, F-13108 St Paul Les Durance, (France); Chawla, R. [Ecole Polytech Fed Lausanne, CH-1015 Lausanne, (Switzerland)

    2009-07-01

    Radial distributions of the total fission rate and the {sup 238}U-capture-to-total-fission (C{sub 8}/F{sub tot}) ratio were measured in SVEA-96+ and SVEA-96 Optima2 assemblies during the LWR-PROTEUS program. Fission rates predicted using MCNPX with JEFF-3.1 cross sections underestimated the measured values in the gadolinium-poisoned pins of the SVEA-96 Optima2 assembly; similarly, C{sub 8}/F{sub tot} ratios were overestimated in some gadolinium-poisoned pins of the SVEA-96+ assembly. A considerable effort was invested at the Paul Scherrer Institut to explain the discrepancies in gadolinium pins, without success. Recently, gadolinium cross sections were measured at the Rensselaer Polytechnic Institute by Leinweber et al. and differed significantly from current library values. ENDF/B-VII.0 gadolinium cross sections have currently been modified to include the new measurements, and these data have been processed with NJOY to yield files usable by MCNPX. Fission rates in the gadolinium-poisoned fuel pins of the SVEA-96 Optima2 pins were increased by 1.4 to 2.0% using the newly produced cross sections, yielding to a better agreement with the experimental values. Predicted C{sub 8}/F{sub tot} ratios were decreased on average by 1.7% in both clustered and un-clustered groups of gadolinium-poisoned fuel pins of the SVEA-96+ assembly correcting the over predictions previously reported in the clustered gadolinium pins. Earlier reported discrepancies observed in PROTEUS integral experiments, between measured and calculated reaction rates in the gadolinium-poisoned pins, might thus be due to inaccurate gadolinium cross sections. The PROTEUS results support the new thermal and epithermal gadolinium data measured by Leinweber et al. (authors)

  6. A coincidence measurement of the D(gamma, pp pi(-)) cross section in the region of the Delta resonance

    Science.gov (United States)

    Quraan, Maher A.

    Photonuclear reactions are excellent means for understanding final state interactions (FSI). The photon interacts only electromagnetically, allowing a clean separation of the strong interaction channels in the final state. The availability of high duty factor electron machines and large acceptance detectors in the past decade have allowed a further investigation of these effects covering wider regions of phase space. In this experiment, we have successfully measured the D(/gamma, pp/pi/sp-) reaction cross section at the Saskatchewan Accelerator Laboratory (SAL) utilizing the Saskatchewan- Alberta Large Acceptance Detector (SALAD). This is the first measurement of the /gamma D /to pp/pi/sp--cross section covering a wide range of phase space with an attempt to study the FSI's and the /Delta - N interaction that has successfully reproduced the normalizations. The cross section for this reaction is compared to the calculation of J. M. Laget. Laget's theory is quite successful in describing the shapes of the distributions. as well as the overall magnitude of the cross section. The different FSI's and the /Delta - N interaction have an overall effect of 10%-15% on the single differential cross section, with the calculation that includes /Delta - N interaction having the best normalization compared to the data.

  7. Recommended activation detector cross sections (RNDL-82)

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1984-01-01

    The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)

  8. Measurements of Electron Proton Elastic Cross Sections for 0.4

    International Nuclear Information System (INIS)

    Christy, M.E.; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin Mcilhany; David Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 distinct kinematic settings covering a range in momentum transfer of 0.4 < Q2 < 5.5 (GeV/c)2. These measurements represent a significant contribution to the world's cross section data set in the Q2 range, where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab. This data set shows good agreement with previous cross section measurements, indicating that if a heretofore unknown systematic error does exist in the cross section measurements, then it is intrinsic to all such measurements

  9. Effect of imaginary part of an optical potential on reaction total cross sections

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.; Dobromyslov, M.B.; Kim Yng Pkhung; Shilov, V.M.

    1977-01-01

    The effect of the imaginary part of optical potential on the total cross sections of reactions is explained. The complex rectangular well model is used, i.e. the real rectangular well at r 16 O + 27 Al reactions and the partial permeabilities are presented. It is demonstrated that the S-matrix has proved to be unitary. Oscillations of the partial permeabilities and cross-sections are observed for small potential values in the Wsub(o) imaginary part, which no longer occur at larger Wsub(o). This corresponds to the overlapping and nonoverlapping quasistationary levels in complex rectangular well

  10. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  11. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  12. Measurement of thermal neutron cross-section and resonance integral for the 165Ho(n,γ) 166gHo reaction using electron linac-based neutron source

    Science.gov (United States)

    Nguyen, Van Do; Pham, Duc Khue; Kim, Tien Thanh; Kim, Guinyun; Lee, Manwoo; Kim, Kyung Sook; Kang, Heung-Sik; Cho, Moo-Hyun; Ko, In Soo; Namkung, Won

    2011-01-01

    The thermal neutron cross-section and the resonance integral of the 165Ho(n,γ) 166gHo reaction have been measured by the activation method using a 197Au(n,γ) 198Au monitor reaction as a single comparator. The high-purity natural Ho and Au foils with and without a cadmium shield case of 0.5 mm thickness were irradiated in a neutron field of the Pohang neutron facility. The induced activities in the activated foils were measured with a calibrated p-type high-purity Ge detector. The correction factors for the γ-ray attenuation ( Fg), the thermal neutron self-shielding ( Gth), the resonance neutron self-shielding ( Gepi) effects, and the epithermal neutron spectrum shape factor ( α) were taken into account. The thermal neutron cross-section for the 165Ho(n,γ) 166gHo reaction has been determined to be 59.7 ± 2.5 barn, relative to the reference value of 98.65 ± 0.09 barn for the 197Au(n,γ) 198Au reaction. By assuming the cadmium cut-off energy of 0.55 eV, the resonance integral for the 165Ho(n,γ) 166gHo reaction is 671 ± 47 barn, which is determined relative to the reference value of 1550 ± 28 barn for the 197Au(n,γ) 198Au reaction. The present results are, in general, good agreement with most of the previously reported data within uncertainty limits.

  13. Cross-sections and the analysing power of the production reaction p+p→π++d between 516 and 582 MeV

    International Nuclear Information System (INIS)

    Chatelain, P.; Favier, B.; Foroughi, F.; Piffaretti, J.; Nussbaum, C.; Hoftiezer, J.; Weddigen, C.; Jaccard, S.

    1982-01-01

    The differential cross section of the reaction p+p→π + +d at 7 energies from 516 to 582 MeV has been measured. The incident protons were from the PM1 line at SIN. The π and d were detected in coincidence by scintillation counters. The measurement was monitored by the elastic diffusion pp, giving an absolute precision of 1.5% for the cross section. Graphs of results are presented. (G.F.F.)

  14. Measurement of cross sections producing short-lived nuclei by 14MeV neutron. Cd, Sn, Te, Nd, Gd, Re

    Energy Technology Data Exchange (ETDEWEB)

    Sakane, H.; Yamamoto, H.; Kawade, K. [Nagoya Univ. (Japan); Iida, T.; Takahashi, A.

    1998-03-01

    Nine neutron activation cross sections producing the nuclei with half-lives between 25sec and 22min were measured at energy range between 13.4 and 14.9 MeV by activation method. The (n,p) and (n,{alpha}) reaction cross sections were measured for the isotopes of {sup 110}Cd, {sup 112}Sn, {sup 122}Te, {sup 130}Te and {sup 185}Re and those of {sup 130}Te, {sup 148}Nd and {sup 158}Gd, respectively. The present results were compared with our systematics proposed on the basis of 58 cross section data of (n,p) and 33 data of (n,{alpha}) reaction. Good agreements have been seen between them. (author)

  15. Evaluation of cross sections for 14 important neutron-dosimetry reactions

    International Nuclear Information System (INIS)

    Wagner, M.; Vonach, H.; Pavlik, A.; Strohmaier, B.; Tagesen, S.; Martinez-Rico, J.

    1990-01-01

    The evaluation of the cross sections for the neutron dosimetry reactions 24 Mg(n,p) 24 Na, 27 Al(n,α) 24 Na, 58 Ni(n,2n) 57 Ni, 64 Zn(n,p) 64 Cu, 90 Zr(n,2n) 89 Zr and 93 Nb(n,n') 93m Nb carried out at the IRK about ten years ago were updated taking into account recent experimental results. Besides, new evaluations were performed for four additional dosimetry reactions, namely 52 Cr(n,2n) 51 Cr, 59 Co(n,2n) 58 Co, 93 Nb(n,2n) 92m Nb and 197 Au(n,2n) 196 Au. The deadlines for the retrieval of data for the different reactions lay between March 1989 and February 1990. The evaluations comprise the neutron energy range from threshold to 20 MeV, in a few cases this range is extended up to 21 MeV or 30 MeV. Cross sections and their uncertainties were evaluated in energy groups with widths of 0.1 MeV to 2.0 MeV, and relative correlation matrices of the evaluated cross sections at different energies were derived. The results of the evaluations are compared to the previous ones and to other recent evaluations reported in the literature. The main results of our previous evaluations for the reactiosn 19 F(n,2n) 18 F, 31 P(n,p) 31 Si, 63 Cu(n,2n) 62 Cu and 103 Rh(n,n') 103m Rh which remain unchanged are also given for completeness. The evaluations reported in this work will be included in the new version of the IRDF (International Reactor Dosimetry File) of the IAEA in ENDF/B-VI format. (orig.)

  16. Evaluation of nuclear reaction cross section of some isotopes of ...

    African Journals Online (AJOL)

    Coupled-channels optical model code OPTMAN is used as an alternative to experimental approach to evaluate the total reaction cross section for four different isotopes of Plutonium as an example of heavy rotational nuclei of the transuranium elements over an energy range of 10 to 20 MeV. The selected isotopes are the ...

  17. (n, {alpha}) cross section measurement of light nuclei using gridded ionization chamber and gaseous sample

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Yamazaki, Tetsuro; Sato, Jun; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    We have developed a measuring method of (n, {alpha}) cross section by using gaseous sample in a gridded ionization chamber. In this study, we measured the {sup 12}C(n, {alpha}{sub 0}) and the {sup 16}O(n, {alpha}{sub 0}), (n, {alpha}{sub 123}) cross sections for En=11.5 and 12.8 MeV neutrons. We also deduced the {sup 12}C(n, x{alpha}) spectrum and analyzed the data by a kinematic calculation combined with the reaction data of the {sup 12}C(n, n`3{alpha}). (author)

  18. Cross-sections of spallation residues produced in Proton –Induced reactions

    International Nuclear Information System (INIS)

    Al-Haydari, A.; Khan, A.A.; Abdul Ganai, A.; Hassan, G.S.

    2013-01-01

    The recent available GSI data for proton-induced spallation reactions by using inverse kinematics at different energies are analyzed for different reactions in terms of the percolation model together with the intranuclear cascade model (MCAS). The simulation results obtained for the cross sections of production of light ions and isotopes as a function of mass and charge number is calculated. Results of calculations are in good agreement with experiment

  19. Evaluation of cross sections for 197Au(n,3n) and 197Au(n,4n) reactions from threshold to 50 MeV

    International Nuclear Information System (INIS)

    Yu Baosheng; Shen Qingbiao; Cai Dunjiu

    1994-01-01

    The measured data of cross sections for 197 Au(n,3n) and 197 Au(n,4n) reactions were collected and analysed. The theoretical calculations of above mentioned reactions were carried out to predict the data in higher energy region. The sets of cross sections for 197 Au(n,3n) and 197 Au(n,4n) reactions from threshold to 50 MeV were recommended on the basis of the experimental and calculated data. (2 figs)

  20. L2 Milestone: Neutron Capture Cross Sections from Surrogate (p, d) Measurements: Determination of the Unknown 87Y(n, g) Cross Section and Assessment of the Method Via the 90Zr(n, g) Benchmark Case: Theory Report

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-06

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Here we describe a method for extracting cross sections for neutron-capture on unstable isotopes from indirect (surrogate) measurements. The surrogate reaction, which produces the compound nucleus of interest, has to be described and the decay of the nucleus has to be modeled. We outline the approach for one-neutron pickup and report on the determination of the 90Zr(n, γ ) reaction from surrogate 92Zr(p,d) data, which is compared to the directly-measured capture cross section and thus provides a benchmark for the method. We then apply the method to determine the 87Y(n, γ ) cross section, which has not been measured directly. The work was carried out in the context of an LLNL L2 Milestone. This report addresses the theory aspects of the milestone. A complementary document summarizes the experimental efforts [1].

  1. Cross sections of the 16O(n,αγ) reaction at 14.7 MeV. Final report for IAEA research contract no. 6970/RB

    International Nuclear Information System (INIS)

    Hlavac, S.; Oblozinsky, P.; Turzo, I.; Dostal, L.; Kliman, J.

    1994-08-01

    Cross sections for production of charged particles in fast neutron interactions are of recent interest for the conceptual and technical design of fusion reactors. The cross section of the reaction 16 O(n,α) 13 C is especially relevant in this regard, because through the (n,α) reaction with 16 O the neutrons are lost for the multiplication process. At the present, the latter cross section is known in the 14 MeV range only within about 20-30 percent. However, instead of measuring the alpha particle production one can measure the population of excited levels due to (n,α) reactions by measuring gamma rays emitted after discrete level depopulation. To this end an experiment based on the time-correlated associated particle method was carried out. In this way the above mentioned total cross section was determined to be 98.9 mb, with an error of 6.4 mb. This value is lower than the other experimental data as well as the ENDF/B-VI evaluation, but it is in excellent agreement with the JENDL-3 evaluation. Refs, 9 figs, 3 tabs

  2. Triple-differential cross sections of the (π+/,pp) reaction on lithium isotopes

    International Nuclear Information System (INIS)

    Rieder, R.; Barnes, P.D.; Bassalleck, B.

    1985-01-01

    The (π + ,pp) reactions on 6 Li and 7 Li have been studied at T/sub π/ = 59.4 MeV with high resolution. The first triple-differential cross sections for these reactions are presented. The data are fitted to a T-matrix and compared to the π + d → pp reaction. A model in which the pion is absorbed on a 3 S 1 (pn) pair in the lithium nucleus describes many features of the data very well. An extrapolation of our data into unmeasured regions of phase space suggests that about 60% of the pion absorption cross section on 6 Li at 59.4 MeV goes into the (π + ,pp) channel. One surprising feature of the data is that the 6 Li(π + ,pp) 4 He (2 - ) transition at 22.1 MeV excitation is strongly populated, similar to what is observed in the 6 Li(d,α) 4 He reaction. This transition involves removing one nucleon from the 1p shell and one from the 1s shell. 25 refs., 15 figs., 3 tabs

  3. Cross section measurements of fissile nuclei for slow neutrons; Mesures de sections efficaces de noyaux fissiles pour les neutrons lents

    Energy Technology Data Exchange (ETDEWEB)

    Auclair, J M; Hubert, P; Joly, R; Vendryes, G; Jacrot, B; Netter, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Galula, M [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France)

    1955-07-01

    It presents the experimental measurements of cross section of fissile nuclei for slow neutrons to improve the understanding of some heavy nuclei of great importance in the study of nuclear reactors. The different experiments are divided in three categories. In the first part, it studied the variation with energy of the cross sections of natural uranium, {sup 233}U, {sup 235}U and {sup 239}Pu. Two measurement techniques are used: the time-of-flight spectrometer and the crystal spectrometer. In a second part, the fission cross sections of {sup 233}U and {sup 239}Pu for thermal neutrons are compared using a neutron flux from EL-2 going through a double fission chamber. The matter quantity contained in each source is measured by counting the {alpha} activity with a solid angle counter. Finally, the average cross section of {sup 236}U for a spectra of neutrons from the reactor is measured by studying the {beta} activity of {sup 237}U formed by the reaction {sup 236}U (n, {gamma}) {sup 237}U in a sample of {sup 236}U irradiated in the Saclay reactor (EL-2). (M.P.)

  4. Cross-sections of spallation residues produced in 1A GeV 208Pb on proton reactions

    International Nuclear Information System (INIS)

    Wlazlo, W.; Uniwersytet Jagiellonski, Cracow; Enqvist, T.; Armbruster, P.

    2000-02-01

    Spallation residues produced in 1 GeV per nucleon 208 Pb on proton reactions have been studied using the fragment separator facility at GSI. Isotopic production cross-sections of elements from 61 Pm to 82 Pb have been measured down to 0.1 mb with a high accuracy. The recoil kinetic energies of the produced fragments were also determined. The obtained cross-sections agree with most of the few existing gamma-spectroscopy data. Data are compared with different intranuclear-cascade and evaporation-fission models. Drastic deviations were found for a standard code used in technical applications. (orig.)

  5. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  6. Isomeric cross-section ratios of some (n,2n) reactions at 14. 7 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1979-08-01

    Isomeric cross-section ratios of (n,2n) reactions at 14.7 MeV leading to the millisecond isomeric levels have been calculated theoretically using the statistical theory of nuclear reactions and the spin distribution form due to Bethe and Bloch. The theoretical ratios have been compared with the experimentally measured values in order to evaluate the spin cut-off parameter sigma. This parameter has been used to calculate the effective moment of inertia of the nucleus to draw useful conclusions from the results of present calculations.

  7. Highlights of top quark cross-section measurements at ATLAS

    Directory of Open Access Journals (Sweden)

    Berta Peter

    2017-01-01

    Full Text Available The highlights of the measurements of top quark production in proton-proton collisions at the Large Hadron Collider with the ATLAS detector are presented. The inclusive measurements of the top-pair production cross section have reached high precision and are compared to the best available theoretical calculations. The differential cross section measurements, including results using boosted top quarks, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers. Measurements of the single top quark production cross section are presented in the t-channel and s-channel, and with associated production with a W boson. For the t-channel production, results on the ratio between top quark and antitop quark production cross sections and differential measurements are also included.

  8. Precise measurements of neutron capture cross sections for FP

    International Nuclear Information System (INIS)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio

    2000-01-01

    The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some fission products (FP), such as 137 Cs, 90 Sr, 99 Tc, 129 I and 135 Cs, were measured by the activation and γ-ray spectroscopic methods. Moreover, the cross section measurements were done for other FP elements, such as 127 I, 133 Cs and 134 Cs. This paper provides the summary of the FP cross section measurements, which have been performed by authors. (author)

  9. Measurement of cross-sections for the reaction 103Rh (n,n')103mRh in the energy range 5.69 - 12 MeV and its evaluation from the threshold up to 20 MeV

    International Nuclear Information System (INIS)

    Hossain, M.M.M.

    1995-05-01

    The cross-sections for the reaction 103 R(n,n') 103m Rh were measured by the method of activation in the neutron energy range 5.69-12.00 MeV produced by the D(d,n) 3 He reaction. The irradiation of Rh foils was performed at zero degree to the incident beam direction and the activities of KX-rays from the decay of 103m Rh were measured by means of a calibrated Si(Li) detector. During irradiation, the neutron fluence was measured with a fission chamber in which a thin deposit of 238 U was located immediately behind the Rh foil. The measured cross-section with the corresponding uncertainty in the stated energy range is more accurate than all previous measurements in spite of rather large corrections due to break-up neutrons. The update of the evaluation for the same reaction in the energy range from threshold up to 20 MeV was carried out by using the weighted average of cross-sections based on both the experimental data including the present one and theoretical model calculations. The experimental data were renormalized with respect to the recent precision KX-ray emission probability (7.66 + 0.14) % where necessary. To perform the evaluation, the whole excitation function was divided into 33 energy groups of 0.2-1.0 MeV widths. The uncertainties of the evaluated cross-sections especially 6-12 MeV have been improved due to the inclusion of the new measurement. Overall, the results of the updated evaluation are a considerable improvement compared to the previous evaluation of this reaction and also to the recommended cross-section data of IRDF (International Reactor Dosimetry File). (author)

  10. The heavy-ion total reaction cross-section and nuclear transparancy

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-10-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparancy is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determing σ sub(R) at lower energies. (Author) [pt

  11. The heavy-ion total reaction cross-section and nuclear transparency

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-01-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparency is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determining σ(sub R) at lower energies. (Author) [pt

  12. A neutron detector for measurement of total neutron production cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Sekharan, K K; Laumer, H; Kern, B D; Gabbard, F [Kentucky Univ., Lexington (USA). Dept. of Physics and Astronomy

    1976-03-01

    A neutron detector has been constructed and calibrated for the accurate measurement of total neutron production cross sections. The detector consists of a polyethylene sphere of 60 cm diameter in which eight /sup 10/BF/sub 3/ counters have been installed radially. The relative efficiency of this detector has been determined for average neutron energies from 30 keV to 1.5 MeV by counting neutrons from /sup 7/Li(p, n)/sup 7/Be. By adjusting the radial positions of the BF/sub 3/ counters in the polyethylene sphere the efficiency for neutron detection was made nearly constant for this energy range. Measurement of absolute efficiency for the same neutron energy range has been done by counting the neutrons from /sup 51/V(p, n)/sup 51/Cr and /sup 57/Fe(p, n)/sup 57/Co reactions and determining the absolute number of residual nuclei produced during the measurement of neutron yield. Details of absolute efficiency measurements and the use of the detector for determination of neutron production cross sections are given.

  13. Measurement of the total reaction cross section for interactions between heavy ions (application to the system 12C+12C at 112MeV)

    International Nuclear Information System (INIS)

    Cherkaoui-Tadili, R.

    1982-01-01

    The total reaction cross-section σsub(R) for interactions between heavy ions is predicted to decrease rapidly with the energy of the incident projectile over the energy range 10 MeV/A - 100 MeV/A. We present here an experimental met σsub(R) to test the model based predictions. The method consists in counting the number of all incoming projectiles and the number of out going projectiles that did not interact with the target. The difference between these two numbers corresponds to the number of particles that reacted with the target nuclei and is therefore proportional to σsub(R). Values of σsub(R) have been measured for the system 12 C + 12 C at two incident energies of 112 MeV and 996 MeV. The results of 1444 +- 70 (112 MeV) and 994 +- 50 (996 MeV) show a total reaction cross-section decreasing with energy as predicted from the Glauber model and optical model fits to elastic scattering [fr

  14. Cross sections for fast-neutron interaction with ytterbium isotopes

    International Nuclear Information System (INIS)

    Luo, Junhua; Liu, Rong; Jiang, Li; Ge, Suhong; Liu, Zhenlai; Sun, Guihua

    2013-01-01

    Highlights: ► The cross sections for the (n,x) reactions on ytterbium isotopes have been measured. ► Mono-energetic neutron beams using the D + T reaction; Energies: 13.5 and 14.8 MeV. ► Neutron cross-section measurements by means of the activation technique. ► Reference reactions 93 Nb(n,2n) 92m Nb and 27 (n,α) 24 Na. ► Data for 172 Yb(n,p) 172 Tm and 176 Yb(n,d * ) 175 Tm are reported for the first time. - Abstract: Measurements of (n,2n), (n,p), and (n,d * ) (The expression (n,d * ) cross section used in this work includes a sum of (n,d), (n,np) and (n,pn) cross sections.) reaction cross-sections on ytterbium isotopes have been carried out in the range of 13.5–14.8 MeV using the activation technique. The monoenergetic neutron beams were produced via the 3 H(d,n) 3 He reaction. The neutron energies of different directions were determined using the Nb/Zr method. Samples were activated along with along with Nb and Al monitor foils to determine the incident neutron flux. Data are reported for the following reactions: 168 Yb(n,2n) 167 Yb, 170 Yb(n,2n) 169m+g Yb, 176 Yb(n,2n) 175m+g Yb, 172 Yb(n,p) 172 Tm, 173 Yb(n,p) 173 Tm, 176 Yb(n,d * ) 175 Tm, 174 Yb(n,p) 174 Tm, and 176 Yb(n,p) 176 Tm. The experimentally deduced cross-sections are compared with the existing experimental data. Furthermore, theoretical statistical model, based on the Hauser–Feshbach formalism, have been carried out using the HFTT

  15. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  16. Measurement of thermal neutron cross section and resonance integral of the reaction {sup 135}Cs(n,{gamma}){sup 136}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio; Nakamura, Shoji; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro; Kobayashi, Katsutoshi; Motoishi, Shoji; Tanase, Masakazu

    1997-03-01

    The thermal neutron(2,200 m/s neutron) capture cross section({sigma}{sub 0}) and the resonance integral(I{sub 0}) of the reaction {sup 135}Cs(n,{gamma}){sup 136}Cs were measured by an activation method. Targets of radioactive cesium, which include {sup 135}Cs, {sup 137}Cs and stable {sup 133}Cs, were irradiated with reactor neutrons within or without a Cd shield case. The ratio of the number of nuclei of {sup 135}Cs to that of {sup 137}Cs was measured with a quadrupole mass spectrometer. This ratio and the ratio of activity of {sup 136}Cs to that of {sup 137}Cs were used for deduction of the {sigma}{sub 0} and the I{sub 0} of {sup 135}Cs. The {sigma}{sub 0} and the I{sub 0} of the reaction {sup 135}Cs(n,{sigma}){sup 136}Cs were 8.3 {+-} 0.3 barn and 38.1 {+-} 2.6 barn, respectively. (author)

  17. Evaluation of kerma in carbon and the carbon cross sections

    International Nuclear Information System (INIS)

    Axton, E.J.

    1992-02-01

    A preliminary simultaneous least squares fit to measurements of kerma in carbon, and carbon cross sections taken from the ENDF/B-V file was carried out. In the calculation the shapes of the total cross section and the various partial cross sections were rigid but their absolute values were allowed to float in the fit within the constraints of the ENDF/B-V uncertainties. The construction of the ENDF/B-V file imposed improbable shapes, particularly in the case of the (12)C(n,n'3(alpha)) reaction, which were incompatible with direct measurements of kerma and of the reaction cross sections. Consequently a new evaluation of the cross section data became necessary. Since the available time was limited the new evaluation concentrated particularly on those aspects of the ENDF/B-V carbon file which would have most impact on kerma calculations. Following the new evaluation of cross sections new tables of kerma factors were produced. Finally, the simultaneous least squares fit to measurements of kerma and the new cross section file was repeated

  18. Cross-sections and average angular momenta in fusion reactions near the coulomb barrier

    International Nuclear Information System (INIS)

    Dasgupta, M.

    1992-01-01

    In recent years there has been an increasing interest in the study of heavy ion collisions near the Coulomb barrier. This has been triggered mainly by the observations of enhancements by factors of about one to two order of magnitude in sub-Coulomb barrier fusion (SBF) cross-sections between medium mass nuclei, as compared to predictions based on one-dimensional barrier penetration model (l-d BPM). Though, a considerable amount of work both theoretical and experimental has been done in this field, a complete understanding of the SBF phenomenon has not yet been achieved. The relation between fusion excitation function and angular momentum (l) distribution in SBF reactions is a topic of current interest. It is believed that l-distributions provide a more stringent test of SBF models that the excitation functions alone. Simultaneous measurement of l-distribution (or its moments) and fusion excitation function is expected to lead to a better understanding of the relationship between these two qualities. Such information has been obtained in experiments done at pelletron accelerator facility. In the present talk the measurement of fusion cross-sections and the method of determination of average l from partial evaporation residue cross-section has been elaborated. An analysis of the experimental data on the basis of some of the SBF models has been discussed briefly. (author). 13 refs

  19. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  20. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  1. Average cross-sections for /n, p/ reactions on calcium in a fission-type reactor spectrum

    International Nuclear Information System (INIS)

    Bruggeman, A.; Maenhaut, W.; Hoste, J.

    1974-01-01

    The average cross-section in a fission-type reactor spectrum sigmasub(F) was experimentally determined for the reactions 42 Ca/n,p/ 42 K, 43 Ca/n,p/ 43 K and 44 Ca/n,p/ 44 K. Calcium carbonate samples and fast neutron flux monitors were irradiated with and without cadmium shielding in the Thetis reactor (Institute for Nuclear Sciences, Rijksuniversiteit Gent). The potassium activities induced in the calcium carbonate samples were separated and purified by tetraphenylborate precipitation, after which they were measured with a Ge/Li/-detector of calibrated detection efficiency. On the basis of sigmasub(F)=0.64 mb for the reaction 27 Al/n,α/ 24 Na, the average cross-sections were as follows: 42 Ca/n,p/ 42 K: 2.82+-0.07 mb; 43 Ca/n,p/ 43 K: 1.89+-0.05 mb; 44 Ca/n,p/ 44 K: 0.065+-0.003 mb. (T.G.)

  2. Cross section of the {sup 11}B(n,p) {sup 11}Be reaction for 14.7-16.9 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Stepancinc, B Z; Stanojevic, D M; Popic, V R; Aleksic, M R [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1966-07-15

    The cross section of the {sup 11}B(n,p){sup 11}Be reaction was determined for neutron energy range from 14.7 to 16.9 MeV using the activation method. Activity measurements were done by using a coincidence spectrometer essentially consisting of two plastic scintillators. Energy dependent cross section values are presented together with the previously measured values for the energy range 14.5 - 16.9 MeV.

  3. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  4. Neutrino-induced neutral-current reaction cross sections for r-process nuclei

    CERN Document Server

    Langanke, K

    2002-01-01

    Neutrino-induced reactions play an important role during and after the r-process, if the latter occurs in an environment with extreme neutrino fluxes such as the neutrino-driven wind model or neutron star mergers. Recently we have evaluated the charged-current neutrino-nucleus cross sections relevant for r-process simulations. We extend our approach here to the neutral-current cross sections. Our tabulation considers neutron-rich nuclei with neutron numbers N=41-135 and charge numbers Z=21-82 and lists total as well as partial neutron spallation cross sections. The calculations have been performed within the random phase approximation considering multipole transitions with J<=3 and both parities. The supernova neutrino spectrum is described by a Fermi-Dirac distribution with various temperature parameters between T=2.8 MeV and T=10 MeV and with the degeneracy parameters alpha=0 and alpha=3.

  5. New measurements of spin-dependent n-p cross sections

    International Nuclear Information System (INIS)

    Raichle, B. W.; Gould, C. R.; Haase, D. G.; Seely, M. L.; Walston, J. R.; Tornow, W.; Wilburn, W. S.; Penttilae, S. I.; Hoffmann, G. W.

    1999-01-01

    We report on new measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries (Δσ L and Δσ T respectively) and between 5 and 20 MeV. These transmission experiments involve a polarized neutron beam and polarized proton target. The polarized neutron beam was produced as a secondary beam via charged-particle induced neutron-production reactions. The proton target was cryogenically cooled and dynamically polarized. These data will be used to extract ε 1 , the phase-shift parameter which characterizes the strength of the tensor interaction at low energy

  6. Measurement and analysis of the excitation function and isomeric cross section ratios for α-induced reaction on Ir, Au, Re and Ta nuclei

    International Nuclear Information System (INIS)

    Ismail, M.

    1998-01-01

    Excitation functions and a few isomeric cross section ratios for production of (1) 192 Au, 193 Au, 194 Au, 195 Au and 192 Ir nuclides in α-induced reactions on 191,193 Ir, (2) 197 Tl, 197m Hg, 198m.g Tl, 199 Tl and 200 Tl nuclides in α-induced reaction in 197 Au and (3) 183 Re and 184m.g Re nuclides in α-induced reaction in 181 Ta and 185 Re are obtained from the measurements of the residual activities by the conventional stacked-foils technique from threshold to 50 MeV. The excitation function and isomeric cross section ratios for nuclear reaction 181 Ta (α,n) 184m.g Re are compared with the theoretical calculation using the code Stapre which is based on exciton model for pre-equilibrium phase and Hauser-Feshbach formalism taking angular momentum and parity into account for the equilibrium phase of the nuclear reaction. All other experimental excitation functions are compared with the calculations considering equilibrium as well as pre-equilibrium reaction mechanism according to the geometry dependent hybrid (GDH) model and hybrid model of Blann using the code Alice/91. The high energy part of the excitation functions are dominated by pre-equilibrium reaction mechanism whereas the low energy parts are dominated by equilibrium evaporation with its characteristic peak. The GDH model provides a potentially better description of the physical process (i.e. a higher probability for peripheral collisions to undergo precompound decay than for central collisions) compared to hybrid model. However in the energy range of present measurement most of the excitation functions are fitted reasonably well by both GDH model and hybrid model with initial exciton number N 0 =4 (N n =2, N p =2, N h =0). Barring a few reactions we have found the overall agreement between theory and experiment is reasonably good taking the limitations of the theory into account. (author)

  7. Methods of calculation of cross section of reaction 115In(gamma, n)114mIn

    International Nuclear Information System (INIS)

    Zhaba, V.I.; Parlag, A.M.

    2015-01-01

    The cross section of reaction 115 In(gamma, n) 114m In is expected by different methods. Results of the got cross section it is well comported inter se the Penfold-Leiss and Tikhonov's methods. The calculation of cross section is conducted the Penfold-Leiss method with smoothing out by the method of iterations. Number of iterations n = 1; 3; 5. In the programmatic package of TALYS-1.4 got cross section for five models of closeness of levels. Theoretical and experimental results well coincide in a maximum.

  8. Ni62(n,γ) and Ni63(n,γ) cross sections measured at the n_TOF facility at CERN

    Science.gov (United States)

    Lederer, C.; Massimi, C.; Berthoumieux, E.; Colonna, N.; Dressler, R.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Kivel, N.; Pignatari, M.; Reifarth, R.; Schumann, D.; Wallner, A.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthier, B.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Gramegna, F.; Griesmayer, E.; Gurusamy, P.; Harrisopulos, S.; Heil, M.; Ioannides, K.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Karadimos, D.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Lebbos, E.; Leeb, H.; Leong, L. S.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Marrone, S.; Martinez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Tlustos, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.; n TOF Collaboration

    2014-02-01

    The cross section of the Ni62(n,γ) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT=30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni63(n ,γ) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.

  9. Geometrical aspects of reaction cross sections for {sup 3}He, {sup 4}He and {sup 12}C projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Ingemarsson, A. [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Lantz, M. [Uppsala Univ. (Sweden). The Svedberg Laboratory

    2003-04-01

    A black-disc model combined with accurate matter densities has been used for an investigation of reaction cross sections for {sup 3}He, {sup 4}He and {sup 12}C projectiles. A simple relation is derived between the energy dependence of the reaction cross sections and the strength of the nucleon-nucleon interaction. A comparison is also made of the reaction cross sections for {sup 3}He and {sup 4}He for six different nuclei {sup 12}C, {sup 16}O, {sup 40}Ca, {sup 58,60}Ni and {sup 208}Pb.

  10. Formation cross section of iron-60 with reactor neutrons in 59Fe(n, γ)60Fe reaction

    International Nuclear Information System (INIS)

    Sato, T.; Suzuki, T.

    1993-01-01

    Ingrowth of 60 Co radioactivity in an iron sample irradiated in a nuclear reactor has been measured for determination of formation cross section of 60 Fe in the 59 Fe(n, γ) 60 Fe reaction with reactor neutrons. After 5 years cooling, the irradiated iron was purified from 60 Co and other radioactive nuclides by an anion exchange separation method and isopropyl ether extraction in hydrochloric acid. The amount of 60 Co ingrowth was measured by γ-spectrometry using a Ge-detector coupled to a multichannel pulse height analyzer 4 years after the purification of iron. Neutron flux of the irradiation position was calculated from the amount of 55 Fe produced. The observed value of 12.5 ± 2.8 barn is slightly greater than reported value for burnup cross section of 59 Fe(n, x)X, where x refers γ, α, d, p and 2n, and X is any nuclide produced by the above reactions. (author) 8 refs.; 2 tabs

  11. Fusion, reaction and break-up cross sections of weakly bound projectiles on 64Zn

    International Nuclear Information System (INIS)

    Gomes, P.R.S.; Padron, I.; Rodriguez, M.D.; Marti, G.V.; Anjos, R.M.; Lubian, J.; Veiga, R.; Liguori Neto, R.; Crema, E.; Added, N.; Chamon, L.C.; Fernandez Niello, J.O.; Capurro, O.A.; Pacheco, A.J.; Testoni, J.E.; Abriola, D.; Arazi, A.; Ramirez, M.; Hussein, M.S.

    2004-01-01

    We present new measurements and a general discussion of the behavior of the fusion, break-up and reaction cross sections of different projectiles on the same target 64 Zn, at near and above barrier energies. The projectiles are the tightly bound 16 O, the stable weakly bound 6 Li, 7 Li and 9 Be and the radioactive very weakly bound 6 He nuclei. We also compare the results with the ones for heavier targets

  12. Requirements for design of accelerator, beam transport, and target in a study of thermonuclear reaction cross section

    Energy Technology Data Exchange (ETDEWEB)

    Itahashi, T; Takahisa, K; Fujiwara, M; Toki, H; Ejiri, H [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Ohsumi, H; Komori, M

    1997-03-01

    A compact accelerator with high current ion source, low energy beam transport elements and windowless gas target was designed to investigate the thermonuclear reaction cross section. The idea of this project focused on the cross section measurement of the fusion reaction data {sup 3}He+{sup 3}He-{sup 4}He+p+p at 25keV. The system will be installed in Otoh Cosmo Observatory (1270m.w.e.) to get rid of the huge cosmic and environmental background. It consists of NANOGUN ECR ion source, focusing elements made of permanent magnets window less {sup 3}He gas target and/or He{sup 3} plasma target and detector telescopes with low noise and low background. Requirements for these were discussed technically and various ideas were proposed. (author)

  13. Measurement of the 64Zn,47Ti(n,p) cross sections using a DD neutron generator for medical isotope studies

    Science.gov (United States)

    Voyles, A. S.; Basunia, M. S.; Batchelder, J. C.; Bauer, J. D.; Becker, T. A.; Bernstein, L. A.; Matthews, E. F.; Renne, P. R.; Rutte, D.; Unzueta, M. A.; van Bibber, K. A.

    2017-11-01

    Cross sections for the 47Ti(n,p)47Sc and 64Zn(n,p)64Cu reactions have been measured for quasi-monoenergetic DD neutrons produced by the UC Berkeley High Flux Neutron Generator (HFNG). The HFNG is a compact neutron generator designed as a "flux-trap" that maximizes the probability that a neutron will interact with a sample loaded into a specific, central location. The study was motivated by interest in the production of 47Sc and 64Cu as emerging medical isotopes. The cross sections were measured in ratio to the 113In(n,n‧)113mIn and 115In(n,n‧)115mIn inelastic scattering reactions on co-irradiated indium samples. Post-irradiation counting using an HPGe and LEPS detectors allowed for cross section determination to within 5% uncertainty. The 64Zn(n,p)64Cu cross section for 2.76-0.02+0.01 MeV neutrons is reported as 49.3 ± 2.6 mb (relative to 113In) or 46.4 ± 1.7 mb (relative to 115In), and the 47Ti(n,p)47Sc cross section is reported as 26.26 ± 0.82 mb. The measured cross sections are found to be in good agreement with existing measured values but with lower uncertainty (neutron sources for nuclear data measurements and potentially the production of radionuclides for medical applications.

  14. Light stops emerging in WW cross section measurements?

    International Nuclear Information System (INIS)

    Rolbiecki, Krzysztof

    2013-03-01

    Recent ATLAS and CMS measurements show a slight excess in the WW cross section measurement. While still consistent with the Standard Model within 1-2σ, the excess could be also a first hint of physics beyond the Standard Model. We argue that this effect could be attributed to the production of scalar top quarks within supersymmetric models. The stops of m t 1 ∝200 GeV has the right cross section and under some assumptions can significantly contribute to the final state of two leptons and missing energy. We scan this region of parameter space to find particle masses preferred by the WW cross section measurements. Taking one sample benchmark point we show that it can be consistent with low energy observables and Higgs sector measurements and propose a method to distinguish supersymmetric signal from the Standard Model contribution.

  15. Measurement of {sup 238}Np fission cross-section by neutrons near thermal point (preliminary results)

    Energy Technology Data Exchange (ETDEWEB)

    Abramo; vich, S.N.; Andreev, M.F.; Bol`shakov, Y.M. [Institute of Experimental Physics, Arzamas (Russian Federation)] [and others

    1995-10-01

    Measurements have been carried out of {sup 238}Np fission cross-section by thermal neutrons. The isotope {sup 238}Np was built up through the reaction {sup 238}U(p,n) on an electrostatic accelerator. Extraction and cleaning of the sample were done by ion-exchange chromatography. Fast neutrons were generated on the electrostatic accelerator through the reaction {sup 9}Be(d,n); a polyethylene block was used to slow down neutrons. Registration of fission fragments was performed with dielectric track detectors. Suggesting that the behavior of {sup 238}Np and {sup 238}U. Westscott`s factors are indentical the fission cross-section of {sup 238}Np was obtained: {sigma}{sub fo}=2110 {plus_minus} 75 barn.

  16. Experimental cross section for the {sup 152}Sm(n, γ){sup 153}Sm reaction at 0.0334 eV

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M. Shuza; Datta, Tapash Kumar; Hossain, Syed Mohammod; Zakaria, A.K.M.; Islam, Mohammad Amirul; Naher, Kamrun; Shariff, M. Asad; Yunus, S.M. [Atomic Energy Research Establishment, Dhaka (Bangladesh). Inst. of Nuclear Science and Technology; Afroze, Nasmin [Atomic Energy Research Establishment, Dhaka (Bangladesh). Inst. of Nuclear Science and Technology; Jahangirnagar Univ., Dhaka (Bangladesh). Dept. of Physics; Islam, S.M. Ajharul [Jahangirnagar Univ., Dhaka (Bangladesh). Dept. of Physics

    2014-10-01

    The neutron capture cross section for the {sup 152}Sm(n, γ){sup 153}Sm reaction at an energy of 0.0334 eV was measured for the first time using monochromatic neutrons of a powder diffractometer at the TRIGA Mark II nuclear reactor at Dhaka, Bangladesh. The {sup 197}Au(n, γ){sup 198}Au reaction was used to monitor the neutron beam intensity. The radioactivity of the products was determined via high resolution γ-ray spectrometry. The obtained cross section value is 184 ± 22b, which is consistent with both the ENDF/B-VII and TENDL-2012 data libraries. The measured value at 0.0334 eV and the previous data at 0.0536 eV confirm the reliability of the data in the above libraries. (orig.)

  17. Filtered thermal neutron captured cross-sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Tan, Vuong Huu

    2014-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R cd ) of 420 and neutron flux (Φ th ) of 1.6x10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross-sections for nuclide of 51 V, 55 Mn, 180 Hf and 186 W by the activation method relative to the standard reaction 197 Au(n,g) 198 Au. In addition to the activities of neutron capture cross-sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U, 238 U, 239 Pu and 232 Th are introduced in this report. (author)

  18. The shell structure effects in neutron cross section calculation by a ...

    African Journals Online (AJOL)

    The role of the shell structure properties of the nucleus in the calculation of neutron-induced reaction cross-section data based on nuclear reaction theory has been investigated. In this investigation, measured, evaluated and calculated (n.p) reaction cross-section data on la spherical nucleus (i.e. 112Sn) and a deformed ...

  19. The differential cross section of the 12C(p,p)12C reaction near the resonance at energy 1.726 MeV

    International Nuclear Information System (INIS)

    Duvanov, S.M.; Kobzev, A.P.

    1996-01-01

    New experimental results on the differential cross section of the 12 C(p,p) 12 C reaction near the separate resonance at 1726 keV were obtained for the 170 deg scattering angle. The cross section measured with a thin target has been used for computer simulation of the spectra measured for a defined initial proton energy for two thick targets. The precision measurements of the proton energies have been carried out using the resonance of 27 Al(p,γ) 28 Si reaction at 1726.0 keV. The energy scale of the excitation function of the 12 C(p,p) 12 C reaction near the resonance at 1726 keV has been defined more exactly. It will improve the precision of depth profiling of carbon in solids. 11 refs., 5 figs., 1 tab

  20. Measurement of the $Z/A$ dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Spada, F R; Visschers, J L; Güler, M; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilian, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu_mu + N -> mu^- + X. The targets, passive blocks of ~100kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematics effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio.

  1. Neutron capture cross section measurements and theoretical calculation for the {sup 186}W(n,γ){sup 187}W reaction

    Energy Technology Data Exchange (ETDEWEB)

    Al-abyad, Mogahed; Mohamed, Gehan Y. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.

    2017-08-01

    Neutron capture cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the reaction {sup 186}W(n,γ){sup 187}W were measured experimentally using the research reactor (ETRR-2) and an Am-Be neutron source, also calculated using TALYS-1.6 code. The present results of σ{sub 0} are (39.08±2.6, 38.75±0.98 and 38.33 barn) and I{sub 0} are (418.5±74, 439.3±36 and 445.5 barn) by using the reactor, neutron source and TALYS-1.6, respectively. The present results are in acceptable agreement with most of the previous experimental and evaluated data as well as the theoretical calculations.

  2. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  3. Neutron capture cross section measurements: case of lutetium isotopes; Mesures de donnees de sections efficaces de capture radiative de neutrons: application au cas du lutecium

    Energy Technology Data Exchange (ETDEWEB)

    Roig, O.; Meot, V.; Belier, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-07-15

    The neutron radiative capture is a nuclear reaction that occurs in the presence of neutrons on all isotopes and on a wide energy range. The neutron capture range on Lutetium isotopes, presented here, illustrates the variety of measurements leading to the determination of cross sections. These measurements provide valuable fundamental data needed for the stockpile stewardship program, as well as for nuclear astrophysics and nuclear structure. Measurements, made in France or in United-States, involving complex detectors associated with very rare targets have significantly improved the international databases and validated models of nuclear reactions. We present results concerning the measurement of neutron radiative capture on Lu{sup 173}, Lu{sup 175}, Lu{sup 176} and Lu{sup 177m}, the measurement of the probability of gamma emission in the substitution reaction Yb{sup 174}(He{sup 3},p{gamma})Lu{sup 176}. The measurement of neutron cross sections on Lu{sup 177m} have permitted to highlight the process of super-elastic scattering

  4. Experience in using the covariances of some ENDF/B-V dosimetry cross sections: proposed improvements and addition of cross-reaction covariances

    International Nuclear Information System (INIS)

    Fu, C.Y.; Hetrick, D.M.

    1982-01-01

    Recent ratio data, with carefully evaluated covariances, were combined with eleven of the ENDF/B-V dosimetry cross sections using the generalized least-squares method. The purpose was to improve these evaluated cross sections and covariances, as well as to generate values for the cross-reaction covariances. The results represent improved cross sections as well as realistic and usable covariances. The latter are necessary for meaningful intergral-differential comparisons and for spectrum unfolding

  5. Assessment of the ''thermal normalization technique'' for measurement of neutron cross sections vs energy

    International Nuclear Information System (INIS)

    Peelle, R.W.; de Sassure, G.

    1977-01-01

    Refined knowledge of the thermal neutron cross sections of the fissile nuclides and of the (n,α) reaction standards, together with the reasonably well known energy dependence of the latter, have permitted resonance-region and low-keV fissile nuclide cross sections to be based on these standards together with count-rate ratios observed as a function of energy using a pulsed ''white'' source. As one evaluates cross sections for energies above 20 keV, optimum results require combination of cross section shape measurements with all available absolute measurements. The assumptions of the ''thermal normalization method'' are reviewed, and an opinion is given of the status of some of the standards required for its use. The complications which may limit the accuracy of results using the method are listed and examples are given. For the 235 U(n,f) cross section, the option is discussed of defining resonance-region fission integrals as standards. The area of the approximately 9 eV resonances in this nuclide may be known to one percent accuracy, but at present the fission integral from 0.1 to 1.0 keV is known to no better than about two percent. This uncertainty is based on the scatter among independent results, and has not been reduced by the most recent measurements. This uncertainty now limits the accuracy attainable for the 235 U(n,f) cross section below about 50 keV. Suggestions are given to indicate how future detailed work might overcome past sources of error

  6. Absolute cross sections measurement for the 12C + 12C system at astrophysically relevant energies

    International Nuclear Information System (INIS)

    Barron-Palos, L.; Aguilera, E.F.; Aspiazu, J.; Huerta, A.; Martinez-Quiroz, E.; Monroy, R.; Moreno, E.; Murillo, G.; Ortiz, M.E.; Policroniades, R.; Varela, A.; Chavez, E.

    2006-01-01

    The 12 C + 12 C fusion reaction has been studied in the center-of-mass energy range of 2.25 to 6.01 MeV. Through the detection of gamma rays from the first excited states of the residual nuclei 20 Ne, 23 Na and 23 Mg, absolute cross sections for the 12 C( 12 C,-bar α), 12 C( 12 C,-bar p) and 12 C( 12 C,-bar n) reactions have been obtained. In this new measurement, the energy dependence of the S-factor is found to increase as the energy decreases below 3 MeV in the center of mass. This tendency was observed in previous measurements by Mazarakis et al., and has since then become a subject of controversy. In this work, where the cross sections are measured at even lower energies, we confirm the rise in the S-factor toward the energy region relevant for star evolution and nucleosynthesis calculations (E c.m. =1-3 MeV)

  7. Testing an ionization chamber with gaseous samples and measurements of the (n, alpha) reaction cross sections

    CERN Document Server

    Gledenov, Yu M; Salatskii, V I; Sedyshev, P V; Andrzejewski, J; Szalanski, P

    1999-01-01

    A new ionization chamber with gaseous samples (GIC) has been designed and tested on the thermal and resonance neutron beams of FLNP's neutron sources. The exposed gas volume serves as a target for neutrons. The obtained thermal cross sections for the sup 1 sup 7 O(n, alpha) sup 1 sup 4 C, sup 2 sup 1 Ne(n, alpha) sup 1 sup 8 O and sup 3 sup 6 Ar(n, alpha) sup 3 sup 3 S reactions are (233+-12) mb, (0.18+-0.09) mb and (5.43+-0.27) mb, respectively. These measurements have been performed on a pure beam of thermal neutrons from the high flux reactor IBR-2; and they demonstrated high efficiency and reliability of the method. Compared to samples on substrates, the application of gaseous samples makes the beam background essentially lower, and what is more important, the background component is totally absent due to the absence of Li and B microimpurities in gaseous samples while they do present in the samples on substrates. The method is also applicable to measurements with resonance neutrons. The recovery capabili...

  8. Calculation and evaluation of the activation cross sections for 187Re(n,2n)186m,gRe reactions

    International Nuclear Information System (INIS)

    Huang Xiaolong; Lu Hanlin; Zhou Chunmei

    1998-01-01

    The activation cross sections for 187 Re(n,2n) 186m,g Re reactions are calculated using UNF code. The calculations are in good agreement with the re-evaluated measured data. Finally the excitation function for 187 Re(n,2n) 186m,g Re reactions are evaluated and recommended based on present calculations and evaluated decay data

  9. Light stops emerging in WW cross section measurements?

    Energy Technology Data Exchange (ETDEWEB)

    Rolbiecki, Krzysztof [IFT-UAM/CSIC, Madrid (Spain). Inst. de Fisica Teorica; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-03-15

    Recent ATLAS and CMS measurements show a slight excess in the WW cross section measurement. While still consistent with the Standard Model within 1-2{sigma}, the excess could be also a first hint of physics beyond the Standard Model. We argue that this effect could be attributed to the production of scalar top quarks within supersymmetric models. The stops of m{sub t{sub 1}}{proportional_to}200 GeV has the right cross section and under some assumptions can significantly contribute to the final state of two leptons and missing energy. We scan this region of parameter space to find particle masses preferred by the WW cross section measurements. Taking one sample benchmark point we show that it can be consistent with low energy observables and Higgs sector measurements and propose a method to distinguish supersymmetric signal from the Standard Model contribution.

  10. Cross Sections Calculations of ( d, t) Nuclear Reactions up to 50 MeV

    Science.gov (United States)

    Tel, E.; Yiğit, M.; Tanır, G.

    2013-04-01

    In nuclear fusion reactions two light atomic nuclei fuse together to form a heavier nucleus. Fusion power is the power generated by nuclear fusion processes. In contrast with fission power, the fusion reaction processes does not produce radioactive nuclides. The fusion will not produce CO2 or SO2. So the fusion energy will not contribute to environmental problems such as particulate pollution and excessive CO2 in the atmosphere. Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2010, more than 60 years after the first attempts, commercial power production is still believed to be unlikely before 2050. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. In the fusion reactor, tritium self-sufficiency must be maintained for a commercial power plant. Therefore, for self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( d, t) nuclear reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. Since the experimental data of charged particle induced reactions are scarce, self-consistent calculation and analyses using nuclear theoretical models are very important. In this study, ( d, t) cross sections for target nuclei 19F, 50Cr, 54Fe, 58Ni, 75As, 89Y, 90Zr, 107Ag, 127I, 197Au and 238U have been investigated up to 50 MeV deuteron energy. The excitation functions for ( d, t) reactions have been calculated by pre-equilibrium reaction mechanism. Calculation results have been also compared with the available measurements in

  11. Study of the surrogate-reaction method applied to neutron-induced capture cross sections

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Méot, V.; Roig, O.; Mathieu, L.; Aïche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Schmidt, K.-H.; Burke, J.T.; Bail, A.; Daugas, J.M.; Faul, T.; Morel, P.; Pillet, N.; Théroine, C.; Derkx, X.; Sérot, O.

    2012-01-01

    Gamma-decay probabilities of 173 Yb and 176 Lu have been measured using the surrogate reactions 174 Yb( 3 He,αγ) 173 Yb* and 174 Yb( 3 He,pγ) 176 Lu*, respectively. For the first time, the gamma-decay probabilities have been obtained with two independent experimental methods based on the use of C 6 D 6 scintillators and Germanium detectors. Our results for the radiative-capture cross sections are several times higher than the corresponding neutron-induced data. To explain these differences, we have used our gamma-decay probabilities to extract rather direct information on the spin distributions populated in the transfer reactions used. They are about two times wider and the mean values are 3 to 4 ℏ higher than the ones populated in the neutron-induced reactions. As a consequence, in the transfer reactions neutron emission to the ground and first excited states of the residual nucleus is strongly suppressed and gamma-decay is considerably enhanced.

  12. Measurement of flux-weighted average cross-sections and isomeric yield ratios for {sup 103}Rh(γ, xn) reactions in the bremsstrahlung end-point energies of 55 and 60 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Shakilur Rahman, Md.; Kim, Kwangsoo; Kim, Guinyun; Nadeem, Muhammad; Thi Hien, Nguyen; Shahid, Muhammad [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Naik, Haladhara [Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Yang, Sung-Chul; Cho, Young-Sik; Lee, Young-Ouk [Korea Atomic Energy Research Institute, Nuclear Data Center, Daejeon (Korea, Republic of); Shin, Sung-Gyun; Cho, Moo-Hyun [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang (Korea, Republic of); Woo Lee, Man; Kang, Yeong-Rok; Yang, Gwang-Mo [Dongnam Institute of Radiological and Medical Science, Research Center, Busan (Korea, Republic of); Ro, Tae-Ik [Dong-A University, Department of Materials Physics, Busan (Korea, Republic of)

    2016-07-15

    We measured the flux-weighted average cross-sections and the isomeric yield ratios of {sup 99m,g,100m,g,101m,g,102m,g}Rh in the {sup 103}Rh(γ, xn) reactions with the bremsstrahlung end-point energies of 55 and 60 MeV by the activation and the off-line γ-ray spectrometric technique, using the 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Korea. The flux-weighted average cross-sections were calculated by using the computer code TALYS 1.6 based on mono-energetic photons, and compared with the present experimental data. The flux-weighted average cross-sections of {sup 103}Rh(γ, xn) reactions in intermediate bremsstrahlung energies are the first time measurement and are found to increase from their threshold value to a particular value, where the other reaction channels open up. Thereafter, it decreases with bremsstrahlung energy due to its partition in different reaction channels. The isomeric yield ratios (IR) of {sup 99m,g,100m,g,101m,g,102m,g}Rh in the {sup 103}Rh(γ, xn) reactions from the present work were compared with the literature data in the {sup 103}Rh(d, x), {sup 102-99}Ru(p, x), {sup 103}Rh(α, αn), {sup 103}Rh(α, 2p3n), {sup 102}Ru({sup 3}He, x), and {sup 103}Rh(γ, xn) reactions. It was found that the IR values of {sup 102,101,100,99}Rh in all these reactions increase with the projectile energy, which indicates the role of excitation energy. At the same excitation energy, the IR values of {sup 102,101,100,99}Rh are higher in the charged particle-induced reactions than in the photon-induced reaction, which indicates the role of input angular momentum. (orig.)

  13. Parameterization of α-nucleus total reaction cross section at intermediate energies

    International Nuclear Information System (INIS)

    Alvi, M A; Abdulmomen, M A

    2008-01-01

    Applying a Coulomb correction factor to the Glauber model we have derived a closed expression for α-nucleus total reaction cross section, σ R . Under the approximation of rigid projectile model, the elastic S-matrix element S el (b) is evaluated from the phenomenological N-α amplitude and a Gaussian fit to the Helm's model form factor. Excellent agreements with the experimental data have been achieved by performing two-parameter fits to the α-nucleus σ R data in the energy range about 75 to 193 MeV. One of the parameters was found to be energy independent while the other, as expected, shows the energy dependence similar to that of N-α total cross section.

  14. 239Pu(n, 2n) and 241Pu(n, 2n) surrogate cross section measurements using NeutronSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alan, B. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Akindele, O. A. [Univ. of California, Berkeley, CA (United States); Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Koglin, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tamashiro, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oregon State Univ., Corvallis, OR (United States); Kolos, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States); Saastamoinen, A. [Univ. of California, Los Angeles, CA (United States); Padilla, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Los Angeles, CA (United States); Fisher, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-08

    The goal of this project was to develop a new approach to measuring (n,2n) reactions for isotopes of interest. We set out to measure the 239Pu(n,2n) and 241Pu(n,2n) cross sections by directly detecting the 2n neutrons that are emitted. With the goal of improving the 239Pu(n,2n) cross section and to measure the 241Pu(n,2n) cross section for the first time. To that end, we have constructed a new neutron-charged-particle detector array called NeutronSTARS. It has been described extensively in Casperson et al. [1] and in Akindele et al. [2]. We have used this new neutron-charged-particle array to measure the 241Pu and 239Pu fission neutron multiplicity as a function of equivalent incident-neutron energy from 100 keV to 20 MeV. We have made a preliminary determination of the 239Pu(n,2n) and 241Pu(n,2n) cross sections from the surrogate 240Pu(α,α’2n) and 242Pu(α,α’2n) reactions respectively. The experimental approach, detector array, data analysis, and results to date are summarized in the following sections.

  15. Progress on FP13 Total Cross Section Measurements Capability

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    An accurate knowledge of the neutron capture cross section is important for many applications. Experimental measurements are important since theoretical calculations of capture have been notoriously difficult, with the ratio of measured to calculated cross sections often a factor of 2 or more in the 10 keV to 1 MeV region. However, a direct measurement of capture cannot be made on many interesting radioactive nuclides because of their short half-life or backgrounds caused by their nuclear decay. On the other hand, neutron transmission measurements of the total cross section are feasible for a wide range of radioactive nuclides since the detectors are far from the sample, and often are less sensitive to decay radiation. The parameters extracted from a total cross section measurement, which include the average resonance spacing, the neutron strength function, and the average total radiation width, (Γγ), provide tight constraints on the calculation of the capture cross section, and when applied produce much more accurate results. These measurements can be made using the intense epithermal neutron flux at the Lujan Center on relatively small quantities of target material. It was the purpose of this project to investigate and develop the capability to make these measurements. A great deal of progress was made towards establishing this capability during 2016, including setting up the flight path and obtaining preliminary results, but more work remains to be done.

  16. Evaluation of {sup 23}Na(n,2n){sup 22}Na reaction cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Manokhin, V N [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-06-01

    Using available experimental data and (n,2n) excitation function systematics {sup 23}Na(n,2n){sup 22}Na reaction cross-sections were evaluated for energies ranging from the reaction threshold to 20 MeV. (author). 21 refs, 1 fig., 2 tabs.

  17. Measurement of the $^{7}$Be$(p,\\gamma)^{8}$B Cross-Section with an Implanted Target

    CERN Document Server

    2002-01-01

    % IS366\\\\ \\\\ The $^7$Be(p,$\\gamma)^8$B capture reaction is of major importance to the physics of the sun and the issues of the ``solar neutrino puzzle'' and neutrino masses. We report here on a new determination of the absolute cross section of this reaction, using a novel method which overcomes some of the major experimental uncertainties of previous measurements. We utilize an implanted $^7$Be target and a uniformly scanned particle beam larger than the target spot, eliminating issues of target homogeneity and backscattering loss of $^8$B reaction products. The target was produced using a beam of 1.8 10$^{10}$/s $^7$Be nuclei extracted at ISOLDE(CERN) from a graphite target bombarded by 1 GeV protons in a two-step resonant laser ionization source. The $^7$Be nuclei were directly implanted into a copper substrate to obtain a target of 2 mm diameter with a total of 3.10$^{15}$ atoms. The measurement of the $^8$B production cross section was carried out at the Van de Graaff laboratory of the Weizmann Institute...

  18. Studying the ωN elastic and inelastic cross section with nucleons

    International Nuclear Information System (INIS)

    Golubeva, Ye.S.; Kondratyuk, L.A.; Buescher, M.

    2000-01-01

    We explore the possibility to measure the elastic and inelastic ωN cross section in p+d→d+ω+p sp and p+A reactions. Our studies indicate that the elastic scattering cross sections can be determined for ω momenta above 1 GeV/c in p+d reactions by gating on high proton spectator momenta whereas the ωN absorption cross section down to low relative ω momenta is most effectively studied in p+A reactions at beam energies 2.0-2.7 GeV. (orig.)

  19. New approach to analyzing and evaluating cross sections for partial photoneutron reactions

    International Nuclear Information System (INIS)

    Varlamov, V. V.; Ishkhanov, B. S.; Orlin, V. N.

    2012-01-01

    The presence of substantial systematic discrepancies between the results of different experiments devoted to determining cross sections for partial photoneutron reactions—first of all, (γ, n), (γ, 2n), and (γ, 3n) reactions—is a strong motivation for studying the reliability and authenticity of these data and for developing methods for taking into account and removing the discrepancies in question. In order to solve the first problem, we introduce objective absolute criteria involving transitional photoneutron-multiplicity functions F 1 , F 2 , F 3 , …; by definition, their values cannot exceed 1.0, 0.5, 0.33, …, respectively. With the aim of solving the second problem, we propose a new experimental-theoretical approach. In this approach, reaction cross sections are evaluated by simultaneously employing experimental data on the cross section for the total photoneutron yield, σ expt (γ, xn) = σ expt (γ, n) + 2σ expt (γ, 2n) + 3σ expt (γ, 3n) + …, which are free from drawbacks plaguing experimental methods for sorting neutrons in multiplicity, and the results obtained by calculating the functions F theor 1 , F theor 2 , F theor 3 , … on the basis of the modern model of photonuclear reactions. The reliability and authenticity of data on the cross sections for (γ, n), (γ, 2n), and (γ, 3n) partial reactions—σ eval (γ, in) = F i theor σ expt (γ, xn)—were evaluated for the 90 Zr, 115 In, 112,114,116,117,118,119,120,122,124 Sn, 159 Tb, and 197 Au nuclei.

  20. Actinide neutron-induced fission cross section measurements at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  1. KAPSIES: A program for the calculation of multi-step direct reaction cross sections

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1994-09-01

    We present a program for the calculation of continuum cross sections, sepctra, angular distributions and analyzing powers according to various quantum-mechanical theories for statistical multi-step direct nuclear reactions. (orig.)

  2. Measurement of the Hadronic Cross-Section for the Scattering of Two Virtual Photons at LEP

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Couchman, J.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Littlewood, C.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rozen, Y.; Runge, K.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Sproston, M.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomas, J.; Thomson, M.A.; Torrence, E.; Toya, D.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2001-01-01

    The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.

  3. Measurement of the Z/A dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topasku, A; Dantzig, R V

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu submu + N -> mu sup - + X. The targets, passive blocks of propor to 100 kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematic effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio. (orig.)

  4. Development of a Neutron Long Counter Detector for (α, n) Cross Section Measurements at Ohio University

    Science.gov (United States)

    Brandenburg, Kristyn; Meisel, Zach; Brune, Carl R.; Massey, Thomas; Soltesz, Doug; Subedi, Shiv

    2017-01-01

    The origin of the elements from roughly zinc-to-tin (30 determined. The neutron-rich neutrino driven wind of core collapse supernova (CCSN) is a proposed site for the nucleosynthesis of these elements. However, a significant source of uncertainty exists in elemental abundance yields from astrophysics model calculations due to the uncertainty for (α , n) reaction rates, as most of the relevant cross sections have yet to be measured. We are developing a neutron long counter tailored to measure neutrons for (α , n) reaction measurements performed at The Ohio University Edwards Accelerator Laboratory. The detector design will be optimized using the Monte-Carlo N-Particle transport code (MCNP6). Details of the optimization process, as well as the present status of the detector design will be provided. The plans for first (α , n) cross section measurements will also be briefly discussed. This work was supported in part by the US Department of Energy under Grant Number DE-FG02-88ER40387.

  5. Average cross sections for the 252Cf neutron spectrum

    International Nuclear Information System (INIS)

    Dezso, Z.; Csikai, J.

    1977-01-01

    A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables

  6. Actinide Capture and Fission Cross Section Measurements Within the Mini-Inca Project

    International Nuclear Information System (INIS)

    Letourneau, A.

    2006-01-01

    Full text of publication follows: The Mini-INCA project is devoted to precise description of the transmutation chain of Actinides within high thermal neutron fluxes. It uses the High Flux Reactor of ILL (Laue Langevin Institute) as an intense thermal neutron source to measure capture and fission cross sections. Two irradiation channels are dedicated for those measurements offering a diversity of fluxes ranging from pure thermal neutrons to 15% epithermal neutrons with intensities as high as 1*10 15 n/cm 2 /s. Standard nuclear techniques for measurements, such as α and γ-spectroscopy of irradiated samples, have been extended in order to stand all constraints due to the irradiation in high fluxes. In particular new types of fission micro-chambers have been developed to follow online the evolution of one actinide and to measure its fission cross section in reference to 235 U(n,F) standard reaction. This type of neutron detector will be used within the MEGAPIE target to on-line characterise the neutron flux and to study the potentiality of such target in terms of incineration. (author)

  7. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wilson, J.W.; Bidasaria, H.B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to be assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability for geometric reaction cross sections are determined

  8. Cross section for the 103Rh(n,n')103Rhm reaction in the energy range 5.7 endash 12 MeV

    International Nuclear Information System (INIS)

    Miah, M.M.; Strohmaier, B.; Vonach, H.; Mannhart, W.; Schmidt, D.

    1996-01-01

    The 103 Rh(n,n ' ) 103 Rh m cross section was measured by the activation method in the neutron energy range 5.7 endash 12 MeV with an uncertainty of ≅5%. Monoenergetic neutrons produced by the D(d,n) 3 He reaction were used to irradiate metallic Rh samples at 0 degree relative to the deuteron beam. The K x rays from 103 Rh m were measured with a calibrated Si detector, and the neutron fluence was determined by means of a 238 U fission chamber. The measured cross sections resolve the discrepancies in previous data and agree with the results of recent statistical model calculations of the fast-neutron cross sections of rhodium. copyright 1996 The American Physical Society

  9. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  10. ATLAS-ALFA measurements on the total cross section and diffraction

    CERN Document Server

    Mortensen, Simon Stark; The ATLAS collaboration

    2015-01-01

    The measurement of the total pp cross section at the LHC at $\\sqrt{s}=7$ TeV with the ALFA subdetector of ATLAS is presented in this talk. In a special run with $\\beta^*=90$ m beam optics corresponding to an integrated luminosity of 80 $\\text{mb}^{-1}$ the differential elastic cross section is measured in the range from $-t=0.0025\\text{ GeV}^2$ to $-t=0.38\\text{ GeV}^2$. The total cross section $\\sigma(pp\\rightarrow X)$ is extracted using the Optical Theorem by extrapolation of the differential elastic cross section to $t=0\\text{ GeV}^2$. Prospects for diffractive measurements using ALFA to detect the intact proton(s) is also discussed.

  11. Measurement of neutron production double-differential cross-sections on carbon bombared with 430 MeV/ Nucleon carbon irons

    Energy Technology Data Exchange (ETDEWEB)

    Itashiki, Yutaro; Imahayashi, Youichi; Shigyo, Nobuhiro; Uozumi, Yusuke [Kyushu University, Fukuoka (Japan); Satoh, Daiki [Japan Atomic Energy Agency, Ibaraki (Japan); Kajimoto, Tsuyoshi [Hiroshima University, Hiroshima (Japan); Sanami, Toshiya [High Energy Accelerator Research Organization, Ibaraki (Japan); Koba, Yusuke; Matufuji, Naruhiro [Institutes for Quantum and Radiological Science and Technology, Chiba (Japan)

    2016-12-15

    Carbon ion therapy has achieved satisfactory results. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes are needed. We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam at PH2 beam line of HIMAC facility in NIRS. Neutrons produced in the target were measured with NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and 90°. Neutron production double-differential cross-sections for carbon bombarded with 430 MeV/nucleon carbon ions were measured by the time-of-flight method with NE213 liquid organic scintillators at six angles of 15, 30, 45, 60, 75, and 90°. The cross sections were obtained from 1 MeV to several hundred MeV. The experimental data were compared with calculated results obtained by Monte Carlo simulation codes PHITS, Geant4, and FLUKA. PHITS was able to reproduce neutron production for elementary processes of carbon-carbon reaction precisely the best of three codes.

  12. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    Science.gov (United States)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  13. Measurement of the neutron capture cross-section of 232Th using the neutron activation technique

    International Nuclear Information System (INIS)

    Naik, H.; Singh, Sarbjit; Goswami, A.; Manchanda, V.K.; Prajapati, P.M.; Surayanarayana, S.V.; Nayak, B.K.; Sharma, S.C.; Jagadeesan, K.C.; Thakare, S.V.; Raj, D.; Ganesan, S.; Mulik, V.K.; Sivashankar, B.S.; Mukherjee, S.

    2011-01-01

    The 232 Th(n, γ) reaction cross-section at average neutron energies of 3.7±0.3 MeV and 9.85±0.38 MeV from the 7 Li(p, n) reaction has been determined for the first time using activation and off-line γ -ray spectrometric technique. The 232 Th(n, 2n) reaction cross-section at the average neutron energy of 9.85±0.38 MeV has been also determined using the same technique. The experimentally determined 232 Th(n, γ) and 232 Th(n, 2n) reaction cross-sections were compared with the evaluated data of ENDF/B-VII, JENDL-4.0 and JEFF-3.1 and were found to be in good agreement. The present data along with literature data in a wide range of neutron energies were interpreted in terms of competition between different reaction channels including fission. The 232 Th(n, γ) and 232 Th(n, 2n) reaction cross-sections were also calculated theoretically using the TALYS 1.2 computer code and were found to be slightly higher than the experimental data. (orig.)

  14. Radar cross section measurements using terahertz waves

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    Radar cross sections at terahertz frequencies are measured on scale models of aircrafts. A time domain broadband THz system generates freely propagating THz pulses measured with sub-picosecond time resolution. The THz radiation is generated using fs laser pulses by optical rectification...... in order to measure realistic radar cross sections. RCS polar and azimuthal angle plots of F-16 and F-35 are presented....... in a lithium niobate crystal with application of the tilted wave front method, resulting in high electric field THz pulses with a broad band spectrum from 100 GHz up to 4 THz. The corresponding wave lengths are two orders of magnitude smaller than normal radars and we therefore use scale models of size 5-10 cm...

  15. Library of neutron reaction cross-sections in the ABBN-93 constant system

    International Nuclear Information System (INIS)

    Zabrodskaya, S.V.; Korchagina, Zh.A.; Koshcheev, V.N.; Nikolaev, M.N.; Tsibulya, A.M.

    2001-01-01

    The library of neutron reaction group cross-sections in the ABBN-93 constant set is described. The format used for data representation, the content and purpose of the sub-libraries and their practical application in the SCALE criticality safety estimation system are discussed. (author)

  16. Measurement of proton inelastic scattering cross sections on fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  17. Experimental determination of proton induced reaction cross sections on {sup nat}Ni near threshold energy

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md. Shuza [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Chakraborty, Animesh Kumer [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics; Spellerberg, Stefan; Spahn, Ingo; Qaim, Syed M. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Shariff, Md. Asad; Das, Sopan [Atomic Energy Research Establishment, Dhaka (Bangladesh). Tandem Accelerator Facilities; Rashid, Md. Abdur [Chittagong University of Engineering and Technology (Bangladesh). Dept. of Physics

    2016-08-01

    A newly developed facility at the 3 MV Tandem Accelerator at Dhaka for measurement of proton induced reaction cross sections in the energy region below 5 MeV is outlined and tests for the beam characterization are described. The results were validated by comparison with the well-known excitation function of the {sup 64}Ni(p, n){sup 64}Cu reaction. Excitation functions of the reactions {sup nat}Ni(p, x){sup 60,61}Cu, {sup nat}Ni(p, x){sup 55,57,58m+g}Co and {sup nat}Ni(p, x){sup 57}Ni were also measured from threshold to 16 MeV using the stacked-foil technique, whereby irradiations were performed with 5 MeV protons available at the Tandem Accelerator and 16.7 MeV protons at the BC 1710 cyclotron at Juelich, Germany. The radioactivity was measured using HPGe γ-ray detectors. A few results are new, the others strengthen the database. In particular, the results of the reaction {sup nat}Ni(p, x){sup 61}Cu below 3 MeV could serve as beam monitor.

  18. Elastic scattering and total reaction cross section for the 6He +58Ni system

    Science.gov (United States)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Mendes, D. R., Jr.; Pires, K. C. C.; de Faria, P. N.; Barioni, A.; Gasques, L.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.

    2014-11-01

    Elastic scattering measurements of 6He + 58Ni system have been performed at the laboratory energy of 21.7 MeV. The 6He secondary beam was produced by a transfer reaction 9Be (7Li , 6He ) and impinged on 58Ni and 197Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  19. Cross section measurement of residues produced in proton- and deuteron-induced spallation reactions on 93Zr at 105 MeV/u using the inverse kinematics method

    Directory of Open Access Journals (Sweden)

    Kawase Shoichiro

    2017-01-01

    Full Text Available Isotopic production cross sections in the proton- and deuteron-induced spallation reactions on 93Zr at an energy of 105 MeV/u were measured in inverse kinematics conditions for the development of realistic nuclear transmutation processes for long-lived fission products (LLFPs with neutron and light-ion beams. The experimental results were compared to the PHITS calculations describing the intra-nuclear cascade and evaporation processes. Although an overall agreement was obtained, a large overestimation of the production cross sections for the removal of a few nucleons was seen. A clear shell effect associated with the neutron magic number N = 50 was observed in the measured isotopic production yields of Zr and Y isotopes, which can be reproduced reasonably by the PHITS calculation.

  20. Scattering cross-sections of common calibration gases measured by IBBCEAS technique

    Directory of Open Access Journals (Sweden)

    S.I. Issac

    Full Text Available In this study, incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS was used to measure scattering cross-sections of a few common gases in the 650–670 nm spectral range relative to that of dry air. Precise measurements of scattering cross-sections of these calibration gases in the visible spectral range are important. The IBBCEAS system developed in the laboratory was calibrated with a low-loss optical window. The measurements made at 660 nm were compared with previously measured cross-section values and found to be in good agreement with the existing measurements. Keywords: IBBCEAS, Rayleigh scattering, Scattering cross section

  1. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  2. Status report on cross-sections of monitor reactions for radioisotope production

    International Nuclear Information System (INIS)

    Schwerer, O.; Okamoto, K.

    1989-12-01

    The status of data on cross-sections of 19 monitor reactions, especially for cyclotron operation, is summarized. Most of the information was extracted from the data compiled in EXFOR (EXchange FORmat) which is a common format used by the co-operating nuclear data centres in the world. The EXFOR data were supplemented by a number of additional data sets found in the literature. For each reaction a brief status summary, graphical plots of the available experimental and evaluated data, and a table of all experimental data sorted by incident particle energy, are given

  3. Advanced modeling of reaction cross sections for light nuclei

    International Nuclear Information System (INIS)

    Resler, D.A.

    1991-01-01

    The shell model/R-matrix technique of calculating nuclear reaction cross sections for light projectiles incident on light nuclei is discussed, particularly in the application of the technique to thermonuclear reactions. Details are presented on the computational methods for the shell model which display how easily the calculations can be performed. Results of the shell model/R-matrix technique are discussed as are some of the problems encountered in picking an appropriate nucleon-nucleon interaction for the large model spaces which must be used for current problems. The status of our work on developing an effective nucleon-nucleon interaction for use in large-basis shell model calculations is presented. This new interaction is based on a combination of global constraints and microscopic nuclear data. 23 refs., 6 figs., 2 tabs

  4. Calculation of the Reaction Cross Section for Several Actinides

    International Nuclear Information System (INIS)

    Hambsch, Franz-Josef; Oberstedt, Stephan; Vladuca, Gheorghita; Tudora, Anabella; Filipescu, Dan

    2005-01-01

    New, self-consistent, neutron-induced reaction cross-section calculations for 235,238U, 237Np, and 231,232,233Pa have been performed. The statistical model code STATIS was extended to take into account the multi-modality of the fission process. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes, and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for these modes in 235,238U(n,f) and 237Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235U(n,f) and 233Pa(n,f), the calculations being made up to 50 MeV and 20 MeV incident neutron energy, respectively, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes.As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  5. Cross-sections for formation of 99mTc through natRu(n,x) 99mTc reaction induced by neutrons at 13.5 and 14.8 MeV

    International Nuclear Information System (INIS)

    Luo Junhua; Han Jiuning; Tuo Fei; Kong Xiangzhong; Liu Rong; Jiang Li

    2012-01-01

    The cross-sections for formation of metastable state of 99 Tc ( 99m Tc, 140.511 keV, 6.01 h) through nat Ru(n,x) 99m Tc reaction induced by 13.5 MeV and 14.8 MeV neutrons were measured. Fast neutrons were produced via the 3 H(d,n) 4 He reaction on the K-400 neutron generator. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with a high-purity germanium (HpGe) detector. Measurements were corrected for gamma-ray attenuations, dead time and fluctuation of neutron flux. Data for nat Ru(n,x) 99m Tc reaction cross sections are reported to be 9.6±1.5 and 9.2±1.1 mb at 13.5±0.2 and 14.8±0.2 MeV incident neutron energies, respectively. Results were compared with the data by other authors. - Highlights: ► D–T neutron source was used to measure cross sections using activation method. ► 27 Al(n,α) 24 Na was used as the monitor for the measurement. ► Cross-sections for formation of 99m Tc through nat Ru(n,x) 99m Tc were measured. ► Data for nat Ru(n,x) 99m Tc reaction cross sections are reported. ► The results were discussed and compared with experimental data in the literature.

  6. Cross section measurement for the 10B(n ,t 2 α ) three-body reaction at 4.0, 4.5, and 5.0 MeV. II. Experimental setup and results

    Science.gov (United States)

    Wang, Zhimin; Bai, Huaiyong; Zhang, Luyu; Jiang, Haoyu; Lu, Yi; Chen, Jinxiang; Zhang, Guohui; Gledenov, Yu. M.; Sedysheva, M. V.; Khuukhenkhuu, G.

    2017-10-01

    Cross sections of the 10B(n ,t 2 α ) three-body reaction were measured at En=4.0 , 4.5, and 5.0 MeV using a twin gridded ionization chamber and a thin-film 10B sample. The present paper is the second part of the work. A digital data-acquisition system was developed for the gridded ionization chamber based on the waveform digitizer. A thin-film 10B sample was designed and prepared. The number of 10B atoms in the sample was determined by the relative method using the thermal neutron induced 10B(nt h,α )7Li and 6Li(nt h,t )4He reactions with a 6LiF sample as the reference. The measurement of the 10B(n ,t 2 α ) reaction was performed at the 4.5 MV Van de Graaff accelerator of Peking University. In the measurement, the double-coincidence technique was used, which involves the forward-backward and the grid-anode coincidence. In the data processing, the effective event area in the forward two-dimensional spectrum and the time window in the drift-time spectrum were employed to reject the background events. Cross sections of the 10B(n ,t 2 α ) and 10B(n ,α )7Li reactions were obtained. The present results are compared with the data of existing measurements and evaluations.

  7. Cross sections for the reactions 54Fe(n,α)51Cr, 54Fe(n,p)54Mn, and 56Fe(n,p)56Mn

    International Nuclear Information System (INIS)

    Paulsen, A.; Widera, R.; Arnotte, F.; Liskien, H.

    1979-01-01

    Ratios of cross sections for the reactions 54 Fe(n,α) 51 Cr, 54 Fe(n,p) 54 Mn, and 56 Fe(n,p) 56 Mn were measured by the activation technique. In the 6- to 10-MeV energy range, quasi-monoenergetic neutrons produced by the D(d,n) source reaction were used, while additional data were obtained between 12 and 17 MeV by use of the T(d,n) source reaction. The cross-section ratios have accuracies between 1.5 and 4.5%. 1 figure, 3 tables

  8. Standard and Nonstandard Neutrino-Nucleus Reactions Cross Sections and Event Rates to Neutrino Detection Experiments

    Directory of Open Access Journals (Sweden)

    D. K. Papoulias

    2015-01-01

    Full Text Available In this work, we explore ν-nucleus processes from a nuclear theory point of view and obtain results with high confidence level based on accurate nuclear structure cross sections calculations. Besides cross sections, the present study includes simulated signals expected to be recorded by nuclear detectors and differential event rates as well as total number of events predicted to be measured. Our original cross sections calculations are focused on measurable rates for the standard model process, but we also perform calculations for various channels of the nonstandard neutrino-nucleus reactions and come out with promising results within the current upper limits of the corresponding exotic parameters. We concentrate on the possibility of detecting (i supernova neutrinos by using massive detectors like those of the GERDA and SuperCDMS dark matter experiments and (ii laboratory neutrinos produced near the spallation neutron source facilities (at Oak Ridge National Lab by the COHERENT experiment. Our nuclear calculations take advantage of the relevant experimental sensitivity and employ the severe bounds extracted for the exotic parameters entering the Lagrangians of various particle physics models and specifically those resulting from the charged lepton flavour violating μ-→e- experiments (Mu2e and COMET experiments.

  9. Elastic neutron-proton differential cross section at 647 MeV

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-04-01

    The differential cross section for n-p elastic scattering in the angular range 51 0 was measured with high statistical accuracy using the 647 MeV monoenergetic neutron beam of the Los Alamos Meson Physics Facility. A proton recoil magnetic spectrometer was used for momentum analysis of the charge exchange protons from the reaction n+p→p+n. Absolute normalization of the cross section was established to within 7% using existing cross section data for the reaction p+p→π + +d. The results differ significantly from previous Dubna and PPA cross sections but agree well with recent Saclay data except at extreme backward angles. 41 references

  10. A new measurement of the cross section of the inverse muon decay reaction vμ+e-→μ-+ve

    International Nuclear Information System (INIS)

    Geiregat, D.; Wilquet, G.; Binder, U.; Burkard, H.; Dore, U.; Flegel, W.; Grote, H.; Mouthuy, T.; Oeveras, H.; Panman, J.; Santacesaria, R.; Vilain, P.; Winter, K.; Zacek, G.; Zacek, V.; Beyer, R.; Buesser, F.W.; Foos, C.; Gerland, L.; Layda, T.; Niebergall, F.; Raedel, G.; Staehelin, P.; Voss, T.; Gorbunov, P.; Grigoriev, E.; Khovansky, V.; Maslennikov, A.; Rozanov, A.; Capone, A.; De Pedis, D.; Di Capua, E.; Frenkel-Rambaldi, A.; Loverre, P.F.; Piredda, G.; Zanello, D.

    1990-01-01

    We have measured the cross section for inverse muon decay in the CERN neutrino wide band beam. From 4808 events observed in the CHARM II detector we derived for the Born term of the asymptotic cross section slope the result (18.16±1.36)x10 -42 cm 2 GeV -1 . This cross section is in good agreement with the standard model prediction and allows to constrain the scalar coupling of the electron and muon to their neutrinos to vertical strokeg LL S vertical stroke 2 <0.405 at 90% CL. (orig.)

  11. Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

    International Nuclear Information System (INIS)

    Patin, Joshua B.

    2002-01-01

    The study of the reactions between heavy ions and 208 Pb, 209 Bi, 238 U, and 248 Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the 238 U( 18 O,xn) 256-x Fm, 238 U( 22 Ne,xn) 260-x No, and 248 Cm( 15 N,xn) 263-x Lr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The 208 Pb( 48 Ca,xn) 256-x No, 208 Pb( 50 Ti,xn) 258-x Rf, 208 Pb( 51 V,xn) 259-x Db, 209 Bi( 50 Ti,xn) 259-x Db, and 209 Bi( 51 V,xn) 260-x Sg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics

  12. Measurement of neutron and gamma-ray production double differential cross section at KEK

    International Nuclear Information System (INIS)

    Ishibashi, Kenji

    1995-01-01

    High energy nuclear radiations were measured for 0.8-3.0 GeV proton induced reactions at KEK. The measurement was carried out to overcome the problems arising from the use of secondary beam line of a quite low incident beam intensity. Digital pulse shape discrimination method was applicable to separation between high energy neutrons and gamma-rays. By the use of a number of scintillators, cross sections were obtained for production of neutrons and gamma-rays. (author)

  13. Cross-section studies of relativistic deuteron reactions on copper by activation method

    Czech Academy of Sciences Publication Activity Database

    Suchopár, Martin; Wagner, Vladimír; Svoboda, Ondřej; Vrzalová, Jitka; Chudoba, Petr; Kugler, Andrej; Adam, Jindřich; Závorka, L.; Baldine, A.; Furman, W.; Kadykov, M. G.; Khushvaktov, J.; Solnyshkin, A. A.; Tsoupko-Sitnikov, V. V.; Tyutyunnikov, S. I.

    2015-01-01

    Roč. 344, FEB (2015), s. 63-69 ISSN 0168-583X R&D Projects: GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : relativistic deuteron reactions * cross-sections * copper Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  14. Preparation and characterization of three 7Be targets for the measurement of the 7Be(n, p)7Li and 7Be(n, α)7Li reaction cross sections

    Science.gov (United States)

    Maugeri, E. A.; Heinitz, S.; Dressler, R.; Barbagallo, M.; Ulrich, J.; Schumann, D.; Colonna, N.; Köster, U.; Ayranov, M.; Vontobel, P.; Mastromarco, M.; Schell, J.; Correia, J. Martins; Stora, T.; n TOF Collaboration

    2018-05-01

    This manuscript describes the production of three targets obtained by implantation of different activities of 7Be into thin aluminium disks. Two of the produced targets were used to measure the 7Be(n, p)7Li cross section in the energy range of interest for the Big-Bang Nucleosynthesis. A third target was used to measure the cross sections of 7Be(n, p)7Li and 7Be(n, α)7Li nuclear reactions with cold and thermal neutrons, respectively. This paper describes also the characterization of the first two targets, performed after the neutron irradiation, in terms of implanted 7Be activities and spatial distributions.

  15. Measurement of the 115In(n,γ)116 m In reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Science.gov (United States)

    Lawriniang, Bioletty Mary; Badwar, Sylvia; Ghosh, Reetuparna; Jyrwa, Betylda; Vansola, Vibha; Naik, Haladhara; Goswami, Ashok; Naik, Yeshwant; Datrik, Chandra Shekhar; Gupta, Amit Kumar; Singh, Vijay Pal; Pol, Sudir Shibaji; Subramanyam, Nagaraju Balabenkata; Agarwal, Arun; Singh, Pitambar

    2015-08-01

    The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198Au reaction cross-section was used as the neutron flux monitor.The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198 Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated theoretically by using the computer code TALYS 1.6 and was found to be slightly lower than the experimental data from the present work and the literature.)198Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated

  16. Differential cross sections and spin density matrix elements for the reaction gamma p -> p omega

    Energy Technology Data Exchange (ETDEWEB)

    M. Williams, D. Applegate, M. Bellis, C.A. Meyer

    2009-12-01

    High-statistics differential cross sections and spin density matrix elements for the reaction gamma p -> p omega have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into cos(theta_CM) bins of width 0.1. These are the most precise and extensive omega photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.

  17. Cross-Section Measurements of the Kr86(γ,n) Reaction to Probe the s-Process Branching at Kr85

    Science.gov (United States)

    Raut, R.; Tonchev, A. P.; Rusev, G.; Tornow, W.; Iliadis, C.; Lugaro, M.; Buntain, J.; Goriely, S.; Kelley, J. H.; Schwengner, R.; Banu, A.; Tsoneva, N.

    2013-09-01

    We have carried out photodisintegration cross-section measurements on Kr86 using monoenergetic photon beams ranging from the neutron separation energy, Sn=9.86MeV, to 13 MeV. We combine our experimental Kr86(γ,n)Kr85 cross section with results from our recent Kr86(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of Kr86. The new experimental information is used to predict the neutron capture cross section of Kr85, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise Kr85(n,γ)Kr86 cross section allows us to produce more precise predictions of the Kr86 abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the C13 neutron source burns convectively rather than radiatively, represent a possible solution for the highest Kr86∶Kr82 ratios observed in meteoritic stardust SiC grains.

  18. Cross-section measurements of the 86Kr(γ,n) reaction to probe the s-process branching at 85Kr.

    Science.gov (United States)

    Raut, R; Tonchev, A P; Rusev, G; Tornow, W; Iliadis, C; Lugaro, M; Buntain, J; Goriely, S; Kelley, J H; Schwengner, R; Banu, A; Tsoneva, N

    2013-09-13

    We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86  MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.

  19. The measurement of neutron differential scattering cross sections for 12C, 14N and 16O in the energy range 20-26 Mev

    International Nuclear Information System (INIS)

    Petler, J.S.; Finlay, R.W.; Meigooni, A.S.; Islam, M.S.; Rapaport, J.

    1985-01-01

    The Ohio University Beam Swinger provides a high resolution, low back-ground time-of-flight facility for the measurement of elastic and inelastic neutron scattering. It has been used to obtain a comprehensive set of differential scattering cross sections for 12 C, 14 N, 16 O and 40 Ca between 18 and 26 MeV. The elastic cross sections can be used directly to obtain partial kerma factors and, combined with the known total cross sections, provide accurate values for the reaction cross sections. Angular distributions have been measured for inelastic scattering from all the nuclear levels that cannot decay by particle emission thus providing (by subtraction) a limit on the sum of all charged-particle producing reactions. The integrated cross sections for inelastic scattering from some particle-unstable states in 12 C are in excellent agreement with the cross sections for three-body breakup obtained by Antolkovic et al. The differential data have been used, together with higher energy proton scattering data to produce energy-dependent optical model parameters for each of these nuclei in the energy range 20-60 MeV. It has been found that the elastic differential cross sections at theta > 100 0 for 12 C, 14 N and 16 O cannot be well described by a spherical optical model. Explicit consideration of coupled-channel effects, and in the case of 12 C, deformation of the ground state, improves the agreement between calculation and experiment. Heavy ion recoil kerma factors and reaction cross sections have been obtained for each element and compared with previous calculations and measurements

  20. Measurements of integral cross sections in the californium-252 fission neutron spectrum

    International Nuclear Information System (INIS)

    Alberts, W.G.; Guenther, E.; Matzke, M.; Rassl, G.

    1977-01-01

    In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27 Al(n,α) 46 Ti, 47 Ti, 48 Ti(n,p), 54 Fe, 56 Fe(n,p), 58 Ni(n,p), 64 Zn(n,p), 115 In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed

  1. Energy loss, range and fluence distributions, total reaction and projectile fragment production cross sections for proton-nucleus and nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    Sihver, L.; Kanai, T.

    1992-07-01

    We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)

  2. Measurements of the electron and muon inclusive cross-sections

    Indian Academy of Sciences (India)

    We present the measurements of the differential cross-sections for inclusive electron and muon production in proton–proton collisions at a centre-of-mass energy of s = 7 TeV, using ∼ 1.4 pb-1 of data collected by the ATLAS detector at the Large Hadron Collider. The muon cross-section is measured as a function of muon ...

  3. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    Science.gov (United States)

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Experimental Measurement of the Ratio of the Reaction Cross Section (n,2n) for the Natural Mixtures of Lead and Iron Isotopes with 14 MeV Neutrons by the Method of Moderated Neutron-Neutron Coincidences

    International Nuclear Information System (INIS)

    Panteleev, Ts.Ts.; Penchev, O.I.; Trifonov, A.I.; Troshev, T.M.; Christov, V.I.

    1986-01-01

    Neutron data are widely applied in nuclei physics and into practice as well. Data obtained by means of different measurement methods are of interest for increasing the accuracy and reliability of the recommended values for the cross sections of neutron interactions, with substance. The activation analysis method gives a possibility to obtain data about cross section interactions of 14 MeV neutrons with the nuclei σ (n,2n), σ( n,p), σ (n,pn), σ (n,α), etc. A serious shortcoming of this measuring method is the necessity of applying express methods of analysis of induced activities - restrictions connected with the life-times of the reaction products. It is also necessary to comply with the requirements for high accuracy in the data about the decay schemes and the absolute intensities of the γ-transitions in the investigated nuclei. The investigations directly measuring the output of the reaction, products from the targets, placed into the neutron beam, do not possess the shortcomings of the activation method but require serious demands toward the detecting apparatuses (ionization chambers, semiconducting and scintillation detectors, proportional counters, etc.). These demands are connected with the heavy background conditions of work at the beams for measurements of whatever partial cross sections. During the experimental measurements of the reactions by neutron emission for registration, it is necessary to slow them down to thermal energies, since only in this energy interval there exist sufficiently effective without threshold detectors. We have elaborated the experimental set-up allowing to measure the neutron multiplicity in an interaction. In the present work we have also used it for a relative measurement the the reaction cross section σ (n,2n) for Pe and Pb nuclei in their natural isotope mixtures. As it is known, this reaction has an important application for the blanket materials of thermonuclear reactors and for tritium fuel regeneration problem. The

  5. Differential cross sections for reactions of π+n → K+Ε0 and π+n → K+Λ and ratio of differential cross sections of π+A → K+Y+A' quasi-binary processes for carbon and deuterium nuclei at 10.3 GeV/c

    International Nuclear Information System (INIS)

    Bitsadze, G.S.; Budagov, Yu.A.; Dzhelepov, V.P.

    1986-01-01

    The results of the study of π + n → K + Σ 0 and π + n → K + Λ reactions at 10.3 GeB/c are presented. The measurements were carried out at missing mass spectrometer HYPERON at IHEP accelerator. The differential cross sections in 0 ≤ t-t min 2 momentum transfer range are measured. The integral cross sections in the studied t-interval are (11.8±1.1)μb and (21.7±2.2)μb for reactions π + n → K + Σ 0 and π + n → K + Λ, respectively. The obtained results were compared with the predictions of quasi-eikonal model and with other experimental data. The ratio A eff (t) of differential cross sections for π + A → K + Y+A' reactions on carbon and deuterium nuclei are measured. The A cff (t) tend to grow with increasing t in agreement with the predictions of QCD-based model

  6. Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA

    International Nuclear Information System (INIS)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coboeken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kerger, R.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Weber, A.; Wieber, H.; Bailey, D.S.; Barret, O.; Brook, N.H.; Foster, B.; Heath, G.P.; Heath, H.F.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Capua, M.; Schioppa, M.; Susinno, G.; Jeoung, H.Y.; Kim, J.Y.; Lee, J.H.; Lim, I.T.; Ma, K.J.; Pac, M.Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycien, M.B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowal, A.M.; Kowalski, T.; Przybycien, M.; Rulikowska-Zarebska, E.; Suszycki, L.; Szuba, D.; Kotanski, A.; Bauerdick, L.A.T.; Behrens, U.; Bienlein, J.K.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Goers, S.; Goettlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G.F.; Hebbel, K.; Hillert, S.; Koch, W.; Koetz, U.; Kowalski, H.; Labes, H.; Loehr, B.; Mankel, R.; Martens, J.; Martinez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M.C.; Polini, A.; Rohde, M.; Savin, A.A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.; Straub, P.B.; Barbagli, G.; Gallo, E.; Parenti, A.; Pelfer, P.G.; Bamberger, A.; Benen, A.; Coppola, N.; Eisenhardt, S.; Markun, P.; Raach, H.; Woelfle, S.; Bussey, P.J.; Bell, M.; Doyle, A.T.; Glasman, C.; Lee, S.W.; Lupi, A.; Macdonald, N.; McCance, G.J.; Saxon, D.H.; Sinclair, L.E.; Skillicorn, I.O.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Carli, T.; Garfagnini, A.; Gialas, I.; Gladilin, L.K.; Kcira, D.; Klanner, R.; Lohrmann, E.; Goncalo, R.; Long, K.R.; Miller, D.B.; Tapper, A.D.; Walker, R.; Cloth, P.; Filges, D.; Ishii, T.; Kuze, M.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ahn, S.H.; Lee, S.B.; Park, S.K.; Lim, H.; Son, D.; Barreiro, F.; Garcia, G.; Gonzalez, O.; Labarga, L.; del Peso, J.; Redondo, I.; Terron, J.; Vazquez, M.; Barbi, M.; Corriveau, F.; Hanna, D.S.; Ochs, A.; Padhi, S.; Stairs, D.G.; Wing, M.; Tsurugai, T.; Antonov, A.; Bashkirov, V.; Danilov, M.; Dolgoshein, B.A.; Gladkov, D.; Sosnovtsev, V.; Suchkov, S.; Dementiev, R.K.; Ermolov, P.F.; Golubkov, Yu.A.; Katkov, I.I.; Khein, L.A.; Korotkova, N.A.; Korzhavina, I.A.; Kuzmin, V.A.; Lukina, O.Yu.; Proskuryakov, A.S.; Shcheglova, L.M.; Solomin, A.N.; Vlasov, N.N.; Zotkin, S.A.; Bokel, C.; Botje, M.; Bruemmer, N.; Engelen, J.; Grijpink, S.; Koffeman, E.; Kooijman, P.; Schagen, S.; van Sighem, A.; Tassi, E.; Tiecke, H.; Tuning, N.; Velthuis, J.J.; Vossebeld, J.; Wiggers, L.; de Wolf, E.; Bylsma, B.; Durkin, L.S.; Gilmore, J.; Ginsburg, C.M.; Kim, C.L.; Ling, T.Y.; Boogert, S.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Grosse-Knetter, J.; Matsushita, T.; Ruske, O.; Sutton, M.R.; Walczak, R.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; Dusini, S.; Limentani, S.; Longhin, A.; Posocco, M.; Stanco, L.; Turcato, M.; Adamczyk, L.; Iannotti, L.; Oh, B.Y.; Okrasinski, J.R.; Saull, P.R.B.; Toothacker, W.S.; Whitmore, J.J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Cormack, C.; Hart, J.C.; McCubbin, N.A.; Shah, T.P.; Epperson, D.; Heusch, C.; Sadrozinski, H.F.-W.; Seiden, A.; Wichmann, R.; Williams, D.C.; Park, I.H.; Pavel, N.; Abramowicz , H.; Dagan, S.; Kananov, S.; Kreisel, A.; Levy, A.; Abe, T.; Fusayasu, T.; Kohno, T.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Inuzuka, M.; Kitamura, S.; Matsuzawa, K.; Nishimura, T.; Arneodo, M.; Cartiglia, N.; Cirio, R.; Costa, M.; Ferrero, M.I.; Maselli, S.; Monaco, V.; Peroni, C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Bailey, D.C.; Fagerstroem, C.-P.; Galea, R.; Koop, T.; Levman, G.M.; Martin, J.F.; Mirea, A.; Sabetfakhri, A.; Butterworth, J.M.; Hayes, M.E.; Heaphy, E.A.; Jones, T.W.; Lane, J.B.; West, B.J.; Ciborowski, J.; Ciesielski, R.; Grzelak, G.; Nowak, R.J.; Pawlak, J.M.; Pawlak, R.; Smalska, B.; Tymieniecka, T.; Wroblewski, A.K.; Zakrzewski, J.A.; Zarnecki, A.F.; Adamus, M.; Gadaj, T.; Deppe, O.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W.F.; Chapin, D.; Cross, R.; Foudas, C.; Mattingly, S.; Reeder, D.D.; Smith, W.H.; Vaiciulis, A.; Wildschek, T.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V.W.; Bhadra, S.; Catterall, C.; Cole, J.E.; Frisken, W.R.; Hall-Wilton, R.; Khakzad, M.; Menary, S.

    2001-01-01

    Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e + +p→e + +n+jet+jet+X r have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb -1 . The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E T jet >6 GeV, neutron energy E n >400 GeV, and neutron production angle θ n <0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model

  7. Update of the evaluation of the cross section of the neutron dosimetry reaction 103Rh(n,n')103mRh

    International Nuclear Information System (INIS)

    Pavlik, A.; Miah, M.M.H.; Strohmaier, B.; Vonach, H.

    1995-10-01

    On the occasion of a new measurement of the excitation function of the reaction 103 Rh(n,n') 103m Rh in the energy range between 5.69 and 12.0 MeV performed at the present institute in collaboration wit the PTB Braunschweig, the cross section of this reaction, which is part of the International Reactor Dosimetry Field (IRDF-90), was re-evaluated. Whereas the energy range of the evaluation, namely from threshold to 20 MeV, was kept unchanged with respect to IRDF-90, the underlying data base was extended by the experiment mentioned as well as by another measurement, and revised with regard to judgement and normalization of older data in the light of recent information. Based on the experimental data upgraded in this way, new model calculations were carried out, which in the energy region 14 - 20 MeV served to supplement the experimental cross sections for this evaluation. The cross sections and their uncertainties were evaluated in energy groups with widths of 0.2 to 1.0 MeV, and the relative correlation matrix of the evaluated cross sections at the different energies was calculated. The results presented here supersede the corresponding values published in Physics Data 13-5 and included to the IRDF-90. (author). 26 refs, 4 figs, 6 tabs

  8. Binary and tertiary reaction cross-sections of V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1982-01-01

    Neutron induced binary and tertiary reaction cross-sections have been evaluated for V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes in the 'energy range 0.5 MeV to 20 MeV using the nuclear statistical empirical model. The reactions considered are (n,n'), (n,2n), (n,3n), (n,p), (n,d), (n,t), (n, 3 He), (n,α), (n,np), (n,nd), (n,nt), (n,n 3 He), (n,nα), (n,pn), (n,2p), (n,ν), (n,αp), (n,dn) and (n,pα). Most of the above mentioned elements are used as structural materials in nuclear reactors and the measured cross-section data for the above listed reactions are seldom available for the radiation damage and safety analysis. With a view to providing these data, this nuclear model based evaluation has been undertaken. The associated uncertainties in the cross-sections and their fission averages have also been evaluated. (author)

  9. [Fast neutron cross section measurements

    International Nuclear Information System (INIS)

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months

  10. Measurement of the $b$-quark production cross-section in 7 and 13 TeV $pp$ collisions

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baszczyk, Mateusz; Batozskaya, Varvara; Batsukh, Baasansuren; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chobanova, Veronika; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Su{á}rez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; D{é}l{é}age, Nicolas; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fay, Robert; Fazzini, Davide; Ferguson, Dianne; Fernandez Albor, Victor; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Furfaro, Emiliano; F{ä}rber, Christian; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; Garc{í}a Pardi{ñ}as, Juli{á}n; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gian{ì}, Sebastiana; Gibson, Valerie; Girard, Olivier G{ö}ran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Grabalosa G{á}ndara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graug{é}s, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Griffith, Peter; Grillo, Lucia; Gruberg Cazon, Barak Raimond; Gr{ü}nberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; G{ö}bel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hatch, Mark; He, Jibo; Head, Timothy; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adl{è}ne; Hill, Donal; Hombach, Christoph; Hopchev, P H; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kosmyntseva, Alena; Kozachuk, Anastasiia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Leflat, Alexander; Lefran{ç}ois, Jacques; Lef{è}vre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Maratas, Jan; Marchand, Jean Fran{ç}ois; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, J{ö}rg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, Andr{é}; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mord{à}, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Mussini, Manuel; M{ü}ller, Dominik; M{ü}ller, Janine; M{ü}ller, Katharina; M{ü}ller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Poslavskii, Stanislav; Potterat, C{é}dric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavorima; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Toriello, Francis; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh T{â}m; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Vernet, Maxime; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; V{á}zquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhang, Yu; Zhelezov, Alexey; Zheng, Yangheng; Zhokhov, Anatoly; Zhu, Xianglei; Zhukov, Valery; Zucchelli, Stefano

    2017-02-03

    Measurements of the cross-section for producing $b$ quarks in the reaction $pp \\to b\\overline{b}X$ are reported in $7$ and $13 TeV$ collisions at the LHC as a function of the pseudorapidity $\\eta$ in the range $2<\\eta<5$ covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of b-flavored hadrons decaying into a ground-state charmed hadron in association with a muon. The cross-sections in the covered $\\eta$ range are $72.0\\pm0.3\\pm6.8~ \\mu b$ and $154.3\\pm1.5\\pm 14.3~ \\mu b$ for $7$ and $13 TeV$. The ratio is $2.14\\pm 0.02 \\pm0.13$, where the quoted uncertainties are statistical and systematic, respectively. The agreement with theoretical expectation is good at $7 TeV$, but differs somewhat at $13 TeV$. The measured ratio of cross-sections is larger at lower $\\eta$ than the model prediction.

  11. Cross sections for (p,n) and (d,2n) reactions on /sup 79/Br and /sup 127/I: An evaluation of literature and model calculated results

    Energy Technology Data Exchange (ETDEWEB)

    Lanier, R.G.; Mustafa, M.G.; West, H.I. Jr.

    1989-02-01

    We have evaluated (p,n) and (d,2n) cross sections on /sup 79/Br and /sup 127/I, and made these cross sections available for test diagnostics. We believe that these interim cross sections are of reasonable accuracy and should be used for diagnostic interpretations until more precise measurements can be made. Our evaluation consisted of a literature search and an examination of the available experimental data. These data were supplemented by statistical model calculations using both the STAPRE and ALICE codes. We found reasonably good measured data (from threshold to the peak of the excitation function) for the (p,n) reaction on both /sup 79/Br and /sup 127/I. The literature data for the (d,2n) reaction on /sup 127/I are questionable and no data were found for the (d,2n) reaction on /sup 79/Br. We have, therefore, relied completely on calculations for the (d,2n) cross sections for both /sup 79/Br and /sup 127/I. 4 figs., 5 tabs.

  12. Measurement of neutron-production double-differential cross sections for continuous neutron-incidence reaction up to 100 MeV

    International Nuclear Information System (INIS)

    Kunieda, Satoshi; Watanabe, Takehito; Shigyo, Nobuhiro; Ishibashi, Kenji; Satoh, Daiki; Nakamura, Takashi; Haight, Robert C.

    2004-01-01

    The inclusive measurements of neutron-incident neutron-production double-differential cross sections in intermediate energy range is now being carried out. Spallation neutrons are used as incident particles. As a part of this, the experiment was performed by using of NE213 liquid organic scintillators to detect outgoing-neutrons. Incident-neutron energy was determined by time-of-flight technique, and outgoing-neutron energy spectrum was derived by unfolding light-output spectrum of NE213 with response functions calculated by SCINFUL-R. Preliminary cross sections were obtained up to about 100 MeV, and were compared with calculations by the GNASH code. It is hoped to get pure measurements by using measured response functions for our detectors used in this study. (author)

  13. Neutron cross-section measurements at the nTOF facility at CERN

    CERN Document Server

    Colonna, N

    2004-01-01

    A neutron Time-of-Flight facility (n_TOF) has recently become operative at CERN. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron-induced reactions relevant to the field of emerging nuclear technologies, as well as to Nuclear Astrophysics and fundamental Nuclear Physics. The n_TOF facility is here described, together with the main features of the experimental apparata used for cross-section measurements. The results of the first measurement campaign, which have confirmed the innovative aspects of the facility, are presented. The measurement plan of the n_TOF collaboration, in particular with regard to implications to ADS, is briefly discussed.

  14. High resolution measurement of the 237Np(n,f) cross section from 100keV to 2MeV

    International Nuclear Information System (INIS)

    Plattard, S.; Pranal, Y.; Blons, J.

    1975-01-01

    237 Np fission is one of the reactions utilized in the threshold detector method of neutron spectrometry for the determination of fast neutron spectra in nuclear reactors. Therefore, an accurate knowledge of the energy-dependent fission cross section is essential for a precise generation of the spectral indices of this method. A high resolution measurement of the fission cross section is presented [fr

  15. Measurements and calculations of integral capture cross-sections of structural materials in fast reactor spectra

    International Nuclear Information System (INIS)

    Seth, S.; Brunson, G.; Gmuer, K.; Jermann, M.; McCombie, C.; Richmond, R.; Schmocker, U.

    1979-01-01

    This paper relates the checking of integral data of steel and iron in fast reactor lattices. The fully-rodded GCFR benchmark lattice of the zero-energy reactor PROTEUS was successively modified by replacing the PuO 2 -UO 2 fuel rods by steel-18/8 or steel-37 (iron) rods. The neutron spectra of the modified lattices in fact have median energies close to that of a typical LMFBR. The replacement of fuel by the structural material of interest was such that in each case the value of k(infinity) was reduced to near-unity. This allowed the measurement of the lattice-k(infinity) by the null-reactivity technique. In addition, the principal reaction rates (namely U238 capture and fission, relative to Pu239 fission) and the neutron spectrum were measured. These directly measured integral data which are particularly sensitive to the steel cross-sections can be used for the checking and systematic adjustment of data sets. The results may also be analysed so as to derive specific values for the integral capture cross-sections of steel and iron. Neutron balance equations were set-up for each of the lattices using the measured k(infinity) and reaction rates

  16. Measurement of the differential cross section of the reaction γp→π+n at the energy-tagged photon beam of the PHOENICS experiment

    International Nuclear Information System (INIS)

    Buechler, K.

    1991-10-01

    At the Bonn Electron Strecherring ELSA the differential cross section for the reaction γp → π + n was measured. The measurement was performed with the PHOENICS detector, which consists of a bremsstrahlung tagging system and a hadron detector with large angular acceptance. The experiment covered a kinematic region of 210 MeV ≤ E γ ≤ 960 MeV and 35deg π , CMS ≤ 135deg. The data are in good agreement with other experiments. They are also compared with the results of a recent partial wave analysis and with the predictions of a constituent quark model in the first resonance region. (orig.) [de

  17. Double differential cross-sections of (n,{alpha}) reactions in aluminium and nickel at 14.77 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Lalremruata, B.; Dhole, S.D. [Department of Physics, University of Pune, Pune-411007 (India); Ganesan, S. [Reactor Physics Design Division, BARC, Mumbai-400085 (India); Bhoraskar, V.N. [Department of Physics, University of Pune, Pune-411007 (India)], E-mail: vnb@physics.unipune.ernet.in

    2009-04-15

    The double differential cross-sections (DDX) for the emission of alpha particles from {sup 27}Al(n,{alpha}){sup 24}Na and Ni(n,{alpha}) reactions induced by 14.77 MeV neutrons were estimated from the alpha particle spectra recorded at 30 deg., 50 deg., 90 deg., 110 deg. angles for aluminium, and at 20 deg., 45 deg., 90 deg., 110 deg. for natural nickel. The results indicate that the alpha particles below and around the most probable energies ({approx}6.3 MeV from aluminium and {approx}8 MeV from natural nickel) are emitted predominantly through the compound nucleus formation process, and the higher energy alpha particles are emitted through the pre-equilibrium or the direct reaction. In general, the measured double-differential cross-sections are in agreement with the theoretical cross-sections estimated using Talys-1.0 and Preco2007 computer programs. The present value of the level density parameter for {sup 24}Na is close to the literature value and, therefore, these results reveal consistency in the alpha particle spectra recorded with a single silicon surface barrier detector at different scattering angles.

  18. MODESTY, Statistical Reaction Cross-Sections and Particle Spectra in Decay Chain

    International Nuclear Information System (INIS)

    Mattes, W.

    1977-01-01

    1 - Nature of the physical problem solved: Code MODESTY calculates all energetically possible reaction cross sections and particle spectra within a nuclear decay chain. 2 - Method of solution: It is based on the statistical nuclear model following the method of Uhl (reference 1) where the optical model is used in the calculation of partial widths and the Blatt-Weisskopf single particle model for gamma rays

  19. Study of consistency between (γ,xn), [(γ,n) (γ,np)] and (γ2n) reaction cross sections using data systematics

    International Nuclear Information System (INIS)

    Varlamov, V.V.; Ishkhanov, B.S.

    2002-08-01

    The majority of published data for photoneutron reaction both total and partial cross section data obtained using both bremsstrahlung and quasimonoenergetic photon beams has been analyzed systematically. The last kind data were treated separately for results obtained at USA National Lawrence Livermore Laboratory and at Centre d.Etudes Nucleaires de Saclay (France). It was found out that as a rule total photoneutron reaction cross sections obtained at Livermore differ (being smaller in amplitude) from that of other laboratories. The Saclay-Livermore data discrepancies were analyzed in details. Combined the result of this analysis with that of analysis of partial photoneutron reactions [(γ,n) + (γ,np)] and (γ,2n) cross sections balance between Livermore and Saclay data published before the following recommendation was formulated: for reliable balance of total photoneutron (γ,xn) and partial [(γ,n) + [(γ,np)] and (γ,2n) reactions cross section absolute values the Livermore (not Saclay) data must be used but multiplied to the parameter 1.122. Saclay total reaction data could be used directly but partial reaction data must be recalculated via complex procedure. (author)

  20. A benchmarking procedure for PIGE related differential cross-sections

    Science.gov (United States)

    Axiotis, M.; Lagoyannis, A.; Fazinić, S.; Harissopulos, S.; Kokkoris, M.; Preketes-Sigalas, K.; Provatas, G.

    2018-05-01

    The application of standard-less PIGE requires the a priori knowledge of the differential cross section of the reaction used for the quantification of each detected light element. Towards this end, a lot of datasets have been published the last few years from several laboratories around the world. The discrepancies often found between different measured cross sections can be resolved by applying a rigorous benchmarking procedure through the measurement of thick target yields. Such a procedure is proposed in the present paper and is applied in the case of the 19F(p,p‧ γ)19F reaction.

  1. High accuracy measurement of the $^{235}$U(n,f) reaction cross-section in the 10-30 keV neutron energy range

    CERN Multimedia

    The analysis of the neutron flux of n_TOF (in EAR1) revealed an anomaly in the 10-30 keV neutron energy range. While the flux extracted on the basis of the $^{6}$Li(n,t)$^{4}$He and $^{10}$B(n,$\\alpha$)$^{7}$Li reactions mostly agreed with each other and with the results of FLUKA simulations of the neutron beam, the one based on the $^{235}$U(n,f) reaction was found to be systematically lower, independently of the detection system used. A possible explanation is that the $^{235}$U(n,f) crosssection in that energy region, where in principle should be known with an uncertainty of 1%, may be systematically overestimated. Such a finding, which has a negligible influence on thermal reactors, would be important for future fast critical or subcritical reactors. Furthermore, its interest is more general, since the $^{235}$U(n,f) reaction is often used at that energy to determine the neutron flux, or as reference in measurements of fission cross section of other actinides. We propose to perform a high-accuracy, high-r...

  2. Validation of Cross Sections with Criticality Experiment and Reaction Rates: the Neptunium Case

    CERN Document Server

    Leong, L S; Audouin, L; Berthier, B; Le Naour, C; Stéphan, C; Paradela, C; Tarrío, D; Duran, I

    2014-01-01

    The Np-237 neutron-induced fission cross section has been recently measured in a large energy range (from eV to GeV) at the n\\_TOF facility at CERN. When compared to previous measurements the n\\_TOF fission cross section appears to be higher by 5-7\\% beyond the fission threshold. To check the relevance of the n\\_TOF data, we considered a criticality experiment performed at Los Alamos with a 6 kg sphere of Np-237, surrounded by uranium highly enriched in U-235 so as to approach criticality with fast neutrons. The multiplication factor k(eff) of the calculation is in better agreement with the experiment when we replace the ENDF/B-VII. 0 evaluation of the Np-237 fission cross section by the n\\_TOF data. We also explored the hypothesis of deficiencies of the inelastic cross section in U-235 which has been invoked by some authors to explain the deviation of 750 pcm. The large modification needed to reduce the deviation seems to be incompatible with existing inelastic cross section measurements. Also we show that t...

  3. Low energy cross section data for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions with atoms and molecules

    International Nuclear Information System (INIS)

    Okuno, Kazuhiko

    2007-04-01

    Systematic cross section measurements for ion-molecule reactions in hydrogen systems and for charge transfer of multiply charged ions in low energy collisions with atoms and molecules have been performed continuously by the identical apparatus installed with an octo-pole ion beam guide (OPIG) since 1980 till 2004. Recently, all of accumulated cross section data for a hundred collision systems has been entered into CMOL and CHART of the NIFS atomic and molecular numerical database together with some related cross section data. In this present paper, complicated ion-molecule reactions in hydrogen systems are revealed and the brief outlines of specific properties in low energy charge transfer collisions of multiply charged ions with atoms and molecules are introduced. (author)

  4. LHCb: Measurement of $J/\\psi$ production cross-section at LHCb

    CERN Multimedia

    Zhang, Y

    2011-01-01

    The measurement of the $J/\\psi$ production cross-section with the LHCb detector is presented. The cross-section is measured as a function of the $J/\\psi$ transverse momentum and rapidity, in the forward region. Contributions from prompt $J/\\psi$ and $J/\\psi$ from $b$ are measured separately. Prospects for measurements of the $J/\\psi$ polarisation with a full angular analysis are also shown.

  5. Measurement of the 169Tm (n ,3 n ) 167Tm cross section and the associated branching ratios in the decay of 167Tm

    Science.gov (United States)

    Champine, B.; Gooden, M. E.; Krishichayan, Norman, E. B.; Scielzo, N. D.; Stoyer, M. A.; Thomas, K. J.; Tonchev, A. P.; Tornow, W.; Wang, B. S.

    2016-01-01

    The cross section for the 169Tm(n ,3 n ) 167Tm reaction was measured from 17 to 22 MeV using quasimonoenergetic neutrons produced by the 2H(d ,n ) 3He reaction. This energy range was studied to resolve the discrepancy between previous (n ,3 n ) cross-section measurements. In addition, the absolute γ -ray branching ratios following the electron-capture decay of 167Tm were measured. These results provide more reliable nuclear data for an important diagnostic that is used at the National Ignition Facility to estimate the yield of reaction-in-flight neutrons produced via the inertial-confinement-fusion plasma in deuterium-tritium capsules.

  6. Comparison of cross sections for C+O reactions in the second regime of complete fusion

    International Nuclear Information System (INIS)

    Beck, C.; Haas, F.; Freeman, R.M.; Heusch, B.; Coffin, J.P.; Guillaume, G.; Rami, F.; Wagner, P.

    1985-01-01

    Kinetic energy spectra, angular distributions, and elemental yield distributions have been measured for the 12 C + 16 O, 12 C + 18 O and 13 C + 17 O reaction products over an energy range from 2 to 7 times the Coulomb barrier energy. A careful kinematic analysis of the evaporation residues and comparisons with statistical model calculations show that fusion proceeds with full momentum transfer followed by a statistical decay of the compound nucleus. The competition between complete fusion process and peripheral reactions in the 12 C + 16 O system is less important than for the 12 C + 18 O and 13 C + 17 O reactions. The unexpectedly high 12 C + 16 O complete fusion cross sections are related to the possible occurence of a superdeformation of the 28 Si compound nucleus

  7. Measurement of the cross section for the reaction γp →J/ψp with the ZEUS detector at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    This paper reports the cross section measurements for the process ep→eJ/ψ p for Q 2 2 at √s=296 GeV, based on an integrated luminosity of about 0.5 pb -1 , using the ZEUS detector. The J/ψ was detected in its e + e - and μ + μ - decay modes. The photoproduction cross section was measured to be 52 -12 +7 ±10 nb at an average γp centre of mass energy of 67 GeV and 71 -20 +13 ±12 nb at 114 GeV. The significant rise of the cross section compared to lower energy measurements is not in agreement with VDM models, but can be described by QCD inspired models if a rise in the gluon momentum density at low x in the proton is assumed. (orig.)

  8. Some problem areas in capture cross-section measurements

    International Nuclear Information System (INIS)

    Moxon, M.C.; Gayther, D.B.; Sowerby, M.G.

    1975-01-01

    This paper outlines some of the problems that have been encountered and are envisaged in the measurement and evaluation of capture cross-sections. Particular emphasis is placed on the cross-sections of the structural materials (Fe, Ni, Cr) used in fast reactors. The topics considered are the influence of scattered neutrons in capture detectors, the determination of background, sample thickness corrections, and the theoretical representation of resonance parameters. (author)

  9. Measurement of the b -Quark Production Cross Section in 7 and 13 TeV pp Collisions

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Carvalho Akiba, K.; Coco, V.; David, P. N.Y.; De Bruyn, K.; Ferro-Luzzi, M.; Ketel, T.; Koopman, R. F.; Van Leerdam, J.; Merk, M.; Onderwater, C. J.G.; Raven, G.; Schiller, M.; Serra, N.; Snoek, H.; Storaci, B.; Syropoulos, V.; Van Tilburg, J.; Tolk, S.; Tsopelas, P.; Tuning, N.

    2017-01-01

    Measurements of the cross section for producing b quarks in the reaction pp→bbX are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity η in the range 2<η<5 covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of

  10. Measurement of the 19F(n,2n)18F cross section from 18 to 27 MeV

    International Nuclear Information System (INIS)

    Hartmann, C.L.; DeLuca, P.M. Jr.

    1990-01-01

    the 19 F(n,2n) 18 F cross section was measured at neutron energies of 18, 21, 23, and 27 MeV. Nearly monoenergetic neutrons bombarded teflon (CF 2 ), Zr, and Au samples. 19 F(n,2n) 18 F cross section values were determined relative to nat Zr(n,xn) 89 Zr and 197 Au(n,2n) 196 Au from measurements of the 18 F, 89 Zr, and 196 Au activities. Our results are in agreement with previous measurements below 20 MeV and extend the usefulness of this reaction to 27 MeV. 22 refs., 1 fig., 2 tabs

  11. The latest results on top quark pair cross-section measurement

    CERN Document Server

    Yamauchi, Katsuya; The ATLAS collaboration

    2015-01-01

    The latest results on top quark pair production cross-section measurement in proton-proton collisions at $\\sqrt{s} = 7\\ TeV$ and $\\sqrt{s} = 8\\ TeV$ with the ATLAS detector are reported. The inclusive cross-section was measured with 4% of uncertainty using di-lepton e-mu events. The measurement of the differential cross-section as functions of various observables such as transverse momentum and rapidity of the top quark and invariant mass of the pseudo-top-quark pair system including the results in boosted topologies are also reported. These results are compared with the various generators such as Powheg, Alpgen and MC@NLO and the various PDF sets.

  12. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  13. Measurement of the $^{12}$C($n,p$)$^{12}$B cross section at n_TOF (CERN) by in-beam activation analysis

    CERN Document Server

    Žugec, P.; Bosnar, D.; Mengoni, A.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M.A.; Cosentino, L.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Eleftheriadis, C.; Ferrari, A.; Finocchiaro, P.; Fraval, K.; Ganesan, S.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D.G.; Jericha, E.; Käppeler, F.; Karadimos, D.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L.S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mendoza, E.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Musumarra, A.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2014-01-01

    The integral cross section of the $^{12}$C($n,p$)$^{12}$B reaction has been determined for the first time in the neutron energy range from threshold to several GeV at the n_TOF facility at CERN. The measurement relies on the activation technique, with the $\\beta$-decay of $^{12}$B measured over a period of four half-lives within the same neutron bunch in which the reaction occurs. The results indicate that model predictions, used in a variety of applications, are mostly inadequate. The value of the integral cross section reported here can be used as a benchmark for verifying or tuning model calculations.

  14. How to Use Benchmark and Cross-section Studies to Improve Data Libraries and Models

    Science.gov (United States)

    Wagner, V.; Suchopár, M.; Vrzalová, J.; Chudoba, P.; Svoboda, O.; Tichý, P.; Krása, A.; Majerle, M.; Kugler, A.; Adam, J.; Baldin, A.; Furman, W.; Kadykov, M.; Solnyshkin, A.; Tsoupko-Sitnikov, S.; Tyutyunikov, S.; Vladimirovna, N.; Závorka, L.

    2016-06-01

    Improvements of the Monte Carlo transport codes and cross-section libraries are very important steps towards usage of the accelerator-driven transmutation systems. We have conducted a lot of benchmark experiments with different set-ups consisting of lead, natural uranium and moderator irradiated by relativistic protons and deuterons within framework of the collaboration “Energy and Transmutation of Radioactive Waste”. Unfortunately, the knowledge of the total or partial cross-sections of important reactions is insufficient. Due to this reason we have started extensive studies of different reaction cross-sections. We measure cross-sections of important neutron reactions by means of the quasi-monoenergetic neutron sources based on the cyclotrons at Nuclear Physics Institute in Řež and at The Svedberg Laboratory in Uppsala. Measurements of partial cross-sections of relativistic deuteron reactions were the second direction of our studies. The new results obtained during last years will be shown. Possible use of these data for improvement of libraries, models and benchmark studies will be discussed.

  15. Measurement of dijet cross sections for events with a leading neutron in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Breitweg, J.; Chekanov, S.; Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Pellegrino, A.; Repond, J.; Stanek, R.; Yoshida, R.; Mattingly, M.C.K.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; De Pasquale, S.; Giusti, P.; Iacobucci, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Sartorelli, G.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coboeken, K.; Crittenden, J.; Deffner, R.; Hartmann, H.; Heinloth, K.; Hilger, E.; Irrgang, P.; Jakob, H.-P.; Kappes, A.; Katz, U.F.; Kerger, R.; Paul, E.; Rautenberg, J.; Schnurbusch, H.; Stifutkin, A.; Tandler, J.; Voss, K.C.; Weber, A.; Wieber, H.; Bailey, D.S.; Barret, O.; Brook, N.H.; Foster, B. E-mail: b.foster@bristol.ac.uk; Heath, G.P.; Heath, H.F.; Rodrigues, E.; Scott, J.; Tapper, R.J.; Capua, M.; Schioppa, M.; Susinno, G.; Jeoung, H.Y.; Kim, J.Y.; Lee, J.H.; Lim, I.T.; Ma, K.J.; Pac, M.Y.; Caldwell, A.; Liu, W.; Liu, X.; Mellado, B.; Paganis, S.; Sampson, S.; Schmidke, W.B.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Olkiewicz, K.; Piotrzkowski, K.; Przybycien, M.B.; Stopa, P.; Zawiejski, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowal, A.M.; Kowalski, T.; Przybycien, M.; Rulikowska-Zarebska, E.; Suszycki, L.; Szuba, D.; Kotanski, A.; Bauerdick, L.A.T.; Behrens, U.; Bienlein, J.K.; Borras, K.; Chiochia, V.; Dannheim, D.; Desler, K.; Drews, G.; Fox-Murphy, A.; Fricke, U.; Goebel, F.; Goers, S.; Goettlicher, P.; Graciani, R.; Haas, T.; Hain, W.; Hartner, G.F.; Hebbel, K.; Hillert, S.; Koch, W.; Koetz, U.; Kowalski, H.; Labes, H.; Loehr, B.; Mankel, R.; Martens, J.; Martinez, M.; Milite, M.; Moritz, M.; Notz, D.; Petrucci, M.C.; Polini, A.; Rohde, M.; Savin, A.A.; Schneekloth, U.; Selonke, F.; Sievers, M.; Stonjek, S.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Coldewey, C.; Lopez-Duran Viani, A.; Meyer, A.; Schlenstedt, S.[and others

    2001-02-26

    Differential cross sections for dijet photoproduction in association with a leading neutron using the reaction e{sup +}+p{yields}e{sup +}+n+jet+jet+X{sub r} have been measured with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb{sup -1}. The fraction of dijet events with a leading neutron in the final state was studied as a function of the jet kinematic variables. The cross sections were measured for jet transverse energies E{sub T}{sup jet}>6 GeV, neutron energy E{sub n}>400 GeV, and neutron production angle {theta}{sub n}<0.8 mrad. The data are broadly consistent with factorization of the lepton and hadron vertices and with a simple one-pion-exchange model.

  16. Absolute cross-section measurements of inner-shell ionization

    Science.gov (United States)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  17. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    Science.gov (United States)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  18. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Directory of Open Access Journals (Sweden)

    Wiedeking M.

    2012-02-01

    Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  19. Cross-section activation measurement for U-238 through protons and deuterons in energy interval 10-14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Abramovich, S.N.; Zvenigorodskii, A.G. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    There were presented results of cross-section measurements for nuclear reactions {sup 238}U(p,n){sup 238}Np, {sup 238}U(d,2n){sup 238}Np, {sup 238}U(d,t){sup 237}U, {sup 238}U(d,p){sup 239}U, and {sup 238}U(d,n){sup 239}Np. Interval of projectile energy was 10-14 MeV. For measurements of cross-sections it was used the activatio methods. The registration of {beta}- and {gamma}-activity was made with using of plastic scintillation detector and Ge(Li)-detector.

  20. Measurement of Fragment Production Cross Sections in the $^{12}$C+$^{12}$C and $^{12}$C+$^{197}$Au Reactions at 62 $A$ MeV for Hadrontherapy and Space Radiation Protection

    CERN Document Server

    Tropea, S; Agodi, C; Blancato, A A; Bondì, M; Cappuzzello, F; Carbone, D; Cavallaro, M; Cirrone, G A P; Cuttone, G; Giacoppo, F; Nicolosi, D; Pandola, L; Raciti, G; Rapisarda, E; Romano, F; Sardina, D; Scuderi, V; Sfienti, C

    2014-01-01

    Over the last twenty years, there has been a renewed interest in nuclear fragmentation studies for both hadrontherapy applications and space radiation protection. In both fields, fragmentation cross sections are needed to predict the effects of the ions nuclear interactions within the patient’s and the astronaut’s body. Indeed, the Monte Carlo codes used in planning tumor treatments and space missions must be tuned and validated by experimental data. However, only a limited set of fragmentation cross sections are available in literature, especially at Fermi energies. Therefore, we have studied the production of secondary fragments in the 12 C+ 12 C and 12 C+ 197 Au reactions at 62 A MeV. In this work, the measured 4 He cross sections angular distributions at four selected angles are presented and compared.

  1. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118

    Directory of Open Access Journals (Sweden)

    Jadambaa Khuyagbaatar

    2017-01-01

    Full Text Available The synthesis of superheavy elements beyond oganesson (Og, which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98 forces the use of projectiles heavier than 48Ca (Z = 20, which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to “cold” and “hot” fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.

  2. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118

    Science.gov (United States)

    Jadambaa, Khuyagbaatar

    2017-11-01

    The synthesis of superheavy elements beyond oganesson (Og), which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98) forces the use of projectiles heavier than 48Ca (Z = 20), which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to "cold" and "hot" fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.

  3. Fission cross section measurements at the LLL 100-MeV linac

    International Nuclear Information System (INIS)

    Browne, J.C.

    1975-01-01

    The fission cross section for 235 U was measured from thermal energy to 20 MeV in several steps. First, the cross section was measured from 8 MeV to 20 MeV relative to the n,p scattering cross section and then from thermal to one MeV relative to 6 Li(n,α). In addition, a measurement of the ratio of the fission cross sections of 235 U and 238 U relative to 235 U has been completed in the range 1 keV to 30 MeV for 233 U and 100 keV to 30 MeV for 238 U. Statistical uncertainties are less than 4 percent. (U.S.)

  4. Cross sections for D-T neutron interaction with neodymium isotopes

    International Nuclear Information System (INIS)

    Luo, Junhua; An, Li; Jiang, Li; He, Long

    2015-01-01

    The cross-sections for (n, x) reactions with neodymium isotopes were measured at (D-T) neutron energies around 14 MeV with the activation technique. Samples were activated along with Nb and Al monitor foils to determine the incident neutron flux. Data are reported for the following reactions: 142 Nd(n,2n) 141 Nd, 148 Nd(n,2n) 147 Nd, 150 Nd(n,2n) 149 Nd, 142 Nd(n,p) 142 Pr, 146 Nd(n,α) 143 Ce, and 146 Nd(n,p) 146 Pr. Theoretical calculations of excitation functions were performed with the TALYS-1.6 nuclear model code, at neutron energies varying from the reaction threshold to 20 MeV. The results were discussed and compared with experimental data found in the literature, and with the comprehensive evaluation data in ENDF/B-VII.1, JENDL-4.0, and CENDL-3 libraries. - Highlights: • The cross sections for the (n,x) reactions on Neodymium have been measured. • Mono-energetic neutron beams using the D-T reaction; Energies: 13.5–14.8 MeV. • Neutron cross-section measurements by means of the activation technique. • Reference reactions 93 Nb(n,2n) 92m Nb and 27 (n, α) 24 Na were used as the monitor. • Nuclear reaction code TALYS-1.6 was used

  5. Experimental cross-sections for proton-induced nuclear reactions on Mo-nat

    Czech Academy of Sciences Publication Activity Database

    Červenák, Jaroslav; Lebeda, Ondřej

    2016-01-01

    Roč. 380, AUG (2016), s. 32-49 ISSN 0168-583X R&D Projects: GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : cross-sections * excitation functions * proton-induced nuclear reactions * natural molybdenum * Mo-99 * Tc-99m * Tc96m+g * Tc-95m * thick target yields * U-120M cyclotron Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.109, year: 2016

  6. Neutron-capture cross-section measurements of Xe136 between 0.4 and 14.8 MeV

    Science.gov (United States)

    Bhike, Megha; Tornow, W.

    2014-03-01

    Fast-neutron-capture cross-section data on Xe136 have been measured with the activation method between 0.4 and 14.8 MeV. The cross section was found to be of the order of 1 mb at the eleven energies investigated. This result is important to interpret potential neutron-induced backgrounds in the enriched xenon observatory and KamLAND-Zen neutrinoless double-β decay searches that use xenon as both source and detector. A high-pressure sphere filled with Xe136 was irradiated with monoenergetic neutrons produced by the reactions 3H(p ,n)3He, 2H(d ,n)3He, and 3H(d ,n)4He. Indium and gold monitor foils were irradiated simultaneously with the Xe136 to determine the incident neutron flux. The activities of the reaction products were measured with high-resolution γ-ray spectroscopy. The present results are compared to predictions from ENDF/B-VII.1 and TENDL-2012.

  7. Photoproton cross section for /sup 19/F

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, H [Tohoku Univ., Sendai (Japan). Coll. of General Education; Kawamura, N; Oikawa, S; Uegaki, J I

    1975-02-01

    Proton energy spectra have been measured at 90/sup 0/ for the /sup 19/F(e,e'p)/sup 18/O reaction in the giant resonance region. The (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) differential cross sections are extracted from the proton energy spectra by using virtual-photon spectra. The integrated differential cross section of the (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) reactions are 1.80+-0.27 and 0.50+-0.45 MeV-mb/sr, respectively. The results are discussed with the shell model theory by comparing with the (..gamma..,p/sub 0/) cross section of the neighboring 4n-nucleus /sup 20/Ne. A significant increase of the proton yield leaving the non-ground states is found at 25 MeV of the incident electron energy. This is discussed in terms of the core excitation effect.

  8. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    Directory of Open Access Journals (Sweden)

    Wang He

    2017-01-01

    Full Text Available Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  9. Measurement of Antiproton-proton Cross-Sections at Low Antiproton Momenta

    CERN Multimedia

    2002-01-01

    The experiment is designed to measure four different cross sections in the momentum range 150~MeV/c to 600~MeV/c: 1)~~~~the differential elastic \\\\ \\\\ 2)~~~~the differential charge exchange\\\\ \\\\ 3)~~~~the annihilation into charged and neutral pions\\\\ \\\\ 4)~~~~and the total cross section via the optical theorem. \\\\ \\\\ The experiment allows one to search once again and with good precision for baryonium. Of special interest is the existence of the S-meson, for which a signal of about 20~MeV-mb was found in a 1981 experiment (performed in the East Hall).\\\\ \\\\ A second point of special interest is the momentum region below 300~MeV/c because the cross sections are basically unknown. We will be able to explore the momentum dependence of this region for the first time.\\\\ \\\\ The elastic cross section is measured by a cylindrical multiwire proportional chamber and a scintillator hodoscope placed around a scattering chamber under vacuum. The charge exchange cross section is measured by a ring of 32~anti-neutron detector...

  10. Calculation of homogenized Pickering NGS stainless steel adjuster rod neutron cross-sections using conservation of reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, R C [Atlantic Nuclear Services Ltd. (Canada); Tran, F [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station

    1996-12-31

    A homogenization methodology for calculation of reactivity device incremental cross-sections has been developed using reaction rate conservation (RRC). A heterogeneous transport calculation of flux was utilised to produce the homogenized cross-sections for a finite difference two group diffusion code. The RRC cross-sections have been shown to improve significantly the prediction of reactivity worth for stainless steel adjuster rods installed in Pickering NGS reactors. (author). 10 refs., 3 tabs., 6 figs.

  11. Evaluation of cross sections for neutron monitor reactions {sup 90}Zr(n,x){sup 89,88}Zr, {sup 88,87,86}Y from threshold to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Baosheng, Yu; Qingbiao, Shen; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    The cross sections for {sup 90}Zr(n,x){sup 89,88}Zr and {sup 90}Zr(n,x){sup 88,87,86}Y reactions in intermediate energy region are useful in neutron field monitor, safety and material damage research. Below 20 MeV, the evaluated cross sections for {sup 90}Zr(n,2n){sup 89}Zr reaction are recommended based on the recent experimental data, including the new measured results in CIAE (Above 20 MeV). The measured cross sections are still insufficient to do evaluation. So the evaluation for {sup 90}Zr(n,x){sup 89,88}Zr and {sup 90}Zr(n,x){sup 88,87,86}Y reactions from threshold to 100 MeV are based on experimental and calculated data. (2 figs.).

  12. The cross section measurement for the reactions of 48,46Ti(n,p) 48,46Sc, 50Ti(n, α)47Ca and 58Ni (n, 2n)57Ni, 58Ni(n,p)58m+gCo

    International Nuclear Information System (INIS)

    Yuan Junqian; Wang Yongchang; Kong Xiangzhong; Yang Jingkang

    1992-01-01

    The cross sections for the 50 Ti(n, α) 47 Ca, 46 Ti(n, p) 46 Sc, 48 Ti(n, p) 48 Sc and 58 Ni(n, 2n) 57 Ni, 58 Ni(n, p) 58m+g Co reactions have been measured by using the activation method relative to the cross sections of the 27 Al(n, α) 24 Na reaction in the neutron energy range of 13.50-14.81 MeV. The neutron energies were determined by the cross section ratios of the 90 Zr(n, 2n) 89m+g Zr and 93 Nb(n, 2n) 92m Nb reactions. The results obtained are compared with the published and to be published data of several authors

  13. A new CVD diamond mosaic-detector for (n, α) cross-section measurements at the n{sub T}OF experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Weiß, C., E-mail: christina.weiss@cern.ch [Atominstitut, Technische Universität Wien (Austria); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Griesmayer, E. [Atominstitut, Technische Universität Wien (Austria); Guerrero, C. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Altstadt, S. [Johann-Wolfgang-Goethe Universität, Frankfurt (Germany); Andrzejewski, J. [Uniwersytet Łódzki, Lodz (Poland); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3 - IPN, Orsay (France); Badurek, G. [Atominstitut, Technische Universität Wien (Austria); Barbagallo, M. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Bécares, V. [Centro de Investigaciones Energeticas Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Bečvář, F. [Charles University, Prague (Czech Republic); Belloni, F. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); Berthoumieux, E. [Commissariat à l’Énergie Atomique (CEA) Saclay - Irfu, Gif-sur-Yvette (France); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Billowes, J. [University of Manchester, Oxford Road, Manchester (United Kingdom); Boccone, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Bosnar, D. [Department of Physics, Faculty of Science, University of Zagreb (Croatia); Brugger, M.; Calviani, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Calviño, F. [Universitat Politecnica de Catalunya, Barcelona (Spain); and others

    2013-12-21

    At the n{sub T}OF experiment at CERN a dedicated single-crystal chemical vapor deposition (sCVD) Diamond Mosaic-Detector has been developed for (n,α) cross-section measurements. The detector, characterized by an excellent time and energy resolution, consists of an array of 9 sCVD diamond diodes. The detector has been characterized and a cross-section measurement has been performed for the {sup 59}Ni(n,α){sup 56}Fe reaction in 2012. The characteristics of the detector, its performance and the promising preliminary results of the experiment are presented. -- Highlights: •A large-area detector of 3 ×3 sCVD diamonds was built for (n, α) measurements. •The {sup 59}Ni(n, α){sup 56}Fe cross-section was measured successfully at n{sub T}OF/CERN. •The energy resolution of the detector meets the expectations from simulations. •The reaction products during the measurement at n{sub T}OF could clearly be separated. •The detector is suitable for (n, α) measurements in a heterogeneous beam.

  14. Fusion cross sections from measurements of delayed X-rays

    International Nuclear Information System (INIS)

    Pacheco, A.J.; Gregorio, D.E. di; Fernandez Niello, J.O; Elgue, M.

    1988-01-01

    The program XRAY is a FORTRAN 77 computer code for the extraction of fusion cross sections from delayed X-ray measurements. This is accomplished by calculating the theoretical expressions of the time dependence of the evaporation-residue cross sections and taking them as adjustable parameters in a χ 2 minimization procedure. (orig.)

  15. Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1979-01-01

    It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references

  16. Forward absolute cross-section of the reaction 2H(d,n)3He for Esub(d) = (3/6)MeV

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.

    1981-01-01

    The zero-degree differential cross-section of the reaction 2 H(d,n) 3 He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident-deuteron energy interval from 3 to 6 MeV. (author)

  17. Measurement of inclusive jet cross sections in photoproduction at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Kruger, K.; Kuhr, T.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schoerner-Sadenius, Thomas; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wiesand, S.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2003-01-01

    Inclusive jet cross sections are measured in photoproduction at HERA using the H1 detector. The data sample of e+ p -> e+ + jet + X events in the kinematic range of photon virtualities Q^2 < 1 GeV^2 and photon-proton centre-of-mass energies 95 < W_gammap < 285 GeV represents an integrated luminosity of 24.1 pb^-1. Jets are defined using the inclusive k_T algorithm. Single- and multi-differential cross sections are measured as functions of jet transverse energy E_T^jet and pseudorapidity \\eta^jet in the domain 5 < E_T^jet < 75 GeV and -1 < \\eta^jet < 2.5. The cross sections are found to be in good agreement with next-to-leading order perturbative QCD calculations corrected for fragmentation and underlying event effects. The cross section differential in E_T^jet, which varies by six orders of magnitude over the measured range, is compared with similar distributions from p pbar colliders at equal and higher energies.

  18. STEEP4 code for computation of specific thermonuclear reaction rates from pointwise cross sections

    International Nuclear Information System (INIS)

    Harris, D.R.; Dei, D.E.; Husseiny, A.A.; Sabri, Z.A.; Hale, G.M.

    1976-05-01

    A code module, STEEP4, is developed to calculate the fusion reaction rates in terms of the specific reactivity [sigma v] which is the product of cross section and relative velocity averaged over the actual ion distributions of the interacting particles in the plasma. The module is structured in a way suitable for incorporation in thermonuclear burn codes to provide rapid and yet relatively accurate on-line computation of [sigma v] as a function of plasma parameters. Ion distributions are modified to include slowing-down contributions which are characterized in terms of plasma parameters. Rapid and accurate algorithms are used for integrating [sigma v] from cross sections and spectra. The main program solves for [sigma v] by the method of steepest descent. However, options are provided to use Gauss-Hermite and dense trapezoidal quadrature integration techniques. Options are also provided for rapid calculation of screening effects on specific reaction rates. Although such effects are not significant in cases of plasmas of laboratory interest, the options are included to increase the range of applicability of the code. Gamow penetration form, log-log interpolation, and cubic interpolation routines are included to provide the interpolated values of cross sections

  19. Psychosocial reactions to upper extremity limb salvage: A cross-sectional study.

    Science.gov (United States)

    Sposato, Lindsay; Yancosek, Kathleen; Lospinoso, Josh; Cancio, Jill

    2017-08-09

    Descriptive cross-sectional survey study. Limb salvage spares an extremity at risk for amputation after a major traumatic injury. Psychosocial recovery for individuals with lower extremity limb salvage has been discussed in the literature. However, to date, psychosocial reactions for individuals with upper extremity (UE) limb salvage have not been examined. To determine which factors may influence psychosocial adaptation to UE limb salvage. Participants (n = 30; 28 males) were adults (mean, 30.13; range, 18-61) who sustained an UE limb salvage from a traumatic event. Adaptation was measured using a modified version of the Reactions to Impairment and Disability Inventory. A linear mixed-effects regression found that worse psychosocial adaptation was associated with having less than a college degree, being less than 6 months post-injury, being older than 23 years, and having more pain. Dominant hand injuries were found to influence poor adaptation on the denial Reactions to Impairment and Disability Inventory subscale only. The results of this study indicate that there is potential for nonadaptive reactions and psychological distress with certain variables in UE limb salvage. Therapists may use these results to anticipate which clients may be at risk for poor psychosocial outcomes. This study indicates the need for early consideration to factors that affect psychological prognosis for the UE limb salvage population. However, future research is indicated to better understand the unique psychosocial challenges and needs of these individuals. 4. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  20. Measurement of {sup 197}Au(n,γ){sup 198g}Au reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vansola, Vibha [M.S. Univ., Baroda (India). Dept. of Physics; Ghosh, Reetuparna; Badwar, Sylvia [North Eastern Hill Univ., Meghalaya (India). Dept. of Physics; and others

    2015-07-01

    The {sup 197}Au(n,γ){sup 198}Au reaction cross-sections at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV were determined by using activation and off-line γ-ray spectrometric technique. The mono-energetic neutron energies of 1.12-4.12 MeV were generated from the {sup 7}Li(p,n) reaction by using the proton energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at BARC as well as 5 and 6 MeV from the Pelletron facility at TIFR, Mumbai. The {sup 115}In(n,γ){sup 116m}In reaction cross-section was used as the neutron flux monitor. The {sup 197}Au(n,γ){sup 198}Au reaction cross-section at the neutron energies of 3.12 and 4.12 MeV are reported for the first time. The {sup 197}Au(n,γ){sup 198}Au reaction cross-sections at 1.12 and 2.12 MeV are close to the literature data of in between neutron energies. The {sup 197}Au(n,γ){sup 198}Au cross-section was also calculated theoretically by using the computer code TALYS 1.6 and found to be higher than the experimental data of present work and literature data within the neutron energies of 0.8 to 4 MeV.

  1. Measurement of differential cross section of D(3He,p)4He from 0.8 MeV to 3.6 MeV

    Science.gov (United States)

    Zhu, J. P.; Xiao, X.; Yan, S.; Gao, Y.; Xue, J. M.; Wang, Y. G.

    2017-12-01

    Precise knowledge of the nuclear reaction cross-section is crucial for nuclear reaction analysis methods and its applications. In order to apply nuclear reaction analysis methods to Plasma Facing Materials studies on 4.5 MV electrostatic accelerator at Peking University, differential cross-section for d(3He,p) α at several backward angles was measured with a relative error about ± 6.2 % , gives detailed information at the laboratory angle of 135° from 800 keV to 3600 keV, as well as a rough angular distribution from 130° to 160°.

  2. The 53Cr(γ,p)52V cross section

    International Nuclear Information System (INIS)

    Baciu, G.; Catana, D.; Galateanu, V.; Niculescu, R.I.V.

    1979-01-01

    The cross section of the photonuclear reaction 53 Cr(γ,p) 52 V between 14.4 MeV and 27 MeV was determined by the activation method. Chromium with natural isotopic abundance was irradiated in the bremsstrahlung beam of a betatron and γ rays were measured with a Ge(Li) spectrometer. Interfering reactions 52 Cr(n,p) 52 V and 54 Cr(γ,np) 52 V were evaluated. The stucture of the cross section curve is interpreted in terms of isospin splitting. (author)

  3. (232)Th(d,4n)(230)Pa cross-section measurements at ARRONAX facility for the production of (230)U.

    Science.gov (United States)

    Duchemin, C; Guertin, A; Haddad, F; Michel, N; Métivier, V

    2014-05-01

    (226)Th (T1/2=31 min) is a promising therapeutic radionuclide since results, published in 2009, showed that it induces leukemia cells death and activates apoptosis pathways with higher efficiencies than (213)Bi. (226)Th can be obtained via the (230)U α decay. This study focuses on the (230)U production using the (232)Th(d,4n)(230)Pa(β-)(230)U reaction. Experimental cross sections for deuteron-induced reactions on (232)Th were measured from 30 down to 19 MeV using the stacked-foil technique with beams provided by the ARRONAX cyclotron. After irradiation, all foils (targets as well as monitors) were measured using a high-purity germanium detector. Our new (230)Pa cross-section values, as well as those of (232)Pa and (233)Pa contaminants created during the irradiation, were compared with previous measurements and with results given by the TALYS code. Experimentally, same trends were observed with slight differences in orders of magnitude mainly due to the nuclear data change. Improvements are ongoing about the TALYS code to better reproduce the data for deuteron-induced reactions on (232)Th. Using our cross-section data points from the (232)Th(d,4n)(230)Pa reaction, we have calculated the thick-target yield of (230)U, in Bq/μA·h. This value allows now to a full comparison between the different production routes, showing that the proton routes must be preferred. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Neutrino-nucleon cross section measurements in NOMAD

    CERN Document Server

    Wu, Qun

    2006-01-01

    The NOMAD (Neutrino Oscillation MAgnetic Detector) experiment, using the SPS (Super Proton Syncrotron) neutrino beam (1 GeV < E [nu] < 200 GeV) at CERN (European Organization for Nuclear Research), has collected more than 1.7 million neutrino induced charged and neutral current (CC and NC) events. This data is the largest high resolution neutrino nucleon scattering data to date and is ideal for precision measurements and searches in neutrino-physics. This thesis presents the precise measurement of the inclusive neutrino CC cross section in 2.5 GeV < E [nu] < 150 GeV region. The linear dependence of the inclusive CC cross section ([Special characters omitted.] ) versus the incoming neutrino energy ( E [nu] ) is observed in the high energy region of 30 GeV < E [nu] < 150 GeV. Especially, the measurement in 2.5 GeV < E [nu] < 30 GeV region provides the first precise determination of [Special characters omitted.] . The significant deviation from the linear dependence for [Special character...

  5. Cross Sections for the Production of Residual Nuclides by Proton-Induced Reactions with Uranium at Medium Energies

    International Nuclear Information System (INIS)

    Issa, S.A.M.; Michel, R.; Uosif, M.A.M.; Issa, S.A.M.; Flamentc, J.L.; David, J.C.; Leray, S.

    2009-01-01

    The production of residual nuclides by proton-induced reactions on uranium is investigated using activated targets from irradiation experiments at Saturne II synchrocyclotron at the Laboratory National Saturne/Saclay. These investigations contribute to the European research project NUDATRA within the IP EUROTRANS in which the feasibility of accelerator-driven transmutation of nuclear waste is evaluated. Experimental cross sections are derived from gamma-spectrometric measurements. A total of 1894 cross-section was deter-mined covering 44 residual nuclides in the energy range from 211 MeV to 2530 MeV. The experimental data together with those of earlier work of our group are discussed in the context of theoretical excitation functions calculated by the newly developed INCL4 + ABLA and the TALYS codes

  6. Reduction methodology for reaction cross sections induced by weakly bound nuclei

    International Nuclear Information System (INIS)

    Deshmukh, N.N.; Mukherjee, S.; Appannababu, S.; Guimaraees, V.; Lubian, J.; Gomes, P.R.S.

    2009-01-01

    The interest in nuclear reactions with weakly bound nuclei has increased considerably along the last decade. Several experiments with stable and unstable projectiles have been performed and a variety of theoretical approaches have been developed. In particular, fusion and breakup reactions induced by such projectiles have been the object of several studies. Owing to the weak binding of the projectile, the breakup cross section may be quite large and coupling with the breakup channel can strongly affect the fusion cross section at near barrier energies. This influence stems from two effects, one of a static and the other of a dynamic nature, which are, however, not easy to be disentangled. The static effect results from the more diffuse density of the weakly bound nuclei, as compared with a strongly bound one. The contribution from weakly bound nucleons to the nuclear density extends further out and this gives rise to a lower and thicker potential barrier. There is general understanding that this static effect enhances the fusion cross section at near barrier energies. On the other hand, there is the dynamic effect corresponding to the coupling with the breakup channel. It is well known that the coupling with a finite number of bound channels enhances the sub-barrier fusion cross section. However, the effect of coupling to channels in the continuum (breakup) is controversial. In first place, one should have in mind that there are different fusion processes in collisions of weakly bound projectiles. One of such processes is the complete fusion, which takes place when the whole mass of the projectile fuses with the target. There may be fusion following breakup. In this case, the compound nucleus may contain the whole mass of the projectile (through sequential fusion of the fragments), or some fragment can escape the interaction region. The former corresponds also to complete fusion (sequential complete fusion) while the latter is known as incomplete fusion. So far

  7. Measurement of the b-Quark Production Cross Section in 7 and 13 TeV pp Collisions.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S-F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C-T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Albor, V; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wright, S; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2017-02-03

    Measurements of the cross section for producing b quarks in the reaction pp→bb[over ¯]X are reported in 7 and 13 TeV collisions at the LHC as a function of the pseudorapidity η in the range 2<η<5 covered by the acceptance of the LHCb experiment. The measurements are done using semileptonic decays of b-flavored hadrons decaying into a ground-state charmed hadron in association with a muon. The cross sections in the covered η range are 72.0±0.3±6.8 and 154.3±1.5±14.3  μb for 7 and 13 TeV. The ratio is 2.14±0.02±0.13, where the quoted uncertainties are statistical and systematic, respectively. The agreement with theoretical expectation is good at 7 TeV, but differs somewhat at 13 TeV. The measured ratio of cross sections is larger at lower η than the model prediction.

  8. Measurement of the e+e- → π+π-π+π- cross section in the rho'(1600) energy region

    International Nuclear Information System (INIS)

    Bacci, C.; De Zorzi, G.; Penso, G.; Stella, B.; Baldini-Celio, R.; Battistoni, G.; Capon, G.; Del Fabbro, R.; Iarocci, E.; Murtas, G.P.

    1980-01-01

    The cross section for the reaction e + e - → π + π - π + π - has been measured at the e + e - storage ring Adone, in the total c.m. energy range 1.42-2.20 GeV. The peak and the following descent of the rho'(1600) resonance is observed. Using also lower energy data, and assuming that only one resonant amplitude contributes to the observed cross section, the parameters of the rho'(1600) are deduced. (orig.)

  9. Measurement of hadronic exclusive cross sections in e+e- annihilation from 1.42 to 2.20 GeV

    International Nuclear Information System (INIS)

    Bacci, C.; De Zorzi, G.; Penso, G.; Stella, B.; Baldini Celio, R.; Battistoni, G.; Capon, G.; Del Fabbro, R.; Iarocci, E.; Murtas, G.P.

    1981-01-01

    Total cross sections for reactions e + e - → π + π - π 0 , π + π - 2π 0 , 2π + 2π - π 0 , 2π + 2π - 2π 0 , 3π + 3π - have been measured in the total c.m. energy range 1.42-2.20 GeV. Partial R = sigmasub(had)/sigmasub(μ + μ - ) values for two and four produced charged pions, and cross sections for positive and negative G-parity states are also reported. (orig.)

  10. LAMBDA p total cross-section measurement

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    A view of the apparatus used for the LAMBDA p total cross-section measurement at the time of its installation. The hyperons decaying into a proton and a pion in the conical tank in front were detected in the magnet spectrometer in the upper half of the picture. A novel detection technique using exclusively multiwire proportional chambers was employed.

  11. Hypernuclear production cross section in the reaction of 6Li + 12C at 2A GeV

    Directory of Open Access Journals (Sweden)

    C. Rappold

    2015-07-01

    Full Text Available Hypernuclear production cross sections have been deduced for the first time with induced reaction of heavy ion beam on fixed target and by means of the invariant mass method by the HypHI Collaboration exploiting the reaction of 6Li + 12C at 2A GeV or sNN=2.70 GeV. A production cross section of 3.9±1.4 μb for 3ΛH and of 3.1±1.0 μb for 4ΛH respectively in the projectile rapidity region was inferred as well as the total production cross section of the Λ hyperon was measured and found to be equal to 1.7±0.8 mb. A global fit based on a Bayesian approach was performed in order to include and propagate statistical and systematic uncertainties. Production ratios of 3ΛH/4ΛH, 3ΛH/Λ and 4ΛH/Λ were included in the inference procedure. The strangeness population factors S3 and S4 of 3ΛH and 4ΛH respectively were extracted. In addition, the multiplicities of the Λ hyperon, 3ΛH, and 4ΛH together with the rapidity and transversal momentum density distributions of the observed hypernuclei were extracted and reported.

  12. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  13. Extension of activation cross section data of long lived products in deuteron induced nuclear reactions on platinum up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Ditrói, F., E-mail: ditroi@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Tárkányi, F.; Takács, S. [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Hermanne, A. [Cyclotron Laboratory, Vrije Universiteit Brussel, Brussels (Belgium)

    2017-06-15

    Highlights: • Deuteron induced nuclear reactions on natural platinum up to 50 MeV. • Stacked foil irradiation technique. • Comparison with the TENDL-2014 and TENDL-2015 calculations. • Cross section of Au, Pt and Ir radioisotopes. • Application for Thin Layer Activation (TLA). - Abstract: In the frame of a systematical study of light ion induced nuclear reactions on platinum, activation cross sections for deuteron induced reactions were investigated. Excitation functions were measured in the 20.8–49.2 MeV energy range for the {sup nat}Pt(d,xn){sup 191,192,193,194,195,196m2,196g,198g,199}Au, {sup nat}Pt(d,x){sup 188,189,191,195m,197m,197g}Pt and {sup nat}Pt(d,x){sup 189,190,192,194m2}Ir reactions by using the stacked foil irradiation technique. The experimental results are compared with previous results from the literature and with the theoretical predictions in the TENDL-2014 and TENDL-2015 libraries. The applicability of the produced radio-tracers for wear measurements has been presented.

  14. Measurement of fission cross section for {sup 232}Th(n,f){sup 131}{sub Z}X (Z = 50, 51, 52, 53) reaction induced by neutrons around 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chang-lin; Qiu, Yi-jia; Wang, Qiang; Zhang, Zheng-wei; Zhang, Qian; Tan, Jun-cai; Fang, Kai-hong [Lanzhou University, School of Nuclear Science and Technology, Lanzhou (China); Lai, Cai-feng [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang (China)

    2017-06-15

    The fission cross sections of {sup 232}Th(n,f){sup 131m,g}Sn, {sup 232}Th(n,f){sup 131}Sb, {sup 232}Th(n,f){sup 131m,g}Te, {sup 232}Th(n,f){sup 131}I fission reactions induced by 14 MeV neutrons were measured precisely with the neutron activation technique. The neutron flux was monitored by accompanying α particle in the irradiation and the neutron energies were determined by the cross section ratio of {sup 90}Zr(n,2n){sup 89}Zr to {sup 93}Nb(n,2n){sup 92m}Nb reaction. The values of the cross sections of {sup 232}Th(n,f){sup 131m,g}Sn were analyzed, and the cross sections of {sup 232}Th(n,f){sup 131}Sb were deduced to be 6.5±0.7, 6.3±0.6, 6.1±0.6 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. The values of the cross sections of {sup 232}Th(n,f){sup 131g}Te were deduced to be 1.8 ± 0.1, 1.5 ± 0.1 and 1.4±0.1 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. The values of the cross sections of {sup 232}Th(n,f){sup 131}I were given as 1.8±0.2, 1.6±0.2, 1.5±0.1 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively. (orig.)

  15. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  16. Activation cross sections of deuteron induced reactions on niobium in the 30–50 MeV energy range

    International Nuclear Information System (INIS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Ignatyuk, A.V.

    2016-01-01

    Highlights: • Deuteron induced nuclear reactions on natural niobium up to 50 MeV. • Stacked foil irradiation technique. • Comparison of results with the ALICE-D, EMPIRE-D and TENDL-2015 calculations. • Application of radioisotopes in medicine and industry. - Abstract: Activation cross-sections of deuterons induced reactions on Nb targets were determined with the aim of different applications and comparison with theoretical models. We present the experimental excitation functions of "9"3Nb(d,x)"9"3"m","9"0Mo, "9"2"m","9"1"m","9"0Nb, "8"9","8"8Zr and "8"8","8"7"m","8"7"gY in the energy range of 30–50 MeV. The results were compared with earlier measurements and with the cross-sections calculated by means of the theoretical model codes ALICE-D, EMPIRE-D and TALYS (on-line TENDL-2014 and TENDL-2015 libraries). Possible applications of the radioisotopes are discussed in detail.

  17. Measurements of differential cross sections and polarization parameters for the π-p →π0n reactions from 1.8 GeV/c to 3.0 GeV/c

    International Nuclear Information System (INIS)

    Hemmi, Yasuo

    1977-01-01

    Experimental study has just begun at KEK (Japan) to measure the differential cross section and the polarization parameter for the π - p→π 0 n reaction from 1.8 GeV/c to 3.0 GeV/c. This lecture note describes on the purpose and the method of the measurement. The schematic diagram of the experimental arrangement for the π - p→π 0 n reaction measurement is given. For the detection of neutrons, plastic scintillation counter hodoscopes were used. For the detection of electrons, lead glass Cherenkov counters were used. Some preliminary results of the experiment and the efficiency of detection are presented. (Aoki, K.)

  18. Fission cross section measurement of Am-242m using lead slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Kimura, Itsuro; Ohkawachi, Yasushi; Wakabayashi, Toshio

    1998-03-01

    By making use of double fission chamber and lead slowing-down spectrometer coupled to an electron linear accelerator, fission cross section for the {sup 242m}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, of which evaluated data were broadened by the energy resolution function of the spectrometer. Although the JENDL-3.2 data seem to be a little smaller than the present measurement, good agreement can be seen in the general shape and the absolute values. The ENDF/B-VI data are larger more than 50 % than the present values above 3 eV. (author)

  19. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Smith, D.; Whalen, J.; Howerton, R.

    1980-04-01

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  20. Calculations of radiation defect formation cross sections in reactor materials in (n,p) and (n,α) reactions

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Omarbekova, Zh.

    2001-01-01

    In the work an experimental data analysis by integral σ(E 1 ) and differential [dσ(E 1 ,E 2 )]/dE 2 neutron interaction cross sections with reactor materials with the secondary protons and alpha particles generation as well as with the primarily knock-on atoms production in such reactions are carried out. It is shown, that in the (n,p) and (n',α) reactions the recoil nuclei receive essential energy portion and they are the patriarchs for atom-atom cascades in the substance. Nuclear reactions with formation of the secondary α-particles and and recoil nuclei are considered. It is shown, that these reactions are effectively proceeding within neutrons energy range 0.3-15 MeV. The nuclear reactions kinematics of above mentioned processes is studied. Energy conservation law for these reaction is applied. Deferential cross section conservation and transformation law for radiation defect formation in the (n,α) reaction are considered as well

  1. Capture cross-section and rate of the 14 C (n, γ) 15 C reaction from ...

    Indian Academy of Sciences (India)

    We calculate the Coulomb dissociation of 15C on a Pb target at 68 MeV/u incident beam energy within the fully quantum mechanical distorted wave Born approximation formalism of breakup reactions. The capture cross-section and the subsequent rate of the 14C(, )15C reaction are calculated from the ...

  2. (n,xn cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly “QUINTA”

    Directory of Open Access Journals (Sweden)

    Bielewicz Marcin

    2017-01-01

    Full Text Available Study of the deep subcritical systems (QUINTA using relativistic beams is performed within the project “Energy and Transmutation of Radioactive Wastes” (E&T – RAW. The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON. We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn reactions in yttrium (Y-89 foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn cross section measurements were carried out at The Svedberg laboratory (TSL in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.

  3. Spallation reaction study for fission products in nuclear waste: Cross section measurements for {sup 137}Cs and {sup 90}Sr on proton and deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghe@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otsu, H.; Sakurai, H.; Ahn, D.S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doornenbal, P.; Fukuda, N.; Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawakami, S. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Koyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kubo, T.; Kubono, S.; Lorusso, G. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Maeda, Y. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Makinaga, A. [Graduate School of Medicine, Hokkaido University, North-14, West-5, Kita-ku, Sapporo 060-8648 (Japan); Momiyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakano, K. [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Niikura, M. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiga, Y. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2016-03-10

    We have studied spallation reactions for the fission products {sup 137}Cs and {sup 90}Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of {sup 137}Cs and {sup 90}Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  4. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    International Nuclear Information System (INIS)

    Oyer, A.T.

    1976-12-01

    A measurement of the elastic cross section dsigma/dΩ was made for the reaction π + + 12 C → π + + 12 C with 142 MeV pions at ten angles ranging from 35 to 85 0 in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometer's focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic, and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55 0 . Finally, the carbon elastic cross sections were compared to similar π - + 12 C cross sections of Binon et al using the optical model

  5. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Oyer, A.T.

    1976-12-01

    A measurement of the elastic cross section dsigma/d..cap omega.. was made for the reaction ..pi../sup +/ + /sup 12/C ..-->.. ..pi../sup +/ + /sup 12/C with 142 MeV pions at ten angles ranging from 35 to 85/sup 0/ in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometer's focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic, and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55/sup 0/. Finally, the carbon elastic cross sections were compared to similar ..pi../sup -/ + /sup 12/C cross sections of Binon et al using the optical model.

  6. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    International Nuclear Information System (INIS)

    Oyer, A.T.

    1976-01-01

    A measurement of the elastic cross section dsigma/dOMEGA was made for the reaction π + + 12 C yields π + + 12 C with 142 MeV pions at ten angles ranging from 35 to 85 0 in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometers focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al., eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55 0 . Finally, the carbon elastic cross sections were compared to similar π - + 12 C cross sections of Binon et al., using the optical model

  7. High-resolution neutron capture and transmission measurements and the stellar neutron capture cross sections of 116,120Sn

    International Nuclear Information System (INIS)

    Koehler, P.E.; Spencer, R.R.; Guber, K.H.

    1997-01-01

    Improved astrophysical reaction rates for 116,120 Sn(n, γ) are of interest because nucleosynthesis models have not been able to reproduce the observed abundances in this mass region. For example, previous s-process calculations have consistently underproduced the s-only isotope 116 Sn. Also, these studies have resulted in residual reprocess abundances for the tin isotopes which are systematically larger than predicted by reprocess calculations. It has been suggested that these problems could be solved by reducing the solar tin abundance by 10-20%, but there is no experimental evidence to justify this renormalization. Instead, it is possible that the problem lies in the (n,T) cross sections used in the reaction network calculations or in the s-process models. One reason to suspect the (n, γ) data is that previous measurements did not extend to low enough energies to determine accurately the Maxwellian-averaged capture cross sections at the low temperatures (kT=6-8 keV) favored by the most recent stellar models of the s process. Also, the two most recent high-precision measurements of the 120 Sn(n, γ) cross section are in serious disagreement. Because of its small size, this cross section could affect (via the s-process branching at 121 Sn) the relative abundances of the three s-only isotopes of Te

  8. Measurements of the {sup 235}U(n,f) cross section in the 3 to 30 MeV neutron energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.D.; Wasson, O.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Lisowski, P.W. [Los Alamos National Lab., NM (United States)] [and others

    1991-12-31

    To improve the accuracy of the {sup 235}U(n,f) cross section, measurements have been made of this standard cross section at the target 4 facility at Los Alamos National Laboratory (LANL). The data were obtained at the 20-meter flight path of that facility. The fission reaction rate was determined with a fast parallel plate ionization chamber and the neutron fluence was measured with an annular proton recoil telescope. The measurements provide the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section for neutron energies from about 3 to 30 MeV neutron energy. The data have been normalized to the very accurately known value near 14 MeV. The results are in good agreement with the ENDF/B-VI evaluation up to about 15 MeV neutron energy. Above this energy differences as large as 5% are observed.

  9. Fission cross-section measurements on 233U and minor actinides at the CERN n-TOF facility

    International Nuclear Information System (INIS)

    Calviani, M.; Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.; Colonna, N.; Terlizzi, R.; Abbondanno, U.; Marrone, S.; Belloni, F.; Fujii, K.; Moreau, C.; Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Pancin, J.; Perrot, L.; Plukis, A.; Alvarez, H.; Duran, I.; Paradela, C.; Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Sesura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Vincente, M. C.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; David, S.; Ferrant, L.; Stephan, C.; Tassan-Got, L.; Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.; Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.; Becvar, F.; Calvino, F.; Capote, R.; Carrapico, C.; Chepel, V.; Ferreira-Marques, R.; Goncalves, I.; Lindote, A.; Lopes, I.; Neves, F.; Cortes, G.; Poch, A.; Pretel, C.; Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Walter, S.; Wisshak, K.; Domingo-Pardo, C.; Eleftheriadis, C.; Furman, W.; Goverdovski, A.; Gramegna, F.; Mastinu, P.; Praena, J.; Haas, B.; Haight, R.; Igashira, M.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Lozano, M.; Marganiec, J.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Plompen, A.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rullhusen, P.; Salgado, J.; Santos, C.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlastou, R.; Voss, F.

    2010-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured at the white neutron source n-TOF at CERN, Geneva. The studied isotopes include 233 U, interesting for Th/U based nuclear fuel cycles, 241, 243 Am and 245 Cm, relevant for transmutation and waste reduction studies in new generation fast reactors (Gen-IV) or Accelerator Driven Systems. The measurements take advantage of the unique features of the n-TOF facility, namely the wide energy range, the high instantaneous neutron flux and the low background. Results for the involved isotopes are reported from ∼30 meV to around 1 MeV neutron energy. The measurements have been performed with a dedicated Fission Ionization Chamber (FIC), relative to the standard cross-section of the 235 U fission reaction, measured simultaneously with the same detector. Results are here reported. (authors)

  10. Measurement of double differential cross sections of secondary neutrons in the incident energy range 9-13 MeV

    International Nuclear Information System (INIS)

    Tang Hongqing; Qi Bujia; Zhou Zuying; Sa Jun; Ke Zunjian; Sui Qingchang; Xia Haihong; Shen Guanren

    1992-01-01

    The status and technique of double differential cross section measurement of secondary neutrons in the incident neutron energy range 9 to 13 MeV is reviewed with emphasis on the work done at CIAE. There are scarce measurements of secondary neutron double differential cross sections in this energy region up to now. A main difficulty for this is lack of an applicable monoenergetic neutron source. When monoenergetic neutron energy reaches 8 Me/v, the break-up neutrons from the d + D or p + T reaction starts to become significant. It is difficult to get a pure secondary neutron spectrum induced only by monoenergetic neutrons. To solve this problem an abnormal fast neutron TOF facility was designed and tested. Double differential neutron emission cross sections of 238 U and 209 Bi at 10 MeV were obtained by combining the data measured by both normal and abnormal TOF spectrometers and a good agreement between measurement and calculation was achieved

  11. Determination of the cross section for (n,p) and (n,α) reactions on 165Ho at 13.5 and 14.8 MeV

    International Nuclear Information System (INIS)

    Luo, Junhua; An, Li; Jiang, Li; He, Long

    2015-01-01

    Activation cross-sections for the 165 Ho(n,p) 165 Dy and 165 Ho(n,α) 162 Tb reactions were measured by means of the activation method at 13.5 and 14.8 MeV, to resolve inconsistencies in existing data. A neutron beam produced via the 3 H(d,n) 4 He reaction was used. Statistical model calculations were performed using the nuclear-reaction codes EMPIRE-3.2 Malta and TALYS-1.6 with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. The calculational results on the 165 Ho(n,α) 162 Tb reaction agreed fairly well with experimental data, but there were large discrepancies in the results for the 165 Ho(n,p) 165 Dy reaction. - Highlights: • 27 Al(n,α) 24 Na was used as a monitor for neutron fleunce. • The cross sections for the 165 Ho(n,p) 165 Dy and 165 Ho(n,α) 162 Tb reactions were measured at 13.5 and 14.8 MeV neutron energies. • Nuclear reaction codes TALYS-1.6 and EMPIRE-3.2 Malta were used to model the reactions. • Inconsistency with previous data and with model calculations are noted

  12. Measurement of the $^{44}$Ti($\\alpha$,p)$^{47}$V reaction cross section, of relevance to $\\gamma$-ray observation of core collapse supernovae, using reclaimed $^{44}$Ti

    CERN Multimedia

    Despite decades of research, fundamental uncertainties remain in the underlying explosion mechanism of core collapse supernovae. One of the most direct methods that might help resolve this problem is a comparison of the predicted to the observed flux of $\\gamma$-rays due to decay of $^{44}$Ti produced in the explosion, as it is believed this could reveal the location of the mass cut, a key hydrodynamical property of the explosion. Such a study is at present limited by the uncertainty in the $^{44}$Ti($\\alpha$,p)$^{47}$V reaction rate. In this experiment we propose to measure the cross section for this reaction at astrophysically relevant energies. The single previous measurement of this reaction was limited to higher energies due to low beam intensities. Here, a more intense beam will be employed, generated from $^{44}$Ti reclaimed as part of the ERAWAST project at PSI.

  13. High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Elaine [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2002-05-01

    New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees

  14. Measurement of (n,2n) and (n,3n) cross sections at incident energies between 8 and 15MeV

    Energy Technology Data Exchange (ETDEWEB)

    Frehaut, J; Mosinski, G

    1975-01-01

    Cross sections of (n,2n) and (n,3n) reactions were measured for several nuclides between 8 and 15MeV using a large liquid scintillator to count the neutrons directly. Measurements relative to the fission cross section of /sup 238/U were made for the Nd isotopes 142-144-146-148-150, for the Sm isotopes 148-150-152-154 and for the natural elements Ti, V, Cr, Cu, Zr, Mo and Pb. The relative accuracy of the measurements was generally of the order of 5 to 10%.

  15. Density dependence of stopping cross sections measured in liquid ethane

    International Nuclear Information System (INIS)

    Both, G.; Krotz, R.; Lohmer, K.; Neuwirth, W.

    1983-01-01

    Electronic stopping cross sections for 7 Li projectiles (840--175 keV) have been measured with the inverted Doppler-shift attenuation method in liquid ethane (C 2 H 6 ) at two different densities. The density of the target has been varied by changing the temperature, and measurements have been performed at 0.525 g/cm 3 (199 K) and 0.362 g/cm 3 (287 K). At the higher density the stopping cross section is about 2% smaller. This result agrees with a calculation of the stopping cross section of liquid ethane, applying Lindhard's theory in the local-density approximation using a simple model of the liquid. It is also in agreement with various observations of the so-called physical-state effect, which show that the stopping cross section of the same substance is smaller in a condensed phase than in the gaseous one

  16. Average cross sections calculated in various neutron fields

    International Nuclear Information System (INIS)

    Shibata, Keiichi

    2002-01-01

    Average cross sections have been calculated for the reactions contained in the dosimetry files, JENDL/D-99, IRDF-90V2, and RRDF-98 in order to select the best data for the new library IRDF-2002. The neutron spectra used in the calculations are as follows: 1) 252 Cf spontaneous fission spectrum (NBS evaluation), 2) 235 U thermal fission spectrum (NBS evaluation), 3) Intermediate-energy Standard Neutron Field (ISNF), 4) Coupled Fast Reactivity Measurement Facility (CFRMF), 5) Coupled thermal/fast uranium and boron carbide spherical assembly (ΣΣ), 6) Fast neutron source reactor (YAYOI), 7) Experimental fast reactor (JOYO), 8) Japan Material Testing Reactor (JMTR), 9) d-Li neutron spectrum with a 2-MeV deuteron beam. The items 3)-7) represent fast neutron spectra, while JMTR is a light water reactor. The Q-value for the d-Li reaction mentioned above is 15.02 MeV. Therefore, neutrons with energies up to 17 MeV can be produced in the d-Li reaction. The calculated average cross sections were compared with the measurements. Figures 1-9 show the ratios of the calculations to the experimental data which are given. It is found from these figures that the 58 Fe(n, γ) cross section in JENDL/D-99 reproduces the measurements in the thermal and fast reactor spectra better than that in IRDF-90V2. (author)

  17. Resonance structure of 32S+n from measurements of neutron total and capture cross sections

    International Nuclear Information System (INIS)

    Halperin, J.; Johnson, C.H.; Winters, R.R.; Macklin, R.L.

    1980-01-01

    Neutron total and capture cross sections of 32 S have been measured up to 1100 keV neutron energy [E/sub exc/( 33 S) =9700 keV]. Spin and parity assignments have been made for 28 of the 64 resonances found in this region. Values of total radiation widths, reduced neutron widths, level spacings, and neutron strength functions have been evaluated for s/sub 1/2/, p/sub 1/2/, p/sub 3/2/, and d/sub 5/2/ levels. Single particle contributions using the valency model account for a significant portion of the total radiation width only for the p/sub 1/2/-wave resonances. A significant number of resonances can be identified with reported levels excited in 32 S(d,p) and 29 Si(α,n) reactions. A calculation of the Maxwellian average cross section appropriate to stellar interiors indicates an average capture cross section at 30 keV, sigma-bar approx. = 4.2(2) mb, a result that is relatively insensitive to the assumed stellar temperature. Direct (potential) capture and the s-wave resonance capture contributions to the thermal capture cross section do not fully account for the reported thermal cross section (530 +- 40 mb) and a bound state is invoked to account for the discrepancy

  18. Neutron total and scattering cross sections of 6Li in the few MeV region

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of 6 Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;α)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file

  19. Activation cross-sections of deuteron induced nuclear reactions on neodymium up to 50 MeV

    International Nuclear Information System (INIS)

    Tárkányi, F.; Takács, S.; Ditrói, F.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A.V.

    2014-01-01

    Highlights: • Experimental excitation function of deuteron induced reactions on natural Nd. • Model code calculations with EMPIRE-D, ALICE-D and TALYS (TENDL-2012). • Physical yield calculation and comparison. • Discussion of medical and industrial applications. - Abstract: In the frame of a systematic study of activation cross sections of deuteron induced nuclear reactions on rare earths, the reactions on neodymium for production of therapeutic radionuclides were measured for the first time. The excitation functions of the nat Nd(d,x) 151,150,149,148m,148g,146,144,143 Pm, 149,147,139m Nd, 142 Pr and 139g Ce nuclear reactions were assessed by using the stacked foil activation technique and high resolution γ-spectrometry. The experimental excitation functions were compared to the theoretical predictions calculated with the modified model codes ALICE-IPPE-D and EMPIRE-II-D and with the data in the TENDL-2012 library based on latest version of the TALYS code. The application of the data in the field of medical isotope production and nuclear reaction theory is discussed

  20. Measurements of electron-proton elastic cross sections for 0.4 2 2

    International Nuclear Information System (INIS)

    Christy, M.E.; Ahmidouch, Abdellah; Armstrong, Christopher; Arrington, John; Razmik Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin McIlhany; Daniella Mckee; David Meekins; Miller, J.W.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-Ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Buz Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Stepan Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 2 2 . These measurements represent a significant contribution to the world's cross section data set in the Q 2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab