Vorticity Dynamics in Single and Multiple Swirling Reacting Jets
Smith, Travis; Aguilar, Michael; Emerson, Benjamin; Noble, David; Lieuwen, Tim
2015-11-01
This presentation describes an analysis of the unsteady flow structures in two multinozzle swirling jet configurations. This work is motivated by the problem of combustion instabilities in premixed flames, a major concern in the development of modern low NOx combustors. The objective is to compare the unsteady flow structures in these two configurations for two separate geometries and determine how certain parameters, primarily distance between jets, influence the flow dynamics. The analysis aims to differentiate between the flow dynamics of single nozzle and triple nozzle configurations. This study looks at how the vorticity in the shear layers of one reacting swirling jet can affect the dynamics of a nearby similar jet. The distance between the swirling jets is found to have an effect on the flow field in determining where swirling jets merge and on the dynamics upstream of the merging location. Graduate Student, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA.
COARSE-GRID SIMULATION OF REACTING AND NON-REACTING GAS-PARTICLE FLOWS
Energy Technology Data Exchange (ETDEWEB)
Sankaran Sundaresan
2004-03-01
The principal goal of this project, funded under the ''DOE Vision 21 Virtual Demonstration Initiative'' is virtual demonstration of circulating fluidized bed performance. We had proposed a ''virtual demonstration tool'', which is based on the open-domain CFD code MFIX. The principal challenge funded through this grant is to devise and implement in this CFD code sound physical models for the rheological characteristics of the gas-particle mixtures. Within the past year, which was the third year of the project, we have made the following specific advances. (a) We have completed a study of the impact of sub-grid models of different levels of detail on the results obtained in coarse-grid simulations of gas-particle flow. (b) We have also completed a study of a model problem to understand the effect of wall friction, which was proved in our earlier work to be very important for stable operation of standpipes in a circulating fluidized bed circuit. These are described in a greater detail in this report.
Czech Academy of Sciences Publication Activity Database
Brennan, J.K.; Lísal, Martin; Gubbins, K.E.; Rice, B.M.
2004-01-01
Roč. 70, č. 6 (2004), 0611031-0611034 ISSN 1063-651X R&D Projects: GA ČR GA203/03/1588 Grant - others:NSF(US) CTS-0211792 Institutional research plan: CEZ:AV0Z4072921 Keywords : reacting systems * simulation * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.352, year: 2004
Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes
Nagnibeda, Ekaterina; Nagnibeda, Ekaterina
2009-01-01
This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.
Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels
International Nuclear Information System (INIS)
Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.
1988-01-01
Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4
Rathakrishnan, Ethirajan
2014-01-01
This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine
Babu, V
2014-01-01
Fundamentals of Gas Dynamics, Second Edition isa comprehensively updated new edition and now includes a chapter on the gas dynamics of steam. It covers the fundamental concepts and governing equations of different flows, and includes end of chapter exercises based on the practical applications. A number of useful tables on the thermodynamic properties of steam are also included.Fundamentals of Gas Dynamics, Second Edition begins with an introduction to compressible and incompressible flows before covering the fundamentals of one dimensional flows and normal shock wav
How did the US economy react to shale gas production revolution? An advanced time series approach
International Nuclear Information System (INIS)
Bilgili, Faik; Koçak, Emrah; Bulut, Ümit; Sualp, M. Nedim
2016-01-01
This paper aims at examining the impacts of shale gas revolution on industrial production in the US. To this end, this paper, first, throughout literature review, exposes the features of shale gas revolution in the US in terms of energy technology and energy markets. However, the potential influences of shale gas extraction on the US economy are not explicit in the existing literature. Thus, considering mainly the output of shale gas revolution on the US economy in this research, later, the paper conducts econometric models to reveal if there exists significant effect(s) of shale gas revolution on the US economy. Therefore, the paper employs unit root tests and cointegration tests by following relevant US monthly data from January 2008 to December 2013. Then, this paper observes long run impact of shale gas production on industrial production in the US through dynamic ordinary least squares estimation with dummy structural breaks and conducts Granger causality test based on vector error correction model. The dynamic ordinary least squares estimator explores that shale gas production has a positive effect on industrial production. Besides, the Granger causality test presents that shale gas production Granger causes industrial production in the long run. Based on the findings of the long run estimations, the paper yields that industrial production is positively related to shale gas production. Eventually, upon its findings, this paper asserts that (i) the shale gas revolution in the US has considerable positive effects on the US economy within the scope of the validity of the growth hypothesis, (ii) new technologies might be developed to mitigate the possible negative environmental effects of shale gas production, (iii) the countries having shale gas reserves, as in US, may follow energy policies to utilize their shale reserves more in the future to meet their energy demand and to increase their economic welfare. - Highlights: • Explores the US shale gas revolution
Modeling study of rarefied gas effects on hypersonic reacting stagnation flows
Wang, Zhihui; Bao, Lin
2014-12-01
Recent development of the near space hypersonic sharp leading vehicles has raised a necessity to fast and accurately predict the aeroheating in hypersonic rarefied flows, which challenges our understanding of the aerothermodynamics and aerothermochemistry. The present flow and heat transfer problem involves complex rarefied gas effects and nonequilibrium real gas effects which are beyond the scope of the traditional prediction theory based on the continuum hypothesis and equilibrium assumption. As a typical example, it has been found that the classical Fay-Riddell equation fails to predict the stagnation point heat flux, when the flow is either rarefied or chemical nonequilibrium. In order to design a more general theory covering the rarefied reacting flow cases, an intuitive model is proposed in this paper to describe the nonequilibrium dissociation-recombination flow along the stagnation streamline towards a slightly blunted nose in hypersonic rarefied flows. Some characteristic flow parameters are introduced, and based on these parameters, an explicitly analytical bridging function is established to correct the traditional theory to accurately predict the actual aeroheating performance. It is shown that for a small size nose in medium density flows, the flow at the outer edge of the stagnation point boundary layer could be highly nonequilibrium, and the aeroheating performance is distinguished from that of the big blunt body reentry flows at high altitudes. As a result, when the rarefied gas effects and the nonequilibrium real gas effects are both significant, the classical similarity law could be questionable, and it is inadequate to directly analogize results from the classical blunt body reentry problems to the present new generation sharp-leading vehicles. In addition, the direct simulation Monte Carlo method is also employed to validate the conclusion.
International Nuclear Information System (INIS)
Born, G.
1975-01-01
The gas dynamic laser device is provided with an expansion chamber arranged between a heating chamber for the CO-gas and the resonance chamber. The expansion chamber is initially evacuated for producing a rarefaction wave. Between the heating chamber and the expansion chamber there are arranged rapid release means such as a valve or a diaphragm. Pressure recovering means are connected to the other side of the resonance chamber
Stochl, R. J.
1979-01-01
The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.
Liepmann, H W
2001-01-01
The increasing importance of concepts from compressible fluid flow theory for aeronautical applications makes the republication of this first-rate text particularly timely. Intended mainly for aeronautics students, the text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids. Covering the general principles of gas dynamics to provide a working understanding of the essentials of gas flow, the contents of this book form the foundation for a study of the specialized literature and should give the necessary background
Energy Technology Data Exchange (ETDEWEB)
McDaniel, Dwayne [Florida International Univ., Miami, FL (United States); Dulikravich, George [Florida International Univ., Miami, FL (United States); Cizmas, Paul [Florida International Univ., Miami, FL (United States)
2017-11-27
This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providing accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.
Yetayeh, Asabeneh
2017-01-01
This paper studies Meteor which is a JavaScript full-stack framework to develop interactive single page web applications. Meteor allows building web applications entirely in JavaScript. Meteor uses Blaze, React or AngularJS as a view layer and Node.js and MongoDB as a back-end. The main purpose of this study is to compare the performance of Blaze and React. A multi-user Blaze and React web applications with similar HTML and CSS were developed. Both applications were deployed on Heroku’s w...
Elizarova, Tatiana G
2009-01-01
This book presents two interconnected mathematical models generalizing the Navier-Stokes system. The models, called the quasi-gas-dynamic and quasi-hydrodynamic equations, are then used as the basis of numerical methods solving gas- and fluid-dynamic problems.
International Nuclear Information System (INIS)
Denny, Mark
2013-01-01
The mechanics and thermodynamics of one- and two-stage gas guns are developed. Very high projectile muzzle speed can be obtained by the two-stage version. The physics of simple gas guns, such as air rifles, is accessible to undergraduates and the same level of presentation is used here to understand more complex designs. Numerical solutions to the equations of motion are shown, along with insightful analytic approximations. (paper)
Chen, Rui; Nuhfer, Noel T; Moussa, Laura; Morris, Hannah R; Whitmore, Paul M
2008-11-12
A fast, simple procedure is described for obtaining an assembly of silver sulfide nanoparticles (Ag(2)S NPs) on a glass substrate through reaction of a template of an assembled layer of silver nanoparticles (Ag NPs) with hydrogen sulfide (H(2)S) gas. The Ag NP template was prepared by assembling a monolayer of spherical Ag NPs (mean diameter of 7.4 nm) on a polyethylenimine-treated glass substrate. Exposure to pure H(2)S for 10 min converted the Ag NPs of the template to Ag(2)S NPs. The resulting Ag(2)S NP assembly, which retains the template nanostructure and particle distribution, was characterized by optical absorption spectroscopy, atomic force microscopy, transmission electron microscopy (TEM), scanning high resolution TEM, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The Ag(2)S NPs have a crystal structure of monoclinic acanthite, and while they retained the spherical shape of the original Ag NPs, their mean particle size increased to 8.4 nm due to changes to the crystal structure when the Ag NPs are converted into Ag(2)S NPs. The measured optical absorption edge of the Ag(2)S NP assembly indicated an indirect interband transition with a band gap energy of 1.71 eV. The Ag(2)S NP assembly absorbed light with wavelengths below 725 nm, and the absorbance increased monotonically toward the UV region.
Elk, E.P. van; Borman, P.C.; Kuipers, J.A.M.; Versteeg, G.F.
1999-01-01
The dynamic behaviour and stability of single-phase reacting systems has been investigated thoroughly in the past and design rules for stable operation are available from literature. The dynamic behaviour of gas-liquid processes is considerably more complex and has received relatively little
International Nuclear Information System (INIS)
Hill, R.J.; Jewell, N.T.
1975-01-01
In a high powered laser system it is proposed that combustion gases be bled off from a gas turbine engine and their composition adjusted by burning extra fuel in the bleed gases or adding extra substances. Suitable aerodynamic expansion produces a population inversion resulting in laser action in the CO 2 species. Alternatively, bleed gases may be taken from the high pressure compressor of the gas turbine engine and an appropriate fuel burned therein. If required, other adjustments may also be made to the composition and the resulting gaseous mixture subjected to aerodynamic expansion to induce laser action as before. (auth)
International Nuclear Information System (INIS)
Damm, F.C.
1975-01-01
The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)
National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used by NASA to optimize the design of propulsion systems. Current methods for CFD modeling rely on...
Rarefied gas dynamics - Vol. 2
International Nuclear Information System (INIS)
Belotserkovskii, O.M.; Kogan, M.N.; Kutateladze, S.S.; Rebrov, A.K.
1985-01-01
Volume 2 presents information on the following topics: analytical formulae for cross sections and rate constants of elementary processes in gases; effects of initial molecular states in high-energy scattering of molecular beams; cesium vapor jet target produced with a supersonic nozzle; electron beam diagnostics of high temperature rarefied gas flows; free jet as an object of nonequilibrium processes investigation; free jet expansion with a strong condensation effect; rotational relaxation in high temperature jets of nitrogen; laser induced fluorescence study of free jet expansions; homogeneous condensation of nitrogen in transonic flow; the microscopic theory of clustering and nucleation; diagnostics of clusters in molecular beams; experimental studies of water-aerosol explosive vaporization; laser probing of cluster formations and dissociation in molecular beams; free molecule drag on helium clusters; kinetic model of gas suspension; molecular diffusion through a fine-pored filter versus resonate IR-radiation intensity; and rarefied gas dynamics as related to controlled thermonuclear fusion
Anderson, E. C.; Lewis, C. H.
1971-01-01
Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.
Modeling Gas Dynamics in California Sea Lions
2015-09-30
W. and Fahlman, A. (2009). Could beaked whales get the bends?. Effect of diving behaviour and physiology on modelled gas exchange for three species...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Modeling Gas Dynamics in California Sea Lions Andreas...to update a current gas dynamics model with recently acquired data for respiratory compliance (P-V), and body compartment size estimates in
Gas-controlled dynamic vacuum insulation with gas gate
Benson, D.K.; Potter, T.F.
1994-06-07
Disclosed is a dynamic vacuum insulation comprising sidewalls enclosing an evacuated chamber and gas control means for releasing hydrogen gas into a chamber to increase gas molecule conduction of heat across the chamber and retrieving hydrogen gas from the chamber. The gas control means includes a metal hydride that absorbs and retains hydrogen gas at cooler temperatures and releases hydrogen gas at hotter temperatures; a hydride heating means for selectively heating the metal hydride to temperatures high enough to release hydrogen gas from the metal hydride; and gate means positioned between the metal hydride and the chamber for selectively allowing hydrogen to flow or not to flow between said metal hydride and said chamber. 25 figs.
Modern gas centrifuge and rarefied-gas dynamics
International Nuclear Information System (INIS)
Lowry, R.A.; Halle, E.V.; Wood, H.G. III.
1981-01-01
Today, the modern gas centrifuge appears to be the preferred method for the enrichment of the isotopes of uranium on a commercial scale. That this is the case is the result of diligent development programs pursued in this country as well as in the UK, Germany, and the Netherlands over the several decades since the end of WW II. The theoretical modelling of gas centrifuge performance has made notable advances. However, the theoretical work has been based primarily on continuum fluid dynamics considerations. Centrifuge problems involving rarefied gas dynamics considerations are discussed in this paper
Gas dynamics of semidetached binaries
International Nuclear Information System (INIS)
Lubow, S.H.; Shu, F.H.
1975-01-01
We analyze the gas dynamics of semidetached binary systems within the context of the Rohce model. With the adoption of the assumptions that the contact component rotates synchronously and that the flow occurs isothermally with the thermal speed being a small fraction epsilon of the relative orbital speed, Ωd, of the two stars, we show that the steady flow can be formulated in terms of a problem with multiple length scales. Using this concept, we demonstrate the following by semianalytical methods. (1) The escape of material from the surface of the contact component is accomplished by a highly nonisotropic stellar wind which reaches sonic velocities in a neighborhood of the inner Lagrangian point, L1, of size epsilon in comparison with the orbit separation d. (2) This wind throttles into a narrow stram of material which makes a prescribed angle with respect to the line joining the stellar centers ranging from 19 0 5 to 28 0 4 for the full range of possible stellar mass ratios. (3) The width of the stream scales epsilond while its density scales with epsilon -2 M-dot/Ωd 3 , where M-dot is the mass transfer rate. (4) The stream width remains nearly constant over the part of the stream which is nearly straight, and narrows somewhat as the stream curves toward the detached component. (5) If the detached component is smaller than a certain specified size, the stream results in the formation of a disk of material of prescribed size orbiting the detached component in a direct sense. A subsidi []ry issue examined briefly in this paper is the flow mechanism responsible for moving material to the equator of the contact component, and from there to the L1 region where it is lost by the directed stellar wind. Comparisons of our work are made with previous theoretical studies, and some applications are indicated
Free Piston Problem for Isentropic Gas Dynamics
Takeno, Shigeharu
1995-01-01
We consider the existence of the generalized solution for a free piston problem for isentropic gas dynamics. By the compensated compactness theory, we can show that an approximate solution converges to a generalized solution.
Modern problems of relaxation gas dynamics
International Nuclear Information System (INIS)
Losev, S.A.; Osipov, A.I.
1985-01-01
Some of the dynamical characteristics of relaxation processes are studied. Unfortunately, many dynamical characteristics of relaxation processes, necessary for the solution of important scientific and applied problems, are not known. These problems require further development of experimental methods of the study of nonequilibrium gas. It is known, that gas systems are shifted from the equilibrium by different methods: by acoustic and shock wav es, by means of gas expansion in nozzles and jets, by powerful radiations (laser, first of all), by electric discharges, in burning and combustion devices, etc. Non-equilibrium gas is produced in installations of continuum, impulse and periodic regime. Molecular beams, shock tubes (especially with nozzles), flow and jet installations, aerodynamical tubes, plasmatrons, vessels with a gas, influenced by the strong radiation, burners and combustion devices, where the study of non-euilibrium gas is helpful to solve the problems of the determination of kinetic equations and constants of physico-chemical kinetics
International Nuclear Information System (INIS)
Kustova, Elena V.; Kremer, Gilberto M.
2014-01-01
Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure
Energy Technology Data Exchange (ETDEWEB)
Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)
2014-12-05
Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.
Computational modeling of intraocular gas dynamics
International Nuclear Information System (INIS)
Noohi, P; Abdekhodaie, M J; Cheng, Y L
2015-01-01
The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF_6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF_6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF_6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF_6 is 1.4 times more than that of using diluted SF_6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency. (paper)
Canadian natural gas market: dynamics and pricing
International Nuclear Information System (INIS)
2000-01-01
This publication by the National Energy Board is part of a continuing program of assessing applications for long-term natural gas export licences. The market-based procedure used by the Board is based on the premise that the marketplace will generally operate in a way that will ensure that Canadian requirements for natural gas will be met at fair market prices. The market--based procedure consists of a public hearing and a monitoring component. The monitoring component involves the on-going assessment of Canadian energy markets to provide analyses of major energy commodities on either an individual or integrated commodity basis. This report is the result of the most recent assessment . It identifies factors that affect natural gas prices and describes the functioning of regional markets in Canada. It provides an overview of the energy demand, including recent trends, reviews the North American gas supply and markets, the natural gas pricing dynamics in Canada, and a regional analysis of markets, prices and dynamics in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and the Atlantic provinces. In general, demand growth outstripped growth in supply, but natural gas producers throughout North America have been responding to the current high price environment with aggressive drilling programs. The Board anticipates that in time, there will be a supply and demand response and accompanying relief in natural gas prices. A review of the annual weighted average border price paid for Alberta gas indicates that domestic gas users paid less than export customers until 1998, at which point the two prices converged, suggesting that Canadians have had access to natural gas at prices no less favourable than export customers. The influence of electronic trading systems such as NYMEX and AECO-C/NIT have had significant impact on the pricing of natural gas. These systems, by providing timely information to market participants. enables them to manage price
Closed cycle gas dynamic laser
International Nuclear Information System (INIS)
Pinsley, E.A.
1975-01-01
The device includes a closed cycle gasdynamic laser wherein the lasing fluid is recirculated in a closed loop. The closed loop includes a nozzle array, a lasing cavity and a diffuser. The exit of the diffuser is connected to the inlet to the nozzle array with a fuel heat exchanger located in the lasing flow and a pumping means located between the heat exchanger and the nozzle array. To provide for cooling of the pumping means and to improve diffuser performance, gas bled from the diffuser is cooled by two heat exchangers and pumped into cooling passages in the pumping means. The heat exchangers for cooling the flow to the pumping means are located in series and carry fuel from a supply to an injector in said combustor and the heat exchanger in the lasing flow cools the fluid and carries the fuel from a supply to an injector in said combustor. (U.S.)
Gas dynamics in strong centrifugal fields
Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.
2017-01-01
Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of $10^6$g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wa...
Gas dynamics in strong centrifugal fields
Energy Technology Data Exchange (ETDEWEB)
Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)
2015-03-10
Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.
Dynamics of the world gas trade
International Nuclear Information System (INIS)
Chabrelie, M.F.
2004-01-01
The increasing distances between gas producing and gas consuming areas have led to foresee a considerable development of the international exchanges with a rate of about 3.5% per year up to 2020. The fluxes should represent about 32% of the commercialized production. The maritime transport by methane tanker ship will be certainly the winner of this dynamics, allowing, thanks to its flexibility, to adjust the offer to the demand of a more and more global market. This is today the bet of an industry which, motivated by technological improvements and markets potentialities, invests massively in new infrastructures. (J.S.)
Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods
Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.
2017-08-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
Dynamics of gas in a rotating galaxy
International Nuclear Information System (INIS)
Mulder, W.A.
1985-01-01
This thesis contains a series of papers that deal with some aspects of the gas-dynamics in a disk galaxy. The dissertation is divided in three parts. In the first part, the three dimensional response to the rotating barred potential is studied. Here, the strongest simplication is made: the pressure is neglected. This turns the problem from a global into a local one and leaves the equations of motion for a star or test particle. What if the pressure term is included. It turned out that no efficient numerical methods for computing steady gas flows with strong shocks were available. The key assumption of the second part of this thesis is the existence of a stationary solution. In that case, significant short-cuts over time-dependent integration schemes must be attainable. The various steps that lead to an efficient numerical method are described. In the third part of this dissertation, a two-dimensional code was developed. Technical aspects of the computer program are described as well as the properties of the computed quasi-steady solution. An initial global gas dynamical model for our Galaxy is constructed from one of the solutions. Here the main problem is the determination of the position of the sun in the model. (Auth.)
Ablation plume dynamics in a background gas
DEFF Research Database (Denmark)
Amoruso, Salvatore; Schou, Jørgen; Lunney, James G.
2010-01-01
The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during the expa......The expansion of a plume in a background gas of pressure comparable to that used in pulsed laser deposition (PLD) has been analyzed in terms of the model of Predtechensky and Mayorov (PM). This approach gives a relatively clear and simple description of the essential hydrodynamics during...... the expansion. The model also leads to an insightful treatment of the stopping behavior in dimensionless units for plumes and background gases of different atomic/molecular masses. The energetics of the plume dynamics can also be treated with this model. Experimental time-of-flight data of silver ions in a neon...... background gas show a fair agreement with predictions from the PM-model. Finally we discuss the validity of the model, if the work done by the pressure of the background gas is neglected....
The dynamics of the world gas trade
International Nuclear Information System (INIS)
Chabrelie, M.F.
2003-01-01
The steadily growing distances between the world's gas rich regions and consumer zones foreshadow a powerful expansion of the international trade, at an annual rate of around 3.5% by 2020. Flows could then account for about 32% of marketed production. Trade by LNG tanker is very likely to emerge as the winner of this dynamic, with the flexibility it procures exploited to adjust supply to the demand of a more global market. This is today's gamble of an industry which, driven by technological improvements and market potential, is investing massively in new infrastructures
Effects of Gas Dynamics on Rapidly Collapsing Bubbles
Bauman, Spenser; Fomitchev-Zamilov, Max
2013-01-01
The dynamics of rapidly collapsing bubbles are of great interest due to the high degree of energy focusing that occurs withing the bubble. Molecular dynamics provides a way to model the interior of the bubble and couple the gas dynamics with the equations governing the bubble wall. While much theoretical work has been done to understand how a bubble will respond to an external force, the internal dynamics of the gas system are usually simplified greatly in such treatments. This paper shows ho...
Dynamics of polynomial Chaplygin gas warm inflation
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Chaudhary, Shahid [Sharif College of Engineering and Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile)
2017-11-15
In the present work, we study the consequences of a recently proposed polynomial inflationary potential in the context of the generalized, modified, and generalized cosmic Chaplygin gas models. In addition, we consider dissipative effects by coupling the inflation field to radiation, i.e., the inflationary dynamics is studied in the warm inflation scenario. We take into account a general parametrization of the dissipative coefficient Γ for describing the decay of the inflaton field into radiation. By studying the background and perturbative dynamics in the weak and strong dissipative regimes of warm inflation separately for the positive and negative quadratic and quartic potentials, we obtain expressions for the most relevant inflationary observables as the scalar power spectrum, the scalar spectral, and the tensor-to-scalar ratio. We construct the trajectories in the n{sub s}-r plane for several expressions of the dissipative coefficient and compare with the two-dimensional marginalized contours for (n{sub s}, r) from the latest Planck data. We find that our results are in agreement with WMAP9 and Planck 2015 data. (orig.)
Characterization of forced response of density stratified reacting wake
Pawar, Samadhan A.; Sujith, Raman I.; Emerson, Benjamin; Lieuwen, Tim
2018-02-01
The hydrodynamic stability of a reacting wake depends primarily on the density ratio [i.e., ratio of unburnt gas density (ρu) to burnt gas density (ρb)] of the flow across the wake. The variation of the density ratio from high to low value, keeping ρ u / ρ b > 1 , transitions dynamical characteristics of the reacting wake from a linearly globally stable (or convectively unstable) to a globally unstable mode. In this paper, we propose a framework to analyze the effect of harmonic forcing on the deterministic and synchronization characteristics of reacting wakes. Using the recurrence quantification analysis of the forced wake response, we show that the deterministic behaviour of the reacting wake increases as the amplitude of forcing is increased. Furthermore, for different density ratios, we found that the synchronization of the top and bottom branches of the wake with the forcing signal is dependent on whether the mean frequency of the natural oscillations of the wake (fn) is lesser or greater than the frequency of external forcing (ff). We notice that the response of both branches (top and bottom) of the reacting wake to the external forcing is asymmetric and symmetric for the low and high density ratios, respectively. Furthermore, we characterize the phase-locking behaviour between the top and bottom branches of the wake for different values of density ratios. We observe that an increase in the density ratio results in a gradual decrease in the relative phase angle between the top and bottom branches of the wake, which leads to a change in the vortex shedding pattern from a sinuous (anti-phase) to a varicose (in-phase) mode of the oscillations.
Rarefield gas dynamics fundamentals, simulations and micro flows
Shen, Ching
2006-01-01
This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphasis being on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS.
Diatomic infrared gas-dynamic laser
International Nuclear Information System (INIS)
Mckenzie, R.L.
1971-01-01
A laser is provided which utilizes the infrared vibration rotation transitions of a diatomic gas such as carbon monoxide. The laser action is produced by an active diatomic gas such as carbon monoxide mixed with a vibrationally resonant pumping gas such as nitrogen. In addition, a noble gas such as argon may be employed as a third gas in the mixture. The gas mixture contains from 1 to 80 vol percent of the active gas based on the pumping gas, and the third gas, if used, can constitute up to 90 percent of the total gas volume. A number of significantly different wavelengths can be produced by the laser. A single laser may contain several optical resonators at different locations, so that the desired wave length can be selected at will
Key factors of combustion from kinetics to gas dynamics
Rubtsov, Nikolai M
2017-01-01
This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.
Gas dynamic laser having shutter doors
International Nuclear Information System (INIS)
Olinger, J.B. Jr.; Wahl, R.L.
1975-01-01
A gas dynamic laser is shown wherein gases containing constituents necessary to obtain a lasing action are passed through a nozzle array and directed into a lasing cavity and through a diffuser to an exit. An opening is located on each side of said lasing cavity with a shutter box outside of said cavity having a shutter door for opening or closing said opening. A mirror box is located behind each shutter box and contains a mirror. These mirrors are aligned with the openings in the lasing cavity with each door positioned between an opening and a mirror. Another outlet opening is positioned downstream of the first opening which provides an outlet opening for a laser beam. A shutter box is located around this opening and also houses a shutter door for opening and closing said opening. The mirror box which extends behind this shutter box includes opening means for permitting the output beam to pass through an aerodynamic window to atmosphere. Actuating means are provided for rapidly opening and closing said shutter doors. Bearing means including recirculating balls are located on the top and bottom of each shutter door to ride in tracks at an angle to the sealing surface on the laser device. Vacuum means are provided to reduce the pressure in the shutter box and mirror box independently of the pressure in the lasing cavity
DEFF Research Database (Denmark)
Bloch, Paul; Blystad, Astrid; Byskov, Jens
decisions; and the provision of leadership and the enforcement of conditions. REACT - "REsponse to ACcountable priority setting for Trust in health systems" is an EU-funded five-year intervention study, which started in 2006 testing the application and effects of the AFR approach in one district each...... selected disease and programme interventions and services, within general care and on health systems management. Efforts to improve health sector performance have not yet been satisfactory, and adequate and sustainable improvements in health outcomes have not been shown. Priority setting in health systems...... improvements to health systems performance discussed....
Systems of quasilinear equations and their applications to gas dynamics
Roždestvenskiĭ, B L; Schulenberger, J R
1983-01-01
This book is essentially a new edition, revised and augmented by results of the last decade, of the work of the same title published in 1968 by "Nauka." It is devoted to mathematical questions of gas dynamics. Topics covered include Foundations of the Theory of Systems of Quasilinear Equations of Hyperbolic Type in Two Independent Variables; Classical and Generalized Solutions of One-Dimensional Gas Dynamics; Difference Methods for Solving the Equations of Gas Dynamics; and Generalized Solutions of Systems of Quasilinear Equations of Hyperbolic Type.
The computer simulation of 3d gas dynamics in a gas centrifuge
Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.
2016-09-01
We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.
The computer simulation of 3d gas dynamics in a gas centrifuge
International Nuclear Information System (INIS)
Borman, V D; Bogovalov, S V; Borisevich, V D; Tronin, I V; Tronin, V N
2016-01-01
We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there. (paper)
Gas-liquid reactor / separator: dynamics and operability characteristics
Ranade, V.; Kuipers, J.A.M.; Versteeg, Geert
1999-01-01
A comprehensive mathematical model is developed to simulate gas¿liquid reactor in which both, reactants as well as products enter or leave the reactor in gas phase while the reactions take place in liquid phase. A case of first-order reaction (isothermal) was investigated in detail using the dynamic
Gas Price Formation, Structure and Dynamics
Energy Technology Data Exchange (ETDEWEB)
Davoust, R.
2008-07-01
Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a
Gas Price Formation, Structure and Dynamics
International Nuclear Information System (INIS)
Davoust, R.
2008-01-01
Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a
Elk, van E.P.; Borman, P.C.; Kuipers, J.A.M.; Versteeg, G.F.
1999-01-01
The dynamic behaviour and stability of single-phase reacting systems has been investigated thoroughly in the past and design rules for stable operation are available from literature. The dynamic behaviour of gas–liquid processes is considerably more complex and has received relatively little
Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics
Gaudillière, A.; Hollander, den W.Th.F.; Nardi, F.R.; Olivieri, E.; Scoppola, E.
2009-01-01
In this paper we consider a two-dimensional lattice gas under Kawasaki dynamics, i.e., particles hop around randomly subject to hard-core repulsion and nearest-neighbor attraction. We show that, at fixed temperature and in the limit as the particle density tends to zero, such a gas evolves in a way
Cellular automatons applied to gas dynamic problems
Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.
1987-01-01
This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.
Spin dynamics in a two-dimensional quantum gas
DEFF Research Database (Denmark)
Pedersen, Poul Lindholm; Gajdacz, Miroslav; Deuretzbacher, Frank
2014-01-01
We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions with superimp......We have investigated spin dynamics in a two-dimensional quantum gas. Through spin-changing collisions, two clouds with opposite spin orientations are spontaneously created in a Bose-Einstein condensate. After ballistic expansion, both clouds acquire ring-shaped density distributions...
Gas dynamics models for an oscillating gaseous core fission reactor
Energy Technology Data Exchange (ETDEWEB)
Kuijper, J.C.; Dam, H. van; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))
1991-01-01
Two one-dimensional models are developed for the investigation of the gas dynamical behaviour of the fuel gas in a cylindrical gaseous core fission reactor. By numerical and analytical calculations, it is shown that, for the case where a direct energy extraction mechanism (such as magneto-hydrodynamics (MHD)) is not present, increasing density oscillations occur in the gas. Also an estimate is made of the attainable direct energy conversion efficiency, for the case where a direct energy extraction mechanism is present. (author).
Dynamic simulation for hot gas cleanup
Energy Technology Data Exchange (ETDEWEB)
Zeppi, C.; Berg, H.; Vitolo, S.; Tartarelli, R.; Tonini, D.; Zaccagnini, M. (ENEL CRTN, Pisa (Italy))
1993-01-01
Removal of sulfur compounds from hot coal gas is a necessary step during power generation operations. Metal oxides such as zinc ferrite, zinc titanate and tin oxide have been identified as promising adsorbent materials. A mathematical model capable of describing the sulfidation phase in fixed-, moving- and fluidized-bed reactors has been developed. Equations selected are sufficiently simple and numerical solutions can be obtained in a reasonable time using available computer equipment. At the same time the equations produce satisfactory agreement with experimental results. This paper presents kinetic models of spherical sorbent-particles applicable to all reactor configurations and a mathematical model limited to the moving-bed reactor. 10 refs., 5 figs.
Instrumentation of dynamic gas pulse loading system
Energy Technology Data Exchange (ETDEWEB)
Mohaupt, H.
1992-04-14
The overall goal of this work is to further develop and field test a system of stimulating oil and gas wells, which increases the effective radius of the well bore so that more oil can flow into it, by recording pressure during the gas generation phase in real time so that fractures can be induced more predictably in the producing formation. Task 1: Complete the laboratory studies currently underway with the prototype model of the instrumentation currently being studied. Task 2: Perform field tests of the model in the Taft/Bakersfield area, utilizing operations closest to the engineers working on the project, and optimize the unit for various conditions encountered there. Task 3: Perform field test of the model in DGPL jobs which are scheduled in the mid-continent area, and optimize the unit for downhole conditions encountered there. Task 4: Analyze and summarize the results achieved during the complete test series, documenting the steps for usage of downhole instrumentation in the field, and compile data specifying use of the technology by others. Task 5: Prepare final report for DOE, and include also a report on the field tests completed. Describe and estimate the probability of the technology being commercialized and in what time span. The project has made substantial technical progress, though we are running about a month behind schedule. Expenditures are in line with the schedule. Increased widespread interest in the use of DGPL stimulation has kept us very busy. The computer modeling and test instrumentation developed under this program is already being applied to commercial operations.
Gas Bubble Dynamics under Mechanical Vibrations
Mohagheghian, Shahrouz; Elbing, Brian
2017-11-01
The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.
Greenhouse gas flux dynamics in wetlands
Energy Technology Data Exchange (ETDEWEB)
Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology
1996-12-31
Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites
Greenhouse gas flux dynamics in wetlands
Energy Technology Data Exchange (ETDEWEB)
Silvola, J; Alm, J; Saarnio, S [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology
1997-12-31
Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites
Cloud-particle galactic gas dynamics and star formation
International Nuclear Information System (INIS)
Roberts, W.W. Jr.
1983-01-01
Galactic gas dynamics, spiral structure, and star formation are discussed in the context of N-body computational studies based on a cloud-particle model of the interstellar medium. On the small scale, the interstellar medium appears to be cloud-dominated and supernova-perturbed. The cloud-particle model simulates cloud-cloud collisions, the formation of stellar associations, and supernova explosions as dominant local processes. On the large scale in response to a spiral galactic gravitational field, global density waves and galactic shocks develop with large-scale characteristics similar to those found in continuum gas dynamical studies. Both the system of gas clouds and the system of young stellar associations forming from the clouds share in the global spiral structure. However, with the attributes of neither assuming a continuum of gas (as in continuum gas dynamical studies) nor requiring a prescribed equation of state such as the isothermal condition so often employed, the cloud-particle picture retains much of the detail lost in earlier work: namely, the small-scale features and structures so important in understanding the local, turbulent state of the interstellar medium as well as the degree of raggedness often observed superposed on global spiral structure. (Auth.)
Dynamics and control of a gas-fired furnace
Roffel, B.; Rijnsdorp, J.E.
1974-01-01
A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good
Transient dynamic crack propagation in gas pressurised pipelines
International Nuclear Information System (INIS)
Caldis, E.S.; Owen, D.R.J.; Taylor, C.
1983-01-01
The prime limitation of dynamic fracture analysis is the lack of a fundamental crack advance theory which can be easily and economically adopted for use with numerical models. The necessity for the inclusion of inertia effects in the solution of certain problem classes is now evident, but most transient dynamic fracture models considered to date include (of necessity) some intuitive/empirical parameters with a frequent need of a priori knowledge of experimental solutions. The particular problem considered in this study is Mode I transient dynamic crack propagation in gas pressurised pipelines. The steel pipe is modelled using thin shell Semiloof finite elements and its transient response is coupled to a one-dimensional finite element model of the compressible gas equations, incorporating a lateral gas flow parameter. The pipe is governed by the usual dynamic equilibrium equation which is discretised in the time domain by a central difference explicit algorithm. The compressible gas response is modelled by the Continuity and Momentum equations and time discretisation is performed by means of a fully backward difference scheme in time. (orig./GL)
Dynamics of a massive piston in an ideal gas
International Nuclear Information System (INIS)
Chernov, N I; Lebowitz, J L; Sinai, Yakov G
2002-01-01
This survey is a study of a dynamical system consisting of a massive piston in a cubic container of large size L filled with an ideal gas. The piston has mass M∼L 2 and undergoes elastic collisions with N∼L 3 non-interacting gas particles of mass m=1. It is found that under suitable initial conditions there is a scaling regime with time and space scaled by L in which the motion of the piston and the one-particle distribution of the gas satisfy autonomous coupled equations (hydrodynamic equations) such that in the limit L→∞ the mechanical trajectory of the piston converges in probability to the solution of the hydrodynamic equations for a certain period of time. There is also a heuristic discussion of the dynamics of the system on longer intervals of time
Static and dynamic modelling of gas turbines in advanced cycles
Energy Technology Data Exchange (ETDEWEB)
Gustafsson, Jan-Olof
1998-12-01
Gas turbines have been in operation for at least 50 years. The engine is used for propulsion of aircraft and high speed ships. It is used for power production in remote locations and for peak load and emergency situations. Gas turbines have been used in combined cycles for 20 to 30 years. Highly efficient power plants based on gas turbines are a competitive option for the power industry today. The thermal efficiency of the simple cycle gas turbine has increased due to higher turbine inlet temperatures and improved compressor and expander designs. Equally important are the improved cycles in which the gas turbine operates. One example is the combined cycle that uses steam for turbine cooling. Steam is extracted from the bottoming cycle, then used as airfoil coolant in a closed loop and returned to the bottoming cycle. The Evaporative Gas Turbine (EvGT), also known as the Humid Air Turbine (HAT), is another advanced cycle. A mixture of air and water vapour is used as working media. Air from the compressor outlet is humidified and then preheated in a recuperator prior to combustion. The static and dynamic performance is changed when the gas turbine is introduced in an evaporative cycle. The cycle is gaining in popularity, but so far it has not been demonstrated. A Swedish joint program to develop the cycle has been in operation since 1993. As part of the program, a small pilot plant is being erected at the Lund Institute of Technology (LTH). The plant is based on a 600 kW gas turbine, and demonstration of the EvGT cycle started autumn 1998 and will continue, in the present phase, for one year. This thesis presents static and dynamic models for traditional gas turbine components, such as, the compressor, combustor, expander and recuperator. A static model for the humidifier is presented, based on common knowledge for atmospheric humidification. All models were developed for the pilot plant at LTH with the objective to support evaluation of the process and individual
Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines
Kolmakova, D.; Popov, G.
2018-01-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
Dynamic safety assessment of natural gas stations using Bayesian network
International Nuclear Information System (INIS)
Zarei, Esmaeil; Azadeh, Ali; Khakzad, Nima; Aliabadi, Mostafa Mirzaei; Mohammadfam, Iraj
2017-01-01
Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.
Dynamic safety assessment of natural gas stations using Bayesian network
Energy Technology Data Exchange (ETDEWEB)
Zarei, Esmaeil, E-mail: smlzarei65@gmail.com [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Azadeh, Ali [School of Industrial and Systems Engineering, Center of Excellence for Intelligent-Based Experimental Mechanic, College of Engineering, University of Tehran (Iran, Islamic Republic of); Khakzad, Nima [Safety and Security Science Section, Delft University of Technology, Delft (Netherlands); Aliabadi, Mostafa Mirzaei [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Mohammadfam, Iraj, E-mail: mohammadfam@umsha.ac.ir [Center of Excellence for Occupational Health Engineering, Research Center for Health Sciences, Faculty of Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of)
2017-01-05
Graphical abstract: Dynamic cause-consequence analysis of the regulator system failure using BN. - Highlights: • A dynamic and comprehensive QRA (DCQRA) framework is proposed for safety assessment of CGSs. • Bow-tie diagram and Bayesian network are employed for accident scenario modeling. • Critical basic events and minimal cut sets are identified using probability updating. - Abstract: Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been developed for risk analysis of gas transportation systems, a comprehensive methodology for risk analysis is still lacking, especially in natural gas stations. The present work is aimed at developing a dynamic and comprehensive quantitative risk analysis (DCQRA) approach for accident scenario and risk modeling of natural gas stations. In this approach, a FMEA is used for hazard analysis while a Bow-tie diagram and Bayesian network are employed to model the worst-case accident scenario and to assess the risks. The results have indicated that the failure of the regulator system was the worst-case accident scenario with the human error as the most contributing factor. Thus, in risk management plan of natural gas stations, priority should be given to the most probable root events and main contribution factors, which have identified in the present study, in order to reduce the occurrence probability of the accident scenarios and thus alleviate the risks.
Price dynamics in the market for Liquid Petroleum Gas transport
International Nuclear Information System (INIS)
Adland, Roar; Jia Haiying; Lu Jing
2008-01-01
The purpose of this paper is to investigate the dynamics of the spot freight rate in the Liquid Petroleum Gas (LPG) shipping market. The spot freight rate process is nonparametrically specified so that the model allows for maximal flexibility in fitting the data. The model is estimated using data for the Very Large Gas Carrier (VLGC) sector and the estimation results are compared to those of crude oil tankers available in the literature. The empirical results suggest that the LPG spot freight rate can be appropriately described by a simple linear stochastic model and does not exhibit the non-linearity found in other bulk shipping sectors
Vacuum sealing with a spiral grooved gas dynamic seal
International Nuclear Information System (INIS)
Sawada, Tadashi
1979-01-01
Gas dynamic seals with rectangular spiral grooves are studied theoretically taking the effects of sidewalls of the grooves and the effects of gas compressibility into account, and slip boundary conditions are employed. The results are compared with the existing experimental data and the validity of the theory is confirmed over a wide pressure range except for the extremely low pressures. Suggestions are made regarding the choice of the geometrical dimensions, i.e., aspect ratio, helix angle, clearance parameter and groove width ratio. (author)
Quench dynamics of the interacting Bose gas in one dimension.
Iyer, Deepak; Andrei, Natan
2012-09-14
We obtain an exact expression for the time evolution of the interacting Bose gas following a quench from a generic initial state using the Yudson representation for integrable systems. We study the time evolution of the density and noise correlation for a small number of bosons and their asymptotic behavior for any number. We show that for any value of the coupling, as long as it is repulsive, the system asymptotes towards a strongly repulsive gas, while for any value of an attractive coupling the long time behavior is dominated by the maximal bound state. This occurs independently of the initial state and can be viewed as an emerging "dynamic universality."
Shih, Tsan-Hsing; Liu, nan-Suey
2010-01-01
A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.
Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow
Holman, Timothy D.; Boyd, Iain D.
2011-02-01
This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.
Robust Design of SAW Gas Sensors by Taguchi Dynamic Method
Directory of Open Access Journals (Sweden)
Hsun-Heng Tsai
2009-02-01
Full Text Available This paper adopts Taguchi’s signal-to-noise ratio analysis to optimize the dynamic characteristics of a SAW gas sensor system whose output response is linearly related to the input signal. The goal of the present dynamic characteristics study is to increase the sensitivity of the measurement system while simultaneously reducing its variability. A time- and cost-efficient finite element analysis method is utilized to investigate the effects of the deposited mass upon the resonant frequency output of the SAW biosensor. The results show that the proposed methodology not only reduces the design cost but also promotes the performance of the sensors.
High temperature gas dynamics an introduction for physicists and engineers
Bose, Tarit K
2014-01-01
High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...
MERGER SIGNATURES IN THE DYNAMICS OF STAR-FORMING GAS
International Nuclear Information System (INIS)
Hung, Chao-Ling; Sanders, D. B.; Hayward, Christopher C.; Smith, Howard A.; Ashby, Matthew L. N.; Martínez-Galarza, Juan R.; Zezas, Andreas; Lanz, Lauranne
2016-01-01
The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ∼0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ∼ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk
Gas dynamics an introduction with examples from astrophysics and geophysics
Achterberg, Abraham
2016-01-01
This book lays the foundations of gas- and fluid dynamics. The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.
Perez, [No Value; Freeman, K
In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the
Price dynamics of natural gas and the regional methanol markets
International Nuclear Information System (INIS)
Masih, A. Mansur M.; Albinali, Khaled; DeMello, Lurion
2010-01-01
A 'methanol economy' based mainly on natural gas as a feedstock has a lot of potential to cope with the current and ongoing concerns for energy security along with the reduction of CO-2 emissions. It is, therefore, important to examine the price dynamics of methanol in order to ascertain whether the price of methanol is mainly natural-gas-cost driven or demand driven in the context of different regions. This paper is the first attempt to investigate the following: (1) is the natural gas price significantly related to the regional methanol prices in the Far East, United States and Europe? (2) who drives the regional methanol prices? The paper is motivated by the recent and growing debate on the lead-lag relationship between natural gas and methanol prices. Our findings, based on the most recently developed 'long-run structural modelling' and subject to the limitations of the study, tend to suggest: (1) natural gas price is cointegrated with the regional methanol prices, (2) our within-sample error-correction model results tend to indicate that natural gas was driving the methanol prices in Europe and the United States but not in the Far East. These results are consistent, during most of the period under review (1998.5-2007.3), with the surge in demand for methanol throughout the Far East, particularly in China, Taiwan and South Korea, which appears to have played a relatively more dominant role in the Far East compared to that in Europe and the United States within the framework of the dynamic interactions of input and product prices. However, during the post-sample forecast period as evidenced in our variance decompositions analysis, the emergence of natural gas as the main driver of methanol prices in all three continents is consistent with the recent surge in natural gas price fueled mainly, among others, by the strong hedging activities in the natural gas futures/options as well as refining tightness (similar to those that were happening in the crude oil markets
The promising gas-dynamic schemes of vacuum deposition from the supersonic gas mixture flows
International Nuclear Information System (INIS)
Maltsev, R V; Rebrov, A K
2008-01-01
Gas jet deposition (GJD) becomes promising method of thin film and nanoparticle deposition. This paper is focused on elaboration of new methods of GJD based on different gas dynamic schemes of flow formation and interaction with substrate. Using direct statistical simulation method, the analysis was performed for: a) interaction of the jet from the sonic nozzle with a substrate; b) fan flow in the result of interaction of two opposite jets; c) convergent flow from the ring nozzle, directional to the axis; d) interaction of the jet after convergent flow with the substrate; e) fan flow in the result of interaction of two opposite jets after convergent expansion
Quantum versus classical statistical dynamics of an ultracold Bose gas
International Nuclear Information System (INIS)
Berges, Juergen; Gasenzer, Thomas
2007-01-01
We investigate the conditions under which quantum fluctuations are relevant for the quantitative interpretation of experiments with ultracold Bose gases. This requires to go beyond the description in terms of the Gross-Pitaevskii and Hartree-Fock-Bogoliubov mean-field theories, which can be obtained as classical (statistical) field-theory approximations of the quantum many-body problem. We employ functional-integral techniques based on the two-particle irreducible (2PI) effective action. The role of quantum fluctuations is studied within the nonperturbative 2PI 1/N expansion to next-to-leading order. At this accuracy level memory integrals enter the dynamic equations, which differ for quantum and classical statistical descriptions. This can be used to obtain a classicality condition for the many-body dynamics. We exemplify this condition by studying the nonequilibrium evolution of a one-dimensional Bose gas of sodium atoms, and discuss some distinctive properties of quantum versus classical statistical dynamics
Dynamical heterogeneity in a glass-forming ideal gas.
Charbonneau, Patrick; Das, Chinmay; Frenkel, Daan
2008-07-01
We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.
Windowless gas target with gas-dynamical focussing of an ultrasonic neutral gas flow
International Nuclear Information System (INIS)
Tietsch, W.; Bethge, K.; Feist, H.; Schopper, E.
1975-11-01
The construction of a gas jet target for heavy ion reaction is reported on. The spatial compression strockwaves in a supersonic flow behind a laval nozzle are used as a target. The target thickness can be varied by the choice of the nozzle pressure and the static pressure in the expansion room. All gases can be used. (WL) [de
Lattice gas simulations of dynamical geometry in two dimensions.
Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J
2010-10-01
We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.
Fugger, Christopher A.
Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection
Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics
Energy Technology Data Exchange (ETDEWEB)
Yu H. G.; Muckerman, J.T.
2012-05-29
The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.
Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics
Energy Technology Data Exchange (ETDEWEB)
Yu, H.G.; Muckerman, J.T.
2010-06-01
The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.
Dynamic design of gas sorption J-T refrigerator
International Nuclear Information System (INIS)
Chan, C.K.
1986-01-01
A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts and is desirable for longterm sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance
Dynamic design of gas sorption J-T refrigerator
Chan, C. K.
1986-01-01
A long-life Joule-Thomson refrigerator which is heat powered, involves no sealing, and has few mechanical parts is desirable for long-term sensor cooling in space. In the gas-sorption J-T refrigerator, cooling is achieved by gas sorption (either adsorption or absorption) processes. Currently, a modular, single-stage refrigerator is being designed and built to be operated at 20 K. The design was analyzed using a dynamic model, which is described here. The model includes the kinetics of the compressors and the heat switches, the heat transfer of the pre-coolers and the heat exchangers, the on/off ratio of the check valves, and the impedance of the J-T valve. The cooling power, the cycle time, and the operating conditions were obtained in terms of the power input, the heat sink temperature, and the J-T impedance.
Gas dynamic virtual nozzle for generation of microscopic droplet streams
Energy Technology Data Exchange (ETDEWEB)
DePonte, D P; Weierstall, U; Schmidt, K; Warner, J; Starodub, D; Spence, J C H; Doak, R B [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)], E-mail: dandeponte@gmail.com
2008-10-07
As shown by Ganan-Calvo (1998 Phys. Rev. Lett. 80 285-8), a free liquid jet can be compressed in diameter through gas dynamic forces exerted by a coaxially co-flowing gas, obviating the need for a solid nozzle to form a microscopic liquid jet and thereby alleviating the clogging problems that plague conventional droplet sources of small diameter. We describe in this paper a novel form of droplet beam source based on this principle. The source is miniature, robust, dependable, easily fabricated, essentially immune to clogging and eminently suitable for delivery of microscopic liquid droplets, including hydrated biological samples, into vacuum for analysis using vacuum instrumentation. Monodisperse, single-file droplet streams are generated by triggering the device with a piezoelectric actuator.
Lattice gas simulations of dynamical geometry in one dimension.
Love, Peter J; Boghosian, Bruce M; Meyer, David A
2004-08-15
We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society
Model-based dynamic control and optimization of gas networks
Energy Technology Data Exchange (ETDEWEB)
Hofsten, Kai
2001-07-01
This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum
Evolution of collision numbers for a chaotic gas dynamics.
Vidgop, Alexander Jonathan; Fouxon, Itzhak
2011-11-01
We put forward a conjecture of recurrence for a gas of hard spheres that collide elastically in a finite volume. The dynamics consists of a sequence of instantaneous binary collisions. We study how the numbers of collisions of different pairs of particles grow as functions of time. We observe that these numbers can be represented as a time integral of a function on the phase space. Assuming the results of the ergodic theory apply, we describe the evolution of the numbers by an effective Langevin dynamics. We use the facts that hold for these dynamics with probability one, in order to establish properties of a single trajectory of the system. We find that for any triplet of particles there will be an infinite sequence of moments of time, when the numbers of collisions of all three different pairs of the triplet will be equal. Moreover, any value of difference of collision numbers of pairs in the triplet will repeat indefinitely. On the other hand, for larger numbers of pairs there is but a finite number of repetitions. Thus the ergodic theory produces a limitation on the dynamics.
Fluid dynamic computations of the flue-gas channel in an evaporative gas turbine
Energy Technology Data Exchange (ETDEWEB)
Engdar, Ulf
1999-12-01
A new pilot power plant, based on an advanced thermodynamic cycle, called Evaporative Gas Turbine (EvGT), has been erected at the department for Heat- and Power Engineering, Lund University. The pilot plant is a part of the Evaporative Gas Turbine project, a cooperation between universities and industry in Sweden. The fluid dynamics layout of the plant is not optimized and hence no pressure drop reduction modifications have been made on the plant. A pressure drop will decrease the efficiency of the plant. Temperature measurements have shown that there maybe is a temperature stratification of the flow on the flue-gas side downstream the recuperator. A temperature stratification will influence the measurements and heat exchangers. The objective of this thesis is to investigate pressure drops and temperature stratification in the flue-gas channel between the recuperator and the economizer at the present pilot plant. Further, suggest modifications that can reduce pressure drops and/or a temperature stratification of the flow. The way of dealing with these problems was to utilize computational fluid dynamics (CFD), which makes it possible to compute the flue-gas channel in detail. The CFD-computations were conducted with a commercial computer program, called Star-CD. The pressure drop was calculated as the sum of the static- and the dynamic- pressure drop. No information about the shape of the temperature stratification was available to investigate whether a stratification will sustain or vanish. Therefore, two different temperature profiles was applied at the outlet of the recuperator. To compare modifications with the present plant, concerning the temperature stratification, a temperature rms-value was utilized as a measure of the deviation from a flow with constant temperature over a cross-section. The computations show that the pressure drop in the flue-gas channel is small compared to the pressure drop over the recuperator. Therefore, no pressure drop reducing
Quantitative imaging of turbulent and reacting flows
Energy Technology Data Exchange (ETDEWEB)
Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.
Dynamic gas flow during plasma operation in TMX-U
International Nuclear Information System (INIS)
Pickles, W.L.; Carter, M.R.; Clower, C.A.; Drake, R.P.; Hunt, A.L.; Simonen, T.C.; Turner, W.C.
1982-01-01
Control of the neutral density outside of the plasma radius is essential for proper operation of the various plasma configurations in TMX-U. TMX-U excess-beam, stream-gun, gas-box, and beam-reflux gases are pumped internally in regions defined by 73 0 Ti-gettered liners and warm Ti-gettered plasma liners. The array of fast and slow ion gauges - a large TMX-U diagnostic - has been used to measure the dynamic pressure in many of the liner-defined regions on three time scales. The natural divertor action, or plasma pump effect, of mirror plasmas has been measured using the ion gauge diagnostics on a fast time scale during operation of TMX-U with ECRH start-up. Routine operation of TMX-U is enhanced by the ability to verify the effectiveness of gettering and to locate leaks using pressure data collected on the two slow time scales. A computer code, DYNAVAC 6, which treats TMX-U as a set of conductance-coupled regions with pumping and sources in each region, has been used to successfully model the overall gas dynamics during all phases of TMX-U operation
Modeling beam-front dynamics at low gas pressures
International Nuclear Information System (INIS)
Briggs, R.J.; Yu, S.
1982-01-01
The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development
On the Gas Dynamics of Inert-Gas-Assisted Laser Cutting of Steel Plate
Brandt, A. D.; Settles, G. S.; Scroggs, S. D.
1996-11-01
Laser beam cutting of sheet metal requires an assist gas to blow away the molten material. Since the assist-gas dynamics influences the quality and speed of the cut, the orientation of the gas nozzle with respect to the kerf is also expected to be important. A 1 kW cw CO2 laser with nitrogen assist gas was used to cut mild steel sheet of 1 to 4 mm thickness, using a sonic coaxial nozzle as a baseline. Off-axis nozzles were oriented from 20 deg to 60 deg from normal with exit Mach numbers from 1 to 2.4. Results showed maximum cutting speed at a 40 deg nozzle orientation. Shadowgrams of a geometrically-similar model kerf then revealed a separated shock wave-boundary layer interaction within the kerf for the (untilted) coaxial nozzle case. This was alleviated, resulting in a uniform supersonic flow throughout the kerf and consequent higher cutting speeds, by tilting the nozzle between 20 deg and 45 deg from the normal. This result did not depend upon the exit Mach number of the nozzle. (Research supported by NSF Grant DMI-9400119.)
Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics
International Nuclear Information System (INIS)
Zhang, S; Sobota, A; Van Veldhuizen, E M; Bruggeman, P J
2015-01-01
This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed. (paper)
Mathematical aspects of reacting and diffusing systems
Fife, Paul C
1979-01-01
Modeling and analyzing the dynamics of chemical mixtures by means of differ- tial equations is one of the prime concerns of chemical engineering theorists. These equations often take the form of systems of nonlinear parabolic partial d- ferential equations, or reaction-diffusion equations, when there is diffusion of chemical substances involved. A good overview of this endeavor can be had by re- ing the two volumes by R. Aris (1975), who himself was one of the main contributors to the theory. Enthusiasm for the models developed has been shared by parts of the mathematical community, and these models have, in fact, provided motivation for some beautiful mathematical results. There are analogies between chemical reactors and certain biological systems. One such analogy is rather obvious: a single living organism is a dynamic structure built of molecules and ions, many of which react and diffuse. Other analogies are less obvious; for example, the electric potential of a membrane can diffuse like a chemical, and ...
Vorticity and symplecticity in multi-symplectic, Lagrangian gas dynamics
Webb, G. M.; Anco, S. C.
2016-02-01
The Lagrangian, multi-dimensional, ideal, compressible gas dynamic equations are written in a multi-symplectic form, in which the Lagrangian fluid labels, m i (the Lagrangian mass coordinates) and time t are the independent variables, and in which the Eulerian position of the fluid element {x}={x}({m},t) and the entropy S=S({m},t) are the dependent variables. Constraints in the variational principle are incorporated by means of Lagrange multipliers. The constraints are: the entropy advection equation S t = 0, the Lagrangian map equation {{x}}t={u} where {u} is the fluid velocity, and the mass continuity equation which has the form J=τ where J={det}({x}{ij}) is the Jacobian of the Lagrangian map in which {x}{ij}=\\partial {x}i/\\partial {m}j and τ =1/ρ is the specific volume of the gas. The internal energy per unit volume of the gas \\varepsilon =\\varepsilon (ρ ,S) corresponds to a non-barotropic gas. The Lagrangian is used to define multi-momenta, and to develop de Donder-Weyl Hamiltonian equations. The de Donder-Weyl equations are cast in a multi-symplectic form. The pullback conservation laws and the symplecticity conservation laws are obtained. One class of symplecticity conservation laws give rise to vorticity and potential vorticity type conservation laws, and another class of symplecticity laws are related to derivatives of the Lagrangian energy conservation law with respect to the Lagrangian mass coordinates m i . We show that the vorticity-symplecticity laws can be derived by a Lie dragging method, and also by using Noether’s second theorem and a fluid relabelling symmetry which is a divergence symmetry of the action. We obtain the Cartan-Poincaré form describing the equations and we discuss a set of differential forms representing the equation system.
A paradigm for modeling and computation of gas dynamics
Xu, Kun; Liu, Chang
2017-02-01
In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct
The dynamics of the Frustrated Ising Lattice Gas
International Nuclear Information System (INIS)
Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.
2000-04-01
The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)
Novel test of modified Newtonian dynamics with gas rich galaxies.
McGaugh, Stacy S
2011-03-25
The current cosmological paradigm, the cold dark matter model with a cosmological constant, requires that the mass-energy of the Universe be dominated by invisible components: dark matter and dark energy. An alternative to these dark components is that the law of gravity be modified on the relevant scales. A test of these ideas is provided by the baryonic Tully-Fisher relation (BTFR), an empirical relation between the observed mass of a galaxy and its rotation velocity. Here, I report a test using gas rich galaxies for which both axes of the BTFR can be measured independently of the theories being tested and without the systematic uncertainty in stellar mass that affects the same test with star dominated spirals. The data fall precisely where predicted a priori by the modified Newtonian dynamics. The scatter in the BTFR is attributable entirely to observational uncertainty, consistent with a single effective force law.
Inverse problem and uncertainty quantification: application to compressible gas dynamics
International Nuclear Information System (INIS)
Birolleau, Alexandre
2014-01-01
This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr
On a non-local gas dynamics like integrable hierarchy
International Nuclear Information System (INIS)
Brunelli, Jose Carlos; Das, Ashok
2004-01-01
We study a new hierarchy of equations derived from the system of isentropic gas dynamics equations where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained. (author)
Dynamics of exciplex formation in rare gas media
Energy Technology Data Exchange (ETDEWEB)
Rojas-Lorenzo, German, E-mail: grojas37@gmail.com [Departamento de Fisica General y Matematicas, Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba)] [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rubayo-Soneira, Jesus [Departamento de Fisica General y Matematicas, Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba); Alberti, Sebastian Fernandez [Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Pena 180, Bernal B1876BXD (Argentina)
2009-07-30
A hopping-surface algorithm has been used to simulate the dynamics induced in rare gas matrices due to the photoexcitation ({sup 1}S{sub 0} {yields} {sup 3}P{sub 1}) of atomic mercury embedded in them. Especially, the study of the dynamics of an exciplex formation in a model system consisting of solid xenon doped with atomic mercury. The process starts upon the photoexcitation of the Hg atom to its {sup 3}P{sub 1} electronic excited state. Diatomics-in-Molecule approach has been used for constructing the adiabatic potential surfaces. In all trajectories we show that a triatomic Xe-Hg{sup *}-Xe complex is formed, but in two conformations: bent and linear. The mechanisms leading to the formation of one or the other are identified. Mainly, are noted the thermal fluctuations of the Hg impurity and the shape of the potential surfaces. Furthermore, we show that non-radiative intrastate relaxation occurs via a conical intersection between the excited state surfaces. The simulated spectra are in very good agreement with the experimental data.
Dynamics of exciplex formation in rare gas media
International Nuclear Information System (INIS)
Rojas-Lorenzo, German; Rubayo-Soneira, Jesus; Alberti, Sebastian Fernandez
2009-01-01
A hopping-surface algorithm has been used to simulate the dynamics induced in rare gas matrices due to the photoexcitation ( 1 S 0 → 3 P 1 ) of atomic mercury embedded in them. Especially, the study of the dynamics of an exciplex formation in a model system consisting of solid xenon doped with atomic mercury. The process starts upon the photoexcitation of the Hg atom to its 3 P 1 electronic excited state. Diatomics-in-Molecule approach has been used for constructing the adiabatic potential surfaces. In all trajectories we show that a triatomic Xe-Hg * -Xe complex is formed, but in two conformations: bent and linear. The mechanisms leading to the formation of one or the other are identified. Mainly, are noted the thermal fluctuations of the Hg impurity and the shape of the potential surfaces. Furthermore, we show that non-radiative intrastate relaxation occurs via a conical intersection between the excited state surfaces. The simulated spectra are in very good agreement with the experimental data.
Multiphase reacting flows modelling and simulation
Marchisio, Daniele L
2007-01-01
The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...
Molecular Simulation of Reacting Systems; TOPICAL
International Nuclear Information System (INIS)
THOMPSON, AIDAN P.
2002-01-01
The final report for a Laboratory Directed Research and Development project entitled, Molecular Simulation of Reacting Systems is presented. It describes efforts to incorporate chemical reaction events into the LAMMPS massively parallel molecular dynamics code. This was accomplished using a scheme in which several classes of reactions are allowed to occur in a probabilistic fashion at specified times during the MD simulation. Three classes of reaction were implemented: addition, chain transfer and scission. A fully parallel implementation was achieved using a checkerboarding scheme, which avoids conflicts due to reactions occurring on neighboring processors. The observed chemical evolution is independent of the number of processors used. The code was applied to two test applications: irreversible linear polymerization and thermal degradation chemistry
Cho, S. Y.; Yetter, R. A.; Dryer, F. L.
1992-01-01
Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.
Gas dynamic reaction process and system for laser chemistry
International Nuclear Information System (INIS)
Garbuny, M.
1979-01-01
A reaction system is disclosed wherein a moving, unidirectional stream of an activatable gaseous species is produced, the individual members of which have the forward components of their velocities at least 10 times greater than the lateral components of their velocities. The stream is irradiated with substantially monochromatic light having a frequency which activates at least some of the individual members of the species. The activated members can then be reacted with another stream or otherwise utilized
Nonlinear dynamics of a soliton gas: Modified Korteweg–de Vries equation framework
Energy Technology Data Exchange (ETDEWEB)
Shurgalina, E.G., E-mail: eshurgalina@mail.ru [Department of Nonlinear Geophysical Processes, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Pelinovsky, E.N. [Department of Nonlinear Geophysical Processes, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod (Russian Federation)
2016-05-27
Dynamics of random multi-soliton fields within the framework of the modified Korteweg–de Vries equation is considered. Statistical characteristics of a soliton gas (distribution functions and moments) are calculated. It is demonstrated that the results sufficiently depend on the soliton gas properties, i.e., whether it is unipolar or bipolar. It is shown that the properties of a unipolar gas are qualitatively similar to the properties of a KdV gas [Dutykh and Pelinovsky (2014) [1
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Modeling reacting gases and aftertreatment devices for internal combustion engines
Depcik, Christopher David
As more emphasis is placed worldwide on reducing greenhouse gas emissions, automobile manufacturers have to create more efficient engines. Simultaneously, legislative agencies want these engines to produce fewer problematic emissions such as nitrogen oxides and particulate matter. In response, newer combustion methods, like homogeneous charge compression ignition and fuel cells, are being researched alongside the old standard of efficiency, the compression ignition or diesel engine. These newer technologies present a number of benefits but still have significant challenges to overcome. As a result, renewed interest has risen in making diesel engines cleaner. The key to cleaning up the diesel engine is the placement of aftertreatment devices in the exhaust. These devices have shown great potential in reducing emission levels below regulatory levels while still allowing for increased fuel economy versus a gasoline engine. However, these devices are subject to many flow control issues. While experimental evaluation of these devices helps to understand these issues better, it is impossible to solve the problem through experimentation alone because of time and cost constraints. Because of this, accurate models are needed in conjunction with the experimental work. In this dissertation, the author examines the entire exhaust system including reacting gas dynamics and aftertreatment devices, and develops a complete numerical model for it. The author begins by analyzing the current one-dimensional gas-dynamics simulation models used for internal combustion engine simulations. It appears that more accurate and faster numerical method is available, in particular, those developed in aeronautical engineering, and the author successfully implements one for the exhaust system. The author then develops a comprehensive literature search to better understand the aftertreatment devices. A number of these devices require a secondary injection of fuel or reductant in the exhaust stream
Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner
Chong, Cheng Tung; Hochgreb, Simone
2015-03-01
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.
Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report
Lewis, Pattie
2011-01-01
The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.
The ion-acoustic soliton: A gas-dynamic viewpoint
International Nuclear Information System (INIS)
McKenzie, J.F.
2002-01-01
The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus--the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, M c , above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, M ep , in which solitons exist, is extended beyond the classical range 1 ep 2 shaped pulses characteristic of weakly nonlinear waves and shows that solitons exist only if 1 ep e and 10kT e depending upon the values of the adiabatic indices of the electrons and protons and the proton Mach number
THE INFLUENCE OF AEROSOL GAS-DYNAMIC SUSPENSION CLEANING ON SURFACE OF THE AIRCRAFT PARTS
Directory of Open Access Journals (Sweden)
Vitaly D. Hizhko
2008-02-01
Full Text Available The specificity of the surface microgeometry formation under the influence of aerosol gas-dynamic suspension flow was considered. The composition and character of metallic surface layer formation of aircraft parts was investigated. The possibility of surface material composition and properties adjustment changing aerosol gas-dynamic suspension flow parameters was determined. The hypothesis about the possibility of using aerosol gas-dynamic suspension flow to form corrosion-resistant coating on the detail metallic surfaces was set up.
Canadian natural gas market dynamics and pricing : an update
International Nuclear Information System (INIS)
2002-10-01
This energy market assessment (EMA) report discusses natural gas price formation and describes the current functioning of regional gas markets in Canada. This EMA also describes the factors affecting the price of natural gas in Canada and examines natural gas markets on a region-by region basis. It is shown that as part of an integrated North American market, prices of natural gas in Canada reflect supply and demand factors in both Canada and the United States. During the low oil price period of 1997/1998, high demand for natural gas outpaced the supply because of low drilling and production activity by producers. In response to the increased demand and lower levels of supply, the price of natural gas increased significantly in 1999 and 2000. This was followed by a period of market adjustment. The importance of electronic trading systems for enhancing price discovery was also discussed with reference to how spot and futures markets allow market participants to manage price volatility. It was determined that Canadians have had access to natural gas on terms and conditions equal to export customers, and at equal pricing. In early November 2000, natural gas prices in North American began to rise due to low levels of natural gas in storage. The price shocks were felt unevenly across the North American market. In response to the high prices, consumers conserved energy use, and many industrial users switched to cheaper fuels. By the spring 2001, demand continued to decrease at a time when production was high. These factors contributed to the downward pressure on gas prices. This EMA discusses the structure of market transactions and market adjustment mechanisms. It is presented in the context of the approaching 2002/2003 winter season where the tightening between natural gas supply and demand is expected to result in price volatility. 28 figs
Dynamic safety assessment of natural gas stations using Bayesian network
Zarei, Esmaeil; Azadeh, Ali; Khakzad Rostami, N.; Mirzaei Aliabadi, Mostafa; Mohammadfam, Iraj
2017-01-01
Pipelines are one of the most popular and effective ways of transporting hazardous materials, especially natural gas. However, the rapid development of gas pipelines and stations in urban areas has introduced a serious threat to public safety and assets. Although different methods have been
International Nuclear Information System (INIS)
Riedl, S.
2009-01-01
This thesis explores the dynamics in an ultracold strongly interacting Fermi gas. Therefore we perform measurements on collective excitation modes and rotational properties of the gas. The strongly interacting gas is realized using an optically trapped Fermi gas of 6 Li atoms, where the interactions can be tuned using a broad Feshbach resonance. Our measurements allow to test the equation of state of the gas, study the transition from hydrodynamic to collisionless behavior, reveal almost ideal hydrodynamic behavior in the nonsuperfluid phase, investigate the lifetime of angular momentum, and show superfluidity through the quenching of the moment of inertia. (author)
Stochastic models for turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
The ion-acoustic soliton: A gas-dynamic viewpoint
McKenzie, J. F.
2002-03-01
The properties of fully nonlinear ion-acoustic solitons are investigated by interpreting conservation of total momentum as the structure equation for the proton flow in the wave. In most studies momentum conservation is regarded as the first integral of the Poisson equation for the electric potential and is interpreted as being analogous to a particle moving in a pseudo-potential well. By adopting an essentially gas-dynamic viewpoint, which emphasizes momentum conservation and the properties of the Bernoulli-type energy equations, the crucial role played by the proton sonic point becomes apparent. The relationship (implied by energy conservation) between the electron and proton speeds in the transition yields a locus—the hodograph of the system-which shows that, in the first half of the soliton, the electrons initially lag behind the protons until the charge neutral point is reached, after which they run ahead of the protons. The system reaches an equilibrium point (the center of the soliton) before the proton flow goes sonic. It follows that the critical ion-acoustic Mach number, Mc, above which smooth, continuous solitons cannot be constructed, stems from the requirement that the two equilibrium points of the structure equation coalesce at the proton sonic point of the flow. In general the range of the ion-acoustic Mach numbers, Mep, in which solitons exist, is extended beyond the classical range 1
A Computation Fluid Dynamic Model for Gas Lift Process Simulation in a Vertical Oil Well
Directory of Open Access Journals (Sweden)
Kadivar Arash
2017-03-01
Full Text Available Continuous gas-lift in a typical oil well was simulated using computational fluid dynamic (CFD technique. A multi fluid model based on the momentum transfer between liquid and gas bubbles was employed to simulate two-phase flow in a vertical pipe. The accuracy of the model was investigated through comparison of numerical predictions with experimental data. The model then was used to study the dynamic behaviour of the two-phase flow around injection point in details. The predictions by the model were compared with other empirical correlations, as well. To obtain an optimum condition of gas-lift, the influence of the effective parameters including the quantity of injected gas, tubing diameter and bubble size distribution were investigated. The results revealed that increasing tubing diameter, the injected gas rate and decreasing bubble diameter improve gas-lift performance.
Study on the dynamics of charged particles in a rarefied gas of thermonuclear reactor injector
International Nuclear Information System (INIS)
Afanas'ev, P.N.; Svistunov, Yu.A.; Sidorov, V.P.; Udovichenko, S.Yu.
1987-01-01
The motion of an ion beam directly beyond the source is considered in the assumption of homogeneous density of rarefied gas along the injector. Using numerical simulation the dynamics of fast particles in plasma electric field, created by the beam as a result of gas neutral atom ionization, is investigated. It is shown that stationary ambipolar electric field of ''plasma lens'' can affect considerably the beam transverse dynamics
The articulation of Mexico into the dynamics of competition of the North American natural gas market
International Nuclear Information System (INIS)
Elizalde Baltierra, A.
2002-07-01
Deregulation is at the origin of the new dynamics of competition in the natural gas industry. The United States and Canada were the pioneer countries to suffer these changes. In fact, their natural gas markets today function in a very similar way: i) the private sector takes a place as large as possible, and ii)competition is developed within the three segments of the gas value, especially at the upstream level (emergence of hubs, spot and financial markets,...). In Mexico, its downstream gas activities (transportation, storage and distribution) were liberalized in 1995 in order to attract private investments and to develop the gas sector that has historically been operated under State control. Gas upstream operations remain reserved by the Constitution to the national oil company Petroleos Mexicanos (PEMEX). This thesis develops an evaluation framework of the articulation of Mexico into the dynamics of competition of the North American natural gas market, based on the structure-conduct-performance paradigm. In the first part, all North American's natural gas industries base conditions are analyzed. We examine in the second part, the deregulation and articulation of the dynamics of competition of the American and Canadian gas industries. Finally, in the third part we analyze the main elements of the articulation of Mexico into the dynamics of competition of United States and Canada's gas industries. Furthermore, we evaluate the impact of three of these elements (the economic growth, the electric power generation sector and eventually opening to private investments of gas upstream activities) on the adjustment of gas supply and demand in Mexico to the year 2020. (author)
ReACT!: An Interactive Educational Tool for AI Planning for Robotics
Dogmus, Zeynep; Erdem, Esra; Patogulu, Volkan
2015-01-01
This paper presents ReAct!, an interactive educational tool for artificial intelligence (AI) planning for robotics. ReAct! enables students to describe robots' actions and change in dynamic domains without first having to know about the syntactic and semantic details of the underlying formalism, and to solve planning problems using…
Dynamic pressure as a measure of gas turbine engine (GTE) performance
International Nuclear Information System (INIS)
Rinaldi, G; Stiharu, I; Packirisamy, M; Nerguizian, V; Landry, R Jr; Raskin, J-P
2010-01-01
Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without
Mathematical aspects of subsonic and transonic gas dynamics
Bers, Lipman
2016-01-01
Concise treatment by prominent mathematician covers differential equations of potential gas flow, mathematical background of subsonic flow theory, behavior of flow at infinity, flows in channels and with free boundary, more. 1958 edition.
SOFIA Observations of S106: Dynamics of the Warm Gas
Simon, R.; Schneider, N.; Stutzki, J.; Gusten, R.; Graf, U. U.; Hartogh, P.; Guan, X.; Staguhn, J. G.; Benford, D. J.
2012-01-01
Context The H II region/PDR/molecular cloud complex S106 is excited by a single O-star. The full extent of the warm and dense gas close to the star has not been mapped in spectrally resolved high-J CO or [C II] lines, so the kinematics of the warm. partially ionized gas, are unknown. Whether the prominent dark lane bisecting the hourglass-shaped nebula is due solely to the shadow cast by a small disk around the exciting star or also to extinction in high column foreground gas was an open question until now. Aims. To disentangle the morphology and kinematics of warm neutral and ionized gas close to the star, study their relation to the bulk of the molecular gas. and to investigate the nature of the dark lane. Methods. We use the heterodyne receiver GREAT on board SOFIA to observe velocity resolved spectral lines of [C II] and CO 11 yields 10 in comparison with so far unpublished submm continuum data at 350 micron (8HARC-Il) and complementary molecular line data. Results. The high angular and spectral resolution observations show a very complex morphology and kinematics of the inner S106 region, with many different components at different excitation conditions contributing to the observed emission. The [C II] lines are found to be bright and very broad. tracing high velocity gas close to the interface of molecular cloud and H II region. CO 11 yields 10 emission is more confined.. both spatially and in velocity, to the immediate surroundings of S 106 IR showing the presence of warm, high density (clumpy) gas. Our high angular resolution submm continuum observations rule out the scenario where the dark lane separating the two lobes is due solely to the shadow cast by a small disk close to the star. The lane is clearly seen also as warm, high column density gas at the boundary of the molecular cloud and H II region.
The dynamic linkages between crude oil and natural gas markets
International Nuclear Information System (INIS)
Batten, Jonathan A.; Ciner, Cetin; Lucey, Brian M.
2017-01-01
The time varying price spillovers between natural gas and crude oil markets for the period 1994 to 2014 are investigated. Contrary to earlier research, we show that in a large part of our sample the natural gas price leads the price of crude oil with price spillover effects lasting up to two weeks. This result is robust to a battery of tests including out-of-sample forecasting exercises. However, after 2006, we detect little price dependencies between these two energy commodities. These findings arise due to a conjunction of both demand and supply-side shocks arising from both natural and economic events, including Hurricane Katrina, the Tohoku earthquake and the Global Financial Crisis, as well as infrastructure and technological improvements. The increased use of new technologies such as hydraulic fracking for the extraction of gas and oil in particular affected supply in the latter part of the study. We conclude that the long term relation present in the early part of the sample has decoupled, such that price determination of these two energy sources is now independent. - Highlights: • Contrary to earlier research we find natural gas may lead crude oil prices over a long sample. • This finding holds in forecasting out of sample. • There may be a break in the relationship between oil and gas in 2006. • We suggest that new technologies and financial conditions have led to a decoupling of these markets. • Oil and natural gas prices may now be determined independently.
Chen, Hongzhang; Shao, Meixue; Li, Hongqiang
2014-03-05
The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. Copyright © 2013 Elsevier Inc. All rights reserved.
Dynamic Optimal Energy Flow in the Integrated Natural Gas and Electrical Power Systems
DEFF Research Database (Denmark)
Fang, Jiakun; Zeng, Qing; Ai, Xiaomeng
2018-01-01
. Simulation on the test case illustrates the success of the modelling and the beneficial roles of the power-to-gas are analyzed. The proposed model can be used in the decision support for both planning and operation of the coordinated natural gas and electrical power systems.......This work focuses on the optimal operation of the integrated gas and electrical power system with bi-directional energy conversion. Considering the different response times of the gas and power systems, the transient gas flow and steady- state power flow are combined to formulate the dynamic...... optimal energy flow in the integrated gas and power systems. With proper assumptions and simplifications, the problem is transformed into a single stage linear programming. And only a single stage linear programming is needed to obtain the optimal operation strategy for both gas and power systems...
DETERMINING THE DYNAMICS OF CUSTOMER SATISFACTION IN NATURAL GAS SECTOR
Directory of Open Access Journals (Sweden)
Naciye Güliz UĞUR
2017-04-01
Full Text Available The aim of this study is to determine the factors affecting customer satisfaction of the offered services in the natural gas distribution industry. Defining the factors affecting the satisfaction of the offered services are among the instruments which will be used to cope with increased competition and become a preferred institution. For this purpose a questionnaire is developed and implemented with 2043 participants in order to determine the factors of customer satisfaction in the natural gas sector. Within this research, the factors are examined according to several demographic variables to analyze if they differ depending the variables. Findings reveal that, in natural gas industry, customer satisfaction of the offered services vary according to ownership, age, gender, level of education and subscription period satisfaction.
Large-Eddy Simulations of Reacting Liquid Spray
Lederlin, Thomas; Sanjose, Marlene; Gicquel, Laurent; Cuenot, Benedicte; Pitsch, Heinz; Poinsot, Thierry
2008-11-01
Numerical simulation, which is commonly used in many stages of aero-engine design, still has to demonstrate its predictive capability for two-phase reacting flows. This study is a collaboration between Stanford University and CERFACS to perform LES of a realistic spray combustor installed at ONERA, Toulouse. The experimental configuration is computed on the same unstructured mesh with two different solvers: Stanford's CDP code and CERFACS's AVBP code. CDP uses a low-Mach, variable-density solver with implicit time advancement. Droplets are tracked in a Lagrangian point-particle framework. The combustion model uses a flamelet approach, based on two transported scalars, mixture fraction and reaction progress variable. AVBP is a fully compressible solver with explicit time advancement. The liquid phase is described with an Eulerian method. The flame-turbulence interaction is modeled using a dynamically-thickened flame. Results are compared with experimental data for three regimes: purely gaseous non-reacting flow, non-reacting flow with evaporating droplets, reacting flow with droplets. Both simulations show a good agreement with experimental data and also stress the difference and relative advantages of the numerical methods.
Directory of Open Access Journals (Sweden)
Korczewski Zbigniew
2016-01-01
Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.
North American natural gas supply dynamics: A focus on U.S. supply
International Nuclear Information System (INIS)
George, R.
1999-01-01
This paper discusses US natural gas supply dynamics in the context of the North American gas marketplace. Supply fundamentals are examined, methodology is briefly presented, regional supply outlooks are discussed. Assumptions, drivers and issues are highlighted. The analysis and outlook indicate that the sizeable North American resource base can be economically developed to supply growing US natural gas requirements. The major incremental supply sources are likely to come from deepwater Gulf of Mexico, Rocky Mountain regions, onshore Texas and imports from Canada. Given this outlook, major business and investment opportunities exist for the gas upstream and midstream sectors despite some short-term challenges
High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics
International Nuclear Information System (INIS)
Shi, Yu-Hsin; Huang, J.C.; Yang, J.Y.
2007-01-01
A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to explore various practical ideal quantum gas flows
Modeling and simulation of combustion dynamics in lean-premixed swirl-stabilized gas-turbine engines
Huang, Ying
This research focuses on the modeling and simulation of combustion dynamics in lean-premixed gas-turbines engines. The primary objectives are: (1) to establish an efficient and accurate numerical framework for the treatment of unsteady flame dynamics; and (2) to investigate the parameters and mechanisms responsible for driving flow oscillations in a lean-premixed gas-turbine combustor. The energy transfer mechanisms among mean flow motions, periodic motions and background turbulent motions in turbulent reacting flow are first explored using a triple decomposition technique. Then a comprehensive numerical study of the combustion dynamics in a lean-premixed swirl-stabilized combustor is performed. The analysis treats the conservation equations in three dimensions and takes into account finite-rate chemical reactions and variable thermophysical properties. Turbulence closure is achieved using a large-eddy-simulation (LES) technique. The compressible-flow version of the Smagorinsky model is employed to describe subgrid-scale turbulent motions and their effect on large-scale structures. A level-set flamelet library approach is used to simulate premixed turbulent combustion. In this approach, the mean flame location is modeled using a level-set G-equation, where G is defined as a distance function. Thermophysical properties are obtained using a presumed probability density function (PDF) along with a laminar flamelet library. The governing equations and the associated boundary conditions are solved by means of a four-step Runge-Kutta scheme along with the implementation of the message passing interface (MPI) parallel computing architecture. The analysis allows for a detailed investigation into the interaction between turbulent flow motions and oscillatory combustion of a swirl-stabilized injector. Results show good agreement with an analytical solution and experimental data in terms of acoustic properties and flame evolution. A study of flame bifurcation from a stable
International Nuclear Information System (INIS)
Wang, C.-C.; Jang, M.-J.; Yeh, Y.-L.
2007-01-01
This paper studies the bifurcation and nonlinear behaviors of a flexible rotor supported by relative short gas film bearings. A time-dependent mathematical model for gas journal bearings is presented. The finite difference method with successive over relation method is employed to solve the Reynolds' equation. The system state trajectory, Poincare maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal center in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and subharmonic response of the rotor and journal center. This paper shows how the dynamic behavior of this type of system varies with changes in rotor mass and rotational velocity. The results of this study contribute to a further understanding of the nonlinear dynamics of gas film rotor-bearing systems
Interring Gas Dynamic Analysis of Piston in a Diesel Engine considering the Thermal Effect
Directory of Open Access Journals (Sweden)
Wanyou Li
2015-01-01
Full Text Available Understanding the interaction between ring dynamics and gas transport in ring pack systems is crucial and needs to be imperatively studied. The present work features detailed interring gas dynamics of piston ring pack behavior in internal combustion engines. The model is developed for a ring pack with four rings. The dynamics of ring pack are simulated. Due to the fact that small changes in geometry of the grooves and lands would have a significant impact on the interring gas dynamics, the thermal deformation of piston has been considered during the ring pack motion analysis in this study. In order to get the temperature distribution of piston head more quickly and accurately, an efficient method utilizing the concept of inverse heat conduction is presented. Moreover, a sensitive analysis based on the analysis of partial regression coefficients is presented to investigate the effect of groove parameters on blowby.
Coarsening dynamics in a vibrofluidized compartmentalized granulas gas
van der Meer, Roger M.; van der Weele, J.P.; Lohse, Detlef
2004-01-01
Coarsening is studied in a vertically driven, initially uniformly distributed granular gas within a container divided into many connected compartments. The clustering is experimentally observed to occur in a two-stage process: first, the particles cluster in a few of the compartments. Subsequently,
International Nuclear Information System (INIS)
De Joode, J.; Oezdemir, Oe.
2010-01-01
The fact that depletion of indigenous gas production increases gas import dependency is widely known and accepted. However, there is considerable less attention for the implications of indigenous resource depletion for the provision of seasonal flexibility. The traditionally largest source of seasonal flexibility in Europe is indigenous gas production, mainly based in the Netherlands and the United Kingdom. With the depletion of indigenous sources the market increasingly needs to rely on other sources for seasonal flexibility, such as gas storage facilities. We investigate the future need for gas storage as a source for seasonal flexibility provision using a dynamic gas market model (GASTALE) in which different potential sources for seasonal flexibility - gas production, imports via pipeline, LNG imports and storage facilities - compete with each other in a market-based environment. The inclusion of seasonal flexibility properties in a gas market model allows a more complex analysis of seasonal flexibility issues than previously documented in literature. This is demonstrated in an analysis of the future demand for gas storage in northwestern Europe until 2030. Our results indicate that there is substantial need for additional gas storage facilities and thus supports current project proposals for new investment in gas storage facilities. (author)
DEFF Research Database (Denmark)
Shuai, Hang; Ai, Xiaomeng; Wen, Jinyu
2017-01-01
This paper proposes a hybrid approximate dynamic programming (ADP) approach for the multiple time-period optimal power flow in integrated gas and power systems. ADP successively solves Bellman's equation to make decisions according to the current state of the system. So, the updated near future...
Positivity-preserving dual time stepping schemes for gas dynamics
Parent, Bernard
2018-05-01
A new approach at discretizing the temporal derivative of the Euler equations is here presented which can be used with dual time stepping. The temporal discretization stencil is derived along the lines of the Cauchy-Kowalevski procedure resulting in cross differences in spacetime but with some novel modifications which ensure the positivity of the discretization coefficients. It is then shown that the so-obtained spacetime cross differences result in changes to the wave speeds and can thus be incorporated within Roe or Steger-Warming schemes (with and without reconstruction-evolution) simply by altering the eigenvalues. The proposed approach is advantaged over alternatives in that it is positivity-preserving for the Euler equations. Further, it yields monotone solutions near discontinuities while exhibiting a truncation error in smooth regions less than the one of the second- or third-order accurate backward-difference-formula (BDF) for either small or large time steps. The high resolution and positivity preservation of the proposed discretization stencils are independent of the convergence acceleration technique which can be set to multigrid, preconditioning, Jacobian-free Newton-Krylov, block-implicit, etc. Thus, the current paper also offers the first implicit integration of the time-accurate Euler equations that is positivity-preserving in the strict sense (that is, the density and temperature are guaranteed to remain positive). This is in contrast to all previous positivity-preserving implicit methods which only guaranteed the positivity of the density, not of the temperature or pressure. Several stringent reacting and inert test cases confirm the positivity-preserving property of the proposed method as well as its higher resolution and higher computational efficiency over other second-order and third-order implicit temporal discretization strategies.
Computational Investigation of Soot and Radiation in Turbulent Reacting Flows
Lalit, Harshad
This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of
Statistical dynamics of transient processes in a gas discharge plasma
International Nuclear Information System (INIS)
Smirnov, G.I.; Telegin, G.G.
1991-01-01
The properties of a gas discharge plasma to a great extent depend on random processes whose study has recently become particularly important. The present work is concerned with analyzing the statistical phenomena that occur during the prebreakdown stage in a gas discharge. Unlike other studies of breakdown in the discharge gap, in which secondary electron effects and photon processes at the electrodes must be considered, here the authors treat the case of an electrodeless rf discharge or a laser photoresonant plasma. The analysis is based on the balance between the rates of electron generation and recombination in the plasma. The fluctuation kinetics for ionization of atoms in the hot plasma may also play an important role when the electron temperature changes abruptly, as occurs during adiabatic pinching of the plasma or during electron cyclotron heating
Description of the Gas Transport through Dynamic Liquid Membrane.
Czech Academy of Sciences Publication Activity Database
Uchytil, Petr; Setničková, Kateřina; Tseng, H.-H.; Šíma, Vladimír; Petričkovič, Roman
2017-01-01
Roč. 184, AUG 31 (2017), s. 152-157 ISSN 1383-5866 Grant - others:AV ČR(CZ) MOST-16-04 Program:Bilaterální spolupráce Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * solurion-diffusion model Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 3.359, year: 2016
Hekmat, D; Feuchtinger, A; Stephan, M; Vortmeyer, D
2004-04-01
The dynamics of a multispecies biofilm population in a laboratory-scale trickle-bed bioreactor for the treatment of waste gas was examined. The model pollutant was a VOC-mixture of polyalkylated benzenes called Solvesso 100. Fluorescence in-situ hybridization (FISH) was applied in order to characterise the population composition. The bioreactor was operated under transient conditions by applying pollutant concentration shifts and a starvation phase. Only about 10% of the biofilm mass were cells, the rest consisted of extracellular polymeric substances (EPS). The average fraction of Solvesso 100-degrading cells during pollutant supply periods was less than 10%. About 60% of the cells were saprophytes and about 30% were inactive cells. During pollutant concentration shift experiments, the bioreactor performance adapted within a few hours. The biofilm population exhibited a dependency upon the direction of the shifts. The population reacted within days after a shift-down and within weeks after a shift-up. The pollutant-degraders reacted significantly faster compared to the other cells. During the long-term starvation phase, a shift of the population composition took place. However, this change of composition as well as the degree of metabolic activity was completely reversible. A direct correlation between the biodegradation rate of the bioreactor and the number of pollutant-degrading cells present in the biofilm could not be obtained due to insufficient experimental evidence.
Dynamical heterogeneity in a glass-forming ideal gas
Charbonneau, P.; Das, C.; Frenkel, D.
2008-01-01
We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel et al., Phys. Rev. Lett. 94, 135703 (2005)] we
Gas-dynamic effects in the interaction of a motionless optical pulsating discharge with gas
International Nuclear Information System (INIS)
Tishchenko, V N; Grachev, G N; Smirnov, A L; Pavlov, A A; Pavlov, A A; Golubev, M P
2008-01-01
The effect of energy removal from the combustion zone of a motionless optical pulsating discharge in the horizontal direction along the axis of a repetitively pulsed laser beam producing the discharge is discovered. The directivity diagram of a hot gas flow is formed during the action of hundreds of pulses. The effect is observed for short pulse durations, when the discharge efficiently generates shock waves. For long pulse durations, the heated gas propagates upward, as in a thermal source. (laser applications and other topics in quantum electronics)
Shale Gas in Poland: an Analysis of Tax Mechanisms and Dynamic Interactions
Directory of Open Access Journals (Sweden)
Dawid Walentek
2016-12-01
Full Text Available This is a preliminary research into possible taxation mechanisms for firms that will be operating in the shale gas industry in Poland and potential market interactions between the incumbents and the entrants. The study places focus on the level of welfare and it includes a static and a dynamic analysis. The result of the former is that the lump sum tax is the first best of all considered tax mechanisms for the Polish shale gas from the welfare perspective. The second best option for taxation is a combination of the current CIT rate and a windfall profit tax. In respect to the dynamic analysis, the results suggest that Gazprom can remain the market leader in Poland even if the shale gas producers start to operate, due to the sequential character of the competition in the Polish natural gas market. Counterintuitively, it will not come at the expenses of the consumers in Poland and it can bring potential welfare gains
The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas
Energy Technology Data Exchange (ETDEWEB)
Arima, Takashi, E-mail: arima@kanagawa-u.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Barbera, Elvira, E-mail: ebarbera@unime.it [Department of Mathematics and Computer Science, University of Messina, V.le F. D' Alcontres 31, 98166 Messina (Italy); Brini, Francesca, E-mail: francesca.brini@unibo.it [Department of Mathematics, University of Bologna, via Saragozza 8, 40123 Bologna (Italy); Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)
2014-07-18
The effect of the dynamic pressure (non-equilibrium pressure) on stationary heat conduction in a rarefied polyatomic gas at rest is elucidated by the theory of extended thermodynamics. It is shown that this effect is observable in a non-polytropic gas. Numerical studies are presented for a para-hydrogen gas as a typical example. - Highlights: • Heat transfer problem in polyatomic rarefied gases is studied in different domains. • Non-zero dynamic pressure is predicted in non-polytropic gases. • The effect of dynamic pressure can be observed indirectly in an experiment. • The case of para-hydrogen is analyzed as an example. • Navier–Stokes, Fourier, and Extended Thermodynamics predictions are compared.
Lateral Dynamics of Flexible Rotors Supported by Controllable Gas Bearings Theory & Experiment
DEFF Research Database (Denmark)
Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar
2015-01-01
Active gas bearings might represent a mechatronic answer to the growing industrial need for high performance turbomachinery. In this framework, the paper gives a theoretical and experimental contribution to the improvement of lateral dynamics of rotating machines. The work aims at demonstrating...... theoretically as well as experimentally the feasibility of applying active lubrication to gas journal bearings. The operation principle is to generate active forces by regulating the radial injection of a compressible lubricant (gas) by means of piezoelectric actuators mounted on the back of the bearing sleeve....... The active control principle is built using eddy-current sensor signals to detect the lateral motion of the rotor. A feedback law is used to couple the lateral dynamics of a flexible rotor-bearing system with the pneumatic and dynamic characteristics of a piezoelectric actuated valve system. A proportional...
Dynamic Modeling and Analysis of an Industrial Gas Suspension Absorber for Flue Gas Desulfurization
DEFF Research Database (Denmark)
Cignitti, Stefano; Mansouri, Seyed Soheil; Sales-Cruz, Mauricio
2016-01-01
parameters were fitted to operational data from a real cement plant. A detailed statistical analysis of the parameter estimation procedure was performed, and the confidence intervals for estimated kinetic parameters were calculated. The model and reaction rate expression prediction ability was tested using...... another plant data set. It was verified that in spite of the simplicity of the model, very good prediction of industrial behavior was obtained. Furthermore, the dynamic analysis of the system was performed by carrying out open-loop and closed-loop simulations to verify plant dynamics. Therefore, a simple...... dynamic model with a reaction rate expression that is simple and efficient to use to predict the dynamics of GSA process was proposed in this work....
Study of Influencing Factors of Dynamic Measurements Based on SnO2 Gas Sensor
Directory of Open Access Journals (Sweden)
Jinhuai Liu
2004-08-01
Full Text Available Abstract: The gas-sensing behaviour based on a dynamic measurement method of a single SnO2 gas sensor was investigated by comparison with the static measurement. The influencing factors of nonlinear response such as modulation temperature, duty ratio, heating waveform (rectangular, sinusoidal, saw-tooth, pulse, etc. were also studied. Experimental data showed that temperature was the most essential factor because the changes of frequency and heating waveform could result in the changes of temperature essentially.
Application of advanced data reduction methods to gas turbine dynamic analysis
International Nuclear Information System (INIS)
Juhl, P.B.
1978-01-01
This paper discusses the application of advanced data reduction methods to the evaluation of dynamic data from gas turbines and turbine components. The use of the Fast Fourier Transform and of real-time spectrum analyzers is discussed. The use of power spectral density and probability density functions for analyzing random data is discussed. Examples of the application of these modern techniques to gas turbine testing are presented. The use of the computer to automate the data reduction procedures is discussed. (orig.) [de
Quantum quench dynamics of the attractive one-dimensional Bose gas via the coordinate Bethe ansatz
Directory of Open Access Journals (Sweden)
Jan C. Zill, Tod M. Wright, Karen V. Kheruntsyan, Thomas Gasenzer, Matthew J. Davis
2018-02-01
Full Text Available We use the coordinate Bethe ansatz to study the Lieb-Liniger model of a one-dimensional gas of bosons on a finite-sized ring interacting via an attractive delta-function potential. We calculate zero-temperature correlation functions for seven particles in the vicinity of the crossover to a localized solitonic state and study the dynamics of a system of four particles quenched to attractive interactions from the ideal-gas ground state. We determine the time evolution of correlation functions, as well as their temporal averages, and discuss the role of bound states in shaping the postquench correlations and relaxation dynamics.
Study on flow characteristics of chemically reacting liquid jet
International Nuclear Information System (INIS)
Hong Seon Dae; Okamoto, Koji; Takata, Takashi; Yamaguchi, Akira
2004-07-01
Tube rupture accidents in steam generators of sodium-cooled fast breeder reactors are important for safety because the rupture may propagates to neighboring tubes due to sodium-water reaction. In order to clarify the thermal-hydraulic phenomena in the accidents, the flow pattern and the interface in multi-phase flow must be investigated. The JNC cooperative research scheme on the nuclear fuel cycle with the University of Tokyo has been carried to develop a simultaneous measurement system of concentration and velocity profiles and to evaluate influence of chemical reaction on mixing phenomena. In the experiments, aqueous liquor of acetic acid and ammonium hydroxide are selected as a simulant fluid instead of liquid sodium and water vapor. The following conclusions are obtained in this research. Laser Induced Fluorescence (LIF) technique was adopted to measure reacting zone and pH distribution in chemically reacting liquid round free jet. As a result, it was found that the chemical reaction, which took place at the interface between the jet and outer flow, suppressed the mixing phenomenon (in 2001 research). Dynamic Particle Image Velocimetry (PIV) method was developed to measure instantaneous velocity profile with high temporal resolution. In the Dynamic PIV, a high-speed video camera coupled with a high-speed laser pulse generator was implemented. A time-line trend of interfacial area in the free jet was investigated with the Dynamic PIV. This technique was also applied to a complicated geometry (in 2002 research). A new algorithms for image analysis was developed to evaluated the Dynamic PIV data in detail. The characteristics of the mixing phenomenon with reacting jet such as the turbulent kinetic energy and the Reynolds stress were estimated in a spatial and temporal spectrum (in 2003 research). (author)
Vectorization of a Monte Carlo simulation scheme for nonequilibrium gas dynamics
Boyd, Iain D.
1991-01-01
Significant improvement has been obtained in the numerical performance of a Monte Carlo scheme for the analysis of nonequilibrium gas dynamics through an implementation of the algorithm which takes advantage of vector hardware, as presently demonstrated through application to three different problems. These are (1) a 1D standing-shock wave; (2) the flow of an expanding gas through an axisymmetric nozzle; and (3) the hypersonic flow of Ar gas over a 3D wedge. Problem (3) is illustrative of the greatly increased number of molecules which the simulation may involve, thanks to improved algorithm performance.
A Dynamic Model of the Combined Electricity and Natural Gas Markets
DEFF Research Database (Denmark)
Jenkins, Sandra; Annaswamy, Anuradha M.; Hansen, Jacob
2015-01-01
With the shale gas revolution, coal retirements, environmental regulations, and increasing renewable energy resources, the interdependency of natural gas and electricity has grown significantly. Interdependency challenges, such as mismatched market schedules and disparate market operations, require...... quantitative modeling in order to garner insights into the effectiveness of various solutions. In this paper, a quantitative model with a dynamic market mechanism is proposed to evaluate the effects of the fuel uncertainty of natural gas-fired power plants on Social Welfare. The results of the model show...
Calorimetry of non-reacting systems
McCullough, John P
2013-01-01
Experimental Thermodynamics, Volume 1: Calorimetry of Non-Reacting Systems covers the heat capacity determinations for chemical substances in the solid, liquid, solution, and vapor states, at temperatures ranging from near the absolute zero to the highest at which calorimetry is feasible.This book is divided into 14 chapters. The first four chapters provide background information and general principles applicable to all types of calorimetry of non-reacting systems. The remaining 10 chapters deal with specific types of calorimetry. Most of the types of calorimetry treated are developed over a c
Reacting plasma project at IPP Japan
International Nuclear Information System (INIS)
Miyahara, A.; Momota, H.; Hamada, Y.; Kawamura, K.; Akimune, H.
1981-01-01
Contributed papers of the seminar on burning plasma held at UCLA are collected. Paper on ''overview of reacting plasma project'' described aim and philosophy of R-Project in Japan. Paper on ''Burning plasma and requirements for design'' gave theoretical aspect of reacting plasma physics while paper on ''plasma container, heating and diagnostics'' treated experimental aspect. Tritium handling is essential for the next step experiment; therefore, paper on ''Tritium problems in burning plasma experiments'' took an important part of this seminar. As appendix, paper on ''a new type of D - ion source using Si-semiconductor'' was added because such an advanced R and D work is essential for R-Project. (author)
Future evolution of the liberalised European gas market: Simulation results with a dynamic model
International Nuclear Information System (INIS)
Lise, Wietze; Hobbs, Benjamin F.
2008-01-01
Strategic behaviour by gas producers is likely to affect future gas prices and investments in the European Union (EU). To analyse this issue, a computational game theoretic model is presented that is based on a recursive-dynamic formulation. This model addresses interactions among demand, supply, pipeline and liquefied natural gas (LNG) transport, storage and investments in the natural gas market over the period 2005-2030. Three market scenarios are formulated to study the impact of producer market power. In addition, tradeoffs among investments in pipelines, LNG liquefaction and regasification facilities, and storage are explored. The model runs indicate that LNG can effectively compete with pipelines in the near future. Further, significant decreases in Cournot prices between 2005 and 2010 indicate that near-term investments in EU gas transport capacity are likely to diminish market power by making markets more accessible. (author)
Gas dynamics considerations in a non-invasive profile monitor for charged particle beams
Tzoganis, Vasilis; Welsch, Carsten P
2014-01-01
A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.
Future evolution of the liberalised European gas market: Simulation results with a dynamic model
Energy Technology Data Exchange (ETDEWEB)
Lise, Wietze [IBS Research and Consultancy, Aga Han, Agahamami Cadessi 1/6, Cihangir, 34433 Beyoglu, Istanbul (Turkey); Energy Markets and International Environmental Policy group, ECN Policy Studies, Energy Research Centre of the Netherlands, Amsterdam (Netherlands); Hobbs, Benjamin F. [Department of Geography and Environmental Engineering, The Johns Hopkins University, Ames Hall 313, 3400 North Charles Street, Baltimore, MD 21218 (United States)
2008-07-15
Strategic behaviour by gas producers is likely to affect future gas prices and investments in the European Union (EU). To analyse this issue, a computational game theoretic model is presented that is based on a recursive-dynamic formulation. This model addresses interactions among demand, supply, pipeline and liquefied natural gas (LNG) transport, storage and investments in the natural gas market over the period 2005-2030. Three market scenarios are formulated to study the impact of producer market power. In addition, tradeoffs among investments in pipelines, LNG liquefaction and regasification facilities, and storage are explored. The model runs indicate that LNG can effectively compete with pipelines in the near future. Further, significant decreases in Cournot prices between 2005 and 2010 indicate that near-term investments in EU gas transport capacity are likely to diminish market power by making markets more accessible. (author)
Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics
International Nuclear Information System (INIS)
Bernstein-Cooper, Elijah Z.; Pardy, Stephen A.; Cannon, John M.
2014-01-01
We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V c =15 ± 5 km s –1 . Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s –1 and 10.1 ± 1.2 km s –1 , corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.
Gas dynamics, optics and chemistry of an aircraft condensable wake
Energy Technology Data Exchange (ETDEWEB)
Grinats, E.S.; Kashevarov, A.V.; Stasenko, A.L. [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)
1997-12-31
Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.
Fluid dynamics and mass transfer in a gas centrifuge
International Nuclear Information System (INIS)
Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.
1982-01-01
The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)
Gas dynamics, optics and chemistry of an aircraft condensable wake
Energy Technology Data Exchange (ETDEWEB)
Grinats, E S; Kashevarov, A V; Stasenko, A L [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)
1998-12-31
Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.
Raman study of vibrational dynamics of aminopropylsilanetriol in gas phase
Volovšek, V.; Dananić, V.; Bistričić, L.; Movre Šapić, I.; Furić, K.
2014-01-01
Raman spectrum of aminopropylsilanetriol (APST) in gas phase has been recorded at room temperature in macro chamber utilizing two-mirror technique over the sample tube. Unlike predominantly trans molecular conformation in condensed phase, the spectra of vapor show that the molecules are solely in gauche conformation with intramolecular hydrogen bond N⋯Hsbnd O which reduces the molecular energy in respect to trans conformation by 0.152 eV. The assignment of the molecular spectra based on the DFT calculation is presented. The strong vibrational bands at 354 cm-1, 588 cm-1 and 3022 cm-1 are proposed for verifying the existence of the ring like, hydrogen bonded structure. Special attention was devoted to the high frequency region, where hydrogen bond vibrations are coupled to stretchings of amino and silanol groups.
Bubble coalescence dynamics and supersaturation in electrolytic gas evolution
Energy Technology Data Exchange (ETDEWEB)
Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.
1996-08-01
The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.
A system dynamic model for production and consumption policy in Iran oil and gas sector
International Nuclear Information System (INIS)
Kiani, Behdad; Ali Pourfakhraei, Mohammad
2010-01-01
A system dynamic model is presented, which considers the feedback between supply and demand and oil revenue of the existing system in Iran considering different sectors of the economy. Also the export of the oil surplus and the injection of the gas surplus into the oil reservoirs are seen in the model by establishing a balance between supply and demand. In this model the counter-effects and existing system feedbacks between supply and demand and oil revenue can be seen considering different sectors of the economy. As a result, the effects of oil and gas policies in different scenarios for different sectors of Iran's economy together with the counter-effects of energy consumption and oil revenue are examined. Three scenarios, which show the worst, base and ideal cases, are considered to find future trends of major variables such as seasonal gas consumption in power plants, seasonal injected gas in oil reservoirs, economic growth in the industrial sector, oil consumption in the transportation sector, industrial gas consumption and exported gas. For example, it is shown that the exported gas will reach between 500 and 620 million cubic-meter per day in different scenarios and export revenues can reach up to $500 billion by 2025. - Research Highlights: →A system dynamic model analyzing the feedback between supply, demand and oil revenue is built. →The export of the oil surplus and the injection of the gas surplus into oil reservoirs are modeled. →Effects of oil and gas policies in different scenarios are examined for Iran's economy. →Counter-effects of energy consumption and oil revenue are examined. →Exported gas will reach between 500 and 620 million cubic-meter per day in different scenarios. →Export revenues can reach up to $500 billion by 2025.
Topological phase transition in the quench dynamics of a one-dimensional Fermi gas
Wang, Pei; Yi, Wei; Xianlong, Gao
2014-01-01
We study the quench dynamics of a one-dimensional ultracold Fermi gas in an optical lattice potential with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of t...
Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct
Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.
1994-01-01
A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.
Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles
Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-01-01
The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.
Dynamics of a hot (T∼107 K) gas cloud with volume energy losses
International Nuclear Information System (INIS)
Suchkov, A.A.; Berman, V.G.; Mishurov, Yu.N.
1987-01-01
The dynamics of a hot (T=10 6 -5x10 7 K) gas cloud with volume energy losses is investigated by numerical integration of gas dynamics equations. The dynamics is governed by a spherically symmetric gravitational field of the cloud and additional ''hidden'' mass. The cloud mass is taken in the range M 0 =10 10 -10 12 M sun , its radius R 0 =50-200 kpc, the ''hidden'' mass M ν =10 11 -3x10 13 M sun . The results show that in such sytems a structure can develop in the form of a dense compact nucleus with a radius R s 0 , and an extended rarefied hot envelope with a radius R X ∼ R 0 . Among the models involved are those where the gas cloud is either entirely blown up or entirely collapses; in some models, after the phase of initial expansion, part of the gas mass returns back into the system to form a nucleus and an envelope, and the other part leaves the system. The results are discussed in connection with the formation and early evolution of galaxies, the history of star formation and chemical evolution of galaxies, the origin of hot gas in galaxies and clusters of galaxies. It is suggested that in the real history of galaxies, formation of the nucleus and envelope corresponds to formation of galactic stellar component and X-ray halo
Modelling dynamic liquid-gas systems: Extensions to the volume-of-fluid solver
CSIR Research Space (South Africa)
Heyns, Johan A
2013-06-01
Full Text Available This study presents the extension of the volume-of-fluid solver, interFoam, for improved accuracy and efficiency when modelling dynamic liquid-gas systems. Examples of these include the transportation of liquids, such as in the case of fuel carried...
Comparison of molecular dynamics and kinetic modeling of gas-surface interactions
Frezzotti, A.; Gaastra - Nedea, S.V.; Markvoort, A.J.; Spijker, P.; Gibelli, L.
2008-01-01
The interaction of a dilute monatomic gas with a solid surface is studied byMolecular Dynamics (MD) simulations and by numerical solutions of a recently proposed kinetic model. Following previous investigations, the heat transport between parallel walls and Couette flow have been adopted as test
Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels
Markvoort, Albert. J.; Hilbers, P.A.J.; Nedea, S.V.
2005-01-01
Especially at the nanometer scale interfaces play an important role. The effect of the wettability on the solid-liquid interface has already been studied with molecular dynamics. In this paper we study the dependence of wetting on the solid-gas interface for different density gases and investigate
Automotive exhaust gas conversion: from elementary step kinetics to prediction of emission dynamics
Hoebink, J.H.B.J.; Harmsen, J.M.A.; Balenovic, M.; Backx, A.C.P.M.; Schouten, J.C.
2001-01-01
Elementary step based kinetics show a high added value to describe the performance of catalytic exhaust gas converters under dynamic conditions, as demonstrated with a Euro test cycle. Combination of such kinetic models for individual global reactions covers the mutual interactions via common
Emergent dynamic structures and statistical law in spherical lattice gas automata
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law
Wei Cai; Yanyan Zhang
2016-01-01
We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.
Emergent dynamic structures and statistical law in spherical lattice gas automata.
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles
Bolesta, A V; Sharafutdinov, M R; Tolochko, B P
2001-01-01
An interface boundary occurring during cold gas dynamic spraying of aluminum particles on a nickel substrate has been studied by the method of X-ray grazing diffraction. Presence of boundary phase of the intermetallic compound Ni sub 3 Al was found.
Anisotropic relaxation dynamics in a dipolar Fermi gas driven out of equilibrium
DEFF Research Database (Denmark)
Aikawa, K.; Frisch, A.; Mark, M.
2014-01-01
We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in the lowest Zeeman sublevel. In this system, elastic...
Modeling and dynamic control simulation of unitary gas engine heat pump
International Nuclear Information System (INIS)
Zhao Yang; Haibo Zhao; Zheng Fang
2007-01-01
Based on the dynamic model of the gas engine heat pump (GEHP) system, an intelligent control simulation is presented to research the dynamic characteristics of the system in the heating operation. The GEHP system simulation model consists of eight models for its components including a natural gas engine, a compressor, a condenser, an expansion valve, an evaporator, a cylinder jacket heat exchanger, an exhaust gas heat exchanger and an auxiliary heater. The intelligent control model is composed of the prediction controller model and the combined controller model. The Runge-Kutta Fehlberg fourth-fifth order algorithms are used to solve the differential equations. The results show that the model is very effective in analyzing the effects of the control system, and the steady state accuracy of the intelligent control scheme is higher than that of the fuzzy controller
Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond
Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei
2017-12-01
Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.
FIRST OPERATING RESULTS OF A DYNAMIC GAS BEARING TURBINE IN AN INDUSTRIAL HYDROGEN LIQUEFIER
International Nuclear Information System (INIS)
Bischoff, S.; Decker, L.
2010-01-01
Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.
Dynamics and adsorption of gas molecules using proton beams
International Nuclear Information System (INIS)
Kim, J. Y.; Kim, E. K.; Lee, J. K.
2008-04-01
We irradiated nano sized MgO powders and carbon nanotubes by proton beams with energy of 35 MeV for different dosing time and the difference before and after the irradiation was investigated by using NO and Ar gas adsorptions studies. Particular interest was given to the irradiation of proton beams on quasicrystals made with Ti-Zr-Ni to remove the oxygen layer on the surface of the sample. Quasicrystals are known to exhibit a 5-fold rotational symmetry which is theoretically forbidden in a concept of solid state physics, and have a potential applications on large amount of hydrogen loading due to their structural complexity and chemical affinity with hydrogen. The results are summarized as four major accomplishments. 1) Proton irradiated MgO powders demonstrated the increased number of NO atomic layers in a layer-by-layer fashion suggesting that the surface of the sample became homogeneous compare to the pure samples. 2) the synchrotron based X-ray diffraction data suggests that NO molecules form an 1x1 commensurate structure on MgO (100) surface evidenced by the NO peak location at the Q values of 2.12 A -1 . 3) Proton irradiated SWCNTs exhibit the uniform Ar atomic layer formation suggesting that the surface of the CNTs can be homonized by the proton beam irradiation, and 4) 20 MeV of proton beam can effectively remove the oxygen layer on metal oxides so that Ti-Zr-Ni quasicrystals can load a large amount of hydrogen (exceeding to the density of liquid hydrogen) at room temperature.
The effect of gas dynamics on semi-analytic modelling of cluster galaxies
Saro, A.; De Lucia, G.; Dolag, K.; Borgani, S.
2008-12-01
We study the degree to which non-radiative gas dynamics affect the merger histories of haloes along with subsequent predictions from a semi-analytic model (SAM) of galaxy formation. To this aim, we use a sample of dark matter only and non-radiative smooth particle hydrodynamics (SPH) simulations of four massive clusters. The presence of gas-dynamical processes (e.g. ram pressure from the hot intra-cluster atmosphere) makes haloes more fragile in the runs which include gas. This results in a 25 per cent decrease in the total number of subhaloes at z = 0. The impact on the galaxy population predicted by SAMs is complicated by the presence of `orphan' galaxies, i.e. galaxies whose parent substructures are reduced below the resolution limit of the simulation. In the model employed in our study, these galaxies survive (unaffected by the tidal stripping process) for a residual merging time that is computed using a variation of the Chandrasekhar formula. Due to ram-pressure stripping, haloes in gas simulations tend to be less massive than their counterparts in the dark matter simulations. The resulting merging times for satellite galaxies are then longer in these simulations. On the other hand, the presence of gas influences the orbits of haloes making them on average more circular and therefore reducing the estimated merging times with respect to the dark matter only simulation. This effect is particularly significant for the most massive satellites and is (at least in part) responsible for the fact that brightest cluster galaxies in runs with gas have stellar masses which are about 25 per cent larger than those obtained from dark matter only simulations. Our results show that gas dynamics has only a marginal impact on the statistical properties of the galaxy population, but that its impact on the orbits and merging times of haloes strongly influences the assembly of the most massive galaxies.
Parametric study on ship’s exhaust-gas behavior using computational fluid dynamics
Directory of Open Access Journals (Sweden)
Sunho Park
2017-01-01
Full Text Available The influence of design parameters related to a ship’s exhaust-gas behavior was investigated using computational fluid dynamics (CFD for an 8,000 TEU container carrier. To verify the numerical methods, the results were studied by comparing with experimental results. Several test conditions, i.e. various load conditions of ship, wind angle, deckhouse breadth, radar mast height, and exhaust-pipe height and shape were considered for a ship’s exhaust gas flow around the 8,000 TEU container carrier. The influence of the design parameters on contamination by the exhaust gas was quantified, after which the principal parameters to avoid contamination were selected. Finally, the design guideline of yP/H = 2 was suggested to avoid the contamination from the ship’s exhaust gas using the CFD results, model tests, and sea trials.
A constitutive theory of reacting electrolyte mixtures
Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto
2013-11-01
A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).
Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics
Energy Technology Data Exchange (ETDEWEB)
Bernstein-Cooper, Elijah Z.; Pardy, Stephen A. [Department of Astronomy, University of Wisconsin, 475 N Charter Street, Madison, WI 53706 (United States); Cannon, John M., E-mail: ezbc@astro.wisc.edu, E-mail: spardy@astro.wisc.edu, E-mail: jcannon@macalester.edu [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); and others
2014-08-01
We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V {sub c} =15 ± 5 km s{sup –1}. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s{sup –1} and 10.1 ± 1.2 km s{sup –1}, corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.
Nonlinear Krylov acceleration of reacting flow codes
Energy Technology Data Exchange (ETDEWEB)
Kumar, S.; Rawat, R.; Smith, P.; Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)
1996-12-31
We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.
The real gas dynamics of the fluids of high specific heat
International Nuclear Information System (INIS)
Meier, G.E.A.
1987-01-01
The gas dynamics of real fluids show several new effects beyond the gas dynamics of ideal substances. Many of these effects rely on phase changes in the flow fields and can be explained with the help of more complicated thermal and caloric state equations of the real fluids. Complete adiabatic liquefaction and evaporation are possible for those substances whose specific heat exceeds a limit of about twenty gas constants. These fluids consisting of great molecules have so much internal energy storage capacity in their numerous vibrational degrees of freedom that the heat of evaporation can be supplied or also stored in the case of condensation. So liquefaction shock waves, which transform a gas completely or partly into a liquid, are possible. The shock front becomes thereby the surface of a liquid. Partial liquefaction with droplet condensation occurs in weaker shock waves. On the other hand a superheated liquid with high specific heat can be changed into a gas or mixture state in expansion waves or flows. (orig.)
MULTI-CRITERIA EVALUATION OF THE EXPANSION OF NATURAL GAS DISTRIBUTION NETWORK BY THE URBAN DYNAMICS
Directory of Open Access Journals (Sweden)
Vanessa M. Massara
2010-01-01
Full Text Available The objective of this work is to analyze the expansion of the infrastructure of natural gas distribution, identifying priorities from large metropolis using the energy planning based on urban design tools like urban dynamics and techniques like AHP (analytic hierarchy process. The methodology proposed uses matrices considering the relations between the concept of urban dynamics, quality of life and the possibilities of natural gas displacing other energy forms. The matrices are made up of information about social and urban development, costs of establishing the infrastructure and projections of the consumption potential in various sectors. Relating the consumption to urban development parameters and the real estate future of the areas in study, the methodology allows indicating for each district, the viability of implementing a gas network. As conclusion, the model presents the integration between the cities profile and the natural gas use, by means of a growth natural gas on districts of São Paulo City as a specific case study.
Dynamic Gas Flow Effects on the ESD of Aerospace Vehicle Surfaces
Hogue, Michael D.; Kapat, Jayanta; Ahmed, Kareem; Cox, Rachel E.; Wilson, Jennifer G.; Calle, Luz M.; Mulligan, Jaysen
2016-01-01
The purpose of this work is to develop a dynamic version of Paschen's Law that takes into account the flow of ambient gas past aerospace vehicle surfaces. However, the classic Paschen's Law does not take into account the flow of gas of an aerospace vehicle, whose surfaces may be triboelectrically charged by dust or ice crystal impingement, traversing the atmosphere. The basic hypothesis of this work is that the number of electron-ion pairs created per unit distance by the electric field between the electrodes is mitigated by the electron-ion pairs removed per unit distance by the flow of gas. The revised Paschen equation must be a function of the mean velocity, v(sub xm), of the ambient gas and reduces to the classical version of Paschen's law when the gas mean velocity, v(sub xm) = 0. New formulations of Paschen's Law, taking into account Mach number and dynamic pressure, derived by the authors, will be discussed. These equations will be evaluated by wind tunnel experimentation later this year. Based on the results of this work, it is hoped that the safety of aerospace vehicles will be enhanced with a redefinition of electrostatic launch commit criteria. It is also possible that new products, such as new anti-static coatings, may be formulated from this data.
Observation of Dynamical Super-Efimovian Expansion in a Unitary Fermi Gas
Deng, Shujin; Diao, Pengpeng; Li, Fang; Yu, Qianli; Yu, Shi; Wu, Haibin
2018-03-01
We report an observation of a dynamical super Efimovian expansion in a strongly interacting Fermi gas by engineering time dependent external harmonic trap frequencies. When the trap frequency is tailored as [1 /4 t2+1 /t2λ log2(t /t*)]1/2, where t* and λ are two controllable parameters, and the change is faster than a critical value, the expansion of such a quantum gas shows novel dynamics that share the same characteristics as the super Efimov effect. A clear double-log periodicity with discrete geometric scaling emerges for the cloud size in the expansion. The universality of such scaling dynamics is verified both in the noninteracting and in the unitarity limit of Fermi gas. Moreover, the measured energy scaling reveals that the potential and internal energy also show double-log periodicity with a π /2 phase difference, but the total energy is monotonically decreased. Observing super Efimovian evolution represents a paradigm in probing universal properties and allows us in a new way to study many-body nonequilibrium dynamics with experiments.
A time-dependent dusty gas dynamic model of axisymmetric cometary jets
International Nuclear Information System (INIS)
Korosmezey, A.; Gombosi, T.I.
1990-01-01
The present time-dependent, axisymmetric dusty gas dynamical model of inner cometary atmospheres solves the coupled and time-dependent equations of continuity, momentum, and energy for a gas-dust mixture between the surface of the nucleus and 100 km, using an axisymmetric 40 x 40 grid structure. A novel numerical method employing a second-order accurate Godunov-type scheme with dimensional splitting is used to solve the time-dependent pde system. It is established that a subsolar dust spike not predicted by previous calculations is generated by narrow axisymmetric jets, together with a jet cone whose opening angle depends on the jet length. 28 refs
Integrated transport code system for a multicomponent plasma in a gas dynamic trap
International Nuclear Information System (INIS)
Anikeev, A.V.; Karpushov, A.N.; Noak, K.; Strogalova, S.L.
2000-01-01
This report is focused on the development of the theoretical and numerical models of multicomponent high-β plasma confinement and transport in the gas-dynamic trap (GDT). In order to simulate the plasma behavior in the GDT as well as that in the GDT-based neutron source the Integrated Transport Code System is developed from existing stand-alone codes calculating the target plasma, the fast ions and the neutral gas in the GDT. The code system considers the full dependence of the transport phenomena on space, time, energy and angle variables as well as the interactions between the particle fields [ru
A dynamic model of gas flow in a non-uniform pipe
International Nuclear Information System (INIS)
Mensah, S.; Lepp, R.M.
1979-08-01
A gas-line model, based on the analysis of compressible flow with friction, has been developed to describe the dynamics of gas flow in a non-uniform line, i.e. one comprising segments of different lengths and diameters. Acoustic wave analysis was used in a novel way, by considering the line as a cascaded connection of uniform pipes separated by discontinuities. The transmission matrix representing this non-uniform line is the product of the matrices for each element in the system. To facilitate implementation of the theoretical model on a hybrid computer, modal approximatons to its transfer functions were derived. Both models were validated against experimental data. (author)
Dynamic structure factor of the normal Fermi gas from the collisionless to the hydrodynamic regime
International Nuclear Information System (INIS)
Watabe, Shohei; Nikuni, Tetsuro
2010-01-01
The dynamic structure factor of a normal Fermi gas is investigated by using the moment method for the Boltzmann equation. We determine the spectral function at finite temperatures over the full range of crossover from the collisionless regime to the hydrodynamic regime. We find that the Brillouin peak in the dynamic structure factor exhibits a smooth crossover from zero to first sound as functions of temperature and interaction strength. The dynamic structure factor obtained using the moment method also exhibits a definite Rayleigh peak (ω∼0), which is a characteristic of the hydrodynamic regime. We compare the dynamic structure factor obtained by the moment method with that obtained from the hydrodynamic equations.
Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet
International Nuclear Information System (INIS)
Kelly, Seán; Golda, Judith; Schulz-von der Gathen, Volker; Turner, Miles M
2015-01-01
Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration. (paper)
Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet
Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker
2015-11-01
Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.
The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid
Pavlenko, Alexander
2011-06-01
The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.
Exploratory investigation of the HIPPO gas-jet target fluid dynamic properties
Energy Technology Data Exchange (ETDEWEB)
Meisel, Zach, E-mail: zmeisel@nd.edu [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shi, Ke; Jemcov, Aleksandar [Hessert Laboratory for Aerospace Research, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Couder, Manoel [Department of Physics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States)
2016-08-21
In order to optimize the performance of gas-jet targets for future nuclear reaction measurements, a detailed understanding of the dependence of the gas-jet properties on experiment design parameters is required. Common methods of gas-jet characterization rely on measuring the effective thickness using nuclear elastic scattering and energy loss techniques; however, these tests are time intensive and limit the range of design modifications which can be explored to improve the properties of the jet as a nuclear reaction target. Thus, a more rapid jet-characterization method is desired. We performed the first steps towards characterizing the gas-jet density distribution of the HIPPO gas-jet target at the University of Notre Dame's Nuclear Science Laboratory by reproducing results from {sup 20}Ne(α,α){sup 20}Ne elastic scattering measurements with computational fluid dynamics (CFD) simulations performed with the state-of-the-art CFD software ANSYS Fluent. We find a strong sensitivity to experimental design parameters of the gas-jet target, such as the jet nozzle geometry and ambient pressure of the target chamber. We argue that improved predictive power will require moving to three-dimensional simulations and additional benchmarking with experimental data.
Wang, Binbin; Socolofsky, Scott A; Lai, Chris C K; Adams, E Eric; Boufadel, Michel C
2018-06-01
Subsea oil well blowouts and pipeline leaks release oil and gas to the environment through vigorous jets. Predicting the breakup of the released fluids in oil droplets and gas bubbles is critical to predict the fate of petroleum compounds in the marine water column. To predict the gas bubble size in oil well blowouts and pipeline leaks, we observed and quantified the flow behavior and breakup process of gas for a wide range of orifice diameters and flow rates. Flow behavior at the orifice transitions from pulsing flow to continuous discharge as the jet crosses the sonic point. Breakup dynamics transition from laminar to turbulent at a critical value of the Weber number. Very strong pure gas jets and most gas/liquid co-flowing jets exhibit atomization breakup. Bubble sizes in the atomization regime scale with the jet-to-plume transition length scale and follow -3/5 power-law scaling for a mixture Weber number. Copyright © 2018 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Jianzhong Xiao
2017-01-01
Full Text Available Natural gas has an increasing role in Chinese energy transformation. We present a system dynamics model of the natural gas industry in China. A new system dynamics model for natural gas companies based on reserve exploration and well construction as well as investment dynamics is proposed. The contribution of the paper is to analyze the influence of technology, investment and policy factors on the natural gas industry. We found that the dynamics of the main variables, including gas policy, cost of investment, accounting depreciation and exploitation technology, are sensitive to the sustainable development of resources. The simulations and results presented here will be helpful for government to reform policies, and for upstream companies to make decisions.
Structure dynamics. Determination of the coupled relationships in solid-fluid-gas dynamics
International Nuclear Information System (INIS)
Hofmann, H.; Huber, A.; Naehring, T.; Bonakdarzadeh, S.; Faass, E.; Gaschen, J.P.; Kniffka, K.; Pilz, H.
1980-06-01
In the present paper the code concept SAN (Structure ANalysis) is presented. SAN is designed according to the modular principle using describing and coordinating modules. SAN is based on the discreetizing method. It uses compatible forms of description. The method of finite elements is applied. Solid-fluid-gas structures may be described as well as their interrelations in the linear and nonlinear region, including phase transitions with the associated descriptions of material and state. (orig./RW) [de
Collective dynamics in noble-gas and other very simple classical fluids
Directory of Open Access Journals (Sweden)
U.Bafile
2008-03-01
Full Text Available Rare gases and their liquids are the simplest systems to study for accurate investigations of the collective dynamics of fluid matter. Much work has been done using different spectroscopic techniques, molecular-dynamics simulations, and theoretical developments, in order to gain insight into the microscopic processes involved, in particular, in the propagation of acoustic excitations in gases and liquids. Here we briefly review the interpretation schemes currently applied to the characterization of such excitations, and recall a few results obtained from the analysis of rare-gas fluids and other very simple systems.
Molecular theory of mass transfer kinetics and dynamics at gas-water interface
International Nuclear Information System (INIS)
Morita, Akihiro; Garrett, Bruce C
2008-01-01
The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.
Energy Technology Data Exchange (ETDEWEB)
Christel, Wibke [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Department of Commerce, Industry and Agriculture, Danish Environmental Protection Agency, 1401 Copenhagen C (Denmark); Zhu, Kun [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193 (China); Hoefer, Christoph [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Kreuzeder, Andreas [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Land Salzburg, Natur- und Umweltschutz, Gewerbe (Abteilung 5), Michael-Pacher-Straße 36, 5020 Salzburg (Austria); Santner, Jakob [Rhizosphere Ecology and Biogeochemistry Group, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Bruun, Sander; Magid, Jakob [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jensen, Lars Stoumann, E-mail: lsj@plen.ku.dk [Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark)
2016-06-01
Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residuesphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O{sub 2} content and had emitted significantly more CO{sub 2} than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in
International Nuclear Information System (INIS)
Christel, Wibke; Zhu, Kun; Hoefer, Christoph; Kreuzeder, Andreas; Santner, Jakob; Bruun, Sander; Magid, Jakob; Jensen, Lars Stoumann
2016-01-01
Organic fertilisation inevitably leads to heterogeneous distribution of organic matter and nutrients in soil, i.e. due to uneven surface spreading or inhomogeneous incorporation. The resulting localised hotspots of nutrient application will induce various biotic and abiotic nutrient turnover processes and fixation in the residuesphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids were incubated for three weeks between layers of non-amended, P-depleted soil. Spatial and temporal changes in and around the amendment layers were simultaneously investigated in this study using a sandwich sensor consisting of a planar oxygen optode and multi-element diffusive gradients in thin films (DGT) gels, combined with GHG emission measurements. After three weeks of incubation, the soil containing a layer amended with manure solids had a lower overall O_2 content and had emitted significantly more CO_2 than the non-amended control or the char-amended soil. The P availability from manure solids was initially higher than that from the char, but decreased over time, whereas from the char-amended layer P availability increased in the same period. In both treatments, increases in P availability were confined to the amended soil layer and did not greatly affect P availability in the directly adjacent soil layers during the three-week incubation. These results highlight the importance of placing organic P fertilisers close to where the plant roots will grow in order to
Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander
International Nuclear Information System (INIS)
Wang Xuemin; Zhuang Ming; Zhang Qiyong; Li Shanshan; Fu Bao
2011-01-01
An experimental method is presented to analyze the dynamic stability of the gas bearing for small cryogenic turbo-expanders. The rotation imbalance response and the shape of the rotor orbit were obtained for different speeds up to 110,000 rpm, and the critical speed of the rotor-bearing system was determined by a Bode diagram. An FFT signal analytical method was applied to identify the resonance frequency, and the waterfall plot was presented. During the whole process of speeding up to the designed speed of 110,000 rpm, the rotor-bearing works stably with no whirl instability, which is validated in a waterfall plot. Also, the tested rotor-bearing model was analyzed theoretically. It was proved that the experimental results were highly consistent with those of theoretical calculations. Thus the experimental method proposed here to analyze the dynamic stability of the gas bearing is feasible. (fusion engineering)
Dynamic performance of power generation systems for off-shore oil and gas platforms
DEFF Research Database (Denmark)
Pierobon, Leonardo; Breuhaus, Peter; Haglind, Fredrik
2014-01-01
%) arises on the prediction of the rotational speed of the high pressure shaft, while the largest deviation (average relative error ~20%) occurs in the evaluation of the pressure at the outlet of the low pressure turbine. As waste heat recovery units (e.g. organic Rankine cycles) are likely...... to be implemented in future off-shore platforms, the proposed model may serve in the design phase for a preliminary assessment of the dynamic response of the power generation system and to evaluate if requirements such as minimum and maximum frequency during transient operation and the recovery time are satisfied......On off-shore oil and gas platforms two or more gas turbines typically support the electrical demand on site by operating as a stand-alone (island) power system. As reliability and availability are major concerns during operation, the dynamic performance of the power generation system becomes...
Effects of Gas Rarefaction on Dynamic Characteristics of Micro Spiral-Grooved Thrust Bearing.
Liu, Ren; Wang, Xiao-Li; Zhang, Xiao-Qing
2012-04-01
The effects of gas-rarefaction on dynamic characteristics of micro spiral-grooved-thrust-bearing are studied. The Reynolds equation is modified by the first order slip model, and the corresponding perturbation equations are then obtained on the basis of the linear small perturbation method. In the converted spiral-curve-coordinates system, the finite-volume-method (FVM) is employed to discrete the surface domain of micro bearing. The results show, compared with the continuum-flow model, that under the slip-flow regime, the decrease in the pressure and stiffness become obvious with the increasing of the compressibility number. Moreover, with the decrease of the relative gas-film-thickness, the deviations of dynamic coefficients between slip-flow-model and continuum-flow-model are increasing.
Comparison of 133Xe gas dynamic SPECT and thin-section CT in patients with pulmonary emphysema
International Nuclear Information System (INIS)
Takahashi, Kazue; Satoh, Katashi; Ohkawa, Motoomi
2001-01-01
We assessed 133 Xe gas dynamic single photon emission computed tomography (SPECT) by comparing washout axial images with thin-section CT (TSCT) in patients with pulmonary emphysema. Twenty-three patients were studied. All patients were diagnosed as having pulmonary emphysema on the basis of TSCT. We compared TSCT of upper, middle and lower lung fields with 133 Xe gas dynamic SPECT axial images at the corresponding levels during the 3 to 4 minutes of washout phase. If the degree of 133 Xe gas retention or TSCT finding of ventral and dorsal parts was not the same, the images were divided into two parts. A total of 174 lesions in 23 cases were examined, but 3 lesions having no retention of 133 Xe gas at equilibrium phase were excluded. The results showed that: there were 37 lesions (21.6%) with equivalent severity on both images; there were 42 lesions (24.5%) with more severity on 133 Xe gas dynamic SPECT than on TSCT; and there were 92 lesions (53.8%) with more severity on TSCT than on 133 Xe gas dynamic SPECT. The severity on 133 Xe gas dynamic SPECT and TSCT was not always compatible. One of the reasons for the variable 133 Xe gas retention even when the lesion had the same severity on TSCT, may be bronchial stricture which cannot be seen on TSCT. By comparison of axial images of 133 Xe gas dynamic SPECT with CT images, we could recognize the areas of 133 Xe gas retention in detail. Results suggest that 133 Xe gas dynamic SPECT can be useful to identify ventilation impairment in pulmonary emphysema. (author)
DEFF Research Database (Denmark)
Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian
2012-01-01
of the sulfite converter is short and typically within 2min. Dynamic mercury adsorption and oxidation tests on commercial activated carbons Darco Hg and HOK standard were performed at 150°C using simulated cement kiln gas and a fixed bed reactor system. It is shown that the converter and analyzer system...... are still under development and are investigated in this work. A commercial red brass converter was tested at 180°C and it was found that the red brass chips work in nitrogen atmosphere only, but do not work properly under simulated cement kiln flue gas conditions. Test of the red brass converter using only...... elemental mercury shows that when HCl is present with either SO2 or NOx the mercury measurement after the converter is unstable and lower than the elemental mercury inlet level. The conclusion is that red brass chips cannot fully reduce oxidized mercury to elemental mercury when simulated cement kiln gas...
ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.
2007-01-01
The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...
New Iterative Method for Fractional Gas Dynamics and Coupled Burger’s Equations
Directory of Open Access Journals (Sweden)
Mohamed S. Al-luhaibi
2015-01-01
Full Text Available This paper presents the approximate analytical solutions to solve the nonlinear gas dynamics and coupled Burger’s equations with fractional time derivative. By using initial values, the explicit solutions of the equations are solved by using a reliable algorithm. Numerical results show that the new iterative method is easy to implement and accurate when applied to time-fractional partial differential equations.
Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law
Directory of Open Access Journals (Sweden)
Wei Cai
2016-01-01
Full Text Available We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.
Dynamics of gas-phase transient species studied by dissociative photodetachment of molecular anions
Lu, Zhou
2007-01-01
Gas-phase transient species, such as the CH₃CO₂ and HOCO free radicals, play important roles in combustion and environment chemistry. In this thesis work, the dynamics of these two radicals were studied by dissociative photodetachment (DPD) of the negative ions, CH₃CO₂-С and HOCO⁻, respectively. The experiments were carried out with a fast-ion-beam photoelectron-photofragment coincidence (PPC) spectrometer. Mass-selected molecular anions in a fast ion beam were intercepted by a linearly polar...
Steady-state and dynamic analysis of a jet engine, gas lubricated shaft seal
Shapiro, W.; Colsher, R.
1974-01-01
Dynamic response of a gas-lubricated, jet-engine main shaft seal was analytically established as a function of collar misalignment and secondary seal friction. Response was obtained by a forward integration-in-time (time-transient) scheme, which traces a time history of seal motions in all its degrees of freedom. Results were summarized in the form of a seal tracking map which indicated regions of acceptable collar misalignments and secondary seal friction. Methodology, results and interpretations are comprehensively described.
Effects of Gas Rarefaction on Dynamic Characteristics of Micro Spiral-Grooved Thrust Bearing
Liu, Ren; Wang, Xiao-Li; Zhang, Xiao-Qing
2012-01-01
The effects of gas-rarefaction on dynamic characteristics of micro spiral-grooved-thrust-bearing are studied. The Reynolds equation is modified by the first order slip model, and the corresponding perturbation equations are then obtained on the basis of the linear small perturbation method. In the converted spiral-curve-coordinates system, the finite-volume-method (FVM) is employed to discrete the surface domain of micro bearing. The results show, compared with the continuum-flow model, that ...
2016-06-01
Champagne have demonstrated this use of the cold spray technique in the repair of helicopter mast supports in U.S. Army aircraft, with over 50...Process: Fundamentals and Applications, Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 3. [3] Schiel, J. F., 2014, “The cold gas-dynamic spray... Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 2. [15] Han, W., Meng, X. M., Zhang, J. B., and Zhao, J., 2012, “Elastic modulus of 304 stainless
The dynamic characteristics of HTGR (High Temperature Gas Cooled Reactor) system, (2)
International Nuclear Information System (INIS)
Kudo, Kazuhiko; Ohta, Masao; Kawasaki, Hidenori
1979-01-01
The dynamic characteristics of a HTGR plant, which has two cooling loops, was investigated. The analytical model consists of the core with fuel sleeves, coolant channels and blocks, the upper and lower reflectors, the high and low temperature plenums, two double wall pipings, two intermediate heat exchangers and the secondary system. The key plant parameters for calculation were as follows: the core outlet gas temperature 1000 deg C, the reactor thermal output 50 MW, the flow rate of primary coolant gas 7.96 kg/sec-loop and the pressure of primary coolant gas 40 kg/cm 2 at the rated operating condition. The calculating parameters were fixed as follows: the time interval for core characteristic analysis 0.1 sec, the time interval for thermal characteristic analysis 5.0 sec, the number of division of fuel channels 130, and the number of division of an intermediate heat exchanger 200. The assumptions for making the model were evaluated especially for the power distribution in the core and the heat transmission coefficients in the core, the double wall piping and the intermediate heat exchangers. Concerning the analytical results, the self-control to the outer disturbance of reactivity and the plant dynamic behavior due to the change of flow rate of primary and secondary coolants, and the change of gas temperature of secondary coolant at the inlet of intermediate heat exchangers, are presented. (Nakai, Y.)
Gas phase collision dynamics by means of pulse-radiolysis methods
International Nuclear Information System (INIS)
Hatano, Yoshihiko
1989-01-01
After a brief survey of recent advances in gas-phase collision dynamics studies using pulse radiolysis methods, the following two topics in our research programs are presented with emphasis on the superior advantages of the pulse radiolysis methods over the various methods of gas-phase collision dynamics, such as beam methods, swarm methods and flow methods. One of the topics is electron attachment to van der Waals molecules. The attachment rates of thermal electrons to O 2 and other molecules in dense gases have been measured in wide ranges of both gas temperatures and pressures, from which experimental evidence has been obtained for electron attachment to van der Waals molecules. The results have been compared with theories and discussed in terms of the effect of van der Waals interaction on the electron attachment resonance. The obtained conclusions have been related with investigations of electron attachment, solvation and localization in the condensed phase. The other is Penning ionization and its related processes. The rate constants for the de-excitation of He(2 1 P), He(2 3 S), Ne( 3 P 0 ), Ne( 3 P 1 ), Ne( 3 P 2 ), Ar( 1 P 1 ), Ar( 3 P 1 ), by atoms and molecules have been measured in the temperature range from 100 to 300 K, thus obtaining the collisional energy dependence of the de-excitation cross sections. The results are compared in detail with theories classified according to the excited rare gas atoms in the metastable and resonance states. (author)
Dynamical evolution of stars and gas of young embedded stellar sub-clusters
Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah
2018-03-01
We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution which can include a filamentary structure in addition to gas surrounding the stellar subclusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young proto-star clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.
Directory of Open Access Journals (Sweden)
Panayotounakos D. E.
1996-01-01
Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.
Lee, Insu
Confined non-reacting turbulent jets are ideal for recirculating the hot flue gas back into the furnace from an external exhaust duct. Such jets are also used inside the furnace to internally entrain and recirculate the hot flue gas to preheat and dilute the reactants. Both internal and external implementation of confined turbulent jets increase the furnace thermal efficiency. For external implementation, depending on the circumstances, the exhaust gas flow may be co- or counter-flow relative to the jet flow. Inside the furnaces, fuel and air jets are injected separately. To create a condition which can facilitate near homogeneous combustion, these jets have to first mix with the burned gas inside the furnace and simultaneously being heated and diluted prior to combustion. Clearly, the combustion pattern and emissions from reacting confined turbulent jets are affected by jet interactions, mixing and entrainment of hot flue gas. In this work, the flow and mixing characteristics of a non-reacting and reacting confined turbulent jet are investigated experimentally and numerically. This work consists of two parts: (i) A study of flow and mixing characteristics of non-reacting confined turbulent jets with co- or counter-flowing exhaust/flue gas. Here the axial and radial distributions of temperature, velocity and NO concentration (used as a tracer gas) were measured. FLUENT was used to numerically simulate the experimental results. This work provides the basic understanding of the flow and mixing characteristics of confined turbulent jets and develops some design considerations for recirculating flue gas back into the furnace as expressed by the recirculation zone and the stagnation locations. (ii) Numerical calculations of near homogeneous combustion are performed for the existing furnace. The exact geometry of the furnace in the lab is used and the real dimensional boundary conditions are considered. The parameters such as air nozzle diameter (dair), fuel nozzle
International Nuclear Information System (INIS)
Curran, Giorel
2017-01-01
This paper explores the contestation dynamics between the unconventional gas mining sector and its challengers through the prism of the social licence to operate. Social licence is a dominant narrative in the mining sector today and as a signifier of the sector's CSR credentials, the term is an influential one. Its capacity to confer project legitimacy, and hence avoid the risks of community opposition, helps explain why most companies seek to gain one. Today both gas proponents and opponents talk the language of social licence: the former to defend their projects, the latter to challenge them. Yet, beyond rhetoric, the precise meaning of social licence remains elusive. This paper uses a case study of community opposition to primarily coal seam gas projects in an eastern Australian region to explore how the absence of a precise meaning for social licence has created a strategic opportunity space for the industry's opponents to invest social licence with a potent democracy frame. This democracy framing has proved particularly effective as a contestation tool and helps explain the outcomes in this case. - Highlights: • Unconventional gas exploration and mining is becoming increasingly contested. • A key way of managing this contestation is through the social licence to operate. • Both proponents and opponents of gas mining use social licence strategically. • Social licence has become increasingly politicised. • A democratic frame assists the effectiveness of contestation.
Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos
Shapiro, Paul R.
1991-01-01
Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.
The Mexican energy sector: integrated dynamic analysis of the natural gas/refining system
International Nuclear Information System (INIS)
Barnes-Regueiro, Francisco; Leach, Matthew; Ruth, Matthias
2002-01-01
Environmental regulations in Mexico could dramatically increase demand for natural gas in the following years. This increase could lead to gas price shocks and a counter-intuitive increase in carbon emissions. The effect would be accentuated if Mexico lacks the funds required to carry on with investments in gas development and processing capacity. With the use of a dynamic computer model, this study addresses responses of the Mexican oil and gas industries to perturbations such as: changes in regulatory and environmental policies; changes in institutional arrangements such as those arising from market liberalization; and lack of availability of investment funds. The study also assesses how regulatory policies can be designed to minimize the economic inefficiencies arising from the business cycle disruptions that some perturbations may cause. In addition, this study investigates how investment responses will shape the Mexican energy sector in the future, particularly with respect to both the relative importance of different fuels for power generation and heating purposes and the nature of competition in the Mexican natural gas market. Furthermore, this study explores the direct consequences of these responses on the level of carbon emissions. (Author)
Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.
Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu
2018-02-01
The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.
Dynamics of gas cell coalescence during baking expansion of leavened dough.
Miś, Antoni; Nawrocka, Agnieszka; Lamorski, Krzysztof; Dziki, Dariusz
2018-01-01
The investigation of the dynamics of gas cell coalescence, i.e. a phenomenon that deteriorates the homogeneity of the cellular structure of bread crumb, was carried out performing simultaneously measurements of the dough volume, pressure, and viscosity. It was demonstrated that, during the baking expansion of chemically leavened wheat flour dough, the maximum growth rate of the gas cell radius determined from the ratio of pressure exerted by the expanded dough to its viscosity was on average four-fold lower than that calculated from volume changes in the gas phase of the dough. Such a high discrepancy was interpreted as a result of the course of coalescence, and a formula for determination of its rate was developed. The coalescence rate in the initial baking expansion phase had negative values, indicating nucleation of newly formed gas cells, which increased the number of gas cells even by 8%. In the next baking expansion phase, the coalescence rate started to exhibit positive values, reflecting dominance of the coalescence phenomenon over nucleation. The maximum coalescence rates indicate that, during the period of the most intensive dough expansion, the number of gas cells decreased by 2-3% within one second. At the end of the formation of bread crumb, the number of the gas cells declined by 55-67% in comparison with the initial value. The correctness of the results was positively verified using X-ray micro-computed tomography. The developed method can be a useful tool for more profound exploration of the coalescence phenomenon at various stages of evolution of the cellular structure and its determinants, which may contribute to future development of more effective methods for improving the texture and sensory quality of bread crumb. Copyright © 2017 Elsevier Ltd. All rights reserved.
Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.
Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna
2011-05-20
We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.
Set-Up and Validation of a Dynamic Solid/Gas Bioreactor
Lloyd-Randol, Jennifer D.
2012-05-01
The limited availability of fossil resourses mandates the development of new energy vectors, which is one of the Grand Challenges of the 21st Century [1]. Biocatalytic energy conversion is a promising solution to meet the increased energy demand of industrialized societies. Applications of biocatalysis in the gas-phase are so far limited to production of fine chemicals and pharmaceuticals. However, this technology has the potential for large scale biocatalytic applications [2], e.g. for the formation of novel energy carriers. The so-called solid/gas biocatalysis is defined as the application of a biocatalyst immobilized on solid-phase support acting on gaseous substrates [3]. This process combines the advantages of bio-catalysis (green chemistry, mild reaction conditions, high specicity & selectivity) and heterogeneous dynamic gas-phase processes (low diffusion limitation, high conversion, simple scale-up). This work presents the modifications of a PID Microactivity Reference reactor in order to make it suitable for solid/gas biocatalysis. The reactor design requirements are based on previously published laboratory scale solid/gas systems with a feed of saturated vapors [4]. These vapors are produced in saturation flasks, which were designed and optimized during this project. Other modifications included relocation of the gas mixing chamber, redesigning the location and heating mechanism for the reactor tube, and heating of the outlet gas line. The modified reactor system was verified based on the Candida antarctica lipase B catalyzed transesterication of ethyl acetate with 1-hexanol to hexyl acetate and ethanol and results were compared to liquid-phase model reactions. Products were analyzed on line by a gas chromatograph with a flame ionization detector. C. antarc- tica physisorbed on silica particles produced a 50% conversion of hexanol at 40 C in the gas-phase. A commercial immobilized lipase from Iris Biotech produced 99% and 97% conversions of hexanol in
Xiao, Yiming; Konermann, Lars
2015-08-01
Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. © 2015 The Protein Society.
Modeling the Gas Dynamics Environment in a Subscale Solid Rocket Test Motor
Eaton, Andrew M.; Ewing, Mark E.; Bailey, Kirk M.; McCool, Alex (Technical Monitor)
2001-01-01
Subscale test motors are often used for the evaluation of solid rocket motor component materials such as internal insulation. These motors are useful for characterizing insulation performance behavior, screening insulation material candidates and obtaining material thermal and ablative property design data. One of the primary challenges associated with using subscale motors however, is the uncertainty involved when extrapolating the results to full-scale motor conditions. These uncertainties are related to differences in such phenomena as turbulent flow behavior and boundary layer development, propellant particle interactions with the wall, insulation off-gas mixing and thermochemical reactions with the bulk flow, radiation levels, material response to the local environment, and other anomalous flow conditions. In addition to the need for better understanding of physical mechanisms, there is also a need to better understand how to best simulate these phenomena using numerical modeling approaches such as computational fluid dynamics (CFD). To better understand and model interactions between major phenomena in a subscale test motor, a numerical study of the internal flow environment of a representative motor was performed. Simulation of the environment included not only gas dynamics, but two-phase flow modeling of entrained alumina particles like those found in an aluminized propellant, and offgassing from wall surfaces similar to an ablating insulation material. This work represents a starting point for establishing the internal environment of a subscale test motor using comprehensive modeling techniques, and lays the groundwork for improving the understanding of the applicability of subscale test data to full-scale motors. It was found that grid resolution, and inclusion of phenomena in addition to gas dynamics, such as two-phase and multi-component gas composition are all important factors that can effect the overall flow field predictions.
Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone
International Nuclear Information System (INIS)
Mikulčić, Hrvoje; Vujanović, Milan; Ashhab, Moh'd Sami; Duić, Neven
2014-01-01
This work presents a numerical study of the highly swirled gas–solid flow inside a cement cyclone. The computational fluid dynamics – CFD simulation for continuum fluid flow and heat exchange was used for the investigation. The Eulearian–Lagrangian approach was used to describe the two-phase flow, and the large eddy simulation – LES method was used for correctly obtaining the turbulent fluctuations of the gas phase. A model describing the reaction of the solid phase, e.g. the calcination process, has been developed and implemented within the commercial finite volume CFD code FIRE. Due to the fact that the calcination process has a direct influence on the overall energy efficiency of the cement production, it is of great importance to have a certain degree of limestone degradation at the cyclone's outlet. The heat exchange between the gas and solid phase is of particular importance when studying cement cyclones, as it has a direct effect on the calcination process. In order to study the heat exchange phenomena and the flow characteristics, a three dimensional geometry of a real industrial scroll type cyclone was used for the CFD simulation. The gained numerical results, characteristic for cyclones, such as the pressure drop, and concentration of particles can thus be used for better understanding of the complex swirled two-phase flow inside the cement cyclone and also for improving the heat exchange phenomena. - Highlights: • CFD (computational fluid dynamics) is being increasingly used to enhance efficiency of reacting multi-phase flows. • Numerical model of calcination process was presented. • A detailed industrial geometry was used for the CFD simulation. • Presented model and measurement data are in good agreement
Multiphase integral reacting flow computer code (ICOMFLO): User`s guide
Energy Technology Data Exchange (ETDEWEB)
Chang, S.L.; Lottes, S.A.; Petrick, M.
1997-11-01
A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air
Materials study for reacting plasma machine
International Nuclear Information System (INIS)
Kamada, Kohji; Hamada, Yasuji
1982-01-01
A new reacting plasma machine is designed, and will be constructed at the Institute of Plasma Physics, Nagoya University. It is important to avoid the activation of the materials for the machine, accordingly, aluminum alloy has been considered as the material since the induced activity of aluminum due to 14 MeV neutrons is small. The vacuum chamber of the new machine consists of four modules, and the remote control of each module is considered. However, the cost of the remote control of modules is expensive. To minimize the dependence on the remote control, the use of aluminum alloy is considered as the first step. The low electrical resistivity, over-ageing, weak mechanical strength and eddy current characteristics of aluminum alloy must be improved. The physical and electrical properties of various aluminum alloys have been investigated. Permeability of hydrogen through aluminum, the recycling characteristics and surface coating materials have been also studied. (Kato, T.)
A gas dynamic and thermochemical model of steam/sodium microleak phenomena
International Nuclear Information System (INIS)
Perkins, R.; Airey, R.; Daniels, L.C.
1985-06-01
Conflicting findings have been reported by 3 UK laboratories for the blockage or rapid escalation of steam/sodium microleaks. In an earlier paper it was shown that this discrepancy could be resolved through the influence on the steam flow of the geometry of the leak paths; the geometry being dependent upon the method of manufacture. The application of gas dynamics and thermochemical methods could account for the rapid escalation of some leaks in terms of the presence of shock waves in the gas flow within the leak path. In this paper the gas dynamic and thermochemical theories are re-stated and a series of leak experiments conducted to test the validity of the theory is described. The theory predicts that for some leaks of variable area of cross-section the blockage/escalation behaviour is determined by small changes in the sodium-side pressure; this effect was found and is discussed as a validation of the theory. Other aspects of leak phenomena are discussed and conclusions are drawn with emphasis on implications for further programmes of leak study and for leaks in LMFBR steam generators in service. (author)
Argon concentration time-series as a tool to study gas dynamics in the hyporheic zone.
Mächler, Lars; Brennwald, Matthias S; Kipfer, Rolf
2013-07-02
The oxygen dynamics in the hyporheic zone of a peri-alpine river (Thur, Switzerland), were studied through recording and analyzing the concentration time-series of dissolved argon, oxygen, carbon dioxide, and temperature during low flow conditions, for a period of one week. The argon concentration time-series was used to investigate the physical gas dynamics in the hyporheic zone. Differences in the transport behavior of heat and gas were determined by comparing the diel temperature evolution of groundwater to the measured concentration of dissolved argon. These differences were most likely caused by vertical heat transport which influenced the local groundwater temperature. The argon concentration time-series were also used to estimate travel times by cross correlating argon concentrations in the groundwater with argon concentrations in the river. The information gained from quantifying the physical gas transport was used to estimate the oxygen turnover in groundwater after water recharge. The resulting oxygen turnover showed strong diel variations, which correlated with the water temperature during groundwater recharge. Hence, the variation in the consumption rate was most likely caused by the temperature dependence of microbial activity.
International Nuclear Information System (INIS)
Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P
2014-01-01
In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon–Vey invariant for special flows for which the magnetic helicity is zero are also discussed. (paper)
Sensitive Diagnostics for Chemically Reacting Flows
Farooq, Aamir
2015-01-01
This talk will feature latest diagnostic developments for sensitive detection of gas temperature and important combustion species. Advanced optical strategies, such as intrapulse chirping, wavelength modulation, and cavity ringdown are employed.
Sensitive Diagnostics for Chemically Reacting Flows
Farooq, Aamir
2015-11-02
This talk will feature latest diagnostic developments for sensitive detection of gas temperature and important combustion species. Advanced optical strategies, such as intrapulse chirping, wavelength modulation, and cavity ringdown are employed.
Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model
International Nuclear Information System (INIS)
Park, Jehun; Lee, Jae W.
2016-01-01
This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.
The sensitivity and dynamic response of field ionization gas sensor based on ZnO nanorods
International Nuclear Information System (INIS)
Min Jiahua; Liang Xiaoyan; Wang Bin; Wang Linjun; Zhao Yue; Shi Weimin; Xia Yiben
2011-01-01
Field ionization gas sensors based on ZnO nanorods (50–300 nm in diameter, and 3–8 μm in length) with and without a buffer layer were fabricated, and the influence of the orientation of nano-ZnO on the ionization response of devices was discussed, including the sensitivity and dynamic response of the ZnO nanorods with preferential orientation. The results indicated that ZnO nanorods as sensor anode could dramatically decrease the breakdown voltage. The XRD and SEM images illustrated that nano-ZnO with a ZnO buffer layer displayed high c-axis orientation, which helps to significantly reduce the breakdown voltage. Device A based on ZnO nanorods with a ZnO buffer layer could distinguish toluene and acetone. The dynamic responses of device A to the NO x compounds presented the sensitivity of 0.045 ± 0.007 ppm/pA and the response speed within 17–40 s, and indicated a linear relationship between NO x concentration and current response at low NO x concentrations. In addition, the dynamic responses to benzene, isopropyl alcohol, ethanol, and methanol reveals that the device has higher sensitivity to gas with larger static polarizability and lower ionization energy.
Esfandiarpoor, Somaye; Fazli, Mostafa; Ganji, Masoud Darvish
2017-11-29
The separation of gases molecules with similar diameter and shape is an important area of research. For example, the major challenge to set up sweeping carbon dioxide capture and storage (CCS) in power plants is the energy requisite to separate the CO 2 from flue gas. Porous graphene has been proposed as superior material for highly selective membranes for gas separation. Here we design some models of porous graphene with different sizes and shape as well as employ double layers porous graphene for efficient CO 2 /H 2 separation. The selectivity and permeability of gas molecules through various nanopores were investigated by using the reactive molecular dynamics simulation which considers the bond forming/breaking mechanism for all atoms. Furthermore, it uses a geometry-dependent charge calculation scheme that accounts appropriately for polarization effect which can play an important role in interacting systems. It was found that H-modified porous graphene membrane with pore diameter (short side) of about 3.75 Å has excellent selectivity for CO 2 /H 2 separation. The mechanism of gas penetration through the sub-nanometer pore was presented for the first time. The accuracy of MD simulation results validated by valuable DFT method. The present findings show that reactive MD simulation can propose an economical means of separating gases mixture.
Molecular mechanism of adsorption/desorption hysteresis: dynamics of shale gas in nanopores
Chen, Jie; Wang, FengChao; Liu, He; Wu, HengAn
2017-01-01
Understanding the adsorption and desorption behavior of methane has received considerable attention since it is one of the crucial aspects of the exploitation of shale gas. Unexpectedly, obvious hysteresis is observed from the ideally reversible physical sorption of methane in some experiments. However, the underlying mechanism still remains an open problem. In this study, Monte Carlo (MC) and molecular dynamics (MD) simulations are carried out to explore the molecular mechanisms of adsorption/desorption hysteresis. First, a detailed analysis about the capillary condensation of methane in micropores is presented. The influence of pore width, surface strength, and temperature on the hysteresis loop is further investigated. It is found that a disappearance of hysteresis occurs above a temperature threshold. Combined with the phase diagram of methane, we explicitly point out that capillary condensation is inapplicable for the hysteresis of shale gas under normal temperature conditions. Second, a new mechanism, variation of pore throat size, is proposed and studied. For methane to pass through the throat, a certain energy is required due to the repulsive interaction. The required energy increases with shrinkage of the throat, such that the originally adsorbed methane cannot escape through the narrowed throat. These trapped methane molecules account for the hysteresis. Furthermore, the hysteresis loop is found to increase with the increasing pressure and decreasing temperature. We suggest that the variation of pore throat size can explain the adsorption/desorption hysteresis of shale gas. Our conclusions and findings are of great significance for guiding the efficient exploitation of shale gas.
Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects
International Nuclear Information System (INIS)
Anand, R K
2013-01-01
The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)
Fluid dynamics characterization of riser in a FCC cold flow model using gas radiotracer
International Nuclear Information System (INIS)
Santos, Valdemir A. dos; Lima, Emerson A.O.
2013-01-01
Was carried out the characterization of a diameter small riser of a cold flow model of a circulating fluidized bed (CFB), with aid of a radioactive tracer. Compressed air and catalytic cracking of petroleum flow through solids pneumatic transport regime, made of transparent material (glass, acrylic, PVC, polycarbonate) for study of problems in Fluid Catalytic Cracking (FCC) unit and development of methods of measurement of fluid dynamic parameters. The CFB model consisted of a mixer component solid-gas (compressed air at 25 deg C and 200 kN/m 2 ; cracking catalyst with an average diameter of 72μm and specific mass of 1,500 kg/m 3 ), comprising a riser pipe glass 0.02m internal diameter and 1.8m height, a gas solid separation vessel by flash effect, with the filter in the gas outlet, and a return column (a glass tube with an internal diameter of 0.0254m) to redirect the catalyst for the riser base. Recorded data allowed studies on residence time distribution of the gaseous phase in the riser, with the identification and characterization of the flow of gas-solid components in the CFB riser of small diameter. A plug flow type with deviations due to back mixing of catalyst close to the walls, associated with the density difference between this component was observed. (author)
Plasma excitation processes in flue gas simulated with Monte Carlo electron dynamics
Energy Technology Data Exchange (ETDEWEB)
Tas, M.A.; Veldhuizen, E.M. van; Rutgers, W.R. [Eindhoven University of Technology (Netherlands). Div. of Electrical Energy Systems
1997-06-07
The excitation of gas molecules in flue gas by electron impact is calculated with a Monte Carlo (MC) algorithm for electron dynamics in partially ionized gases. The MC algorithm is straightforward for any mixture of molecules for which cross sections are available. Electron drift is simulated in the first case for homogeneous electric fields and in the second case for secondary electrons which are produced by electron-beam irradiation. The electron energy distribution function {epsilon}-bar{sub {theta}}, V-bar{sub d}, {lambda}-bar, the energy branching and the rate of excitation are calculated for standard gas mixtures of Ar-N{sub 2}, O{sub 2} and H{sub 2}O. These fundamental process parameters are needed for the study of reactions to remove NO{sub x} from flue gas. The calculated results indicate that the production of highly excited molecules in the high electric field of a streamer corona discharge has an efficiency similar to that of electron-beam irradiation. (author)
Acosta, Waldo A.; Chang, Clarence T.
2016-01-01
An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.
Dynamic modeling of gas turbines in integrated gasification fuel cell systems
Maclay, James Davenport
2009-12-01
Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid systems for use in integrated gasification fuel cell (IGFC) systems operating on coal will stretch existing fossil fuel reserves, generate power with less environmental impact, while having a cost of electricity advantage over most competing technologies. However, the dynamic performance of a SOFC-GT in IGFC applications has not been previously studied in detail. Of particular importance is how the turbo-machinery will be designed, controlled and operated in such applications; this is the focus of the current work. Perturbation and dynamic response analyses using numerical SimulinkRTM models indicate that compressor surge is the predominant concern for safe dynamic turbo-machinery operation while shaft over-speed and excessive turbine inlet temperatures are secondary concerns. Fuel cell temperature gradients and anode-cathode differential pressures were found to be the greatest concerns for safe dynamic fuel cell operation. Two control strategies were compared, that of constant gas turbine shaft speed and constant fuel cell temperature, utilizing a variable speed gas turbine. Neither control strategy could eliminate all vulnerabilities during dynamic operation. Constant fuel cell temperature control ensures safe fuel cell operation, while constant speed control does not. However, compressor surge is more likely with constant fuel cell temperature control than with constant speed control. Design strategies that provide greater surge margin while utilizing constant fuel cell temperature control include increasing turbine design mass flow and decreasing turbine design inlet pressure, increasing compressor design pressure ratio and decreasing compressor design mass flow, decreasing plenum volume, decreasing shaft moment of inertia, decreasing fuel cell pressure drop, maintaining constant compressor inlet air temperature. However, these strategies in some cases incur an efficiency penalty. A broad comparison of cycles
Dynamic behaviour of high-pressure natural-gas flow in pipelines
International Nuclear Information System (INIS)
Gato, L.M.C.; Henriques, J.C.C.
2005-01-01
The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas
Molecular dynamics simulations of classical sound absorption in a monatomic gas
Ayub, M.; Zander, A. C.; Huang, D. M.; Cazzolato, B. S.; Howard, C. Q.
2018-05-01
Sound wave propagation in argon gas is simulated using molecular dynamics (MD) in order to determine the attenuation of acoustic energy due to classical (viscous and thermal) losses at high frequencies. In addition, a method is described to estimate attenuation of acoustic energy using the thermodynamic concept of exergy. The results are compared against standing wave theory and the predictions of the theory of continuum mechanics. Acoustic energy losses are studied by evaluating various attenuation parameters and by comparing the changes in behavior at three different frequencies. This study demonstrates acoustic absorption effects in a gas simulated in a thermostatted molecular simulation and quantifies the classical losses in terms of the sound attenuation constant. The approach can be extended to further understanding of acoustic loss mechanisms in the presence of nanoscale porous materials in the simulation domain.
Dynamic behaviour of high-pressure natural-gas flow in pipelines
Energy Technology Data Exchange (ETDEWEB)
Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: lgato@mail.ist.utl.pt; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: jcch@mail.ist.utl.pt
2005-10-01
The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.
Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties.
Simon, Cory M; Braun, Efrem; Carraro, Carlo; Smit, Berend
2017-01-17
Some nanoporous, crystalline materials possess dynamic constituents, for example, rotatable moieties. These moieties can undergo a conformation change in response to the adsorption of guest molecules, which qualitatively impacts adsorption behavior. We pose and solve a statistical mechanical model of gas adsorption in a porous crystal whose cages share a common ligand that can adopt two distinct rotational conformations. Guest molecules incentivize the ligands to adopt a different rotational configuration than maintained in the empty host. Our model captures inflections, steps, and hysteresis that can arise in the adsorption isotherm as a signature of the rotating ligands. The insights disclosed by our simple model contribute a more intimate understanding of the response and consequence of rotating ligands integrated into porous materials to harness them for gas storage and separations, chemical sensing, drug delivery, catalysis, and nanoscale devices. Particularly, our model reveals design strategies to exploit these moving constituents and engineer improved adsorbents with intrinsic thermal management for pressure-swing adsorption processes.
Reactions of newly formed fission products in the gas phase
International Nuclear Information System (INIS)
Strickert, R.G.
1976-01-01
A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay
DEFF Research Database (Denmark)
Benato, Alberto; Pierobon, Leonardo; Haglind, Fredrik
2014-01-01
and a combined gas turbine coupled with an air bottoming cycle plant. The case study is the Draugen off-shore oil and gas platform, located in the North Sea, Norway. The normal electricity demand is 19 MW, currently covered by two gas turbines generating each 50% of the power demand, while the third turbine......When the Norwegian government introduced the CO2 tax for hydrocarbon fuels, the challenge became to improve the performance of off-shore power systems. An oil and gas platform typically operates on an island (stand-alone system) and the power demand is covered by two or more gas turbines. In order...... to improve the plant performance, a bottoming cycle unit can be added to the gas turbine topping module, thus constituting a combined cycle plant. This paper aims at developing and testing the numerical model simulating the part-load and dynamic behavior of a novel power system, composed of two gas turbines...
The effect of gas double-dynamic on mass distribution in solid-state fermentation.
Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang
2014-05-10
The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.
An Introduction to the Material Point Method using a Case Study from Gas Dynamics
International Nuclear Information System (INIS)
Tran, L. T.; Kim, J.; Berzins, M.
2008-01-01
The Material Point Method (MPM) developed by Sulsky and colleagues is currently being used to solve many challenging problems involving large deformations and/or fragementations with considerable success as part of the Uintah code created by the CSAFE project. In order to understand the properties of this method an analysis of the considerable computational properties of MPM is undertaken in the context of model problems from gas dynamics. One aspect of the MPM method in the form used here is shown to have first order accuracy. Computational experiments using particle redistribution are described and show that smooth results with first order accuracy may be obtained.
Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap
Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi
2018-05-01
We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.
Solvation of ions in the gas-phase: a molecular dynamics simulation
Cabarcos, Orlando M.; Lisy, James M.
1996-07-01
Molecular dynamics simulations have been performed on the collision between a cesium ion and a cluster of twenty methanol molecules. This process, generating a solvated ion, was studied over a range (1 to 25 eV) of eight collision energies. Preliminary analysis of this gas phase solvation has included the distribution of final ion cluster sizes, fragmentation patterns, solvation timescales and energetics. Two distinct patterns have emerged: a ballistic penetration of the neutral cluster at the higher collision energies and an evaporative evolution of the cluster ion at lower collision energies.
DEFF Research Database (Denmark)
Yan, Wei
2015-01-01
We investigate the hydrodynamic theory of metals, offering systematic studies of the linear-response dynamics for an inhomogeneous electron gas. We include the quantum functional terms of the Thomas-Fermi kinetic energy, the von Weizsa¨cker kinetic energy, and the exchange-correlation Coulomb...... energies under the local density approximation. The advantages, limitations, and possible improvements of the hydrodynamic theory are transparently demonstrated. The roles of various parameters in the theory are identified. We anticipate that the hydrodynamic theory can be applied to investigate the linear...... response of complex metallic nanostructures, including quantum effects, by adjusting theory parameters appropriately....
Optimisation of the neutron source based on gas dynamic trap for transmutation of radioactive wastes
Anikeev, Andrey V.
2012-06-01
The Budker Institute of Nuclear Physics in collaboration with the Russian and foreign organizations develop the project of 14 MeV neutron source, which can be used for fusion material studies and for other application. The projected neutron source of plasma type is based on the plasma Gas Dynamic Trap (GDT), which is a special magnetic mirror system for plasma confinement. Presented work continues the subject of development the GDT-based neutron source (GDT-NS) for hybrid fusion-fission reactors. The paper presents the results of recent numerical optimization of such neutron source for transmutation of the long-lives radioactive wastes in spent nuclear fuel.
Dynamic simulation of a furnace of steam reforming of natural gas
International Nuclear Information System (INIS)
Acuna, A; Fuentes, C; Smith, C A
1999-01-01
Steam reforming of natural gas is a very important industrial process in refineries and ammonia and methanol plants. Hydrogen is produced by reforming methane with steam. This hydrogen is essential in the hydro-treating process in the refineries thus, it is important to supervise and control the performance of the hydrogen plant. Mathematical models of refineries and chemical plants are used to simulate the behavior of the process units. However, the models especially of reactors like reformers are not very reliable. This paper presents a dynamic model of a furnace-reactor. The simulation results are validated with industrial data
International Nuclear Information System (INIS)
1996-01-01
The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements
Directory of Open Access Journals (Sweden)
Fotev Vasko G.
2017-01-01
Full Text Available This article presents innovative method for increasing the speed of procedure which includes complex computational fluid dynamic calculations for finding the distance between flame openings of atmospheric gas burner that lead to minimal NO pollution. The method is based on standard features included in commercial computational fluid dynamic software and shortens computer working time roughly seven times in this particular case.
Modelling and simulation of the dynamic performance of a natural-gas turbine flowmeter
Energy Technology Data Exchange (ETDEWEB)
Lopez-Gonzalez, L.M. [Escuela Tecnica Superior de Ingenieria Industrial, Universidad de La Rioja, C/Luis de Ulloa, 20, E-26004 Logrono (La Rioja) (Spain); Sala, J.M.; Gonzalez-Bustamante, J.A. [Escuela Superior de Ingenieros Industriales de Bilbao, Universidad del Pais Vasco, Alameda de Urquijo, s/n 48013 Bilbao (Bizkaia) (Spain); Miguez, J.L. [Universidad de Vigo, Escuela Tecnica Superior de Ingenieros Industriales, C/Lagoas-Marcosende, s/n 36200 Vigo (Pontevedra) (Spain)
2006-11-15
Installations involving fluids often present problems in terms of the dynamic performances of their different parts. These problems can be analysed and dealt with at the design stage. This means that both the technologists who design the thermohydraulic process and those who carry out the regulation and control must be involved in the process from the early stages of the design. In this study, a dynamic model of the behaviour of a gas flowmeter has been developed, based on the laws of conservation of mass, linear momentum, energy and angular momentum. The model has been computerised via a software module. As there is no information available with which to compare the model's behaviour, a continuous rating validation has been carried out, using a comparison with the actual calibration curve of the flowmeter. The results obtained are satisfactory. (author)
Numerical studies of neon gas-puff Z-pinch dynamic processes
International Nuclear Information System (INIS)
Ning Cheng; Yang Zhenhua; Ding Ning
2003-01-01
Dynamic processes of neon gas-puff Z-pinch are studied numerically in this paper. A high temperature plasma with a high density can be generated in the process. Based on some physical analysis and assumption, a set of equations of one-dimensional Lagrangian radiation magneto-hydrodynamic (MHD) and its code are developed to solve the problem. Spatio-temporal distributions of plasma parameters in the processes are obtained, and their dynamic variations show that the major results are self-consistent. The duration for the plasma pinched to centre, as well as the width and the total energy of the x-ray pulse caused by the Z-pinch are in reasonable agreement with experimental results of GAMBLE-II. A zipping effect is also clearly shown in the simulation
Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas
Energy Technology Data Exchange (ETDEWEB)
Taniguchi, Shigeru, E-mail: taniguchi@stat.nitech.ac.jp; Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna (Italy)
2014-01-15
We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)
Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions
International Nuclear Information System (INIS)
Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor
2007-01-01
We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters
DEFF Research Database (Denmark)
Frankær, Sarah Maria Grundahl; Jensen, Mette Krog; Bejenariu, Anca Gabriela
2012-01-01
We investigated the linear dynamic response of a series of fully reacted unstoichiometric polydimethylsiloxane (PDMS) networks and of the two corresponding network fractions namely the sol and the washed network. The sol and the washed network were separated by a simple extraction process. This way...
Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows
Directory of Open Access Journals (Sweden)
Xia Wang
2012-12-01
Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.
Natural gas market review 2006 - towards a global gas market
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market.
Natural gas market review 2006 - towards a global gas market
International Nuclear Information System (INIS)
2006-01-01
Natural gas is essential to the world economy. Gas now accounts for almost a quarter of OECD primary energy requirements and is expected to become the second most important fuel in the world in the next decade. Industrial and residential consumers increasingly rely on natural gas to keep their houses warm, their lights on and their factories running. Meanwhile the gas industry itself has entered a new phase. Where gas used to be restricted to regional markets, it is now increasingly traded on a global scale. While gas production and transport requires long-term investment, now it is optimised on a short-term basis. Demand continues to grow, but local gas production has become much more expensive. How should we react? How will demand be satisfied? What changes are required to promote flexibility and trade? What are the implications for gas security, investment and interdependence? At stake is an opportunity to diversify supply and demand - but this goal is threatened by barriers to competition and investment. This book is the first of a new IEA publication series. It takes an unprecedented look at developments in natural gas to 2010, analysing not only the three IEA regions (Asia Pacific, North America and Europe) but also broader global trends, such as the interaction of pipeline gas with LNG which binds the regions together. The Review provides invaluable insights for understanding this dynamic market
Directory of Open Access Journals (Sweden)
ZIANE, M.
2007-11-01
Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
Gas dynamic design of the pipe line compressor with 90% efficiency. Model test approval
Galerkin, Y.; Rekstin, A.; Soldatova, K.
2015-08-01
Gas dynamic design of the pipe line compressor 32 MW was made for PAO SMPO (Sumy, Ukraine). The technical specification requires compressor efficiency of 90%. The customer offered favorable scheme - single-stage design with console impeller and axial inlet. The authors used the standard optimization methodology of 2D impellers. The original methodology of internal scroll profiling was used to minimize efficiency losses. Radically improved 5th version of the Universal modeling method computer programs was used for precise calculation of expected performances. The customer fulfilled model tests in a 1:2 scale. Tests confirmed the calculated parameters at the design point (maximum efficiency of 90%) and in the whole range of flow rates. As far as the authors know none of compressors have achieved such efficiency. The principles and methods of gas-dynamic design are presented below. The data of the 32 MW compressor presented by the customer in their report at the 16th International Compressor conference (September 2014, Saint- Petersburg) and later transferred to the authors.
Shock structure in continuum models of gas dynamics: stability and bifurcation analysis
International Nuclear Information System (INIS)
Simić, Srboljub S
2009-01-01
The problem of shock structure in gas dynamics is analysed through a comparative study of two continuum models: the parabolic Navier–Stokes–Fourier model and the hyperbolic system of 13 moments equations modeling viscous, heat-conducting monatomic gases within the context of extended thermodynamics. When dissipative phenomena are neglected these models both reduce to classical Euler's equations of gas dynamics. The shock profile solution, assumed in the form of a planar travelling wave, reduces the problem to a system of ordinary differential equations, and equilibrium states appear to be stationary points of the system. It is shown that in both models an upstream equilibrium state suffers an exchange of stability when the shock speed crosses the critical value which coincides with the highest characteristic speed of the Euler's system. At the same time a downstream equilibrium state could be seen as a steady bifurcating solution, while the shock profile represents a heteroclinic orbit connecting the two stationary points. Using centre manifold reduction it is demonstrated that both models, although mathematically different, obey the same transcritical bifurcation pattern in the neighbourhood of the bifurcation point corresponding to the critical value of shock speed, the speed of sound
DYNAMICAL EVOLUTION OF AGN HOST GALAXIES-GAS IN/OUT-FLOW RATES IN SEVEN NUGA GALAXIES
International Nuclear Information System (INIS)
Haan, Sebastian; Schinnerer, Eva; Rix, Hans-Walter; Emsellem, Eric; GarcIa-Burillo, Santiago; Combes, Francoise; Mundell, Carole G.
2009-01-01
To examine the role of the host galaxy structure in fueling nuclear activity, we estimated gas flow rates from several kpc down to the inner few 10 pc for seven nearby spiral galaxies, selected from the NUclei of GAlaxies sample. We calculated gravitational torques from near-infrared images and determined gas in/out-flow rates as a function of radius and location within the galactic disks, based on high angular resolution interferometric observations of molecular (CO using Plateau de Bure interferometer) and atomic (H I using the Very Large Array) gas. The results are compared with kinematic evidence for radial gas flows and the dynamical state of the galaxies (via resonances) derived from several different methods. We show that gravitational torques are very efficient at transporting gas from the outer disk all the way into the galaxies centers at ∼100 pc; previously assumed dynamical barriers to gas transport, such as the corotation resonance of stellar bars, seem to be overcome by gravitational torque induced gas flows from other nonaxisymmetric structures. The resulting rates of gas mass inflow range from 0.01 to 50 M sun yr -1 and are larger for the galaxy center than for the outer disk. Our gas flow maps show the action of nested bars within larger bars for three galaxies. Noncircular streaming motions found in the kinematic maps are larger in the center than in the outer disk and appear to correlate only loosely with the in/out-flow rates as a function of radius. We demonstrate that spiral gas disks are very dynamic systems that undergo strong radial evolution on timescales of a few rotation periods (e.g., 5 x 10 8 yrs at a radius of 5 kpc), due to the effectiveness of gravitational torques in redistributing the cold galactic gas.
Plant accident dynamics of high-temperature reactors with direct gas turbine cycle
International Nuclear Information System (INIS)
Waloch, M.L.
1977-01-01
In the paper submitted, a one-dimensional accident simulation model for high-temperature reactors with direct-cycle gas turbine (single-cycle facilities) is described. The paper assesses the sudden failure of a gas duct caused by the double-ended break of one out of several parallel pipes before and behind the reactor for a non-integrated plant, leading to major loads in the reactor region, as well as the complete loss of vanes of the compressor for an integrated plant. The results of the calculations show especially high loads for the break of a hot-gas pipe immediately behind the flow restrictors of the reactor outlet, because of prolonged effects of pressure gradients in the reactor region and the maximum core differential pressure. A plant accident dynamics calculation therefore allows to find a compromise between the requirements of stable compressor operation, on the one hand, and small loads in the reactor in the course of an accident, on the other, by establishing in a co-ordinated manner the narrowing ratio of the flow restrictors. (GL) [de
Furnace draft dynamics analysis after a flue gas desulphurization system incorporation
Energy Technology Data Exchange (ETDEWEB)
Zazo, J.F.L. [Tecnatom, S.A. (Spain)
2007-07-01
Due to environmental regulations some utilities are modifying coal-fired power groups by installing a flue gas desulfurisation system (FGDS) in order to remove SO{sub 2} from a gas stream. These studies have been ordered by 'Endesa Generacion' for the following power plant groups: C.T. Teruel Grs. 1-3, C.T. Litoral Gr. 2, C.T. Compostilla Gr. 3, C.T. Alucdia Grs. 1-2, C.T. Compostilla Grs. 4-5 (on-going); and C.T. Los Barrios (on-going). The pictures that appear in this abstract correspond to Compostilla Gr.4 and Los Barrios projects. In both cases FGDS installation implies a new booster fan and heat exchanger keeping former Induced Draft Fans (IDFs). The main goal for these projects is to analyze the new flue-gas dynamic, in order to: detect risk situations to equipment, particularly to boiler integrity, test control system strategies and interlocks, select parameters to valves and control system to minimize pressure transients, and test operation strategies. 14 figs.
Gas-Dynamic Designing of the Exhaust System for the Air Brake
Novikova, Yu; Goriachkin, E.; Volkov, A.
2018-01-01
Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.
STUDY OF GAS SEPARATION PROCESS BY DYNAMIC ADSORPTION IN FIXED BED
Directory of Open Access Journals (Sweden)
Ioan Solomon
2010-10-01
Full Text Available An experimental study of mass transfer at gas separation by dynamic adsorption in fixed bed of impregnated silica gel is presented in this work. By means of a mathematical model based on constants and coefficient easy to evaluate, the distributions of adsorbate concentration in gas and solid phases were determined as a function of time and throughout the height of the fixed bed, under isothermal conditions.With this aim, water vapors from air were adsorbed in a fixed bed of impregnated silica gel. The values of the volumetric mass transfer coefficient, Kv, were determined experimentally at several values of air superficial velocity, an air relative humidity of 69�20at 38 °C. The influence of the gas flow velocity and initial water concentration in adsorbent on the distribution of water concentration in both phases was established as a function of time and throughout the height of the fixed bed. The results obtained allow one to determination of the local adsorption rate.
Fluctuations in non-ideal pion gas with dynamically fixed particle number
Kolomeitsev, E. E.; Voskresensky, D. N.
2018-05-01
We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λϕ4 interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π- ↔π0π0, which determine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose-Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the condensate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose-Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also.
International Nuclear Information System (INIS)
Webb, G M; Zank, G P
2007-01-01
We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated
International Nuclear Information System (INIS)
Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.
2015-01-01
The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5–6 J/cm 2 ) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis. - Highlights: • Ablated ground-state species accumulated in a thin hemispherical boundary layer • Inside the layer, a cavity containing a small density of ablated species was formed. • The hemispherical layers of atoms and ions appeared at a nearly identical location. • The measured intensity peak variation was in good agreement with a model prediction. • We ascribed the dominant process for forming the layer to a three-body recombination
Uncertainty in microscale gas damping: Implications on dynamics of capacitive MEMS switches
International Nuclear Information System (INIS)
Alexeenko, Alina; Chigullapalli, Sruti; Zeng Juan; Guo Xiaohui; Kovacs, Andrew; Peroulis, Dimitrios
2011-01-01
Effects of uncertainties in gas damping models, geometry and mechanical properties on the dynamics of micro-electro-mechanical systems (MEMS) capacitive switch are studied. A sample of typical capacitive switches has been fabricated and characterized at Purdue University. High-fidelity simulations of gas damping on planar microbeams are developed and verified under relevant conditions. This and other gas damping models are then applied to study the dynamics of a single closing event for switches with experimentally measured properties. It has been demonstrated that although all damping models considered predict similar damping quality factor and agree well for predictions of closing time, the models differ by a factor of two and more in predicting the impact velocity and acceleration at contact. Implications of parameter uncertainties on the key reliability-related parameters such as the pull-in voltage, closing time and impact velocity are discussed. A notable effect of uncertainty is that the nominal switch, i.e. the switch with the average properties, does not actuate at the mean actuation voltage. Additionally, the device-to-device variability leads to significant differences in dynamics. For example, the mean impact velocity for switches actuated under the 90%-actuation voltage (about 150 V), i.e. the voltage required to actuate 90% of the sample, is about 129 cm/s and increases to 173 cm/s for the 99%-actuation voltage (of about 173 V). Response surfaces of impact velocity and closing time to five input variables were constructed using the Smolyak sparse grid algorithm. The sensitivity analysis showed that impact velocity is most sensitive to the damping coefficient whereas the closing time is most affected by the geometric parameters such as gap and beam thickness. - Highlights: → We examine stochastic non-linear response of a microsystem switch subject to multiple input uncertainties. → Sample devices have been fabricated and device
International Nuclear Information System (INIS)
Ribeiro, H.M.
1988-01-01
For the Natural Gas Distribution Sector in Bahia, some preliminary scenarios and theoretical concerns are presented under the perspectives of the Gas State Company entry. These scenarios are derived from the going institutional changes and physical expansion of the Sector with the increasing natural gas usage. The study has the objective of anticipating, for the State Government and its partners in the Company, the strategies and relevant problems for a successful entrance into this Sector. (author)
Directory of Open Access Journals (Sweden)
Xiaodong Wu
2016-10-01
Full Text Available Downhole vortex drainage gas recovery is a new gas production technology. So far, however, the forces and motions of liquid phase in the swirling flow field of wellbores during its field application have not been figured out. In this paper, the forces of liquid droplets in the swirling flow field of wellbores were analyzed on the basis of two-phase fluid dynamics theories. Then, the motion equations of fluid droplets along axial and radical directions were established. Magnitude comparison was performed on several typical acting forces, including Basset force, virtual mass force, Magnus force, Saffman force and Stokes force. Besides, the formula for calculating the optimal helical angle of vortex tools was established according to the principle that the vertical resultant force on fluid droplets should be the maximum. And afterwards, each acting force was comprehensively analyzed in terms of its origin, characteristics and direction based on the established force analysis model. Magnitude comparison indicates that the forces with less effect can be neglected, including virtual mass force, Basset force and convection volume force. Moreover, the vertically upward centrifugal force component occurs on the fluid droplets in swirling flow field instead of those in the conventional flow field of wellbores, which is favorable for the fluid droplets to move upward. The reliability of optimal helical angle calculation formula was verified by means of case analysis. It is demonstrated that with the decrease of well depth, the fluid-carrying capability of gas and the optimal helical angle increase. The research results in this paper have a guiding significance to the optimization design of downhole vortex tools and the field application of downhole vortex drainage gas recovery technology.
Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator
Gamelin, A.; Bruni, C.; Radevych, D.
2018-05-01
The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.
Directory of Open Access Journals (Sweden)
Yik Siang Pang
2018-01-01
Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec
A gas dynamics scheme for a two moments model of radiative transfer
International Nuclear Information System (INIS)
Buet, Ch.; Despres, B.
2007-01-01
We address the discretization of the Levermore's two moments and entropy model of the radiative transfer equation. We present a new approach for the discretization of this model: first we rewrite the moment equations as a Compressible Gas Dynamics equation by introducing an additional quantity that plays the role of a density. After that we discretize using a Lagrange-projection scheme. The Lagrange-projection scheme permits us to incorporate the source terms in the fluxes of an acoustic solver in the Lagrange step, using the well-known piecewise steady approximation and thus to capture correctly the diffusion regime. Moreover we show that the discretization is entropic and preserve the flux-limited property of the moment model. Numerical examples illustrate the feasibility of our approach. (authors)
Dynamic critical phenomena in two-dimensional fully frustrated Coulomb gas model with disorder
International Nuclear Information System (INIS)
Zhang Wei; Luo Mengbo
2008-01-01
The dynamic critical phenomena near depinning transition in two-dimensional fully frustrated square lattice Coulomb gas model with disorders was studied using Monte Carlo technique. The ground state of the model system with disorder σ=0.3 is a disordered state. The dependence of charge current density J on electric field E was investigated at low temperatures. The nonlinear J-E behavior near critical depinning field can be described by a scaling function proposed for three-dimensional flux line system [M.B. Luo, X. Hu, Phys. Rev. Lett. 98 (2007) 267002]. We evaluated critical exponents and found an Arrhenius creep motion for field region E c /2 c . The scaling law of the depinning transition is also obtained from the scaling function
International Nuclear Information System (INIS)
Sidorov, A.; Dorf, M.; Zorin, V.; Bokhanov, A.; Izotov, I.; Razin, S.; Skalyga, V.; Rossbach, J.; Spaedtke, P.; Balabaev, A.
2008-01-01
Electron cyclotron resonance ion source with quasi-gas-dynamic regime of plasma confinement (ReGIS), constructed at the Institute of Applied Physics, Russia, provides opportunities for extracting intense and high-brightness multicharged ion beams. Despite the short plasma lifetime in a magnetic trap of a ReGIS, the degree of multiple ionization may be significantly enhanced by the increase in power and frequency of the applied microwave radiation. The present work is focused on studying the intense beam quality of this source by the pepper-pot method. A single beamlet emittance measured by the pepper-pot method was found to be ∼70 π mm mrad, and the total extracted beam current obtained at 14 kV extraction voltage was ∼25 mA. The results of the numerical simulations of ion beam extraction are found to be in good agreement with experimental data
Post-processing computational fluid dynamic simulations of gas turbine combustor
International Nuclear Information System (INIS)
Sturgess, G.J.; Inko-Tariah, W.P.C.; James, R.H.
1986-01-01
The flowfield in combustors for gas turbine engines is extremely complex. Numerical simulation of such flowfields using computational fluid dynamics techniques has much to offer the design and development engineer. It is a difficult task, but it is one which is now being attempted routinely in the industry. The results of such simulations yield enormous amounts of information from which the responsible engineer has to synthesize a comprehensive understanding of the complete flowfield and the processes contained therein. The complex picture so constructed must be distilled down to the essential information upon which rational development decisions can be made. The only way this can be accomplished successfully is by extensive post-processing of the calculation. Post processing of a simulation relies heavily on computer graphics, and requires the enhancement provided by color. The application of one such post-processor is presented, and the strengths and weaknesses of various display techniques are illustrated
The multi-physics, user-friendly gas-dynamics code Visual Tsunami 2.0
International Nuclear Information System (INIS)
Debonnel, C. S.; Trubov, L.; Zeballos, C. A.; Peterson, P. F.
2007-01-01
Since the early 1990's, the series of simulation code known as TSUNAMI has been the main tool employed to explore gas dynamics phenomena in thick-liquid protected inertial fusion target chambers. The applicability and user-friendliness of the code was recently extended through a set of MATLAB pre- and post-processing tools and graphical user interfaces [1]. Geometry, initial, and boundary conditions can be specified from within AutoCAD through a set of in-house AutoLISP graphical user interfaces. A novel MATLAB core was recently developed and tested, and is now routinely used with the user-friendly pre- and post-processors [2]. An overview of Visual Tsunami 2.0, the latest version of the code, is presented here. (authors)
Coletti, Cecilia; Corinti, Davide; Paciotti, Roberto; Re, Nazzareno; Crestoni, Maria Elisa; Fornarini, Simonetta
2017-11-01
The investigation of the molecular structure and dynamics of ions in gas phase is an item of increasing interest, due the role such species play in many areas of chemistry and physics, not to mention that they often represent elusive intermediates in more complex reaction mechanisms. Infrared Multiple Photon Dissociation spectroscopy is today one of the most advanced technique to this purpose, because of its high sensitivity to even small structure changes. The interpretation of IRMPD spectra strongly relies on high level quantum mechanical computations, so that a close interplay is needed for a detailed understanding of structure and kinetics properties which can be gathered from the many applications of this powerful technique. Recent advances in experiment and theory in this field are here illustrated, with emphasis on recent progresses for the elucidation of the mechanism of action of cisplatin, one of the most widely used anticancer drugs.
Modelling the dynamics of the cogeneration power plant gas-air duct
Directory of Open Access Journals (Sweden)
Аnatoliy N. Bundyuk
2014-12-01
Full Text Available Introducing into wide practice the cogeneration power plants (or CHP is one of promising directions of the Ukrainian small-scale power engineering development. Thermal and electric energy generation using the same fuel kind can increase the overall plant efficiency. That makes it appropriate to use CHPs at compact residential areas, isolated industrial enterprises constituting one complex with staff housing area, at sports complexes, etc. The gas-air duct of the cogeneration power plant has been considered as an object of the diesel-generator shaft velocity control. The developed GAD mathematical model, served to analyze the CHP dynamic characteristics as acceleration curves obtained under different external disturbances in the MathWorks MATLAB environment. According to the electric power generation technology requirements a convenient transition process type has been selected, with subsequent identification of the diesel-generator shaft rotation speed control law.
Effect of Additions of Ceramic Nanoparticles and Gas-Dynamic Treatment on Al Casting Alloys
Directory of Open Access Journals (Sweden)
Konstantin Borodianskiy
2015-12-01
Full Text Available In recent years, improving the mechanical properties of metals has become the main challenge in the modern materials and metallurgical industry. An alloying process is usually used to achieve advanced performance of metals. This paper, however, describes an alternative approach. Modification with ceramic nanoparticles, gas-dynamic treatment (GDT and a combined treatment were investigated on a hypoeutectic Al-Si A356 alloy. Microstructural studies revealed the refinement of coarse α-Al grains and the formation of distributed eutectic Si particles. Subsequent testing of the mechanical properties revealed improvement after applying each of the treatments. The best results were obtained after modification with TiCN nanoparticles followed by GDT; the tensile strength and elongation of the A356 alloys increased by 18% and 19%, respectively.
Reactors Dynamic analysis Due to Reactivity of The RSG-Gas at One Line Cooling Mode
International Nuclear Information System (INIS)
Hastuti, Endiah Puji
2003-01-01
In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power has been determined and steady state and LOFA transient analysis have also been done. To complete those analyses, the reactivity analysis was done by means of a core dynamic and thermal hydraulic code, PARET-ANL. Accident simulation was done. by a ramp reactivity accident due to control rod withdrawal. Reactivity analysis was carried out at two power range i.e. low and high power level, by imposing one line mode reactor protection limits. The results show that technically, the RSG-Gas can be operated safely using one line mode
Directory of Open Access Journals (Sweden)
Haitao Sun
2018-03-01
Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross
Gas Dynamics in Planetary Nebulae: From Macro-structures to FLIERs
Perinotto, Mario
2000-10-01
Purpose of this paper is to clarify how Planetary Nebulae (PNe) are very interesting laboratories to study cosmic gas dynamics. I first recall the history of PNe which are generated from low and intermediate mass stars through successive mass loss processes starting in the Reg Giant phase of evolution and continuing also after the termination of the pulsed AGB phase, where most of the nebular mass is believed to be ejected. The correponding stellar winds are the ingredients of the nebula. Their initial properties and subsequent mutual interactions, under the action of the evolving stellar radiation field, are responsible for the properties of the nebula. The observed structures of PNe are considered in detail. Larger scale macroscopic structures (MACS) are examined separately from quite smaller scale microscopic structures (MICS). The formation of MACS, at least in cases of round to moderately elliptical PNe, is shown to be reasonably well understood in terms of existing hydrodynamical models. Considering the kinematical behaviour, MICS can be separated into FLIERs (Fast Low Ionization Emitting Regions) and SLOWERs (slowly moving). Attention is focussed on FLIERs and on the proposed mechanisms to interpret them. Recent observations with the Hubble Space Telescope have provided us with a wealth of detailed (subarcsec) information on the nebular structures. The inner structure of FLIERs is here illustrated to consist of substructures of various shapes with an high degree of individually from object to object, also within the same PN. These new data call for deeper thoretical efforts to solve the problems of cosmic gas dynamics, posed by their observed properties. An ample account is given of the most relevant original works, in an effort to allow the non specialist reader to quickly become acquainted with the status of art in the various aspects of the subject.
Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata
Energy Technology Data Exchange (ETDEWEB)
Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1999-03-11
Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with
APPLICATION OF GAS DYNAMICAL FRICTION FOR PLANETESIMALS. II. EVOLUTION OF BINARY PLANETESIMALS
Energy Technology Data Exchange (ETDEWEB)
Grishin, Evgeni; Perets, Hagai B. [Physics Department, Technion—Israel Institute of Technology, Haifa, 3200003 (Israel)
2016-04-01
One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs long before the dispersal of most of the gas from the protoplanetary disk. At this stage gas–planetesimal interactions play a key role in the dynamical evolution of single intermediate-mass planetesimals (m{sub p} ∼ 10{sup 21}–10{sup 25} g) through gas dynamical friction (GDF). A significant fraction of all solar system planetesimals (asteroids and Kuiper-belt objects) are known to be binary planetesimals (BPs). Here, we explore the effects of GDF on the evolution of BPs embedded in a gaseous disk using an N-body code with a fiducial external force accounting for GDF. We find that GDF can induce binary mergers on timescales shorter than the disk lifetime for masses above m{sub p} ≳ 10{sup 22} g at 1 au, independent of the binary initial separation and eccentricity. Such mergers can affect the structure of merger-formed planetesimals, and the GDF-induced binary inspiral can play a role in the evolution of the planetesimal disk. In addition, binaries on eccentric orbits around the star may evolve in the supersonic regime, where the torque reverses and the binary expands, which would enhance the cross section for planetesimal encounters with the binary. Highly inclined binaries with small mass ratios, evolve due to the combined effects of Kozai–Lidov (KL) cycles with GDF which lead to chaotic evolution. Prograde binaries go through semi-regular KL evolution, while retrograde binaries frequently flip their inclination and ∼50% of them are destroyed.
Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.
Directory of Open Access Journals (Sweden)
Yoshiyuki Fukuoka
Full Text Available Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency, breath-by-breath ventilation (V̇E and gas exchange (CO2 output (V̇CO2 and O2 uptake (V̇O2 responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min. The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW was significantly greater than that during sinusoidal cycling (SC, and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward and muscle afferent feedback.
Matveev, V. N.; Baturin, O. V.; Kolmakova, D. A.; Popov, G. M.
2017-01-01
Circumferential nonuniformity of gas flow is one of the main problems in the gas turbine engine. Usually, the flow circumferential nonuniformity appears near the annular frame located in the flow passage of the engine. The presence of circumferential nonuniformity leads to the increased dynamic stresses in the blade rows and the blade damage. The goal of this research was to find the ways of the flow non-uniformity reduction, which would not require a fundamental changing of the engine design. A new method for reducing the circumferential nonuniformity of the gas flow was proposed that allows the prediction of the pressure peak values of the rotor blades without computationally expensive CFD calculations.
Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.
2018-04-01
In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.
Dynamics and inherent safety features of small modular high temperature gas-cooled reactors
International Nuclear Information System (INIS)
Harrington, R.M.; Ball, S.J.; Cleveland, J.C.
1986-01-01
Investigations were made at Oak Ridge National Laboratory to characterize the dynamics and inherent safety features of various modular high temperature gas-cooled reactor (HTGR) designs. This work was sponsored by the US Nuclear Regulatory Commission's HTGR Safety Research program. The US Department of Energy (DOE) and the Gas Cooled Reactor Associates (GCRA) have sponsored studies of several modular HTGR concepts, each having it own unique advantageous economic and inherent safety features. The DOE design team has recently choses a 350-MW(t) annular core with prismatic, graphite matrix fuel for its reference plant. The various safety features of this plant and of the pebble-bed core designs similar to those currently being developed and operated in the Federal Republic of Germany (FRG) are described. A varity of postulated accident sequences involving combinations of loss of forced circulation of the helium primary coolant, loss of primary coolant pressurization, and loss of normal and backup heat sinks were studied and are discussed. Results demonstrate that each concept can withstand an uncontrolled heatup accident without reaching excessive peak fuel temperatures. Comparisons of calculated and measured response for a loss of forced circulation test on the FRG reactor, AVR, are also presented. 10 refs
Dynamics of gas-surface interactions atomic-level understanding of scattering processes at surfaces
Díez Muniño, Ricardo
2013-01-01
This book gives a representative survey of the state of the art of research on gas-surface interactions. It provides an overview of the current understanding of gas surface dynamics and, in particular, of the reactive and non-reactive processes of atoms and small molecules at surfaces. Leading scientists in the field, both from the theoretical and the experimental sides, write in this book about their most recent advances. Surface science grew as an interdisciplinary research area over the last decades, mostly because of new experimental technologies (ultra-high vacuum, for instance), as well as because of a novel paradigm, the ‘surface science’ approach. The book describes the second transformation which is now taking place pushed by the availability of powerful quantum-mechanical theoretical methods implemented numerically. In the book, experiment and theory progress hand in hand with an unprecedented degree of accuracy and control. The book presents how modern surface science targets the atomic-level u...
Energy Technology Data Exchange (ETDEWEB)
Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)
2013-05-15
We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.
Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics
International Nuclear Information System (INIS)
Webb, G M; Zank, G P
2009-01-01
Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index γ are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.
SLOWLY ROTATING GAS-RICH GALAXIES IN MODIFIED NEWTONIAN DYNAMICS (MOND)
International Nuclear Information System (INIS)
Sánchez-Salcedo, F. J.; Martínez-García, E. E.; Hidalgo-Gámez, A. M.
2013-01-01
We have carried out a search for gas-rich dwarf galaxies that have lower rotation velocities in their outskirts than MOdified Newtonian Dynamics (MOND) predicts, so that the amplitude of their rotation curves cannot be fitted by arbitrarily increasing the mass-to-light ratio of the stellar component or by assuming additional undetected matter. With presently available data, the gas-rich galaxies UGC 4173, Holmberg II, ESO 245-G05, NGC 4861, and ESO 364-G029 deviate most from MOND predictions and, thereby, provide a sample of promising targets in testing the MOND framework. In the case of Holmberg II and NGC 4861, we find that their rotation curves are probably inconsistent with MOND, unless their inclinations and distances differ significantly from the nominal ones. The galaxy ESO 364-G029 is a promising target because its baryonic mass and rotation curve are similar to Holmberg II but presents a higher inclination. Deeper photometric and H I observations of ESO 364-G029, together with further decreasing systematic uncertainties, may provide a strong test to MOND.
Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin
2014-01-08
The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.
Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara
2011-12-01
Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. Copyright © 2011 Elsevier B.V. All rights reserved.
Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin
2014-01-01
The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919
Gas dynamics in the central cavity of HYLIFE-II reactor
International Nuclear Information System (INIS)
Chen, X.M.; Schrock, V.E.; Peterson, P.F.; Colella, P.
1992-01-01
In a HYLIFE-II ICF reactor, the microfusion of the D-T capsule in the center of the chamber produces X-rays that can ablate a thin layer off the liquid blanket which protects the first structural wall Thisablated material will implode toward the center line of the central cavity due to the initial vacuum and cylindrical geometry, and then rebound back to the liquid blanket vent through it and exert a pressure ''impulse'' onto the structural wall. The initial ablation occurs in a very short period with very small characteristic length and the implosion and rebounding processes feature very high pressures and temperatures. The proper design of the chamber relies on the reasonably accurate analysis of the gas dynamics in the central cavity and the gas-liquid interaction. In this paper, a second order Godunov numerical method is used to solve the compressible flow equations in the central cavity. The rarefaction and shock phenomena are very well captured by the numerical calculation. The equation of state for Flibe vapor is used in the calculation along with the parameters for the HYLIFE-II design. Since the radiation transport has not yet been included in the current calculations, the vapor possesses higher energy and therefore temperature. The total mass vaporized will also be underestimated in the later time of the calculation. The incorporation of a radiation calculation into this code is our next goal
Apparent dynamic contact angle of an advancing gas--liquid meniscus
International Nuclear Information System (INIS)
Kalliadasis, S.; Chang, H.
1994-01-01
The steady motion of an advancing meniscus in a gas-filled capillary tube involves a delicate balance of capillary, viscous, and intermolecular forces. The limit of small capillary numbers Ca (dimensionless speeds) is analyzed here with a matched asymptotic analysis that links the outer capillary region to the precursor film in front of the meniscus through a lubricating film. The meniscus shape in the outer region is constructed and the apparent dynamic contact angle Θ that the meniscus forms with the solid surface is derived as a function of the capillary number, the capillary radius, and the Hamaker's constant for intermolecular forces, under conditions of weak gas--solid interaction, which lead to fast spreading of the precursor film and weak intermolecular forces relative to viscous forces within the lubricating film. The dependence on intermolecular forces is very weak and the contact angle expression has a tight upper bound tan Θ=7.48 Ca 1/3 for thick films, which is independent of the Hamaker constant. This upper bound is in very good agreement with existing experimental data for wetting fluids in any capillary and for partially wetting fluids in a prewetted capillary. Significant correction to the Ca 1/3 dependence occurs only at very low Ca, where the intermolecular forces become more important and tan Θ diverges slightly from the above asymptotic behavior toward lower values
Climate changes - To understand and to react
International Nuclear Information System (INIS)
2011-01-01
The first part of this report recalls the definition of the greenhouse effect, comments the climate past variations, outlines that climate changes are already here and that greenhouse effect has a human origin, and discusses the expected impacts during the 21. century. The second part presents the basis of international action in the struggle against climate change, outlines the necessity to strengthen this international action, describes the role of Europe in international negotiations on climate, outlines the need of an international agreement on climate, proposes an overview of the French climate policy (national and local actions), and outlines that some political responses do not match with sustainable development (nuclear energy, agro-fuels, carbon capture and storage, shale gas and oil). The third part indicates how one can compute his own impact on climate, and presents some collective and citizen innovative initiatives in the fields of agriculture and food, of energy, of transports and mobility, and of wastes
The dynamics of gas-puff imploding plasmas on the NRL Gamble II Generator
International Nuclear Information System (INIS)
Stephanakis, S.J.; Boller, J.R.; Hinshelwood, D.D.; McDonald, S.W.; Mehlman, C.G.; Ottinger, P.F.; Young, F.C.
1985-01-01
The experimental study of imploding plasma loads on the NRL Gamble II generator was initiated more than a year ago. Preliminary results including scaling laws for K-line radiation output from neon puffs and the effect of plasma erosion opening switches (PEOS's) on the x-ray yields and the pinch quality were reported upon during the past year. In order to better understand the implosion dynamics of such plasmas, time-resolved photographs have been taken of the implosion history. In contrast with time-integrated x-ray pinhole photographs, the time-resolved visible-light pictures indicate that the implosion phase is essentially instability-free, while pinching and flaring occur at late times during the blow-up phase. Furthermore, these visible-light framing photographs clearly show that the discharge is flared out toward the anode at early times and becomes cylindrical at implosion. This so-called ''zipper-effect'' has been seen in previous argon-puff experiments and is due to the non-uniform initial distribution of gas across the anode-cathode gap. The authors present comparisons of time-resolved photographs taken both in visible and x-ray light along with x-ray spectra taken with and without PEOS's. The implications of these data are discussed in view of the present theoretical understanding of the plasma implosion dynamics
The dynamics of gas-puff imploding plasmas on the NRL Gamble II generator
International Nuclear Information System (INIS)
Stephanakis, S.J.; Boller, J.R.; Hinshelwood, D.D.; McDonald, S.W.; Mehlman, C.G.; Ottinger, P.F.; Young, F.C.
1985-01-01
The experimental study of imploding plasma loads on the NRL Gamble II generator was initiated more than a year ago. Preliminary results including scaling laws for K-line radiation output from neon puffs and the effect of plasma erosion opening switches (PEOS's) on the x-ray yields and the pinch quality were reported upon during the past year. In order to better understand the implosion dynamics of such plasmas, time-resolved photographs have been taken of the implosion history. In contrast with time-integrated x-ray pinhole photographs, the time-resolved visible-light pictures indicate that the implosion phase is essentially instability-free, while pinching and flaring occur at late times during the blow-up phase. Furthermore, these visible-light framing photographs clearly show that the discharge is flared out toward the anode at early times and becomes cylindrical at implosion. This so-called ''zipper-effect'' has been seen in previous argon-puff experiments and is due to the non-uniform initial distribution of gas across the anode-cathode gap. The authors present comparisons of time-resolved photographs taken both in visible and x-ray light along with x-ray spectra taken with and without PEOS's. The implications of these data are discussed in view of the present theoretical understanding of the plasma implosion dynamics
Self-similar dynamic converging shocks - I. An isothermal gas sphere with self-gravity
Lou, Yu-Qing; Shi, Chun-Hui
2014-07-01
We explore novel self-similar dynamic evolution of converging spherical shocks in a self-gravitating isothermal gas under conceivable astrophysical situations. The construction of such converging shocks involves a time-reversal operation on feasible flow profiles in self-similar expansion with a proper care for the increasing direction of the specific entropy. Pioneered by Guderley since 1942 but without self-gravity so far, self-similar converging shocks are important for implosion processes in aerodynamics, combustion, and inertial fusion. Self-gravity necessarily plays a key role for grossly spherical structures in very broad contexts of astrophysics and cosmology, such as planets, stars, molecular clouds (cores), compact objects, planetary nebulae, supernovae, gamma-ray bursts, supernova remnants, globular clusters, galactic bulges, elliptical galaxies, clusters of galaxies as well as relatively hollow cavity or bubble structures on diverse spatial and temporal scales. Large-scale dynamic flows associated with such quasi-spherical systems (including collapses, accretions, fall-backs, winds and outflows, explosions, etc.) in their initiation, formation, and evolution are likely encounter converging spherical shocks at times. Our formalism lays an important theoretical basis for pertinent astrophysical and cosmological applications of various converging shock solutions and for developing and calibrating numerical codes. As examples, we describe converging shock triggered star formation, supernova explosions, and void collapses.
Cloud fluid models of gas dynamics and star formation in galaxies
Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.
1987-01-01
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.
Dynamic simulation model of a coal thermoelectric plant with a flue gas desulphurisation system
International Nuclear Information System (INIS)
Caselles-Moncho, Antonio; Ferrandiz-Serrano, Liliana; Peris-Mora, Eduardo
2006-01-01
In this paper a Dynamic Simulation Model has been used to present the likely responses of the electricity industries' latest perturbations such as: changes in environmental regulations, international fuel market evolution, restriction on fuel supply and increase on fuel prices, liberalisation of the European Electricity Market, and the results of applying energy policies and official tools such as taxes and emission allowances. The case under study refers to the Teruel Power Plant, built after the 1970s oil crisis to ensure national electricity supply; burning domestically produced coal in order to ensure local mining activity. The Teruel Power Plant has made relevant investments in order to meet emission limits, such as a Flue Gas Desulphurisation Plant. The economic viability of the power stations has to be analysed after environmental costs have been internalised. A system is defined that studies the coal-firing Electric Power Plant selling energy to the free electricity market, whenever the generation cost is competitive. A Dynamic Simulation Model would appear to be an accurate tool to optimise power station management within different frameworks
Soil Gas Dynamics and Microbial Activity in the Unsaturated Zone of a Regulated River
Christensen, H.; Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Bennett, P. C.
2017-12-01
Over 60% of the world's rivers are dammed, and are therefore regulated. In some river systems, river regulation is the dominant factor governing fluid exchange and soil gas dynamics in the hyporheic region and overlying unsaturated zone of the river banks. Where this is the case, it is important to understand the effects that an artificially-induced change in river stage can have on the chemical, plant, and microbial components of the unsaturated zone. Daily releases from an upstream dam cause rapid stage fluctuations in the Lower Colorado River east of Austin, Texas. For this study, we utilized an array of water and gas wells along a transect perpendicular to the river to investigate the biogeochemical process occurring in this mixing zone. The gas wells were installed at several depths up to 1.5 meters, and facilitated the continuous monitoring of soil gases as the pulse percolated through the river bank. Water samples collected from the screened wells penetrated to depths below the water table and were analyzed for nutrients, carbon, and major ions. Additionally, two soil cores were taken at different distances from the river and analyzed for soil moisture and grain size. These cores were also analyzed for microbial activity using the total heterotroph count method and the acetylene inhibition technique, a sensitive method of measuring denitrifying activity. The results provide a detailed picture of soil gas flux and biogeochemical processes in the bank environment in a regulated river. Findings indicate that a river pulse that causes a meter-scale change in river stage causes small, centimeter-scale pulses in the water table. We propose that these conditions create an area of elevated microbial respiration at the base of the unsaturated zone that appears to be decoupled from normal diurnal fluctuations. Along the transect, CO2 concentrations increased with increasing depth down to the water table. CO2 concentrations were highest in the time following a pulse
Gas dynamics in tidal dwarf galaxies: Disc formation at z = 0
Lelli, Federico; Duc, Pierre-Alain; Brinks, Elias; Bournaud, Frédéric; McGaugh, Stacy S.; Lisenfeld, Ute; Weilbacher, Peter M.; Boquien, Médéric; Revaz, Yves; Braine, Jonathan; Koribalski, Bärbel S.; Belles, Pierre-Emmanuel
2015-12-01
Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting and merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can only form from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291, we analyse existing H I data from the Very Large Array (VLA), while for NGC 7252 we present new H I observations from the Jansky VLA, together with long-slit and integral-field optical spectroscopy. For all six TDGs, the H I emission can be described by rotating disc models. These H I discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consistent with the observed baryonic masses, implying that TDGs are devoid of dark matter. This puts constraints on putative "dark discs" (either baryonic or non-baryonic) in the progenitor galaxies. Moreover, TDGs seem to systematically deviate from the baryonic Tully-Fisher relation. These results provide a challenging test for alternative theories like MOND. Based on observations made with ESO telescopes at Paranal Observatory under programmes 65.O-0563, 67.B-0049, and 083.B-0647.Appendices are available in electronic form at http://www.aanda.orgThe reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A113
Dynamic modelling and characterisation of a solid oxide fuel cell integrated in a gas turbine cycle
Energy Technology Data Exchange (ETDEWEB)
Thorud, Bjoern
2005-07-01
This thesis focuses on three main areas within the field of SOFC/GT-technology: 1) Development of a dynamic SOFC/GT model. 2) Model calibration and sensitivity study. 3) Assessment of the dynamic properties of a SOFC/GT power plant. The SOFC/GT model developed in this thesis describes a pressurised tubular Siemens Westinghouse-type SOFC, which is integrated in a gas turbine cycle. The process further includes a plate-fin recuperator for stack air preheating, a prereformer, an anode exhaust gas recycling loop for steam/carbon-ratio control, an afterburner and a shell-tube heat exchanger for air preheating. The fuel cell tube, the recuperator and the shell-tube heat exchanger are spatially distributed models. The SOFC model is further thermally integrated with the prereformer. The compressor and turbine models are based on performance maps as a general representation of the characteristics. In addition, a shaft model which incorporates moment of inertia is included to account for gas turbine transients. The SOFC model is calibrated against experimentally obtained data from a single-cell experiment performed on a Siemens Westinghouse tubular SOFC. The agreement between the model and the experimental results is good. The sensitivity study revealed that the degree of prereforming is of great importance with respect to the axial temperature distribution of the fuel cell. Types of malfunctions are discussed prior to the dynamic behaviour study. The dynamic study of the SOFC/GT process is performed by simulating small and large load changes according to three different strategies; 1) Load change at constant mean fuel cell temperature. 2) Load change at constant turbine inlet temperature. 3) Load change at constant shaft speed. Of these three strategies, the constant mean fuel cell temperature strategy appears to be the most rapid load change method. Furthermore, this strategy implies the lowest degree of thermal cycling, the smoothest fuel cell temperature distribution and
Pambour, Kwabena Addo; Cakir Erdener, Burcin; Bolado-Lavin, Ricardo; Dijkema, Gerhard P.J.
2017-01-01
The integration of renewable energy sources into existing electric power systems is connected with an increased interdependence between natural gas and electricity transmission networks. To analyse this interdependence and its impact on security of supply, we developed a novel quasi-dynamic
Coherent spin dynamics of an interwell excitonic gas in GaAs/AlGaAs coupled quantum wells
DEFF Research Database (Denmark)
Larionov, A. V.; Bisti, V. E.; Bayer, M.
2006-01-01
The spin dynamics of an interwell exciton gas has been investigated in n-i-n GaAs/AlGaAs coupled quantum wells. The time evolution kinetics of the interwell exciton photoluminescence has been measured under resonant excitation of the 1s heavy-hole intrawell exciton, using a pulsed tunable laser...
Present status of rarefied gas dynamics approach to the structure of a laser-induced evaporating jet
International Nuclear Information System (INIS)
Cercignani, C.
1980-01-01
With reference to the relation between the state of the surface and the measurements downstream in the dynamic laser pulse technique, the problems arising in connection with the study of the structure of a jet evaporating into a vacuum are investigated. Particular attention is paid to the following aspects gas surface interaction, internal degrees of freedom, presence of more than one species, chemical reactions
Rao, T. R. Ramesh
2018-04-01
In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.
Sweet, Chelsea; Akinfenwa, Oyewumi; Foley, Jonathan J., IV
2018-01-01
We present an interactive discovery-based approach to studying the properties of real gases using simple, yet realistic, molecular dynamics software. Use of this approach opens up a variety of opportunities for students to interact with the behaviors and underlying theories of real gases. Students can visualize gas behavior under a variety of…
Seasonal Trace Gas Dynamics on Minerotrophic Fen Peatlands in NE-Germany
Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz
2010-05-01
In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual trace gas balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest balances in both years. For implementing a
Ivanov, Rossen I.; Prodanov, Emil M.
2018-01-01
The cosmological dynamics of a quintessence model based on real gas with general equation of state is presented within the framework of a three-dimensional dynamical system describing the time evolution of the number density, the Hubble parameter and the temperature. Two global first integrals are found and examples for gas with virial expansion and van der Waals gas are presented. The van der Waals system is completely integrable. In addition to the unbounded trajectories, stemming from the presence of the conserved quantities, stable periodic solutions (closed orbits) also exist under certain conditions and these represent models of a cyclic Universe. The cyclic solutions exhibit regions characterized by inflation and deflation, while the open trajectories are characterized by inflation in a “fly-by” near an unstable critical point.
Energy Technology Data Exchange (ETDEWEB)
Solomon, Evan A.; Kastner, Miriam; Robertson, Gretchen; Jannasch, Hans; Weinstein, Yishai
2005-07-01
Four newly designed flux meters called the MOSQUITO (Multiple Orifice Sampler and Quantitative Injection Tracer Observer), capable of measuring fluid flow rates and sampling pore fluid chemistry simultaneously, and two temperature loggers were deployed for 430 days adjacent to the Bush Hill hydrate mound in the northern Gulf of Mexico (GC 185). The main objective of the deployment was to understand how chemistry, temperature, and subsurface hydrology dynamically influence the growth and dissociation of the gas hydrate mound. The flux meters were deployed in a mussel field, in bacterial mats, in a tubeworm field, and at a background site approximately 100 m southwest of the hydrate mound. Results from the longterm chemical monitoring suggest that this system is not in dynamic equilibrium. Gas hydrate actively formed within the mussel field adjacent to the most active gas vent, in the tubeworm field, and at the background site. The hydrology is variable with upward flow rates ranging from 1-90 cm/yr and downward flow rates from 3-130 cm/yr. Two distinct hydrologic pulsing events were sampled across the three mound sites, which advect a fluid from depth that further stabilizes the gas hydrate deposit. The hydrogeochemistry at Bush Hill seems to be influenced by multiple mechanisms such as active formation of gas hydrate, fluid influx and outflux due to active venting of CH4 at transient methane seeps at and near the mound, local salt tectonics, and density driven convection. The fluxes of fluid, solutes, and methane may have a significant impact on the seafloor biochemical environment and the water column chemistry at Bush Hill. (Author)
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
The Dynamics and Cold Gas Content of Luminous Infrared Galaxy Mergers in the Local Universe
Privon, G. C.
2014-08-01
place the observations in context. Applications of this dynamical merger stage to the study of star formation rates and indicators of AGN activity are presented. Finally, newly obtained measurements of the galaxy-integrated 1-0 rotational transitions of hydrogen cyanide (HCN) and formylium (HCO^+) in a sample of U/LIRGs are used to investigate the ratio of HCN (1-0) to HCO (1-0) and its dependence on mid-infrared indicators of AGN strength. In contrast to previous claims, it is demonstrated that high values of this ratio are not uniquely linked to the presence of an AGN, but can be achieved in systems dominated by star formation. This suggests the excitation of these high critical density molecular gas tracers is determined by the complex interplay of radiation field, gas density, and gas column.
Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines
DeLaat, John C.
2011-01-01
Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.
Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine
International Nuclear Information System (INIS)
Li Guoxiu; Yao Baofeng
2008-01-01
Temporal dynamics of the combustion process in a lean-burn natural gas engine was studied by the analysis of time series of consecutive experimental in-cylinder pressure data in this work. Methods borrowed to the nonlinear dynamical system theory were applied to analyze the in-cylinder pressure time series under operating conditions with different equivalence ratio. Phase spaces were reconstructed from the in-cylinder pressure time series and Poincare section calculated from each phase space. Poincare sections show that the in-cylinder combustion process involves chaotic behavior. Furthermore, return maps plotted from time series of indicated mean effective pressure show that both nonlinear deterministic components and stochastic components are involved in the dynamics of cycle-to-cycle combustion variations in the lean burn natural gas engine. There is a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio decreases from near stoichiometric to very lean conditions
Nonlinear dynamics of cycle-to-cycle combustion variations in a lean-burn natural gas engine
Energy Technology Data Exchange (ETDEWEB)
Li Guoxiu [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)], E-mail: gxli@bjtu.edu.cn; Yao Baofeng [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China)
2008-04-15
Temporal dynamics of the combustion process in a lean-burn natural gas engine was studied by the analysis of time series of consecutive experimental in-cylinder pressure data in this work. Methods borrowed to the nonlinear dynamical system theory were applied to analyze the in-cylinder pressure time series under operating conditions with different equivalence ratio. Phase spaces were reconstructed from the in-cylinder pressure time series and Poincare section calculated from each phase space. Poincare sections show that the in-cylinder combustion process involves chaotic behavior. Furthermore, return maps plotted from time series of indicated mean effective pressure show that both nonlinear deterministic components and stochastic components are involved in the dynamics of cycle-to-cycle combustion variations in the lean burn natural gas engine. There is a transition from stochastic behavior to noisy nonlinear determinism as equivalence ratio decreases from near stoichiometric to very lean conditions.
International Nuclear Information System (INIS)
Wang, Pei; Yi, Wei; Xianlong, Gao
2015-01-01
We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems. (paper)
Wang, Pei; Yi, Wei; Xianlong, Gao
2015-01-01
We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.
Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk
International Nuclear Information System (INIS)
Bai, Xue-Ning
2014-01-01
The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect, and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. In this series, we have included, for the first time, all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies (Bai and Stone 2013; Bai 2013) excluding the Hall effect have revealed that the inner disk up to ∼10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect modifies the wind solutions depending on the polarity of the large-scale poloidal magnetic field B 0 threading the disk. When B 0 ⋅Ω>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ∼50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B 0 ⋅Ω<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ≲ 20%) and negligible magnetic braking. Under fiducial parameters, we find that when B 0 ⋅Ω>0, the laminar region extends farther to ∼10-15 AU before the magnetorotational instability sets in, while for B 0 ⋅Ω<0, the laminar region extends only to ∼3-5 AU for a typical accretion rate of ∼10 –8 to10 –7 M ☉ yr –1 . Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries.
Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk
Energy Technology Data Exchange (ETDEWEB)
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)
2014-08-20
The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect, and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. In this series, we have included, for the first time, all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies (Bai and Stone 2013; Bai 2013) excluding the Hall effect have revealed that the inner disk up to ∼10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect modifies the wind solutions depending on the polarity of the large-scale poloidal magnetic field B{sub 0} threading the disk. When B{sub 0}⋅Ω>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ∼50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B{sub 0}⋅Ω<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ≲ 20%) and negligible magnetic braking. Under fiducial parameters, we find that when B{sub 0}⋅Ω>0, the laminar region extends farther to ∼10-15 AU before the magnetorotational instability sets in, while for B{sub 0}⋅Ω<0, the laminar region extends only to ∼3-5 AU for a typical accretion rate of ∼10{sup –8} to10{sup –7} M {sub ☉} yr{sup –1}. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries.
Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)
Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.
2013-12-01
Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive
Borovkov, Alexei I.; Pyatishev, Evgenij N.; Lurie, Mihail S.; Korshunov, Andrey V.; Akulshin, Y. D.; Dolganov, A. G.; Sabadash, V. O.
2001-02-01
The tiny engines, founded on the principle of reactive thrust, are one of most perspective actuators developed by modern micromechanics. These engines can be applied for such apparent problems, as orientation and stabilization of small space objects, but also as local or distributed reactive thrust of new phylum of aerospace objects, for control of boundary layer of flying objects and in series of converting power devices of different purposes. Distinctive features of jet tiny engines are profitability (very large thrust-to-weight ratio) and high (milliseconds) response, which makes them to irreplaceable elements in control systems and, specially, in distributed power generations. These features are provided the minimum sizes, high pressure in working chambers and hypersonic velocity of propulsive jet. Topologically micronozzles are designed as the flat batch devices (3 layers as minimum). The lower and upper layers make flat walls of the nozzle and mainly influence on strength properties of the device. The mean layer reshapes geometry and determines gas dynamic characteristic of the nozzle. A special problem is the opening-up of the combustion-mixture, which is not esteemed in this work. It is necessary to allow for effect of considerable local stresses arising at the expense of static and dynamic loading at design of the jet tiny engines. Thermal gas dynamic processes in the chamber and nozzle determine the values and nature of these stresses, which are hardly studied for the microdevices. The priority is mathematical and experimental simulation of these processes. The most suitable object for initial phase of experimental simulation is the 'cold' engine. The demanded chamber static pressure is formed by external compressed air. In Laboratory of Microtechnology and MicroElectroMechanical Systems a number of such tiny engines with different shapes of the chamber's and the nozzles' surfaces were designed, made and tested. The engines were produced from photosensing
Simultaneous Temperature and Velocity Diagnostic for Reacting Flows, Phase I
National Aeronautics and Space Administration — A diagnostic technique is proposed for measuring temperature and velocity simultaneously in a high temperature reacting flow for aiding research in propulsion. The...
Continuum-Kinetic Hybrid Framework for Chemically Reacting Flows
National Aeronautics and Space Administration — Predictive modeling of chemically reacting flows is essential for the design and optimization of future hypersonic vehicles. During atmospheric re-entry, complex...
International Nuclear Information System (INIS)
Powell, B.E.; Bakhshi, V.S.; Randolph, D.A.
1984-01-01
A process for adsorbing sulfur dioxide from a gas comprising contacting a gas containing SO 2 , such as a flue gas, with about stoichiometric amounts of a specially prepared calcium oxide so that substantially all of the sulfur dioxide content is reacted throughout the calcium oxide particle to form a calcium sulfate reaction product. The useful calcium oxide particles comprise a highly voided skeletal structure of very large surface area and large pore volume with numerous macro pores. Such particles are obtained by flash calcining sand-size grains of calcium carbonate, such as aragonite, calcite or dolomite
International Nuclear Information System (INIS)
Kotchourko, A.; Breitung, W.; Dorofeev, S.; Ohlmeyer, H.
2003-01-01
The radiolysis gas explosion in the KKB power plant was recalculated in 3D simulations as followed: The total energy released was limited as far as possible. - Pressure generation and dispersion across the containment was calculated for three different initial energies. - Loads in the near field were simulated assuming the most probable total energy (about 14 MJ) and using three different models of the explosion process. The calculation with direct simulation of detonation inside the tube provided realistic results, according to the authors. - Transient local pressure and temperature loads were recorded in specified local points and evaluated in further damage analyses. The results showed that modern 3D flow and combustion calculations provide valuable information on pressure and temperature loads resulting from radiolysis gas reactions in big complex safety containments. (orig.) [de
Numerical Investigation into CO Emission, O Depletion, and Thermal Decomposition in a Reacting Slab
Directory of Open Access Journals (Sweden)
O. D. Makinde
2011-01-01
Full Text Available The emission of carbon dioxide (CO2 is closely associated with oxygen (O2 depletion, and thermal decomposition in a reacting stockpile of combustible materials like fossil fuels (e.g., coal, oil, and natural gas. Moreover, it is understood that proper assessment of the emission levels provides a crucial reference point for other assessment tools like climate change indicators and mitigation strategies. In this paper, a nonlinear mathematical model for estimating the CO2 emission, O2 depletion, and thermal stability of a reacting slab is presented and tackled numerically using a semi-implicit finite-difference scheme. It is assumed that the slab surface is subjected to a symmetrical convective heat and mass exchange with the ambient. Both numerical and graphical results are presented and discussed quantitatively with respect to various parameters embedded in the problem.
Paul, Subhajit; Das, Subir K.
2018-03-01
Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.
Hamiltonian aspects of three-wave resonant interactions in gas dynamics
Webb, G. M.; Zakharian, A.; Brio, M.; Zank, G. P.
1997-06-01
Equations describing three-wave resonant interactions in adiabatic gas dynamics in one Cartesian space dimension derived by Majda and Rosales are expressed in terms of Lagrangian and Hamiltonian variational principles. The equations consist of two coupled integro-differential Burgers equations for the backward and forward sound waves that are coupled by integral terms that describe the resonant reflection of a sound wave off an entropy wave disturbance to produce a reverse sound wave. Similarity solutions and conservation laws for the equations are derived using symmetry group methods for the special case where the entropy disturbance consists of a periodic saw-tooth profile. The solutions are used to illustrate the interplay between the nonlinearity represented by the Burgers self-wave interaction terms and wave dispersion represented by the three-wave resonant interaction terms. Hamiltonian equations in Fourier (p,t) space are also obtained where p is the Fourier space variable corresponding to the fast phase variable 0305-4470/30/12/013/img6 of the waves. The latter equations are transformed to normal form in order to isolate the normal modes of the system.
Computational Fluid Dynamics Simulation of Oxygen Seepage in Coal Mine Goaf with Gas Drainage
Directory of Open Access Journals (Sweden)
Guo-Qing Shi
2015-01-01
Full Text Available Mine fires mainly arise from spontaneous combustion of coal seams and are a global issue that has attracted increasing public attention. Particularly in china, the closure of coal workfaces because of spontaneous combustion has contributed to substantial economic loss. To reduce the occurrence of mine fires, the spontaneous coal combustion underground needs to be studied. In this paper, a computational fluid dynamics (CFD model was developed for coal spontaneous combustion under goaf gas drainage conditions. The CFD model was used to simulate the distribution of oxygen in the goaf at the workface in a fully mechanized cave mine. The goaf was treated as an anisotropic medium, and the effects of methane drainage and oxygen consumption on spontaneous combustion were considered. The simulation results matched observational data from a field study, which indicates CFD simulation is suitable for research on the distribution of oxygen in coalmines. The results also indicated that near the workface spontaneous combustion was more likely to take place in the upper part of the goaf than near the bottom, while further from workface the risk of spontaneous combustion was greater in the lower part of the goaf. These results can be used to develop firefighting approaches for coalmines.
A multilevel particle method for gas dynamics: application to multi-fluids simulation
International Nuclear Information System (INIS)
Weynans, Lisl
2006-12-01
In inertial confinement fusion, laser implosions require to know hydrodynamic flow in presence of shocks. This work is devoted to the evaluation of the ability of a particle-mesh method, inspired from Vortex-In-Cell methods, to simulate gas dynamics, especially multi-fluids. First, we develop a particle method, associated with a conservative re-meshing step, which is performed with high order interpolating kernels. We study theoretically and numerically this method. This analysis gives evidence of a strong relationship between the particle method and high order Lax-Wendroff-like finite difference schemes. We introduce a new scheme for the advection of particles. Then we implement a multilevel technique, inspired from AMR, which allows us to increase locally the accuracy of the computations. Finally we develop a level set-like technique, discretized on the particles, to simulate the interface between compressible flows. We use the multilevel technique to improve the interface resolution and the conservation of partial masses. (author)
Kamarianakis, Yiannis; Gao, H Oliver
2010-02-15
Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.
Theoretical Study on the Dynamic Behavior of Pipes Conveying Gas-Liquid Flow
Directory of Open Access Journals (Sweden)
Enrique Ortiz-Vidal L.
2018-01-01
Full Text Available The dynamic behavior of clamped-clamped straight pipes conveying gas-liquid two-phase flow is theoretically investigated, specifically the effect of the flow parameters on the frequency of the system. First, the equation of motion is derived based on the classic Païdoussis formulation. Assuming Euler-Bernoulli beam theory, small-deflection approximation and no-slip homogeneous model, a coupled fluid-structure fourth-order partial differential equation (PDE is obtained. Then, the equation of motion is rendered dimensionless and discretized through Galerkin’s method. That method transforms the PDE into a set of Ordinary Differential Equations (ODEs. The system frequency is obtained by solving the system of ODEs by allowing the determinant to be equal to zero. System frequencies for different geometries, structural properties and flow conditions have been calculated. The results show that the system frequency decreases with increasing two-phase flow velocity. By contrast, the former increases with increasing homogeneous void fraction. These theoretical results are in agreement with experimental findings reported in the literature. Furthermore, even for typical two phase flow conditions, the system can become unstable for inadequate chooses of geometry or material of the pipe.
Yan, Weiming; Zheng, Shuxia; Zhong, Yangquanwei; Shangguan, Zhouping
2017-06-30
Leaf gas exchange is closely associated with water relations; however, less attention has been given to this relationship over successive drought events. Dynamic changes in gas exchange and water potential in the seedlings of two woody species, Amorpha fruticosa and Robinia pseudoacacia, were monitored during recurrent drought. The pre-dawn leaf water potential declined in parallel with gas exchange in both species, and sharp declines in gas exchange occurred with decreasing water potential. A significant correlation between pre-dawn water potential and gas exchange was observed in both species and showed a right shift in R. pseudoacacia in the second drought. The results suggested that stomatal closure in early drought was mediated mainly by elevated foliar abscisic acid (ABA) in R. pseudoacacia, while a shift from ABA-regulated to leaf-water-potential-driven stomatal closure was observed in A. fruticosa. After re-watering, the pre-dawn water potential recovered quickly, whereas stomatal conductance did not fully recover from drought in R. pseudoacacia, which affected the ability to tightly control transpiration post-drought. The dynamics of recovery from drought suggest that stomatal behavior post-drought may be restricted mainly by hydraulic factors, but non-hydraulic factors may also be involved in R. pseudoacacia.
Dynamic Contraction of the Positive Column of a Self-Sustained Glow Discharge in Molecular Gas Flow
Shneider, Mikhail
2014-10-01
Contraction of the gas discharge, when current contracts from a significant volume of weakly ionized plasma into a thin arc channel, was attracted attention of scientists for more than a century. Studies of the contraction (also called constriction) mechanisms, besides carrying interesting science, are of practical importance, especially when contraction should be prevented. A set of time-dependent two-dimensional equations for the non-equilibrium weakly-ionized nitrogen/ air plasma is formulated. The process is described by a set of time-dependent continuity equations for the electrons, positive and negative ions; gas and vibrational temperature; by taking into account the convective heat and plasma losses by the transverse flux. Transition from the uniform to contracted state was analyzed. It was shown that such transition experiences a hysteresis, and that the critical current of the transition increases when the pressure (gas density) drops. Possible coexistence of the contracted and uniform state of the plasma in the discharge where the current flows along the density gradient of the background gas was discussed. In this talk the problems related to the dynamic contraction of the current channel inside a quasineutral positive column of a self-sustained glow discharge in molecular gas in a rectangular duct with convection cooling will be discussed. Study presented in this talk was stimulated by the fact that there are large number of experiments on the dynamic contraction of a glow discharge in nitrogen and air flows and a many of possible applications. Similar processes play a role in the powerful gas-discharge lasers. In addition, the problem of dynamic contraction in the large volume of non-equilibrium weakly ionized plasma is closely related to the problem of streamer to leader transitions in lightning and blue jets.
Evolution of a chemically reacting plume in a ventilated room
Conroy, D. T.; Smith, Stefan G. Llewellyn; Caulfield, C. P.
2005-08-01
The dynamics of a second-order chemical reaction in an enclosed space driven by the mixing produced by a turbulent buoyant plume are studied theoretically, numerically and experimentally. An isolated turbulent buoyant plume source is located in an enclosure with a single external opening. Both the source and the opening are located at the bottom of the enclosure. The enclosure is filled with a fluid of a given density with a fixed initial concentration of a chemical. The source supplies a constant volume flux of fluid of different density containing a different chemical of known and constant concentration. These two chemicals undergo a second-order non-reversible reaction, leading to the creation of a third product chemical. For simplicity, we restrict attention to the situation where the reaction process does not affect the density of the fluids involved. Because of the natural constraint of volume conservation, fluid from the enclosure is continually vented. We study the evolution of the various chemical species as they are advected by the developing ventilated filling box process within the room that is driven by the plume dynamics. In particular, we study both the mean and vertical distributions of the chemical species as a function of time within the room. We compare the results of analogue laboratory experiments with theoretical predictions derived from reduced numerical models, and find excellent agreement. Important parameters for the behaviour of the system are associated with the source volume flux and specific momentum flux relative to the source specific buoyancy flux, the ratio of the initial concentrations of the reacting chemical input in the plume and the reacting chemical in the enclosed space, the reaction rate of the chemicals and the aspect ratio of the room. Although the behaviour of the system depends on all these parameters in a non-trivial way, in general the concentration within the room of the chemical input at the isolated source passes
International Nuclear Information System (INIS)
Yang Xiaole; Mannan, M. Sam
2010-01-01
A methodology of dynamic operational risk assessment (DORA) is proposed for operational risk analysis in oil/gas and chemical industries. The methodology is introduced comprehensively starting from the conceptual framework design to mathematical modeling and to decision making based on cost-benefit analysis. The probabilistic modeling part of DORA integrates stochastic modeling and process dynamics modeling to evaluate operational risk. The stochastic system-state trajectory is modeled according to the abnormal behavior or failure of each component. For each of the possible system-state trajectories, a process dynamics evaluation is carried out to check whether process variables, e.g., level, flow rate, temperature, pressure, or chemical concentration, remain in their desirable regions. Component testing/inspection intervals and repair times are critical parameters to define the system-state configuration, and play an important role for evaluating the probability of operational failure. This methodology not only provides a framework to evaluate the dynamic operational risk in oil/gas and chemical industries, but also guides the process design and further optimization. To illustrate the probabilistic study, we present a case-study of a level control in an oil/gas separator at an offshore plant.
Gas coning control for smart wells using a dynamic coupled well-reservoir simulator
Leemhuis, A.P.; Nennie, E.D.; Belfroid, S.P.C.; Alberts, G.J.N.; Peters, E.; Joosten, G.J.P.
2008-01-01
A strong increase in gas inflow due to gas coning and the resulting bean-back because of Gas to Oil Ratio (GOR) constraints can severely limit oil production and reservoir drive energy. In this paper we will use a coupled reservoir-well model to demonstrate that oil production can be increased by
Mixing and NOx Emission Calculations of Confined Reacting Jet Flows in Cylindrical and Annular Ducts
Oechsle, Victor L.; Connor, Christopher H.; Holdeman, James D. (Technical Monitor)
2000-01-01
Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be
Directory of Open Access Journals (Sweden)
Mahmoud S. Dawood
2015-10-01
Full Text Available In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon and pressure (from ∼5 × 10−7 Torr up to atmosphere is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.
Directory of Open Access Journals (Sweden)
Eslam Kashi
2015-04-01
Full Text Available In some instances, it is inevitable that large amounts of potentially hazardous chemicals like chlorine gas are stored and used in facilities in densely populated areas. In such cases, all safety issues must be carefully considered. To reach this goal, it is important to have accurate information concerning chlorine gas behaviors and how it is dispersed in dense urban areas. Furthermore, maintaining adequate air movement and the ability to purge ambient from potential toxic and dangerous chemicals like chlorine gas could be helpful. These are among the most important actions to be taken toward the improvement of safety in a big metropolis like Tehran. This paper investigates and analyzes chlorine gas leakage scenarios, including its dispersion and natural air ventilation effects on how it might be geographically spread in a city, using computational fluid dynamic (CFD. Simulations of possible hazardous events and solutions for preventing or reducing their probability are presented to gain a better insight into the incidents. These investigations are done by considering hypothetical scenarios which consist of chlorine gas leakages from pipelines or storage tanks under different conditions. These CFD simulation results are used to investigate and analyze chlorine gas behaviors, dispersion, distribution, accumulation, and other possible hazards by means of a simplified CAD model of an urban area near a water-treatment facility. Possible hazards as well as some prevention and post incident solutions are also suggested.
DYNAMIC S0 GALAXIES. II. THE ROLE OF DIFFUSE HOT GAS
International Nuclear Information System (INIS)
Li Jiangtao; Chen Yang; Daniel Wang, Q.; Li Zhiyuan
2011-01-01
Cold gas loss is thought to be important in star formation quenching and morphological transition during the evolution of S0 galaxies. In high-density environments, this gas loss can be achieved via many external mechanisms. However, in relatively isolated environments, where these external mechanisms cannot be efficient, the gas loss must then be dominated by some internal processes. We have performed Chandra analysis of hot gas in five nearby isolated S0 galaxies, based on the quantitative subtraction of various stellar contributions. We find that all the galaxies studied in the present work are X-ray faint, with the luminosity of the hot gas (L X ) typically accounting for ∼ X at the low-mass end (typically with K-band luminosity L K ∼ 11 L sun,K ). However, at the high-mass end, S0 galaxies tend to have significantly lower L X than elliptical galaxies of the same stellar masses, as already shown in previous observational and theoretical works. We further discuss the potential relationship of the diffuse X-ray emission with the cold (atomic and molecular) gas content in the S0 and elliptical galaxies included in our study. We find that L X /L 2 K tends to correlate positively with the total cold gas mass (M H 2 +H i ) for cold-gas-poor galaxies with M H 2 +H i ∼ 8 M sun , while they anti-correlate with each other for cold-gas-rich galaxies. This cold-hot gas relationship can be explained in a scenario of early-type galaxy evolution, with the leftover cold gas from the precursor star-forming galaxy mainly removed by the long-lasting Type Ia supernova (SN) feedback. The two different trends for cold-gas-rich and cold-gas-poor galaxies may be the results of the initial fast decreasing SN rate and the later fast decreasing mass loading to hot gas, respectively.
International Nuclear Information System (INIS)
Ogawa, Kazuhiro; Amao, Satoshi; Ichikawa, Yuji; Shoji, Tetsuo
2008-01-01
This study proposes an innovative technique for repairing of cracked or damaged parts of structures, such as nuclear or thermal power plants, by means of cold gas dynamic spray (CS) technique. In the case of generation of cracks etc. in the structure, the cracks can be repaired by welding. However, the welding spends considerable time on repair, and also needs special skills. The CS technique is known as a new technique not only for coatings but also for thick depositions. It has many advantages, i.e. dense deposition, high deposition rate and low oxidation. Therefore, it has a possibility to apply the CS technique instead of welding to repair the cracks etc. In this study, the cold gas dynamic spray technique as a new repairing technique for some structures is introduced. (author)
Energy Technology Data Exchange (ETDEWEB)
Trave-Massuyes, L. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Milne, R.
1995-12-31
We are interested in the monitoring and diagnosis of dynamic systems. In our work, we are combining explicit temporal models of the behaviour of a dynamic system with implicit behavioural models supporting model based approaches. This work is drive by the needs of and applied to, two gas turbines of very different size and power. In this paper we describe the problems of building systems for these domains and illustrate how we have developed a system where these two approaches complement each other to provide a comprehensive fault detection and diagnosis system. We also explore the strengths and weaknesses of each approach. The work described here is currently working continuously, on line to a gas turbine in a major chemical plant. (author) 24 refs.
International Nuclear Information System (INIS)
Hasegawa, Keita; Komiyama, Ryoichi; Fujii, Yasumasa
2016-01-01
The paper presents an economic rationality analysis of power generation mix by stochastic dynamic programming considering fuel price uncertainties and supply disruption risks such as import disruption and nuclear power plant shutdown risk. The situation revolving around Japan's energy security adopted the past statistics, it cannot be applied to a quantitative analysis of future uncertainties. Further objective and quantitative evaluation methods are required in order to analyze Japan's energy system and make it more resilient in sight of long time scale. In this paper, the authors firstly develop the cost minimization model considering oil and natural gas price respectively by stochastic dynamic programming. Then, the authors show several premises of model and an example of result with related to crude oil stockpile, liquefied natural gas stockpile and nuclear power plant capacity. (author)
Energy Technology Data Exchange (ETDEWEB)
Trave-Massuyes, L [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Milne, R
1996-12-31
We are interested in the monitoring and diagnosis of dynamic systems. In our work, we are combining explicit temporal models of the behaviour of a dynamic system with implicit behavioural models supporting model based approaches. This work is drive by the needs of and applied to, two gas turbines of very different size and power. In this paper we describe the problems of building systems for these domains and illustrate how we have developed a system where these two approaches complement each other to provide a comprehensive fault detection and diagnosis system. We also explore the strengths and weaknesses of each approach. The work described here is currently working continuously, on line to a gas turbine in a major chemical plant. (author) 24 refs.
Jahangir, M. M. R.; Richards, K. G.; Healy, M. G.; Gill, L.; Müller, C.; Johnston, P.; Fenton, O.
2016-01-01
The removal efficiency of carbon (C) and nitrogen (N) in constructed wetlands (CWs) is very inconsistent and frequently does not reveal whether the removal processes are due to physical attenuation or whether the different species have been transformed to other reactive forms. Previous research on nutrient removal in CWs did not consider the dynamics of pollution swapping (the increase of one pollutant as a result of a measure introduced to reduce a different pollutant) driven by transformational processes within and around the system. This paper aims to address this knowledge gap by reviewing the biogeochemical dynamics and fate of C and N in CWs and their potential impact on the environment, and by presenting novel ways in which these knowledge gaps may be eliminated. Nutrient removal in CWs varies with the type of CW, vegetation, climate, season, geographical region, and management practices. Horizontal flow CWs tend to have good nitrate (NO3-) removal, as they provide good conditions for denitrification, but cannot remove ammonium (NH4+) due to limited ability to nitrify NH4+. Vertical flow CWs have good NH4+ removal, but their denitrification ability is low. Surface flow CWs decrease nitrous oxide (N2O) emissions but increase methane (CH4) emissions; subsurface flow CWs increase N2O and carbon dioxide (CO2) emissions, but decrease CH4 emissions. Mixed species of vegetation perform better than monocultures in increasing C and N removal and decreasing greenhouse gas (GHG) emissions, but empirical evidence is still scarce. Lower hydraulic loadings with higher hydraulic retention times enhance nutrient removal, but more empirical evidence is required to determine an optimum design. A conceptual model highlighting the current state of knowledge is presented and experimental work that should be undertaken to address knowledge gaps across CWs, vegetation and wastewater types, hydraulic loading rates and regimes, and retention times, is suggested. We recommend that
Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography.
Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C
2016-09-01
Six automated, headspace-based sample preparation techniques were used to extract volatile analytes from water with the goal of establishing a systematic comparison between commonly available instrumental alternatives. To that end, these six techniques were used in conjunction with the same gas chromatography instrument for analysis of a common set of volatile organic carbon (VOC) analytes. The methods were thereby divided into three classes: static sampling (by syringe or loop), static enrichment (SPME and PAL SPME Arrow), and dynamic enrichment (ITEX and trap sampling). For PAL SPME Arrow, different sorption phase materials were also included in the evaluation. To enable an effective comparison, method detection limits (MDLs), relative standard deviations (RSDs), and extraction yields were determined and are discussed for all techniques. While static sampling techniques exhibited sufficient extraction yields (approx. 10-20 %) to be reliably used down to approx. 100 ng L(-1), enrichment techniques displayed extraction yields of up to 80 %, resulting in MDLs down to the picogram per liter range. RSDs for all techniques were below 27 %. The choice on one of the different instrumental modes of operation (aforementioned classes) was thereby the most influential parameter in terms of extraction yields and MDLs. Individual methods inside each class showed smaller deviations, and the least influences were observed when evaluating different sorption phase materials for the individual enrichment techniques. The option of selecting specialized sorption phase materials may, however, be more important when analyzing analytes with different properties such as high polarity or the capability of specific molecular interactions. Graphical Abstract PAL SPME Arrow during the extraction of volatile analytes from the headspace of an aqueous sample.
Johnson, Ryan; Kercher, Andrew; Schwer, Douglas; Corrigan, Andrew; Kailasanath, Kazhikathra
2017-11-01
This presentation focuses on the development of a Discontinuous Galerkin (DG) method for application to chemically reacting flows. The in-house code, called Propel, was developed by the Laboratory of Computational Physics and Fluid Dynamics at the Naval Research Laboratory. It was designed specifically for developing advanced multi-dimensional algorithms to run efficiently on new and innovative architectures such as GPUs. For these results, Propel solves for convection and diffusion simultaneously with detailed transport and thermodynamics. Chemistry is currently solved in a time-split approach using Strang-splitting with finite element DG time integration of chemical source terms. Results presented here show canonical unsteady reacting flow cases, such as co-flow and splitter plate, and we report performance for higher order DG on CPU and GPUs.
THE STABILITY OF OPTICALLY THIN REACTING PLASMAS: EFFECTS OF THE BULK VISCOSITY
International Nuclear Information System (INIS)
Ibanez S, Miguel H.
2009-01-01
The thermochemical stability of reacting plasmas is analyzed by taking into account the change in the thermodynamical equilibrium values during the fluctuation. This shift in the equilibrium produces two main effects: a change in the four instability criteria for reacting gases resulting when the above effect is neglected and adds a fifth instability criterion due to the fact that the corresponding secular equation becomes a fifth-order polynomial. The above results are applied to several plasma models, in particular, to a photoionized hydrogen plasma for which the bulk viscosity can be more important than the dynamic viscosity and the thermometric conductivity. Therefore, the bulk viscosity may quench thermochemical instabilities were the thermal conduction is unable of stabilizing. This occurs for low values of the photoionizing energy E. The implications of the above results in explaining the formation of clump structures in different regions of the interstellar medium are outlined.
Mechanism for Self-Reacted Friction Stir Welding
Venable, Richard; Bucher, Joseph
2004-01-01
A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.
International Nuclear Information System (INIS)
Di Gaeta, Alessandro; Reale, Fabrizio; Chiariello, Fabio; Massoli, Patrizio
2017-01-01
The paper deals with the development of a dynamic model of a commercial 100 kW Micro Gas Turbine (MGT) fuelled with mixtures of standard (i.e. natural gas or methane) and alternative fuels (i.e. hydrogen). The model consists of a first-order differential equation (ODE) describing the dominant dynamics of the MGT imposed by its own control system during production electrical power. The differential equation is coupled to a set of nonlinear maps derived numerically from a detailed 0D thermodynamic matching model of the MGT evaluated over a wide range of operating conditions (i.e. mechanical power, fraction of hydrogen and ambient temperature). The efficiency of the electrical machine with power inverter and power absorbed by auxiliary devices is also taken into account. The resulting model is experimentally validated for a sequence of power step responses of the MGT at different ambient conditions and with different fuel mixtures. The model is suited for simulation and control of hybrid energy grids (HEGs) which rely on advanced use of MGT and hydrogen as energy carrier. In this regard, the MGT model is used in the simulation of an HEG based on an appropriate mix of renewable (non-programmable) and non-renewable (programmable) energy sources with hydrogen storage and its reuse in the MGT. Here, the MGT is used as a programmable energy vector for compensating the deficits of renewable energies (such as solar and wind) with respect to user demand, while excess renewable energy is used to produce hydrogen via electrolysis of water. The simulated HEG comprises a solar PhotoVoltaic (PV) plant (300 kW), an MGT (100 kW) fuelled with natural gas and hydrogen blends, a water electrolyzer (WE) system (8 bar, 56 Nm 3 /h), a hydrogen tank (54 m 3 ), and an Energy Management Control System (EMCS). - Highlights: • A dynamic model of a commercial 100 kW MGT fuelled with natural gas and hydrogen blends is developed. • The model reproduces the electrical power generated by
International Nuclear Information System (INIS)
Portoghese, C.C.P.; Buchmann, J.H.
1996-01-01
This paper is concerned with the degradation of separation factors occurred when groups of ultracentrifuges having different gas-dynamic behaviour are connected in parallel arrangements. Differences in the gas-dynamic behavior were traduced in terms of different tails pressures for the same operational conditions, that are feed flow rate, product pressure and cut number. A mathematical model describing the ratio of the tails flow rates as a function of the tails pressure ratios and the feed flow rate was developed using experimental data collected from a pair of different ultracentrifuges connected in parallel. The optimization of model parameters was made using Marquardt's algorithm. The model developed was used to simulate the separation factors degradation in some parallel arrangements containing more than two centrifuges. Te obtained results were compared with experimental data collected from different groups of ultracentrifuges. It was observed that the calculated results were in good agreement with experimental data. This mathematical model, which parameters were determined in a two-centrifuges parallel arrangement, is useful to simulate the effect of quantified gas-dynamic differences in the separation factors of groups containing any number of different ultracentrifuges and, consequently, to analyze cascade losses due to this kind of occurrence. (author)
Energy Technology Data Exchange (ETDEWEB)
Holtmeier, Gerhard [Initiativkreis Erdgas als Kraftstoff - Deutschland e.V., Leipzig (Germany); VNG - Verbundnetz Gas AG, Leipzig (Germany)
2009-06-02
Natural gas passenger cars are cruising into the spring of automotive year 2009. Rolling off the production lines since March the world's first mass-produced natural gas turbo vehicles have rung in the era of natural gas powered mobility. They reconcile the joy of driving with economy and environmental friendliness. Apart from being fit for everyday use they also do their job in motor sports, as demonstrated by two tuned natural-gas powered VW Scirocco cars that participated in the 24-hour race on the Nuerburg Ring in late May. To bring momentum to the market is also the task of ''erdgas mobil'', a newly founded sales company for natural gas and natural gas powered vehicles, which started operations in April of 2009.
Gaastra - Nedea, S.V.; Steenhoven, van A.A.; Markvoort, A.J.; Spijker, P.; Giordano, D.
2014-01-01
The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and
Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers
International Nuclear Information System (INIS)
Ghosh, Somnath; Friedrich, Rainer
2015-01-01
We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case
Modeling-gas phase reactions in indoor environments using computational fluid dynamics
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft; Weschler, Charles J.
2002-01-01
This CFD modeling study examines the concentrations of two gaseous compounds that react in an indoor setting to produce a hypothetical product. The reactants are ozone and either d-limonene or alpha-terpinene (which reacts with ozone about 40 times faster than d-limonene). In addition to two...... different terpenes, the scenarios include two air exchange rates (0.5 and 2.0 h(-1)). The terpene is introduced as a floor source with an emission pattern similar to a floor-care product. These four scenarios have been set in a fairly large two-dimensional room (13.6 x 40.6 m) with a supply at the top...... of the left wall and an exhaust at the bottom of the right wall. The room has been deliberately scaled so that the Reynolds numbers for key flow regimes match those of a room in which the calculated flow field has been validated against measured data. It has been further assumed that ozone interacts with room...
Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne
2014-07-11
In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.
International Nuclear Information System (INIS)
Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki; Saito, Seiki; Ohno, Noriyasu; Kajita, Shin
2011-01-01
By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas. (author)
International Nuclear Information System (INIS)
Gonzalez-Bustamante, J.A.; Sala, J.M.; Lopez-Gonzalez, L.M.; Miguez, J.L.; Flores, I.
2007-01-01
In this paper, it is proposed to incorporate the analysis of the dynamic performance of the process into the design and engineering stage of projects as a means of analysing and resolving this type of problem. The following contributions are made with this objective in mind:(a)The barriers in the way of dynamic analysis are identified. (b)Software tools which make dynamic analysis accessible during the design and engineering phase of the project are proposed. To achieve this goal, modelling and mathematical simulation are used, with the following features: *strict modelling of mass, momentum and energy conservation equations as well as state equations, and *utilisation of the 'Matlab-Simulink' package as the base-software tool. (c)The procedure and tool proposed for dynamic analysis during the design phase should enable these studies to be carried out at a reasonable cost and time for regular industrial projects, and not just for large research projects or nuclear power plants. To complete this paper, we apply our method to a natural gas installation in a power plant. The model is applied to study the transients of a natural gas supply line to a steam-electric power plant. The results of the model have been validated with the actual data on the boiler trip obtained from the distributed control system of a steam-electric power plant
Dynamic simulation of a pilot scale vacuum gas oil hydrocracking unit by the space-time CE/SE method
Energy Technology Data Exchange (ETDEWEB)
Sadighi, S.; Ahmad, A. [Institute of Hydrogen Economy, Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Shirvani, M. [Faculty of Chemical Engineering, University of Science and Technology, Tehran (Iran, Islamic Republic of)
2012-05-15
This work introduces a modified space-time conservation element/solution element (CE/SE) method for the simulation of the dynamic behavior of a pilot-scale hydrocracking reactor. With this approach, a four-lump dynamic model including vacuum gas oil (VGO), middle distillate, naphtha and gas is solved. The proposed method is capable of handling the stiffness of the partial differential equations resulting from the hydrocracking reactions. To have a better judgment, the model is also solved by the finite difference method (FDM), and the results from both approaches are compared. Initially, the absolute average deviation of the cold dynamic simulation using the CE/SE approach is 8.98 %, which is better than that obtained using the FDM. Then, the stability analysis proves that for achieving an appropriate response from the dynamic model, the Courant number, which is a function of the time step size, mesh size and volume flow rate through the catalytic bed, should be less than 1. Finally, it is found that, following a careful selection of these parameters, the CE/SE solutions to the hydrocracking model can produce higher accuracy than the FDM results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Sentinel Gap basalt reacted in a temperature gradient
International Nuclear Information System (INIS)
Charles, R.W.; Bayhurst, G.K.
1983-01-01
Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms were centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure was 1/3 kbar. All prisms showed large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration reacted readily to clays at all temperatures. The first four prisms were coated with a calcium smectite, and the last two prisms were covered with discrete patches of potassium-rich phengite and alkali feldspar. The results indicated that clays may act as adsorbers of various ions
Sentinel Gap basalt reacted in a temperature gradient
International Nuclear Information System (INIS)
Charles, R.W.; Bayhurst, G.K.
1982-01-01
Six basalt prisms were reacted in a controlled temperature gradient hydrothermal circulation system for two months. The prisms are centered at 72, 119, 161, 209, 270, and 310 0 C. Total pressure is 1/3 kbar. All prisms show large weight loss: 5.5% to 14.9%. The matrix micropegmatite and natural nontronitic alteration readily reacts to clays at all temperatures. The first four prisms are coated with a Ca-smectite while the last two prisms are covered with discrete patches of K rich phengite and alkali feldspar. The clays may act as adsorbers of various ions
Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model.
Delnoij, E.; Lammers, F.A.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria
1997-01-01
In this paper a detailed hydrodynamic model for gas-liquid two-phase flow will be presented. The model is based on a mixed Eulerian-Lagrangian approach and describes the time-dependent two-dimensional motion of small, spherical gas bubbles in a bubble column operating in the homogeneous regime. The
Granular dynamics simulation of segregation phenomena in bubbling gas-fluidised beds
Hoomans, B.P.B.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria
2000-01-01
A hard-sphere discrete particle model of a gas-fluidised bed was used in order to simulate segregation phenomena in systems consisting of particles of different sizes. In the model, the gas-phase hydrodynamics is described by the spatially averaged Navier¿Stokes equations for two-phase flow. For
Hannibal, S.; Kettmann, P.; Croitoru, M. D.; Axt, V. M.; Kuhn, T.
2018-01-01
We present a numerical study of the Higgs mode in an ultracold confined Fermi gas after an interaction quench and find a dynamical vanishing of the superfluid order parameter. Our calculations are done within a microscopic density-matrix approach in the Bogoliubov-de Gennes framework which takes the three-dimensional cigar-shaped confinement explicitly into account. In this framework, we study the amplitude mode of the order parameter after interaction quenches starting on the BCS side of the BEC-BCS crossover close to the transition and ending in the BCS regime. We demonstrate the emergence of a dynamically vanishing superfluid order parameter in the spatiotemporal dynamics in a three-dimensional trap. Further, we show that the signal averaged over the whole trap mirrors the spatiotemporal behavior and allows us to systematically study the effects of the system size and aspect ratio on the observed dynamics. Our analysis enables us to connect the confinement-induced modifications of the dynamics to the pairing properties of the system. Finally, we demonstrate that the signature of the Higgs mode is contained in the dynamical signal of the condensate fraction, which, therefore, might provide a new experimental access to the nonadiabatic regime of the Higgs mode.
IMPROVED ENTROPY-ULTRA-BEE SCHEME FOR THE EULER SYSTEM OF GAS DYNAMICS
Institute of Scientific and Technical Information of China (English)
Rongsan Chen; Dekang Mao
2017-01-01
The Entropy-Ultra-Bee scheme was developed for the linear advection equation and extended to the Euler system of gas dynamics in [13].It was expected that the technology be applied only to the second characteristic field of the system and the computation in the other two nonlinear fields be implemented by the Godunov scheme.However,the numerical experiments in [13] showed that the scheme,though having improved the wave resolution in the second field,produced numerical oscillations in the other two nonlinear fields.Sophisticated entropy increaser was designed to suppress the spurious oscillations by increasing the entropy when there are waves in the two nonlinear fields presented.However,the scheme is then not efficient neither robust with problem-related parameters.The purpose of this paper is to fix this problem.To this end,we first study a 3 × 3 linear system and apply the technology precisely to its second characteristic field while maintaining the computation in the other two fields be implemented by the Godunov scheme.We then follow the discussion for the linear system to apply the Entropy-Ultra-Bee technology to the second characteristic field of the Euler system in a linearlized field-byfield fashion to develop a modified Entropy-Ultra-Bee scheme for the system.Meanwhile a remark is given to explain the problem of the previous Entropy-Ultra-Bee scheme in [13].A reference solution is constructed for computing the numerical entropy,which maintains the feature of the density and flats the velocity and pressure to constants.The numerical entropy is then computed as the entropy cell-average of the reference solution.Several limitations are adopted in the construction of the reference solution to further stabilize the scheme.Designed in such a way,the modified Entropy-Ultra-Bee scheme has a unified form with no problem-related parameters.Numerical experiments show that all the spurious oscillations in smooth regions are gone and the results are better than that
Gas-surface dynamics and charging effects during plasma processing of semiconductors
Hwang, Gyeong Soon
This thesis work attempts to elucidate the fundamentals of gas-surface interactions that occur during plasma etching. Controlled experiments using hyperthermal fluorine beams have enabled us to uncover the scattering dynamics at complex surfaces similar to those encountered in etching. By analyzing energy and angular distributions of inelastically scattered F atoms, we were able to distinguish single- and multiple-bounce scattering and to develop models to describe these exit channels. Furthermore, we found that hard-sphere collision kinematics can capture well the energy transfer of the hyperthermal F atoms onto fluorinated silicon surfaces. Based on the fundamental scattering information, we have developed a kinetic model that is described by two parameters: (1) direct inelastic scattering probability and (2) sticking (reaction) probability. These parameters are formulated as a function of the incident energy and angle of F atoms. By incorporating the empirical kinetic model into Monte Carlo based profile evolution simulations, we have unraveled the origin of many etch profile peculiarities which appear during hyperthermal F-beam etching, such as microtrenching, inverse microloading, and undercutting. The kinetic model has been used to describe successfully etching in Cl2-plasmas. For the study of pattern-dependent charging, we have developed a numerical model that combines plasma, sheath, and charging dynamics. The charging simulations illustrate that the directionality difference between ions and electrons arriving at the wafer, brought about by the sheath, causes differential charging on patterned areas even when the plasma is uniform. Using the newly developed charging model, we have investigated gate oxide damage. The results show that a potential drop across the thin gate oxide caused by differential microstructure charging is primarily responsible for gate oxide degradation by driving Fowler-Nordheim stress currents. In general, increasing the flux of low
Cozmuta, Ioana; Blanco, Mario; Goddard, William A
2007-03-29
It is important for many industrial processes to design new materials with improved selective permeability properties. Besides diffusion, the molecule's solubility contributes largely to the overall permeation process. This study presents a method to calculate solubility coefficients of gases such as O2, H2O (vapor), N2, and CO2 in polymeric matrices from simulation methods (Molecular Dynamics and Monte Carlo) using first principle predictions. The generation and equilibration (annealing) of five polymer models (polypropylene, polyvinyl alcohol, polyvinyl dichloride, polyvinyl chloride-trifluoroethylene, and polyethylene terephtalate) are extensively described. For each polymer, the average density and Hansen solubilities over a set of ten samples compare well with experimental data. For polyethylene terephtalate, the average properties between a small (n = 10) and a large (n = 100) set are compared. Boltzmann averages and probability density distributions of binding and strain energies indicate that the smaller set is biased in sampling configurations with higher energies. However, the sample with the lowest cohesive energy density from the smaller set is representative of the average of the larger set. Density-wise, low molecular weight polymers tend to have on average lower densities. Infinite molecular weight samples do however provide a very good representation of the experimental density. Solubility constants calculated with two ensembles (grand canonical and Henry's constant) are equivalent within 20%. For each polymer sample, the solubility constant is then calculated using the faster (10x) Henry's constant ensemble (HCE) from 150 ps of NPT dynamics of the polymer matrix. The influence of various factors (bad contact fraction, number of iterations) on the accuracy of Henry's constant is discussed. To validate the calculations against experimental results, the solubilities of nitrogen and carbon dioxide in polypropylene are examined over a range of
Energy Technology Data Exchange (ETDEWEB)
Ruiz, Rafael O.; Di Liscia, Marcelo H.; Diaz, Sergio E. [Universidad Simon Bolivar, Sartendejas, Baruta (Venezuela)
2007-11-15
The identification of the dynamic coefficients in air bearings is fundamental for a suitable roto-dynamic analysis. The present paper shows the development of an algorithm that allows the direct obtaining of the dynamic coefficients in hydrodynamic air bearings as much of numerical form as experimental. The testing bench used consists of two magnetic bearings, which support the rotor in their ends and work as well as actuators allowing inducing controlled orbits in the rotor. The test bearing is located between the magnetic bearings. The dynamic forces generated in the air bearing are registered from three load cells. The algorithm was developed in a commercial code of graphical programming, through which the signals can be collected, controlled and processed. The nonlinear behavior of this type of bearings makes difficult the calculation of the dynamic coefficients, therefore the processing of the signals in frequencial space facilitates, in a certain way, its handling. On the other hand, the numerical model was compared with the experimental results obtaining acceptable approaches in magnitude as well as in behavior. The numerical dynamic coefficients calculation was realized solving the Reynolds differential equation for a compressible fluid in the thickness of the gas film, taking into consideration the fluid mass flow that is introduced, as well as the pressure loss suffered by the same in passing through the feeding orifices. The numerical methods utilized include the solution of the differential equation of Reynolds for finite differences, the calculation of the profile realizing successive iterations and the calculation of the hydrodynamics forces through the Simpson numerical integration. The numerical dynamic coefficients were found applying a minimum squared technique to the hydrodynamic stresses generated in simulating an orbit of the rotor at a determined frequency and velocity, allowing in this way the calculation of the synchronous and asynchronous
Second law analysis of a reacting temperature dependent viscous ...
African Journals Online (AJOL)
In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...
Three-dimensional reacting shock–bubble interaction
Diegelmann, Felix; Hickel, S.; Adams, Nikolaus A.
2017-01-01
We investigate a reacting shock–bubble interaction through three-dimensional numerical simulations with detailed chemistry. The convex shape of the bubble focuses the shock and generates regions of high pressure and temperature, which are sufficient to ignite the diluted stoichiometric
International Nuclear Information System (INIS)
Haroun, Y.
2008-11-01
This work is done within the framework of gas treatment and CO 2 capture process development. The main objective of the present work is to fill the gap between classical experiments and industrial conditions by the use of Computational Fluid Dynamics (CFD). The physical problem considered corresponds to the liquid film flow down a corrugate surface under gravity in present of a gas phase. The chemical species in the gas phase absorb in the liquid phase and react. Numerical calculations are carried out in order to determine the impact of physical and geometrical properties on reactive mass transfer in industrial operating conditions. (author)
International Nuclear Information System (INIS)
Belo, Allan Cavalcante
2016-01-01
The current studies about the thermal fluid dynamic behavior of the VHTGR core reactors of 4 th generation are commonly developed in 3-D analysis in CFD (computational fluid dynamics), which often requires considerable time and complex mathematical calculations for carrying out these analysis. The purpose of this project is to achieve thermal fluid dynamic analysis of flow of gas helium refrigerant in a typical channel of VHTGR prismatic core reactor evaluating magnitudes of interest such as temperature, pressure and fluid velocity and temperature distribution in the wall of the coolant channel from the development of a computer code in MATLAB considering the flow on one-dimensional channel, thereby significantly reducing the processing time of calculations. The model uses three different references to the physical properties of helium: expressions given by the KTA (German committee of nuclear safety standards), the computational tool REFPROP and a set of constant values for the entire channel. With the use of these three references it is possible to simulate the flow treating the gas both compressible and incompressible. The results showed very close values for the interest quantities and revealed that there are no significant differences in the use of different references used in the project. Another important conclusion to be observed is the independence of helium in the gas compressibility effects on thermal fluid dynamic behavior. The study also indicated that the gas undergoes no severe effects due to high temperature variations in the channel, since this goes in the channel at 914 K and exits at approximately 1263 K, which shows the excellent use of helium as a refrigerant fluid in reactor channels VHTGR. The comparison of results obtained in this work with others in the literature served to confirm the effectiveness of the one-dimensional consideration of method of gas flow in the coolant channel to replace the models made in 3-D for the pressure range and
Calculation of nonstationary gas-dynamic flows with periodic local supply of energy
International Nuclear Information System (INIS)
Mikhailova, N.V.; Myshetskaya, E.E.; Rakhimov, A.T.; Favorskii, A.P.
The paper considers the motion of a flow of gas with local supply of energy periodic in time. Solution of the problem in one-dimensional formulation in the approximation of an ideal nonviscous non-heat-conducting gas is carried out by numerical methods. The possibility of emergence of the flow into a periodic regime is established and the rate of this process is calculated. The character of the periodic structure is investigated in dependence on the frequency of the superimposition of perturbations and the Mach number in unperturbed flow of the gas
Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I
2014-04-01
We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.
Fan, Zichuan; Cai, Maolin; Xu, Weiqing
2012-10-01
This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results.
International Nuclear Information System (INIS)
Fan, Zichuan; Cai, Maolin; Xu, Weiqing
2012-01-01
This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results. (paper)
Omar, Jone; Olivares, Maitane; Alonso, Ibone; Vallejo, Asier; Aizpurua-Olaizola, Oier; Etxebarria, Nestor
2016-01-01
Seven monoterpenes in 4 aromatic plants (sage, cardamom, lavender, and rosemary) were quantified in liquid extracts and directly in solid samples by means of dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS) and multiple headspace extraction-gas chromatography-mass spectrometry
Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.
2000-01-01
A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.
International Nuclear Information System (INIS)
Elmegreen, Bruce G.; Galliano, Emmanuel; Alloin, Danielle
2009-01-01
Cluster formation and gas dynamics in the central regions of barred galaxies are not well understood. This paper reviews the environment of three 10 7 M sun clusters near the inner Lindblad resonance (ILR) of the barred spiral NGC 1365. The morphology, mass, and flow of H I and CO gas in the spiral and barred regions are examined for evidence of the location and mechanism of cluster formation. The accretion rate is compared with the star formation rate to infer the lifetime of the starburst. The gas appears to move from inside corotation in the spiral region to looping filaments in the interbar region at a rate of ∼6 M sun yr -1 before impacting the bar dustlane somewhere along its length. The gas in this dustlane moves inward, growing in flux as a result of the accretion to ∼40 M sun yr -1 near the ILR. This inner rate exceeds the current nuclear star formation rate by a factor of 4, suggesting continued buildup of nuclear mass for another ∼0.5 Gyr. The bar may be only 1-2 Gyr old. Extrapolating the bar flow back in time, we infer that the clusters formed in the bar dustlane outside the central dust ring at a position where an interbar filament currently impacts the lane. The ram pressure from this impact is comparable to the pressure in the bar dustlane, and both are comparable to the pressure in the massive clusters. Impact triggering is suggested. The isothermal assumption in numerical simulations seems inappropriate for the rarefaction parts of spiral and bar gas flows. The clusters have enough lower-mass counterparts to suggest they are part of a normal power-law mass distribution. Gas trapping in the most massive clusters could explain their [Ne II] emission, which is not evident from the lower-mass clusters nearby.
Valero, E; Sanz, J; Martínez-Castro, I
2001-06-01
Direct thermal desorption (DTD) has been used as a technique for extracting volatile components of cheese as a preliminary step to their gas chromatographic (GC) analysis. In this study, it is applied to different cheese varieties: Camembert, blue, Chaumes, and La Serena. Volatiles are also extracted using other techniques such as simultaneous distillation-extraction and dynamic headspace. Separation and identification of the cheese components are carried out by GC-mass spectrometry. Approximately 100 compounds are detected in the examined cheeses. The described results show that DTD is fast, simple, and easy to automate; requires only a small amount of sample (approximately 50 mg); and affords quantitative information about the main groups of compounds present in cheeses.
Separation of Gas Mixtures by New Type of Membranes – Dynamic Liquid Membranes.
Czech Academy of Sciences Publication Activity Database
Setničková, Kateřina; Šíma, Vladimír; Petričkovič, Roman; Řezníčková Čermáková, Jiřina; Uchytil, Petr
2016-01-01
Roč. 160, FEB 29 (2016), s. 132-135 ISSN 1383-5866 Institutional support: RVO:67985858 Keywords : gas separation * liquid membrane * methane Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016
A Fundamental Study of Gas and Vapor Bubble Dynamics in Micro-Channels
National Research Council Canada - National Science Library
Prosperetti, Andrea
1999-01-01
The aim of this project was to carry out a fundamental study of the basic: Physics underlying the applications of gas and vapor bubbles in heat transfer systems, pumps, actuators, and other small-scale systems...
Negative/positive chemotaxis of a droplet: Dynamic response to a stimulant gas
Sakuta, Hiroki; Magome, Nobuyuki; Mori, Yoshihito; Yoshikawa, Kenichi
2016-05-01
We report here the repulsive/attractive motion of an oil droplet floating on an aqueous phase caused by the application of a stimulant gas. A cm-sized droplet of oleic acid is repelled by ammonia vapor. In contrast, a droplet of aniline on an aqueous phase moves toward hydrochloric acid as a stimulant. The mechanisms of these characteristic behaviors of oil droplets are discussed in terms of the spatial gradient of the interfacial tension caused by the stimulant gas.
International Nuclear Information System (INIS)
Spanjer, Aldo R.
2009-01-01
Shifts at the international gas market indicate that the transaction cost perspective provides better underpinnings for European gas regulation than the current neoclassical perspective. Three implications are that policymakers should: (1) allow alternative coordination measures to complement market exchange; (2) recognize that less than perfect competition outcomes may be optimal and (3) be more reticent in prescribing interventionist measures. Finally, the analysis provides the foundations for the empirical research required to complement this paper's theoretical approach. (author)
Electron Gas Dynamic Conductivity Tensor on the Nanotube Surface in Magnetic Field
Directory of Open Access Journals (Sweden)
A. M. Ermolaev
2011-01-01
Full Text Available Kubo formula was derived for the electron gas conductivity tensor on the nanotube surface in longitudinal magnetic field considering spatial and time dispersion. Components of the degenerate and nondegenerate electron gas conductivity tensor were calculated. The study has showed that under high electron density, the conductivity undergoes oscillations of de Haas-van Alphen and Aharonov-Bohm types with the density of electrons and magnetic field changes.
Calcination of calcium acetate and calcium magnesium acetate: effect of the reacting atmosphere
Energy Technology Data Exchange (ETDEWEB)
Adanez, J.; Diego, L.F. de; Garcia-Labiano, F. [Instituto de Carboquimica, Zaragoza (Spain). Dept. of Energy and Environment
1999-04-01
The calcination process of the calcium acetate (CA) and calcium magnesium acetate (CMA) was investigated as a previous step for coal gas desulfurisation during sorbent injection at high temperatures because the excellent results demonstrated by these sorbents as sulfur removal agents both in combustion and gasification processes. As pore structure developed during calcination is one of the most important characteristics of the sorbent related with the later reaction with the gaseous pollutants, several calcination tests were conducted in a drop tube reactor at temperatures from 700{degree}C to 1100{degree}C, and residence times from 0.8 to 2.4 s. Four different gas atmospheres were used for comparative purposes: inert, oxidising, reducing, and non-calcining (pure CO{sub 2}). Despite the advantage of the high porous cenospheric structure developed by these sorbents during their injection at high temperature, calcination of the CaCO{sub 3} was not complete even at the longest residence time, 2.4 s, and the highest temperature, 1100{degree}C, tested. An important effect of the reacting atmosphere on the calcination conversion and on the sorbent pore structure was detected. The CO{sub 2} concentration around the particle, both that fed in the reacting gases or that generated by organic material combustion, seems to be responsible for the final calcination conversions obtained in each case, also affecting the sintering suffered by the sorbents. 19 refs., 10 figs.
Gas Sloshing and Radio Galaxy Dynamics in the Core of the 3C 449 Group
Lal, Dharam V.; Kraft, Ralph P.; Randall, Scott W.; Forman, William R.; Nulsen, Paul E.; Roediger, Elke; ZuHone, John A.; Hardcastle, Martin J.; Jones, Christine; Croston, Judith H.
2013-01-01
We present results from a 140 ks Chandra/ACIS-S observation of the hot gas around the canonical FR I radio galaxy 3C 449. An earlier, shorter 30 ks Chandra observation of the group gas showed an unusual entropy distribution and a surface brightness edge in the gas that could be a strong shock around the inner radio lobes. In our deeper data we find no evidence for a temperature increase inside of the brightness edge, but a temperature decrease across part of the edge. This suggests that the edge is a "sloshing" cold front due to a merger within the last 1.3-1.6 Gyr. Both the northern and southern inner jets are bent slightly to the west in projection as they enter their respective lobes, suggesting that the sloshing core is moving to the east. The straight inner jet flares at approximately the position where it crosses the contact edge, suggesting that the jet is entraining and thermalizing some of the hot gas as it crosses the edge.We also detect filaments of X-ray emission around the southern inner radio jet and lobe which we attribute to low entropy entrained gas. The lobe flaring and gas entrainment were originally predicted in simulations of Loken et al. and are confirmed in our deep observation.
Canadian natural gas market: dynamics and pricing -- an energy market assessment
International Nuclear Information System (INIS)
2000-11-01
This publication is part of the Energy Market Assessment Program of the National Energy Board. It focuses on identifying factors that affect natural gas prices and describe the current functioning of domestic regional markets in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and in the Atlantic provinces.The report emphasizes the growth in demand for natural gas throughout North America, and the aggressive response by producers to the current high price environment with increased drilling programs. The report also predicts a supply and demand adjustment over time, and an accompanying relief in natural gas prices, although the Board is not able to predict with certainty any movements in commodity markets. The Board's findings indicate that domestic users of natural gas paid less than export customers until 1998, at which point the two prices have converged. The end result of the convergence was that Canadians have had access to natural gas under terms and conditions which were no less favourable than those in effect for export customers. The influence of electronic trading systems is reviewed, noting that spot markets and futures markets such as the NYMEX and AECO-C/NIT have had a significant impact on the pricing of natural gas, mostly by allowing market participants to manage price volatility by forward contracting. 1 tab., 42 figs., 1 glossary
Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor.
Ahmed, Syed Ubaid; Ranganathan, Panneerselvam; Pandey, Ashok; Sivaraman, Savithri
2010-06-01
In the present study, experiments have been carried out to identify various flow regimes in a dual Rushton turbines stirred bioreactor for different gas flow rates and impeller speeds. The hydrodynamic parameters like fractional gas hold-up, power consumption and mixing time have been measured. A two fluid model along with MUSIG model to handle polydispersed gas flow has been implemented to predict the various flow regimes and hydrodynamic parameters in the dual turbines stirred bioreactor. The computational model has been mapped on commercial solver ANSYS CFX. The flow regimes predicted by numerical simulations are validated with the experimental results. The present model has successfully captured the flow regimes as observed during experiments. The measured gross flow characteristics like fractional gas hold-up, and mixing time have been compared with numerical simulations. Also the effect of gas flow rate and impeller speed on gas hold-up and power consumption have been investigated. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Gascooke, Jason R.; Lawrance, Warren D.
2017-11-01
Two dimensional laser induced fluorescence (2D-LIF) extends the usual laser induced fluorescence technique by adding a second dimension, the wavelength at which excited states emit, thereby significantly enhancing the information that can be extracted. It allows overlapping absorption features, whether they arise from within the same molecule or from different molecules in a mixture, to be associated with their appropriate "parent" state and/or molecule. While the first gas phase version of the technique was published a decade ago, the technique is in its infancy, having been exploited by only a few groups to date. However, its potential in gas phase spectroscopy and dynamics is significant. In this article we provide an overview of the technique and illustrate its potential with examples, with a focus on those utilising high resolution in the dispersed fluorescence dimension.
A Simple Approach to Dynamic Material Balance in Gas-Condensate Reservoirs
Directory of Open Access Journals (Sweden)
Heidari Sureshjani M.
2013-02-01
Full Text Available In traditional material balance calculations, shut-in well pressure data are used to determine average reservoir pressure while recent techniques do not require the well to be shut-in and use instead flowing well pressure-rate data. These methods, which are known as “dynamic” material balance, are developed for single-phase flow (oil or gas in reservoirs. However, utilization of such methods for gas-condensate reservoirs may create significant errors in prediction of average reservoir pressure due to violation of the single-phase assumption in such reservoirs. In a previous work, a method for production data analysis in gas-condensate reservoirs was developed. The method required standard gas production rate, producing gas-oil ratio, flowing well pressure, CVD data and relative permeability curves. This paper presents a new technique which does not need relative permeability curves and flowing well pressure. In this method, the producing oil-gas ratio is interpolated in the vaporized oil in gas phase (Rv versus pressure (p data in the CVD table and the corresponding pressure is located. The parameter pressure/two-phase deviation factor (p/ztp is then evaluated at the determined pressure points and is plotted versus produced moles (np which forms a straight line. The nature of this plot is such that its extrapolation to point where p/ztp = 0 will give initial moles in place. Putting initial pressure/initial two-phase deviation factor (pi/ztp,i (known parameter and estimated initial moles (ni into the material balance equation, average reservoir pressure can be determined. A main assumption behind the method is that the region where both gas and condensate phases are mobile is of negligible size compared to the reservoir. The approach is quite simple and calculations are much easier than the previous work. It provides a practical engineering tool for industry studies as it requires data which are generally available in normal production
International Nuclear Information System (INIS)
Avadikyan, A.; Amesse, F.; Cohendet, P.; Heraud, J-A.
2002-01-01
A framework to explain how competitive changes occurring in one sector can affect both the dynamics of required competencies and the frontiers with adjacent sectors is proposed. When applied to the natural gas sector, the results provide a better understanding of how competencies in the sector evolve according to the new market structure and the strategic movements engaged in by the different players. The proposed framework combines the two approaches -- evolution and strategy -- to show that a firm's competencies define both membership in a specific sector and its distinctiveness from its competitors. To define the strategic positioning process the concept of core competencies is introduced, i.e. competencies developed by firms through their specific history which, when combined in a specific manner with new competencies could give them sustainable competitive advantage. Finally, the authors explain the concept of dynamic capabilities, which rely on a set of organizational and strategic processes needed to integrate, develop and create new competencies in order to initiate, or to adapt to market changes. The final conclusion is that the recent liberalization of the European gas and power sectors weakened institutional entry barriers, a phenomenon which compelled operators traditionally protected by regional or national monopolies to compete with other potential actors. With specific reference to the gas, power and oil industries it is stated that if they had relatively clear frontiers in the past, these frontiers have now become increasingly permeable. However, this weakening of institutional barriers has a beneficial consequence: it allows companies to deploy strategies to take advantage of new growth and rent appropriation opportunities. Examples of adaptation by European oil companies, power companies and natural gas firms are used to illustrate the principles embodied in the proposed framework. 18 refs., 1 fig
Energy Technology Data Exchange (ETDEWEB)
Xiao, Hai [Clemson Univ., SC (United States); Tsai, Hai-Lung [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States)
2014-09-30
This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologies that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.
DEFF Research Database (Denmark)
Christel, Wibke; Zhu, Kun; Hoefer, Christoph
2016-01-01
processes and fixation in the residue sphere, giving rise to distinct differences in nutrient availability, soil oxygen content and greenhouse gas (GHG) production. In this study we investigated the spatiotemporal dynamics of the reaction of manure solids and manure solids char with soil, focusing...... on their phosphorus (P) availability, as current emphasis on improving societal P efficiency through recycling waste or bio-based fertilisers necessitates a sound understanding of their behaviour. Soil layers amended at a constant P application rate with either pig manure solids or char made from pig manure solids...
International Nuclear Information System (INIS)
Romanova, M.M.
1985-01-01
The dynamics of a gas--star disk embedded in a dense, mildly oblate (flattening epsilon-c or approx. =0.2--0.3 the stable disk will survive for at least half the cluster evolution time. The possibility of a thin disk of stars existing inside a dense star cluster is considered. For small epsilon-c and for disk member stars having > or approx. =0.04 the mass of the cluster members, collisions between cluster and disk stars will have no effect on the disk evolution prior to instability
International Nuclear Information System (INIS)
Kolobov, Vladimir; Arslanbekov, Robert; Frolova, Anna
2014-01-01
The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers
International Nuclear Information System (INIS)
Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P
2014-01-01
Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabeling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabeling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler–Poincaré variational approach is also used to derive conservation laws associated with fluid relabeling symmetries using Noether's second theorem. (paper)
International Nuclear Information System (INIS)
Li Wenlong; Xie Heng
2011-01-01
A dynamic analysis code for this system was developed after the mathematical modeling and programming of important equipment of 10 MW High Temperature Gas Cooled Reactor Helium Turbine Power Generation (HTR-10GT), such as reactor core, heat exchanger and turbine-compressor system. A scram accident caused by a 0.1 $ reactivity injection at 5 second was simulated. The results show that the design emergency shutdown plan for this system is safe and reasonable and that the design of bypass valve has a large safety margin. (authors)
International Nuclear Information System (INIS)
Clarisse, J.M.
2007-01-01
A numerical scheme for computing linear Lagrangian perturbations of spherically symmetric flows of gas dynamics is proposed. This explicit first-order scheme uses the Roe method in Lagrangian coordinates, for computing the radial spherically symmetric mean flow, and its linearized version, for treating the three-dimensional linear perturbations. Fulfillment of the geometric conservation law discrete formulations for both the mean flow and its perturbation is ensured. This scheme capabilities are illustrated by the computation of free-surface mode evolutions at the boundaries of a spherical hollow shell undergoing an homogeneous cumulative compression, showing excellent agreement with reference results. (author)
Energy Technology Data Exchange (ETDEWEB)
Kolobov, Vladimir [CFD Research Corporation, Huntsville, AL 35805, USA and The University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Arslanbekov, Robert [CFD Research Corporation, Huntsville, AL 35805 (United States); Frolova, Anna [Computing Center of the Russian Academy of Sciences, Moscow, 119333 (Russian Federation)
2014-12-09
The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers.
International Nuclear Information System (INIS)
Ryszard, Sarba
2009-01-01
This paper presents an experimental and theoretical study of the conversion of measuring probe temperature into hot gas temperature. The author gives a solution to the problem of a destruction temperature measurement in a plasma reactor. The temperature conversion is based on the thermodynamic similarity theory and statistical thermodynamics verification. The experimental measurements of the hot gas temperature have been made in the place where it considerably exceeds the melting point of the measuring probe material. The heat exchange phenomenon on the measuring probe's surface with the hot gas surrounding it is described by a forced convection equation. An analysis has been made of the heat flowing in and out of the measuring probe. The experimental part of the paper includes: an experimental measurement of gas velocity by means of luminous particles, a hot gas measurement for one distance from a nozzle and different diameters of the measuring probe, as well as different probing velocities. Numerical simulations have been made of the temperature distribution in a plasma jet. The experimental results are congruent with theoretical predictions. The aim of this research is a contribution to the structuring of a mathematical model of mass and energy balance in the processes of NHF 2 CL waste destruction.
International Nuclear Information System (INIS)
Weiss, Martin; Dittmar, Lars; Junginger, Martin; Patel, Martin K.; Blok, Kornelis
2009-01-01
High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers produced and sold in the Netherlands between 1981 and 2006. For the most dominant boiler type on the Dutch market, i.e., condensing gas combi boilers, we identify learning rates of 14±1% for the average price and 16±8% for the additional price relative to non-condensing devices. Economies of scale, competitive sourcing of boiler components, and improvements in boiler assembly are among the main drivers behind the observed price decline. The net present value of condensing gas combi boilers shows an overall increasing trend. Purchasing in 2006 a gas boiler of this type instead of a non-condensing device generates a net present value of 970 EUR (Euro) and realizes CO 2 (carbon dioxide) emission savings at negative costs of -120 EUR per tonne CO 2 . We attribute two-thirds of the improvements in the cost-benefit performance of condensing gas combi boilers to technological learning and one-third to a combination of external effects and governmental policies.
Markiewicz, Michal
2017-01-01
Michal Markiewicz presents the outcomes of his research regarding the influence of dynamic route guidance system on overall emission of carbon dioxide from road transport in rural areas. Sustainable transportation in smart cities is a big challenge of our time, but before electric vehicles replace vehicles that burn fossil fuels we have to think about traffic optimization methods that reduce the amount of greenhouse gas emissions. Contents Comparison of Travel Time Measurements Using Floating Car Data and Intelligent Infrastructure Integration of Cellular Automata Traffic Simulator with CO2 Emission Model Impact of Dynamic Route Guidance System on CO2 Emission Naxos Vehicular Traffic Simulator Target Groups Lecturers and students of computer science, transportation and logistics Traffic engineers The Author Dr. Michal Markiewicz defended his PhD thesis in computer science at the University of Bremen,TZI Technologie-Zentrum Informatik und Informationstechnik, Germany. Currently, he is working on commercializat...
International Nuclear Information System (INIS)
Sun Xinxi; Huang Yuying; Li Wangchang
1984-01-01
This paper presents a method for measuring the dynamic adsorption coefficients of Xe on coconut charcoal II-2 in CO 2 carrier streams by SP-2305E gas chromatograph with the thermal conductivity cell. The adsorption column is made of stainless steel (diameter 4 x 240 mm) packed with 60-80 mesh coconut charcoal II-2. The CO 2 content in carrier streams is about 87%. Three groups of data of Xe dynamic adsorption coefficient were obtained at temperature 15.5 deg C, 31.5 deg C and 50.5 deg C by pulse injection respectively. Another group was obtained at temperature approx. 16 deg C by continueous injection. In addition, adsorption isotherms and adsorption isometrics were determined. In this experimental system, the adsorption heat of Xe on coconut charcoal II-2 is 2820 cal/mole
Energy Technology Data Exchange (ETDEWEB)
Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering
2013-04-15
The power production failure happens in the loss of coolant of the nuclear power plants (NPPs). The air ingress is a serious accident in gas cooled NPPs. The quantification of the study performed by the system dynamics (SD) method which is processed by the feedback algorithms. The Vensim software package is used for the simulation, which is performed by the Monte-Carlo method. Two kinds of considerations as the economic and safety properties are important in NPPs. The result shows the stability of the operation when the power can be decided. The maximum value of risk is the 11.77 in 43rd and the minimum value is 0.0 in several years. So, the success of the circulation of coolant is simulated by the dynamical values. (orig.)
Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.
2018-01-01
Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.
Operator splitting method for simulation of dynamic flows in natural gas pipeline networks
Dyachenko, Sergey A.; Zlotnik, Anatoly; Korotkevich, Alexander O.; Chertkov, Michael
2017-12-01
We develop an operator splitting method to simulate flows of isothermal compressible natural gas over transmission pipelines. The method solves a system of nonlinear hyperbolic partial differential equations (PDEs) of hydrodynamic type for mass flow and pressure on a metric graph, where turbulent losses of momentum are modeled by phenomenological Darcy-Weisbach friction. Mass flow balance is maintained through the boundary conditions at the network nodes, where natural gas is injected or withdrawn from the system. Gas flow through the network is controlled by compressors boosting pressure at the inlet of the adjoint pipe. Our operator splitting numerical scheme is unconditionally stable and it is second order accurate in space and time. The scheme is explicit, and it is formulated to work with general networks with loops. We test the scheme over range of regimes and network configurations, also comparing its performance with performance of two other state of the art implicit schemes.
Directory of Open Access Journals (Sweden)
Zhixiang Deng
2017-01-01
Full Text Available The absence of Raman and unique pressure-tunable dispersion is the characteristic feature of gas-filled photonic crystal fiber (PCF, and its zero dispersion points can be extended to the near-infrared by increasing gas pressure. The generation of dispersive wave (DW in the normal group velocity dispersion (GVD region of PCF is investigated. It is demonstrated that considering the self-steepening (SS and introducing the chirp of the initial input pulse are two suitable means to control the DW generation. The SS enhances the relative average intensity of blue-shift DW while weakening that of red-shift DW. The required propagation distance of DW emission is markedly varied by introducing the frequency chirp. Manipulating DW generation in gas-filled PCF by the combined effects of either SS or chirp and three-order dispersion (TOD provides a method for a concentrated transfer of energy into the targeted wavelengths.
A model for reaction rates in turbulent reacting flows
Chinitz, W.; Evans, J. S.
1984-01-01
To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.
ISM-induced erosion and gas-dynamical drag in the Oort Cloud
International Nuclear Information System (INIS)
Stern, S.A.
1990-01-01
The model presently used to examine the physical interactions between the ISM and the Oort Cloud can account for sputtering, sticking, and grain-impact erosion, as well as gas drag, by envisioning the ISM as a multiphase medium with distinct atomic and molecular cloud-phase regimes and coronal and warm/ambient gas-phase regimes. Erosion, which reduces the effectiveness of the thermal and radiation-damage processes acting on cometary surfaces in the Oort cloud, is found to be the dominant ISM interaction; ISM drag effects were found to efficiently remove submicron particles from the Cloud. 67 refs
ISM-induced erosion and gas-dynamical drag in the Oort Cloud
Stern, S. Alan
1990-01-01
The model presently used to examine the physical interactions between the ISM and the Oort Cloud can account for sputtering, sticking, and grain-impact erosion, as well as gas drag, by envisioning the ISM as a multiphase medium with distinct atomic and molecular cloud-phase regimes and coronal and warm/ambient gas-phase regimes. Erosion, which reduces the effectiveness of the thermal and radiation-damage processes acting on cometary surfaces in the Oort cloud, is found to be the dominant ISM interaction; ISM drag effects were found to efficiently remove submicron particles from the Cloud.
A Dynamical Model for the Extra-planar Gas in Spiral Galaxies
Fraternali, Filippo; Binney, James
2005-01-01
Recent HI observations reveal that the discs of spiral galaxies are surrounded by extended gaseous haloes. This extra-planar gas reaches large distances (several kpc) from the disc and shows peculiar kinematics (low rotation and inflow). We have modelled the extra-planar gas as a continuous flow of material from the disc of a spiral galaxy into its halo region. The output of our models are pseudo-data cubes that can be directly compared to the HI data. We have applied these models to two spir...
Low Mach number asymptotics for reacting compressible fluid flows
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Petzeltová, Hana
2010-01-01
Roč. 26, č. 2 (2010), s. 455-480 ISSN 1078-0947 R&D Projects: GA ČR GA201/05/0164 Institutional research plan: CEZ:AV0Z10190503 Keywords : low Mach number * Navier-Stokes-Fourier system * reacting fluids Subject RIV: BA - General Mathematics Impact factor: 0.986, year: 2010 http://www.aimsciences.org/journals/displayArticles.jsp?paperID=4660
Experimental thermodynamics experimental thermodynamics of non-reacting fluids
Neindre, B Le
2013-01-01
Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio
Energy Technology Data Exchange (ETDEWEB)
Takeda, Takeshi; Tachibana, Yukio; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Itakura, Hirofumi
1996-11-01
Safety demonstration test of the High Temperature Engineering Test Reactor will be carried out to demonstrate excellent safety features of a next generation High Temperature Gas-cooled Reactor (HTGR). Analytical code for incore and plant dynamics is necessary to assess the results of the safety demonstration test and to perform a design and safety analysis of the next generation HTGR. Existing analytical code for incore and plant dynamics of the HTGR can analyze behavior of plant system for only several thousand seconds after an event occurrence. Simulator on site can analyze only behavior of specific plant system. The `ACCORD` code has been, therefore, developed to analyze the incore and plant dynamics of the HTGR. The followings are the major characteristics of this code. (1) Plant system can be analyzed for over several thousand seconds after an event occurrence by modeling the heat capacity of the core. (2) Incore and plant dynamics of any plant system can be analyzed by rearranging packages which simulate plant system components one by one. (3) Thermal hydraulics for each component can be analyzed by separating heat transfer calculation for component from fluid flow calculation for helium and pressurized water systems. The validity of the `ACCORD` code including models for nuclear calculation, heat transfer and fluid flow calculation, control system and safety protection system, was confirmed through cross checks with other available codes. (author)
International Nuclear Information System (INIS)
Takeda, Takeshi; Tachibana, Yukio; Kunitomi, Kazuhiko; Itakura, Hirofumi.
1996-11-01
Safety demonstration test of the High Temperature Engineering Test Reactor will be carried out to demonstrate excellent safety features of a next generation High Temperature Gas-cooled Reactor (HTGR). Analytical code for incore and plant dynamics is necessary to assess the results of the safety demonstration test and to perform a design and safety analysis of the next generation HTGR. Existing analytical code for incore and plant dynamics of the HTGR can analyze behavior of plant system for only several thousand seconds after an event occurrence. Simulator on site can analyze only behavior of specific plant system. The 'ACCORD' code has been, therefore, developed to analyze the incore and plant dynamics of the HTGR. The followings are the major characteristics of this code. (1) Plant system can be analyzed for over several thousand seconds after an event occurrence by modeling the heat capacity of the core. (2) Incore and plant dynamics of any plant system can be analyzed by rearranging packages which simulate plant system components one by one. (3) Thermal hydraulics for each component can be analyzed by separating heat transfer calculation for component from fluid flow calculation for helium and pressurized water systems. The validity of the 'ACCORD' code including models for nuclear calculation, heat transfer and fluid flow calculation, control system and safety protection system, was confirmed through cross checks with other available codes. (author)
Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics
Giesselmann, Jan; Lattanzio, Corrado; Tzavaras, Athanasios
2016-01-01
For an Euler system, with dynamics generated by a potential energy functional, we propose a functional format for the relative energy and derive a relative energy identity. The latter, when applied to specific energies, yields relative energy
GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction.
Au, F.K.; Jia, Y.; Jiang, K.; Grigoriev, I.S.; Hau, B.K.; Shen, Y.; Du, S.; Akhmanova, A.S.; Qi, R.Z.
2017-01-01
Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature
Weiss, M.; Dittmar, L.; Junginger, H.M.; Patel, M.K.; Blok, K.
2009-01-01
High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers
International Nuclear Information System (INIS)
Sohrabi, M.R.; Marjani, A.; Davallo, M.; Moradi, S.; Shirazian, S.
2011-01-01
A 2D mass transfer model was developed to study carbon dioxide removal by absorption in membrane contactors. The model predicts the steady state absorbent and carbon dioxide concentrations in the membrane by solving the conservation equations. The continuity equations for three sub domains of the membrane contactor involving the tube; membrane and shell were obtained and solved by finite element method (FEM). The model was based on 'non-wetted mode' in which the gas phase filled the membrane pores. Laminar parabolic velocity profile was used for the liquid flow in the tube side; whereas, the gas flow in the shell side was characterized by Happel's free surface model. Axial and radial diffusion transport inside the shell, through the membrane, and within the tube side of the contactor was considered in the mass transfer model. The predictions of percent CO/sub 2/ removal obtained by modeling were compared with the experimental values obtained from literature. They were the experimental results for CO/sub 2/ removal from CO/sub 2//N/sub 2/ gas mixture with amines aqueous solutions as the liquid solvent using polypropylene membrane contactor. The modeling predictions were in good agreement with the experimental values for different values of gas and liquid flow rates. (author)
Improvement of Dynamic Performance of Hybrid Gas Bearings via Adjustable Lubrication
DEFF Research Database (Denmark)
Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar
2013-01-01
and the pressure and velocity fields in the injection nozzle are compared. The simplified theoretical model has been validated against the CFD results and experimentally using a test rig. The test rig consists of a flexible rotor supported by a ball bearing and a controllable hybrid gas bearing. The results show...
Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy
Hoef, van der M.A.; Sint Annaland, van M.; Kuipers, J.A.M.
2005-01-01
Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not
Competetive clustering in a bidisperse granular gas : experiment, molecular dynamics, and flux model
Mikkelsen, René; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef
2004-01-01
A compartmentalized bidisperse granular gas clusters competitively [R. Mikkelsen, D. van der Meer, K. van der Weele, and D. Lohse, Phys. Rev. Lett. 89, 214301 (2002)]: By tuning the shaking strength, the clustering can be directed either towards the compartment initially containing mainly small
Dynamics of sausage instabilities of a gas-puff Z-pinch
International Nuclear Information System (INIS)
Sopkin, Yu.V.; Dorokhin, L.A.; Koshelev, K.N.; Sidelnikov, Yu.V.
1991-01-01
The early stage of the sausage instability in a gas-puff Z-pinch has been registered in VUV and soft X-rays with a 10 ns framing camera. We hypothesize that the rings of plasma expanding from the sausage instability enable an alternative current path to dominate the formation of 'micropinches'. (orig.)
Real-Time Dynamics of an Impurity in an Ideal Bose Gas in a Trap
DEFF Research Database (Denmark)
Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.
2015-01-01
We investigate the behavior of a harmonically trapped system consisting of an impurity in a dilute ideal Bose gas after the boson-impurity interaction is suddenly switched on. As theoretical framework, we use a field theory approach in the space-time domain within the T-matrix approximation. We...
Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers
DEFF Research Database (Denmark)
Habib, Selim; Markos, Christos; Bang, Ole
2017-01-01
We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...
Gas and stellar dynamics in NGC 1068 : probing the galactic gravitational potential
Emsellem, E; Fathi, K; Wozniak, H; Ferruit, P; Mundell, CG; Schinnerer, E
2006-01-01
We present SAURON integral field spectrography of the central 1.5 kpc of the nearby Seyfert 2 galaxy NGC 1068, encompassing the well-known near-infrared (NIR) inner bar observed in the K band. We have successively disentangled the respective contributions of the ionized gas and stars, thus deriving
Studies in the reaction dynamics of beam-gas chemiluminescent reactions
International Nuclear Information System (INIS)
Prisant, M.G.
1984-01-01
This thesis develops techniques for the analysis and interpretation of data obtained from beam-gas chemiluminescence experiments. These techniques are applied to experimental studies of atom transfer reactions of the type A + BC → AB + C. A procedure is developed for determining the product rotational alignment in the center-of-mass frame from polarization measurements of chemiluminescent atom-diatom exchange reactions under beam-gas conditions. Knowledge of a vector property of a reaction, such as product alignment, provides information on the disposition of angular momentum by a chemical reaction. Fluorescence polarization and hence product alignment are measured for two prototype reactions. The reaction of metastable calcium atoms with hydrogen-chloride gas yields highly aligned calcium-chloride product which exhibits little variation of alignment with vibrational state. The reaction of ground-state calcium with fluorine gas yields moderately aligned product which shows strong variation of alignment with vibration. A multi-surface direct-interaction model is developed to interpret product alignment and population data. The predictions of this model for the reaction of calcium with fluorine show reasonable agreement with experiment
Dynamic behavior of polydisperse dust system in cryogenic gas discharge complex plasmas
Antipov, S.N.; Schepers, L.P.T.; Vasiliev, M.M.; Petrov, O.F.
2016-01-01
Complex (dusty) plasmas of micron-sized CeO2 polydisperse particles in dc glow discharges at 77 and ∼ 10 K were experimentally investigated. It was obtained that dust structure in cryogenic gas discharge plasma can be a mixture of two fractions (components) with completely different dust ordering
Kazemzadeh, Argang; Elias, Cynthia; Tamer, Melih; Ein-Mozaffari, Farhad
2018-05-01
The hydrodynamics of gas-liquid two-phase flow in a single-use bioreactor were investigated in detail both experimentally and numerically. Electrical resistance tomography (ERT) and dynamic gas disengagement (DGD) combined with computational fluid dynamics (CFD) were employed to assess the effect of the volumetric gas flow rate and impeller speed on the gas-liquid flow field, local and global gas holdup values, and Sauter mean bubble diameter. From the results obtained from DGD coupled with ERT, the bubble sizes were determined. The experimental data indicated that the total gas holdup values increased with increasing both the rotational speed of impeller and volumetric gas flow rate. Moreover, the analysis of the flow field generated inside the aerated stirred bioreactor was conducted using CFD results. Overall, a more uniform distribution of the gas holdup was obtained at impeller speeds ≥ 100 rpm for volumetric gas flow rates ≥ 1.6 × 10 -5 m 3 /s.
Directory of Open Access Journals (Sweden)
Babak Pouladi
2016-11-01
Full Text Available This article considers a process technology based on absorption for CO2 capturing of ethane gas in phase 9 and 10 of south pars in Iran using diethanolamine (DEA as absorbent solvent. This CO2 capture plant was designed to achieve 85% CO2 recovery and obtain 19 ppm the CO2 concentration in the outlet of absorber. ASPEN–HYSYS software was used for the dynamic simulation of a commercial-scale CO2 capture plant and amine Pkg equation was chosen from the fluid property package for calculating the thermodynamic properties of the process. A static approach for optimization was used to evaluate the optimum conditions. This research revealed that pressure variation does not have any considerable changes in the absorption process, while both amine inlet temperature and volumetric flow rate increment enhance the absorption tower efficiency. The effect of temperature was very significant as shown in the dynamic study plots. The optimum condition for CO2 absorption from a stream of ethane gas with molar flow rate of 2118 kg mol h−1 was obtained 75 m3 h−1 of amine at 53 °C and 24 bar. This optimized condition is acceptable from economical, safe as well as feasible point of view.
Directory of Open Access Journals (Sweden)
Gwiżdż Patryk
2015-03-01
Full Text Available An array consisting of four commercial gas sensors with target specifications for hydrocarbons, ammonia, alcohol, explosive gases has been constructed and tested. The sensors in the array operate in the dynamic mode upon the temperature modulation from 350°C to 500°C. Changes in the sensor operating temperature lead to distinct resistance responses affected by the gas type, its concentration and the humidity level. The measurements are performed upon various hydrogen (17-3000 ppm, methane (167-3000 ppm and propane (167-3000 ppm concentrations at relative humidity levels of 0-75%RH. The measured dynamic response signals are further processed with the Discrete Fourier Transform. Absolute values of the dc component and the first five harmonics of each sensor are analysed by a feed-forward back-propagation neural network. The ultimate aim of this research is to achieve a reliable hydrogen detection despite an interference of the humidity and residual gases.
Modeling of the fluid dynamics and SO{sub 2} absorption in a gas-liquid reactor
Energy Technology Data Exchange (ETDEWEB)
Marocco, L. [Alstom Power Italy, Milan (Italy)
2010-08-01
This paper illustrates a computational fluid dynamic (CFD) model of a counter-current Open Spray Tower desulphurisation reactor and its application in the simulation of a full-scale industrial equipment. The raw flue gas flows upward while a suspension of water and limestone is sprayed downward from different heights. Thereby sulfur dioxide is washed out of the gas. The two-phase gas-liquid flow inside the equipment has been simulated with an Euler-Lagrange approach using a commercial CFD code, while a model for the SO{sub 2} absorption has been developed and implemented in the software through dedicated modules. Physical absorption is modeled using dual-film theory and appropriate empirical and semi-empirical correlations. The aqueous phase chemistry accounts for the instantaneous equilibrium reactions of eight dissolved species into a slurry droplet. The model is used to simulate an industrial plant at different operating conditions. The numerical results are in good agreement with the measured values of pressure drop and sulphur removal efficiency.
Vanyashov, A. D.; Karabanova, V. V.
2017-08-01
A mathematical description of the method for obtaining gas-dynamic characteristics of a centrifugal compressor stage is proposed, taking into account the control action by varying the rotor speed and the angle of rotation of the guide vanes relative to the "basic" characteristic, if the kinematic and dynamic similitude conditions are not met. The formulas of the correction terms for the non-dimensional coefficients of specific work, consumption and efficiency are obtained. A comparative analysis of the calculated gas-dynamic characteristics of a high-pressure centrifugal stage with experimental data is performed.
International Nuclear Information System (INIS)
Tang, K.
2012-01-01
When numerically investigating multiphase phenomena during severe accidents in a reactor system, characteristic lengths of the multi-fluid zone (non-reactive and reactive) are found to be much smaller than the volume of the reactor containment, which makes the direct modeling of the configuration hardly achievable. Alternatively, we propose to consider the physical multiphase mixture zone as an infinitely thin interface. Then, the reactive Riemann solver is inserted into the Reactive Discrete Equations Method (RDEM) to compute high speed combustion waves represented by discontinuous interfaces. An anti-diffusive approach is also coupled with RDEM to accurately simulate reactive interfaces. Increased robustness and efficiency when computing both multiphase interfaces and reacting flows are achieved thanks to an original upwind downwind-controlled splitting method (UDCS). UDCS is capable of accurately solving interfaces on multi-dimensional unstructured meshes, including reacting fronts for both deflagration and detonation configurations. (author)
Manikandan, Paranjothy; Zhang, Jiaxu; Hase, William L
2012-03-29
Extensive classical chemical dynamics simulations of gas-phase X(-) + CH(3)Y → XCH(3) + Y(-) S(N)2 nucleophilic substitution reactions are reviewed and discussed and compared with experimental measurements and predictions of theoretical models. The primary emphasis is on reactions for which X and Y are halogen atoms. Both reactions with the traditional potential energy surface (PES), which include pre- and postreaction potential energy minima and a central barrier, and reactions with nontraditional PESs are considered. These S(N)2 reactions exhibit important nonstatistical atomic-level dynamics. The X(-) + CH(3)Y → X(-)---CH(3)Y association rate constant is less than the capture model as a result of inefficient energy transfer from X(-)+ CH(3)Y relative translation to CH(3)Y rotation and vibration. There is weak coupling between the low-frequency intermolecular modes of the X(-)---CH(3)Y complex and higher frequency CH(3)Y intramolecular modes, resulting in non-RRKM kinetics for X(-)---CH(3)Y unimolecular decomposition. Recrossings of the [X--CH(3)--Y](-) central barrier is important. As a result of the above dynamics, the relative translational energy and temperature dependencies of the S(N)2 rate constants are not accurately given by statistical theory. The nonstatistical dynamics results in nonstatistical partitioning of the available energy to XCH(3) +Y(-) reaction products. Besides the indirect, complex forming atomic-level mechanism for the S(N)2 reaction, direct mechanisms promoted by X(-) + CH(3)Y relative translational or CH(3)Y vibrational excitation are possible, e.g., the roundabout mechanism.
Numerical study of the effects of curvature on the fluid dynamics of gas centrifuges
International Nuclear Information System (INIS)
Jordan, J.A.; Gunzburger, M.D.; Wood, H.G. III.
1983-06-01
A finite element method for the approximate solution of the flow in rapidly rotating gas centrifuges is presented. The Onsager model, as amended by Maslen, is used in deriving the model equations to be discretized. The pancake effects are not assumed in the model, i.e., curvature terms are retained. To show the effects of these terms on the hydrodynamics of a gas centrifuge, numerical examples done with and without these curvature terms are presented and compared. Two flow models are used for the examples, one for flow driven by a linear temperature gradient along the wall and the other for flow driven by axial mass fluxes through the end caps of the centrifuge
Mechanical, thermo dynamical and environmental comparison of engines using natural gas and gasoline
International Nuclear Information System (INIS)
Agudelo S, John R; Bedoya C, Ivan D; Moreno S, Ricardo
2005-01-01
This paper shows experimental results of a Toyota Hilux 2400-swept volume, compression ratio 9:1 engine, operating with La Guajira natural gas and petrol. Also shows a thermodynamic study of those fuels in a normalized, variable compression ratio ASTM-CFR monocylinder engine. When using natural gas, Hilux engine increases its fuel consumption around 20% for the same power. Volumetric efficiency increases 10% and co emissions de- crease around 40%. When comparing thermodynamic parameters in CFR engine operating at a compression ratio of 9:1, it was found a 12,5% decrease in indicated power and 17% in maximum combustion pressure, which is proportional to temperature diminish of around 20%. Convective heat transfer coefficient decreases around 28% respect to petrol. First laminar combustion phase is duplicated when using the same spark advance as petrol; nevertheless this is maintained almost constant when spark is advancing 15 degrades over petrol spark advance
Smekens, J.; Clarke, A. B.; De'Michieli Vitturi, M.; Moore, G. M.
2012-12-01
Mt. Semeru is one of the most active explosive volcanoes on the island of Java in Indonesia. The current eruption style consists of small but frequent explosions and/or gas releases (several times a day) accompanied by continuous lava effusion that sporadically produces block-and-ash flows down the SE flank of the volcano. Semeru presents a unique opportunity to investigate the magma ascent conditions that produce this kind of persistent periodic behavior and the coexistence of explosive and effusive eruptions. In this work we use DOMEFLOW, a 1.5D transient isothermal numerical model, to investigate the dynamics of lava extrusion at Semeru. Petrologic observations from tephra and ballistic samples collected at the summit help us constrain the initial conditions of the system. Preliminary model runs produced periodic lava extrusion and pulses of gas release at the vent, with a cycle period on the order of hours, even though a steady magma supply rate was prescribed at the bottom of the conduit. Enhanced shallow permeability implemented in the model appears to create a dense plug in the shallow subsurface, which in turn plays a critical role in creating and controlling the observed periodic behavior. We measured SO2 fluxes just above the vent, using a custom UV imaging system. The device consists of two high-sensitivity CCD cameras with narrow UV filters centered at 310 and 330 nm, and a USB2000+ spectrometer for calibration and distance correction. The method produces high-frequency flux series with an accurate determination of the wind speed and plume geometry. The model results, when combined with gas measurements, and measurements of sulfur in both the groundmass and melt inclusions in eruptive products, could be used to create a volatile budget of the system. Furthermore, a well-calibrated model of the system will ultimately allow the characteristic periodicity and corresponding gas flux to be used as a proxy for magma supply rate.
Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions
Energy Technology Data Exchange (ETDEWEB)
Gray, S.K. [Argonne National Laboratory, IL (United States)
1993-12-01
A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.
Cover-gas-seal component development: dynamic inflatable-plug seal improvement
International Nuclear Information System (INIS)
Horton, P.H.
1977-01-01
This report documents the 1) radial compliance and 2) low friction coating tests conducted on the CRBRP Rotating Plug Inflatable Seals per test plan N707TR810014. Test results show that narrowing the seal blade from 0.25 to 0.12 in. will effectively reduce dynamic drag from 30 to 20 lb/ft under nominal conditions and will increase seal radial compliance from 0.12 to 0.30 in. without an unacceptable rise in dynamic drag. Tests also demonstrated that application of a teflon coating to the seal wear surface reduced breakaway drag by 25% based on results of comparison dwells
Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles
Energy Technology Data Exchange (ETDEWEB)
Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States). Dept. of Mechanical Engineering
2013-06-30
One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed
Edison, John R; Monson, Peter A
2013-06-21
This article addresses the accuracy of a dynamic mean field theory (DMFT) for fluids in porous materials [P. A. Monson, J. Chem. Phys. 128, 084701 (2008)]. The theory is used to study the relaxation processes of fluids in pores driven by step changes made to a bulk reservoir in contact with the pore. We compare the results of the DMFT to those obtained by averaging over large numbers of dynamic Monte Carlo (DMC) simulation trajectories. The problem chosen for comparison is capillary condensation in slit pores, driven by step changes in the chemical potential in the bulk reservoir and involving a nucleation process via the formation of a liquid bridge. The principal difference between the DMFT results and DMC is the replacement of a distribution of nucleation times and location along the pore for the formation of liquid bridges by a single time and location. DMFT is seen to yield an otherwise qualitatively accurate description of the dynamic behavior.
Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge.
Zhang, Jia; Zhou, Ji Zhi; Liu, Qiang; Qian, Guangren; Xu, Zhi Ping
2013-06-18
This paper reports that recycled electroplating sludge is able to efficiently remove greenhouse gas sulfur hexafluoride (SF6). The removal process involves various reactions of SF6 with the recycled sludge. Remarkably, the sludge completely removed SF6 at a capacity of 1.10 mmol/g (SF6/sludge) at 600 °C. More importantly, the evolved gases were SO2, SiF4, and a limited amount of HF, with no toxic SOF4, SO2F2, or SF4 being detected. These generated gases can be readily captured and removed by NaOH solution. The reacted solids were further found to be various metal fluorides, thus revealing that SF6 removal takes place by reacting with various metal oxides and silicate in the sludge. Moreover, the kinetic investigation revealed that the SF6 reaction with the sludge is a first-order chemically controlled process. This research thus demonstrates that the waste electroplating sludge can be potentially used as an effective removal agent for one of the notorious greenhouse gases, SF6.
Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis
Wood, William A.
1994-01-01
A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.
Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.
2017-06-01
The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.
Fine root dynamics and trace gas fluxes in two lowland tropical forest soils.
WHENDEE L. SILVER; ANDREW W. THOMPSON; MEGAN E . MCGRODDY; RUTH K. VARNER; JADSON D. DIAS; HUDSON SILVA; CRILL PATRICK M.; MICHAEL KELLER
2005-01-01
Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root...
An Influence of Gas Explosions on Dynamic Responses of a Single Degree of Freedom Model
Directory of Open Access Journals (Sweden)
Ki-Yeob Kang
2016-01-01
Full Text Available Explosion risk analysis (ERA is widely used to derive the dimensioning of accidental loads for design purposes. Computational fluid dynamics (CFD simulations contribute a key part of an ERA and predict possible blast consequences in a hazardous area. Explosion pressures can vary based on the model geometry, the explosion intensity, and explosion scenarios. Dynamic responses of structures under these explosion loads are dependent on a blast wave profile with respect to the magnitude of pressure, duration, and impulse in both positive and negative phases. Understanding the relationship between explosion load profiles and dynamic responses of the target area is important to mitigate the risk of explosion and perform structural design optimization. In the present study, the results of more than 3,000 CFD simulations were considered, and 1.6 million output files were analyzed using a visual basic for applications (VBA tool developed to characterize representative loading shapes. Dynamic response of a structure was investigated in both time and frequency domains using the Fast Fourier Transform (FFT algorithm. In addition, the effects of the residual wave and loading velocity were studied in this paper.
Deriving the pattern speed using dynamical modelling of gas flows in barred galaxies .
Pérez, I.; Freeman, K. C.; Fux, R.; Zurita, A.
2011-01-01
In this paper we analyse the methodology to derive the bar pattern speed from dynamical simulations. The results are robust to the changes in the vertical-scale height and in the mass-to-light (M/L) ratios. There is a small range of parameters for which the kinematics can be fitted. We have also
Liquid-gas phase transition in hot nuclei: correlation between dynamical and thermodynamical signals
Energy Technology Data Exchange (ETDEWEB)
Rivet, M.F.; Borderie, B.; Desesquelles, P.; Galichet, E. [Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Bougault, R.; Le Neindre, N. [Caen Univ, LPC, IN2P3-CNRS, ISMRA, 14 - Caen (France); Galichet, E. [Conservatoire National des Arts et Metiers, 75 - Paris (France); Guiot, B.; Wieleczko, J.P. [GANIL, CEA et IN2P3-CNRS, 14 - Caen (France); Parlog, M.; Tabacaru, G. [Nat. Inst. for Physics and Nuclear Engineering, Bucharest-Magurele (Romania)
2003-07-01
The dynamics and thermodynamics of phase transition in hot nuclei are studied through experimental results on multifragmentation of heavy systems (A(projectile) + A(target) > 200) formed in central heavy ion collisions. Different signals such as negative heat capacity and spinodal decomposition, indicative of a phase transition studied in the INDRA collaboration are presented and their consistency is stressed. (authors)
Role of Gas Dynamical Friction in the Evolution of Embedded Stellar ...
Indian Academy of Sciences (India)
2013-04-02
Apr 2, 2013 ... Chavarria, L., Mardones, D., Garay, G., Escala, A., Bronfman, L., Lizano, S. 2010, ApJ, 710, 583. Chen, L., de Grijs, R., Zhao, J. L. 2007, AJ, 134, 1368. Chumak, O. V., Chumak, Z. N. 1976, in Dynamics of the Galaxy and extragalactic systems,. Alma-Ata, Izdatel'stvo Nauka Kazakhskoi SSR, pp. 81–86 (in ...
International Nuclear Information System (INIS)
Bazhin, M.A.; Fedosenko, G.Eh.; Shiryaeva, N.M.; Mal'ko, M.V.
1986-01-01
It is shown that adiabatic non-equilibrium chemically reacting gas flow with energy exchange in a variable cross-section channel may be subdivided into five possible types: 1) quasi-equilibrium flow; 2) flow in the linear region of deviation from equilibrium state; 3) quasi-frozen flow; 4) flow in the linear region of deviation from frozen state; 5) non-equilibrium flow. Criteria of quasi-equilibrium and quazi-frozen flows, including factors of external action of chemically reacting gas on flow, allow to obtain simple but sufficiently reliable approximate method of calculation of flow parameters. The considered method for solving the problem of chemically reacting nitrogen tetroxide in the variable cross-section channel with energy exchange can be used for evaluation of chemical reaction kinetics on the flow parameter in the stages of axial-flow and radial-flow turbines and in another practical problems
Energy Technology Data Exchange (ETDEWEB)
Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov
2017-01-15
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.
SQL Triggers Reacting on Time Events: An Extension Proposal
Behrend, Andreas; Dorau, Christian; Manthey, Rainer
Being able to activate triggers at timepoints reached or after time intervals elapsed has been acknowledged by many authors as a valuable functionality of a DBMS. Recently, the interest in time-based triggers has been renewed in the context of data stream monitoring. However, up till now SQL triggers react to data changes only, even though research proposals and prototypes have been supporting several other event types, in particular time-based ones, since long. We therefore propose a seamless extension of the SQL trigger concept by time-based triggers, focussing on semantic issues arising from such an extension.
Tax havens under international pressure: How do they react?
Patrice Pieretti; Giuseppe Pulina
2015-01-01
This paper contributes to the literature about tax havens by providing a more comprehensive analysis of their role. The aim is to analyze how low-tax jurisdictions can react to growing international pressure exerted, by high-tax countries, to enforce compliance with anti aggressive tax planning standards. To this end, we model how a small tax haven tries to be attractive to multinationals located in a high-tax region by providing aggressive tax planning services and/or a favorable environment...
ReACT Methodology Proof of Concept Final Report
Energy Technology Data Exchange (ETDEWEB)
Bri Rolston; Sarah Freeman
2014-03-01
The Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) funded INL Researchers to evaluate a novel process for assessing and mitigating cyber security risks. The proof of concept level of the method was tested in an industry environment. This case study, plus additional case studies will support the further development of the method into a tool to assist industry in securing their critical networks. This report provides an understanding of the process developed in the Response Analysis and Characterization Tool (ReACT) project. This report concludes with lessons learned and a roadmap for final development of these tools for use by industry.
Numerical simulation of low Mach number reacting flows
International Nuclear Information System (INIS)
Bell, J B; Aspden, A J; Day, M S; Lijewski, M J
2007-01-01
Using examples from active research areas in combustion and astrophysics, we demonstrate a computationally efficient numerical approach for simulating multiscale low Mach number reacting flows. The method enables simulations that incorporate an unprecedented range of temporal and spatial scales, while at the same time, allows an extremely high degree of reaction fidelity. Sample applications demonstrate the efficiency of the approach with respect to a traditional time-explicit integration method, and the utility of the methodology for studying the interaction of turbulence with terrestrial and astrophysical flame structures
Modeling and design of reacting systems with phase transfer catalysis
DEFF Research Database (Denmark)
Piccolo, Chiara; Hodges, George; Piccione, Patrick M.
2011-01-01
Issues related to the design of biphasic (liquid) catalytic reaction operations are discussed. A chemical system involving the reaction of an organic-phase soluble reactant (A) with an aqueous-phase soluble reactant (B) in the presence of phase transfer catalyst (PTC) is modeled and based on it......, some of the design issues related to improved reaction operation are analyzed. Since the solubility of the different forms of the PTC in the organic solvent affects ultimately the catalyst partition coefficients, therefore, the organic solvent plays an important role in the design of PTC-based reacting...
Selectivity of the gas sensor based on the 50%In2O3-50%Ga2O3 thin film in dynamic mode of operation
Demin, I. E.; Kozlov, A. G.
2018-01-01
The article considers the gas sensor with the sensitive layer based on the 50%In2O3 -50%Ga2O3 thin film. The temperature and concentration dependencies of gas-induced resistance response of this sensor and the dynamical dependencies of its resistance response on the test gases in air are investigated. The test gases were ethanol, acetone, ammonia and liquefied petroleum gas. The information parameters of the sensor in the dynamical mode of operation were considered to improve its selectivity. The presented results show that the selectivity of the sensor in this mode may be improved by using the following information parameters: gas-induced resistance response in steady state, activation energy of the response and pre-exponential factor of the temperature dependence of the response time constant.
Onsager's pancake approximation for the fluid dynamics of a gas centrifuge
International Nuclear Information System (INIS)
Wood, H.G. III; Morton, J.B.
1980-01-01
A previously unpublished theory for describing the internal flow in a gas centrifuge is presented. The theory is based on boundary layer type arguments on the side walls of the centrifuge with the additional approximation of neglecting radial diffusion of radial momentum. The effects of the top and bottom end caps are incorporated through Ekman layer solutions. The results are presented in a form amenable to numerical calculations. Some sample calculations are presented for the special case of a centrifuge with a linear temperature profile on the wall and the top and bottom of the centrifuge at the same temperature as the corresponding end of the side wall
Onsager's pancake approximation for the fluid dynamics of a gas centrifuge
International Nuclear Information System (INIS)
Wood, H.G.
1980-01-01
A previously unpublished theory for describing the internal flow in a gas centrifuge is presented. The theory is based on boundary-layer-type arguments on the side walls of the centrifuge with the additional approximation of neglecting radial diffusion of radial momentum. The effects of the top and bottom end caps are incorporated through Ekman-layer solutions. The results are presented in a form amenable to numerical calculations. Some sample calculations are presented for the special case of a centrifuge with a linear temperature profile on the wall and the top and bottom of the centrifuge at the same temperature as the corresponding end of the side wall. (author)
Computational fluid dynamics (CFD) analysis of an industrial gas turbine combustion chamber
Energy Technology Data Exchange (ETDEWEB)
Anzai, Thiago Koichi; Fontes, Carlo Eduardo; Ropelato, Karolline [Engineering Simulation and Scientic Software Ltda. (ESSS), Rio de Janeiro, RJ (Brazil)], E-mails: anzai, carlos.fontes, ropelato@esss.com.br; Silva, Luis Fernando Figueira da; Huapaya, Luis Enrique Alva [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: luisfer.luisalva@esp.puc-rio.br
2010-07-01
The accurate determination of pollutant emission from gas turbine combustors is a crucial problem in situations when such equipment is subject to long periods of operation away from the design point. In such operating conditions, the flow field structure may also drastically differ from the design point one, leading to the presence of undesirable hot spots or combustion instabilities, for instance. A priori experiments on all possible operation conditions is economically unfeasible, therefore, models that allow for the prediction of combustion behavior in the full operation range could be used to instruct power plant operators on the best strategies to be adopted. Since the direct numerical simulation of industrial combustors is beyond reach of the foreseeable computational resources, simplified models should be used for such purpose. This works presents the results of the application to an industrial gas turbine combustion chamber of the CFD technique to the prediction of the reactive flow field. This is the first step on the coupling of reactive CFD results with detailed chemical kinetics modeling using chemical reactor networks, toward the goal of accurately predicting pollutant emissions. The CFD model considers the detailed geometrical information of such a combustion chamber and uses actual operating conditions, calibrated via an overall gas turbine thermodynamical simulation, as boundary conditions. This model retains the basic information on combustion staging, which occurs both in diffusion and lean premixed modes. The turbulence has been modeled using the SST-CC model, which is characterized by a well established regime of accurate predictive capability. Combustion and turbulence interaction is accounted for by using the Zimont et al. model, which makes use of on empirical expression for the turbulent combustion velocity for the closure of the progress variable transport equation. A high resolution scheme is used to solve the advection terms of the
Dynamic effect of collision failure of phase in gas of cold dark atoms
International Nuclear Information System (INIS)
Il'ichev, L.V.
2005-01-01
In a gas of slow atoms exhibiting the effect of coherent population trapping (CPT) on the sublevels of the ground state in a spatially nonuniform light field, rare collisions destroying the CPT state initiate the irreversible exchange of momentum between radiation and atoms. This exchange is manifested as an additional force that acts on the particles. The force is of geometric origin, being determined only by the structure of the field of local CPT states. When this force is not masked by the standard collision change in atomic momentum, the observation of the kinetics of the particles may provide information on the physics of the collisions [ru