WorldWideScience

Sample records for reactants intermediates transition

  1. Synthesis of new thermoelectrics using modulated elemental reactants

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, M D; Sellinschegg, H; Johnson, D C

    1997-07-01

    A series of new, metastable ternary crystalline compounds with the skutterudite crystal structure have been synthesized using modulated elemental reactants. The initial reactants are made up of multiple repeats of a {approximately}25 {angstrom} thick unit containing elemental layers of the desired ternary metal, iron and antimony. Low temperature annealing (150 C) results in interdiffusion of the elemental layers to form amorphous reaction intermediates. Annealing these intermediates at temperatures between 200 C and 250 C results in exothermic crystallization of the desired skutterudite crystal structure. Most of the new compounds prepared are only kinetically stable, decomposing exothermically to form thermodynamically more stable mixtures of binary compounds and elements. Low angle x-ray diffraction studies show that the resulting films are exceedingly smooth. These films have an ideal geometry for measuring properties of importance for thermoelectric devices--the Seebeck coefficient and the electrical conductivity. Thermal conductivity can be measured using a modification of the 3{omega} technique of Cahill. Samples can be produced rapidly, allowing for systematic screening and subsequent optimization as a function of composition and doping levels.

  2. The effect of layer thickness and composition on the kinetics of solid state reactions in the niobium-selenium system studied using superlattice reactants

    International Nuclear Information System (INIS)

    Fukuto, M.; Kevan, S.D.

    1997-01-01

    The ability to form an amorphous reaction intermediate by the low temperature interdiffusion of a modulated elemental reactant is shown to be a function of the overall composition as well as elemental layer thicknesses in the niobium-selenium system. For niobium-rich reactants, an amorphous reaction intermediate was observed to form upon low temperature annealing of reactants with modulation thicknesses less than 60 A. Further annealing of the amorphous intermediates led to the crystallization of Nb 2 Se, Nb 5 Se 4 or Nb 3 Se 4 depending upon the overall composition of the amorphous intermediate. Modulated elemental reactants with overall compositions containing more than two-thirds selenium were found to heterogeneously nucleate NbSe 2 at the reacting interfaces. The formation of the thermodynamically expected compounds Nb 2 Se 3 , NbSe 3 , and Nb 2 Se 9 at their respective compositions required extended high temperature annealing to react the dichalcogenide with the remaining elemental reactants. A striking difference between the evolution of the low angle diffraction patterns in these two composition regimes suggests the differences in the reaction kinetics result from a composition dependence of the diffusion coefficients. (orig.)

  3. Use of periodic variations of reactant concentrations in time resolved ftir studies of CO oxidation on Pd/ZrO{sub 2} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ortelli, E; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Sine wave modulation of feed concentrations was used to induce dynamic variations in the concentrations of products, intermediates and reactants, which were monitored in a diffuse reflectance FTIR (DRIFT) cell. The phase shift {Delta}{phi} between the external perturbation of the feed and the signals of products, intermediates and reactants was examined in dependence on the modulation frequency {omega}. Reaction constants of a simplified model mechanism were estimated for a Pd{sub 25}Zr{sub 75} based catalyst for CO oxidation. (author) 1 fig., 2 refs.

  4. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    Science.gov (United States)

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  5. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system

    Directory of Open Access Journals (Sweden)

    Yong-Yan ZHOU

    2016-01-01

    Full Text Available Abstract The transformation law of the Maillard reaction products with three different reactants ratios - equimolar reactants, excess L-glutamic acid and excess L-ascorbic acid reaction respectively, five different temperatures, and different time conditions for the L-ascorbic acid / L-glutamic acid system were investigated. Results showed that, the increase of the reaction time and temperature led to the increase of the browning products, uncoloured intermediate products, as well as aroma compounds. Compared with the equimolar reaction system, the excess L-ascorbic acid reaction system produced more browning products and uncoloured intermediate products, while the aroma compounds production remained the same. In the excess L-glutamic acid system, the uncoloured intermediate products increased slightly, the browning products remained the same, while the aroma compounds increased.

  6. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  7. Line broadening in multiphoton processes with a resonant intermediate transition

    International Nuclear Information System (INIS)

    Wang, C.C.; James, J.V.; Xia, J.

    1983-01-01

    The linewidth of the excitation spectrum for multiphoton ionization is found to be broadened much more severely than the cascade fluorescence originating from the resonant intermediate level. These results are due to the mutual effects of the ionizing and resonating transitions, which are not properly accounted for in perturbative treatments

  8. Kinetics of formation of acrylamide and Schiff base intermediates from asparagine and glucose

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Frandsen, Henrik; Skibsted, Leif H.

    2008-01-01

    From the concentration of glucose and asparagine as reactants and of acrylamide as product each determined by LC-MS during reaction in an acetonitrile/water (68:32) model system at pH 7.6 (0.04 M phosphate buffer) and from the relative concentration of the Schiff base intermediate, the decarboxyl......From the concentration of glucose and asparagine as reactants and of acrylamide as product each determined by LC-MS during reaction in an acetonitrile/water (68:32) model system at pH 7.6 (0.04 M phosphate buffer) and from the relative concentration of the Schiff base intermediate...

  9. On the effect of coverage-dependent adsorbate-adsorbate interactions for CO methanation on transition metal surfaces

    DEFF Research Database (Denmark)

    Lausche, Adam C.; Medford, Andrew J.; Khan, Tuhin Suvra

    2013-01-01

    with a high coverage of CO. At these high coverages, reaction intermediates experience interaction effects that typically reduce their adsorption energies. Herein, the effect of these interactions on the activities of transition metals for CO methanation is investigated. For transition metals that have low...... coverages of reactants, the effect is minimal. But for materials with high coverages under reaction conditions, rates can change by several orders of magnitude. Nevertheless, the position of the maximum of the activity volcano does not shift significantly, and the rates at the maximum are only slightly......Heterogeneously catalyzed reactions involving the dissociation of strongly bonded molecules typically need quite reactive catalysts with high coverages of intermediate molecules. Methanation of carbon monoxide is one example, where CO dissociation has been reported to take place on step sites...

  10. Hydrogen-bonded intermediates and transition states during spontaneous and acid-catalyzed hydrolysis of the carcinogen (+)-anti-BPDE.

    Science.gov (United States)

    Palenik, Mark C; Rodriguez, Jorge H

    2014-07-07

    Understanding mechanisms of (+)-anti-BPDE detoxification is crucial for combating its mutagenic and potent carcinogenic action. However, energetic-structural correlations of reaction intermediates and transition states during detoxification via hydrolysis are poorly understood. To gain mechanistic insight we have computationally characterized intermediate and transition species associated with spontaneous and general-acid catalyzed hydrolysis of (+)-anti-BPDE. We studied the role of cacodylic acid as a proton donor in the rate limiting step. The computed activation energy (ΔG‡) is in agreement with the experimental value for hydrolysis in a sodium cacodylate buffer. Both types of, spontaneous and acid catalyzed, BPDE hydrolysis can proceed through low-entropy hydrogen bonded intermediates prior to formation of transition states whose energies determine reaction activation barriers and rates.

  11. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    Science.gov (United States)

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  12. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A↔C↔B + B

    Energy Technology Data Exchange (ETDEWEB)

    Kipriyanov, Alexey A.; Kipriyanov, Alexander A.; Doktorov, Alexander B. [Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia and Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-04-14

    Specific two-stage reversible reaction A + A↔C↔B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  13. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  14. The general theory of multistage geminate reactions of isolated pairs of reactants. III. Two-stage reversible dissociation in geminate reaction A + A ↔ C ↔ B + B.

    Science.gov (United States)

    Kipriyanov, Alexey A; Kipriyanov, Alexander A; Doktorov, Alexander B

    2016-04-14

    Specific two-stage reversible reaction A + A ↔ C ↔ B + B of the decay of species C reactants by two independent transition channels is considered on the basis of the general theory of multistage reactions of isolated pairs of reactants. It is assumed that at the initial instant of time, the reacting system contains only reactants C. The employed general approach has made it possible to consider, in the general case, the inhomogeneous initial distribution of reactants, and avoid application of model concepts of a reaction system structure (i.e., of the structure of reactants and their molecular mobility). Slowing of multistage reaction kinetics as compared to the kinetics of elementary stages is established and physically interpreted. To test approximations (point approximation) used to develop a universal kinetic law, a widely employed specific model of spherical particles with isotropic reactivity diffusing in solution is applied. With this particular model as an example, ultimate kinetics of chemical conversion of reactants is investigated. The question concerning the depths of chemical transformation at which long-term asymptotes are reached is studied.

  15. Crossover behavior of the thermal conductance and Kramers’ transition rate theory

    Science.gov (United States)

    Velizhanin, Kirill A.; Sahu, Subin; Chien, Chih-Chun; Dubi, Yonatan; Zwolak, Michael

    2015-12-01

    Kramers’ theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive the heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Not only does this shed new light on Kramers’ classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale.

  16. Equalization equations in reactant resolution

    Indian Academy of Sciences (India)

    Unknown

    given partitioning of the system in physical or functional space. The most frequently ... Then, the inter-reactant equilibrium is considered. The ... Global equilibrium. Even though the chemical potential in the case of global equilibrium is equalized by definition (see (1)), we repeat here the proof, for the current needs, using.

  17. Characterization of monomeric intermediates during VSV glycoprotein structural transition.

    Directory of Open Access Journals (Sweden)

    Aurélie A Albertini

    2012-02-01

    Full Text Available Entry of enveloped viruses requires fusion of viral and cellular membranes, driven by conformational changes of viral glycoproteins. Crystal structures provide static pictures of pre- and post-fusion conformations of these proteins but the transition pathway remains elusive. Here, using several biophysical techniques, including analytical ultracentrifugation, circular dichroïsm, electron microscopy and small angle X-ray scattering, we have characterized the low-pH-induced fusogenic structural transition of a soluble form of vesicular stomatitis virus (VSV glycoprotein G ectodomain (G(th, aa residues 1-422, the fragment that was previously crystallized. While the post-fusion trimer is the major species detected at low pH, the pre-fusion trimer is not detected in solution. Rather, at high pH, G(th is a flexible monomer that explores a large conformational space. The monomeric population exhibits a marked pH-dependence and adopts more elongated conformations when pH decreases. Furthermore, large relative movements of domains are detected in absence of significant secondary structure modification. Solution studies are complemented by electron micrographs of negatively stained viral particles in which monomeric ectodomains of G are observed at the viral surface at both pH 7.5 and pH 6.7. We propose that the monomers are intermediates during the conformational change and thus that VSV G trimers dissociate at the viral surface during the structural transition.

  18. New fundamental equations of thermodynamics for systems in chemical equilibrium at a specified partial pressure of a reactant and the standard transformed formation properties of reactants

    International Nuclear Information System (INIS)

    Alberty, R.A.; Oppenheim, I.

    1993-01-01

    When temperature, pressure, and the partial pressure of a reactant are fixed, the criterion of chemical equilibrium can be expressed in terms of the transformed Gibbs energy G' that is obtained by using a Legendre transform involving the chemical potential of the reactant that is fixed. For reactions of ideal gases, the most natural variables to use in the fundamental equation are T, P', and P B , where P' is the partial pressure of the reactants other than the one that is fixed and P B is the partial pressure of the reactant that is fixed. The fundamental equation for G' yields the expression for the transformed entropy S', and a transformed enthalpy can be defined by the additional Legendre transform H'=G'+TS'. This leads to an additional form of the fundamental equation. The calculation of transformed thermodynamic properties and equilibrium compositions is discussed for a simple system and for a general multireaction system. The change, in a reaction, of the binding of the reactant that is at a specified pressure can be calculated using one of the six Maxwell equations of the fundamental equation in G'

  19. Theoretical Kinetic Study of the Formic Acid Catalyzed Criegee Intermediate Isomerization: Multistructural Anharmonicity and Atmospheric Implications

    KAUST Repository

    Monge Palacios, Manuel; Rissanen, Matti Petteri; Wang, Zhandong; Sarathy, Subram Mani

    2018-01-01

    intermediate can serve as a surrogate for larger CIs derived from important volatile organic compounds like monoterpenes, whose reactivity is not well understood and are difficult to handle computationally. The reactant HCOOH exerts a pronounced catalytic

  20. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  1. Complex nonlinear behaviour of a fixed bed reactor with reactant recycle

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    The fixed bed reactor with reactant recycle investigated in this paper can exhibit periodic solutions. These solutions bifurcate from the steady state in a Hopf bifurcation. The Hopf bifurcation encountered at the lowest value of the inlet concentration turns the steady state unstable and marks......,that the dynamic behaviour of a fixed bed reactor with reactant recycle is much more complex than previously reported....

  2. Detection of Intermediate-Period Transiting Planets with a Network of Small Telescopes: transitsearch.org

    Science.gov (United States)

    Seagroves, Scott; Harker, Justin; Laughlin, Gregory; Lacy, Justin; Castellano, Tim

    2003-12-01

    We describe a project (transitsearch.org) currently attempting to discover transiting intermediate-period planets orbiting bright parent stars, and we simulate that project's performance. The discovery of such a transit would be an important astronomical advance, bridging the critical gap in understanding between HD 209458b and Jupiter. However, the task is made difficult by intrinsically low transit probabilities and small transit duty cycles. This project's efficient and economical strategy is to photometrically monitor stars that are known (from radial velocity surveys) to bear planets, using a network of widely spaced observers with small telescopes. These observers, each individually capable of precision (1%) differential photometry, monitor candidates during the time windows in which the radial velocity solution predicts a transit if the orbital inclination is close to 90°. We use Monte Carlo techniques to simulate the performance of this network, performing simulations with different configurations of observers in order to optimize coordination of an actual campaign. Our results indicate that transitsearch.org can reliably rule out or detect planetary transits within the current catalog of known planet-bearing stars. A distributed network of skilled amateur astronomers and small college observatories is a cost-effective method for discovering the small number of transiting planets with periods in the range 10 days

  3. Theoretical Kinetic Study of the Formic Acid Catalyzed Criegee Intermediate Isomerization: Multistructural Anharmonicity and Atmospheric Implications

    KAUST Repository

    Monge Palacios, Manuel

    2018-01-29

    We performed a theoretical study on the double hydrogen shift isomerization reaction of a six carbon atom Criegee intermediate (C6-CI), catalyzed by formic acid (HCOOH), to produce vinylhydroperoxide (VHP), C6-CI+HCOOH→VHP+HCOOH. This Criegee intermediate can serve as a surrogate for larger CIs derived from important volatile organic compounds like monoterpenes, whose reactivity is not well understood and are difficult to handle computationally. The reactant HCOOH exerts a pronounced catalytic effect on the studied reaction by lowering the barrier height, but the kinetic enhancement is hindered by the multistructural anharmonicity. First, the rigid ring-structure adopted by the saddle point to facilitate simultaneous transfer of two atoms does not allow formation of as many conformers as those formed by the reactant C6-CI. And second, the flexible carbon chain of C6-CI facilitates the formation of stabilizing intramolecular C–H···O hydrogen bonds; this stabilizing effect is less pronounced in the saddle point structure due to its tightness and steric effects. Thus, the contribution of the reactant C6-CI conformers to the multistructural partition function is larger than that of the saddle point conformers. The resulting low multistructural anharmonicity factor partially cancels out the catalytic effect of the carboxylic acid, yielding in a moderately large rate coefficient, k(298 K) = 4.9·10-13 cm3 molecule-1 s-1. We show that carboxylic acids may promote the conversion of stabilized Criegee intermediates into vinylhydroperoxides in the atmosphere, which generates OH radicals and leads to secondary organic aerosol, thereby affecting the oxidative capacity of the atmosphere and ultimately the climate.

  4. SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste

    Science.gov (United States)

    Chanadee, Tawat

    2017-11-01

    Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.

  5. [Artificial Cysteine Bridges on the Surface of Green Fluorescent Protein Affect Hydration of Its Transition and Intermediate States].

    Science.gov (United States)

    Melnik, T N; Nagibina, G S; Surin, A K; Glukhova, K A; Melnik, B S

    2018-01-01

    Studying the effect of cysteine bridges on different energy levels of multistage folding proteins will enable a better understanding of the process of folding and functioning of globular proteins. In particular, it will create prospects for directed change in the stability and rate of protein folding. In this work, using the method of differential scanning microcalorimetry, we have studied the effect of three cysteine bridges introduced in different structural elements of the green fluorescent protein on the denaturation enthalpies, activation energies, and heat-capacity increments when this protein passes from native to intermediate and transition states. The studies have allowed us to confirm that, with this protein denaturation, the process hardly damages the structure initially, but then changes occur in the protein structure in the region of 4-6 beta sheets. The cysteine bridge introduced in this region decreases the hydration of the second transition state and increases the hydration of the second intermediate state during the thermal denaturation of the green fluorescent protein.

  6. Computer-Based Junior High/Intermediate School Program of Transitional Bilingual Education, Community School District 3, Manhattan. Final Evaluation Report, 1992-93. OREA Report.

    Science.gov (United States)

    Duque, Diana L.

    The Computer-Based Junior High/Intermediate School Program of Transitional Bilingual Education was a federally funded program in its third year of operation in one intermediate school and two junior high schools in Manhattan (New York) in 1992-93. During this period, it served 244 native Spanish-speaking, limited-English-proficient (LEP) students…

  7. Low temperature synthesis of Mo2C/W2C superlattices via ultra-thin modulated reactants

    International Nuclear Information System (INIS)

    Johnson, C.D.; Johnson, D.C.

    1996-01-01

    The authors report here a synthesis method of preparing carbide superlattices using ultra-thin modulated reactants. Initial investigations into the synthesis of the binary systems, Mo 2 C and W 2 C using ultra-thin modulated reactants revealed that both can be formed at relatively low temperatures (500 and 600 C respectively). DSC and XRD data suggested a two step reaction pathway involving interdiffusion of the initial modulated reactant followed by crystallization of the final product, if the modulation length is on the order of 10 angstrom. This information was used to form Mo 2 C/W 2 C superlattices using the structure of the ultra-thin modulated reactant to control the final superlattice period. Relatively large superlattice modulations were kinetically trapped by having several repeat units of each binary within the total repeat of the initial reactant. DSC and XRD data again are consistent with a two step reaction pathway leading to the formation of carbide superlattices

  8. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials

    International Nuclear Information System (INIS)

    Palacios, P.; Aguilera, I.; Wahnon, P.

    2008-01-01

    In this work, we present frozen phonon and linear response ab-initio research into the vibrational properties of the CuGaS 2 chalcopyrite and transition metal substituted (CuGaS 2 )M alloys. These systems are potential candidates for developing a novel solar-cell material with enhanced optoelectronic properties based in the implementation of the intermediate-band concept. We have previously carried out ab-initio calculations of the electronic properties of these kinds of chalcopyrite metal alloys showing a narrow transition metal band isolated in the semiconductor band gap. The substitutes used in the present work are the 3d metal elements, Titanium and Chromium. For the theoretical calculations we use standard density functional theory at local density and generalized gradient approximation levels. We found that the optical phonon branches of the transition metal chalcopyrite, are very sensitive to the specific bonding geometry and small changes in the transition metal environment

  9. On the mechanism of effective chemical reactions with turbulent mixing of reactants and finite rate of molecular reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vorotilin, V. P., E-mail: VPVorotilin@yandex.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    A generalization of the theory of chemical transformation processes under turbulent mixing of reactants and arbitrary values of the rate of molecular reactions is presented that was previously developed for the variant of an instantaneous reaction [13]. The use of the features of instantaneous reactions when considering the general case, namely, the introduction of the concept of effective reaction for the reactant volumes and writing a closing conservation equation for these volumes, became possible due to the partition of the whole amount of reactants into “active” and “passive” classes; the reactants of the first class are not mixed and react by the mechanism of instantaneous reactions, while the reactants of the second class approach each other only through molecular diffusion, and therefore their contribution to the reaction process can be neglected. The physical mechanism of reaction for the limit regime of an ideal mixing reactor (IMR) is revealed and described. Although formally the reaction rate in this regime depends on the concentration of passive fractions of the reactants, according to the theory presented, the true (hidden) mechanism of the reaction is associated only with the reaction of the active fractions of the reactants with vanishingly small concentration in the volume of the reactor. It is shown that the rate constant of fast chemical reactions can be evaluated when the mixing intensity of reactants is much less than that needed to reach the mixing conditions in an IMR.

  10. Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell

    International Nuclear Information System (INIS)

    Antolin, E.; Marti, A.; Stanley, C.R.; Farmer, C.D.; Canovas, E.; Lopez, N.; Linares, P.G.; Luque, A.

    2008-01-01

    Conceived to exceed the conversion efficiency of conventional photovoltaic devices, the intermediate band solar cell bases its operation on exploiting, besides the usual band-to-band optical transitions, the absorption of two sub-bandgap photons. For the present, the only technology used to implement an intermediate band in real devices has been the growth of an InAs/GaAs quantum dot superlattice. In practice, the obtained material shows two limitations: the narrow energy gap between conduction and intermediate band and the appearance of growth defects due to the lattice stress. The consequences are the presence of non-radiative recombination mechanisms and the thermal escape of electrons from the intermediate to the conduction band, hindering the splitting of the quasi-Fermi levels associated with the intermediate and conduction bands and the observation of photocurrent associated with the two-photon absorption. By reducing the temperature at which the devices are characterised we have suppressed the parasitic thermal mechanisms and have succeeded in measuring the photocurrent caused by the absorption of two below bandgap photons. In this work, the characterization of this photocurrent at low temperature is presented and discussed

  11. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides

    Science.gov (United States)

    Taatjes, Craig A.

    2017-05-01

    The carbonyl oxide intermediates in the ozonolysis of alkenes, often known as Criegee intermediates, are potentially important reactants in Earth's atmosphere. For decades, careful analysis of ozonolysis systems was employed to derive an understanding of the formation and reactions of these species. Recently it has proved possible to synthesize at least some of these intermediates separately from ozonolysis, and hence to measure their reaction kinetics directly. Direct measurements have allowed new or more detailed understanding of each type of gas-phase reaction that carbonyl oxides undergo, often acting as a complement to highly detailed ozonolysis experiments. Moreover, the use of direct characterization methods to validate increasingly accurate theoretical investigations can enhance their impact well beyond the set of specific reactions that have been measured. Reactions that initiate particles or fuel their growth could be a new frontier for direct measurements of Criegee intermediate chemistry.

  12. Variational transition-state theory

    International Nuclear Information System (INIS)

    Truhlar, D.G.; Garrett, B.C.

    1980-01-01

    A general introduction to and some results from studies of a procedure called variational transition-state theory are presented. A fundamental assumption of this theory is that the net rate of forward reaction at equilibrium equals the equilibrium flux in the product direction through the transition state where the transition state is a surface in phase space dividing reactants from products. Classical generalized-transition-state-theory calculations for nine collinear systems are compared to classical trajectory calculations. This new technique should provide useful insight into the successes and failures of the conventional theory and useful quantitative estimates of possible errors on the predictions of conventional transition-state theory. This should also contribute to a more accurate theory now available for the practical calculations of chemical reaction rates and thermochemical and structural interpretations of rate processes

  13. Chiral Selectivity in Inter-reactant Recognition and Electron Transfer of the Oxidation of Horse Heart Cytochrome c by Trioxalatocobaltate(III)

    DEFF Research Database (Denmark)

    Nazmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.

    2016-01-01

    We have studied electron transfer between cytochrome c and the chiral transition-metal complex pair Λ- and Δ-[Co(Ox)3]3− (Ox2− = oxalate) via strong ion-pair formation. Chirality was found in both ion-pair formation and electron transfer, with the Λ enantiomer the more strongly bound and faster r...... reacting. Investigations of the chirality using electron-transfer theory combined with quantum-chemical and statistical-mechanical calculations showed that chirality is solely in inter-reactant interaction and electronic overlap.......We have studied electron transfer between cytochrome c and the chiral transition-metal complex pair Λ- and Δ-[Co(Ox)3]3− (Ox2− = oxalate) via strong ion-pair formation. Chirality was found in both ion-pair formation and electron transfer, with the Λ enantiomer the more strongly bound and faster...

  14. Regularities of intermediate adsorption complex relaxation

    International Nuclear Information System (INIS)

    Manukova, L.A.

    1982-01-01

    The experimental data, characterizing the regularities of intermediate adsorption complex relaxation in the polycrystalline Mo-N 2 system at 77 K are given. The method of molecular beam has been used in the investigation. The analytical expressions of change regularity in the relaxation process of full and specific rates - of transition from intermediate state into ''non-reversible'', of desorption into the gas phase and accumUlation of the particles in the intermediate state are obtained

  15. Mechanisms of deterioration of intermediate moisture food systems

    Science.gov (United States)

    Labuza, T. P.

    1972-01-01

    A study of shelf stability in intermediate moisture foods was made. Major efforts were made to control lipid oxidation and nonenzymatic browning. In order to determine means of preventing these reactions, model systems were developed having the same water activity content relationship of intermediate moisture foods. Models were based on a cellulose-lipid and protein-lipid system with glycerol added as the humectant. Experiments with both systems indicate that lipid oxidation is promoted significantly in the intermediate moisture range. The effect appeared to be related to increased mobility of either reactants or catalysts, since when the amount of water in the system reached a level where capillary condensation occurred and thus free water was present, the rates of oxidation increased. With added glycerol, which is water soluble and thus increases the amount of mobile phase, the increase in oxidation rate occurs at a lower relative humidity. The rates of oxidation were maximized at 61% RH and decreased again at 75% RH probably due to dilution. No significant non-enzymatic browning occurred in the protein-lipid systems. Prevention of oxidation by the use of metal chelating agents was enhanced in the cellulose system, whereas, with protein present, the lipid soluble chain terminating antioxidants (such as BHA) worked equally as well. Preliminary studies of foods adjusted to the intermediate moisture range bear out the results of oxidation in model systems. It can be concluded that for most fat containing intermediate moisture foods, rancidity will be the reaction most limiting stability.

  16. The effects of combined therapy of rheumatoid arthritis on the acute phase reactants.

    Science.gov (United States)

    Rexhepi, Sylejman; Rexhepi, Mjellma; Sahatçiu-Meka, Vjollca; Pllana, Ejup; Dragusha, Gani; Gashi, Masar; Rexhepi, Blerta

    2009-01-01

    The paper presents the results of studies of acute phase reactants in the 60 treated patients with rheumatoid arthritis. Patients were divided into two groups, depending on the applied treatment: group I (n = 30) was treated with methotrexate, sulfasalazine and hydroxychloroquine, and group II (n = 30) with methotrexate. The results of our study shows that there is a statistically significant reduction in the value of acute phase reactants and clinical parameters after treatment in both investigated groups of patients, and also a significant statistical difference between the first and second group of treated patients.

  17. High-pressure behavior of intermediate scapolite: compressibility, structure deformation and phase transition

    Science.gov (United States)

    Lotti, Paolo; Comboni, Davide; Merlini, Marco; Hanfland, Michael

    2018-05-01

    Scapolites are common volatile-bearing minerals in metamorphic rocks. In this study, the high-pressure behavior of an intermediate member of the scapolite solid solution series (Me47), chemical formula (Na1.86Ca1.86K0.23Fe0.01)(Al4.36Si7.64)O24[Cl0.48(CO3)0.48(SO4)0.01], has been investigated up to 17.79 GPa, by means of in situ single-crystal synchrotron X-ray diffraction. The isothermal elastic behavior of the studied scapolite has been described by a III-order Birch-Murnaghan equation of state, which provided the following refined parameters: V 0 = 1110.6(7) Å3, {K_{{V_0}}} = 70(2) GPa ({β _{{V_0}}} = 0.0143(4) GPa-1) and {K_{{V}}^' = 4.8(7). The refined bulk modulus is intermediate between those previously reported for Me17 and Me68 scapolite samples, confirming that the bulk compressibility among the solid solution increases with the Na content. A discussion on the P-induced structure deformation mechanisms of tetragonal scapolite at the atomic scale is provided, along with the implications of the reported results for the modeling of scapolite stability. In addition, a single-crystal to single-crystal phase transition, which is displacive in character, has been observed toward a triclinic polymorph at 9.87 GPa. The high-pressure triclinic polymorph was found to be stable up to the highest pressure investigated.

  18. Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions

    International Nuclear Information System (INIS)

    Nozawa, Tomohiro; Arakawa, Yasuhiko

    2014-01-01

    The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies. (paper)

  19. Computational Chemical Kinetics for the Reaction of Criegee Intermediate CH2OO with HNO3 and Its Catalytic Conversion to OH and HCO.

    Science.gov (United States)

    Raghunath, P; Lee, Yuan-Pern; Lin, M C

    2017-05-25

    The kinetics and mechanisms for the reaction of the Criegee intermediate CH 2 OO with HNO 3 and the unimolecular decomposition of its reaction product CH 2 (O)NO 3 are important in atmospheric chemistry. The potential-energy profile of the reactions predicted with the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ method shows that the initial association yields a prereaction complex that isomerizes by H migration to yield excited intermediate nitrooxymethyl hydroperoxide NO 3 CH 2 OOH* with internal energy ∼44 kcal mol -1 . A fragmentation of this excited intermediate produces CH 2 (O)NO 3 + OH with its transition state located 5.0 kcal mol -1 below that of the reactants. Further decomposition of CH 2 (O)NO 3 produces HCO + HNO 3 , forming a catalytic cycle for destruction of CH 2 OO by HNO 3 . The rate coefficients and product-branching ratios were calculated in the temperature range 250-700 K at pressure 20-760 Torr (N 2 ) using the variational-transition-state and Rice-Ramsperger-Kassel-Marcus (RRKM) theories. The predicted total rate coefficient for reaction CH 2 OO + HNO 3 at 295 K, 5.1 × 10 -10 cm 3 molecule -1 s -1 , agrees satisfactorily with the experimental value, (5.4 ± 1.0) × 10 -10 cm 3 molecule -1 s -1 . The predicted branching ratios at 295 K are 0.21 for the formation of NO 3 CH 2 OOH and 0.79 for CH 2 (O)NO 3 + OH at a pressure of 40 Torr (N 2 ), and 0.79 for the formation of NO 3 CH 2 OOH and 0.21 for CH 2 (O)NO 3 + OH at 760 Torr (N 2 ). This new catalytic conversion of CH 2 OO to HCO + OH by HNO 3 might have significant impact on atmospheric chemistry.

  20. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2 → H2O + H.

    Science.gov (United States)

    Cvitaš, Marko T; Althorpe, Stuart C

    2013-08-14

    We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A 113, 4557 (2009)] to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2 → H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

  1. Acute-phase reactants in periodontal disease: current concepts and future implications.

    Science.gov (United States)

    Archana, Vilasan; Ambili, Ranjith; Nisha, Krishnavilasam Jayakumary; Seba, Abraham; Preeja, Chandran

    2015-05-01

    Periodontal disease has been linked to adverse cardiovascular events by unknown mechanisms. C-reactive protein is a systemic marker released during the acute phase of an inflammatory response and is a prognostic marker for cardiovascular disease, with elevated serum levels being reported during periodontal disease. Studies also reported elevated levels of various other acute-phase reactants in periodontal disease. It has been reported extensively in the literature that treatment of periodontal infections can significantly lower serum levels of C-reactive protein. Therefore, an understanding of the relationship between acute-phase response and the progression of periodontal disease and other systemic health complications would have a profound effect on the periodontal treatment strategies. In view of this fact, the present review highlights an overview of acute-phase reactants and their role in periodontal disease. © 2014 Wiley Publishing Asia Pty Ltd.

  2. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The reaction of ground-state atomic oxygen [O(32)] with methyl, ethyl, -propyl and isopropyl radicals has been studied using the density functional method and the complete basis set model. The energies of the reactants, products, reaction intermediates and various transition states as well as the reaction enthalpies have ...

  3. Modeling of the reactant conversion rate in a turbulent shear flow

    Science.gov (United States)

    Frankel, S. H.; Madnia, C. K.; Givi, P.

    1992-01-01

    Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.

  4. Partially folded intermediates during trypsinogen denaturation

    Directory of Open Access Journals (Sweden)

    Martins N.F.

    1999-01-01

    Full Text Available The equilibrium unfolding of bovine trypsinogen was studied by circular dichroism, differential spectra and size exclusion HPLC. The change in free energy of denaturation was = 6.99 ± 1.40 kcal/mol for guanidine hydrochloride and = 6.37 ± 0.57 kcal/mol for urea. Satisfactory fits of equilibrium unfolding transitions required a three-state model involving an intermediate in addition to the native and unfolded forms. Size exclusion HPLC allowed the detection of an intermediate population of trypsinogen whose Stokes radii varied from 24.1 ± 0.4 Å to 26.0 ± 0.3 Å for 1.5 M and 2.5 M guanidine hydrochloride, respectively. During urea denaturation, the range of Stokes radii varied from 23.9 ± 0.3 Å to 25.7 ± 0.6 Å for 4.0 M and 6.0 M urea, respectively. Maximal intrinsic fluorescence was observed at about 3.8 M urea with 8-aniline-1-naphthalene sulfonate (ANS binding. These experimental data indicate that the unfolding of bovine trypsinogen is not a simple transition and suggest that the equilibrium intermediate population comprises one intermediate that may be characterized as a molten globule. To obtain further insight by studying intermediates representing different stages of unfolding, we hope to gain a better understanding of the complex interrelations between protein conformation and energetics.

  5. Optical properties of chalcopyrite-type intermediate transition metal band materials from first principles

    International Nuclear Information System (INIS)

    Aguilera, I.; Palacios, P.; Wahnon, P.

    2008-01-01

    The optical properties of a novel potential high-efficiency photovoltaic material have been studied. This material is based on a chalcopyrite-type semiconductor (CuGaS 2 ) with some Ga atom substituted by Ti and is characterized by the formation of an isolated transition-metal band between the valence band and the conduction band. We present a study in which ab-initio density functional theory calculations within the generalized gradient approximation are carried out to determine the optical reflectivity and absorption coefficient of the materials of interest. Calculations for the host semiconductor are in good agreement with experimental results within the limitations of the approach. We find, as desired, that because of the intermediate band, the new Ti-substituted material would be able to absorb photons of energy lower than the band-gap of the host chalcopyrite. We also analyze the partial contributions to the main peaks of its spectrum

  6. Transesterification of castor oil usingMgO/SiO2 catalyst and coconutoilas co-reactant

    OpenAIRE

    Kamisah D. Pandiangan; Novesar Jamarun; Syukri Arief; Wasinton Simanjuntak

    2016-01-01

    This paper describes the transesterification of castor oil with the use of coconut oil as co-reactant and MgO/SiO2as heterogeneous base catalyst. The catalyst was preparedfrom rice husk silica and magnesium nitrate by sol-gel method, with MgO load of 20% relative to silica, and then subjected to sintering treatment at 600 oC for 6 hours. A series of experiments was carried out, indicating that the use of coconut oil as co-reactant significantly promoted the conversion of castor oil into b...

  7. Intermediate coupling collision strengths from LS coupled R-matrix elements

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    1978-01-01

    Fine structure collision strength for transitions between two groups of states in intermediate coupling and with inclusion of configuration mixing are obtained from LS coupled reactance matrix elements (R-matrix elements) and a set of mixing coefficients. The LS coupled R-matrix elements are transformed to pair coupling using Wigner 6-j coefficients. From these pair coupled R-matrix elements together with a set of mixing coefficients, R-matrix elements are obtained which include the intermediate coupling and configuration mixing effects. Finally, from the latter R-matrix elements, collision strengths for fine structure transitions are computed (with inclusion of both intermediate coupling and configuration mixing). (Auth.)

  8. Synthesis of nanoparticles from malleable and ductile metals using powder-free, reactant-assisted mechanical attrition.

    Science.gov (United States)

    McMahon, Brandon W; Perez, Jesus Paulo L; Yu, Jiang; Boatz, Jerry A; Anderson, Scott L

    2014-11-26

    A reactant-assisted mechanochemical method was used to produce copious nanoparticles from malleable/ductile metals, demonstrated here for aluminum, iron, and copper. The milling media is intentionally degraded via a reactant-accelerated wear process, where the reactant aids particle production by binding to the metal surfaces, enhancing particle production, and reducing the tendency toward mechanochemical (cold) welding. The mechanism is explored by comparing the effects of different types of solvents and solvent mixtures on the amount and type of particles produced. Particles were functionalized with oleic acid to aid in particle size separation, enhance dispersion in hydrocarbon solvents, and protect the particles from oxidation. For aluminum and iron, the result is air-stable particles, but for copper, the suspended particles are found to dissolve when exposed to air. Characterization was performed using electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, solid state nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Density functional theory was used to examine the nature of carboxylic acid binding to the aluminum surface, confirming the dominance of bridging bidentate binding.

  9. Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack

    Science.gov (United States)

    Abrego-Martínez, J. C.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Arriaga, L. G.; Sun, Shuhui; Mohamedi, Mohamed

    2017-12-01

    In the present work, we report the design, fabrication and evaluation of a membraneless mixed-reactant and air-breathing microfluidic direct methanol fuel cell (ML-μDMFC) stack operated in passive mode. The operation under mixed-reactant conditions was achieved by using a highly methanol-tolerant Ag/Pt/CP cathode with ultra-low Pt loading in alkaline medium. Prior to the fabrication of the stack, a flow simulation was made in order to study the behavior of the reactants stream in the microchannel through the 2 cells. Subsequently, the device was tested in passive mode using a mixture of 5 M MeOH +0.5 M KOH. The results showed that by connecting the 2 cells in series, it is possible to effectively double the voltage of a single ML-μDMFC, as well as increasing the absolute power by 75% with practically no cost increase. The stack was capable of operate continuously for more than 2 h with a single charge of 40 μL, producing an OCV of 0.89 V and a maximum power density of 3.33 mW mgPt-1. Additionally, the device exhibited good stability throughout a 10 h test.

  10. Platinum- and membrane-free swiss-roll mixed-reactant alkaline fuel cell.

    Science.gov (United States)

    Aziznia, Amin; Oloman, Colin W; Gyenge, Előd L

    2013-05-01

    Eliminating the expensive and failure-prone proton exchange membrane (PEM) together with the platinum-based anode and cathode catalysts would significantly reduce the high capital and operating costs of low-temperature (<373 K) fuel cells. We recently introduced the Swiss-roll mixed-reactant fuel cell (SR-MRFC) concept for borohydride-oxygen alkaline fuel cells. We now present advances in anode electrocatalysis for borohydride electrooxidation through the development of osmium nanoparticulate catalysts supported on porous monolithic carbon fiber materials (referred to as an osmium 3D anode). The borohydride-oxygen SR-MRFC operates at 323 K and near atmospheric pressure, generating a peak power density of 1880 W m(-2) in a single-cell configuration by using an osmium-based anode (with an osmium loading of 0.32 mg cm(-2)) and a manganese dioxide gas-diffusion cathode. To the best of our knowledge, 1880 W m(-2) is the highest power density ever reported for a mixed-reactant fuel cell operating under similar conditions. Furthermore, the performance matches the highest reported power densities for conventional dual chamber PEM direct borohydride fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  12. State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-12-23

    Energy flow and sequestration at the state-to-state level are investigated for a prototypical four-atom reaction, H2 + OH → H + H2O, using a transition-state wave packet (TSWP) method. The product state distribution is found to depend strongly on the reactant vibrational excitation, indicating mode specificity at the state-to-state level. From a local-mode perspective, it is shown that the vibrational excitation of the H2O product derives from two different sources, one attributable to the energy flow along the reaction coordinate into the newly formed OH bond and the other due to the sequestration of the vibrational energy in the OH spectator moiety during the reaction. The analysis provided a unified interpretation of some seemingly contradicting experimental observations. It is further shown that the transfer of vibrational energy from the OH reactant to H2O product is gated by the transition state, accomplished coherently by multiple TSWPs with the corresponding OH vibrational excitation.

  13. Perturbation formalism for the complex poles and widths of the transition matrix with an application to intermediate structure phenomena

    International Nuclear Information System (INIS)

    Perez, R.B.; de Saussure, G.; Olsen, D.K.; Difilippo, F.C.

    1978-01-01

    The complex poles and widths of the transition T matrix are determined by the trajectory equations which consist of a set of first order nonlinear differential equations. A hierarchy of approximate solutions to the trajectory equations is developed by iterative methods. The results of this formalism are compared with exact solutions for the case of some strongly interacting pairs of resonances in two iron isotopes. In the presence of intermediate structure the average neutron reaction cross section is interpreted in terms of a resonant strength function which exhibits peaks at neutron energies corresponding to ''doorways'' levels

  14. Study of the ionization of alkane-electron scavenger reactant mixtures irradiated by 60Co gamma rays

    International Nuclear Information System (INIS)

    Bonnet, Jacques.

    1977-01-01

    This study deals with ionization of alkane-electron scavenger reactant mixtures, irradiated by 60 Co γ-rays. It is shown that the extrapolated free-ion yields (extrapolated yield method) decrease with the reactant concentration. On the basis of ONSAGER model and theoretical treatment of MOZUMDER, the cross sections of epithermal electron attachment in hexane, cyclohexane, 2,2-dimethylbutane, cyclopentane, 2,2,4-trimethylpentane for CCl 4 , C 7 F 14 , C 6 H 5 Br, C 6 H 5 Cl, C 6 F 14 , (C 6 H 5 ) 2 are determined. A comparison between gas-phase and liquid-phase cross sections is established [fr

  15. Experimental investigation of laminar LPG-H{sub 2} jet diffusion flame with preheated reactants

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Mishra; P. Kumar [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-10-15

    This paper presents an experimental investigation of the effect of H{sub 2} addition on flame length, soot free length fraction (SFLF), flame radiant fraction, gas temperature and emission level in LPG-H{sub 2} composite fuel jet diffusion flame for two preheated cases namely, (i) preheated air and (ii) preheated air and fuel. Results show that the H{sub 2} addition leads to a reduction in flame length which may be caused due to an increased gas temperature. Besides this, the flame length is also observed to be reduced with increasing reactants temperature. The soot free length fraction (SFLF) increases as H{sub 2} is added to fuel stream. This might have been caused by decrease in the C/H ratio in the flame and is favorable to attenuate PAH formation rate. Interestingly, the SFLF is observed to be reduced with increasing reactants temperature that may be due to reduction in induction period of soot formation caused by enhanced flame temperature. Moreover, the decreased radiant heat fraction with hydrogen addition is pertinent with the reduction in soot concentration level. The reduction in NOx emission level with H{sub 2} addition to the fuel stream is also observed. On the contrary, NOx emission level is found to be enhanced significantly with reactant temperature that can be attributed to the increase in thermal NOx through Zeldovich mechanism. 31 refs., 4 figs., 2 tabs.

  16. MicroRNA Cluster miR-17-92 Regulates Neural Stem Cell Expansion and Transition to Intermediate Progenitors in the Developing Mouse Neocortex

    Directory of Open Access Journals (Sweden)

    Shan Bian

    2013-05-01

    Full Text Available During development of the embryonic neocortex, tightly regulated expansion of neural stem cells (NSCs and their transition to intermediate progenitors (IPs are critical for normal cortical formation and function. Molecular mechanisms that regulate NSC expansion and transition remain unclear. Here, we demonstrate that the microRNA (miRNA miR-17-92 cluster is required for maintaining proper populations of cortical radial glial cells (RGCs and IPs through repression of Pten and Tbr2 protein. Knockout of miR-17-92 and its paralogs specifically in the developing neocortex restricts NSC proliferation, suppresses RGC expansion, and promotes transition of RGCs to IPs. Moreover, Pten and Tbr2 protectors specifically block silencing activities of endogenous miR-17-92 and control proper numbers of RGCs and IPs in vivo. Our results demonstrate a critical role for miRNAs in promoting NSC proliferation and modulating the cell-fate decision of generating distinct neural progenitors in the developing neocortex.

  17. Comments on intermediate-scale models

    International Nuclear Information System (INIS)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.

    1987-01-01

    Some superstring-inspired models employ intermediate scales m I of gauge symmetry breaking. Such scales should exceed 10 16 GeV in order to avoid prima facie problems with baryon decay through heavy particles and non-perturbative behaviour of the gauge couplings above m I . However, the intermediate-scale phase transition does not occur until the temperature of the Universe falls below O(m W ), after which an enormous excess of entropy is generated. Moreover, gauge symmetry breaking by renormalization group-improved radiative corrections is inapplicable because the symmetry-breaking field has not renormalizable interactions at scales below m I . We also comment on the danger of baryon and lepton number violation in the effective low-energy theory. (orig.)

  18. On the stability of rotational discontinuities and intermediate shocks

    International Nuclear Information System (INIS)

    Lee, L.C.; Huang, L.; Chao, J.K.

    1989-01-01

    The stability of rotational discontinuities and intermediate shocks is studied based on a hybrid simulation code. The simulation results show that rotational discontinuities are stable and intermediate shocks are not stationary. Intermediate shocks tend to evolve to rotational discontinuities and waves. The authors employ several different initial profiles for the magnetic field in the transition region and find that the final structure of the discontinuities or shocks is not sensitive to the initial magnetic field profile. The present results are different from those obtained from the resistive MHD simulations. Furthermore, their study indicates that the kinetic effect of particles plays an important role in the structure and stability of rotational discontinuities and intermediate shocks

  19. Low temperature intermediate band metallic behavior in Ti implanted Si

    Energy Technology Data Exchange (ETDEWEB)

    Olea, Javier, E-mail: oleaariza@fis.ucm.es; Pastor, David; Garcia-Hemme, Eric; Garcia-Hernansanz, Rodrigo; Prado, Alvaro del; Martil, Ignacio; Gonzalez-Diaz, German

    2012-08-31

    Si samples implanted with very high Ti doses and subjected to Pulsed-Laser Melting (PLM) have been electrically analyzed in the scope of a two-layer model previously reported based on the Intermediate Band (IB) theory. Conductivity and Hall effect measurements using the van der Pauw technique suggest that the insulator-metal transition takes place for implantation doses in the 10{sup 14}-10{sup 16} cm{sup -2} range. Results of the sample implanted with the 10{sup 16} cm{sup -2} dose show a metallic behavior at low temperature that is explained by the formation of a p-type IB out of the Ti deep levels. This suggests that the IB would be semi-filled, which is essential for IB photovoltaic devices. - Highlights: Black-Right-Pointing-Pointer We fabricated high dose Ti implanted Si samples for intermediate band research. Black-Right-Pointing-Pointer We measured the electronic transport properties in the 7-300 K range. Black-Right-Pointing-Pointer We show an insulator to metallic transition when the intermediate band is formed. Black-Right-Pointing-Pointer The intermediate band is semi-filled and populated by holes. Black-Right-Pointing-Pointer We satisfactorily explain the electrical behavior by an intermediate band model.

  20. Carrier behavior in special multilayer device composed of different transition metal oxide-based intermediate connectors

    International Nuclear Information System (INIS)

    Deng, Yan-Hong; Chen, Xiang-Yu; Ou, Qing-Dong; Wang, Qian-Kun; Jiang, Xiao-Cheng; Zhang, Dan-Dan; Li, Yan-Qing

    2014-01-01

    The impact of illumination on the connection part of the tandem organic light-emitting diodes was studied by using a special organic multilayer sample consisted of two organic active layers coupled with different transition metal oxide (TMO)-based intermediate connectors (ICs). Through measuring the current density-voltage characteristic, interfacial electronic structures, and capacitance-voltage characteristic, we observe an unsymmetrical phenomenon in current density-voltage and capacitance-voltage curves of Mg:Alq 3 /MoO 3 and MoO 3 composed devices, which was induced by the charge spouting zone near the ICs region and the recombination state in the MoO 3 layer. Moreover, Mg:Alq 3 /MoO 3 composed device displays a photovoltaic effect and the V oc shifts to forward bias under illumination. Our results demonstrate that the TMO-based IC structure coupled with photovoltaic effect can be a good approach for the study of photodetector, light sensor, and so on.

  1. Future possibilities with intermediate-energy neutron beams

    International Nuclear Information System (INIS)

    Brady, F.P.

    1987-01-01

    Future possibilities for using neutrons of intermediate energies (50 - 200 MeV) as a probe of the nucleus are discussed. Some of the recent thinking concerning a systematic approach for studying elastic and inelastic scattering of electrons and hadrons and the important role of medium- and intermediate-energy neutrons in such a programme is reviewed. The advantages of neutrons in this energy range over neutrons with lower energies and over intermediate-energy pions for determining nuclear-transition and ground state densities, and for distinguishing proton from neutron density (isovector sensitivity), are noted. The important role of (n,p) charge exchange reactions in nuclear excitation studies is also reviewed. Experimental methods for utilizing neutrons as probes in elastic, inelastic, and charge exchange studies at these energies are discussed

  2. Serum levels of chicken mannan-binding lectin (MBL) during virus infections; indication that chicken MBL is an acute phase reactant

    DEFF Research Database (Denmark)

    Nielsen, O.L.; Jensenius, J. C.; Jørgensen, Poul Henrik

    1999-01-01

    Mannan-binding lectin (MBL) is a serum collectin which is believed to be an opsonin of the innate immune defence against various microorganisms. MBL is a minor acute phase reactant in man. We investigated the concentration of serum MBL in chickens infected with infectious bronchitis virus (IBV...... levels returned to normal values 6-10 days after infection. The results indicated that MBL is a minor acute phase reactant in chickens....

  3. Mechanistic Insights from the Crystal Structure of Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase Complexed with the Adenylate Intermediate.

    Science.gov (United States)

    Chen, Yaozong; Jiang, Yiping; Guo, Zhihong

    2016-12-06

    o-Succinylbenzoyl-CoA (OSB-CoA) synthetase, or MenE, catalyzes an essential step in vitamin K biosynthesis and is a valuable drug target. Like many other adenylating enzymes, it changes its structure to accommodate substrate binding, catalysis, and product release along the path of a domain alternation catalytic mechanism. We have determined the crystal structure of its complex with the adenylation product, o-succinylbenzoyl-adenosine monophosphate (OSB-AMP), and captured a new postadenylation state. This structure presents unique features such as a strained conformation for the bound adenylate intermediate to indicate that it represents the enzyme state after completion of the adenylation reaction but before release of the C domain in its transition to the thioesterification conformation. By comparison to the ATP-bound preadenylation conformation, structural changes are identified in both the reactants and the active site to allow inference about how these changes accommodate and facilitate the adenylation reaction and to directly support an in-line backside attack nucleophilic substitution mechanism for the first half-reaction. Mutational analysis suggests that the conserved His196 plays an important role in desolvation of the active site rather than stabilizing the transition state of the adenylation reaction. In addition, comparison of the new structure with a previously determined OSB-AMP-bound structure of the same enzyme allows us to propose a release mechanism of the C domain in its alteration to form the thioesterification conformation. These findings allow us to better understand the domain alternation catalytic mechanism of MenE as well as many other adenylating enzymes.

  4. Theoretical studies of mechanisms of cycloaddition reaction between difluoromethylene carbene and acetone

    Science.gov (United States)

    Lu, Xiu Hui; Yu, Hai Bin; Wu, Wei Rong; Xu, Yue Hua

    Mechanisms of the cycloaddition reaction between singlet difluoromethylene carbene and acetone have been investigated with the second-order Møller-Plesset (MP2)/6-31G* method, including geometry optimization and vibrational analysis. Energies for the involved stationary points on the potential energy surface (PES) are corrected by zero-point energy (ZPE) and CCSD(T)/6-31G* single-point calculations. From the PES obtained with the CCSD(T)//MP2/6-31G* method for the cycloaddition reaction between singlet difluoromethylene carbene and acetone, it can be predicted that path B of reactions 2 and 3 should be two competitive leading channels of the cycloaddition reaction between difluoromethylene carbene and acetone. The former consists of two steps: (i) the two reactants first form a four-membered ring intermediate, INT2, which is a barrier-free exothermic reaction of 97.8 kJ/mol; (ii) the intermediate INT2 isomerizes to a four-membered product P2b via a transition state TS2b with an energy barrier of 24.9 kJ/mol, which results from the methyl group transfer. The latter proceeds in three steps: (i) the two reactants first form an intermediate, INT1c, through a barrier-free exothermic reaction of 199.4 kJ/mol; (ii) the intermediate INT1c further reacts with acetone to form a polycyclic intermediate, INT3, which is also a barrier-free exothermic reaction of 27.4 kJ/mol; and (iii) INT3 isomerizes to a polycyclic product P3 via a transition state TS3 with an energy barrier of 25.8 kJ/mol.

  5. Comments on intermediate-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Enqvist, K.; Nanopoulos, D.V.; Olive, K.

    1987-04-23

    Some superstring-inspired models employ intermediate scales m/sub I/ of gauge symmetry breaking. Such scales should exceed 10/sup 16/ GeV in order to avoid prima facie problems with baryon decay through heavy particles and non-perturbative behaviour of the gauge couplings above m/sub I/. However, the intermediate-scale phase transition does not occur until the temperature of the Universe falls below O(m/sub W/), after which an enormous excess of entropy is generated. Moreover, gauge symmetry breaking by renormalization group-improved radiative corrections is inapplicable because the symmetry-breaking field has not renormalizable interactions at scales below m/sub I/. We also comment on the danger of baryon and lepton number violation in the effective low-energy theory.

  6. Electrogenerated chemiluminescence of tris(2,2' bipyridine)ruthenium(II) using common biological buffers as co-reactant, pH buffer and supporting electrolyte.

    Science.gov (United States)

    Kebede, Noah; Francis, Paul S; Barbante, Gregory J; Hogan, Conor F

    2015-11-07

    A series of aliphatic tertiary amines (HEPES, POPSO, EPPS and BIS-TRIS) commonly used to buffer the pH in biological experiments, were examined as alternative, non-toxic co-reactants for the electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) ([Ru(bpy)3](2+)). These were found to be very attractive as "multi-tasking" reagents, serving not only as co-reactants, but also fulfiling the roles of pH buffer and supporting electrolyte within an aqueous environment; thus significantly simplifying the overall ECL analysis. Sub-nanomolar detection limits were obtained for [Ru(bpy)3](2+) in the presence of BIS-TRIS, making this species an valuable option for co-reactant ECL-based bioanalytical applications.

  7. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-06-28

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.

  8. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  9. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Deng, Qilan; Goldansaz, Seyed A.; Dunn, Suzanna M.; Ametaj, Burim N.

    2015-01-01

    Simple Summary Lameness is prevalent in dairy cows and early diagnosis and timely treatment of the disease can lower animal suffering, improve recovery rate, increase longevity, and minimize cow loss. However, there are no indications of disease until it appears clinically, and presently the only approach to deal with the sick cow is intensive treatment or culling. The results suggest that lameness affected serum concentrations of the several parameters related to innate immunity and carbohydrate metabolism that might be used to monitor health status of transition dairy cows in the near future. Abstract The objectives of this study were to evaluate metabolic and innate immunity alterations in the blood of transition dairy cows before, during, and after diagnosis of lameness during periparturient period. Blood samples were collected from the coccygeal vain once per week before morning feeding from 100 multiparous Holstein dairy cows during −8, −4, disease diagnosis, and +4 weeks (wks) relative to parturition. Six healthy cows (CON) and six cows that showed clinical signs of lameness were selected for intensive serum analyses. Concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), haptoglobin (Hp), serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), lactate, non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) were measured in serum by ELISA or colorimetric methods. Health status, DMI, rectal temperature, milk yield, and milk composition also were monitored for each cow during the whole experimental period. Results showed that cows affected by lameness had greater concentrations of lactate, IL-6, and SAA in the serum vs. CON cows. Concentrations of TNF tended to be greater in cows with lameness compared with CON. In addition, there was a health status (Hs) by time (week) interaction for IL-1, TNF, and Hp in lameness cows vs. CON ones. Enhanced serum concentrations of lactate, IL-6, and SAA at −8 and

  10. Catalytic membrane in denitrification of water: a means to facilitate intraporous diffusion of reactants

    NARCIS (Netherlands)

    Ilinich, O.M.; Cuperus, F.P.; Gemert, van R.W.; Gribov, E.N.; Nosova, L.V.

    2000-01-01

    The series of mono- and bi-metallic catalysts with Pd and/or Cu supported over γ-Al 2O 3 was investigated with respect to reduction of nitrate and nitrite ions in water by hydrogen. Pronounced limitations of catalytic performance due to intraporous diffusion of the reactants were observed in the

  11. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    International Nuclear Information System (INIS)

    Xu, Shuwu; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong; Huang, Yunxia

    2015-01-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye. (paper)

  12. Prediction of the transition energies of atomic No and Lr by the intermediate Hamiltonian coupled cluster method

    International Nuclear Information System (INIS)

    Borschevsky, A.; Eliav, E.; Kaldor, U.; Vilkas, M.J.; Ishikawa, Y.

    2007-01-01

    Complete text of publication follows: Measurements of the spectroscopic properties of the superheavy elements present a serious challenge to the experimentalist. Their short lifetimes and the low quantities of their production necessitate reliable prediction of transition energies to avoid the need for broad wavelength scans and to assist in identifying the lines. Thus, reliable high-accuracy calculations are necessary prior and parallel to experimental research. Nobelium and Lawrencium are at present the two most likely candidates for spectroscopic measurements, with the first experiments planned at GSI, Darmstadt. The intermediate Hamiltonian (IH) coupled cluster method is applied to the ionization potentials, electron affinities, and excitation energies of atomic nobelium and lawrencium. Large basis sets are used (37s31p26d21f16g11h6i). All levels of a particular atom are obtained simultaneously by diagonalizing the IH matrix. The matrix elements correspond to all excitations from correlated occupied orbitals to virtual orbitals in a large P space, and are 'dressed' by folding in excitations to higher virtual orbitals (Q space) at the coupled cluster singles-and-doubles level. Lamb-shift corrections are included. The same approach was applied to the lighter homologues of Lr and No, lutetium and ytterbium, for which many transition energies are experimentally known, in order to assess the accuracy of the calculation. The average absolute error of 20 excitation energies of Lu is 423 cm -1 , and the error limits for Lr are therefore put at 700 cm -1 . Predicted Lr excitations with large transition moments in the prime range for the planned experiment, 20,000-30,000 cm -1 , are 7p → 8s at 20,100 cm -1 and 7p →p 7d at 28,100 cm -1 . In case of Yb, the calculated ionization potential was within 20 cm -1 of the experiment, and the average error of the 20 lowest calculated excitations was about 300 cm -1 . Hence, the error limits of nobelium are set to 800 cm -1

  13. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates

    International Nuclear Information System (INIS)

    Hardin, C.C.; Watson, T.; Henderson, E.; Prosser, J.K.

    1991-01-01

    Telomeric DNA consists of G- and C-rich strands that are always polarized such that the G-rich strand extends past the 3' end of the duplex to form a 12-16-base overhang. These overhanging strands can self-associate in vitro to form intramolecular structures that have several unusual physical properties and at least one common feature, the presence of non-Watson-Crick G·G base pairs. The term G-DNA was coined for this class of structures. On the basis of gel electrophoresis, imino proton NMR, and circular dichroism (CD) results, the authors find that changing the counterions from sodium to potassium specifically induces conformational transitions in the G-rich telomeric DNA from Tetrahymena, d(T 2 G 4 ) 4 (TET4), which results in a change from the intramolecular species to an apparent multistranded structure, accompanied by an increase in the melting temperature of the base pairs of >25 degree, as monitored by loss of the imino proton NMR signals. They infer that the multistranded structure is a quadruplex. The results indicate that specific differences in ionic interactions can result in a switch in telomeric DNAs between intramolecular hairpin-like or quadruplex-containing species and intermolecular quadruplex structures, all of which involve G·G base pairing interaction. They propose a model in which duplex or hairpin forms of G-DNA are folding intermediates in the formation of either 1-, 2-, or 4-stranded quadruplex structures

  14. Unbounded autocatalytic growth on diffusive substrate: The extinction transition

    International Nuclear Information System (INIS)

    Moalem, Sasi; Shnerb, Nadav M.

    2007-01-01

    The effect of diffusively correlated spatial fluctuations on the proliferation-extinction transition of autocatalytic agents is investigated numerically. Reactants adaptation to spatio-temporal active regions is shown to lead to proliferation even if the mean field rate equations predict extinction, in agreement with previous theoretical predictions. While in the proliferation phase the system admits a typical time scale that dictates the exponential growth, the extinction times distribution obeys a power law at the parameter region considered

  15. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  16. Teachers' Misconceptions about the Effects of Addition of More Reactants or Products on Chemical Equilibrium

    Science.gov (United States)

    Cheung, Derek; Ma, Hong-jia; Yang, Jie

    2009-01-01

    The importance of research on misconceptions about chemical equilibrium is well recognized by educators, but in the past, researchers' interest has centered on student misconceptions and has neglected teacher misconceptions. Focusing on the effects of adding more reactants or products on chemical equilibrium, this article discusses the various…

  17. Quantum Chemical Investigation of the Transition States and Intermediates for the Reaction of the Nitrosonium Ion with the Pentaammineazidocobalt(III) Ion.

    Science.gov (United States)

    Rotzinger, François P

    2016-12-19

    The water exchange reaction on Co(NH 3 ) 5 OH 2 3+ was investigated with various density functionals and basis sets. A Gibbs activation energy (ΔG ⧧ ) agreeing with experiment was obtained with the long-range-corrected functionals ωB97X-D3 and LC-BOP-LRD, SMD hydration, and modified Karlsruhe def2-TZVP basis sets. This computational technique was then applied to the reaction of NO + with Co(NH 3 ) 5 N 3 2+ . All of the possible pathways were investigated, NO + attack at the terminal N of Co(NH 3 ) 5 N 3 2+ via the E and the Z isomers of the transition states, and NO + attack at the bound N of azide, also via both isomers. The most favorable pathway proceeds via the attack at the bound N via the Z isomer. This leads to the intermediate with an oxatetrazole ligand bound to Co(III) at the N in the 3-position, Co(NH 3 ) 5 (cycl-N 4 O) 3+ , which undergoes N 2 elimination to yield the Co(NH 3 ) 5 N 2 O 3+ intermediate. The subsequent substitution of N 2 O by water follows the I d mechanism with retention of the configuration. No evidence for the existence of the square-pyramidal pentacoordinated intermediate Co(NH 3 ) 5 3+ was found. All of the investigated intermediates, Co(NH 3 ) 5 N 2 3+ , Co(NH 3 ) 5 [E-N(N 2 )(NO)] 3+ , Co(NH 3 ) 5 (E-ON 4 ) 3+ , Co(NH 3 ) 5 ON 2 3+ , Co(NH 3 ) 5 (cycl-N 4 O) 3+ , and Co(NH 3 ) 5 N 2 O 3+ , exhibit short lifetimes of less than ∼60 μs and react via the I d mechanism.

  18. Polyimide resin composites via in situ polymerization of monomeric reactants

    Science.gov (United States)

    Cavano, P. J.

    1974-01-01

    Thermo-oxidatively stable polyimide/graphite-fiber composites were prepared using a unique in situ polymerization of monomeric reactants directly on reinforcing fibers. This was accomplished by using an aromatic diamine and two ester-acids in a methyl alcohol solvent, rather than a previously synthesized prepolymer varnish, as with other A-type polyimides. A die molding procedure was developed and a composite property characterization conducted with high modulus graphite fiber tow. Flexure, tensile, compressive, and shear tests were conducted at temperatures from 72 to 650 F on laminates before and after exposures at the given temperatures in an air environment for times up to 1000 hours. The composite material was determined to be oxidatively, thermally, and hydrolytically stable.

  19. About the structure of quantum intermediate state of superconductors

    International Nuclear Information System (INIS)

    Ledenev, O.P.

    2008-01-01

    The calculation of spatial structure of a quantum intermediate state in Type I superconductors is completed. Theoretical model of thermodynamics of considered state was proposed by Andreev. It is shown, that in a quantum case, the period of structure appears significantly smaller and has different dependence on both the magnetic field and temperature than in the classical intermediate Landau state. The decrease of thickness of normal layers results in increase of characteristic distance between the quantum Andreev levels of electronic excitations, and the transition to the quantum intermediate from classical state is realized at higher temperatures ∼1 K, than it was supposed in previous works. The comparison of calculation data with experimental results, for example using the sample of mono-crystal gallium, is conducted

  20. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states

    International Nuclear Information System (INIS)

    Nguyen, Trong-Nghia; Putikam, Raghunath; Lin, M. C.

    2015-01-01

    We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH 2 OO and anti/syn-CH 3 C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH 2 OO and anti-CH 3 C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH 3 C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH 3 C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH 3 group by the terminal O atom producing CH 2 C(H)O–OH. At 298 K, the intramolecular insertion process in CH 2 OO was found to be 600 times faster than the commonly assumed ring-closing reaction

  1. The influence of tertiary butyl hydrazine as a co-reactant on the atomic layer deposition of silver

    Energy Technology Data Exchange (ETDEWEB)

    Golrokhi, Zahra; Marshall, Paul A.; Romani, Simon [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom); Rushworth, Simon [EpiValence, The Wilton Centre, Redcar, Cleveland, TS10 4RF (United Kingdom); Chalker, Paul R. [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom); Potter, Richard J., E-mail: rjpott@liverpool.ac.uk [Centre for Materials and Structures, School of Engineering,The University of Liverpool, Liverpool L69 3GH (United Kingdom)

    2017-03-31

    Highlights: • We demonstrate metallic silver growth by direct liquid injection thermal ALD. • A substituted hydrazine is used as a powerful reducing agent for the first time. • The hydrazine extends the ALD temperature window compared with alcohol. • Hydrazine promotes a more planar growth mode compared to alcohol. • Film adhesion is improved using hydrazine compared with alcohol. - Abstract: Ultra-thin conformal silver films are the focus of development for applications such as anti-microbial surfaces, optical components and electronic devices. In this study, metallic silver films have been deposited using direct liquid injection thermal atomic layer deposition (ALD) using (hfac)Ag(1,5-COD) ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) as the metal source and tertiary butyl hydrazine (TBH) as a co-reactant. The process provides a 23 °C wide ‘self-limiting’ ALD temperature window between 105 and 128 °C, which is significantly wider than is achievable using alcohol as a co-reactant. A mass deposition rate of ∼20 ng/cm{sup 2}/cycle (∼0.18 Å/cycle) is observed under self-limiting growth conditions. The resulting films are crystalline metallic silver with a near planar film-like morphology which are electrically conductive. By extending the temperature range of the ALD window by the use of TBH as a co-reactant, it is envisaged that the process will be exploitable in a range of new low temperature applications.

  2. Communication: Electronic flux induced by crossing the transition state

    Science.gov (United States)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-01-01

    We present a new effect of chemical reactions, e.g., isomerizations, that occurs when the reactants pass along the transition state, on the way to products. It is based on the well-known fact that at the transition state, the electronic structure of one isomer changes to the other. We discover that this switch of electronic structure causes a strong electronic flux that is well distinguishable from the usual flux of electrons that travel with the nuclei. As a simple but clear example, the effect is demonstrated here for bond length isomerization of Na2 (21Σu+), with adiabatic crossing the barrier between the inner and outer wells of the double minimum potential that support different "Rydberg" and "ionic" type electronic structures, respectively.

  3. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    International Nuclear Information System (INIS)

    Nathan, A.M.; Sandorfi, A.M.

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of σ(700)-meson exchange in γγ→ππ processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the γΝ-Δ transition; pion photoproduction and the γΝ-Δ amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p(rvec γ, π o ) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and Ν → Νγ and Δ → γΝ transition form factors; electroproduction studies of the Ν → Δ transition at bates and CEBAF

  4. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    Science.gov (United States)

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1992-01-01

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  5. Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, S., E-mail: rajagopalan78@hotmail.com [Indira Gandhi Centre for Atomic Research, Materials Science Group (India); Asthalter, T., E-mail: t.asthalter@web.de [Universität Stuttgart, Institute of Physical Chemistry (Germany); Rabe, V.; Laschat, S. [Universität Stuttgart, Institute of Organic Chemistry (Germany)

    2016-12-15

    Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe{sub 3}(μ{sub 3}-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe{sub 3}(μ{sub 3}-O) in pyridine solution, Fe{sub 3}(μ{sub 3}-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe{sub 3}(μ{sub 3}-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe{sup (III)}(C{sub 5}H{sub 5}N){sub 2}(O{sub 2}CCH{sub 3}){sub 2}]{sup +} and Fe{sup (II)}(C{sub 5}H{sub 5}N){sub 4}(O{sub 2}CCH{sub 3}){sub 2}, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.

  6. Multifragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.; Britt, H.C.; Claesson, G.

    1986-01-01

    There has been considerable recent interest in the production of intermediate mass fragments (A > 4) in intermediate and high energy nucleus-nucleus collisions. The mechanism for production of these fragments is not well understood and has been described by models employing a variety of assumptions. Some examples are: disassembly of a system in thermal equilibrium into nucleons and nuclear fragments, liquid-vapor phase transitions in nuclear matter, final state coalescence of nucleons and dynamical correlations between nucleons at breakup. Previous studies of fragment production, with one exception, have been single particle inclusive measurements; the observed fragment mass (or charge) distributions can be described by all of the models above. To gain insight into the fragment production mechanism, the authors used the GSI/LBL Plastic Ball detector system to get full azimuthal coverage for intermediate mass fragments in the forward hemisphere in the center of mass system while measuring all the light particles in each event. The authors studied the systems 200 MeV/nucleon Au + Au and Au + Fe

  7. A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trong-Nghia [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Physical Chemistry, Hanoi University of Science and Technology, Hanoi (Viet Nam); Putikam, Raghunath; Lin, M. C., E-mail: chemmcl@emory.edu [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2015-03-28

    We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH{sub 2}OO and anti/syn-CH{sub 3}C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH{sub 2}OO and anti-CH{sub 3}C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH{sub 3}C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH{sub 3}C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH{sub 3} group by the terminal O atom producing CH{sub 2}C(H)O–OH. At 298 K, the intramolecular insertion process in CH{sub 2}OO was found to be 600 times faster than the commonly assumed ring-closing reaction.

  8. HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations.

    Science.gov (United States)

    Ma, Xiaochu; Lu, Maolin; Gorman, Jason; Terry, Daniel S; Hong, Xinyu; Zhou, Zhou; Zhao, Hong; Altman, Roger B; Arthos, James; Blanchard, Scott C; Kwong, Peter D; Munro, James B; Mothes, Walther

    2018-03-21

    HIV-1 entry into cells requires binding of the viral envelope glycoprotein (Env) to receptor CD4 and coreceptor. Imaging of individual Env molecules on native virions shows Env trimers to be dynamic, spontaneously transitioning between three distinct well-populated conformational states: a pre-triggered Env (State 1), a default intermediate (State 2) and a three-CD4-bound conformation (State 3), which can be stabilized by binding of CD4 and coreceptor-surrogate antibody 17b. Here, using single-molecule Fluorescence Resonance Energy Transfer (smFRET), we show the default intermediate configuration to be asymmetric, with individual protomers adopting distinct conformations. During entry, this asymmetric intermediate forms when a single CD4 molecule engages the trimer. The trimer can then transition to State 3 by binding additional CD4 molecules and coreceptor.

  9. Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas

    2018-03-01

    Since the first report of very-high density amorphous ice (VHDA) in 2001 [T. Loerting et al., Phys. Chem. Chem. Phys. 3, 5355-5357 (2001)], the status of VHDA as a distinct amorphous ice has been debated. We here study VHDA and its relation to expanded high density amorphous ice (eHDA) on the basis of isobaric heating experiments. VHDA was heated at 0.1 ≤ p ≤ 0.7 GPa, and eHDA was heated at 1.1 ≤ p ≤ 1.6 GPa to achieve interconversion. The behavior upon heating is monitored using in situ volumetry as well as ex situ X-ray diffraction and differential scanning calorimetry. We do not observe a sharp transition for any of the isobaric experiments. Instead, a continuous expansion (VHDA) or densification (eHDA) marks the interconversion. This suggests that a continuum of states exists between VHDA and HDA, at least in the temperature range studied here. This further suggests that VHDA is the most relaxed amorphous ice at high pressures and eHDA is the most relaxed amorphous ice at intermediate pressures. It remains unclear whether or not HDA and VHDA experience a sharp transition upon isothermal compression/decompression at low temperature.

  10. Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A previously proposed kinetic model for the glucose/glycine Maillard reaction pathways has been validated by changing the initial pH (4.8, 5.5, 6.0, 6.8 and 7.5) of the reaction and reactant initial concentrations (1:2 and 2:1 molar ratios were compared to the 1:1 ratio). The model consists of 10

  11. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. [eds.

    1992-10-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of {sigma}(700)-meson exchange in {gamma}{gamma}{yields}{pi}{pi} processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the {gamma}{Nu}-{Delta} transition; pion photoproduction and the {gamma}{Nu}-{Delta} amplitudes; effective- lagrangians, Watson`s theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p({rvec {gamma}}, {pi}{sup o}) reaction; multipole analyses and photo-decay couplings at intermediate energies; compton scattering off the proton; connections between compton scattering and pion photoproduction in the delta region; single-pion electroproduction and the transverse one-half and scalar helicity transition form factors; relativistic effects, QCD mixing angles, and {Nu} {yields} {Nu}{gamma} and {Delta} {yields} {gamma}{Nu} transition form factors; electroproduction studies of the {Nu} {yields} {Delta} transition at bates and CEBAF.

  12. The MHD intermediate shock interaction with an intermediate wave: Are intermediate shocks physical?

    International Nuclear Information System (INIS)

    Wu, C.C.

    1988-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the authors have recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear steepening from a continuous wave. In this paper, he clarifies the differences between the conventional view and the results by studying the interaction of an MHD intermediate shock with an intermediate wave. The study reaffirms his results. In addition, the study shows that there exists a larger class of shocklike solutions in the time-dependent dissiaptive MHD equations than are given by the MHD Rankine-Hugoniot relations. it also suggests a mechanism for forming rotational discontinuities through the interaction of an intermediate shock with an intermediate wave. The results are of importance not only to the MHD shock theory but also to studies such as magnetic field reconnection models

  13. Visualizing multistep elevator-like transitions of a nucleoside transporter.

    Science.gov (United States)

    Hirschi, Marscha; Johnson, Zachary Lee; Lee, Seok-Yong

    2017-05-04

    Membrane transporters move substrates across the membrane by alternating access of their binding sites between the opposite sides of the membrane. An emerging model of this process is the elevator mechanism, in which a substrate-binding transport domain moves a large distance across the membrane. This mechanism has been characterized by a transition between two states, but the conformational path that leads to the transition is not yet known, largely because the available structural information has been limited to the two end states. Here we present crystal structures of the inward-facing, intermediate, and outward-facing states of a concentrative nucleoside transporter from Neisseria wadsworthii. Notably, we determined the structures of multiple intermediate conformations, in which the transport domain is captured halfway through its elevator motion. Our structures present a trajectory of the conformational transition in the elevator model, revealing multiple intermediate steps and state-dependent conformational changes within the transport domain that are associated with the elevator-like motion.

  14. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  15. Variational transition state theory

    International Nuclear Information System (INIS)

    Truhlar, D.G.

    1986-01-01

    This project is concerned with the development and applications of generalized transition state theory and multidimensional tunneling approximations to chemical reaction rates. They have developed and implemented several practical versions of variational transition state theory (VTST), namely canonical variational theory (CVT), improved canonical variational theory (ICVT), and microcanonical variational theory (μVT). They have also developed and implemented several accurate multidimensional semiclassical tunneling approximations, the most accurate of which are the small-curvature semiclassical adiabatic (SCSA), large-curvature version-3 (LC3), and least-action (LA) approximations. They have applied the methods to thermal rate constants, using transmission coefficients based on ground-state tunneling, and they have also presented and applied adiabatic and diabatic extensions to calculated rate constants for vibrationally excited reactants. Their general goal is to develop accurate methods for calculating chemical reaction rate constants that remain practical even for reasonably complicated molecules. The approximations mentioned above yield rate constants for systems whose potential energy surface is known or assumed. Thus a second, equally important aspect of their work is the determination or modeling, semi-empirically and/or from electronic structure calculations, of potential energy surfaces

  16. Magnetic re-entrance in intermediate valence compounds

    International Nuclear Information System (INIS)

    Allub, R.; Machiavelli, O.; Balseiro, C.; Alascio, B.

    1980-01-01

    The possibility is explored of magnetic re-entrance in intermediate valence compounds. Using a simplified Anderson-Lattice model the pressure-temperature magnetic phase diagram is obtained. This diagram shows that for some value of the microscopic parameters the temperature induced two transitions (non-magnetic to magnetically ordered to paramagnetic). The magnetization and the average occupation number of the localized state are calculated. Estimations of the observability of the effect in systems like CeAl 2 are made. (author)

  17. Enhancement of intermediate-field two-photon absorption by rationally shaped femtosecond pulses

    International Nuclear Information System (INIS)

    Chuntonov, Lev; Rybak, Leonid; Gandman, Andrey; Amitay, Zohar

    2008-01-01

    We extend the powerful frequency-domain analysis of femtosecond two-photon absorption to the intermediate-field regime of considerable absorption yields, where additionally to the weak-field nonresonant two-photon transitions also four-photon transitions play a role. Consequently, we rationally find that the absorption is enhanced over the transform-limited pulse by any shaped pulse having a spectral phase that is antisymmetric around one-half of the transition frequency and a spectrum that is asymmetric around it (red or blue detuned according to the system). The enhancement increases as the field strength increases. The theoretical results for Na are verified experimentally

  18. Computational Modelling of Thermal Stability in a Reactive Slab with Reactant Consumption

    Directory of Open Access Journals (Sweden)

    O. D. Makinde

    2012-01-01

    Full Text Available This paper investigates both the transient and the steady state of a one-step nth-order oxidation exothermic reaction in a slab of combustible material with an insulated lower surface and an isothermal upper surface, taking into consideration reactant consumption. The nonlinear partial differential equation governing the transient reaction-diffusion problem is solved numerically using a semidiscretization finite difference technique. The steady-state problem is solved using a perturbation technique together with a special type of the Hermite-Padé approximants. Graphical results are presented and discussed quantitatively with respect to various embedded parameters controlling the systems. The crucial roles played by the boundary conditions in determining the thermal ignition criticality are demonstrated.

  19. Atmospheric Oxidation Mechanism and Kinetic Studies for OH and NO3 Radical-Initiated Reaction of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Rui Gao

    2014-03-01

    Full Text Available The mechanism for OH and NO3 radical-initiated oxidation reactions of methyl methacrylate (MMA was investigated by using density functional theory (DFT molecular orbital theory. Geometrical parameters of the reactants, intermediates, transition states, and products were fully optimized at the B3LYP/6-31G(d,p level. Detailed oxidation pathways were presented and discussed. The rate constants were deduced by the canonical variational transition-state (CVT theory with the small-curvature tunneling (SCT correction and the multichannel Rice-Ramspergere-Kassele-Marcus (RRKM theory, based on the potential energy surface profiles over the general atmospheric temperature range of 180–370 K. The calculated results were in reasonable agreement with experimental measurement.

  20. Liquid-gas phase transition and isospin fractionation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Xing Yongzhong; Liu Jianye; Guo Wenjun

    2004-01-01

    The liquid-gas phase transition in the heavy ion collisions and nuclear matter has been an important topic and got achievements, such as, based on the studies by H.Q. Song et al the critical temperature of liquid-gas phase transition enhances with increasing the mass of system and reduces as the increase of the neutron proton ratio of system. As authors know that both the liquid-gas phase transition and the isospin fractionation occur in the spinodal instability region at the nuclear density below the normal nuclear density. In particular, these two dynamical processes lead to the separation of nuclear matter into the liquid phase and gas phase. In this case to compare their dynamical behaviors is interested. The authors investigate the dependence of isospin fractionation degree on the mass and neutron proton ratio of system by using the isospin dependent quantum molecular dynamics model. The authors found that the degree of isospin fractionation (N/Z) n /(N/Z) imf decreases with increasing the mass of the system. This is just similar to the enhance of the critical temperature of liquid-gas phase transition T c as the increase of system mass. Because the enhance of T c is not favorable for the liquid-gas transition taking place, which reduces the isospin fractionation process and leads to decrease of (N/Z) n /(N/Z) imf . However the degree of isospin fractionation enhances with increasing the neutron proton ratio of the system. It is just corresponding to the reduce of T c of the liquid-gas phase transition as the increase of the isospin fractionation of the system. Because the reduce of T c enhances the liquid-gas phase transition process and also prompts the isospin fractionation process leading the increase of the isospin fractionation degree. To sum up, there are very similar dynamical behaviors for the degree of isospin fractionation and the critical temperature of the liquid-gas phase transition. So dynamical properties of the liquid-gas phase transition can

  1. Predicting Upscaled Behavior of Aqueous Reactants in Heterogeneous Porous Media

    Science.gov (United States)

    Wright, E. E.; Hansen, S. K.; Bolster, D.; Richter, D. H.; Vesselinov, V. V.

    2017-12-01

    When modeling reactive transport, reaction rates are often overestimated due to the improper assumption of perfect mixing at the support scale of the transport model. In reality, fronts tend to form between participants in thermodynamically favorable reactions, leading to segregation of reactants into islands or fingers. When such a configuration arises, reactions are limited to the interface between the reactive solutes. Closure methods for estimating control-volume-effective reaction rates in terms of quantities defined at the control volume scale do not presently exist, but their development is crucial for effective field-scale modeling. We attack this problem through a combination of analytical and numerical means. Specifically, we numerically study reactive transport through an ensemble of realizations of two-dimensional heterogeneous porous media. We then employ regression analysis to calibrate an analytically-derived relationship between reaction rate and various dimensionless quantities representing conductivity-field heterogeneity and the respective strengths of diffusion, reaction and advection.

  2. L-myo-inosose-1 as a probable intermediate in the reaction catalyzed by myo-inositol oxygenase

    International Nuclear Information System (INIS)

    Naber, N.I.; Swan, J.S.; Hamilton, G.A.

    1986-01-01

    In previous investigations, it was necessary to have Fe(II) and cysteine present in order to assay the catalytic activity of purified hog kidney myo-inositol oxygenase. In the present study it was found that, if this purified nonheme iron enzyme is slowly frozen in solution with glutathione and stored at -20 degrees C, it is fully active in the absence of activators if catalase is present to remove adventitious H 2 O 2 . With this simpler assay system it was possible to clarify the effects of several variables on the enzymic reaction. Thus, the maximum velocity is pH-dependent with a maximum around pH 9.5, but the apparent Km for myo-inositol (air atmosphere) remains constant at 5.0 mM throughout a broad pH range. The enzyme is quite specific for its substrate myo-inositol, is very sensitive to oxidants and reductants, but is not affected by a variety of complexing agents, nucleotides, sulfhydryl reagents, etc. In other experiments it was found that L-myo-inosose-1, a potential intermediate in the enzymic reaction, is a potent competitive inhibitor (Ki = 62 microM), while other inososes and a solution thought to contain D-glucodialdehyde, another potential intermediate, are weak inhibitors. Also, both a kinetic deuterium isotope effect (kH/kD = 2.1) and a tritium isotope effect (kH/kT = 7.5) are observed for the enzymic reaction when [1-2H]- and [1-3H]-myo-inositol are used as reactants. These latter results are considered strong evidence that the oxygenase reaction proceeds by a pathway involving L-myo-inosose-1 as an intermediate rather than by an alternative pathway that would have D-glucodialdehyde as the intermediate

  3. Time resolved FTIR study of the catalytic CO oxidation under periodic variation of the reactant concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kritzenberger, J; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Oxidation of CO over palladium/zirconia catalyst obtained from an amorphous Pd{sub 25}Zr{sub 75} precursor was investigated by time resolved FTIR spectroscopy. Sine wave shaped modulation of the reactant concentration, i.e. variation of CO or O{sub 2} partial pressure, was used to induce variations of the IR signals of product (CO{sub 2}) and unconverted reactant (CO), which were detected in a multi-pass absorption cell. The phase shift {phi} between external perturbation and variation of the CO{sub 2} signal was examined in dependence on temperature (100{sup o}C{<=}T{<=}350{sup o}C) and modulation frequency (1.39x10{sup -4}Hz{<=}{omega}{<=}6.67x10{sup -2}Hz). From the phase shift values, a simple Eley-Rideal mechanism is excluded, and the rate limiting step of the Langmuir-Hinshelwood mechanism for the CO oxidation may be identified. Adsorption and possible surface movement of CO to the actual reaction site determine the rate of the CO oxidation on the palladium/zirconia catalyst used in our study. The introduction of an external perturbation is a first step towards the application of two-dimensional infrared spectroscopy to heterogeneous catalyzed reactions. (author) 3 figs., 4 refs.

  4. General theory of the multistage geminate reactions of the isolated pairs of reactants. II. Detailed balance and universal asymptotes of kinetics.

    Science.gov (United States)

    Kipriyanov, Alexey A; Doktorov, Alexander B

    2014-10-14

    The analysis of general (matrix) kinetic equations for the mean survival probabilities of any of the species in a sample (or mean concentrations) has been made for a wide class of the multistage geminate reactions of the isolated pairs. These kinetic equations (obtained in the frame of the kinetic approach based on the concept of "effective" particles in Paper I) take into account various possible elementary reactions (stages of a multistage reaction) excluding monomolecular, but including physical and chemical processes of the change in internal quantum states carried out with the isolated pairs of reactants (or isolated reactants). The general basic principles of total and detailed balance have been established. The behavior of the reacting system has been considered on macroscopic time scales, and the universal long-term kinetics has been determined.

  5. Solid-state photoelectrochemical H2 generation with gaseous reactants

    International Nuclear Information System (INIS)

    Iwu, Kingsley O.; Galeckas, Augustinas; Kuznetsov, Andrej Yu.; Norby, Truls

    2013-01-01

    Photocurrent and H 2 production were demonstrated in an all solid-state photoelectrochemical cell employing gaseous methanol and water vapour at the photoanode. Open circuit photovoltage of around −0.4 V and short circuit photocurrent of up to 250 μA/cm 2 were obtained. At positive bias, photocurrent generation was limited by the irradiance, i.e., the amount of photogenerated charge carriers at the anode. Time constants and impedance spectra showed an electrochemical capacitance of the cell of about 15 μF/cm 2 in the dark, which increased with increasing irradiance. With only water vapour at the anode, the short circuit photocurrent was about 6% of the value with gaseous methanol and water vapour. The photoanode and electrocatalyst on carbon paper support were affixed to the proton conducting membrane using Nafion ® as adhesive, an approach that yielded photocurrents up to 15 times better than that of a cell assembled by hot-pressing, in spite of the overall cell resistance of the latter being up to five times less than that of the former. This is attributed, at least partially, to reactants being more readily available at the photoanode of the better performing cell

  6. BANKING INTERMEDIATION AND CONSEQUENCES OF FINANCIAL CRISIS

    Directory of Open Access Journals (Sweden)

    Medar Lucian-Ion

    2012-12-01

    Full Text Available The financial intermediation of bank institutions, has an essential role in mobilising of the available funds and their distribution in various products and services, for economic growth. The extent that banking system is in distress or passing through a period of crisis, then, everything turns into a general crisis, especially that, in some states, natural and legal persons have been learned ,,to live’’ on the credits.The effectiveness of banking intermediation activity in Romania depends on how fast the market is enabled under the influence of the new European regulations. The Romanian market in all its forms is the second largest in the EU, and the banking system is almost entirely made up of banks with foreign capital. The romanian banking market has not suffered so much because of the financial crisis. To the extent that banking institutions provide the necessary funds, Romania has important resources for the transition to a new economic cycle based on sustainable development.

  7. Intermediates and the folding of proteins L and G

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Scott; Head-Gordon, Teresa

    2003-07-01

    We use a minimalist protein model, in combination with a sequence design strategy, to determine differences in primary structure for proteins L and G that are responsible for the two proteins folding through distinctly different folding mechanisms. We find that the folding of proteins L and G are consistent with a nucleation-condensation mechanism, each of which is described as helix-assisted {beta}-1 and {beta}-2 hairpin formation, respectively. We determine that the model for protein G exhibits an early intermediate that precedes the rate-limiting barrier of folding and which draws together misaligned secondary structure elements that are stabilized by hydrophobic core contacts involving the third {beta}-strand, and presages the later transition state in which the correct strand alignment of these same secondary structure elements is restored. Finally the validity of the targeted intermediate ensemble for protein G was analyzed by fitting the kinetic data to a two-step first order reversible reaction, proving that protein G folding involves an on-pathway early intermediate, and should be populated and therefore observable by experiment.

  8. Glutamate Induced Thermal Equilibrium Intermediate and Counteracting Effect on Chemical Denaturation of Proteins.

    Science.gov (United States)

    Anumalla, Bramhini; Prabhu, N Prakash

    2018-01-25

    When organisms are subjected to stress conditions, one of their adaptive responses is accumulation of small organic molecules called osmolytes. These osmolytes affect the structure and stability of the biological macromolecules including proteins. The present study examines the effect of a negatively charged amino acid osmolyte, glutamate (Glu), on two model proteins, ribonuclease A (RNase A) and α-lactalbumin (α-LA), which have positive and negative surface charges at pH 7, respectively. These proteins follow two-state unfolding transitions during both heat and chemical induced denaturation processes. The addition of Glu stabilizes the proteins against temperature and induces an early equilibrium intermediate during unfolding. The stability is found to be enthalpy-driven, and the free energy of stabilization is more for α-LA compared to RNase A. The decrease in the partial molar volume and compressibility of both of the proteins in the presence of Glu suggests that the proteins attain a more compact state through surface hydration which could provide a more stable conformation. This is also supported by molecule dynamic simulation studies which demonstrate that the water density around the proteins is increased upon the addition of Glu. Further, the intermediates could be completely destabilized by lower concentrations (∼0.5 M) of guanidinium chloride and salt. However, urea subverts the Glu-induced intermediate formed by α-LA, whereas it only slightly destabilizes in the case of RNase A which has a positive surface charge and could possess charge-charge interactions with Glu. This suggests that, apart from hydration, columbic interactions might also contribute to the stability of the intermediate. Gdm-induced denaturation of RNase A and α-LA in the absence and the presence of Glu at different temperatures was carried out. These results also show the Glu-induced stabilization of both of the proteins; however, all of the unfolding transitions followed two

  9. Effect of hyperons on nuclear phase transition

    International Nuclear Information System (INIS)

    Das, P.; Mallik, S.; Chaudhuri, G.

    2016-01-01

    Phase transition of nuclear system in heavy ion-collisions at intermediate energy has been studied well for many years and it has also been extended to strange nuclear matter. Recently, using the Canonical Thermodynamical Model (CTM), detailed work on multiplicity distribution of fragments produced from fragmentation of hypernuclear system shows the existence of phase transition or phase coexistence in strange system with Λ-hyperons. In present work we want to continue the investigation on phase transition with respect to some other thermodynamic observables like free energy, specific heat etc. in order to be confirmed about the nature of the transition

  10. Effect of reactant concentration on the structural properties of hydrothermally-grown ZnO rods on seed-layer ZnO / polyethylene terephthalate substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. I.; Shin, C. M.; Heo, J. H.; Ryu, H. [Inje University, Gimhae (Korea, Republic of); Lee, W. J. [Dong-Eui University, Busan (Korea, Republic of); Son, C. S. [Silla University, Busan (Korea, Republic of); Choi, H. [Pukyong National University, Busan (Korea, Republic of)

    2011-09-15

    The morphology and the structural properties were studied for zinc-oxide (ZnO) rods hydrothermally grown on seed-layer ZnO/polyethylene terephthalate (PET) substrates at various reactant concentrations. Dissolved solutions with de-ionized water, zinc nitrate hexahydrate (Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O, ZNH) and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}, HMT) were employed as reactants for hydrothermal growth of ZnO. The transparency of the mixtures (ZNH+HMT) with increasing reactant concentration from 0.025 to 0.25 M changed from transparent to translucent to opaque (white colors) due to Zn(OH){sub 2} precipitates. When the concentration was increased, the density of the ZnO rods increased, and the morphology of the ZnO rods changed from a hexagonal flat-end shape to a sharp-end or flake-like structure. The sharp-end rods with increasing concentration from 0.1 to 0.15 M resulted from the etching process at a lower pH condition (less than pH 6) after the ZnO rod growth, and the flake-like structure was due to a high growth rate. The ZnO seed layer might have improved the alignment of ZnO rods and made a high density of ZnO rods. In addition, the structural properties were improved at lower concentrations by inserting a seed layer.

  11. Post-perovskite transitions in CaB4+O3 at high pressure

    International Nuclear Information System (INIS)

    Akaogi, M; Shirako, Y; Kojitani, H; Takamori, S; Yamaura, K; Takayama-Muromachi, E

    2010-01-01

    High-pressure phase transitions in CaRhO 3 were examined using a multianvil apparatus up to 27 GPa and 1930 o C. CaRhO 3 perovskite transforms to post-perovskite via a monoclinic intermediate phase with increasing pressure. Volume changes for the transitions of perovskite - intermediate phase and of intermediate phase - post-perovskite are -1.1 and -0.7 %, respectively. CaRhO 3 post-perovskite is the fourth quenchable post-perovskite oxide found so far. By high-temperature calorimetric experiments, enthalpy of the perovskite - post-perovskite transition in CaRuO 3 was measured as 15.2±3.3 kJ/mol. Combining the datum with those of CaIrO 3 , it is shown that CaIrO 3 perovskite is energetically less stable than CaRuO 3 perovskite. This is consistent with the fact that orthorhombic distortion of CaIrO 3 perovskite is larger than CaRuO 3 , as indicated with the tilt-angle of octahedral framework of perovskite structure. The transition pressure from perovskite to post-perovskite in CaBO 3 (B = Ru, Rh, Ir) increases almost linearly with decreasing the tilt-angle, suggesting that the perovskite - post-perovskite transition may result from instability of the perovskite structure with pressure.

  12. Targeted Molecular Dynamics to determine Focal Adhesion Targeting Domain Folding Intermediates

    Directory of Open Access Journals (Sweden)

    Pallavi Mohanty

    2017-10-01

    Full Text Available The Focal adhesion kinase (FAT domain of Focal Adhesion Kinase is a four helical bundle known for conformational plasticity. FAT adopts two distinctly different conformations i.e., close (cFAT and arm-exchanged (aeFAT states under native conditions [1]. The slow transition from cFAT to aeFAT is likely to proceed through an open intermediate state that allows YENV motif to attain β-turn conformation and phosphorylation of Y925 by Src kinases [2]. The two end states of FAT are known to interact with Paxillin and are responsible for maintaining steady state in Heart while intermediate conformation interacts with Grb2-SH2 leading to Pathological Cardiac Hypertrophy (PAH [2]. 10ns Targeted Molecular Dynamics (TMD was done between c- and aeFAT in order to explore the conformational transition and to capture pathologically relevant oFAT. Cluster and dynamic cross correlation analysis (DCCA of TMD generated trajectory was done and the selected FAT intermediate was docked with Grb2-SH2 using HADDOCK v2.2 docking followed by molecular dynamics. Conservation analysis of FAT-Grb2 binding site was done using CONSURF [3]. A Pharmacophore FAT-Grb2 complex was generated using SPARKv1.2 and submitted for Virtual screening using BLAZE v4. Drug likeliness and ADMET properties were calculated using MOLINSPIRATION tool. TMD reveals six clusters and DCCA showed positively and negatively correlated region along the transition pathway. Intermediates with competence for Grb2 interaction were docked with Grb2 and best binding complex was further refined. MMPBSA binding energy calculations revealed the best binding pose where the phosphorylated YENV motif of Human FAT interacted with a charged and hydrophobic pocket of Grb2. The conservation analysis showed that the charged pocket was more conserved in comparison with the hydrophobic pocket, hence providing useful insights on binding and specificity determining residues in Grb2. Virtual screening using the pharmacophore

  13. Evaluation of the effect of reactant gases mass flow rates on power density in a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kahveci, E. E.; Taymaz, I.

    2018-03-01

    In this study it was experimentally investigated the effect of mass flow rates of reactant gases which is one of the most important operational parameters of polymer electrolyte membrane (PEM) fuel cell on power density. The channel type is serpentine and single PEM fuel cell has an active area of 25 cm2. Design-Expert 8.0 (trial version) was used with four variables to investigate the effect of variables on the response using. Cell temperature, hydrogen mass flow rate, oxygen mass flow rate and humidification temperature were selected as independent variables. In addition, the power density was used as response to determine the combined effects of these variables. It was kept constant cell and humidification temperatures while changing mass flow rates of reactant gases. From the results an increase occurred in power density with increasing the hydrogen flow rates. But oxygen flow rate does not have a significant effect on power density within determined mass flow rates.

  14. Photofragment imaging study of the CH2CCH2OH radical intermediate of the OH+allene reaction

    International Nuclear Information System (INIS)

    Raman, Arjun S.; Justine Bell, M.; Lau, K.-C.; Butler, Laurie J.

    2007-01-01

    These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH 2 CCH 2 OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH 2 CCH 2 OH photofragments, a spin-orbit branching ratio for Cl( 2 P 1/2 ):Cl( 2 P 3/2 ) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH 2 CCH 2 OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH 2 CCH 2 OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C 2 H 3 , H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH 3 product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates

  15. Photofragment imaging study of the CH2CCH2OH radical intermediate of the OH +allene reaction

    Science.gov (United States)

    Raman, Arjun S.; Justine Bell, M.; Lau, Kai-Chung; Butler, Laurie J.

    2007-10-01

    These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH2CCH2OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl +CH2CCH2OH photofragments, a spin-orbit branching ratio for Cl(P1/22):Cl(P3/22) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH2CCH2OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH2CCH2OH radical intermediate to the three most important product channels for the OH +allene reaction expected from this radical intermediate: formaldehyde+C2H3, H +acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH3 product channel. We compare our results to a previous theoretical study of the O +allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.

  16. Polarization control of multi-photon absorption under intermediate femtosecond laser field

    International Nuclear Information System (INIS)

    Cheng Wenjing; Liang Guo; Wu Ping; Liu Pei; Jia Tianqing; Sun Zhenrong; Zhang Shian

    2017-01-01

    It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light–matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization. (paper)

  17. Optimal design of the cable metro with unified intermediate supports

    Directory of Open Access Journals (Sweden)

    Lagerev A.V.

    2017-12-01

    slope of the surface relief also has discrete-step type. The transition to a larger height unified intermediate supports determines the need for installation of supports with a large pitch. Its value then begins to decrease monotonically with further increase of the angle of the longitudinal slope of the surface relief until it needs to transition to the new size of supports. Synchronous change in the optimal values of the height and step of the installation of intermediate supports, depending on the angle of the longitudinal slope of the sur-face relief leads to the fact that the optimal cost characteristics of the cable metro lines are smooth functions. It has an extreme character with a minimum at angles of inclination of the surface elevation ~5 degrees, which is associated with the form of sagging of the load-bearing ropes. Unification of intermediate supports has little effect on the optimal cost characteristics of the cable metro lines. Even for a sufficiently large step of the unification the largest difference in op-timal value is almost insignificant: it lies in the range of 2...3%, increasing with increasing the angle of the longitudinal slope of the surface relief and unit cost of the intermediate support. Unification of intermediate supports according to the height and their step practically does not affect the optimal value for horizontal tension on the load-bearing ropes. It determined mainly by the angle of the longitudinal slope of the surface relief. Deviation of horizontal tension on the load-bearing ropes for the nonstandard supports and the unified supports within the range of angles of inclination of the terrain surface 0...60 degrees is not more than 0.5 to 0.8 %.

  18. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  19. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    International Nuclear Information System (INIS)

    Bezerra, Anibal T; Studart, Nelson

    2017-01-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p – i–n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell. (paper)

  20. Lifetime enhancement for multiphoton absorption in intermediate band solar cells

    Science.gov (United States)

    Bezerra, Anibal T.; Studart, Nelson

    2017-08-01

    A semiconductor structure consisting of two coupled quantum wells embedded into the intrinsic region of a p-i-n junction is proposed as an intermediate band solar cell with a photon ratchet state, which would lead to increasing the cell efficiency. The conduction subband of the right-hand side quantum well works as the intermediated band, whereas the excited conduction subband of the left-hand side quantum well operates as the ratchet state. The photoelectrons in the intermediate band are scattered through the thin wells barrier and accumulated into the ratchet subband. A rate equation model for describing the charge transport properties is presented. The efficiency of the current generation is analyzed by studying the occupation of the wells subbands, taking into account the charge dynamic behavior provided by the electrical contacts connected to the cell. The current generation efficiency depends essentially from the relations between the generation, recombination rates and the scattering rate to the ratchet state. The inclusion of the ratchet states led to both an increase and a decrease in the cell current depending on the transition rates. This suggests that the coupling between the intermediate band and the ratchet state is a key point in developing an efficient solar cell.

  1. Theoretical study of the Wittig reaction of cyclic ketones with phosphorus ylide.

    Science.gov (United States)

    Jarwal, Nisha; Thankachan, Pompozhi Protasis

    2015-04-01

    The Wittig reaction of cyclopropanone, cyclobutanone and cyclopentanone with phosphorus ylide (Me3P = CH2) in gas phase was investigated computationally at B3LYP/6-31G** level of theory. In the Wittig reaction of cyclic ketones, two transition states (TS1 and TS2), corresponding to formation and decomposition of oxaphosphetane (OP) were located and investigated. Two loosely bound intermediates, a reactant complex (RC) and a product complex (PC) were also found. In the reaction of cyclopropanone, cyclobutanone and cyclopentanone, two oxaphosphetanes (OP1 and OP2) were predicted. OP1 initially formed was converted into OP2 by pseudorotation. In contrast to the reactions with cyclobutanone and cyclopentanone, an early TS1 was found in the reaction of cyclopropanone. The order of first activation energy barrier relative to reactant total energy was found to be cyclopropanone (-4.97 kcal mol(-1)) < cyclobutanone (0.30 kcal mol(-1)) < cyclopentanone (3.60 kcal mol(-1)).

  2. The investigation of order–disorder transition process of ZSM-5 induced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Wang, Lianjun, E-mail: wanglj@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Jiang, Wan [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Lin, He, E-mail: linhe@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong, Shanghai 200120 (China)

    2014-04-01

    Based on the amorphization of zeolites, an order–disorder transition method was used to prepare silica glass via Spark Plasma Sintering (SPS). In order to get a better understanding about the mechanism of amorphization induced by SPS, the intermediate products in this process were prepared and characterized by different characterization techniques. X-ray diffraction and High-energy synchrotron X-ray scattering show a gradual transformation from ordered crystal to glass. Local structural changes in glass network including Si–O bond length, O–Si–O bond angle, size of rings, coordination were detected by Infrared spectroscopy and {sup 29}Si magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Topologically ordered, amorphous material with a different intermediate-range structure can be obtained by precise control of intermediate process which can be expected to optimize and design material. - Graphical abstract: Low-density, ordered zeolites collapse to the rigid amorphous glass through spark plasma sintering. The intermediate-range structure formed in the process of order–disorder transition may give rise to specific property. - Highlights: • Order–disorder transition process of ZSM-5 induced by spark plasma sintering was investigated using several methods including XRD, High-energy synchrotron X-ray scattering, SAXS, IR, NMR, ect. • Order–disorder transition induced by SPS was compared with TIA and PIA. • Three stages has been divided during the whole process. • The collapse temperature range which may give rise to intermediate-range structure has been located.

  3. Freeze-quench (57)Fe-Mössbauer spectroscopy: trapping reactive intermediates.

    Science.gov (United States)

    Krebs, Carsten; Bollinger, J Martin

    2009-01-01

    (57)Fe-Mössbauer spectroscopy is a method that probes transitions between the nuclear ground state (I=1/2) and the first nuclear excited state (I=3/2). This technique provides detailed information about the chemical environment and electronic structure of iron. Therefore, it has played an important role in studies of the numerous iron-containing proteins and enzymes. In conjunction with the freeze-quench method, (57)Fe-Mössbauer spectroscopy allows for monitoring changes of the iron site(s) during a biochemical reaction. This approach is particularly powerful for detection and characterization of reactive intermediates. Comparison of experimentally determined Mössbauer parameters to those predicted by density functional theory for hypothetical model structures can then provide detailed insight into the structures of reactive intermediates. We have recently used this methodology to study the reactions of various mononuclear non-heme-iron enzymes by trapping and characterizing several Fe(IV)-oxo reaction intermediates. In this article, we summarize these findings and demonstrate the potential of the method. © Springer Science+Business Media B.V. 2009

  4. Brillouin spectroscopy with surface acoustic waves on intermediate valent, doped SmS

    International Nuclear Information System (INIS)

    Schaerer, U.; Jung, A.; Wachter, P.

    1998-01-01

    Brillouin scattering on surface acoustic waves is a very powerful tool to determine the elastic constants of intermediate valent crystals, since the method is non-destructive and no mechanical contact is needed. A strong evidence for intermediate valence is a negative value of Poisson's ratio, which describes the behavior of the volume under uniaxial pressure. SmS by itself makes a semiconductor-metal transition at a pressure of more than 6.5 kbar. When substituting the divalent Sm by a trivalent cation, like Y, La or Tm, SmS can become - depending on the doping concentration - intermediate valent without any applied, external pressure. In this work, we will present measurements of the velocities of the surface acoustic waves and the calculation of the elastic constants of La- and Tm-doped SmS compounds. We found a clear dependence of Poisson's ratio on the doping concentration and on the valence of the materials. Furthermore, we will discuss the mechanism leading to intermediate valence when substituting Sm. Besides the internal, chemical pressure, which is produced by the built in trivalent cations with their smaller ionic radii, we have clear evidence, that the free electrons in the 5d band, induced by the substituting atoms, also play an important role in making doped SmS intermediate valent. (orig.)

  5. EVIDENCE OF LIGHT-BENDING EFFECTS AND ITS IMPLICATION FOR SPECTRAL STATE TRANSITIONS

    International Nuclear Information System (INIS)

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Fabian, A. C.; Walton, D. J.; Steiner, J. F.; Cackett, E.

    2013-01-01

    It has long been speculated that the nature of the hard X-ray corona may be an important second driver of black hole state transitions, in addition to the mass accretion rate through the disk. However, a clear physical picture of coronal changes has not yet emerged. We present results from a systematic analysis of Rossi X-Ray Timing Explorer observations of the stellar-mass black hole binary XTE J1650-500. All spectra with significant hard X-ray detections were fit using a self-consistent, relativistically blurred disk reflection model suited to high ionization regimes. Importantly, we find evidence that both the spectral and timing properties of black hole states may be partially driven by the height of the X-ray corona above the disk, and related changes in how gravitational light bending affects the corona-disk interaction. Specifically, the evolution of the power-law, thermal disk, and relativistically convolved reflection components in our spectral analysis indicates that: (1) the disk inner radius remains constant at r in =1.65 ± 0.08 GM/c 2 (consistent with values found for the ISCO of XTE J1650-500 in other works) throughout the transition from the brighter phases of the low-hard state to the intermediate states (both the hard-intermediate and soft-intermediate), through to the soft state and back; (2) the ratio between the observed reflected X-ray flux and power-law continuum (the 'reflection fraction', R) increases sharply at the transition between the hard-intermediate and soft-intermediate states ('ballistic' jets are sometimes launched at this transition); (3) both the frequency and coherence of the high-frequency quasi-periodic oscillations observed in XTE J1650-500 increase with R. We discuss our results in terms of black hole states and the nature of black hole accretion flows across the mass scale.

  6. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    Science.gov (United States)

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  7. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    Science.gov (United States)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  8. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Carraher, Jack McCaslin [Iowa State Univ., Ames, IA (United States)

    2014-01-01

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding ‘greener’ sources of commodity chemicals and fuels.

  9. Measurement and reactive burn modeling of the shock to detonation transition for the HMX based explosive LX-14

    Science.gov (United States)

    Jones, J. D.; Ma, Xia; Clements, B. E.; Gibson, L. L.; Gustavsen, R. L.

    2017-06-01

    Gas-gun driven plate-impact techniques were used to study the shock to detonation transition in LX-14 (95.5 weight % HMX, 4.5 weight % estane binder). The transition was recorded using embedded electromagnetic particle velocity gauges. Initial shock pressures, P, ranged from 2.5 to 8 GPa and the resulting distances to detonation, xD, were in the range 1.9 to 14 mm. Numerical simulations using the SURF reactive burn scheme coupled with a linear US -up / Mie-Grueneisen equation of state for the reactant and a JWL equation of state for the products, match the experimental data well. Comparison of simulation with experiment as well as the ``best fit'' parameter set for the simulations is presented.

  10. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite.

    Science.gov (United States)

    Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens

    2016-03-07

    Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.

  11. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    Science.gov (United States)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  12. Intermediate treatments

    Science.gov (United States)

    John R. Jones; Wayne D. Shepperd

    1985-01-01

    Intermediate treatments are those applied after a new stand is successfully established and before the final harvest. These include not only intermediate cuttings - primarily thinning - but also fertilization, irrigation, and protection of the stand from damaging agents.

  13. Prediction of isotope effects for anticipated intermediate structures in the course of bacterial denitrification

    International Nuclear Information System (INIS)

    Morgenstern, M.A.; Schowen, R.L.

    1989-01-01

    Vibrational-analysis methods have been used to estimate the equilibrium 14 N/ 15 N isotope effects to be expected for conversion of nitrite anion to thirteen possible intermediate-state and product-state structures [HONO, NO + , NO, NO - , FeNO, ON * NO 2 , O * NNO 2 , O 2 NNO 2 , ONO * N, O * NON, ONNO, * NNO, N * NO] in the reduction of nitrite ion to nitrous oxide denitrifying bacteria. The results, taken in combination with previous experimental isotope-effect and tracer studies of the Pseudomonas stutzeri and related systems, are consistent with a suggestion that a second nitrite anion enters the enzyme-catalytic cycle at the stage of a nitrosyl-ion intermediate but re-emerges after entry of the reducing electrons; the product nitrous oxide is then formed by disproportionation of enzymically generated hyponitrous acid. The calculations are consistent with contributions, under different experimental conditions, of several different transition states to limiting the rate of the enzymic reaction. These transition states (and the corresponding experimental conditions) are the transition states for N-O fission in the generation of a mononitrogen electrophilic species from nitrite anion (high reductant, high nitrite concentrations), for attack of nitrite on this electrophile (high reductant, low nitrite concentrations) and for electron transfer to a dinitrogen-trioxide-like species (low reductant concentration). (orig.)

  14. Photocatalytic mineralization of codeine by UV-A/TiO{sub 2}—Kinetics, intermediates, and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Chin-Sheng [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Lin, Cheng-Fang, E-mail: cflin@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Hong, Pui-Kwan Andy [Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112 (United States)

    2016-01-15

    Highlights: • Codeine was completely removed in 30 min under irradiated UV-A/TiO{sub 2}. • Codeine was mineralized in 90 min with near complete N conversion to NH{sub 4}{sup +} and NO{sub 3}{sup −}. • Morphine was authenticated and four others were identified as intermediates. • Degradation proceeded via ipso-substitution and hydroxylation of the aromatic ring. - Abstract: This study investigated the photocatalytic degradation of codeine by UV-irradiated TiO{sub 2}. The degradation kinetics was determined under varied conditions including the TiO{sub 2} loading, codeine concentration, and pH. Codeine and several reaction intermediates including morphine were identified and tracked during degradation using HPLC/MS–MS technique, along with TOC and IC measurements. Specifically, removal of 100 μg/L of spike codeine was complete in 3 min by contact with a 0.1 g/L suspension of TiO{sub 2} under UV irradiation at pH 7. The degradation kinetics of codeine was first-order with respect to both the catalyst TiO{sub 2} and the reactant codeine, with enhanced reaction rates with increasing pH up to pH 9. Mineralization of codeine was possible upon prolonged contact; near complete mineralization of 10 mg/L of codeine was achieved in 90 min with 0.1 g/L TiO{sub 2} under irradiation at pH 5, during which the organic nitrogen was converted to NH{sub 3}-N (74%) and NO{sub 3}-N (22%). Based on the identified intermediates, two degradation pathways were proposed of which one involved ipso-substitution followed by cleavage of the aromatic ring and another involved repeated hydroxylation of the codeine molecule followed by its fragmentation.

  15. Regular-chaos transition of the energy spectrum and electromagnetic transition intensities in 44V nucleus using the framework of the nuclear shell model

    International Nuclear Information System (INIS)

    Hamoudi, A.K.; Abdul Majeed Al-Rahmani, A.

    2012-01-01

    The spectral fluctuations and the statistics of electromagnetic transition intensities and electromagnetic moments in 44 V nucleus are studied by the framework of the interacting shell model, using the FPD6 as a realistic effective interaction in the isospin formalism for 4 particles move in the fp-model space with a 40 Ca core. To look for a regular-chaos transition in 44 V nucleus, we perform shell model calculations using various interaction strengths β to the off-diagonal matrix elements of the FPD6. The nearest-neighbors level spacing distribution P(s) and the distribution of electromagnetic transition intensities [such as, B(M1) and B(E2) transitions] are found to have a regular dynamic at β=0, a chaotic dynamic at β⩾0.3 and an intermediate situation at 0 3 statistic we have found a regular dynamic at β=0, a chaotic dynamic at β⩾0.4 and an intermediate situation at 0<β<0.4. It is also found that the statistics of the squares of M1 and E2 moments, which are consistent with a Porter-Thomas distribution, have no dependence on the interaction strength β.

  16. Bridge mediated two-electron transfer reactions: Analysis of stepwise and concerted pathways

    International Nuclear Information System (INIS)

    Petrov, E.G.; May, V.

    2004-01-01

    A theory of nonadiabatic donor (D)-acceptor (A) two-electron transfer (TET) mediated by a single regular bridge (B) is developed. The presence of different intermediate two-electron states connecting the reactant state D -- BA with the product state DBA -- results in complex multiexponential kinetics. The conditions are discussed at which a reduction to two-exponential as well as single-exponential kinetics becomes possible. For the latter case the rate K TET is calculated, which describes the bridge-mediated reaction as an effective two-electron D-A transfer. In the limit of small populations of the intermediate TET states D - B - A, DB -- A, D - BA - , and DB - A - , K TET is obtained as a sum of the rates K TET (step) and K TET (sup) . The first rate describes stepwise TET originated by transitions of a single electron. It starts at D -- BA and reaches DBA -- via the intermediate state D - BA - . These transitions cover contributions from sequential as well as superexchange reactions all including reduced bridge states. In contrast, a specific two-electron superexchange mechanism from D -- BA to DBA -- defines K TET (sup) . An analytic dependence of K TET (step) and K TET (sup) on the number of bridging units is presented and different regimes of D-A TET are studied

  17. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    Science.gov (United States)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  18. Chemically activated formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones.

    Science.gov (United States)

    Jalan, Amrit; Allen, Joshua W; Green, William H

    2013-10-21

    Reactions of the Criegee intermediate (CI, ˙CH2OO˙) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between ˙CH2OO˙ and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48-51 kcal mol(-1) lower in energy, formed via 1,3-cycloaddition of ˙CH2OO˙ across the C=O bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O-O bond to form hydroxyalkyl esters. These hydroxyalkyl esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.

  19. Normal mode-guided transition pathway generation in proteins.

    Directory of Open Access Journals (Sweden)

    Byung Ho Lee

    Full Text Available The biological function of proteins is closely related to its structural motion. For instance, structurally misfolded proteins do not function properly. Although we are able to experimentally obtain structural information on proteins, it is still challenging to capture their dynamics, such as transition processes. Therefore, we need a simulation method to predict the transition pathways of a protein in order to understand and study large functional deformations. Here, we present a new simulation method called normal mode-guided elastic network interpolation (NGENI that performs normal modes analysis iteratively to predict transition pathways of proteins. To be more specific, NGENI obtains displacement vectors that determine intermediate structures by interpolating the distance between two end-point conformations, similar to a morphing method called elastic network interpolation. However, the displacement vector is regarded as a linear combination of the normal mode vectors of each intermediate structure, in order to enhance the physical sense of the proposed pathways. As a result, we can generate more reasonable transition pathways geometrically and thermodynamically. By using not only all normal modes, but also in part using only the lowest normal modes, NGENI can still generate reasonable pathways for large deformations in proteins. This study shows that global protein transitions are dominated by collective motion, which means that a few lowest normal modes play an important role in this process. NGENI has considerable merit in terms of computational cost because it is possible to generate transition pathways by partial degrees of freedom, while conventional methods are not capable of this.

  20. Replacing Chlorine with Hydrogen Chloride as a Possible Reactant for Synthesis of Titanium Carbide Derived Carbon Powders for High-Technology Devices

    International Nuclear Information System (INIS)

    Tallo, Indrek; Thomberg, Thomas; Jänes, Alar; Lust, Enn

    2013-01-01

    Micro- and mesoporous carbide-derived carbons were synthesized from titanium carbide (TiC) powder via gas phase reaction by using different reactants (Cl 2 and HCl) within the temperature range from 700 to 1100 °C. Analysis of XRD results show that TiC-derived carbons (TiC-CDC) consist mainly of graphitic crystallites. The first-order Raman spectra showed the graphite-like absorption peaks at ∼1577 cm 1 and the disorder-induced peaks at ∼1338 cm- 1 . The energy-related properties of supercapacitors based on 1 M (C 2 H 5 ) 3 CH 3 NBF 4 in acetonitrile and carbide-derived carbons (TiC-CDC (Cl 2 ) and TiC-CDC (HCl)) as electrode materials were also investigated using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge and constant power methods. The Ragone plots for carbide-derived carbons prepared by using different reactants (Cl 2 , HCl) are quite similar and at high power loads TiC-CDC (Cl 2 ) material synthesized at 900 °C, i.e. materials with optimal porous structure, deliver higher power at constant energy

  1. Transition Metal-Free Selective Double sp(3) C-H Oxidation of Cyclic Amines to 3-Alkoxyamine Lactams.

    Science.gov (United States)

    Osorio-Nieto, Urbano; Chamorro-Arenas, Delfino; Quintero, Leticia; Höpfl, Herbert; Sartillo-Piscil, Fernando

    2016-09-16

    The first chemical method for selective dual sp(3) C-H functionalization at the alpha-and beta positions of cyclic amines to their corresponding 3-alkoxyamine lactams is reported. Unlike traditional Cα-H oxidation of amines to amides mediated by transition metals, the present protocol, which involves the use of NaClO2/TEMPO/NaClO in either aqueous or organic solvent, not only allows the Cα-H oxidation but also the subsequent functionalization of the unreactive β-methylene group in an unprecedented tandem fashion and using environmentally friendly reactants.

  2. Stepwise expansion of the bacteriophage ϕ6 procapsid: possible packaging intermediates.

    Science.gov (United States)

    Nemecek, Daniel; Cheng, Naiqian; Qiao, Jian; Mindich, Leonard; Steven, Alasdair C; Heymann, J Bernard

    2011-11-25

    The initial assembly product of bacteriophage ϕ6, the procapsid, undergoes major structural transformation during the sequential packaging of its three segments of single-stranded RNA. The procapsid, a compact icosahedrally symmetric particle with deeply recessed vertices, expands to the spherical mature capsid, increasing the volume available to accommodate the genome by 2.5-fold. It has been proposed that expansion and packaging are linked, with each stage in expansion presenting a binding site for a particular RNA segment. To investigate procapsid transformability, we induced expansion by acidification, heating, and elevated salt concentration. Cryo-electron microscopy reconstructions after all three treatments yielded the same partially expanded particle. Analysis by cryo-electron tomography showed that all vertices of a given capsid were either in a compact or an expanded state, indicating a highly cooperative transition. To benchmark the mature capsid, we analyzed filled (in vivo packaged) capsids. When these particles were induced to release their RNA, they reverted to the same intermediate state as expanded procapsids (intermediate 1) or to a second, further expanded state (intermediate 2). This partial reversibility of expansion suggests that the mature spherical capsid conformation is obtained only when sufficient outward pressure is exerted by packaged RNA. The observation of two intermediates is consistent with the proposed three-step packaging process. The model is further supported by the observation that a mutant capable of packaging the second RNA segment without previously packaging the first segment has enhanced susceptibility for switching spontaneously from the procapsid to the first intermediate state. Published by Elsevier Ltd.

  3. Transverse acoustic phonon anomalies at intermediate wave vectors in MgV2O4

    Science.gov (United States)

    Weber, T.; Roessli, B.; Stock, C.; Keller, T.; Schmalzl, K.; Bourdarot, F.; Georgii, R.; Ewings, R. A.; Perry, R. S.; Böni, P.

    2017-11-01

    Magnetic spinels (with chemical formula A X2O4 , with X a 3 d transition metal ion) that also have an orbital degeneracy are Jahn-Teller active and hence possess a coupling between spin and lattice degrees of freedom. At high temperatures, MgV2O4 is a cubic spinel based on V3 + ions with a spin S =1 and a triply degenerate orbital ground state. A structural transition occurs at TOO=63 K to an orbitally ordered phase with a tetragonal unit cell followed by an antiferromagnetic transition of TN=42 K on cooling. We apply neutron spectroscopy in single crystals of MgV2O4 to show an anomaly for intermediate wave vectors at TOO associated with the acoustic phonon sensitive to the shear elastic modulus (C11-C12)/2 . On warming, the shear mode softens for momentum transfers near close to half the Brillouin zone boundary, but recovers near the zone center. High resolution spin-echo measurements further illustrate a temporal broadening with increased temperature over this intermediate range of wave vectors, indicative of a reduction in phonon lifetime. A subtle shift in phonon frequencies over the same range of momentum transfers is observed with magnetic fields. We discuss this acoustic anomaly in context of coupling to orbital and charge fluctuations.

  4. Role of Chemical Reactivity and Transition State Modeling for Virtual Screening.

    Science.gov (United States)

    Karthikeyan, Muthukumarasamy; Vyas, Renu; Tambe, Sanjeev S; Radhamohan, Deepthi; Kulkarni, Bhaskar D

    2015-01-01

    Every drug discovery research program involves synthesis of a novel and potential drug molecule utilizing atom efficient, economical and environment friendly synthetic strategies. The current work focuses on the role of the reactivity based fingerprints of compounds as filters for virtual screening using a tool ChemScore. A reactant-like (RLS) and a product- like (PLS) score can be predicted for a given compound using the binary fingerprints derived from the numerous known organic reactions which capture the molecule-molecule interactions in the form of addition, substitution, rearrangement, elimination and isomerization reactions. The reaction fingerprints were applied to large databases in biology and chemistry, namely ChEMBL, KEGG, HMDB, DSSTox, and the Drug Bank database. A large network of 1113 synthetic reactions was constructed to visualize and ascertain the reactant product mappings in the chemical reaction space. The cumulative reaction fingerprints were computed for 4000 molecules belonging to 29 therapeutic classes of compounds, and these were found capable of discriminating between the cognition disorder related and anti-allergy compounds with reasonable accuracy of 75% and AUC 0.8. In this study, the transition state based fingerprints were also developed and used effectively for virtual screening in drug related databases. The methodology presented here provides an efficient handle for the rapid scoring of molecular libraries for virtual screening.

  5. Exploration of the Singlet O2 Oxidation of 8-Oxoguanine by Guided-Ion Beam Scattering and Density Functional Theory: Changes of Reaction Intermediates, Energetics, and Kinetics upon Protonation/Deprotonation and Hydration.

    Science.gov (United States)

    Sun, Yan; Lu, Wenchao; Liu, Jianbo

    2017-02-09

    8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is one of the most common DNA lesions resulting from reactive oxygen species and ionizing radiation, and is involved in mutagenesis, carcinogenesis, and cell death. Notably, 8-oxodGuo is more reactive toward singlet (a 1 Δ g ) O 2 than the undamaged guanosine, and the lesions arising from the secondary oxidation of 8-oxodGuo are more mutagenic. Herein the 1 O 2 oxidation of free base 8-oxoguanine (8-oxoG) was investigated at different initial conditions including protonated [8-oxoG + H] + , deprotonated [8-oxoG - H] - , and their monohydrates. Experiment was carried out on a guided-ion beam scattering tandem mass spectrometer. Measurements include the effects of collision energy (E col ) on reaction cross sections over a center-of-mass E col range from 0.1 to 0.5 eV. The aim of this study is to quantitatively probe the sensitivity of the early stage of 8-oxoG oxidation to ionization and hydration. Density functional theory and Rice-Ramsperger-Kassel-Marcus calculations were performed to identify the intermediates and the products along reaction pathways and locate accessible reaction potential energy surfaces, and to rationalize reaction outcomes from energetic and kinetic points of view. No product was observed for the reaction of [8-oxoG + H] + ·W 0,1 (W = H 2 O) because insurmountable barriers block the addition of 1 O 2 to reactant ions. Neither was [8-oxoG - H] - reactive with 1 O 2 , in this case due to the rapid decay of transient intermediates to starting reactants. However, the nonreactivity of [8-oxoG - H] - was inverted by hydration; as a result, 4,5-dioxetane of [8-oxoG - H] - was captured as the main oxidation product. Reaction cross section for [8-oxoG - H] - ·W + 1 O 2 decreases with increasing E col and becomes negligible above 0.3 eV, indicating that the reaction is exothermic and has no barriers above reactants. The contrasting oxidation behaviors of [8-oxoG + H] + ·W 0,1 and [8-oxoG - H] - ·W 0

  6. Partial inertia induces additional phase transition in the majority vote model.

    Science.gov (United States)

    Harunari, Pedro E; de Oliveira, M M; Fiore, C E

    2017-10-01

    Explosive (i.e., discontinuous) transitions have aroused great interest by manifesting in distinct systems, such as synchronization in coupled oscillators, percolation regime, absorbing phase transitions, and more recently, the majority-vote model with inertia. In the latter, the model rules are slightly modified by the inclusion of a term depending on the local spin (an inertial term). In such a case, Chen et al. [Phys Rev. E 95, 042304 (2017)2470-004510.1103/PhysRevE.95.042304] have found that relevant inertia changes the nature of the phase transition in complex networks, from continuous to discontinuous. Here we give a further step by embedding inertia only in vertices with degree larger than a threshold value 〈k〉k^{*}, 〈k〉 being the mean system degree and k^{*} the fraction restriction. Our results, from mean-field analysis and extensive numerical simulations, reveal that an explosive transition is presented in both homogeneous and heterogeneous structures for small and intermediate k^{*}'s. Otherwise, a large restriction can sustain a discontinuous transition only in the heterogeneous case. This shares some similarities with recent results for the Kuramoto model [Phys. Rev. E 91, 022818 (2015)PLEEE81539-375510.1103/PhysRevE.91.022818]. Surprisingly, intermediate restriction and large inertia are responsible for the emergence of an extra phase, in which the system is partially synchronized and the classification of phase transition depends on the inertia and the lattice topology. In this case, the system exhibits two phase transitions.

  7. Rhodium(I)-catalyzed cyclization of allenynes with a carbonyl group through unusual insertion of a C-O bond into a rhodacycle intermediate.

    Science.gov (United States)

    Oonishi, Yoshihiro; Yokoe, Takayuki; Hosotani, Akihito; Sato, Yoshihiro

    2014-01-20

    Rhodium(I)-catalyzed cyclization of allenynes with a tethered carbonyl group was investigated. An unusual insertion of a CO bond into the C(sp(2) )-rhodium bond of a rhodacycle intermediate occurs via a highly strained transition state. Direct reductive elimination from the obtained rhodacyle intermediate proceeds to give a tricyclic product containing an 8-oxabicyclo[3.2.1]octane skeleton, while β-hydride elimination from the same intermediate gives products that contain fused five- and seven-membered rings in high yields. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.

    2015-04-02

    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  9. A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures with Turbulent Velocity and Temperature Fluctuations

    KAUST Repository

    Im, Hong G.; Pal, Pinaki; Wooldridge, Margaret S.; Mansfield, Andrew B.

    2015-01-01

    A theoretical scaling analysis is conducted to propose a diagram to predict weak and strong ignition regimes for a compositionally homogeneous reactant mixture with turbulent velocity and temperature fluctuations. The diagram provides guidance on expected ignition behavior based on the thermo-chemical properties of the mixture and the flow/scalar field conditions. The analysis is an extension of the original Zeldovich’s analysis by combining the turbulent flow and scalar characteristics in terms of the characteristic Damköhler and Reynolds numbers of the system, thereby providing unified and comprehensive understanding of the physical and chemical mechanisms controlling ignition characteristics. Estimated parameters for existing experimental measurements in a rapid compression facility show that the regime diagram predicts the observed ignition characteristics with good fidelity.

  10. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  11. Problems of economic security in Russian transportation and intermediate carrier infrastructure

    Directory of Open Access Journals (Sweden)

    Valeriy Anatol'evich Tsvetkov

    2012-03-01

    Full Text Available This paper reviews the basic problems of economic security in infrastructural ensuring of the implementation of transportation and intermediate carrier potential of Russia: development and reconstruction of communication lines, usage of innovative transportation methods, building a network of transportation and logistics centers, development of regional airport hubs and others. Particular attention is paid to the problems of transportation and transit potential implementation of Siberia and the Far East. It is shown that the increase of transit facilities in the territory of Russia takes place in a competitive market of infrastructure projects. At the same time it is emphasized that along with exhausting the possibilities of commodity economy development, a natural competitive advantage of Russia as a transport bridge between Europe, Asia and America will be implemented in full force.

  12. Problems of economic security in Russian transportation and intermediate carrier infrastructure

    Directory of Open Access Journals (Sweden)

    Valeriy Anatol'evich Tsvetkov

    2012-06-01

    Full Text Available This paper reviews the basic problems of economic security in infrastructural ensuring of the implementation of transportation and intermediate carrier potential of Russia: development and reconstruction of communication lines, usage of innovative transportation methods, building a network of transportation and logistics centers, development of regional airport hubs and others. Particular attention is paid to the problems of transportation and transit potential implementation of Siberia and the Far East. It is shown that the increase of transit facilities in the territory of Russia takes place in a competitive market of infrastructure projects. At the same time it is emphasized that along with exhausting the possibilities of commodity economy development, a natural competitive advantage of Russia as a transport bridge between Europe, Asia and America will be implemented in full force.

  13. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    Science.gov (United States)

    Diama, A.; Matthies, B.; Herwig, K. W.; Hansen, F. Y.; Criswell, L.; Mo, H.; Bai, M.; Taub, H.

    2009-08-01

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C24H50 denoted as C24) and dotriacontane (n-C32H66 denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 Å=√3 ag, where ag=2.46 Å is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by ˜10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  14. Statistical and dynamical aspects of intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs

  15. Statistical and dynamical aspects of intermediate energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R.

    1997-01-01

    Studies of intermediate energy heavy ion reactions have revealed that the probability of emitting n-fragments is reducible to the probability of emitting a single fragment through the binomial distribution. The resulting one-fragment probability shows a dependence on the thermal energy that is characteristic of statistical decay. Similarly, the charge distributions associated with n-fragment emission are reducible to the one-fragment charge distribution, and thermal scaling is observed. The reducibility equation for the n-fragment charge distribution contains a quantity with a value that starts from zero, at low transverse energies, and saturates at high transverse energies. This evolution may signal a transition from a coexistence phase to a vapour phase. In the search for a signal of liquid-gas phase transition, the appearance of intermittency is reconsidered. Percolation calculations, as well as data analysis, indicate that an intermittent-like signal appears from classes of events that do not coincide with the critical one. 232 refs.

  16. Polymeric Electrolyte Membrane Photoelectrochemical (PEM-PEC Cell with a Web of Titania Nanotube Arrays as Photoanode and Gaseous Reactants

    Directory of Open Access Journals (Sweden)

    Tsampas M.N.

    2017-01-01

    Photoanodes of titania nanotube arrays, TNTAs, were developed, for the first time, on a Ti-web of microfiber substrates, by electrochemical anodization. The performance of TNTAs/Ti-web photoanodes were evaluated in both gaseous and liquid reactants. Due to the presence of reliable reference electrode in gas phase direct comparison of the results was possible. Gas phase operation with He or Air as carrier gases and only 2.5% of water content exhibits very promising photoefficiency in comparison with conventional PEC cells.

  17. The influence of charge injection from intermediate connectors on the performance of tandem organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-Ying [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Siboni, Hossein Zamani; Wang, Qi; Aziz, Hany, E-mail: lsliao@suda.edu.cn, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn, E-mail: h2aziz@uwaterloo.ca [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2014-12-14

    Charge generation in a typical intermediate connector, composed of “n-type doped layer/transition metal oxide (TMO)/hole transporting layer (HTL),” of a tandem organic light-emitting device (OLED) has recently been found to arise from charge transfer at the TMO/HTL interfaces. In this paper, we investigate the effect of hole injection barriers from intermediate connectors on the performance of tandem OLEDs. The hole injection barriers are caused by the offset of the highest occupied molecular orbital (HOMO) energy levels between HTLs contained in the intermediate connector and the top electroluminescence (EL) unit. We also find that although charge generation can occur at the interfaces between the TMO and a wide variety of HTLs of different HOMO values, an increase in the hole injection barrier however limits the electroluminescence efficiency of the top EL units. In the case of large hole injection barriers, significant charge accumulation in the HTLs makes the intermediate connector lose its functionality gradually over operating time, and limits device stability.

  18. Transition probabilities for two-photon H (1з–2з) and He (1 1з–2 1з ...

    Indian Academy of Sciences (India)

    Transition amplitudes and transition probabilities for the two-photon 1-2 transition in the hydrogen atom and 11-21 transition in helium atom have been calculated using a partialclosure approach. The dominant term is calculated exactly and the remaining sum over intermediate states is calculated using a mean ...

  19. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  20. Pressure-induced phase transitions in acentric BaHf(BO{sub 3}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Szymborska-Małek, Katarzyna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Sousa Pinheiro, Gardenia de [Departamento de Física, Universidade Federal do Piauí, Teresina, PI 64049-550 (Brazil); Cavalcante Freire, Paulo Tarso [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza CE-60455-970 (Brazil); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Street, 00-908 Warszawa (Poland)

    2015-08-15

    High-pressure Raman scattering studies revealed that BaHf(BO{sub 3}){sub 2} is more compressible than calcite-type orthoborates and calcite, aragonite or dolomite carbonates. It undergoes a first-order reversible pressure-induced phase transition in the 3.9–4.4 GPa pressure range. Second structural change is observed at 9.2 GPa. The intermediate phase is most likely trigonal. However, Raman results suggest increase in the number of distinct BO{sub 3} groups from two in the ambient pressure phase to at least three in the intermediate phase. This intermediate phase is also strongly compressible and strong pressure dependence of the lattice modes proves that the main changes under pressure occur within the layers built from BaO{sub 6} and HfO{sub 6} octahedra. The second phase transition leads most likely to lowering of the trigonal symmetry, as evidenced by significant increase of the number of observed bands. The pressure coefficients of the Raman bands of the high-pressure phase are relatively small, suggesting more dense arrangement of the metal–oxygen polyhedra and BO{sub 3} groups in this phase. It is worth noting that the high-pressure phase was not reached in the second compression experiment up to 10 GPa. This behavior can be most likely attributed to worse hydrostatic conditions of the first experiment. - Graphical abstract: Raman spectra of BaHf(BO{sub 3}){sub 2} recorded at different pressures during compression showing onset of pressure-induced phase transitions. - Highlights: • High-pressure Raman spectra were measured for BaHf(BO{sub 3}){sub 2.} • BaHf(BO{sub 3}){sub 2} undergoes a reversible first-order phase transition at 3.9–4.4 GPa into a trigonal phase. • The intermediate trigonal phase is strongly compressible second structural transformation is observed at 9.2 GPa under non-perfect hydrostatic conditions.

  1. An Intermediate in the evolution of superfast sonic muscles

    Directory of Open Access Journals (Sweden)

    Mok Hin-Kiu

    2011-11-01

    Full Text Available Abstract Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1 causing the tendon and bladder to snap back (part 2 generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles.

  2. Critical Line of the Deconfinement Phase Transitions

    Science.gov (United States)

    Gorenstein, Mark I.

    Phase diagram of strongly interacting matter is discussed within the exactly solvable statistical model of the quark-gluon bags. The model predicts two phases of matter: the hadron gas at a low temperature T and baryonic chemical potential μ B , and the quark-gluon gas at a high T and/or μ B . The nature of the phase transition depends on a form of the bag massvolume spectrum (its pre-exponential factor), which is expected to change with the μ B /T ratio. It is therefore likely that the line of the 1 st order transition at a high μ B/T ratio is followed by the line of the 2 nd order phase transition at an intermediate μ B/T, and then by the lines of "higher order transitions" at a low μ B /T. This talk is based on a recent paper (Gorenstein, Gaździcki, and Greiner, 2005).

  3. Trapping and Characterization of a Reaction Intermediate in Carbapenem Hydrolysis by B. cereus Metallo-β-lactamase

    Science.gov (United States)

    Tioni, Mariana F.; Llarrull, Leticia I.; Poeylaut-Palena, Andrés A.; Martí, Marcelo A.; Saggu, Miguel; Periyannan, Gopal R.; Mata, Ernesto G.; Bennett, Brian; Murgida, Daniel H.; Vila, Alejandro J.

    2009-01-01

    Metallo-β-lactamases hydrolyze most β-lactam antibiotics. The lack of a successful inhibitor for them is related to the previous failure to characterize a reaction intermediate with a clinically useful substrate. Stopped-flow experiments together with rapid freeze-quench EPR and Raman spectroscopies were used to characterize the reaction of Co(II)-BcII with imipenem. These studies show that Co(II)-BcII is able to hydrolyze imipenem both in the mono- and dinuclear forms. In contrast to the situation met for penicillin, the species that accumulates during turnover is an enzyme-intermediate adduct in which the β-lactam bond has already been cleaved. This intermediate is a metal-bound anionic species, with a novel resonant structure, that is stabilized by the metal ion at the DCH or Zn2 site. This species has been characterized based on its spectroscopic features. This represents a novel, previously unforeseen intermediate, that is related to the chemical nature of carbapenems, as confirmed by the finding of a similar intermediate for meropenem. Since carbapenems are the only substrates cleaved by B1, B2 and B3 lactamases, the identification of this intermediate could be exploited as a first step towards the design of transition state based inhibitors for all three classes of metallo-β-lactamases. PMID:18980308

  4. Physics of intermediate shocks: A review

    Science.gov (United States)

    Karimabadi, H.

    1995-01-01

    Intermediate shocks (ISs) lead to a transition from super-Alfvenic to sub-Alfvenic flow and are different from slow and fast shocks in that an IS rotates the component of the magnetic field tangent to the shock plane by 180 deg. Another peculiarity of ISs is that for the same upstream conditions an IS can have two different downstream states. There also exist a second class of ISs which rotate the magnetic field by an angle other than 180 deg. Due to their noncoplanar nature they cannot be time-stationary and are referred to as time-dependent intermediate shocks (TDIS). The existence of ISs has been the subject of much controversy over the years. Early studies questioned the physical reality of ISs. However, the studies of ISs found a new impetus when C.C. Wu showed that ISs do exist and are stable within the resistive MHD framework. In this paper, after a brief historical overview of the subject, we will review the latest developments in the study of ISs. In particular, we will address the questions of stability and structure of ISs and the relationship between ISs and other discontinuities. One of the recent developments has been the finding that ISs can be unsteady, reforming in time. Details of this process will be discussed. Finally, we examine the effect of anisotropy on the resolutions and discuss the relevance of ISs to the observed field rotations at the Earth's magnetopause.

  5. Triggering of 178Hfm2 by photoinduced electron transition

    Directory of Open Access Journals (Sweden)

    A. Ya. Dzyublik

    2013-03-01

    Full Text Available We considered the NEET (nuclear excitation by electron transition as a possible triggering mechanism of the isomer 178Hfm2 during ionization of the L3 atomic shell by x-rays. This isomer is assumed to be excited into an intermediate state by E1 electronic transition between M5 and L3 shells. Simple nonrelativistic formulas are derived for the NEET probability. The estimations show the probability to be less than the experimental data of [1] by one order of magnitude. The intermediate level is found to decay bypassing the isomeric level 16+, if the nucleus attributes a triaxial shape in the state and, besides, there exists a level 13- shifted with respect to 15- by 400 keV. We have shown also that the NEET cross section as a function of the energy of x-ray photons , has to accept constant value above the L photoionization threshold in contrast to narrow peak observed by [1].

  6. AC susceptibility of thin Pb films in intermediate and mixed state

    Energy Technology Data Exchange (ETDEWEB)

    Janu, Zdenek, E-mail: janu@fzu.cz [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic); Svindrych, Zdenek [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic); Trunecek, Otakar [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague 2 (Czech Republic); Kus, Peter; Plecenik, Andrej [Komenius University in Bratislava, Faculty of Mathematics, Physics, and Informatics, Mlynska dolina, 842 48 Bratislava 4 (Slovakia)

    2011-12-15

    Thickness dependent transition in AC susceptibility between intermediate and mixed state in type-I superconducting films. The temperature induced crossover between reversible and irreversible behavior was observed in the thicker film. The temperature dependence of the AC susceptibility in mixed state follows prediction of model based on Bean critical state. The temperature dependence of the harmonics of the complex AC susceptibility in the intermediate state is explained. Thin films of type I superconductors of a thickness comparable or less than a flux penetration length behave like type II superconductors in a mixed state. With decreasing film thickness normal domains carrying a magnetic flux get smaller with smaller number of flux quanta per domain and finally transform into single quantum flux lines, i.e. quantum vortices similar to those found in type II superconductors. We give an evidence of this behavior from the measurements of the nonlinear response of a total magnetic moment to an applied AC magnetic field, directly from the temperature dependence of an AC susceptibility.

  7. Studying multifragmentation dynamics at intermediate energies using two-fragment correlations

    International Nuclear Information System (INIS)

    Sangster, T.C.; Britt, H.C.; Namboodiri, M.N.

    1993-01-01

    One of the most challenging topics in Nuclear Physics is the multifragmentation at moderate excitation energies in large nuclear systems. Although the idea that multifragmentation is analogous to a liquid-gas like phase transition is not new, it has only been recently that highly exclusive experimental measurements have been coupled with sophisticated theoretical models like QMD and BUU/VUU to explore reaction dynamics and the process of fragment formation. Indeed, much of what is known about multifragmentation has resulted from the study of complex correlations present in both the experimental data and theoretical calculations. One of the most crucial questions in the ongoing debate concerning the liquid-gas analogy is the differentiation between simultaneous and sequential fragment emission. Clearly, the phase transition analogy breaks down if fragments are emitted sequentially as in an evaporative process. There have been a number of two-fragment correlation results published recently (including those presented in this paper) which attempt to put limits on the emission timescale using three-body Coulomb trajectory calculations with explicit emission times for sequential decays from a fixed source density. These results have been generally consistent and indicate that intermediate mass fragment (IMF) emission is nearly simultaneous in medium energy heavy ion collisions. Only very recently have calculations been performed which approach this question from the other extreme: simultaneous emission from a variable density source. When considered together, these results argue favorably for a simultaneous multifragmentation. In this paper the authors present comprehensive results on two-fragment correlations for heavy systems at intermediate energies

  8. Investigation of the intermediate- and high-density forms of amorphous ice by molecular dynamics calculations and diffraction experiments

    International Nuclear Information System (INIS)

    Tse, John S.; Klug, Dennis D.; Guthrie, Malcolm; Benmore, Chris J.; Urquidi, Jacob; Tulk, Chris A.

    2005-01-01

    The lack of an 'isosbestic' point in the oxygen-oxygen atom radial distribution functions (RDFs) for the HDA→LDA ice transformation at ambient pressure derived from molecular dynamics (MD) calculations show unequivocally that intermediate phases are not equilibrium mixtures of these two amorphous forms. This is supported by x-ray structure factor data, where it is found that linear combinations of the starting and end amorphous forms do not describe intermediate forms of amorphous ice formed during the transformation. This reflects the fact that the x-ray data are heavily weighted to O-O correlations and therefore sensitive to the basic structural changes that occur during the relaxation process. The ice Ih→HDA transformation is also reexamined using MD to identify its thermodynamic nature. This apparently first-order transition induced by a mechanical instability is investigated by compression followed by decompression to negative pressures. In this study we demonstrated that the full van der Waals loop for this transition can be identified

  9. Kinetics of disorder-to-fcc phase transition via an intermediate bcc state

    International Nuclear Information System (INIS)

    Liu Yongsheng; Nie Huifen; Bansil, Rama; Steinhart, Milos; Bang, Joona; Lodge, Timothy P.

    2006-01-01

    Time-resolved small-angle x-ray scattering measurements reveal that a long-lived intermediate bcc state forms when a poly(styrene-b-isoprene) diblock copolymer solution in an isoprene selective solvent is rapidly cooled from the disordered micellar fluid at high temperature to an equilibrium fcc state. The kinetics of the epitaxial growth of the [111] fcc peak from the [110] bcc peak was obtained by fitting the scattering data to a simple model of the transformation. The growth of the [111] fcc peak agrees with the Avrami model of nucleation and growth kinetics with an exponent n=1.4, as does the initial decay of the [110] bcc peak, with an exponent n=1.3. The data were also found to be in good agreement with the Cahn model of grain boundary nucleation and growth

  10. Optical studies of intersublevel-transitions in self-organized InGaAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Weber, A.

    2005-01-01

    In this thesis intersublevel-transitions in self-organized InGaAs/GaAs quantum dots are studied with spectroscopic methods. The charge-dependent absorption behaviour of the nanostructures in the intermediate infrared is studied by a new combination of Fourier spectroscopy and calorimetric absorption spectroscopy. Optical absorption in the quantum dots leads to a sample heating by charge-carrier relaxations, whereby non-radiative intersublevel transitions in the quantum dots are directly determined. The effects observed thereby are explained by different charge-carrier occupation, Pauli blocking, and many-=particle effects in the quantum dots. Furthermore intermediate-infrared emission from quantum dots is spectroscopically studied both under optical and electrical excitation. Each according to the structure of the waveguides in the samples emission peaks are shown, the intensity of which grows either sublinearly with the excitation power and finally saturates or exhibits a significantly superlinear growth. Simulations of an intermediate-infrared quantum-dot laser, which regard also the simultaneous intermediate-infrared emission, show that the observed superlinear growth is to be explained by intersublevel emission in the laser mode. The principal feasibility of a bipolar two-colour laser, which emits in the near- and in the intermediate infrared, is shown by this

  11. Analysis of the Intermediate-State Contributions to Neutrinoless Double β− Decays

    Directory of Open Access Journals (Sweden)

    Juhani Hyvärinen

    2016-01-01

    Full Text Available A comprehensive analysis of the structure of the nuclear matrix elements (NMEs of neutrinoless double beta-minus (0νβ-β- decays to the 0+ ground and first excited states is performed in terms of the contributing multipole states in the intermediate nuclei of 0νβ-β- transitions. We concentrate on the transitions mediated by the light (l-NMEs Majorana neutrinos. As nuclear model we use the proton-neutron quasiparticle random-phase approximation (pnQRPA with a realistic two-nucleon interaction based on the Bonn one-boson-exchange G matrix. In the computations we include the appropriate short-range correlations, nucleon form factors, and higher-order nucleonic weak currents and restore the isospin symmetry by the isoscalar-isovector decomposition of the particle-particle proton-neutron interaction parameter gpp.

  12. Intermediality and media change

    OpenAIRE

    2012-01-01

    This book is about intermediality as an approach to analysing and understanding media change. Intermediality and Media Change is critical of technological determinism that characterises 'new media discourse' about the ongoing digitalization, framed as a revolution and creating sharp contrasts between old and new media. Intermediality instead emphasises paying attention to continuities between media of all types and privileges a comparative perspective on technological changes in media over ti...

  13. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  14. The crystal structure and the phase transitions of pyridinium trifluoromethanesulfonate

    International Nuclear Information System (INIS)

    Jesariew, Dominik; Ilczyszyn, Maria M; Pietraszko, Adam

    2014-01-01

    The calorimetric and optical studies and the structural properties of pyridinium trifluoromethanesulfonate (abbreviated as PyHOTf) are reported. A sequence of four fully reversible solid–solid phase transitions, at 223.0, 309.0, 359.9 and 394.3 K, has been discovered. The phase transition sequence was confirmed by x-ray diffraction data. The crystal structures of three phases (V, IV and III) have been determined from the single crystal x-ray diffraction data. Structural properties of the high temperature phases are characterized using powder x-ray diffraction data measured in the 290–425 K temperature range. The structural changes triggered by the temperature change are discussed in relation to the phase transitions. Two low temperature phases (V and IV) belong to the P4 3 2 1 2 space group of the tetragonal system. The intermediate phases (III and II) are monoclinic and the prototype high temperature phase (I) is a pseudo-cubic (tetragonal) one. The low temperature phases (V and IV) are well ordered. The crystal structure of intermediate (III and II) and prototype (I) phases are characterized by high disorder of the pyridinium cations and triflate anions. (papers)

  15. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  16. Switching from Reactant to Substrate Engineering in the Selective Synthesis of Graphene Nanoribbons.

    Science.gov (United States)

    Merino-Díez, Néstor; Lobo-Checa, Jorge; Nita, Pawel; Garcia-Lekue, Aran; Basagni, Andrea; Vasseur, Guillaume; Tiso, Federica; Sedona, Francesco; Das, Pranab K; Fujii, Jun; Vobornik, Ivana; Sambi, Mauro; Pascual, José Ignacio; Ortega, J Enrique; de Oteyza, Dimas G

    2018-04-27

    The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy's proof-of-concept compares experiments using 4,4''-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.

  17. Intermediate Fragment

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    This text and its connected exhibition are aiming to reflect both on the thoughts, the processes and the outcome of the design and production of the artefact ‘Intermediate Fragment’ and making as a contemporary architectural tool in general. Intermediate Fragment was made for the exhibition ‘Enga...... of realising an exhibition object was conceived, but expanded, refined and concretised through this process. The context of the work shown here is an interest in a tighter, deeper connection between experimentally obtained material knowledge and architectural design....

  18. The general expression for the transition amplitude of two-photon ionization of atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Karule, E [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina Boulevard 19, Riga, LV-1586 (Latvia); Moine, B [Universite Paris Sud, 91405 Orsay Cedex (France)

    2003-05-28

    Two-photon ionization of atomic hydrogen with an excess photon is revisited. The non-relativistic dipole approximation and Coulomb Green function (CGF) formalism are applied. Using the CGF Sturmian expansion straightforwardly, one gets the radial transition amplitude in the form of an infinite sum over Gauss hypergeometric functions which are polynomials. It is convergent if all intermediate states are in the discrete spectrum. In the case of two-photon ionization with an excess photon, when photoionization is also possible, intermediate states are in the continuum. We performed the explicit summation over intermediate states and got a simple general expression for the radial transition amplitude in the form of a finite sum over Appell hypergeometric functions, which are not polynomials. An Appell function may be expressed as an infinite sum over Gauss functions. In the case of ionization by an excess photon, Gauss functions are transformed to give a convergent radial transition amplitude for the whole region. The generalized cross sections for two-photon above-threshold ionization of atomic hydrogen in the ground state and excited states calculated by us agree very well with results of previous calculations. Generalized cross sections for two-photon ionization of positronium in the ground state are obtained by scaling those for atomic hydrogen.

  19. Probing the transition state region in catalytic CO oxidation on Ru

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, H. [Stockholm Univ. (Sweden); Oberg, H. [Stockholm Univ. (Sweden); Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Gladh, J. [Stockholm Univ. (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hantschmann, M. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Kuhn, D. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mitra, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Moeller, S. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Persson, M. [The Univ. of Liverpool, Liverpool (United Kingdom); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Abild-Pedersen, F. [Stanford Univ., Stanford, CA (United States); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pettersson, L. G. M. [Stockholm Univ. (Sweden); Nilsson, A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-12

    Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  20. Spectroscopic studies of neutral and chemically oxidized species of β-carotene, lycopene and norbixin in CH2Cl2: Fluorescence from intermediate compounds

    International Nuclear Information System (INIS)

    Alwis, D.D.D.H; Chandrika, U.G.; Jayaweera, P.M.

    2015-01-01

    Radical cations, dications and oxidized intermediate species of three carotenoids, namely, β-carotene, lycopene and norbixin, were generated in CH 2 Cl 2 solutions via chemical oxidation using anhydrous FeCl 3 . UV–vis, fluorescence and fluorescence-excitation spectroscopic studies were performed to understand and compare the nature of intermediate species generated during the chemical oxidation process and subsequent degradation. The intense emission observed at 550 nm can be assigned to the S 2 →S 0 (1 1 B u →1 1 A g ) transition of the carotenoid molecules. The 350 nm excitation during the oxidation process for β-carotene, lycopene and norbixin exhibit intense fluorescence peaks at 492 nm, 493 nm and 500 nm, respectively. These peaks are assigned to intermediate peroxy/epoxy compounds of the three molecules that are formed with molecular oxygen prior to the formation of oxidized short-chain stable compounds. - Highlights: • Fluorescence and UV–vis studies on β-carotene, lycopene and norbixin. • Oxidation, induced by FeCl 3 in CH 2 Cl 2 shows blue shifted fluorescence peaks. • Fluorescence peaks were assigned to intermediate peroxy/epoxy forms of carotenoids. • The D0→D3 transition of radical cations are observed in the near IR region

  1. Governance-Default Risk Relationship and the Demand for Intermediated and Non-Intermediated Debt

    Directory of Open Access Journals (Sweden)

    Husam Aldamen

    2012-09-01

    Full Text Available This paper explores the impact of corporate governance on the demand for intermediated debt (asset finance, bank debt, non-bank private debt and non-intermediated debt (public debt in the Australian debt market. Relative to other countries the Australian debt market is characterised by higher proportions of intermediated or private debt with a lower inherent level of information asymmetry in that private lenders have greater access to financial information (Gray, Koh & Tong 2009. Our firm level, cross-sectional evidence suggests that higher corporate governance impacts demand for debt via the mitigation of default risk. However, this relationship is not uniform across all debt types. Intermediated debt such as bank and asset finance debt are more responsive to changes in governance-default risk relationship than non-bank and non-intermediated debt. The implication is that a firm’s demand for different debt types will reflect its governance-default risk profile.

  2. Liquid-vapor phase transition, collective flow and entropy determination from future measurements of intermediate mass fragments

    International Nuclear Information System (INIS)

    Coffin, J.P.

    1991-01-01

    Some global variables reflecting the highly collective character of nuclear matter produced in relativistic heavy-ion collisions are briefly reviewed on the basis of presently available experimental results and of Quantum Statistical Model and Quantum Molecular Dynamic Model predictions relative to intermediate mass fragments. Possible future measurements are suggested. (author) 27 refs., 8 figs

  3. Phonon activity and intermediate glassy phase of YVO3

    International Nuclear Information System (INIS)

    Massa, Nestor E.; Piamonteze, Cinthia; Tolentino, Helio C.N.; Alonso, Jose Antonio; Martinez-Lope, Maria Jesus; Casais, Maria Teresa

    2004-01-01

    We show that in YVO 3 additional hard phonons gradually become zone center infrared active below ∼210 K, verifying that a lattice phase transition takes place at about that temperature. Their gradual increment in intensity between ∼210 and ∼77 K is associated with a 'glassy' behavior found in the temperature-dependent V K edge pseudoradial distribution. This translates into an increase in the Debye-Waller factors ascribed to the appearance of V local structural disorder below ∼150 K. Conflicts between various ordering mechanisms in YVO 3 bring up similarities of the intermediate phase to known results in dielectric incommensurate systems, suggesting the formation of commensurate domains below 116 K, the onset temperature of G-type antiferromagnetism. We propose that ∼210 and ∼77 K be understood as the temperatures where the commensurate-incommensurate and incommensurate-commensurate 'lock-in' phase transitions take place. We found support for this interpretation in the inverted λ shapes of the measured heat capacity and in the overall temperature dependence of the hard phonons

  4. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants

    NARCIS (Netherlands)

    Stoll, T.; Zafeiropoulos, G.; Tsampas, M. N.

    2016-01-01

    A novel photoelectrochemical (PEC) cell design is proposed and investigated for H-2 production with gaseous reactants. The core of the cell is a membrane electrode assembly (MEA) that consists of a TiO2 nanotube arrays photoanode, a Pt/C cathode, a Pt/C reference electrode and a proton conducting

  5. Phase transition study in strongly correlated VO{sub 2} based sensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Simo, A., E-mail: alinesimo.aline@gmail.com [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa); Kaviyarasu, K. [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa); Mwakikunga, B. [Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001 (South Africa); Madjoe, R. [Physics Department, University of Western Cape, 7535 Belville Cape Town (South Africa); Gibaud, A. [Laboratoire de Physique de l’Etat Condensé, Université du Maine Faculte des sciences, UPRESA 6087, 72085, Le Mans Cedex 9 (France); Maaza, M. [UNESCO-UNISA Africa Chair in Nanoscience’s/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province (South Africa)

    2017-04-15

    Highlights: • At 230 °C for about 48 h to prepare successfully VO{sub 2} nanobelts. • 1D shows good sensing performance due to the large active surface of the material. • The good selectivity of methanol compared to acetone and isopropanol. • VOC compounds was observed at room temperature. - Abstract: Intermediate phase monoclinic M2 was observed by inducing in situ X-ray thermo diffraction on VO{sub 2} (M) nanoplatelets. The solid-solid phase transition occurs at around 65 °C assisted with the percolative transition metal-insulator. The existence of an intermediate crystalline phase with room temperature insulator phase and high temperature metallic phase across MIT in VO{sub 2} could be of relevance to understand structural contributions to the phase transition dynamics. In addition, pellet of VO{sub 2} nanostructures have shown to present good sensing properties to various alcohols vapors at room temperature and good selectivity of methanol with 5.54% sensitivity and limit detection below 5 ppm, compared to isopropanol 3.2% and acetone 2.4% respectively.

  6. Interchannel interactions in high-energetic radiationless transitions of neon-like ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Zschornack, G.; Musiol, G.; Soff, G.

    1990-07-01

    Relativistic K-LL Auger transition rates in intermediate coupling including interchannel interactions are presented for nine ions in the neon-isoelectronic sequence up to uranium. For neutral neon a comparison with experimental data is given. We demonstrate for the first time, that intercontinuum interactions result in a remarkable redistribution of individual transition rates even in high-energetic transitions. For instance, channel mixing shifts the K-L 1 L 1 rate by about 4% and the K-L 3 L 3 (J = 0) rate by about 11% in neon-like uranium, while total Auger rates are almost not affected. (orig.)

  7. Directly observing catalytic intermediates of methane dry reforming (MDR) on model Ni(111) catalyst via in operando surface techniques

    Science.gov (United States)

    Yuan, Kaidi

    In this work, near ambient pressure x-ray photoelectron spectroscopy was used to trace the in operando catalytic intermediates of methane dry reforming on model Ni(111) catalyst. The following reactive carbon intermediates have been characterized from dissociation of CH4: *CH, *C1 (Ni3C), *Cn (n≥2) and clock-reconstructed Ni2C. They can develop into inert graphene, and the conditions for this transition have been explored. One the other hand, the oxygen intermediates from CO2 dissociation were also studied, which play an important role on restraining graphene growth. Their dynamic coverage decreases with increasing temperature, which is suggested the fundamental mechanism of regional carbon overspill and causes irreversible graphene formation. Therefore, solutions based on Ni-O stabilization were proposed in developing coking resisting catalysts.

  8. MHD intermediate shock discontinuities: Pt. 1

    International Nuclear Information System (INIS)

    Kennel, C.F.; Blandford, R.D.; Coppi, P.

    1989-01-01

    Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)

  9. Orthorhombic Intermediate State in the Zinc Blende to Rocksalt Transformation Path of SiC at High Pressure

    International Nuclear Information System (INIS)

    Catti, Michele

    2001-01-01

    The mechanism of the B3/B1 phase transition of SiC has been investigated by periodic LCAO-DFT least-enthalpy calculations. A new transformation pathway, based on a Pmm2 orthorhombic intermediate state with two SiC units per cell, is found to be energetically favored over the traditional R3m mechanism. The computed activation enthalpy is 0.75eV/SiC unit at the predicted transition pressure of 92GPa (B3LYP functional). Activation enthalpy and activation volume vs pressure are analyzed to characterize the kinetic aspects of the transformation

  10. A few aspects of intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Guet, C.

    1982-10-01

    Some aspects of reactions induced by intermediate energy heavy ions, with a special emphasis of 85 MeV/nucleon 12 C data, are discussed and compared to low energy and relativistic energy features. Transition from mean field to independant nucleon picture is advocated by an increase of nuclear transparency illuminated by reaction cross section estimations. Projectile-like fragment distributions, while demonstrating a typical high energy fragmentation behaviour, exhibit low energy regime distortions. Light fragments, associated to large parallel momentum transfer may result from total explosion. Proton emission is investigated and discussed in terms of opposite models such as thermal equilibrium and nucleon-nucleon scattering. First pion production data are well explained by single nucleon-nucleon inelastic scattering

  11. Intermediate state trapping of a voltage sensor

    DEFF Research Database (Denmark)

    Lacroix, Jérôme J; Pless, Stephan Alexander; Maragliano, Luca

    2012-01-01

    Voltage sensor domains (VSDs) regulate ion channels and enzymes by undergoing conformational changes depending on membrane electrical signals. The molecular mechanisms underlying the VSD transitions are not fully understood. Here, we show that some mutations of I241 in the S1 segment of the Shaker...... Kv channel positively shift the voltage dependence of the VSD movement and alter the functional coupling between VSD and pore domains. Among the I241 mutants, I241W immobilized the VSD movement during activation and deactivation, approximately halfway between the resting and active states......, and drastically shifted the voltage activation of the ionic conductance. This phenotype, which is consistent with a stabilization of an intermediate VSD conformation by the I241W mutation, was diminished by the charge-conserving R2K mutation but not by the charge-neutralizing R2Q mutation. Interestingly, most...

  12. Kinetic arrest and glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Sztucki, M.; Narayanan, T.; Belina, G.; Moussaied, A.; Pignon, F.; Hoekstra, H.

    2006-01-01

    A thermally reversible repulsive hard-sphere to sticky-sphere transition was studied in a model colloidal system over a wide volume fraction range. The static microstructure was obtained from high resolution small angle x-ray scattering, the colloid dynamics was probed by dynamic x-ray and light scattering, and supplementary mechanical properties were derived from bulk rheology. At low concentration, the system shows features of gas-liquid type phase separation. The bulk phase separation is presumably interrupted by a gelation transition at the intermediate volume fraction range. At high volume fractions, fluid-attractive glass and repulsive glass-attractive glass transitions are observed. It is shown that the volume fraction of the particles can be reliably deduced from the absolute scattered intensity. The static structure factor is modeled in terms of an attractive square-well potential, using the leading order series expansion of Percus-Yevick approximation. The ensemble-averaged intermediate scattering function shows different levels of frozen components in the attractive and repulsive glassy states. The observed static and dynamic behavior are consistent with the predictions of a mode-coupling theory and numerical simulations for a square-well attractive system

  13. Alkylation and arylation of alkenes by transition metal complexes

    International Nuclear Information System (INIS)

    Volkova, L.G.; Levitin, I.Ya.; Vol'pin, M.E.

    1975-01-01

    In this paper are reviewed methods of alkylation and irylation of unsaturated compounds with complexes of transition metals (Rh, Pd). Analysis of alkylation and arylation of olefines with organic derivatives of transition metals, obtained as a result of exchange reactions between organic compounds of transition metals and salts of metals of the 8th group of the periodic system, allows a conclusion as to the wide possibilities of these reactions in the synthesis of various derivatives of unsaturated compounds. In all the reactions under consideration, intermediate formation of sigma-complexes is assumed. Also considered are alkylation and arylation of olefines with organic derivatives of halogens in the presence of compounds of metals of the 8th group of the periodic system, as well as arylation of olefines with aromatic compounds in the presence of salts of transition metals

  14. Free association transitions in models of cortical latching dynamics

    International Nuclear Information System (INIS)

    Russo, Eleonora; Treves, Alessandro; Kropff, Emilio; Namboodiri, Vijay M K

    2008-01-01

    Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes

  15. Free association transitions in models of cortical latching dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Eleonora; Treves, Alessandro; Kropff, Emilio [SISSA, Cognitive Neuroscience, via Beirut 4, 34014 Trieste (Italy); Namboodiri, Vijay M K [Department of Physics, IIT Bombay, Powai, Mumbai, India 400076 (India)], E-mail: russo@sissa.it, E-mail: vijay_mkn@iitb.ac.in, E-mail: ale@sissa.it, E-mail: kropff@sissa.it

    2008-01-15

    Potts networks, in certain conditions, hop spontaneously from one discrete attractor state to another, a process we have called latching dynamics. When continuing indefinitely, latching can serve as a model of infinite recursion, which is nontrivial if the matrix of transition probabilities presents a structure, i.e. a rudimentary grammar. We show here, with computer simulations, that latching transitions cluster in a number of distinct classes: effectively random transitions between weakly correlated attractors; structured, history-dependent transitions between attractors with intermediate correlations; and oscillations between pairs of closely overlapping attractors. Each type can be described by a reduced set of equations of motion, which, once numerically integrated, matches simulations results. We propose that the analysis of such equations may offer clues on how to embed meaningful grammatical structures into more realistic models of specific recursive processes.

  16. Slab tears and intermediate-depth seismicity

    Science.gov (United States)

    Meighan, Hallie E.; ten Brink, Uri S.; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  17. Glass transition in soft-sphere dispersions

    International Nuclear Information System (INIS)

    RamIrez-Gonzalez, P E; Medina-Noyola, M

    2009-01-01

    The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.

  18. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Science.gov (United States)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  19. Projectile and target fragmentation at intermediate energies (20 MeV <= E/A <= 100 MeV)

    International Nuclear Information System (INIS)

    Dayras, R.A.

    1985-04-01

    In order to follow the evolution of the reaction mechanisms in the transition region of the intermediate energy range, detailed studies of projectile-like fragments from a 44 MeV/u 40 Ar projectile bombarding 27 Al and sup(NAT)T: targets have been made. Experimental results are given. Discussion of the data is presented: transfer reactions, isotopic distributions, the fragmentation model, and abrasion model are used in the discussion

  20. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2.

    Science.gov (United States)

    Trnka, Tomáš; Kozmon, Stanislav; Tvaroška, Igor; Koča, Jaroslav

    2015-04-01

    The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.

  1. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2.

    Directory of Open Access Journals (Sweden)

    Tomáš Trnka

    2015-04-01

    Full Text Available The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi. The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.

  2. Workshop on hadron structure from photo-reactions at intermediate energies: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, A.M.; Sandorfi, A.M. (eds.)

    1992-01-01

    This report contains papers on the following topics: The proton compton effect: Recent measurements of the electric and magnetic polorizabilities of the proton; experiments on the electric polarizability of the neutron; chiral symmetry and nucleon polarizabilities; chiral model predictions for electromagnetic polarizabilities of the nucleon, a consumer report; the polarizabilities of bound nucleons; nucleon polarizability in free space and in nuclear matter; mechanisms of photon scattering on nucleons at intermediate energies; pion polarizabilities in chiral perturbation theory; pion polarizabilities and the shielding of [sigma](700)-meson exchange in [gamma][gamma][yields][pi][pi] processes; pion and kaon polarizabilities in the quark confinement model; radiative pion photoproduction and pion polarizabilities; pion and sigma polarizabilities and radiative transitions; the quadrupole amplitude in the [gamma][Nu]-[Delta] transition; pion photoproduction and the [gamma][Nu]-[Delta] amplitudes; effective- lagrangians, Watson's theorem, and the E2/M1 mixing ratio in the excitation of the delta resonance; new measurements of the p([rvec [gamma

  3. Cyclic Markov chains with an application to an intermediate ENSO model

    Directory of Open Access Journals (Sweden)

    R. A. Pasmanter

    2003-01-01

    Full Text Available We develop the theory of cyclic Markov chains and apply it to the El Niño-Southern Oscillation (ENSO predictability problem. At the core of Markov chain modelling is a partition of the state space such that the transition rates between different state space cells can be computed and used most efficiently. We apply a partition technique, which divides the state space into multidimensional cells containing an equal number of data points. This partition leads to mathematical properties of the transition matrices which can be exploited further such as to establish connections with the dynamical theory of unstable periodic orbits. We introduce the concept of most and least predictable states. The data basis of our analysis consists of a multicentury-long data set obtained from an intermediate coupled atmosphere-ocean model of the tropical Pacific. This cyclostationary Markov chain approach captures the spring barrier in ENSO predictability and gives insight also into the dependence of ENSO predictability on the climatic state.

  4. The MSSM Electroweak Phase Transition on the Lattice

    CERN Document Server

    Laine, Mikko

    1998-01-01

    We study the MSSM finite temperature electroweak phase transition with lattice Monte Carlo simulations, for a large Higgs mass (m_H ~ 95 GeV) and light stop masses (m_tR ~ 150...160 GeV). We employ a 3d effective field theory approach, where the degrees of freedom appearing in the action are the SU(2) and SU(3) gauge fields, the weakly interacting Higgs doublet, and the strongly interacting stop triplet. We determine the phase diagram, the critical temperatures, the scalar field expectation values, the latent heat, the interface tension and the correlation lengths at the phase transition points. Extrapolating the results to the infinite volume and continuum limits, we find that the transition is stronger than indicated by 2-loop perturbation theory, guaranteeing that the MSSM phase transition is strong enough for baryogenesis in this regime. We also study the possibility of a two-stage phase transition, in which the stop field gets an expectation value in an intermediate phase. We find that a two-stage transi...

  5. Temperature modulation and quadrature detection for selective titration of two-state exchanging reactants.

    Science.gov (United States)

    Zrelli, K; Barilero, T; Cavatore, E; Berthoumieux, H; Le Saux, T; Croquette, V; Lemarchand, A; Gosse, C; Jullien, L

    2011-04-01

    Biological samples exhibit huge molecular diversity over large concentration ranges. Titrating a given compound in such mixtures is often difficult, and innovative strategies emphasizing selectivity are thus demanded. To overcome limitations inherent to thermodynamics, we here present a generic technique where discrimination relies on the dynamics of interaction between the target of interest and a probe introduced in excess. Considering an ensemble of two-state exchanging reactants submitted to temperature modulation, we first demonstrate that the amplitude of the out-of-phase concentration oscillations is maximum for every compound involved in a reaction whose equilibrium constant is equal to unity and whose relaxation time is equal to the inverse of the excitation angular frequency. Taking advantage of this feature, we next devise a highly specific detection protocol and validate it using a microfabricated resistive heater and an epifluorescence microscope, as well as labeled oligonucleotides to model species displaying various dynamic properties. As expected, quantification of a sought for strand is obtained even if interfering reagents are present in similar amounts. Moreover, our approach does not require any separation and is compatible with imaging. It could then benefit some of the numerous binding assays performed every day in life sciences.

  6. Isotope enrichment by electron spin resonance transitions of the intermediate radical pair

    International Nuclear Information System (INIS)

    Okazaki, M.; Shiga, T.; Sakata, S.; Konaka, R.; Toriyama, K.

    1988-01-01

    Microwave effects on the spin adduct yield were observed in the photoreduction of menadione in micellar solutions with ordinary sodium dodecyl sulfate (SDS), deuterium-labeled SDS, and a mixture of them. A large isotope effect was found in the microwave modulation of the spin adduct yield, which is due to the ESR transitions of the transient radical pair in the reaction. It is demonstrated for the first time that the microwave field can be used to enrich one of the isotopes which coexist in the system

  7. Transitivity and the ontology of causation | Unwin | South African ...

    African Journals Online (AJOL)

    It is argued that it is very hard to analyse causation in such a way that prevents everything from causing everything else. This is particularly true if we assume that the causal relation is transitive, for it all too often happens that causal chains that we wish to keep separate pass through common intermediate events. It is also ...

  8. The stellar content of the isolated transition dwarf galaxy DDO210

    NARCIS (Netherlands)

    McConnachie, Alan W.; Arimoto, Nobuo; Irwin, Mike; Tolstoy, Eline

    2006-01-01

    We use Subaru Suprime-Cam and VLT FORS1 photometry of the dwarf galaxy DDO210 to study the global stellar content and structural properties of a transition-type galaxy (with properties intermediate between dwarf irregular and dwarf spheroidal systems). This galaxy is sufficiently isolated that tidal

  9. A resonant ultrasound spectroscopy study of the phase transitions in Na0.75CoO2

    Science.gov (United States)

    Keppens, Veerle; Sergienko, Ivan; Jin, Rongying

    2005-03-01

    The layered transition metal oxides NaxCoO2 have attracted much interest in the past few years. Crystals with the x˜0.75 composition undergo an order-disorder transition near 340 K, a spin-density-wave transition near 22 K and other subtle transitions at intermediate temperatures. These phase transitions, likely related to a rearrangement of the Na atoms among the available sites, have been mapped out using resonant ultrasound spectroscopy. The results are modeled within the Landau theory for second order phase transitions. [Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725

  10. Information acquisition and financial intermediation

    OpenAIRE

    Boyarchenko, Nina

    2012-01-01

    This paper considers the problem of information acquisition in an intermediated market, where the specialists have access to superior technology for acquiring information. These informational advantages of specialists relative to households lead to disagreement between the two groups, changing the shape of the intermediation-constrained region of the economy and increasing the frequency of periods when the intermediation constraint binds. Acquiring the additional information is, however, cost...

  11. Do medium heavy fragments give evidence for a liquid-gas phase transition

    International Nuclear Information System (INIS)

    Trockel, R.; Hildenbrand, K.D.; Lynen, U.; Mueller, W.F.J.; Rabe, H.J.; Sann, H.; Stelzer, H.; Wada, R.; Brummund, N.; Glasow, R.; Kampert, K.H.; Santo, R.; Pelte, D.; Pochodzalla, J.; Eckert, E.

    1985-09-01

    Light and medium heavy fragments have been measured in light ion induced reactions at intermediate energies. The energy spectra have been parametrized with moving source fits. The resulting temperatures and yields do not confirm the expectations of a liquid-gas phase transition. (orig.)

  12. On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes

    KAUST Repository

    Gómez-Suárez, Adrián

    2015-12-13

    Herein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2(μ-OH)][BF4] is essential to enter the catalytic cycle, and this step is favoured by the presence of bulky, non-coordinating counter ions. Moreover, in silico studies confirmed that phenol does not only act as a reactant, but also as a co-catalyst, lowering the energy barriers of several transition states. A gem-diaurated species might form during the reaction, but this lies deep within a potential energy well, and is likely to be an "off-cycle" rather than an "in-cycle" intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On the Mechanism of the Digold(I)-Hydroxide-Catalysed Hydrophenoxylation of Alkynes.

    Science.gov (United States)

    Gómez-Suárez, Adrián; Oonishi, Yoshihiro; Martin, Anthony R; Vummaleti, Sai V C; Nelson, David J; Cordes, David B; Slawin, Alexandra M Z; Cavallo, Luigi; Nolan, Steven P; Poater, Albert

    2016-01-18

    Herein, we present a detailed investigation of the mechanistic aspects of the dual gold-catalysed hydrophenoxylation of alkynes by both experimental and computational methods. The dissociation of [{Au(NHC)}2 (μ-OH)][BF4 ] is essential to enter the catalytic cycle, and this step is favoured by the presence of bulky, non-coordinating counter ions. Moreover, in silico studies confirmed that phenol does not only act as a reactant, but also as a co-catalyst, lowering the energy barriers of several transition states. A gem-diaurated species might form during the reaction, but this lies deep within a potential energy well, and is likely to be an "off-cycle" rather than an "in-cycle" intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles

    Directory of Open Access Journals (Sweden)

    Ting Jia

    2017-05-01

    Full Text Available The serial system Srn+1FenO2n+1(n=1,2,3… with the FeO4 square planar motif exhibits abundant phase transitions under pressure. In this work, we investigate the pressure-induced structural, magnetic and transport transitions in Sr2FeO3 from first-principles. Our results show that the system undergoes a structural transition from Immm to Ammm when the volume decreases by 30%, together with a spin-state transition (SST from high-spin (S = 2 to intermediate-spin (S = 1, an antiferromagnetic-to-ferromagnetic transition and an insulator-to-metal transition (IMT. Besides, the IMT here is a bandwidth controlled transition, but little influenced by the SST.

  15. Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.

    Science.gov (United States)

    Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N

    2017-11-22

    The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.

  16. Dry molten globule intermediates and the mechanism of protein unfolding.

    Science.gov (United States)

    Baldwin, Robert L; Frieden, Carl; Rose, George D

    2010-10-01

    New experimental results show that either gain or loss of close packing can be observed as a discrete step in protein folding or unfolding reactions. This finding poses a significant challenge to the conventional two-state model of protein folding. Results of interest involve dry molten globule (DMG) intermediates, an expanded form of the protein that lacks appreciable solvent. When an unfolding protein expands to the DMG state, side chains unlock and gain conformational entropy, while liquid-like van der Waals interactions persist. Four unrelated proteins are now known to form DMGs as the first step of unfolding, suggesting that such an intermediate may well be commonplace in both folding and unfolding. Data from the literature show that peptide amide protons are protected in the DMG, indicating that backbone structure is intact despite loss of side-chain close packing. Other complementary evidence shows that secondary structure formation provides a major source of compaction during folding. In our model, the major free-energy barrier separating unfolded from native states usually occurs during the transition between the unfolded state and the DMG. The absence of close packing at this barrier provides an explanation for why phi-values, derived from a Brønsted-Leffler plot, depend primarily on structure at the mutational site and not on specific side-chain interactions. The conventional two-state folding model breaks down when there are DMG intermediates, a realization that has major implications for future experimental work on the mechanism of protein folding. 2010 Wiley-Liss, Inc.

  17. A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC

    International Nuclear Information System (INIS)

    Perng, Shiang-Wuu; Wu, Horng-Wen

    2015-01-01

    Highlights: • We study how angle and height of trapezoid baffle affect PEMFC net power. • The jet-type, trapping, and blockage effects augment non-isothermal transport in flow channel. • Greater angles and heights of trapezoid baffles provide more reactant to the catalyst layer. • Baffles of 1.5 mm and 90° fully block flow channel to show bad heat transfer and large pressure drop. • Maximum enhancement of cell net power is 90% with baffles of 60° angle and 1.125 mm height. - Abstract: The present study performed a three-dimensional numerical simulation to observe how trapezoid baffles affect non-isothermal reactant transports and cell net power in the proton exchange membrane fuel cell (PEMFC) by the SIMPLE-C method. The geometric parameters of trapezoid baffles installed in the gas channel employed in this study include the angle and height with the same gas diffusion and catalyst layers to realize the cell net power considering the effect of liquid water formation on the fluid flow field. The cell net power is adopted to evaluate the real enhancement of cell performance due to the additional pumping power induced by the pressure loss through the PEMFC. The results illustrated that compared with traditional gas channel without baffles, the novel gas channel with trapezoid baffles, whose angle is 60° and height is 1.125 mm, enhances the cell net power best by approximately 90% among all trapezoid baffle designs

  18. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    International Nuclear Information System (INIS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-01-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi 5 Ti 3 FeO 15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property

  19. Effect of Ag addition on phase transitions of the Cu–22.26 at.%Al–9.93 at.%Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.G., E-mail: galdino.ricardo@gmail.com [DCET, Universidade Federal de São Paulo, Campus Diadema, SP (Brazil); Gama, S.; Paganotti, A. [DCET, Universidade Federal de São Paulo, Campus Diadema, SP (Brazil); Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A. [DFQ, Instituto de Química – Unesp, Campus Araraquara, SP (Brazil)

    2013-02-20

    Highlights: ► A kinetic mechanism for the dissolution of DO{sub 3} phase is suggested. ► The intermediate phase interferes on the kinetics of the DO{sub 3} phase dissolution. ► The presence of Ag changes the stability of intermediate phase. - Abstract: The phase transitions that occur in the Cu–22.26 at.%Al–9.93 at.%Mn and Cu–22.49 at.%Al–10.01 at.%Mn–1.53 at.%Ag alloys after slow cooling were studied using differential scanning calorimetry at different heating rates, microhardness changes with temperature, magnetization changes with temperature, scanning electron microscopy and energy dispersion X-ray spectroscopy. The results indicated that the presence of Ag does not modify the transition sequence of Cu–Al–Mn alloy, introduces a new transition due to the (Ag-Cu)-rich precipitates dissolution at about 800 K, and changes the mechanism of DO{sub 3} phase dissolution. This mechanistic change was analyzed and a sequence of phase transitions was proposed for the reaction.

  20. V-T theory for the self-intermediate scattering function in a monatomic liquid.

    Science.gov (United States)

    Wallace, Duane C; Chisolm, Eric D; De Lorenzi-Venneri, Giulia

    2017-02-08

    In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t. Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t. V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory.

  1. V-T theory for the self-intermediate scattering function in a monatomic liquid

    International Nuclear Information System (INIS)

    Wallace, Duane C; Chisolm, Eric D; De Lorenzi-Venneri, Giulia

    2017-01-01

    In V-T theory the atomic motion is harmonic vibrations in a liquid-specific potential energy valley, plus transits, which move the system rapidly among the multitude of such valleys. In its first application to the self intermediate scattering function (SISF), V-T theory produced an accurate account of molecular dynamics (MD) data at all wave numbers q and time t . Recently, analysis of the mean square displacement (MSD) resolved a crossover behavior that was not observed in the SISF study. Our purpose here is to apply the more accurate MSD calibration to the SISF, and assess the results. We derive and discuss the theoretical equations for vibrational and transit contributions to the SISF. The time evolution is divided into three successive intervals: the vibrational interval when the vibrational contribution alone accurately accounts for the MD data; the crossover when the vibrational contribution saturates and the transit contribution becomes resolved; and the diffusive interval when the transit contribution alone accurately accounts for the MD data. The resulting theoretical error is extremely small at all q and t . V-T theory is compared to mode-coupling theories for the MSD and SISF, and to recent developments in Brownian motion experiments and theory. (paper)

  2. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems.

    Science.gov (United States)

    Kawai, Kiyoshi; Hagura, Yoshio

    2012-07-01

    In order to understand the glass transition properties of carbohydrate polymer-plasticizer systems, glass transition temperatures of dextrin-glucose and dextrin-maltose systems were investigated systematically using differential scanning calorimetry. The onset (Tg(on)) and offset (Tg(off)) of the glass transition decreased with increasing plasticizer (glucose or maltose) content, and showed an abrupt depression at certain plasticizer content. The abrupt depression of Tg(off) occurred at higher plasticizer content than that of Tg(on). The glass transition was much broader for intermediate plasticizer content. From the enthalpy relaxation behavior of samples aged at various temperatures, it was found that two different glass transitions occurred contentiously in the broad glass transition. These results suggested that carbohydrate polymer-plasticizer systems can be classified into three regions: the entrapment of the plasticizer by the polymer, the formations of the polymer-plasticizer and plasticizer-rich domains, and the embedment of polymer into the plasticizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Discourses and Models of Intermediality

    OpenAIRE

    Schröter, Jens

    2011-01-01

    In his article "Discourses and Models of Intermediality" Jens Schröter discusses the question as to what relations do different discourses pose between different "media." Schröter identifies four models of discourse: 1) synthetic intermediality: a "fusion" of different media to super-media, a model with roots in the Wagnerian concept of Gesamtkunstwerk with political connotations, 2) formal (or transmedial) intermediality: a concept based on formal structures not "specific" to one medium but ...

  4. Study of the L–I–H transition with a new dual gas puff imaging system in the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Shao, L.M.; Liu, S.C.

    2014-01-01

    The intermediate oscillatory phase during the L–H transition, termed the I-phase, is studied in the EAST superconducting tokamak using a newly developed dual gas puff imaging (GPI) system near the L–H transition power threshold. The experimental observations suggest that the oscillatory behaviour...

  5. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Trainer, Melissa G. [Planetary Environments Laboratory, Code 699, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sebree, Joshua A. [NASA Postdoctoral Program Fellow, Code 699, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Heidi Yoon, Y.; Tolbert, Margaret A., E-mail: melissa.trainer@nasa.gov [Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Box 216 UCB, Boulder, CO 80309 (United States)

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  6. Use of Gas Transported Reactants for Uranium Remediation in Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Szecsody, James E.; Zhong, Lirong; Truex, Michael J.; Resch, Charles T.; Williams, Mark D.

    2010-01-01

    This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Because uranium is present in the sediment in multiple phases, changes in U surface phases were evaluated with a series of liquid extractions that dissolve progressively less soluble phases and electron microbe identification of mineral phases. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U transport, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals.

  7. On selection rules and inelastic electron scattering at intermediate energies

    International Nuclear Information System (INIS)

    Nuroh, K.

    1986-12-01

    Correlation effects are included in the Bethe-Born theory for the generalized oscillator strength of inelastic scattering of electrons on atoms. The formulation is such as to allow for the calculation of relative line strengths of multiplets. It is used to analyze line strengths of the 4d → 4f transition in La 3+ and Ce 4+ within LS-coupling. The analysis indicates that only singlet states of the intermediate 4d 9 4f configuration are allowed. Calculated line strengths are compared with a recent core electron energy loss spectra of metallic La and tetravalent CeO 2 and there is an overall qualitative agreement between theory and experiment. (author). 11 refs, 4 figs, 2 tabs

  8. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  9. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate.

    Science.gov (United States)

    Terner, J; Hsieh, C L; Burns, A R; El-Sayed, M A

    1979-07-01

    We have combined microbeam and flow techniques with computer subtraction methods to obtain the resonance Raman spectrum of the short lived batho-intermediate (bK(590)) of bacteriorhodopsin. Comparison of the spectra obtained in (1)H(2)O and (2)H(2)O, as well as the fact that the bK(590) intermediate shows large optical red shifts, suggests that the Schiff base linkage of this intermediate is protonated. The fingerprint region of the spectrum of bK(590), sensitive to the isomeric configuration of the retinal chromophore, does not resemble the corresponding region of the parent bR(570) form. The resonance Raman spectrum of bK(590) as well as the spectra of all of the other main intermediates in the photoreaction cycle of bacteriorhodopsin are discussed and compared with resonance Raman spectra of published model compounds.

  10. Effect of sugar addition on glass transition temperatures of cassava starch with low to intermediate moisture contents.

    Science.gov (United States)

    Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J

    2016-08-01

    This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. High-energy intermediates in protein unfolding characterized by thiol labeling under nativelike conditions.

    Science.gov (United States)

    Malhotra, Pooja; Udgaonkar, Jayant B

    2014-06-10

    A protein unfolding reaction usually appears to be so dominated by a large free energy barrier that identifying and characterizing high-energy intermediates and, hence, dissecting the unfolding reaction into multiple structural transitions have proven to be a challenge. In particular, it has been difficult to identify any detected high-energy intermediate with the dry (DMG) and wet (WMG) molten globules that have been implicated in the unfolding reactions of at least some proteins. In this study, a native-state thiol labeling methodology was used to identify high-energy intermediates, as well as to delineate the barriers to the disruption of side chain packing interactions and to site-specific solvent exposure in different regions of the small protein, single-chain monellin (MNEI). Labeling studies of four single-cysteine-containing variants of MNEI have identified three high-energy intermediates, populated to very low extents under nativelike conditions. A significant dispersion in the opening rates of the cysteine side chains has allowed multiple steps, leading to the loss of side chain packing, to be resolved temporally. A detailed structural analysis of the positions of the four cysteine residue positions, which are buried to different depths within the protein, has suggested a direct correlation with the structure of a DMG, detected in previous studies. It is observed that side chain packing within the core of the protein is maintained, while that at the surface is disrupted, in the DMG. The core of the protein becomes solvent-exposed only in a WMG populated after the rate-limiting step of unfolding at high denaturant concentrations.

  12. Zeolites shape up to modern catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Ramdas, S.; Millward, G.R.

    1983-01-01

    Small molecules, like methanol (CH/sub 3/OH) and ethanol (C/sub 2/H/sub 3/OH), as well as large ones, like hexadecane (C/sub 16/H/sub 34/), the glycerides that make up corn oil (average formula C/sub 57/H/sub 104/O/sub 6/) and jojoba oil, composed of linear esters of C/sub 20/ and C/sub 22/ unsaturated alcohols and acids (average formula C/sub 41/H/sub 78/O/sub 2/) and obtained from Simmondsia chinensis, are each converted by a catalyst known as ZSM-5 to essentially the same relatively narrow spectrum of intermediate-sized hydrocarbons. It so happens that this spectrum of hydrocarbons - containing aliphatics peaking at C/sub 3/ and C/sub 4/ and aromatics in the C/sub 6/ to C/sub 10/ range - corresponds closely to that which makes up petrol (gasoline). ZSM-5 thus enables good quality petrol, and many valuable raw materials such as benzene and toluene, to be produced from a number of non-petroleum raw materials, notable coal and biomass. Many other chemical conversions are also catalysed by this synthetic, silica-rich material ZSM-5, the efficacy of which depends partly upon its property of permitting only those reactants of appropriate size and flexibility to enter into, and to diffuse within, its network of crystal pores. Its efficacy also depends partly upon the fact that the only products formed are those small enough to be accommodated within, and capable of diffusing out of, the intracrystalline pores. The precise magnitude of the pores of molecular dimension, and especially of the cavities generated by intersecting pores, also imposes restrictions upon the size of the transition states through which reactant species must pass, thereby introducing a further constraint upon the otherwise numerous pathways of chemical change open, in principle, to the intermediates generated from the reactants inside the catalyst.

  13. Role of Intermediate Filaments in Vesicular Traffic

    Directory of Open Access Journals (Sweden)

    Azzurra Margiotta

    2016-04-01

    Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  14. Intermediality: Bridge to Critical Media Literacy.

    Science.gov (United States)

    Pailliotet, Ann Watts; Semali, Ladislaus; Rodenberg, Rita K.; Giles, Jackie K.; Macaul, Sherry L.

    2000-01-01

    Defines "intermediality" as the ability to critically read and write with and across varied symbol systems. Relates it to critical media literacy. Offers rationales for teaching critical media literacy in general, and intermedial instruction in particular. Identifies seven guiding intermedial elements: theory, texts, processes, contexts,…

  15. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    Zhu Jingmin

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  16. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    Jing-Min, Zhu

    2008-01-01

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  17. On monosubstituted cyanurate complexes of transition metals

    International Nuclear Information System (INIS)

    Sejfer, G.B.; Tarasova, Z.A.

    1995-01-01

    Complex monosubstituted cyanurates of transition metals K 2 [Eh(H 2 C 3 N 3 O 3 ) 4 ]x4H 2 ) where Eh = Mn, Co, Ni, Cu, Zn, Cd are synthesized and investigated by means of IR - spectroscopy and thermal analysis methods. It is shown that only thermal decomposition of a manganese complex leads to the production of this metal oxide. All other derivatives decompose with the production of a free metal, because decomposition of these substances in argon atmosphere occurs through an intermediate production of their nitrides. An assumption is made that nitroduction of yttrium or rare earth element salts (instead of transition or alkali metal derivatives) as accelerating additions will facilitate increase of polyisocyanurate resin thermal stability. 25 refs.; 2 figs.; 3 tabs

  18. Spin tests for intermediate states in radiative psi'(3684) decay chains

    International Nuclear Information System (INIS)

    Kabir, P.K.; Hey, A.J.G.

    1976-01-01

    Analysis of the multiple angular-correlation functions for the sequential decays psi'(1 - ) → γ + chi, chi → M anti M, where M is a spinless meson, and psi'(1 - ) → γ 1 + chi, chi → γ 2 + psi, psi (1 - ) → l anti l, when the psi' is formed in e + e - collisions, shows that these can unambiguously distinguish between the spin assignments s/sub chi/ = 0, 1 or 2 for the intermediate states occurring in these decays, as well as determine the multipole amplitudes contributing to the radiative transitions. No dynamical assumptions are made beyond the conservation of angular momentum and parity; recoils are fully taken into account

  19. Meson widths and form factor at intermediate momentum transfer in nonperturbative QCD

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Smilga, A.V.

    1982-01-01

    A general method is proposed for the QCD based calculations of form factors at intermediate momentum transfer Q 2 and of the partial widths of the low-lying meson resonances. The basic idea is to use the QCD sum rules for the vertex functions. With this method the pion electromagnetic form factor along with electromagnetic form factors of rho- and A 1 mesons and transition form factors γπ → A 1 at 0.5 2 2 are calculated. The widths rho+2π and A 1 → rhoπ are also determined. +.he results are in a good agreement with experiment

  20. Sharp superconductor-insulator transition in short wires

    International Nuclear Information System (INIS)

    Meidan, Dganit; Oreg, Yuval; Refael, Gil; Smith, Robert A.

    2008-01-01

    Recent experiments on short MoGe nanowires show a sharp superconductor-insulator transition tuned by the normal state resistance of the wire, with a critical resistance of R c ∼ R Q = h/(4e 2 ). These results are at odds with a broad range of theoretical work on Josephson-like systems that predicts a smooth transition, tuned by the value of the resistance that shunts the junction. We develop a self-consistent renormalization group treatment of interacting phase-slips and their dual counterparts, correlated cooper pair tunneling, beyond the dilute approximation. This analysis leads to a very sharp transition with a critical resistance of R Q . The addition of the quasi-particles' resistance at finite temperature leads to a quantitative agreement with the experimental results. This self-consistent renormalization group method should also be applicable to other physical systems that can be mapped onto similar sine-Gordon models, in the previously inaccessible intermediate-coupling regime

  1. Phase transitions in the sdg interacting boson model

    Science.gov (United States)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  2. Phase transitions in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-01-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole (β 2 ), axial hexadecapole (β 4 ) and triaxial (γ 2 ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU ± (3) and the γ 2 -soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  3. Spectroscopic studies of neutral and chemically oxidized species of β-carotene, lycopene and norbixin in CH{sub 2}Cl{sub 2}: Fluorescence from intermediate compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alwis, D.D.D.H [Department of Chemistry, The Open University of Sri Lanka, Nawala (Sri Lanka); Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Chandrika, U.G. [Department of Biochemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka); Jayaweera, P.M., E-mail: pradeep@sjp.ac.lk [Department of Chemistry, University of Sri Jayewardenepura, Nugegoda (Sri Lanka)

    2015-02-15

    Radical cations, dications and oxidized intermediate species of three carotenoids, namely, β-carotene, lycopene and norbixin, were generated in CH{sub 2}Cl{sub 2} solutions via chemical oxidation using anhydrous FeCl{sub 3}. UV–vis, fluorescence and fluorescence-excitation spectroscopic studies were performed to understand and compare the nature of intermediate species generated during the chemical oxidation process and subsequent degradation. The intense emission observed at 550 nm can be assigned to the S{sub 2}→S{sub 0} (1{sup 1}B{sub u}→1{sup 1}A{sub g}) transition of the carotenoid molecules. The 350 nm excitation during the oxidation process for β-carotene, lycopene and norbixin exhibit intense fluorescence peaks at 492 nm, 493 nm and 500 nm, respectively. These peaks are assigned to intermediate peroxy/epoxy compounds of the three molecules that are formed with molecular oxygen prior to the formation of oxidized short-chain stable compounds. - Highlights: • Fluorescence and UV–vis studies on β-carotene, lycopene and norbixin. • Oxidation, induced by FeCl{sub 3} in CH{sub 2}Cl{sub 2} shows blue shifted fluorescence peaks. • Fluorescence peaks were assigned to intermediate peroxy/epoxy forms of carotenoids. • The D0→D3 transition of radical cations are observed in the near IR region.

  4. Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites

    OpenAIRE

    Lee, J. H.; Choi, Woo Seok; Jeen, H.; Lee, H.-J.; Seo, J. H.; Nam, J.; Yeom, M. S.; Lee, H. N.

    2017-01-01

    The topotactic phase transition in SrCoO x (x = 2.5–3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO2.5, however, it has been conjectured t...

  5. Nucleon charge-exchange reactions at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Alford, W.P. [Western Ontario Univ., London, ON (Canada). Dept. of Physics]|[TRIUMF, Vancouver, BC (Canada); Spicer, B.M. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the {sup 14}C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given. 226 refs., 19 figs.

  6. Nucleon charge-exchange reactions at intermediate energy

    International Nuclear Information System (INIS)

    Alford, W.P.; Spicer, B.M.

    1997-01-01

    An historical review of the development of ideas pertaining to Gamow-Teller giant resonances is given, and a description of the emergence of techniques for the study of charge exchange reactions - particularly the technical advances which yielded the recent volume of new date. The present status of charge exchange reactions is reviewed and assessed. Evidence is presented from the 14 C(p,n) reaction for the dominance of the spin-isospin component of the nucleon-nucleon interaction in intermediate energy reactions. In (p,n) reactions the Gamow-Teller giant resonance dominates the spectra, with higher multipoles contributing. By contrast, in (n,p) reactions in the heavier nuclei, the Gamow-Teller transitions are substantially Pauli-blocked and the spin dipole resonance dominates, with contributions from higher multipoles. Discussions of the multipole decomposition process, used to obtain from the data the contributions of the different multipoles, and the contributions of the multipoles, are given

  7. Electron-atom scattering at intermediate energies

    International Nuclear Information System (INIS)

    Kingston, A.E.; Walters, H.R.J.

    1982-01-01

    The problems of intermediate energy scattering are approached from the low and high energy ends. At low intermediate energies difficulties associated with the use of pseudostates and correlation terms are discussed, special consideration being given to nonphysical pseudoresonances. Perturbation methods appropriate to high intermediate energies are described and attempts to extend these high energy approximations down to low intermediate energies are studied. It is shown how the importance of electron exchange effects develops with decreasing energy. The problem of assessing the 'effective completeness' of pseudostate sets at intermediate energies is mentioned and an instructive analysis of a 2p pseudostate approximation to elastic e - -H scattering is given. It is suggested that at low energies the Pauli Exclusion Principle can act to hide short range defects in pseudostate approximations. (author)

  8. Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.

    Science.gov (United States)

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang

    2013-07-01

    The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.

  9. Highly efficient quenching of tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence by ozone using formaldehyde, methylglyoxal, and glyoxalate as co-reactants and its application to ozone sensing.

    Science.gov (United States)

    Gao, Ying; Liu, Xiaoyun; Qi, Wenjing; Gao, Wenyue; Li, Yunhui; Xu, Guobao

    2015-06-21

    Most electrochemiluminescence (ECL) systems require high concentrations of quencher to totally quench ECL. In this study, we found that ozone can quench tris(2,2'-bipyridyl)ruthenium(II) ECL using formaldehyde, methylglyoxal, or glyoxalate as co-reactants at a glassy carbon electrode with remarkable efficiencies even when the concentration of ozone is merely 0.25% of that of the co-reactant. The strongest quenching is observed with the tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL system. The tris(2,2'-bipyridyl)ruthenium(II)/formaldehyde ECL intensities decrease linearly with the ozone concentration over the range of 0.025-25 μM (r = 0.9947) with a limit of detection of 8 nM. The method is more sensitive and faster than most methods. It shows high selectivity in the presence of other ROS or oxidants and some metal ions, such as H2O2, ClO(-), Mg(2+), Ni(2+), etc. The method exhibits high recoveries for the detection of ozone in a ventilated photocopy room.

  10. The intermediate state in Patd

    African Journals Online (AJOL)

    ) Jesus had assumed. (concerning the 'intermediate state') as existing, anything which does not exist. Three basic things about the intermediate state emerge from the parable: (a) Jesus recognizes that at the moment of death, in ipso articulo.

  11. Higher order antibunching in intermediate states

    International Nuclear Information System (INIS)

    Verma, Amit; Sharma, Navneet K.; Pathak, Anirban

    2008-01-01

    Since the introduction of binomial state as an intermediate state, different intermediate states have been proposed. Different nonclassical effects have also been reported in these intermediate states. But till now higher order antibunching is predicted in only one type of intermediate state, which is known as shadowed negative binomial state. Recently we have shown that the higher order antibunching is not a rare phenomenon [P. Gupta, P. Pandey, A. Pathak, J. Phys. B 39 (2006) 1137]. To establish our earlier claim further, here we have shown that the higher order antibunching can be seen in different intermediate states, such as binomial state, reciprocal binomial state, hypergeometric state, generalized binomial state, negative binomial state and photon added coherent state. We have studied the possibility of observing the higher order subpoissonian photon statistics in different limits of intermediate states. The effects of different control parameters on the depth of non classicality have also been studied in this connection and it has been shown that the depth of nonclassicality can be tuned by controlling various physical parameters

  12. Relativistic many-body calculations of magnetic dipole transitions in Be-like ions

    International Nuclear Information System (INIS)

    Safronova, U.I.; Johnson, W.R.; Derevianko, A.

    1999-01-01

    Reduced matrix elements and transition rates are calculated for all magnetic dipole (M1) transitions within 2l2l' configurations and for some 2l3l'-2l2l' transitions in Be-like ions with nuclear charges ranging from Z = 4 to 100. Many-body perturbation theory (MBPT), including the Breit interaction, is used to evaluate retarded M1 matrix elements. The calculations start with a (1s) 2 Dirac-Fock potential and include all possible n = 2 configurations, leading to 4 odd-parity and 6 even-parity states, and some n = 3 configurations. First-order perturbation theory is used to obtain intermediate coupling coefficients. Second-order MBPT is used to determine the matrix elements, which are evaluated for all 11 M1 transitions within 2l2l' configurations and for 35 M1 transitions between 2l3l' and 2l2l' states. The transition energies used in the calculation of oscillator strengths and transition rates are obtained from second-order MBPT. The importance of negative-energy contributions to M1 transition amplitudes is discussed. (orig.)

  13. Offsetting the difficulties of the molecular model of atomic collisions in the intermediate velocity range

    International Nuclear Information System (INIS)

    Errea, L.F.; Mendez, L.; Riera, A.

    1991-01-01

    To offset the defective behavior of the molecular method of atomic collisions at intermediate energies, we propose a method to approximate the probability flux towards continuum and discrete states not included in the molecular basis. We check the degree of accuracy and limitations of the method for a model case where transition probabilities can be calculated exactly. An application to the benchmark case of He + +H + collisions is also presented, and yields complementary information on the properties of this approach

  14. InAs quantum dot growth on AlxGa1−xAs by metalorganic vapor phase epitaxy for intermediate band solar cells

    International Nuclear Information System (INIS)

    Jakomin, R.; Kawabata, R. M. S.; Souza, P. L.; Mourão, R. T.; Pires, M. P.; Micha, D. N.; Xie, H.; Fischer, A. M.; Ponce, F. A.

    2014-01-01

    InAs quantum dot multilayers have been grown using Al x Ga 1−x As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminium composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the ideal theoretical value have been obtained. Optimum size uniformity and density have been achieved by capping the quantum dots with GaAs following the indium-flush method. This approach has also resulted in minimization of crystalline defects in the epilayer structure

  15. Molecular dynamics simulation of bovine pancreatic ribonuclease A-CpA and transition state-like complexes.

    Science.gov (United States)

    Formoso, Elena; Matxain, Jon M; Lopez, Xabier; York, Darrin M

    2010-06-03

    The mechanisms of enzymes are intimately connected with their overall structure and dynamics in solution. Experimentally, it is considerably challenging to provide detailed atomic level information about the conformational events that occur at different stages along the chemical reaction path. Here, theoretical tools may offer new potential insights that complement those obtained from experiments that may not yield an unambiguous mechanistic interpretation. In this study, we apply molecular dynamics simulations of bovine pancreatic ribonuclease A, an archetype ribonuclease, to study the conformational dynamics, structural relaxation, and differential solvation that occur at discrete stages of the transesterification and cleavage reaction. Simulations were performed with explicit solvation with rigorous electrostatics and utilize recently developed molecular mechanical force field parameters for transphosphorylation and hydrolysis transition state analogues. Herein, we present results for the enzyme complexed with the dinucleotide substrate cytidilyl-3',5'-adenosine (CpA) in the reactant, and transphosphorylation and hydrolysis transition states. A detailed analysis of active site structures and hydrogen-bond patterns is presented and compared. The integrity of the overall backbone structure is preserved in the simulations and supports a mechanism whereby His12 stabilizes accumulating negative charge at the transition states through hydrogen-bond donation to the nonbridge oxygens. Lys41 is shown to be highly versatile along the reaction coordinate and can aid in the stabilization of the dianionic transition state, while being poised to act as a general acid catalyst in the hydrolysis step.

  16. Quantum phase transitions between a class of symmetry protected topological states

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Lokman; Jiang, Hong-Chen; Lu, Yuan-Ming; Lee, Dung-Hai

    2015-07-01

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  17. [Therapy of intermediate uveitis].

    Science.gov (United States)

    Doycheva, D; Deuter, C; Zierhut, M

    2014-12-01

    Intermediate uveitis is a form of intraocular inflammation in which the vitreous body is the major site of inflammation. Intermediate uveitis is primarily treated medicinally and systemic corticosteroids are the mainstay of therapy. When recurrence of uveitis or side effects occur during corticosteroid therapy an immunosuppressive treatment is required. Cyclosporine A is the only immunosuppressive agent that is approved for therapy of uveitis in Germany; however, other immunosuppressive drugs have also been shown to be effective and well-tolerated in patients with intermediate uveitis. In severe therapy-refractory cases when conventional immunosuppressive therapy has failed, biologics can be used. In patients with unilateral uveitis or when the systemic therapy is contraindicated because of side effects, an intravitreal steroid treatment can be carried out. In certain cases a vitrectomy may be used.

  18. Atomic layer deposition of Ru thin film using N{sub 2}/H{sub 2} plasma as a reactant

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Eun [Busan Center, Korea Basic Science Institute, 1275 Jisadong, Gangseogu, Busan, 618-230 (Korea, Republic of); Mun, Ki-Yeung; Choi, Sang-Kyung; Park, Ji-Yoon [School of Materials Science and Engineering Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Cheon, Taehoon [Center for Core Research Facilities, Daegu Gyeongbuk Institute of Science and Technology, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu (Korea, Republic of); Kim, Woo Kyoung [School of Chemical Engineering, Yeungnam University, 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Lim, Byoung-Yong; Kim, Sunjung [School of Materials Science and Engineering, University of Ulsan, Mugeo-dong, Nam-go, Ulsan, 680-749 (Korea, Republic of)

    2012-07-31

    Ruthenium (Ru) thin films were grown by atomic layer deposition using IMBCHRu [({eta}6-1-Isopropyl-4-MethylBenzene)({eta}4-CycloHexa-1,3-diene)Ruthenium(0)] as a precursor and a nitrogen-hydrogen mixture (N{sub 2}/H{sub 2}) plasma as a reactant, at the substrate temperature of 270 Degree-Sign C. In the wide range of the ratios of N{sub 2} and total gas flow rates (fN{sub 2}/N{sub 2} + H{sub 2}) from 0.12 to 0.70, pure Ru films with negligible nitrogen incorporation of 0.5 at.% were obtained, with resistivities ranging from {approx} 20 to {approx} 30 {mu} Ohm-Sign cm. A growth rate of 0.057 nm/cycle and negligible incubation cycle for the growth on SiO{sub 2} was observed, indicating the fast nucleation of Ru. The Ru films formed polycrystalline and columnar grain structures with a hexagonal-close-packed phase. Its resistivity was dependent on the crystallinity, which could be controlled by varying the deposition parameters such as plasma power and pulsing time. Cu was electroplated on a 10-nm-thick Ru film. Interestingly, it was found that the nitrogen could be incorporated into Ru at a higher reactant gas ratio of 0.86. The N-incorporated Ru film ({approx} 20 at.% of N) formed a nanocrystalline and non-columnar grain structure with the resistivity of {approx} 340 {mu} Ohm-Sign cm. - Highlights: Black-Right-Pointing-Pointer Atomic layer deposition (ALD) of Ru and N-incorporated Ru film using N{sub 2}/H{sub 2} plasma. Black-Right-Pointing-Pointer The growth rate of 0.057 nm/cycle and negligible incubation cycle. Black-Right-Pointing-Pointer A low resistivity of Ru ({approx} 16.5 {mu} Ohm-Sign cm) at the deposition temperature of 270 Degree-Sign C. Black-Right-Pointing-Pointer Electroplating of Cu on a 10-nm-thick ALD-Ru film.

  19. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants

    International Nuclear Information System (INIS)

    Sen, Mehmet A.; Kowalski, Gregory J.; Fiering, Jason; Larson, Dale

    2015-01-01

    Highlights: • A co-flow microreactor is modeled in flow, reaction/diffusion, and thermal domains. • Analysis shows how arrayed temperature sensors can provide enthalpy of reaction. • Optical plasmonic temperature sensors could be arrayed suitably for calorimetry. • The reactor studied has a volume of 25 nL. - Abstract: A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction

  20. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Mehmet A., E-mail: mehmet.sen@mathworks.com [Northeastern University, Department of Mechanical and Industrial Engineering, 360 Hungtington Avenue, 334 Snell Engineering Center, Boston, MA 02115 (United States); Kowalski, Gregory J., E-mail: gkowal@coe.neu.edu [Northeastern University, Department of Mechanical and Industrial Engineering, 360 Hungtington Avenue, 334 Snell Engineering Center, Boston, MA 02115 (United States); Fiering, Jason, E-mail: jfiering@draper.com [Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139 (United States); Larson, Dale, E-mail: dlarson@draper.com [Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139 (United States)

    2015-03-10

    Highlights: • A co-flow microreactor is modeled in flow, reaction/diffusion, and thermal domains. • Analysis shows how arrayed temperature sensors can provide enthalpy of reaction. • Optical plasmonic temperature sensors could be arrayed suitably for calorimetry. • The reactor studied has a volume of 25 nL. - Abstract: A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction.

  1. RHIZOME AND DISCOURSE OF INTERMEDIALITY

    Directory of Open Access Journals (Sweden)

    Л Н Синельникова

    2017-12-01

    Full Text Available Rhizomaticity is a strategy and a regularity of text creation in a lot of modern commu-nicative discourse practices. What remains urgent is the problem of the systematic interdisciplinary de-scription of texts whose structure and language qualities are determined by the signs of the rhizome - a concept of post-modern philosophy introduced into the scientific field by the French philosopher Gilles Deleuze and the psychotherapist Félix Guattari (Deleuze, Guattari 1996. The rhizome (Fr. rhizome - rootstock, tuber, bulb, mycelium possesses the following qualities: it is non-linear, open and directed towards the unpredictability of discourse transformations through the possibilities of structure development in any direction; there is no centre or periphery in the rhizome, and any discourse element can become ‘a vital structure’ for text-creation. The rhizome does not have non-intersecting boundaries; and in the space of the rhizomatic discourse environment, an increase of reality facets takes place, non-standard associative con-nections appear, multiplication effects are formed, which create new meanings. Rhizomaticity is the quality of texts being organised by the laws of rhizomatic logic (V.F. Sharkov 2007, by the terms of which ‘su-perposition’ of discourses can take place, a transition from one semiotic system to another. The article makes an attempt to correlate the qualities of the rhizome with the signs of the intermedia discourse, which is built on the semiotic interaction of different media. The moving lines of the rhizome, its ‘branch-ing’ qualities can be found in poetic texts, in the evaluating segments of political discourse, in advertising discourse, in internet communications, which represent rhizomorphic environments. An analysis of examples from these spheres has shown that the rhizomatic approach opens new facets of intermediality. The author uses the methods of discourse analysis to prove that the openness and non

  2. Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy

    Science.gov (United States)

    Mallik, S.; Das Gupta, S.; Chaudhuri, G.

    2016-04-01

    This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.

  3. Phase transformation in multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2014-02-28

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  4. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots

    Science.gov (United States)

    Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.

    2017-11-01

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  5. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.

    Science.gov (United States)

    Prado, Silvio J; Marques, Gilmar E; Alcalde, Augusto M

    2017-11-08

    In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of [Formula: see text] theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to  ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.

  6. The origin of nuclear spin and its effect durning intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao; Ma Yugang; Cai Xiangzhou; Wang Hongwei; Fang Deqing; Tian Wendong; Chen Jingen; Guo Wei; Liu Guihua

    2010-01-01

    We use the heavy-ion phase-space exploration (HIPSE) model to discuss the origin of the nuclear spin and its effect in Intermediate energy nuclear reaction. It is found that the spin of projectile depends on the impact parameter of the reaction system heavily, while on the violence lightly by contrast. Some interesting multifragmentation phenomena related to the spin are shown, especially those of phase transition. At the same time, the role of excited energy for multifragmentation is also invested. We find the later plays a more robust role durning the nuclear disintegration. (authors)

  7. Effect of Intermediate Hosts on Emerging Zoonoses.

    Science.gov (United States)

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  8. Phase transitions in the sdg interacting boson model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P. [Grand Accelerateur National d' Ions Lourds, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)], E-mail: isacker@ganil.fr; Bouldjedri, A.; Zerguine, S. [Department of Physics, PRIMALAB Laboratory, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)

    2010-05-15

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ({beta}{sub 2}), axial hexadecapole ({beta}{sub 4}) and triaxial ({gamma}{sub 2}). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)xU(9), the (prolate and oblate) deformed SU{sub {+-}}(3) and the {gamma}{sub 2}-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  9. Kondo resonance in the neutron spectra of intermediate-valent YbAl3

    International Nuclear Information System (INIS)

    Walter, U.; Holland-Moritz, E.; Fisk, Z.

    1991-01-01

    We have measured the dynamic susceptibility of intermediate-valent YbAl 3 by means of cold-neutron scattering. We find two intense magnetic excitations below 40 meV. One of these, with location around 18 meV at helium temperatures, shifts steadily toward 0 meV with increasing temperatures. While crystal field interactions are unable to account for such a behavior, this excitation is in good agreement with a transition from the f ground state to a Kondo resonance as described by the Anderson model. In particular, it definitely excludes a gaplike magnetic response with gap width Δ=30 meV as asserted earlier

  10. HYDROGEN MOLECULE INTERACTION WITH CpCr(CO3 CATALYST

    Directory of Open Access Journals (Sweden)

    T. Spataru

    2013-12-01

    Full Text Available The hydrogen molecule interaction with CpCr (CO3 catalyst has been studied using the B3LYP, B86 functionals and the 6-311++G** , LACV3P basis sets. The best results in the testing calculations of the analyzed reaction have been obtained by using the B86/6-311++G** DFT version giving quite good agreement between experimental and theoretical calculated enthalpies. The dispersion corrected DFT Grimme’s and Head-Gordon and coworkers’functionals have been attempted without any improvement of the results. The free energies of the initial reactants, transition states, intermediate compounds and fi nal products of the typical six-ring bond modifi cation mechanism have been calculated. The energy barriersof the reaction pathways are too high in the DFT approximation.

  11. MONETARY TRANSMISSION CHANNELS IN FLEXIBLE MONETARY AND EXCHANGE RATE REGIMES: THE CASE OF SELECTED TRANSITION ECONOMIES

    OpenAIRE

    JOSIFIDIS, Kosta; PUCAR, Emilija Beker; SUPIĆ, Novica

    2010-01-01

    The paper explores selected monetary transmission channels in the case of transition economies. Namely, an exchange rate channel, an interest rate channel, direct and indirect influence to an exchange rate, are focused. Specific (former) transition economies are differentiated according the combination of implemented monetary and exchange rate regimes: exchange rate as a nominal anchor and rigid exchange rate regimes, exchange rate as a nominal anchor and intermediate exchange rate regimes, a...

  12. Intermediate structure and threshold phenomena

    International Nuclear Information System (INIS)

    Hategan, Cornel

    2004-01-01

    The Intermediate Structure, evidenced through microstructures of the neutron strength function, is reflected in open reaction channels as fluctuations in excitation function of nuclear threshold effects. The intermediate state supporting both neutron strength function and nuclear threshold effect is a micro-giant neutron threshold state. (author)

  13. Superconducting terahertz mixer using a transition-edge microbolometer

    Science.gov (United States)

    Prober, D. E.

    1993-01-01

    We present a new device concept for a mixer element for THz frequencies. This uses a superconducting transition-edge microbridge biased at the center of its superconducting transition near 4.2 K. It is fed from an antenna or waveguide structure. Power from a local oscillator and an RF signal produce a temperature and resulting resistance variation at the difference frequency. The new aspect is the use of a very short bridge in which rapid (less than 0.1 ns) outdiffusion of hot electrons occurs. This gives large intermediate frequency (IF) response. The mixer offers about 4 GHz IF bandwidth, about 80 ohm RF resistive impedance, good match to the IF amplifier, and requires only 1-20 nW of local oscillator power. The upper RF frequency is determined by antenna or waveguide properties. Predicted mixer conversion efficiency is 1/8, and predicted double-sideband receiver noise temperatures are 260 and 90 K for transition widths of 0.1 and 0.5 Tc, respectively.

  14. A chemometric method to identify enzymatic reactions leading to the transition from glycolytic oscillations to waves

    Science.gov (United States)

    Zimányi, László; Khoroshyy, Petro; Mair, Thomas

    2010-06-01

    In the present work we demonstrate that FTIR-spectroscopy is a powerful tool for the time resolved and noninvasive measurement of multi-substrate/product interactions in complex metabolic networks as exemplified by the oscillating glycolysis in a yeast extract. Based on a spectral library constructed from the pure glycolytic intermediates, chemometric analysis of the complex spectra allowed us the identification of many of these intermediates. Singular value decomposition and multiple level wavelet decomposition were used to separate drifting substances from oscillating ones. This enabled us to identify slow and fast variables of glycolytic oscillations. Most importantly, we can attribute a qualitative change in the positive feedback regulation of the autocatalytic reaction to the transition from homogeneous oscillations to travelling waves. During the oscillatory phase the enzyme phosphofructokinase is mainly activated by its own product ADP, whereas the transition to waves is accompanied with a shift of the positive feedback from ADP to AMP. This indicates that the overall energetic state of the yeast extract determines the transition between spatially homogeneous oscillations and travelling waves.

  15. Intermediate algebra & analytic geometry

    CERN Document Server

    Gondin, William R

    1967-01-01

    Intermediate Algebra & Analytic Geometry Made Simple focuses on the principles, processes, calculations, and methodologies involved in intermediate algebra and analytic geometry. The publication first offers information on linear equations in two unknowns and variables, functions, and graphs. Discussions focus on graphic interpretations, explicit and implicit functions, first quadrant graphs, variables and functions, determinate and indeterminate systems, independent and dependent equations, and defective and redundant systems. The text then examines quadratic equations in one variable, system

  16. Transition quantique entre états électroniques de systèmes bi-couche

    Science.gov (United States)

    Pasquier, Vincent

    The possible phase transitions when two layers at filling factor νt=1 are gradually separated are studied in this article. In the bosonic case the system should undergo a pairing transition from a Fermi liquid to an incompressible state. In the Fermionic case, the state evolves from an incompressible (1,1,1) state to a Fermi liquid. It is speculated that there is an intermediate phase involving charge two quasiparticles. To cite this article: V. Pasquier, C. R. Physique 3 (2002) 709-715.

  17. Field-induced transitions in DySb

    International Nuclear Information System (INIS)

    Brun, T.O.; Lander, G.H.; Korty, F.W.; Kouvel, J.S.

    1974-01-01

    The NaCl-structured compound DySb, which in zero field transforms abruptly at T/sub N/ approximately 9.5 0 K to a Type-II antiferromagnetic (A) state with a nearly tetragonal lattice distortion, was previously found to exhibit rapid field-induced changes in magnetization at 1.5 0 K. The field-induced transitions in a DySb crystal have been studied by neutron diffraction and magnetization measurements in fields up to approximately 60 kOe applied parallel to each of the principal axes. In the broken bracket 100 broken bracket case, the transition from the A to an intermediate ferrimagnetic (Q) state is first-order at 4.2 0 K (critical field H/sub c/ approximately 21 kOe) but is continuous from approximately 6 0 K up to T/sub N/: as H/sub c/ → 0. The Q-to-paramagnetic (P) transition is rapid but continuous at 4.2 0 K (H/sub c/ approximately 40 kOe) and becomes broad as T/sub N/ is approached. In the broken bracket 110 broken bracket case the A-to-Q transition remains essentially first-order from 4.2 0 K (H/sub c/ approximately 15 kOe) up to T/sub N/; above T/sub N/ rapid P-to-Q transitions occur at very high fields. The magnetic structure of the Q state is found to be that of HoP. (U.S.)

  18. The reactants equation of state for the tri-amino-tri-nitro-benzene (TATB) based explosive PBX 9502

    Science.gov (United States)

    Aslam, Tariq D.

    2017-07-01

    The response of high explosives (HEs), due to mechanical and/or thermal insults, is of great importance for both safety and performance. A major component of how an HE responds to these stimuli stems from its reactant equation of state (EOS). Here, the tri-amino-tri-nitro-benzene based explosive PBX 9502 is investigated by examining recent experiments. Furthermore, a complete thermal EOS is calibrated based on the functional form devised by Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. It is found, by comparing to earlier calibrations, that a variety of thermodynamic data are needed to sufficiently constrain the EOS response over a wide range of thermodynamic state space. Included in the calibration presented here is the specific heat as a function of temperature, isobaric thermal expansion, and shock Hugoniot response. As validation of the resulting model, isothermal compression and isentropic compression are compared with recent experiments.

  19. Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants

    Directory of Open Access Journals (Sweden)

    Lapin Alexei

    2011-05-01

    Full Text Available Abstract Background In this paper we apply a novel agent-based simulation method in order to model intracellular reactions in detail. The simulations are performed within a virtual cytoskeleton enriched with further crowding elements, which allows the analysis of molecular crowding effects on intracellular diffusion and reaction rates. The cytoskeleton network leads to a reduction in the mobility of molecules. Molecules can also unspecifically bind to membranes or the cytoskeleton affecting (i the fraction of unbound molecules in the cytosol and (ii furthermore reducing the mobility. Binding of molecules to intracellular structures or scaffolds can in turn lead to a microcompartmentalization of the cell. Especially the formation of enzyme complexes promoting metabolic channeling, e.g. in glycolysis, depends on the co-localization of the proteins. Results While the co-localization of enzymes leads to faster reaction rates, the reduced mobility decreases the collision rate of reactants, hence reducing the reaction rate, as expected. This effect is most prominent in diffusion limited reactions. Furthermore, anomalous diffusion can occur due to molecular crowding in the cell. In the context of diffusion controlled reactions, anomalous diffusion leads to fractal reaction kinetics. The simulation framework is used to quantify and separate the effects originating from molecular crowding or the reduced mobility of the reactants. We were able to define three factors which describe the effective reaction rate, namely f diff for the diffusion effect, f volume for the crowding, and f access for the reduced accessibility of the molecules. Conclusions Molecule distributions, reaction rate constants and structural parameters can be adjusted separately in the simulation allowing a comprehensive study of individual effects in the context of a realistic cell environment. As such, the present simulation can help to bridge the gap between in vivo and in vitro

  20. Phase transitions in the $sdg$ interacting boson model

    OpenAIRE

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2009-01-01

    19 pages, 5 figures, submitted to Nuclear Physics A; A geometric analysis of the $sdg$ interacting boson model is performed. A coherent-state is used in terms of three types of deformation: axial quadrupole ($\\beta_2$), axial hexadecapole ($\\beta_4$) and triaxial ($\\gamma_2$). The phase-transitional structure is established for a schematic $sdg$ hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical ${\\rm U}(5)\\otimes{\\rm U}(9)$, the (prolate and ob...

  1. FINANCIAL INTERMEDIATION, ENTREPRENEURSHIP AND ECONOMIC GROWTH

    OpenAIRE

    Wenli Cheng

    2007-01-01

    This paper presents a simple general equilibrium model of financial intermediation, entrepreneurship and economic growth. In this model, the role of financial intermediation is to pool savings and to lend the pooled funds to an entrepreneur, who in turn invests the funds in a new production technology. The adoption of the new production technology improves individual real income. Thus financial intermediation promotes economic growth through affecting individuals’ saving behaviour and enabl...

  2. Some Intermediate-Level Violin Concertos.

    Science.gov (United States)

    Abramson, Michael

    1997-01-01

    Contends that many violin students attempt difficult concertos before they are technically or musically prepared. Identifies a variety of concertos at the intermediate and advanced intermediate-level for students to study and master before attempting the advanced works by Bach and Mozart. Includes concertos by Vivaldi, Leclair, Viotti, Haydn,…

  3. Physical properties of Pd and Al transition metals and Pd-Al binary metal alloy investigated by using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Coruh, A.; Uludogan, M.; Tomak, M.; Cagin, T.

    2002-01-01

    In this study, physical properties, such as Pair Distribution Function g(r), Structure Factor S(k)''1'',''4, Diffusion Coefficient D''2''.''4, Intermediate Scattering function S(k,t)''3'',''4 and Dynamical Structure Factor S(k,w)''3'',''4 of some transition metals and metal alloys are investigated by using molecular dynamics simulation method. The simulation is specified for Pd, Al transition metals and Pd-Al binary metal alloys in the liquid form for different concentrations and at various temperatures by using Quantum Sutton-Chen (Q-SC) inter atomic potential. Intermediate scattering function and dynamical structure factor are calculated for various values of wave vector k. Results are in good agreement with published data''1'',''3'',''4

  4. Diamond to β-Sn phase transition of silicon under hydrostatic and nonhydrostatic compressions

    International Nuclear Information System (INIS)

    Durandurdu, Murat

    2008-01-01

    We have carried out constant pressure ab initio simulations to study the pressure-induced phase transition of silicon. The diamond to β-Sn phase change under hydrostatic pressure is successfully observed in the simulation. The transformation is based on a fourfold coordinated tetragonal intermediate state having the space group I4 1 /amd. The energy barrier for the transformation is calculated to be about 0.35 eV/atom. Additionally, we investigate the influence of nonhydrostatic compressions on the phase transition of silicon and find that up to 20% stress deviations, silicon converts to a β-Sn structure with a reduced transition pressure. The triaxial compressions cause more reduction in the transition pressure than the uniaxial compressions. The transformation mechanism is practically identical under both hydrostatic and nonhydrostatic conditions

  5. The functional significance of C3-C4 intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives.

    Science.gov (United States)

    Vogan, Patrick J; Frohlich, Michael W; Sage, Rowan F

    2007-10-01

    We demonstrate for the first time the presence of species exhibiting C3-C4 intermediacy in Heliotropium (sensu lato), a genus with over 100 C3 and 150 C4 species. CO2 compensation points (Gamma) and photosynthetic water-use efficiencies (WUEs) were intermediate between C3 and C4 values in three species of Heliotropium: Heliotropium convolvulaceum (Gamma = 20 micromol CO2 mol(-1) air), Heliotropium racemosum (Gamma = 22 micromol mol(-1)) and Heliotropium greggii (Gamma = 17 micromol mol(-1)). Heliotropium procumbens may also be a weak C3-C4 intermediate based on a slight reduction in Gamma (48.5 micromol CO2 mol(-1)) compared to C3Heliotropium species (52-60 micromol mol(-1)). The intermediate species H. convolvulaceum, H. greggii and H. racemosum exhibited over 50% enhancement of net CO2 assimilation rates at low CO2 levels (200-300 micromol mol(-1)); however, no significant differences in stomatal conductance were observed between the C3 and C3-C4 species. We also assessed the response of Gamma to variation in O2 concentration for these species. Heliotropium convolvulaceum, H. greggii and H. racemosum exhibited similar responses of Gamma to O2 with response slopes that were intermediate between the responses of C3 and C4 species below 210 mmol O2 mol(-1) air. The presence of multiple species displaying C3-C4 intermediate traits indicates that Heliotropium could be a valuable new model for studying the evolutionary transition from C3 to C4 photosynthesis.

  6. Electronic properties and phase transitions in low-dimensional semiconductors

    International Nuclear Information System (INIS)

    Panich, A M

    2008-01-01

    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX 2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, nonlinear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX 2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. The electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed. (topical review)

  7. Effective Transition (Project E.T.) Final Evaluation Report, 1992-93. OER Report.

    Science.gov (United States)

    Musante, Patricia

    This report presents an evaluation of the Effective Transition (ET) project, an Elementary and Secondary Education Act Title VII-funded project in its second year of operation at Lafayette High School and Pershing Intermediate School in Brooklyn, New York. The project served a total of 300 students of limited English proficiency who were native…

  8. Welding. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Vincent, Kenneth

    Several intermediate performance objectives and corresponding criterion measures are listed for each of nine terminal objectives for an intermediate welding course. The materials were developed for a 36-week (3 hours daily) course designed to prepare the student for employment in the field of welding. Electric welding and specialized (TIG & MIG)…

  9. Analysis of the electronic structures of 3d transition metals doped CuGaS2 based on DFT calculations

    International Nuclear Information System (INIS)

    Zhao Zongyan; Zhou Dacheng; Yi Juan

    2014-01-01

    3d transition metals doped CuGaS 2 are considered as possible absorbing material candidates for intermediated band thin film solar cells. The electronic structure and optical properties of 3d transition metals doped CuGaS 2 are investigated by using density functional theory calculations with the GGA + U method in the present work. The doping with 3d transition metals does not obviously change the crystal structure, band gap, and optical absorption edge of the CuGaS 2 host. However, in the case of CuGa 1−x TM x S 2 (TM = Ti, V, Cr, Fe, and Ni), there is at least one distinct isolated impurity energy level in the band gap, and the optical absorption is enhanced in the ultraviolet-light region. Therefore, these materials are ideal absorber material candidates for intermediated band thin film solar cells. The calculated results are very well consistent with experimental observations, and could better explain them. (semiconductor materials)

  10. Spatial and kinematic distributions of transition populations in intermediate redshift galaxy clusters

    International Nuclear Information System (INIS)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.

    2014-01-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters have similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.

  11. The role of solid-solid phase transitions in mantle convection

    Science.gov (United States)

    Faccenda, Manuele; Dal Zilio, Luca

    2017-01-01

    With changing pressure and temperature conditions, downwelling and upwelling crustal and mantle rocks experience several solid-solid phase transitions that affect the mineral physical properties owing to structural changes in the crystal lattice and to the absorption or release of latent heat. Variations in density, together with phase boundary deflections related to the non-null reaction slope, generate important buoyancy forces that add to those induced by thermal perturbations. These buoyancy forces are proportional to the density contrast between reactant and product phases, their volume fraction, the slope and the sharpness of the reaction, and affect the style of mantle convection depending on the system composition. In a homogeneous pyrolitic mantle there is little tendency for layered convection, with slabs that may stagnate in the transition zone because of the positive buoyancy caused by post-spinel and post-ilmenite reactions, and hot plumes that are accelerated by phase transformations in the 600-800 km depth range. By adding chemical and mineralogical heterogeneities as on Earth, phase transitions introduce bulk rock and volatiles filtering effects that generate a compositional gradient throughout the entire mantle, with levels that are enriched or depleted in one or more of these components. Phase transitions often lead to mechanical softening or hardening that can be related to a different intrinsic mechanical behaviour and volatile solubility of the product phases, the heating or cooling associated with latent heat, and the transient grain size reduction in downwelling cold material. Strong variations in viscosity would enhance layered mantle convection, causing slab stagnation and plume ponding. At low temperatures and relatively dry conditions, reactions are delayed due to the sluggish kinetics, so that non-equilibrium phase aggregates can persist metastably beyond the equilibrium phase boundary. Survival of low-density metastable olivine

  12. Order in nuclei and transition to chaos

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1995-01-01

    Based on the statement that there is order in the large and chaos in the small components of nuclear wave functions, the order-to-chaos transition is treated as a transition from the large to small components of wave functions. Therefore, experimental investigation of fragmentation of the many-quasiparticle and quasiparticle-phonon states plays a decisive role. The mixing of closely-spaced states having the same K π in the doubly even well-deformed nuclei is investigated. The quasiparticle-phonon interaction is responsible for fragmentation of the quasiparticle and phonon states and therefore for their mixing. Experimental investigation of the strength distribution of the many-quasiparticle and quasiparticle-phonon states should discover a new region of regularity in nuclei at intermediate excitation energies. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. (author). 21 refs., 1 fig., 1 tab

  13. Order in nuclei and transition to chaos

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1995-01-01

    Based on the statement that there is order in the large and chaos in the small components of nuclear wave functions, the order-to-chaos transition is treated as a transition from the large to small components of wave functions. Therefore, experimental investigation of fragmentation of the many-quasiparticle and quasiparticle-phonon states a decisive role. The mixing of closely-spaced states having the same K π in the doubly even well-deformed nuclei is investigated. The quasiparticle-phonon interaction is responsible for fragmentation of the quasiparticle and phonon states and therefore for their mixing. Experimental investigation of the strength distribution of the many-quasiparticle and quasiparticle-phonon states should discover a new region of regularity in nuclei at intermediate excitation energies. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. (author). 21 refs., 1 fig., 1 tab

  14. Money distribution with intermediation

    OpenAIRE

    Teles, Caio Augusto Colnago

    2013-01-01

    This pap er analyzes the distribution of money holdings in a commo dity money search-based mo del with intermediation. Intro ducing heterogeneity of costs to the Kiyotaki e Wright ( 1989 ) mo del, Cavalcanti e Puzzello ( 2010) gives rise to a non-degenerated distribution of money. We extend further this mo del intro ducing intermediation in the trading pro cess. We show that the distribution of money matters for savings decisions. This gives rises to a xed p oint problem for the ...

  15. Reformulation of time-convolutionless mode-coupling theory near the glass transition

    Science.gov (United States)

    Tokuyama, Michio

    2017-10-01

    The time-convolutionless mode-coupling theory (TMCT) recently proposed is reformulated under the condition that one of two approximations, which have been used to formulate the original TMCT in addition to the MCT approximations done on a derivation of nonlinear memory function in terms of the intermediate-scattering function, is not employed because it causes unphysical results for intermediate times. The improved TMCT equation is then derived consistently under another approximation. It is first checked that the ergodic to non-ergodic transition obtained by a new equation is exactly the same as that obtained by an old one because the long-time dynamics of both equations coincides with each other. However, it is emphasized that a difference between them appears in the intermediate-time dynamics of physical quantities. Such a difference is explored numerically in the dynamics of a non-Gaussian parameter by employing the Percus-Yevick static structure factor to calculate the nonlinear memory function.

  16. Search for intermediate vector bosons

    International Nuclear Information System (INIS)

    Klajn, D.B.; Rubbia, K.; Meer, S.

    1983-01-01

    Problem of registration and search for intermediate vector bosons is discussed. According to weak-current theory there are three intermediate vector bosons with +1(W + )-1(W - ) and zero (Z 0 ) electric charges. It was suggested to conduct the investigation into particles in 1976 by cline, Rubbia and Makintair using proton-antiproton beams. Major difficulties of the experiment are related to the necessity of formation of sufficient amount of antiparticles and the method of antiproton beam ''cooling'' for the purpose of reduction of its random movements. The stochastic method was suggested by van der Meer in 1968 as one of possible cooling methods. Several large detectors were designed for searching intermediate vector bosons

  17. Kinetics studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1994-04-01

    The objective of this contract was the study of state-to-state, electronic energy transfer reactions relevant to the excited state chemistry observed in discharges. We studied deactivation reactions and excitation transfer in collisions of excited states of xenon and krypton atoms with Ar, Kr, Xe and chlorine. The reactant states were excited selectively in two-photon transitions using tunable u.v. and v.u.v. lasers. Excited states produced by the collision were observed by their fluorescence. Reaction rates were measured by observing the time dependent decay of signals from reactant and product channels. In addition we measured interaction potentials of the reactants by laser spectroscopy where the laser induced fluorescence or ionization is measured as a function of laser wavelength (excitation spectra) or by measuring fluorescence spectra at fixed laser frequencies with monochromators. The spectra were obtained in the form of either lineshapes or individual lines from rovibrational transitions of bound states. Our research then required several categories of experiments in order to fully understand a reaction process: 1. High resolution laser spectroscopy of bound molecules or lineshapes of colliding pairs is used to determine potential curves for reactants. 2. Direct measurements of state-to-state reaction rates were measured by studying the time dependent loss of excited reactants and the time dependent formation of products. 3. The energy selectivity of a laser can be used to excite reactants on an excited surface with controlled internuclear configurations. For free states of reactants (as exist in a gas cell) this has been termed laser assisted reactions, while for initially bound states (as chemically bound reactants or dimers formed in supersonic beams) the experiments have been termed photo-fragmentation spectroscopy

  18. Influence of Reynolds Number on the Unsteady Aerodynamics of Integrated Aggressive Intermediate Turbine Duct

    Science.gov (United States)

    Liu, Hongrui; Liu, Jun; Ji, Lucheng; Du, Qiang; Liu, Guang; Wang, Pei

    2018-06-01

    The ultra-high bypass ratio turbofan engine attracts more and more attention in modern commercial engine due to advantages of high efficiency and low Specific Fuel Consumption (SFC). One of the characteristics of ultra-high bypass ratio turbofan is the intermediate turbine duct which guides the flow leaving high pressure turbine (HPT) to low pressure turbine (LPT) at a larger diameter, and this kind of design will lead to aggressive intermediate turbine duct (AITD) design concept. Thus, it is important to design the AITD without any severe loss. From the unsteady flow's point of view, in actual operating conditions, the incoming wake generated by HPT is unsteady which will take influence on boundary layer's transition within the ITD and LPT. In this paper, the three-dimensional unsteady aerodynamics of an AITD taken from a real engine is studied. The results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX (RANS simulation with transitional model), are critically evaluated against experimental data. After validation of the numerical model, the physical mechanisms inside the flow channel are analyzed, with an aim to quantify the sensitivities of different Reynolds number effect on both the ITD and LPT nozzle. Some general physical mechanisms can be recognized in the unsteady environment. It is recognized that wake characteristics plays a crucial role on the loss within both the ITD and LPT nozzle section, determining both time-averaged and time-resolved characteristics of the flow field. Meanwhile, particular attention needs to be paid to the unsteady effect on the boundary layer of LPT nozzle's suction side surface.

  19. The mechanisms of transitions from natural convection and nucleate boiling to nucleate boiling or film boiling caused by rapid depressurization in highly subcooled water

    International Nuclear Information System (INIS)

    Sakurai, Akira; Shiotsu, Masahiro; Hata, Koichi; Fukuda, Katsuya

    1999-01-01

    The mechanisms of transient boiling process including the transitions to nucleate boiling or film boiling from initial heat fluxes, q in , in natural convection and nucleate boiling regimes caused by exponentially decreasing system pressure with various decreasing periods, τ p on a horizontal cylinder in a pool of highly subcooled water were clarified. The transient boiling processes with different characteristics were divided into three groups for low and intermediate q in in natural convection regime, and for high q in in nucleate boiling regime. The transitions at maximum heat fluxes from low q in in natural convection regime to stable nucleate boiling regime occurred independently of the τ p values. The transitions from intermediate and high q in values in natural convection and nucleate boiling to stable film boiling occurred for short τ p values, although those to stable nucleate boiling occurred for tong τ p values. The CHF and corresponding surface superheat values at which the transition to film boiling occurred were considerably lower and higher than the steady-state values at the corresponding pressure during the depressurization respectively. It was suggested that the transitions to stable film boiling at transient critical heat fluxes from intermediate q in in natural convection and from high q in in nucleate boiling for short τ p occur due to explosive-like heterogeneous spontaneous nucleation (HSN). The photographs of typical vapor behavior due to the HSN during depressurization from natural convection regime for short τ p were shown. (author)

  20. Validation of intermediate end points in cancer research.

    Science.gov (United States)

    Schatzkin, A; Freedman, L S; Schiffman, M H; Dawsey, S M

    1990-11-21

    Investigations using intermediate end points as cancer surrogates are quicker, smaller, and less expensive than studies that use malignancy as the end point. We present a strategy for determining whether a given biomarker is a valid intermediate end point between an exposure and incidence of cancer. Candidate intermediate end points may be selected from case series, ecologic studies, and animal experiments. Prospective cohort and sometimes case-control studies may be used to quantify the intermediate end point-cancer association. The most appropriate measure of this association is the attributable proportion. The intermediate end point is a valid cancer surrogate if the attributable proportion is close to 1.0, but not if it is close to 0. Usually, the attributable proportion is close to neither 1.0 nor 0; in this case, valid surrogacy requires that the intermediate end point mediate an established exposure-cancer relation. This would in turn imply that the exposure effect would vanish if adjusted for the intermediate end point. We discuss the relative advantages of intervention and observational studies for the validation of intermediate end points. This validation strategy also may be applied to intermediate end points for adverse reproductive outcomes and chronic diseases other than cancer.

  1. Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates

    Directory of Open Access Journals (Sweden)

    Ramesh N. Patel

    2004-01-01

    Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.

  2. Simplifying biochemical models with intermediate species

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    techniques, we study systematically the effects of intermediate, or transient, species in biochemical systems and provide a simple, yet rigorous mathematical classification of all models obtained from a core model by including intermediates. Main examples include enzymatic and post-translational modification...... systems, where intermediates often are considered insignificant and neglected in a model, or they are not included because we are unaware of their existence. All possible models obtained from the core model are classified into a finite number of classes. Each class is defined by a mathematically simple...... canonical model that characterizes crucial dynamical properties, such as mono- and multistationarity and stability of steady states, of all models in the class. We show that if the core model does not have conservation laws, then the introduction of intermediates does not change the steady...

  3. Brillouin scattering, DSC, dielectric and X-ray diffraction studies of phase transitions in antiferroelectric PbHfO{sub 3}:Sn

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, Mirosław, E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Kim, Tae Hyun [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Gągor, Anna [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Jankowska-Sumara, Irena [Institute of Physics, Pedagogical University, ul. Podchorążych 2, 30-084 Kraków (Poland); Majchrowski, Andrzej [Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa (Poland); Kojima, Seiji [Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-02-15

    Highlights: • Phase transition mechanisms were studied in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3.} • Acoustic phonons showed anomalies at 472 and 426 K due to phase transitions. • Brillouin data showed evidence for presence of polar clusters in paraelectric phase. • An order-disorder mechanism of the PE to AFE2 transition was proved. - Abstract: Specific heat, dielectric, powder X-ray diffraction and Brillouin scattering studies of phase transitions in antiferroelectric PbHf{sub 0.975}Sn{sub 0.025}O{sub 3} crystal were performed. The specific heat data revealed clear anomalies at T{sub 1} = 473.5 and T{sub 2} = 426.3 K on cooling, which could be attributed to onset of first order phase transitions from the paraelectric (PE) phase to an intermediate antiferroelectric phase (AFE2) and the AFE2 phase to another antiferroelectric phase (AFE1), respectively. The estimated entropy changes at T{sub 1} and T{sub 2} pointed to mainly an order-disorder and displacive character of these transitions, respectively. X-ray diffraction data showed a complex superstructure of the intermediate phase with a = 11.895(6) Å, b = 11.936(4) Å, c = 8.223(3) Å at 453 K. Brillouin studies revealed pronounced softening of longitudinal acoustic (LA) mode in the PE phase associated with its broadening. The broadening and softening exhibited maximum values at T{sub 1}. Additional acoustic anomalies, that is, abrupt frequency shifts for LA and transverse acoustic (TA) modes were also observed at T{sub 2}. Brillouin scattering data also showed presence of a broad central peak (CP) that exhibited highest intensity at T{sub 1}. The observed temperature dependences of acoustic modes and CP indicate order-disorder character of the FE to AFE2 phase transition and importance of polar precursor clusters in the PE phase. The obtained data also suggest that the intermediate antiferroelectric phases in Sn{sup 4+} doped PbHfO{sub 3} and PbZrO{sub 3} may have very similar structures

  4. Reactions of stabilized Criegee Intermediates

    Science.gov (United States)

    Vereecken, Luc; Harder, Hartwig; Novelli, Anna

    2014-05-01

    Carbonyl oxides (Criegee intermediates) were proposed as key intermediates in the gas phase ozonolysis of alkenes in 1975 by Rudolf Criegee. Despite the importance of ozonolysis in atmospheric chemistry, direct observation of these intermediates remained elusive, with only indirect experimental evidence for their role in the oxidation of hydrocarbons, e.g. through scavenging experiments. Direct experimental observation of stabilized CI has only been achieved since 2008. Since then, a concerted effort using experimental and theoretical means is in motion to characterize the chemistry and kinetics of these reactive intermediates. We present the results of theoretical investigations of the chemistry of Criegee intermediates with a series of coreactants which may be of importance in the atmosphere, in experimental setups, or both. This includes the CI+CI cross-reaction, which proceeds with a rate coefficient near the collision limit and can be important in experimental conditions. The CI + alkene reactions show strong dependence of the rate coefficient depending on the coreactants, but is generally found to be rather slow. The CI + ozone reaction is sufficiently fast to occur both in experiment and the free troposphere, and acts as a sink for CI. The reaction of CI with hydroperoxides, ROOH, is complex, and leads both to the formation of oligomers, as to the formation of reactive etheroxides, with a moderately fast rate coefficient. The importance of these reactions is placed in the context of the reaction conditions in different atmospheric environments ranging from unpolluted to highly polluted.

  5. Aql X-1 transition towards the soft (banana) state accompanied by radio/NIR detection

    Science.gov (United States)

    Sivakoff, G. R.; Miller-Jones, J.; Fox, O.; Linares, M.; Altamirano, D.; Russell, D.

    2009-11-01

    The currently active neutron star transient and atoll source Aql X-1 (Linares et al., ATEL #2288) has begun the transition from the hard (extreme island) state to the soft (banana) state (Rodriguez et al. ATEL #2299). This transition likely began around 2009 Nov 15 (MJD = 55150). The latest RXTE PCA observation (2009 Nov 17, MJD=55152.17+/-0.02, 2-60 keV fractional rms variability amplitude of ~11% for 0.1-10 Hz) indicates that the source is in the intermediate (island) state.

  6. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides

    DEFF Research Database (Denmark)

    Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan

    2013-01-01

    The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains t...

  7. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  8. A transition-metal-free synthesis of arylcarboxyamides from aryl diazonium salts and isocyanides.

    Science.gov (United States)

    Xia, Zhonghua; Zhu, Qiang

    2013-08-16

    A transition-metal-free carboxyamidation process, using aryl diazonium tetrafluoroborates and isocyanides under mild conditions, has been developed. This novel conversion was initiated by a base and solvent induced aryl radical, followed by radical addition to isocyanide and single electron transfer (SET) oxidation, affording the corresponding arylcarboxyamide upon hydration of the nitrilium intermediate.

  9. Spin observables at intermediate energies: a tool in viewing the nucleus

    International Nuclear Information System (INIS)

    McClelland, J.B.

    1986-01-01

    This paper attempts to summarize some of the advances made in intermediate nuclear physics through measurements of spin observables, notably in the range of bombarding energies from 100 to 1000 MeV. Relative to measurements of cross section, spin observables offer a highly selective filter in viewing the nucleus. Their general utility is found in their sensitivity to particular nuclear transitions and is further augmented by their simple connections to the NN force. The advantage of higher energies is apparent from the dominance of single-step mechanisms even at large energy losses where general nuclear spin responses may be made. Experimentally, this is an energy range where efficient, high-analyzing-power polarimeters can be coupled with high resolution detection techniques. 29 refs., 5 figs

  10. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Vollertsen, Jes; Hvitved-Jacobsen, Thorkild

    2003-01-01

    A method for determination of kinetics and stoichiometry of chemical sulfide oxidation by dissolved oxygen (DO) in wastewater is presented. The method was particularly developed to investigate chemical sulfide oxidation in wastewater of sewer networks at low DO concentrations. The method is based...... be considered constant during the course of the experiments although intermediates accumulated. This was explained by an apparent slow oxidation rate of the intermediates. The method was capable of determining kinetics and stoichiometry of chemical sulfide oxidation at DO concentrations lower than 1 g of O2 m...... on continuous measurement of the reactants allowing the kinetics to be determined at varying reactant concentrations during the course of the experiment. The kinetics determined was simulated by a rate equation. The precision of the method was assessed in terms of the standard deviation of the kinetic...

  11. The intermediate endpoint effect in logistic and probit regression

    Science.gov (United States)

    MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM

    2010-01-01

    Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted

  12. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue.

    Science.gov (United States)

    Egea, Isabel; Bian, Wanping; Barsan, Cristina; Jauneau, Alain; Pech, Jean-Claude; Latché, Alain; Li, Zhengguo; Chervin, Christian

    2011-08-01

    There are several studies suggesting that tomato (Solanum lycopersicum) chromoplasts arise from chloroplasts, but there is still no report showing the fluorescence of both chlorophylls and carotenoids in an intermediate plastid, and no video showing this transition phase. Pigment fluorescence within individual plastids, isolated from tomato fruit using sucrose gradients, was observed at different ripening stages, and an in situ real-time recording of pigment fluorescence was performed on live tomato fruit slices. At the mature green and red stages, homogenous fractions of chloroplasts and chromoplasts were obtained, respectively. At the breaker stage, spectral confocal microscopy showed that intermediate plastids contained both chlorophylls and carotenoids. Furthermore, an in situ real-time recording (a) showed that the chloroplast to chromoplast transition was synchronous for all plastids of a single cell; and (b) confirmed that all chromoplasts derived from pre-existing chloroplasts. These results give details of the early steps of tomato chromoplast biogenesis from chloroplasts, with the formation of intermediate plastids containing both carotenoids and chlorophylls. They provide information at the sub-cellular level on the synchronism of plastid transition and pigment changes.

  13. Adolescents' Use of Basic, Intermediate, and Advanced Device Types for Vaping.

    Science.gov (United States)

    Pepper, Jessica K; MacMonegle, Anna J; Nonnemaker, James M

    2017-12-23

    Advanced models of electronic vaping products (EVPs) likely pose a greater risk to adolescent health than basic or intermediate models because advanced models deliver nicotine more effectively and heat e-liquid to higher temperatures, producing more harmful chemical emissions. However, little is known about adolescents' risk factors for using different device types. We used social media to recruit an online sample of 1,508 U.S. adolescents aged 15-17 who reported past 30-day use of e-cigarettes. We assessed tobacco use, beliefs and knowledge about EVPs, and EVP use behavior, including the device type participants use most frequently. We used multinomial logistic regression to examine differences between adolescents who usually use intermediate versus basic and advanced versus basic devices. Most respondents usually used modifiable advanced devices (56.8%) rather than basic "cigalike" (14.5%) or pen-style intermediate (28.7%) devices. Use of multiple device types was common, particularly among those who primarily used basic devices. Younger age and less frequent vaping were associated with mainly using basic devices. Adolescents who were older, male, personally bought their main device, and had ever mixed e-liquids were at elevated risk for usually using advanced devices. Adolescents who primarily use basic devices may be newer users who are experimenting with multiple devices. Future research should examine which adolescents are most likely to transition to advanced devices in order to develop targeted interventions. Regulators should consider strategies to reduce access to all types of EVPs, such as better enforcement of the current ban on sales to minors. This research addresses two gaps in research on adolescent electronic vaping product use: (1) characterizing use of advanced devices as distinct from intermediate devices rather than grouping them together and (2) examining factors associated with use of specific device types. This study suggests that there

  14. Gas tax fund and public transit fund outcomes report

    International Nuclear Information System (INIS)

    2009-01-01

    Federal gas tax and public transit agreements were signed in 2005 by the Government of Canada, the Province of Ontario, the Association of Municipalities of Ontario (AMO) and the City of Toronto in order to address long-term community sustainability and invest in municipal infrastructure. The agreement committed to providing $1.9 billion to Ontario municipalities over a 5-year period. An additional $2.4 billion has been provided for a further 4-year period from 2010 to 2014. The funds are used by communities to invest in capacity building or environmentally sustainable municipal infrastructure projects. This report identified the intermediate and ultimate outcomes of the federal gas tax fund and public transit fund as of December 2008. Outcomes were presented in the categories of community energy systems, public transit, water and wastewater, solid waste, and roads and bridges. Funding highlights and economic spin-offs for the projects were also presented, as well as summaries of ancillary social outcomes. 6 tabs., 4 figs.

  15. Gravity with Intermediate Goods Trade

    Directory of Open Access Journals (Sweden)

    Sujin Jang

    2017-12-01

    Full Text Available This paper derives the gravity equation with intermediate goods trade. We extend a standard monopolistic competition model to incorporate intermediate goods trade, and show that the gravity equation with intermediates trade is identical to the one without it except in that gross output should be used as the output measure instead of value added. We also show that the output elasticity of trade is significantly underestimated when value added is used as the output measure. This implies that with the conventional gravity equation, the contribution of output growth can be substantially underestimated and the role of trade costs reduction can be exaggerated in explaining trade expansion, as we demonstrate for the case of Korea's trade growth between 1995 and 2007.

  16. Aminomethylation of enals through carbene and acid cooperative catalysis: concise access to β(2)-amino acids.

    Science.gov (United States)

    Xu, Jianfeng; Chen, Xingkuan; Wang, Ming; Zheng, Pengcheng; Song, Bao-An; Chi, Yonggui Robin

    2015-04-20

    A convergent, organocatalytic asymmetric aminomethylation of α,β-unsaturated aldehydes by N-heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde-derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox-neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β(2) -amino acids bearing various substituents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mobile communication and intermediality

    DEFF Research Database (Denmark)

    Helles, Rasmus

    2013-01-01

    communicative affordances of mobile devices in order to understand how people choose between them for different purposes. It is argued that mobile communication makes intermediality especially central, as the choice of medium is detached from the location of stationary media and begins to follow the user across......The article argues the importance of intermediality as a concept for research in mobile communication and media. The constant availability of several, partially overlapping channels for communication (texting, calls, email, Facebook, etc.) requires that we adopt an integrated view of the various...

  18. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  19. Evidence for a Shared Mechanism in the Formation of Urea-Induced Kinetic and Equilibrium Intermediates of Horse Apomyoglobin from Ultrarapid Mixing Experiments

    Science.gov (United States)

    Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke

    2015-01-01

    In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin. PMID:26244984

  20. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola

    2003-01-01

    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  1. Photovoltaic conversion efficiency of InN/InxGa1-xN quantum dot intermediate band solar cells

    Science.gov (United States)

    Ben Afkir, N.; Feddi, E.; Dujardin, F.; Zazoui, M.; Meziane, J.

    2018-04-01

    The behavior of InN/InxGa1-xN spherical quantum dots solar cell is investigated, considering the internal electric field induced by the polarization of the junction. In order to determine the position of the intermediate band (IB), we present an efficient numerical technique based on difference finite method to solve the 3D time-independent Schrödinger's equation in spherical coordinates. The resultant n × n Hamiltonian matrix when considering n discrete points in spatial direction is diagonalized in order to calculate energy levels. Thus, the interband and intersubband transitions are determined, taking into consideration the effect of the internal electric field, size dots, interdot distances, and indium content on the energy levels, optical transition, photo-generated current density, open-circuit voltage and power conversion efficiency of the QD-IBSCs.

  2. Classical model of intermediate statistics

    International Nuclear Information System (INIS)

    Kaniadakis, G.

    1994-01-01

    In this work we present a classical kinetic model of intermediate statistics. In the case of Brownian particles we show that the Fermi-Dirac (FD) and Bose-Einstein (BE) distributions can be obtained, just as the Maxwell-Boltzmann (MD) distribution, as steady states of a classical kinetic equation that intrinsically takes into account an exclusion-inclusion principle. In our model the intermediate statistics are obtained as steady states of a system of coupled nonlinear kinetic equations, where the coupling constants are the transmutational potentials η κκ' . We show that, besides the FD-BE intermediate statistics extensively studied from the quantum point of view, we can also study the MB-FD and MB-BE ones. Moreover, our model allows us to treat the three-state mixing FD-MB-BE intermediate statistics. For boson and fermion mixing in a D-dimensional space, we obtain a family of FD-BE intermediate statistics by varying the transmutational potential η BF . This family contains, as a particular case when η BF =0, the quantum statistics recently proposed by L. Wu, Z. Wu, and J. Sun [Phys. Lett. A 170, 280 (1992)]. When we consider the two-dimensional FD-BE statistics, we derive an analytic expression of the fraction of fermions. When the temperature T→∞, the system is composed by an equal number of bosons and fermions, regardless of the value of η BF . On the contrary, when T=0, η BF becomes important and, according to its value, the system can be completely bosonic or fermionic, or composed both by bosons and fermions

  3. Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques

    Science.gov (United States)

    Assiongbon, K. A.; Roy, D.

    2005-12-01

    Electro-catalytic oxidation of methanol is the anode reaction in direct methanol fuel cells. We have studied the adsorption characteristics of the intermediate reactants of this multistep reaction on a gold film electrode in alkaline solutions by combining surface plasmon resonance (SPR) measurements with Fourier transform electro-chemical impedance spectroscopy (FT-EIS). Methanol oxidation in this system shows no significant effects of "site poisoning" by chemisorbed CO. Our results suggest that OH - chemisorbed onto Au acts as a stabilizing agent for the surface species of electro-active methanol. Double layer charging/discharging and adsorption/desorption of OH - show more pronounced effects than adsorption/oxidation of methanol in controlling the surface charge density of the Au substrate. These effects are manifested in both the EIS and the SPR data, and serve as key indicators of the surface reaction kinetics. The data presented here describe the important role of adsorbed OH - in electro-catalysis of methanol on Au, and demonstrate how SPR and FT-EIS can be combined for quantitative probing of catalytically active metal-solution interfaces.

  4. Antiphase dual-color correlation in a reactant-product pair imparts ultrasensitivity in reaction-linked double-photoswitching fluorescence imaging.

    Science.gov (United States)

    Wan, Wei; Zhu, Ming-Qiang; Tian, Zhiyuan; Li, Alexander D Q

    2015-04-08

    A pair of reversible photochemical reactions correlates their reactant and product specifically, and such a correlation uniquely distinguishes their correlated signal from others that are not linked by this reversible reaction. Here a nanoparticle-shielded fluorophore is photodriven to undergo structural dynamics, alternating between a green-fluorescence state and a red-fluorescence state. As time elapses, the fluorophore can be in either state but not both at the same time. Thus, the red fluorescence is maximized while the green fluorescence is minimized and vice versa. Such an antiphase dual-color (AD) corelationship between the red and green fluorescence maxima as well as between their minima can be exploited to greatly improve the signal-to-noise ratio, thus enhancing the ultimate detection limit. Potential benefits of this correlation include elimination of all interferences originating from single-color dyes and signal amplification of AD photoswitching molecules by orders of magnitude.

  5. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  6. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  7. Using Peephole Optimization on Intermediate Code

    NARCIS (Netherlands)

    Tanenbaum, A.S.; van Staveren, H.; Stevenson, J.W.

    1982-01-01

    Many portable compilers generate an intermediate code that is subsequently translated into the target machine's assembly language. In this paper a stack-machine-based intermediate code suitable for algebraic languages (e.g., PASCAL, C, FORTRAN) and most byte-addressed mini- and microcomputers is

  8. Pair production of intermediate vector bosons

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1979-01-01

    The production of intermediate vector boson pairs W + W - , Z 0 Z 0 , W +- Z 0 and W +- γ in pp and p anti p collisions is discussed. The motivation is to detect the self-interactions among the four intermediate vector bosons

  9. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    Science.gov (United States)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  10. Identification of CW two-photon transitions in Na2 and NaK

    International Nuclear Information System (INIS)

    Morgan, G.P.

    1983-01-01

    This thesis reports on the two-photon visible excitation spectra of sodium and potassium vapors. In the past, similar work has been performed on sodium and many atomic two-photon transitions have been characterized. However, many extra signals exist which do not possess the ground, 3S, state hyperfine splitting. These extra transitions are due to the sodium dimer Na 2 . 79 such transitions, from 5800A - 6500A, which lie within the resolution of the apparatus have been studied. The molecules are excited with a lowpower narrow band counterpropagating cw dye laser beam and two-photon fluorescence. The fluorescence intensities of many of these transitions are greater than the 3S to 5S and 3S to 4D atomic signals, where the 3P enhancing state lies 300 cm -1 from resonance. By comparing the number density of the atomic with any molecular ground state and also the two-photon transition rates to excited states, the intermediate enhancing state for a two-photon transition in Na 2 can be predicted to be less than 1 cm -1 from resonance with the two-photon transition. This observation, along with published Dunham coefficients, is used to identify the states involved in the two-photon transitions

  11. Language in use intermediate : classroom book

    CERN Document Server

    Doff, Adrian

    1995-01-01

    ach of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  12. Language in use intermediate : teacher's book

    CERN Document Server

    Doff, Adrian

    1998-01-01

    Each of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  13. Failure Characteristics of Granite Influenced by Sample Height-to-Width Ratios and Intermediate Principal Stress Under True-Triaxial Unloading Conditions

    Science.gov (United States)

    Li, Xibing; Feng, Fan; Li, Diyuan; Du, Kun; Ranjith, P. G.; Rostami, Jamal

    2018-05-01

    The failure modes and peak unloading strength of a typical hard rock, Miluo granite, with particular attention to the sample height-to-width ratio (between 2 and 0.5), and the intermediate principal stress was investigated using a true-triaxial test system. The experimental results indicate that both sample height-to-width ratios and intermediate principal stress have an impact on the failure modes, peak strength and severity of rockburst in hard rock under true-triaxial unloading conditions. For longer rectangular specimens, the transition of failure mode from shear to slabbing requires higher intermediate principal stress. With the decrease in sample height-to-width ratios, slabbing failure is more likely to occur under the condition of lower intermediate principal stress. For same intermediate principal stress, the peak unloading strength monotonically increases with the decrease in sample height-to-width. However, the peak unloading strength as functions of intermediate principal stress for different types of rock samples (with sample height-to-width ratio of 2, 1 and 0.5) all present the pattern of initial increase, followed by a subsequent decrease. The curves fitted to octahedral shear stress as a function of mean effective stress also validate the applicability of the Mogi-Coulomb failure criterion for all considered rock sizes under true-triaxial unloading conditions, and the corresponding cohesion C and internal friction angle φ are calculated. The severity of strainburst of granite depends on the sample height-to-width ratios and intermediate principal stress. Therefore, different supporting strategies are recommended in deep tunneling projects and mining activities. Moreover, the comparison of test results of different σ 2/ σ 3 also reveals the little influence of minimum principal stress on failure characteristics of granite during the true-triaxial unloading process.

  14. Interpretation and code generation based on intermediate languages

    DEFF Research Database (Denmark)

    Kornerup, Peter; Kristensen, Bent Bruun; Madsen, Ole Lehrmann

    1980-01-01

    The possibility of supporting high level languages through intermediate languages to be used for direct interpretation and as intermediate forms in compilers is investigated. An accomplished project in the construction of an interpreter and a code generator using one common intermediate form...

  15. Experiments in intermediate energy physics

    International Nuclear Information System (INIS)

    Dehnhard, D.

    2003-01-01

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers

  16. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  17. Kinetic-quantum chemical model for catalytic cycles: the Haber-Bosch process and the effect of reagent concentration.

    Science.gov (United States)

    Kozuch, Sebastian; Shaik, Sason

    2008-07-03

    A combined kinetic-quantum chemical model is developed with the goal of estimating in a straightforward way the turnover frequency (TOF) of catalytic cycles, based on the state energies obtained by quantum chemical calculations. We describe how the apparent activation energy of the whole cycle, so-called energetic span (delta E), is influenced by the energy levels of two species: the TOF determining transition state (TDTS) and the TOF determining intermediate (TDI). Because these key species need not be adjoining states, we conclude that for catalysis there are no rate-determining steps, only rate determining states. In addition, we add here the influence of reactants concentrations. And, finally, the model is applied to the Haber-Bosch process of ammonia synthesis, for which we show how to calculate which catalyst will be the most effective under specific reagents conditions.

  18. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  19. Search for intermediate vector bosons

    International Nuclear Information System (INIS)

    Cline, D.B.; Rubbia, C.; van der Meer, S.

    1982-01-01

    Over the past 15 years a new class of unified theories has been developed to describe the forces acting between elementary particles. The most successful of the new theories establishes a link between electromagnetism and the weak force. A crucial prediction of this unified electroweak theory is the existence of three massive particles called intermediate vector bosons. If these intermediate vector bosons exist and if they have properties attributed to them by electroweak theory, they should soon be detected, as the world's first particle accelerator with enough energy to create such particles has recently been completed at the European Organization for Nuclear Research (CERN) in Geneva. The accelerator has been converted to a colliding beam machine in which protons and antiprotons collide head on. According to electroweak theory, intermediate vector bosons can be created in proton-antiproton collisions. (SC)

  20. 39 CFR 3001.39 - Intermediate decisions.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Intermediate decisions. 3001.39 Section 3001.39 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL RULES OF PRACTICE AND PROCEDURE Rules of General Applicability § 3001.39 Intermediate decisions. (a) Initial decision by presiding officer. In any proceedings in...

  1. 42 CFR 54.12 - Treatment of intermediate organizations.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Treatment of intermediate organizations. 54.12... intermediate organizations. If a nongovernmental organization (referred to here as an “intermediate organization”), acting under a contract or other agreement with the Federal Government or a State or local...

  2. Transitions of tethered chain molecules under tension.

    Science.gov (United States)

    Luettmer-Strathmann, Jutta; Binder, Kurt

    2014-09-21

    An applied tension force changes the equilibrium conformations of a polymer chain tethered to a planar substrate and thus affects the adsorption transition as well as the coil-globule and crystallization transitions. Conversely, solvent quality and surface attraction are reflected in equilibrium force-extension curves that can be measured in experiments. To investigate these effects theoretically, we study tethered chains under tension with Wang-Landau simulations of a bond-fluctuation lattice model. Applying our model to pulling experiments on biological molecules we obtain a good description of experimental data in the intermediate force range, where universal features dominate and finite size effects are small. For tethered chains in poor solvent, we observe the predicted two-phase coexistence at transitions from the globule to stretched conformations and also discover direct transitions from crystalline to stretched conformations. A phase portrait for finite chains constructed by evaluating the density of states for a broad range of solvent conditions and tensions shows how increasing tension leads to a disappearance of the globular phase. For chains in good solvents tethered to hard and attractive surfaces we find the predicted scaling with the chain length in the low-force regime and show that our results are well described by an analytical, independent-bond approximation for the bond-fluctuation model for the highest tensions. Finally, for a hard or slightly attractive surface the stretching of a tethered chain is a conformational change that does not correspond to a phase transition. However, when the surface attraction is sufficient to adsorb a chain it will undergo a desorption transition at a critical value of the applied force. Our results for force-induced desorption show the transition to be discontinuous with partially desorbed conformations in the coexistence region.

  3. Formation, structure, and stability of MHD intermediate shocks

    International Nuclear Information System (INIS)

    Wu, C.C.

    1990-01-01

    Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field

  4. Greener Synthetic Alternatives to Heterocycles, Nanomaterials and Nanocomposites

    Science.gov (United States)

    Microwave (MW) expedited reaction of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermediates via enamines or using hyp...

  5. Microwave-Assisted Organic Synthesis Using Benign Reaction Medium and Reagents

    Science.gov (United States)

    Account of chemical reactions expedited by microwave (MW) exposure of neat reactants for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermediates via enamines or using hypervalent iodine reagents will be described that can be adapted for ...

  6. Greener Synthesis of N-Heterocycles via Sustainable Applications of Nano-Catalysts

    Science.gov (United States)

    A brief historic account of reactions involving microwave (MW) exposure of neat reactants or catalysis by mineral surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds from in situ generated reactive intermedi...

  7. Optoelectronic Characterization by Advanced Ab-Initio Methods of Novel Photovoltaic Intermediate Band Materials = Caracterización optoelectrónica por métodos ab-initio avanzados de nuevos materiales fotovoltaicos de banda intermedia

    OpenAIRE

    Aguilera Bonet, Irene

    2011-01-01

    Intermediate-band materials represent nowadays one of the most promising proposals in the quest for more efficient, lower-cost solar cells. In this thesis we present a deep study of transition-metal substituted semiconductors based on their optoelectronic properties. These materials were proposed as high efficiency photovoltaic absorbers for intermediate-band solar cells for showing a partiallyfilled band placed inside the band gap of the parent semiconductor which enables the absorption of p...

  8. Determining the Optimal Protocol for Measuring an Albuminuria Class Transition in Clinical Trials in Diabetic Kidney Disease

    DEFF Research Database (Denmark)

    Kröpelin, Tobias F; de Zeeuw, Dick; Remuzzi, Giuseppe

    2016-01-01

    Albuminuria class transition (normo- to micro- to macroalbuminuria) is used as an intermediate end point to assess renoprotective drug efficacy. However, definitions of such class transition vary between trials. To determine the most optimal protocol, we evaluated the approaches used in four...... effect increased (decreased precision) with stricter end point definitions, resulting in a loss of statistical significance. In conclusion, the optimal albuminuria transition end point for use in drug intervention trials can be determined with a single urine collection for albuminuria assessment per...... clinical trials testing the effect of renin-angiotensin-aldosterone system intervention on albuminuria class transition in patients with diabetes: the BENEDICT, the DIRECT, the ALTITUDE, and the IRMA-2 Trial. The definition of albuminuria class transition used in each trial differed from the definitions...

  9. Multi-state model for studying an intermediate event using time-dependent covariates: application to breast cancer.

    Science.gov (United States)

    Meier-Hirmer, Carolina; Schumacher, Martin

    2013-06-20

    The aim of this article is to propose several methods that allow to investigate how and whether the shape of the hazard ratio after an intermediate event depends on the waiting time to occurrence of this event and/or the sojourn time in this state. A simple multi-state model, the illness-death model, is used as a framework to investigate the occurrence of this intermediate event. Several approaches are shown and their advantages and disadvantages are discussed. All these approaches are based on Cox regression. As different time-scales are used, these models go beyond Markov models. Different estimation methods for the transition hazards are presented. Additionally, time-varying covariates are included into the model using an approach based on fractional polynomials. The different methods of this article are then applied to a dataset consisting of four studies conducted by the German Breast Cancer Study Group (GBSG). The occurrence of the first isolated locoregional recurrence (ILRR) is studied. The results contribute to the debate on the role of the ILRR with respect to the course of the breast cancer disease and the resulting prognosis. We have investigated different modelling strategies for the transition hazard after ILRR or in general after an intermediate event. Including time-dependent structures altered the resulting hazard functions considerably and it was shown that this time-dependent structure has to be taken into account in the case of our breast cancer dataset. The results indicate that an early recurrence increases the risk of death. A late ILRR increases the hazard function much less and after the successful removal of the second tumour the risk of death is almost the same as before the recurrence. With respect to distant disease, the appearance of the ILRR only slightly increases the risk of death if the recurrence was treated successfully. It is important to realize that there are several modelling strategies for the intermediate event and that

  10. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Nielsen, Anders Henry; Madsen, Jens

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak......–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null...... including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L...

  11. Modification of the liquid cooling channel of PEMFCs for their operation with dry reactant gases

    International Nuclear Information System (INIS)

    Shyu, Jin-Cherng; Hsueh, Kan-Lin; Tsau, Fanghei; Chen, Fa-Lin

    2011-01-01

    In order to tackle both water and thermal problems, a modified PEMFC is proposed in the present study for its operation with dry reactant gases via the modification of liquid cooling channel with circulating liquid electrolyte. Fuel cell with both circulating liquid electrolyte and solid polymer membrane operated with either dry or humidified H 2 /O 2 is compared in the present study at temperatures of 40, 50, 65, and 80 o C, respectively. The measured E-I data show that such single cell can be operated at 80 o C without humidification. Besides, a semi-empirical equation to predict the current/voltage relationship, and the electrochemical impedance method are also employed in the present study for cell resistance analysis. The analysis results show that the high interfacial resistance should be one of the major reasons for the inferior performance of the present cell. Based on the discovery, an improvement of the present fuel cell is further proposed by Nafion ionomer spreading on the electrode before the assembly of membrane and electrode. The maximum power density of the cell after electrode treatment reaches 75 mW/cm 2 for dry H 2 /O 2 operation at 0.4 V, which is almost threefold improvement compared with that without electrode treatment.

  12. Semi-classical approaches for the proton emission in intermediate energy heavy ion reactions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-05-01

    Semi-classical approaches are proposed to study the transition between the one- and two-body processes in intermediate energy heavy ion collisions. The Landau-Vlasov equation is used as a transport equation for nucleons in the nuclear matter. We apply our formalism to the fast proton ejection. On the one hand, the effects of the nucleon-nucleon collisions are studied for the particles which travel through the nucleus cores. On the other hand, the inertial emission turns out to be an important proton emission mechanism. Our results conflict the interpretation of the proton spectra in terms of moving sources. Reasonable agreements with the experimental data are found without reference to any thermal equilibrium

  13. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  14. Slip control for LIM propelled transit vehicles

    Science.gov (United States)

    Wallace, A. K.; Parker, J. H.; Dawson, G. E.

    1980-09-01

    Short stator linear induction motors, with an iron-backed aluminum sheet reaction rail and powered by a controlled inverter, have been selected as the propulsion system for transit vehicles in an intermediate capacity system (12-20,000 pphpd). The linear induction motor is capable of adhesion independent braking and acceleration levels which permit safe, close headways. In addition, simple control is possible allowing moving block automatic train control. This paper presents a slip frequency control scheme for the LIM. Experimental results for motoring and braking obtained from a test vehicle are also presented. These values are compared with theoretical predictions.

  15. Effects of balneotherapy on the reactants of acute inflammation phase in Ankylosing spondylitis

    Directory of Open Access Journals (Sweden)

    Stamenković Bojana

    2009-01-01

    Full Text Available Introduction. Ankylosing spondylitis (AS is a chronic inflammatory disease that affects sacroiliac joints, spinal column and peripheral joints. Beside medication therapy, physical and balneotherapy play an important role in its complex treatment. Objective. The aim of the research was to establish serum concentrations of C-reactive protein (CRP, α 1-acid glycoprotein (α 1-AGP, ceruloplasmine (CP and erythrocyte sedimentation rate (SE before and after the balneotherapy in ankylosing spondylitis. Methods. The research included 50 AS patients according to the revised New York criteria, of mean age 43 years, who were treated for 14 days on the average at the Clinic for Rheumatology of the Institute 'Niška Banja'. All the patients received medications and balneotherapy (radioactive oligomineral baths, peloid, massage, kinesitherapy; the serum concentrations of CRP, α1-AGP, CP and SE were measured before and after balneotherapy. Serum proteins were determined using original Nor Partigen plates Boehringer. Erythrocyte sedimentation rate was measured by Westergreen method. Balneotherapy was applied individually, intensively or mildly, depending on the AS stage and activity phase. Results. After dosed balneotherapy, a significant decrease in the concentrations of CP (p<0.05, α1-AGP (p<0.01 and CRP (p<0.05 was registered in the serums of AS patients. ESR was not significantly reduced. Conclusion. The research proved that α 1-acid glycoprotein, ceruloplasmine and C-reactive protein represent more sensitive inflammation markers as compared to erythrocyte sedimentation rate. The identification of acute phase reactants is important in the evaluation of dosed balneotherapy efficiency in the treatment of ankylosing spondylitis.

  16. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    Science.gov (United States)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  17. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.

    Science.gov (United States)

    Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping

    2012-10-01

    It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. InAs quantum dot growth on Al{sub x}Ga{sub 1−x}As by metalorganic vapor phase epitaxy for intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jakomin, R., E-mail: robertojakomin@xerem.ufrj.br [Campus de Xerém, Universidade Federal do Rio de Janeiro, UFRJ, Duque de Caxias-RJ (Brazil); Campus de Xerém, Universidade Federal do Rio de Janeiro, UFRJ, Duque de Caxias-RJ (Brazil); Kawabata, R. M. S.; Souza, P. L. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Pontificia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro, 22452-900 RJ (Brazil); Mourão, R. T.; Pires, M. P. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Instituto de Física, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro-RJ (Brazil); Micha, D. N. [Instituto Nacional de Ciência e Tecnologia de Nanodispositivos Semicondutoires–DISSE–PUC-Rio, RJ (Brazil); Instituto de Física, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro-RJ (Brazil); Coordenação de Licenciatura em Física, CEFET/RJ, Petrópolis-RJ (Brazil); Xie, H.; Fischer, A. M.; Ponce, F. A. [Department of Physics, Arizona State University, Tempe, Arizona 85287-1504 (United States)

    2014-09-07

    InAs quantum dot multilayers have been grown using Al{sub x}Ga{sub 1−x}As spacers with dimensions and compositions near the theoretical values for optimized efficiencies in intermediate band photovoltaic cells. Using an aluminium composition of x = 0.3 and InAs dot vertical dimensions of 5 nm, transitions to an intermediate band with energy close to the ideal theoretical value have been obtained. Optimum size uniformity and density have been achieved by capping the quantum dots with GaAs following the indium-flush method. This approach has also resulted in minimization of crystalline defects in the epilayer structure.

  19. Present status of intermediate band solar cell research

    International Nuclear Information System (INIS)

    Cuadra, L.; Marti, A.; Luque, A.

    2004-01-01

    The intermediate band solar cell is a theoretical concept with the potential for exceeding the performance of conventional single-gap solar cells. This novel photovoltaic converter bases its superior theoretical efficiency over single-gap solar cells by enhancing its photogenerated current, via the two-step absorption of sub-band gap photons, without reducing its output voltage. This is achieved through a material with an electrically isolated and partially filled intermediate band located within a higher forbidden gap. This material is commonly named intermediate band material. This paper centres on summarising the present status of intermediate band solar cell research. A number of attempts, which aim to implement the intermediate band concept, are being followed: the direct engineering of the intermediate band material, its implementation by means of quantum dots and the highly porous material approach. Among other sub-band gap absorbing proposals, there is a renewed interest on the impurity photovoltaic effect, the quantum well solar cells and the particularly promising proposal for the use of up- and down-converters

  20. Universality in heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Pedersen, Thomas Bligaard; Logadottir, Ashildur

    2002-01-01

    Based on an extensive set of density functional theory calculations it is shown that for a class of catalytic reactions there is a universal, reactant independent relation between the reaction activation energy and the stability of reaction intermediates. This leads directly to a universal relati...

  1. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  2. Optical transitions in semiconductor nanospherical core/shell/shell heterostructure in the presence of radial electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Baghdasaryan, D.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Hayrapetyan, D.B., E-mail: dhayrap82@gmail.com [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Yerevan State University, A. Manoogian 1, 0025 Yerevan (Armenia); Harutyunyan, V.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia)

    2017-04-01

    The electronic states and optical properties of spherical nanolayer in the presence of the electrostatic radial field in the strong size quantization regime have been considered. Both analytical and numerical methods have been applied to the problem of one-electron states in the system. According to the intensity of the external electrostatic field, three regimes have been distinguished: week, intermediate and strong. Perturbative approach have been applied to the case of week, WKB to the case of intermediate and variation approach to the case of strong field intensities. The analytical dependencies of the one electron energy and wave function on the electric field value and geometrical parameters of the nanolayer have been achieved. The comparison of the results obtained by the analytical method with the results of the numerical method have been made. The interband and intraband optical transitions caused by incident optical light polarized in z direction have been considered in this system. The selection rules for this transitions have been obtained. The dependence of the absorption coefficient on the energy of incident light for both cases of interband and intraband transitions for every regime of the electrostatic field value have been received. - Highlights: • The electron energy analytical dependencies on the electric field value have been achieved. • The selection rules for transitions between levels with different quantum numbers are revealed. • The interband and intraband absorption coefficients have been studied.

  3. Observation of intermediate bands in Eu3+ doped YPO4 host: Li+ ion effect and blue to pink light emitter

    Directory of Open Access Journals (Sweden)

    Abdul Kareem Parchur

    2012-09-01

    Full Text Available This article explores the tuning of blue to pink colour generation from Li+ ion co-doped YPO4:5Eu nanoparticles prepared by polyol method at ∼100-120 °C with ethylene glycol (EG as a capping agent. Interaction of EG molecules capped on the surface of the nanoparticles and/or created oxygen vacancies induces formation of intermediate/mid gap bands in the host structure, which is supported by UV-Visible absorption data. Strong blue and pink colors can be observed in the cases of as-prepared and 500 °C annealed samples, respectively. Co-doping of Li+ enhances the emission intensities of intermediate band as well as Eu3+. On annealing as-prepared sample to 500 °C, the intermediate band emission intensity decreases, whereas Eu3+ emission intensity increases suggesting increase of extent of energy transfer from the intermediate band to Eu3+ on annealing. Emission intensity ratio of electric to magnetic dipole transitions of Eu3+ can be varied by changing excitation wavelength. The X-ray photoelectron spectroscopy (XPS study of as-prepared samples confirms the presence of oxygen vacancies and Eu3+ but absence of Eu2+. Dispersed particles in ethanol and polymer film show the strong blue color, suggesting that these materials will be useful as probes in life science and also in light emitting device applications.

  4. Associations of Systemic Diseases with Intermediate Uveitis.

    Science.gov (United States)

    Shoughy, Samir S; Kozak, Igor; Tabbara, Khalid F

    2016-01-01

    To determine the associations of systemic diseases with intermediate uveitis. The medical records of 50 consecutive cases with intermediate uveitis referred to The Eye Center in Riyadh, Saudi Arabia, were reviewed. Age- and sex-matched patients without uveitis served as controls. Patients had complete ophthalmic and medical examinations. There were 27 male and 23 female patients. Mean age was 29 years with a range of 5-62 years. Overall, 21 cases (42%) had systemic disorders associated with intermediate uveitis and 29 cases (58%) had no associated systemic disease. A total of 11 patients (22%) had asthma, 4 (8%) had multiple sclerosis, 3 (6%) had presumed ocular tuberculosis, 1 (2%) had inflammatory bowel disease, 1 (2%) had non-Hodgkin lymphoma and 1 (2%) had sarcoidosis. Evidence of systemic disease was found in 50 (5%) of the 1,000 control subjects. Bronchial asthma was found in 37 patients (3.7 %), multiple sclerosis in 9 patients (0.9%), inflammatory bowel disease in 3 patients (0.3%), and tuberculosis in 1 patient (0.1%). None of the control patients had sarcoidosis or lymphoma. There were statistically significant associations between intermediate uveitis and bronchial asthma (p = 0.0001), multiple sclerosis (p = 0.003) and tuberculosis (p = 0.0005). Bronchial asthma and multiple sclerosis were the most frequently encountered systemic diseases associated with intermediate uveitis in our patient population. Patients with intermediate uveitis should undergo careful history-taking and investigations to rule out associated systemic illness.

  5. Effect of electron correlation on the forced electric dipole transition probabilities in fsup(N) systems

    International Nuclear Information System (INIS)

    Jankowski, K.; Smentek-Mielczarek, L.

    1981-01-01

    Results of model studies of the impact of electron correlation on the forced electric dipole transition probabilities between states of the 4fsup(N) configuration are reported for the [ 3 P] 0 - [ 3 F] 4 , [ 3 H] 4 transitions in Pr 3+ : LaCl 3 and for [ 7 F] 0 - [ 5 D] 2 , [ 7 F] 1 - [ 5 D] 1 hypersensitive transitions in Eu 3+ : LaCl 3 . For the former system the correlation effects cause a modification of earlier results by 40-95 per cent, whereas for the latter the probability changes by as much as two orders of magnitude. The great changes found in the case of hypersensitive transitions suggest that electron correlation effects may belong to the most important factors determining the nature of these transitions. Several types of effective correlation operators are considered and their relative importance is discussed. The results indicate that intermediate configurations including g orbitals are very important for the description of correlation effects. (author)

  6. A signature for isoscalar-spin transitions in (d vector, d' vector) scattering at intermediate energy

    International Nuclear Information System (INIS)

    Morlet, M.; Bimbot, L.; Guillot, J.; Johnson, B.N.; Jourdan, F.; Langevin-Joliot, H.; Marty, N.; Rosier, L.; Wiele, J. van de; Willis, A.; Beatty, D.; Edwards, G.; Fergerson, R.W.; Glashausser, C.; Green, A.; Djalali, C.; Johnson, B.N.; Tomasi-Gustafsson, E.; Youn, M.Y.

    1991-05-01

    Three different signatures for isoscalar spin transitions in nuclei have been tested in the 12 C(d,d') 12 C reaction at 400 MeV. These signatures have values close to zero for the natural parity states, and range from 0.22 to 0.50 for the ΔS=1 ΔT=0, 12.7 MeV state. Preliminary results on 40 Ca(d,d') at 400 MeV are also presented. (author) 26 refs., 4 figs., 1 tab

  7. Electrochemical degradation of diuron and dichloroaniline at BDD electrode

    International Nuclear Information System (INIS)

    Polcaro, Anna Maria; Mascia, Michele; Palmas, Simonetta; Vacca, Annalisa

    2004-01-01

    The degradation of diuron and 3,4-dichloroaniline (DCA) has been studied at boron-doped diamond (BDD) anode. A three electrode impinging jet cell was used to improve the mass transfer of the reactant to the electrode surface. In the whole range of experimental conditions examined, the reactants were completely mineralised and passivation of the electrode surface was not observed. HPLC and ionic chromatography analyses revealed that the reaction involves the oxidative ring-cleavage and the formation of stoichiometric amounts of chloride and ammonium ions. Depending on the specific experimental conditions, short-chained organic acids were also identified as intermediate products. Values of global current efficiencies greater than 20% were obtained even operating with low reactant concentration (0.17 mM for diuron and 2 mM for dichloroaniline) provided that a suitable ratio between applied current and mass transfer rate was guaranteed

  8. Electrochemical degradation of diuron and dichloroaniline at BDD electrode

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, Anna Maria; Mascia, Michele; Palmas, Simonetta; Vacca, Annalisa

    2004-02-15

    The degradation of diuron and 3,4-dichloroaniline (DCA) has been studied at boron-doped diamond (BDD) anode. A three electrode impinging jet cell was used to improve the mass transfer of the reactant to the electrode surface. In the whole range of experimental conditions examined, the reactants were completely mineralised and passivation of the electrode surface was not observed. HPLC and ionic chromatography analyses revealed that the reaction involves the oxidative ring-cleavage and the formation of stoichiometric amounts of chloride and ammonium ions. Depending on the specific experimental conditions, short-chained organic acids were also identified as intermediate products. Values of global current efficiencies greater than 20% were obtained even operating with low reactant concentration (0.17 mM for diuron and 2 mM for dichloroaniline) provided that a suitable ratio between applied current and mass transfer rate was guaranteed.

  9. Use of isotope effects to elucidate enzyme mechanisms

    International Nuclear Information System (INIS)

    Cleland, W.W.

    1982-01-01

    The chemical bond breaking steps are normally not rate limiting for enzymatic reactions. However, comparison of deuterium and tritium isotope effects on the same reaction, especially when coupled with 13 C isotope effects for the same step measured with deuterated as well as unlabeled substrates, allows calculation of the intrinsic isotope effects on the bond breaking steps and thus a determination of the commitments to catalysis for the reactants. The variation in observed isotope effects as a function of reactant concentration can be used to determine kinetic mechanisms, while the pH variation of isotope effects can determine the stickiness of the reactants and which portions of the reactant mechanism are pH dependent. Finally the size of primary and secondary intrinsic isotope effects can be used to determine transition state structure

  10. Trust transitivity in social networks.

    Directory of Open Access Journals (Sweden)

    Oliver Richters

    Full Text Available Non-centralized recommendation-based decision making is a central feature of several social and technological processes, such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically the percolation properties of trust transitivity in random networks with arbitrary in/out-degree distributions, and compare with numerical realizations. We find that the existence of a non-zero fraction of absolute trust (i.e. entirely confident trust is a requirement for the viability of global trust propagation in large systems: The average pair-wise trust is marked by a discontinuous transition at a specific fraction of absolute trust, below which it vanishes. Furthermore, we perform an extensive analysis of the Pretty Good Privacy (PGP web of trust, in view of the concepts introduced. We compare different scenarios of trust distribution: community- and authority-centered. We find that these scenarios lead to sharply different patterns of trust propagation, due to the segregation of authority hubs and densely-connected communities. While the authority-centered scenario is more efficient, and leads to higher average trust values, it favours weakly-connected "fringe" nodes, which are directly trusted by authorities. The community-centered scheme, on the other hand, favours nodes with intermediate in/out-degrees, in detriment of the authorities and its "fringe" peers.

  11. Trust Transitivity in Social Networks

    Science.gov (United States)

    Richters, Oliver; Peixoto, Tiago P.

    2011-01-01

    Non-centralized recommendation-based decision making is a central feature of several social and technological processes, such as market dynamics, peer-to-peer file-sharing and the web of trust of digital certification. We investigate the properties of trust propagation on networks, based on a simple metric of trust transitivity. We investigate analytically the percolation properties of trust transitivity in random networks with arbitrary in/out-degree distributions, and compare with numerical realizations. We find that the existence of a non-zero fraction of absolute trust (i.e. entirely confident trust) is a requirement for the viability of global trust propagation in large systems: The average pair-wise trust is marked by a discontinuous transition at a specific fraction of absolute trust, below which it vanishes. Furthermore, we perform an extensive analysis of the Pretty Good Privacy (PGP) web of trust, in view of the concepts introduced. We compare different scenarios of trust distribution: community- and authority-centered. We find that these scenarios lead to sharply different patterns of trust propagation, due to the segregation of authority hubs and densely-connected communities. While the authority-centered scenario is more efficient, and leads to higher average trust values, it favours weakly-connected “fringe” nodes, which are directly trusted by authorities. The community-centered scheme, on the other hand, favours nodes with intermediate in/out-degrees, in detriment of the authorities and its “fringe” peers. PMID:21483683

  12. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.

    Science.gov (United States)

    Green, Amy M; Barber, Victoria P; Fang, Yi; Klippenstein, Stephen J; Lester, Marsha I

    2017-11-21

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3 CHOO. IR excitation of selectively deuterated syn -CD 3 CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn -CD 3 CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn -CH 3 CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50.

  13. Order parameters for symmetry-breaking structural transitions: The tetragonal-monoclinic transition in ZrO2

    Science.gov (United States)

    Thomas, John C.; Van der Ven, Anton

    2017-10-01

    Group/subgroup structural phase transitions are exploited in a wide variety of technologies, including those that rely on shape-memory behavior and on transformation toughening. Here, we introduce an approach to identify symmetry-adapted strain and shuffle order parameters for any group/subgroup structural transition between a high-symmetry parent phase and its symmetrically equivalent low-symmetry product phases. We show that symmetry-adapted atomic shuffle order parameters can be determined by the diagonalization of an orbital covariance matrix, formed by taking the covariance among the atomic displacement vectors of all symmetrically equivalent product phase variants. We use this approach to analyze the technologically important tetragonal to monoclinic structural phase transformation of ZrO2. We explore the energy landscapes, as calculated with density functional theory, along distinct paths that connect m ZrO2 to t ZrO2 and to other m ZrO2 variants. The calculations indicate favorable pairs of variants and reveal intermediate structures likely to exist at coherent twin boundaries and having relatively low deformation energy. We identify crystallographic features of the monoclinic ZrO2 variant that make it very sensitive to shape changing strains.

  14. Magnetic-field control of quantum critical points of valence transition.

    Science.gov (United States)

    Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques

    2008-06-13

    We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be cooperative phenomena of the Zeeman and Kondo effects, which create a distinct energy scale from the Kondo temperature. This mechanism explains the peculiar magnetic response in CeIrIn(5) and the metamagnetic transition in YbXCu(4) for X=In as well as the sharp contrast between X=Ag and Cd.

  15. Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells

    KAUST Repository

    Li, Jianbo

    2018-05-07

    Summary Here, we have identified that the key issue for rational transitioning from spin-coating to blade-coating processes of perovskite films arises from whether intermediate phases participate in the phase transition. In situ characterizations were carried out to provide a comprehensive picture of structural evolution and crystal growth mechanisms. These findings present opportunities for designing an effective process for blade-coating perovskite film: a large-grained dense perovskite film with high crystal quality and photophysical properties can be obtained only via direct crystallization for both spin-coating and blade-coating processes. As a result, the blade-coated MAPbI3 films deliver excellent charge-collection efficiency at both short circuit and open circuit, and photovoltaic properties with efficiencies of 18.74% (0.09 cm2) and 17.06% (1 cm2) in planar solar cells. The significant advances in understanding how the phase transition links spin-coating and blade-coating processes should provide a path toward high-performance printed perovskite devices.

  16. Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids

    DEFF Research Database (Denmark)

    Yang, X.N.; Zhou, C.; Sun, Q.J.

    2014-01-01

    We study the fragile-to-strong (F−S) transition of metallic glass-forming liquids (MGFLs) by measuring the thermal response during annealing and dynamic heating of La55Al25Ni5Cu15 glass ribbons fabricated at different cooling rates. We find that the glasses fabricated in the intermediate regime o...

  17. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    Science.gov (United States)

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  18. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Malliakos, A.

    1995-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  19. Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.

    1996-01-01

    The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant products, and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below

  20. Berni Alder and Phase Transitions in Two Dimensions

    Science.gov (United States)

    Kosterlitz, J. Michael

    I do not know Berni Alder as a person, but I feel that I know him well through his seminal paper "Phase Transition in Elastic Disks𠇍 by B. J. Alder and T. E. Wainwright [1962], which was essential in motivating David Thouless and myself to think about phase transitions in two dimensional systems with a continuous symmetry. In the early 1970's, the conventional wisdom was that a crystalline solid could not exist in a two dimensional world because of the rigorous Mermin-Wagner theorem prohibiting true long range translational order at any non-zero temperature. This contradiction was settled by the theory of dislocation mediated melting to an intermediate hexatic phase followed by a second transition to the isotropic fluid at a higher temperature. This scenario, with its associated sophisticated theory, seemed to settle the controversy of two dimensional melting once and for all. However, in our elation at understanding the fundamental physics and the essential excitations of melting in 2D, we had all forgotten that the early work of Berni Alder also showed that this melting involved a weak first order transition while theory now predicted melting by two successive continuous transitions with no discontinuity in area at the critical pressure. This discrepancy could be hand waved away by arguing that Berni's system was far too small and his computers far too slow so that the areal discontinuity could be due to finite size effects or to failing to equilibrate the system. Experiments were not able to resolve the order of the transitions, but seemed to agree quantitatively with theory…

  1. Language in use intermediate : self-study workbook

    CERN Document Server

    Doff, Adrian

    1994-01-01

    Each of the four levels comprises about 80 hours of class work, with additional time for the self-study work. The Teacher's Book contains all the pages from the Classroom Book, with interleaved teaching notes including optional activities to cater for different abilities. There is a video to accompany the Beginner, Pre-intermediate and Intermediate levels. Each video contains eight stimulating and entertaining short programmes, as well as a booklet of photocopiable activities. Free test material is available in booklet and web format for Beginner and Pre-intermediate levels. Visit www.cambridge.org/elt/liu or contact your local Cambridge University Press representative.

  2. Synthesis of heterocycles through transition-metal-catalyzed isomerization reactions

    DEFF Research Database (Denmark)

    Ishøy, Mette; Nielsen, Thomas Eiland

    2014-01-01

    of structurally complex and diverse heterocycles. In this Concept article, we attempt to cover this area of research through a selection of recent versatile examples. A sea of opportunities! Transition-metal-catalyzed isomerization of N- and O-allylic compounds provides a mild, selective and synthetically...... versatile method to form iminium and oxocarbenium ions. Given the number of reactions involving these highly electrophilic intermediates, this concept provides a sea of opportunities for heterocycle synthesis, (see scheme; Nu=nucleophile). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  3. an intermediate moisture meat

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... traditional SM muscle without compromising quality. ... technique is intermediate moisture food processing. ... Traditionally, most tsire suya producers use ..... quality of Chinese purebred and European X Chinese crossbred ...

  4. Mechanism behind phase transitions in airplane boarding process

    Science.gov (United States)

    Qiang, Shengjie; Jia, Bin; Huang, Qingxia; Gao, Ziyou

    2016-02-01

    A simple airplane boarding model is built much like an asymmetric exclusion process (ASEP). The dynamics of the model is constrained by local interference between passengers and global seat assignments for individuals. We perform extensive Monte Carlo simulations by using a parallel update rule to determine quantities like boarding time and sequence correlation. Our results clarify the scaling behavior in boarding process and identify a critical value of arrival time interval for boarding time threshold. Three different phases (steady, intermediate and linear) with respect to the boarding time are distinguished and the mechanism behind phase transition is further discussed.

  5. Isostructural solid-solid transition of (colloidal) simple fluids

    International Nuclear Information System (INIS)

    Tejero, C.F.; Daanoun, A.; Lakkerkerker, H.N.W.; Baus, M.

    1995-01-01

    A variational approach based on the Gibbs-Bogoliubov inequality is used in order to evaluate the free energy of simple fluids described by a double-Yukawa pair potential. A hard-sphere reference fluid is used to describe the fluid phases, and an Einstein reference crystal to describe the solid phases. Apart from the usual type of phase diagram, typical of atomic simple fluids with long-ranged attractions, we find two types of phase diagrams, specific to colloidal systems with intermediate and short-ranged attractions. One of the latter phase diagrams exhibits an isostructural solid-solid transition, which has not yet been observed experimentally

  6. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Taxation of Financial Intermediation Activities in Hong Kong

    OpenAIRE

    Jack M. Mintz; Stephen R. Richardson

    2001-01-01

    This paper discusses issues related to the taxation of financial intermediation in Hong Kong in the context of Hong Kong's position as a major regional financial centre. It first provides some background analysis as to the definition of financial intermediation and identification of the providers of financial services. This is then followed by a discussion of the principles of taxation applicable to financial intermediation, including a comparison of income taxes to consumption taxes. Some sp...

  8. Non-Conventional Techniques for the Study of Phase Transitions in NiTi-Based Alloys

    Science.gov (United States)

    Nespoli, Adelaide; Villa, Elena; Passaretti, Francesca; Albertini, Franca; Cabassi, Riccardo; Pasquale, Massimo; Sasso, Carlo Paolo; Coïsson, Marco

    2014-07-01

    Differential scanning calorimetry and electrical resistance measurements are the two most common techniques for the study of the phase transition path and temperatures of shape memory alloys (SMA) in stress-free condition. Besides, it is well known that internal friction measurements are also useful for this purpose. There are indeed some further techniques which are seldom used for the basic characterization of SMA transition: dilatometric analysis, magnetic measurements, and Seebeck coefficient study. In this work, we discuss the attitude of these techniques for the study of NiTi-based phase transition. Measurements were conducted on several fully annealed Ni50- x Ti50Cu x samples ranging from 3 to 10 at.% in Cu content, fully annealed at 850 °C for 1 h in vacuum and quenched in water at room temperature. Results show that all these techniques are sensitive to phase transition, and they provide significant information about the existence of intermediate phases.

  9. Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions

    Science.gov (United States)

    Bouazza, Safa

    2017-01-01

    This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: 5s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.

  10. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    Science.gov (United States)

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  11. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    International Nuclear Information System (INIS)

    Rasmussen, J Juul; Nielsen, A H; Madsen, J; Naulin, V; Xu, G S

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null configuration. The results hold promises for developing full predictive modeling of the L–H transition, which is an essential step in understanding and optimizing fusion devices. (paper)

  12. Partial to complete wetting transitions in immiscible ternary blends with PLA: the influence of interfacial confinement.

    Science.gov (United States)

    Zolali, Ali M; Favis, Basil D

    2017-04-12

    In this study it is shown that the three different intermediate phases in melt blended ternary PLA/PHBV/PBS, PLA/PBAT/PE and PLA/PE/PBAT systems all demonstrate partial wetting, but have very different wetting behaviors as a function of composition and annealing. The interfacial tension of the various components, their spreading coefficients and the contact angles of the confined partially wet droplets at the interface are examined in detail. A wetting transition from partially wet droplets to a complete layer at the interface is observed for both PHBV and PBAT by increasing the concentration and also by annealing. In contrast, in PLA/PE/PBAT, the partially wet droplets of PE at the interface of PLA/PBAT coalesce and grow in size, but remain partially wet even at a high PE concentration of 20% and after 30 min of quiescent annealing. The dewetting speed of the intermediate phase is found to be the principal factor controlling these wetting transitions. This work shows the significant potential for controlled wetting and structuring in ternary polymer systems.

  13. Intermediate-energy nuclear chemistry workshop

    International Nuclear Information System (INIS)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities

  14. Intermediate-energy nuclear chemistry workshop

    Energy Technology Data Exchange (ETDEWEB)

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  15. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence

    International Nuclear Information System (INIS)

    Falicov, L.M.; Somorjai, G.A.

    1985-01-01

    Correlation between catalytic activity and low-energy local electronic fluctuation in transition metals is proposed. A theory and calculations are presented which indicate that maximum electronic fluctuants take place at high-coordination metal sites. Either (i) atomically rough surfaces that expose to the reactant molecules atoms with large numbers of nonmagnetic or weakly magnetic neighbors in the first or second layer at the surface or (ii) stepped and kinked surfaces are the most active in carrying out structure-sensitive catalytic reactions. The synthesis of ammonia from N 2 and H 2 over iron and rhenium surfaces, 1 H 2 / 2 H 2 exchange over stepped platinum crystal surfaces at low pressures, and the hydrogenolysis (C - C bond breaking) of isobutane at kinked platinum crystal surfaces are presented as experimental evidence in support of the theory

  16. The ARES High-level Intermediate Representation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Nicholas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. This highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.

  17. Insights into the photochemical disproportionation of transition metal dimers on the picosecond time scale.

    Science.gov (United States)

    Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2013-05-09

    The reactivity of five transition metal dimers toward photochemical, in-solvent-cage disproportionation has been investigated using picosecond time-resolved infrared spectroscopy. Previous ultrafast studies on [CpW(CO)3]2 established the role of an in-cage disproportionation mechanism involving electron transfer between 17- and 19-electron radicals prior to diffusion out of the solvent cage. New results from time-resolved infrared studies reveal that the identity of the transition metal complex dictates whether the in-cage disproportionation mechanism can take place, as well as the more fundamental issue of whether 19-electron intermediates are able to form on the picosecond time scale. Significantly, the in-cage disproportionation mechanism observed previously for the tungsten dimer does not characterize the reactivity of four out of the five transition metal dimers in this study. The differences in the ability to form 19-electron intermediates are interpreted either in terms of differences in the 17/19-electron equilibrium or of differences in an energetic barrier to associative coordination of a Lewis base, whereas the case for the in-cage vs diffusive disproportionation mechanisms depends on whether the 19-electron reducing agent is genuinely characterized by 19-electron configuration at the metal center or if it is better described as an 18 + δ complex. These results help to better understand the factors that dictate mechanisms of radical disproportionation and carry implications for radical chain mechanisms.

  18. Southern Ocean Surface and Intermediate Water Temperature from Alkenones and Mg/Ca of Infaunal Foraminifera for the last 1.5 Ma

    Science.gov (United States)

    Elmore, Aurora; McClymont, Erin; Elderfield, Harry; Kender, Sev

    2014-05-01

    The reconstruction of past surface (SST), intermediate, and deep-water temperatures is critical to our understanding of feedbacks within the ocean-climate system. Intermediate water temperature (IWT) reconstruction is particularly important since intermediate waters, including Antarctic Intermediate Water (AAIW), are proposed to be an important driver in high-low latitude teleconnections, despite limited intermediate-depth records through the Pliocene and Pleistocene. Paleotemperature proxies have caveats, including the 'Carbonate Ion Effect' on the Magnesium to Calcium ratio (Mg/Ca) of benthic foraminifera. However, recent studies demonstrated that the infaunal species, Uvigerina peregrina, co-precipitates Mg independent of secondary effects, affording the use of U.peregrina Mg/Ca as a paleotemperature proxy (Elderfield et al., 2010). We present the first 1.5 Ma record of IWT from Mg/CaU.peregrina coupled with an alkenone- derived UK37' SST record from a sediment core in the Southwest Pacific (DSDP site 593; 1068m water depth), in the core of modern AAIW. Our new data reconstruct interglacial IWTs at ~7°C before and after the Mid-Pleistocene Transition (MPT), whereas values of ~5°C occur in the later Pleistocene. Glacial IWT remained fairly constant (~2°C) throughout the last 1 Ma. These results are in apparent disagreement with the typical idea that glacial-interglacial temperature fluctuations were smaller in the '41-kyr world' before the MPT, than during the '100-kyr world', after the MPT. At proximal ODP site 1123 (3290m water depth; Elderfield et al., 2012), interglacial deepwater temperatures increase by ~1°C after the MPT, with relatively constant glacial deepwater temperatures (~-2°C) over the last 1 Ma. New results from DSDP 593 therefore imply that the mechanisms that drive intermediate and deep water temperatures varied, suggesting that at least one of these watermasses has properties driven by something other than Northern Hemisphere glaciation

  19. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  20. The intermediate phase and low wave number phonon modes in antiferroelectric (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} ceramics discovered from temperature dependent Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiaojuan; Guo, Shuang [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Hu, Zhigao, E-mail: zghu@ee.ecnu.edu.cn [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Chen, Xuefeng; Wang, Genshui [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Dong, Xianlin; Chu, Junhao [Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2016-05-15

    Optical phonons and phase transitions of (Pb{sub 0.97}La{sub 0.02}) (Zr{sub 0.60}Sn{sub 0.40−y}Ti{sub y})O{sub 3} (PLZST 97/2/60/40-100y/100y) ceramics with different compositions have been investigated by x-ray diffraction and temperature dependent Raman spectra. From the temperature dependence of low wavenumber phonon modes, two phase transitions (antiferroelectric orthorhombic to intermediate phase and intermediate phase to paraelectric cubic phase) were detected. The intermediate phase could be the coexistence one of antiferroelectric orthorhombic and ferroelectric rhombohedral phase. In addition, two modes (a soft mode and an anharmonic hopping central mode) were found in the high temperature paraelectric cubic phase. On cooling, the anharmonic hopping central mode splits into two modes in the terahertz range. Moreover, the antiferrodistortive mode appears in the antiferroelectric orthorhombic phase. Based on the analysis, the phase diagram of PLZST ceramics can be well improved. - Highlights: • The evolution of phonon modes in antiferroelectric PLZST ceramics. • An intermediate phase was found between orthorhombic and cubic phase. • The phase diagram of PLZST ceramics can be well improved.

  1. Coexisting shape- and high-K isomers in the shape transitional nucleus 188Pt

    Science.gov (United States)

    Mukhopadhyay, S.; Biswas, D. C.; Tandel, S. K.; Danu, L. S.; Joshi, B. N.; Prajapati, G. K.; Nag, Somnath; Trivedi, T.; Saha, S.; Sethi, J.; Palit, R.; Joshi, P. K.

    2014-12-01

    A high-spin study of the shape transitional nucleus 188Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B (E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  2. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  3. Intermediate behaviour of reaction mechanisms in 27Al + 63Cu collisions at 13.4 MeV/nucleon

    International Nuclear Information System (INIS)

    Bougault, R.

    1983-09-01

    This experiment aimed to investigate the nuclear reaction mechanisms in the energy transition region between 10 and 20 MeV/Nucleon. So, collisions between 27 Al (projectile) and 63 Cu (target) were studied for a bombarding energy of 13.4 MeV/nucleon. For that purpose, projectile-like fragments were detected at the grazing angle (thetasub(g)) for that system by a spectrometer and an E-ΔE telescope. A second telescope was set at various angles for light particle detection; both inclusive and coincident measurements were performed. Isotope production at angle thetasub(g) cannot be clearly explained neither by inelastic transfers nor by ''cold'' projectile fragmentation. This production seems rather to occur through an intermediate process where the Al nucleus is slowed down, and excited, and then dissociates. Moreover, kinematical correlations between fragments show evidence for a mechanism where the projectile is splitted after picking up some nucleons to the target. Finally, light particles are shown to araise essentially from a fusion-like system thermalized at T=3,5 MeV; such a temperature may be considered as an intermediate value [fr

  4. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.

    2016-11-11

    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.

  5. Mapping Intermediality in Performance

    NARCIS (Netherlands)

    2010-01-01

    Mapping Intermediality in Performance benadert het vraagstuk van intermedialiteit met betrekking tot performance (vooral theater) vanuit vijf verschillende invalshoeken: performativiteit en lichaam; tijd en ruimte; digitale cultuur en posthumanisme; netwerken; pedagogiek en praxis. In deze boeiende

  6. How energy technology innovation affects transition of coal resource-based economy in China

    International Nuclear Information System (INIS)

    Guo, Pibin; Wang, Ting; Li, Dan; Zhou, Xijun

    2016-01-01

    The aim of this research paper is to investigate factors and mechanisms that may facilitate the transition from coal resource-based economy to sustainability. Based on the energy technology innovation theory, factors that may influence the transition of coal resource-based economy were categorized into four types, including: innovation policy, innovation input, innovation ability, and innovation organization. Hypotheses were proposed regarding the mechanisms of these factors. Data were collected from surveys administered to 314 Chinese energy firms, and a structural equation model (SEM) was employed to test the hypotheses. Ten of fifteen hypotheses were retained based on the reliability tests, validity tests, and SEM. The results show that the four proposed factors are crucial in transforming the coal resource-based economy, and the effects become statistically significant through three intermediate variables, namely, transition of energy consumption structure, correction of resource wealth investment, and improvement of transition environment. - Highlights: •Approximately, 66% of energy relies on coal in China. •Serious environment problems have occurred in many coal-based regions. •Energy technology innovation can promote the transition of coal-based economy. •China should accelerate the development of clean energy.

  7. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction.

    Science.gov (United States)

    Zhu, Di; Zhang, Linghong; Ruther, Rose E; Hamers, Robert J

    2013-09-01

    The photocatalytic reduction of N₂ to NH₃ is typically hampered by poor binding of N₂ to catalytic materials and by the very high energy of the intermediates involved in this reaction. Solvated electrons directly introduced into the reactant solution can provide an alternative pathway to overcome such limitations. Here we demonstrate that illuminated hydrogen-terminated diamond yields facile electron emission into water, thus inducing reduction of N₂ to NH₃ at ambient temperature and pressure. Transient absorption measurements at 632 nm reveal the presence of solvated electrons adjacent to the diamond after photoexcitation. Experiments using inexpensive synthetic diamond samples and diamond powder show that photocatalytic activity is strongly dependent on the surface termination and correlates with the production of solvated electrons. The use of diamond to eject electrons into a reactant liquid represents a new paradigm for photocatalytic reduction, bringing electrons directly to reactants without requiring molecular adsorption to the surface.

  8. The stellar content of the isolated transition dwarf galaxy DDO210

    OpenAIRE

    McConnachie, Alan W.; Arimoto, Nobuo; Irwin, Mike; Tolstoy, Eline

    2006-01-01

    We use Subaru Suprime-Cam and VLT FORS1 photometry of the dwarf galaxy DDO210 to study the global stellar content and structural properties of a transition-type galaxy (with properties intermediate between dwarf irregular and dwarf spheroidal systems). This galaxy is sufficiently isolated that tidal interactions are not likely to have affected its evolution in any way. The colour-magnitude diagrams of DDO210 show a red giant branch (RGB) population (with an RGB bump), a bright asymptotic gian...

  9. Ordinary muon capture as a probe of virtual transitions of ββ decay

    International Nuclear Information System (INIS)

    Kortelainen, M.; Suhonen, J.

    2002-01-01

    A reliable theoretical description of double-beta-decay processes needs a possibility to test the involved virtual transitions against experimental data. Unfortunately, only the lowest virtual transition can be probed by the traditional electron capture of β - decay experiments. In this article we propose that calculated amplitudes for many virtual transitions can be probed by experiments measuring rates of ordinary muon capture (OMC) to the relevant intermediate states. The first results form such experiments are expected to appear soon. As an example, we discuss the ββ decays of 76 Ge and 106 Cd and the corresponding OMC for the 76 Se and 106 Cd nuclei in the framework of the proton-neutron QRPA with realistic interactions. It is found that the OMC observables, just like the 2νββ-decay amplitudes, strongly depend on the strength of the particle-particle part of the proton-neutron interaction. (author)

  10. Fischer-Tropsch Synthesis on Multicomponent Catalysts: What Can We Learn from Computer Simulations?

    Directory of Open Access Journals (Sweden)

    José L. C. Fajín

    2015-01-01

    Full Text Available In this concise review paper, we will address recent studies based on the generalized-gradient approximation (GGA of the density functional theory (DFT and on the periodic slab approach devoted to the understanding of the Fischer-Tropsch synthesis process on transition metal catalysts. As it will be seen, this computational combination arises as a very adequate strategy for the study of the reaction mechanisms on transition metal surfaces under well-controlled conditions and allows separating the influence of different parameters, e.g., catalyst surface morphology and coverage, influence of co-adsorbates, among others, in the global catalytic processes. In fact, the computational studies can now compete with research employing modern experimental techniques since very efficient parallel computer codes and powerful computers enable the investigation of more realistic molecular systems in terms of size and composition and to explore the complexity of the potential energy surfaces connecting reactants, to intermediates, to products of reaction. In the case of the Fischer-Tropsch process, the calculations were used to complement experimental work and to clarify the reaction mechanisms on different catalyst models, as well as the influence of additional components and co-adsorbate species in catalyst activity and selectivity.

  11. STUTTERING THERAPY FOR A CHILD AT INTERMEDIATE STUTTERING LEVEL

    Directory of Open Access Journals (Sweden)

    Nevzeta SALIHOVIKJ

    2009-11-01

    Full Text Available Stuttering therapy very often demands combination of various approaches or its modification. The main purpose of this study was to present an integrated approach to stuttering modification therapy and fluency shaping therapy for an intermediate school-age male stutterer (11 years old.The therapy for the child lasted for 12 months, sessions have been carried out twice a week, each session lasted for 45 minutes. The child still attends the therapy. The therapy uses integration of stuttering modification therapy and fluency shaping therapy. For the purpose of the fluency shaping therapy, delayed auditory feedback program is applied. During the stuttering modification therapy the child has been taught how to stutter more easily which implies prolongation of all sounds in words on which child stutters, with easy and soft transition from one sound to another. It is continuously being worked with the child on reducing negative feelings and attitudes as well as elimination of avoidance of words and speaking situations. We explained to the parents the treatment program and their role in the program realization. We also explained the possible causes of stuttering, and tried to identify and reduce fluency distractors, and engage the child in as many situations as possible which improved speech fluency.After the application of this program the child has improved fluency during the conversation in clinical and nonclinical conditions (environment. This fluency consists of spontaneous and controlled fluency. Furthermore, fear of speaking and avoidance of speech situations are significantly reduced. On the basis of the applied therapy on the child at intermediate stuttering level it can be concluded that it is possible to integrate successfully both approaches: stuttering modification therapy and fluency shaping therapy.

  12. Addition reaction of adamantylideneadamantane with Br2 and 2Br2: a computational study.

    Science.gov (United States)

    Islam, Shahidul M; Poirier, Raymond A

    2008-01-10

    Ab initio calculations were carried out for the reaction of adamantylideneadamantane (Ad=Ad) with Br2 and 2Br2. Geometries of the reactants, transition states, intermediates, and products were optimized at HF and B3LYP levels of theory using the 6-31G(d) basis set. Energies were also obtained using single point calculations at the MP2/6-31G(d)//HF/6-31G(d), MP2/6-31G(d)//B3LYP/6-31G(d), and B3LYP/6-31+G(d)//B3LYP/6-31G(d) levels of theory. Intrinsic reaction coordinate (IRC) calculations were performed to characterize the transition states on the potential energy surface. Only one pathway was found for the reaction of Ad=Ad with one Br2 producing a bromonium/bromide ion pair. Three mechanisms for the reaction of Ad=Ad with 2Br2 were found, leading to three different structural forms of the bromonium/Br3- ion pair. Activation energies, free energies, and enthalpies of activation along with the relative stability of products for each reaction pathway were calculated. The reaction of Ad=Ad with 2Br2 was strongly favored over the reaction with only one Br2. According to B3LYP/6-31G(d) and single point calculations at MP2, the most stable bromonium/Br3- ion pair would form spontaneously. The most stable of the three bromonium/Br3- ion pairs has a structure very similar to the observed X-ray structure. Free energies of activation and relative stabilities of reactants and products in CCl4 and CH2ClCH2Cl were also calculated with PCM using the united atom (UA0) cavity model and, in general, results similar to the gas phase were obtained. An optimized structure for the trans-1,2-dibromo product was also found at all levels of theory both in gas phase and in solution, but no transition state leading to the trans-1,2-dibromo product was obtained.

  13. Cord Blood Acute Phase Reactants Predict Early Onset Neonatal Sepsis in Preterm Infants.

    Directory of Open Access Journals (Sweden)

    Leena B Mithal

    Full Text Available Early onset sepsis (EOS is a major cause of morbidity and mortality in preterm infants, yet diagnosis remains inadequate resulting in missed cases or prolonged empiric antibiotics with adverse consequences. Evaluation of acute phase reactant (APR biomarkers in umbilical cord blood at birth may improve EOS detection in preterm infants with intrauterine infection.In this nested case-control study, infants (29.7 weeks gestation, IQR: 27.7-32.2 were identified from a longitudinal cohort with archived cord blood and placental histopathology. Patients were categorized using culture, laboratory, clinical, and antibiotic treatment data into sepsis groups: confirmed sepsis (cEOS, n = 12; presumed sepsis (PS, n = 30; and no sepsis (controls, n = 30. Nine APRs were measured in duplicate from cord blood using commercially available multiplex immunoassays (Bio-Plex Pro™. In addition, placental histopathologic data were linked to biomarker results.cEOS organisms were Escherichia coli, Streptococcus agalactiae, Proteus mirabilis, Haemophilus influenzae and Listeria monocytogenes. C-reactive protein (CRP, serum amyloid A (SAA, haptoglobin (Hp, serum amyloid P and ferritin were significantly elevated in cEOS compared to controls (p<0.01. SAA, CRP, and Hp were elevated in cEOS but not in PS (p<0.01 and had AUCs of 99%, 96%, and 95% respectively in predicting cEOS. Regression analysis revealed robust associations of SAA, CRP, and Hp with EOS after adjustment for covariates. Procalcitonin, fibrinogen, α-2-macroglobulin and tissue plasminogen activator were not significantly different across groups. Placental acute inflammation was associated with APR elevation and was present in all cEOS, 9 PS, and 17 control infants.This study shows that certain APRs are elevated in cord blood of premature infants with EOS of intrauterine origin. SAA, CRP, and Hp at birth have potential diagnostic utility for risk stratification and identification of infants with EOS.

  14. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C.; Ankowski, A.M.; Asaadi, J.A.; Ashenfelter, J.; Axani, S.N.; Babu, K.; Backhouse, C.; Band, H.R.; Barbeau, P.S.; Barros, N.; Bernstein, A.; Betancourt, M.; Bishai, M.; Blucher, E.; Bouffard, J.; Bowden, N.; Brice, S.; Bryan, C.; Camilleri, L.; Cao, J.; Carlson, J.; Carr, R.E.; Chatterjee, A.; Chen, M.; Chen, S.; Chiu, M.; Church, E.D.; Collar, J.I.; Collin, G.; Conrad, J.M.; Convery, M.R.; Cooper, R.L.; Cowen, D.; Davoudiasl, H.; de Gouvea, A.; Dean, D.J.; Deichert, G.; Descamps, F.; DeYoung, T.; Diwan, M.V.; Djurcic, Z.; Dolinski, M.J.; Dolph, J.; Donnelly, B.; Dwyer, D.A.; Dytman, S.; Efremenko, Y.; Everett, L.L.; Fava, A.; Figueroa-Feliciano, E.; Fleming, B.; Friedland, A.; Fujikawa, B.K.; Gaisser, T.K.; Galeazzi, M.; Galehouse, D.C.; Galindo-Uribarri, A.; Garvey, G.T.; Gautam, S.; Gilje, K.E.; Gonzalez-Garcia, M.; Goodman, M.C.; Gordon, H.; Gramellini, E.; Green, M.P.; Guglielmi, A.; Hackenburg, R.W.; Hackenburg, A.; Halzen, F.; Han, K.; Hans, S.; Harris, D.; Heeger, K.M.; Herman, M.; Hill, R.; Holin, A.; Huber, P.; Jaffe, D.E.; Johnson, R.A.; Joshi, J.; Karagiorgi, G.; Kaufman, L.J.; Kayser, B.; Kettell, S.H.; Kirby, B.J.; Klein, J.R.; Kolomensky, Yu. G.; Kriske, R.M.; Lane, C.E.; Langford, T.J.; Lankford, A.; Lau, K.; Learned, J.G.; Ling, J.; Link, J.M.; Lissauer, D.; Littenberg, L.; Littlejohn, B.R.; Lockwitz, S.; Lokajicek, M.; Louis, W.C.; Luk, K.; Lykken, J.; Marciano, W.J.; Maricic, J.; Markoff, D.M.; Martinez Caicedo, D.A.; Mauger, C.; Mavrokoridis, K.; McCluskey, E.; McKeen, D.; McKeown, R.; Mills, G.; Mocioiu, I.; Monreal, B.; Mooney, M.R.; Morfin, J.G.; Mumm, P.; Napolitano, J.; Neilson, R.; Nelson, J.K.; Nessi, M.; Norcini, D.; Nova, F.; Nygren, D.R.; Orebi Gann, G.D.; Palamara, O.; Parsa, Z.; Patterson, R.; Paul, P.; Pocar, A.; Qian, X.; Raaf, J.L.; Rameika, R.; Ranucci, G.; Ray, H.; Reyna, D.; Rich, G.C.; Rodrigues, P.; Romero, E.Romero; Rosero, R.; Rountree, S.D.; Rybolt, B.; Sanchez, M.C.; Santucci, G.; Schmitz, D.; Scholberg, K.; Seckel, D.; Shaevitz, M.; Shrock, R.; Smy, M.B.; Soderberg, M.; Sonzogni, A.; Sousa, A.B.; Spitz, J.; St. John, J.M.; Stewart, J.; Strait, J.B.; Sullivan, G.; Svoboda, R.; Szelc, A.M.; Tayloe, R.; Thomson, M.A.; Toups, M.; Vacheret, A.; Vagins, M.; Van de Water, R.G.; Vogelaar, R.B.; Weber, M.; Weng, W.; Wetstein, M.; White, C.; White, B.R.; Whitehead, L.; Whittington, D.W.; Wilking, M.J.; Wilson, R.J.; Wilson, P.; Winklehner, D.; Winn, D.R.; Worcester, E.; Yang, L.; Yeh, M.; Yokley, Z.W.; Yoo, J.; Yu, B.; Yu, J.; Zhang, C.

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  15. Mobility transition in a dynamic environment

    International Nuclear Information System (INIS)

    Basu, Urna; Maes, Christian

    2014-01-01

    Depending on how the dynamical activity of a particle in a random environment is influenced by an external field E, its differential mobility at intermediate E can turn negative. We discuss the case where for slowly changing random environment the driven particle shows negative differential mobility while that mobility turns positive for faster environment changes. We illustrate this transition using a two-dimensional-lattice Lorentz model where a particle moves in a background of simple exclusion walkers. The effective escape rate of the particle (or minus its collision frequency) which is essential for its mobility-behavior depends both on E and on the kinetic rate γ of the exclusion walkers. Large γ, i.e., fast obstacle motion, amounts to merely rescaling the particle's free motion with the obstacle density, while slow obstacle dynamics results in particle motion that is more singularly related to its free motion and preserves the negative differential mobility already seen at γ = 0. In more general terms that we also illustrate using one-dimensional random walkers, the mobility transition is between the time-scales of the quasi-stationary regime and that of the fluid limit. (paper)

  16. Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni

    Directory of Open Access Journals (Sweden)

    Marchi T.

    2013-12-01

    We have recently measured the B(E2; 0+ → 2+ of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2 values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes.

  17. Effects of annealing on the properties of atomic layer deposited Ru thin films deposited by NH{sub 3} and H{sub 2} as reactants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Joon; Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr

    2016-08-01

    Atomic layer deposition (ALD) of Ru using a non-oxidizing reactant is indispensable considering its application as a seed layer for Cu electroplating and a bottom electrode for dynamic random access memory capacitors. In this study, ALD-Ru films were deposited using a sequential supply of dicarbonyl-bis(5-methyl-2,4-hexanediketonato) Ru(II) (C{sub 16}H{sub 22}O{sub 6}Ru) and potential non-oxidizing reducing agents, NH{sub 3} or H{sub 2}, as the reactants at a substrate temperature of 250 °C, and the effects of post-annealing in a H{sub 2} ambient on the film properties were investigated. The highly conformal deposition of Ru films was possible using the present reaction scheme but its resistivity was as high as ~ 750 μΩ-cm due to carbon incorporation into the film and the formation of an amorphous structure. Low temperature annealing at 300 °C at H{sub 2} ambient after deposition was found to improve the properties significantly in terms of the resistivity, impurities contents and crystallinity. For example, the film resistivity was decreased drastically to ~ 40 μΩ-cm with both the release of C in the film and crystallization after annealing based on secondary ion mass spectrometry and transmission electron microscopy, whereas perfect step coverage at a very small-sized dual trench (aspect ratio: ~ 3, the top opening size of 45 nm and bottom size of 20 nm) was maintained after annealing. - Highlights: • Ru thin films were deposited by atomic layer deposition (ALD) using NH{sub 3} and H{sub 2} molecules. • Effects of low temperature (300 °C) post-annealing on the film properties were investigated. • Post annealing improved the properties of ALD-Ru films. • Perfect step coverage of ALD-Ru was confirmed at trench structure (top opening width: 45 nm).

  18. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    Science.gov (United States)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  19. Intermediate Inflation or Late Time Acceleration?

    International Nuclear Information System (INIS)

    Sanyal, A.K.

    2008-01-01

    The expansion rate of intermediate inflation lies between the exponential and power law expansion but corresponding accelerated expansion does not start at the onset of cosmological evolution. Present study of intermediate inflation reveals that it admits scaling solution and has got a natural exit form it at a later epoch of cosmic evolution, leading to late time acceleration. The corresponding scalar field responsible for such feature is also found to behave as a tracker field for gravity with canonical kinetic term.

  20. On financial equilibrium with intermediation costs

    DEFF Research Database (Denmark)

    Markeprand, Tobias Ejnar

    2008-01-01

    This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium correspond......This paper studies the set of competitive equilibria in financial economies with intermediation costs. We consider an arbitrary dividend structure, which includes options and equity with limited liabilities.We show a general existence result and upper-hemi continuity of the equilibrium...

  1. Intermediate product selection and blending in the food processing industry

    DEFF Research Database (Denmark)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates...

  2. Tunneling in green tea: understanding the antioxidant activity of catechol-containing compounds. A variational transition-state theory study.

    Science.gov (United States)

    Tejero, Ismael; Gonzalez-García, Núria; Gonzalez-Lafont, Angels; Lluch, José M

    2007-05-09

    The catechol functionality present in the catechins is responsible for the protective effects exerted by green tea against a wide range of human diseases. High-level electronic structure calculations and canonical variational transition-state theory including multidimensional tunneling corrections have allowed us to understand the key factors of the antioxidant effectiveness of the catechol group. This catechol group forms two hydrogen bonds with the two oxygen atoms of the lipid peroxyl radical, leading to a very compact reactant complex. This fact produces an extremely narrow adiabatic potential-energy profile corresponding to the hydrogen abstraction by the peroxyl radical, which makes it possible for a huge tunneling contribution to take place. So, quantum-mechanical tunneling highly increases the corresponding rate constant value, in such a way that catechins become able to trap the lipid peroxyl radicals in a dominant competition with the very damaging free-radical chain-lipid peroxidation reaction.

  3. The structure of nuclear states at low, intermediate and high excitation energies

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1976-01-01

    It is shown that within the model based on the quasiparticle-phonon interaction one can obtain the description of few-quasiparticle components of nuclear states at low, intermediate and high excitation energies. For the low-lying states the energy of each level is calculated. The few-quasiparticle components at intermediate and high excitation energies are represented to be averaged in certain energy intervals and their characteri stics are given as the corresponding strength functions. The fragmentation of single-particle states in deformed nuclei is studied. It is shown that in the distribution of the single-particle strength alongside with a large maximum there appear local maxima and the distribution itself has a long tail. The dependence of neutron strength functions on the excitation energy is investigated for the transfer reaction of the type (d,p) and (d,t). The s,- p,- and d-wave neutron strength functions are calculated at the neutron binding energy Bn. A satisfactory agreement with experiment is obtained. The energies and Elambda-strength functions for giant multipole resonances in deformed nuclei are calculated. The energies of giant quadrupole and octupole resonances are calculated. Their widths and fine structure are being studied. It is stated that to study the structure of highly excited states it is necessary to find the values of many-quasiparticle components of the wave functions. The ways of experimental determination of these components based on the study of γ-transitions between highly excited states are discussed

  4. Thermal properties and phase transition in the fluoride, (NH4)3SnF7

    International Nuclear Information System (INIS)

    Kartashev, A.V.; Gorev, M.V.; Bogdanov, E.V.; Flerov, I.N.; Laptash, N.M.

    2016-01-01

    Calorimetric, dilatometric and differential thermal analysis studies were performed on (NH 4 ) 3 SnF 7 for a wide range of temperatures and pressures. Large entropy (δS 0 =22 J/mol K) and elastic deformation (δ(ΔV/V) 0 =0.89%) jumps have proven that the Pa-3↔Pm-3m phase transition is a strong first order structural transformation. A total entropy change of ΔS 0 =32.5 J/mol K is characteristic for the order–disorder phase transition, and is equal to the sum of entropy changes in the related material, (NH 4 ) 3 TiF 7 , undergoing transformation between the two cubic phases through the intermediate phases. Hydrostatic pressure decreases the stability of the high temperature Pm-3m phase in (NH 4 ) 3 SnF 7 , contrary to (NH 4 ) 3 TiF 7 , characterised by a negative baric coefficient. The effect of experimental conditions on the chemical stability of (NH 4 ) 3 SnF 7 was observed. - Graphical abstract: Strong first order structural transformation Pa-3↔Pm-3m in (NH 4 ) 3 SnF 7 is associated with very large total entropy change of ΔS 0 =32.5 J/mol K characteristic for the ordering processes and equal to the sum of entropy changes in the related (NH 4 ) 3 TiF 7 undergoing transformation between the same two cubic phases through the intermediate phases. - Highlights: • (NH 4 ) 3 SnF 7 undergoes strong first order Pa-3↔Pm-3m phase transition. • Anomalous behaviour of ΔC p and ΔV/V exists far below phase transition temperature. • Structural distortions are accompanied by huge total entropy change ΔS≈Rln50. • High pressure strongly increases the stability of Pa-3 phase in (NH 4 ) 3 SnF 7 . • Entropy of the Pa-3↔Pm-3m phase transition does not depend on pressure.

  5. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory–Motor Transformation123

    Science.gov (United States)

    Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying

    2016-01-01

    Abstract The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T–G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T–G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T–G delay codes to a “pure” G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory–memory–motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation. PMID:27092335

  6. Intermediate product selection and blending in the food processing industry

    NARCIS (Netherlands)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter; Grunow, Martin

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates are

  7. A global view of the phase transitions of SnO2 in rechargeable batteries based on results of high throughput calculations

    KAUST Repository

    Cheng, Yingchun

    2015-08-28

    Lithium, sodium and magnesium have attracted wide attention as potential ions for rechargeable batteries. The Materials Project database of high throughput first principles calculations is used to investigate the phase transitions of SnO2 during ion intercalation and extraction. Various intermediate phases are predicted to be formed during the first intercalation, whereas in later cycles other intermediate phases are encountered. The volume expansions after intercalation and extraction are analyzed. We show that different lithium and sodium oxide products found in recent experiments are due to different oxygen chemical potentials.

  8. Entropy and chemical change. 1: Characterization of product (and reactant) energy distributions in reactive molecular collisions: Information and enthropy deficiency

    Science.gov (United States)

    Bernstein, R. B.; Levine, R. D.

    1972-01-01

    Optimal means of characterizing the distribution of product energy states resulting from reactive collisions of molecules with restricted distributions of initial states are considered, along with those for characterizing the particular reactant state distribution which yields a given set of product states at a specified total energy. It is suggested to represent the energy-dependence of global-type results in the form of square-faced bar plots, and of data for specific-type experiments as triangular-faced prismatic plots. The essential parameters defining the internal state distribution are isolated, and the information content of such a distribution is put on a quantitative basis. The relationship between the information content, the surprisal, and the entropy of the continuous distribution is established. The concept of an entropy deficiency, which characterizes the specificity of product state formation, is suggested as a useful measure of the deviance from statistical behavior. The degradation of information by experimental averaging is considered, leading to bounds on the entropy deficiency.

  9. Water oxidation by photosystem II: H(2)O-D(2)O exchange and the influence of pH support formation of an intermediate by removal of a proton before dioxygen creation.

    Science.gov (United States)

    Gerencsér, László; Dau, Holger

    2010-11-30

    Understanding the chemistry of photosynthetic water oxidation requires deeper insight into the interrelation between electron transfer (ET) and proton relocations. In photosystem II membrane particles, the redox transitions of the water-oxidizing Mn complex were initiated by nanosecond laser flashes and monitored by absorption spectroscopy at 360 nm (A(360)). In the oxygen evolution transition (S(3) + hν → S(0) + O(2)), an exponential decrease in A(360) (τ(O(2)) = 1.6 ms) can be assigned to Mn reduction and O(2) formation. The corresponding rate-determining step is the ET from the Mn complex to a tyrosine radical (Y(Z)(ox)). We find that this A(360) decrease is preceded by a lag phase with a duration of 170 ± 40 μs (τ(lag) at pH 6.2), indicating formation of an intermediate before ET and O-O bond formation and corroborating results obtained by time-resolved X-ray spectroscopy. Whereas τ(O(2)) exhibits a minor kinetic isotope effect and negligible pH dependence, formation of the intermediate is slowed significantly both in D(2)O (τ(lag) increase of ∼140% in D(2)O) and at low pH (τ(lag) of 30 ± 20 μs at pH 7.0 vs τ(lag) of 470 ± 80 μs at pH 5.5). These findings support the fact that in the oxygen evolution transition an intermediate is created by deprotonation and removal of a proton from the Mn complex, after Y(Z)(ox) formation but before the onset of electron transfer and O-O bond formation.

  10. Coexisting shape- and high-K isomers in the shape transitional nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S., E-mail: somm@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Biswas, D.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tandel, S.K. [UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India); Danu, L.S.; Joshi, B.N.; Prajapati, G.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nag, Somnath [Dept. of Physics, IIT Kharagpur, Kharagpur 721302 (India); Trivedi, T.; Saha, S.; Sethi, J.; Palit, R. [Dept. of Nuclear and Atomic Physics, TIFR, Mumbai 400005 (India); Joshi, P.K. [Homi Bhabha Centre for Science Education, TIFR, Mumbai 400088 (India)

    2014-12-12

    A high-spin study of the shape transitional nucleus {sup 188}Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B(E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  11. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  12. The Intermediate Neutrino Program

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C. [Yale Univ., New Haven, CT (United States); Alonso, J. R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ankowski, A. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Asaadi, J. A. [Syracuse Univ., NY (United States); Ashenfelter, J. [Yale Univ., New Haven, CT (United States); Axani, S. N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Babu, K [Oklahoma State Univ., Stillwater, OK (United States); Backhouse, C. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Band, H. R. [Yale Univ., New Haven, CT (United States); Barbeau, P. S. [Duke Univ., Durham, NC (United States); Barros, N. [Univ. of Pennsylvania, Philadelphia, PA (United States); Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Betancourt, M. [Illinois Inst. of Technology, Chicago, IL (United States); Bishai, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blucher, E. [Univ. of Chicago, IL (United States); Bouffard, J. [State Univ. of New York (SUNY), Albany, NY (United States); Bowden, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brice, S. [Illinois Inst. of Technology, Chicago, IL (United States); Bryan, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Camilleri, L. [Columbia Univ., New York, NY (United States); Cao, J. [Inst. of High Energy Physics, Beijing (China); Carlson, J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, R. E. [Columbia Univ., New York, NY (United States); Chatterjee, A. [Univ. of Texas, Arlington, TX (United States); Chen, M. [Univ. of California, Irvine, CA (United States); Chen, S. [Tsinghua Univ., Beijing (China); Chiu, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Church, E. D. [Illinois Inst. of Technology, Chicago, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collar, J. I. [Univ. of Chicago, IL (United States); Collin, G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Conrad, J. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Convery, M. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cooper, R. L. [Indiana Univ., Bloomington, IN (United States); Cowen, D. [Pennsylvania State Univ., University Park, PA (United States); Davoudiasl, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gouvea, A. D. [Northwestern Univ., Evanston, IL (United States); Dean, D. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deichert, G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Descamps, F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeYoung, T. [Michigan State Univ., East Lansing, MI (United States); Diwan, M. V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Djurcic, Z. [Argonne National Lab. (ANL), Argonne, IL (United States); Dolinski, M. J. [Drexel Univ., Philadelphia, PA (United States); Dolph, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Donnelly, B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dwyer, D. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dytman, S. [Univ. of Pittsburgh, PA (United States); Efremenko, Y. [Univ. of Tennessee, Knoxville, TN (United States); Everett, L. L. [Univ. of Wisconsin, Madison, WI (United States); Fava, A. [University of Padua, Padova (Italy); Figueroa-Feliciano, E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Fleming, B. [Yale Univ., New Haven, CT (United States); Friedland, A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fujikawa, B. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gaisser, T. K. [Univ. of Delaware, Newark, DE (United States); Galeazzi, M. [Univ. of Miami, FL (United States); Galehouse, DC [Univ. of Akron, OH (United States); Galindo-Uribarri, A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Garvey, G. T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautam, S. [Tribhuvan Univ., Kirtipur (Nepal); Gilje, K. E. [Illinois Inst. of Technology, Chicago, IL (United States); Gonzalez-Garcia, M. [Stony Brook Univ., NY (United States); Goodman, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Gordon, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gramellini, E. [Yale Univ., New Haven, CT (United States); Green, M. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guglielmi, A. [University of Padua, Padova (Italy); Hackenburg, R. W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hackenburg, A. [Yale Univ., New Haven, CT (United States); Halzen, F. [Univ. of Wisconsin, Madison, WI (United States); Han, K. [Yale Univ., New Haven, CT (United States); Hans, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harris, D. [Illinois Inst. of Technology, Chicago, IL (United States); Heeger, K. M. [Yale Univ., New Haven, CT (United States); Herman, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hill, R. [Univ. of Chicago, IL (United States); Holin, A. [Univ. College London, Bloomsbury (United Kingdom); Huber, P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Jaffe, D. E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Johnson, R. A. [Univ. of Cincinnati, OH (United States); Joshi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karagiorgi, G. [Univ. of Manchester (United Kingdom); Kaufman, L. J. [Indiana Univ., Bloomington, IN (United States); Kayser, B. [Illinois Inst. of Technology, Chicago, IL (United States); Kettell, S. H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kirby, B. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Klein, J. R. [Univ. of Texas, Arlington, TX (United States); Kolomensky, Y. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Kriske, R. M. [Univ. of Minnesota, Minneapolis, MN (United States); Lane, C. E. [Drexel Univ., Philadelphia, PA (United States); Langford, T. J. [Yale Univ., New Haven, CT (United States); Lankford, A. [Univ. of California, Irvine, CA (United States); Lau, K. [Univ. of Houston, TX (United States); Learned, J. G. [Univ. of Hawaii, Honolulu, HI (United States); Ling, J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Link, J. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Lissauer, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littenberg, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Littlejohn, B. R. [Illinois Inst. of Technology, Chicago, IL (United States); Lockwitz, S. [Illinois Inst. of Technology, Chicago, IL (United States); Lokajicek, M. [Inst. of Physics of the Academy of Sciences of Czech Republic, Prague (Czech Republic); Louis, W. C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luk, K. [Univ. of California, Berkeley, CA (United States); Lykken, J. [Illinois Inst. of Technology, Chicago, IL (United States); Marciano, W. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Maricic, J. [Univ. of Hawaii, Honolulu, HI (United States); Markoff, D. M. [North Carolina Central Univ., Durham, NC (United States); Caicedo, D. A. M. [Illinois Inst. of Technology, Chicago, IL (United States); Mauger, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mavrokoridis, K. [Univ. of Liverpool (United Kingdom); McCluskey, E. [Illinois Inst. of Technology, Chicago, IL (United States); McKeen, D. [Univ. of Washington, Seattle, WA (United States); McKeown, R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mills, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocioiu, I. [Pennsylvania State Univ., University Park, PA (United States); Monreal, B. [Univ. of California, Santa Barbara, CA (United States); Mooney, M. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morfin, J. G. [Illinois Inst. of Technology, Chicago, IL (United States); Mumm, P. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Napolitano, J. [Temple Univ., Philadelphia, PA (United States); Neilson, R. [Drexel Univ., Philadelphia, PA (United States); Nelson, J. K. [College of William and Mary, Williamsburg, VA (United States); Nessi, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Norcini, D. [Yale Univ., New Haven, CT (United States); Nova, F. [Univ. of Texas, Austin, TX (United States); Nygren, D. R. [Univ. of Texas, Arlington, TX (United States); Gann, GDO [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Palamara, O. [Illinois Inst. of Technology, Chicago, IL (United States); Parsa, Z. [Brookhaven National Lab. (BNL), Upton, NY (United States); Patterson, R. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Paul, P. [Stony Brook Univ., NY (United States); Pocar, A. [Univ. of Massachusetts, Amherst, MA (United States); Qian, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raaf, J. L. [Illinois Inst. of Technology, Chicago, IL (United States); Rameika, R. [Illinois Inst. of Technology, Chicago, IL (United States); Ranucci, G. [National Inst. of Nuclear Physics, Milano (Italy); Ray, H. [Univ. of Florida, Gainesville, FL (United States); Reyna, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rich, G. C. [Triangle Universities Nuclear Lab., Durham, NC (United States); Rodrigues, P. [Univ. of Rochester, NY (United States); Romero, E. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Rosero, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rountree, S. D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Rybolt, B. [Univ. of Tennessee, Knoxville, TN (United States); Sanchez, M. C. [Iowa State Univ., Ames, IA (United States); Santucci, G. [Stony Brook Univ., NY (United States); Schmitz, D. [Univ. of Chicago, IL (United States); Scholberg, K. [Duke Univ., Durham, NC (United States); Seckel, D. [Univ. of Delaware, Newark, DE (United States); Shaevitz, M. [Columbia Univ., New York, NY (United States); Shrock, R. [Stony Brook Univ., NY (United States); Smy, M. B. [Univ. of California, Irvine, CA (United States); Soderberg, M. [Syracuse Univ., NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sousa, A. B. [Univ. of Cincinnati, OH (United States); Spitz, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); John, J. M. S. [Univ. of Cincinnati, OH (United States); Stewart, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Strait, J. B. [Illinois Inst. of Technology, Chicago, IL (United States); Sullivan, G. [Univ. of Maryland, College Park, MD (United States); Svoboda, R. [Univ. of California, Davis, CA (United States); Szelc, A. M. [Yale Univ., New Haven, CT (United States); Tayloe, R. [Indiana Univ., Bloomington, IN (United States); Thomson, M. A. [Univ. of Cambridge (United Kingdom); Toups, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Vacheret, A. [Univ. of Oxford (United Kingdom); Vagins, M. [Univ. of California, Irvine, CA (United States); Water, R. G. V. D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogelaar, R. B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Weber, M. [Bern (Switzerland); Weng, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wetstein, M. [Univ. of Chicago, IL (United States); White, C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); White, B. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitehead, L. [Univ. of Houston, TX (United States); Whittington, D. W. [Indiana Univ., Bloomington, IN (United States); Wilking, M. J. [Stony Brook Univ., NY (United States); Wilson, R. J. [Colorado State Univ., Fort Collins, CO (United States); Wilson, P. [Illinois Inst. of Technology, Chicago, IL (United States); Winklehner, D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Winn, D. R. [Fairfield Univ., CT (United States); Worcester, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, L. [Univ. of Illinois, Urbana-Champaign, IL (United States); Yeh, M [Brookhaven National Lab. (BNL), Upton, NY (United States); Yokley, Z. W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yoo, J. [Illinois Inst. of Technology, Chicago, IL (United States); Yu, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, J. [Univ. of Texas, Arlington, TX (United States); Zhang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-03

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  13. An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory

    Directory of Open Access Journals (Sweden)

    E.R. Bittner

    2016-03-01

    Full Text Available We present here a formally exact model for electronic transitions between an initial (donor and final (acceptor states linked by an intermediate (bridge state. Our model incorporates a common set of vibrational modes that are coupled to the donor, bridge, and acceptor states and serves as a dissipative bath that destroys quantum coherence between the donor and acceptor. Taking the memory time of the bath as a free parameter, we calculate transition rates for a heuristic 3-state/2 mode Hamiltonian system parameterized to represent the energetics and couplings in a typical organic photovoltaic system. Our results indicate that if the memory time of the bath is of the order of 10-100 fs, a two-state kinetic (i.e., incoherent hopping model will grossly underestimate overall transition rate.

  14. Experimental advances and preliminary mathematical modeling of the Swiss-roll mixed-reactant direct borohydride fuel cell

    Science.gov (United States)

    Aziznia, Amin; Oloman, Colin W.; Gyenge, Előd L.

    2014-11-01

    The Swiss-roll single-cell mixed reactant (SR-MRFC) borohydride - oxygen fuel cell equipped with Pt/carbon cloth 3D anode and either MnO2 or Ag gas-diffusion cathodes is investigated by a combination of experimental studies and preliminary mathematical modeling of the polarization curve. We investigate the effects of four variables: cathode side metallic mesh fluid distributor, separator type (Nafion 112® vs. Viledon®), cathode catalyst (MnO2 vs. Ag), and the hydrophilic pore volume fraction of the gas-diffusion cathode. Using a two-phase feed of alkaline borohydride solution (1 M NaBH4 - 2 M NaOH) and O2 gas in an SR-MRFC equipped with Pt/C 3D anode, MnO2 gas diffusion cathode, Viledon® porous diaphragm, expanded mesh cathode-side fluid distributor, the maximum superficial power density is 2230 W m-2 at 323 K and 105 kPa(abs). The latter superficial power density is almost 3.5 times higher than our previously reported superficial power density for the same catalyst combinations. Furthermore, with a Pt anode and Ag cathode catalyst combination, a superficial power density of 2500 W m-2 is achieved with superior performance durability compared to the MnO2 cathode. The fuel cell results are substantiated by impedance spectroscopy analysis and preliminary mathematical model predictions based on mixed potential theory.

  15. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi.

    Science.gov (United States)

    Ventura, Tomer; Fitzgibbon, Quinn P; Battaglene, Stephen C; Elizur, Abigail

    2015-08-27

    The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation.

  16. Redefining metamorphosis in spiny lobsters: molecular analysis of the phyllosoma to puerulus transition in Sagmariasus verreauxi

    Science.gov (United States)

    Ventura, Tomer; Fitzgibbon, Quinn P.; Battaglene, Stephen C.; Elizur, Abigail

    2015-01-01

    The molecular understanding of crustacean metamorphosis is hindered by small sized individuals and inability to accurately define molt stages. We used the spiny lobster Sagmariasus verreauxi where the large, transparent larvae enable accurate tracing of the transition from a leaf-shaped phyllosoma to an intermediate larval-juvenile phase (puerulus). Transcriptomic analysis of larvae at well-defined stages prior to, during, and following this transition show that the phyllosoma-puerulus metamorphic transition is accompanied by vast transcriptomic changes exceeding 25% of the transcriptome. Notably, genes previously identified as regulating metamorphosis in other crustaceans do not fluctuate during this transition but in the later, morphologically-subtle puerulus-juvenile transition, indicating that the dramatic phyllosoma-puerulus morphological shift relies on a different, yet to be identified metamorphic mechanism. We examined the change in expression of domains and gene families, with focus on several key genes. Our research implies that the separation in molecular triggering systems between the phyllosoma-puerulus and puerulus-juvenile transitions might have enabled the extension of the oceanic phase in spiny lobsters. Study of similar transitions, where metamorphosis is uncoupled from the transition into the benthic juvenile form, in other commercially important crustacean groups might show common features to point on the evolutionary advantage of this two staged regulation. PMID:26311524

  17. Surface Intermediate Zone of Submerged Turbulent Buoyant Jet in Current

    DEFF Research Database (Denmark)

    Chen, H. B.; Larsen, Torben

    1995-01-01

    This paper deals with the intermediate zone between the jet and plume stages of a submerged buoyant discharge from sea outfall in current. The stability criteria, plume width and height after the intermediate zone and the dilution within the intermediate region have been studied theoretically and...

  18. Computational uncertainties in silicon dioxide/plutonium intermediate neutron spectrum systems

    International Nuclear Information System (INIS)

    Jaegers, P.J.

    1997-01-01

    In the past several years, several proposals have been made for the long-term stabilization and storage of surplus fissile materials. Many of these proposed scenarios involve systems that have an intermediate neutron energy spectrum. Such intermediate-energy systems are dominated by scattering and fission events induced by neutrons ranging in energy from 1 eV to 100keV. To ensure adequate safety margins and cost effectiveness, it is necessary to have benchmark data for these intermediate-energy spectrum systems; however, a review of the nuclear criticality benchmarks indicates that no formal benchmarks are available. Nuclear data uncertainties have been reported for some types of intermediate-energy spectrum systems. Using a variety of Monte Carlo computer codes and cross-section sets, reported significant variations in the calculated k ∞ of intermediate-energy spectrum metal/ 235 U systems. We discuss the characteristics of intermediate neutron spectrum systems and some of the computational differences that can occur in calculating the k eff of these systems

  19. Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and Molecular Dynamics Calculations.

    Science.gov (United States)

    Brás, Natércia F; Fernandes, Pedro A; Ramos, Maria J; Schwartz, Steven D

    2018-02-06

    Human α-phosphoglucomutase 1 (α-PGM) catalyzes the isomerization of glucose-1-phosphate into glucose-6-phosphate (G6P) through two sequential phosphoryl transfer steps with a glucose-1,6-bisphosphate (G16P) intermediate. Given that the release of G6P in the gluconeogenesis raises the glucose output levels, α-PGM represents a tempting pharmacological target for type 2 diabetes. Here, we provide the first theoretical study of the catalytic mechanism of human α-PGM. We performed transition-path sampling simulations to unveil the atomic details of the two catalytic chemical steps, which could be key for developing transition state (TS) analogue molecules with inhibitory properties. Our calculations revealed that both steps proceed through a concerted S N 2-like mechanism, with a loose metaphosphate-like TS. Even though experimental data suggests that the two steps are identical, we observed noticeable differences: 1) the transition state ensemble has a well-defined TS region and a late TS for the second step, and 2) larger coordinated protein motions are required to reach the TS of the second step. We have identified key residues (Arg23, Ser117, His118, Lys389), and the Mg 2+ ion that contribute in different ways to the reaction coordinate. Accelerated molecular dynamics simulations suggest that the G16P intermediate may reorient without leaving the enzymatic binding pocket, through significant conformational rearrangements of the G16P and of specific loop regions of the human α-PGM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. How to finance energy transition? Elements of analysis for a strategic approach

    International Nuclear Information System (INIS)

    Ruedinger, Andreas

    2015-01-01

    If regulatory and economic signals are the first determining factors for the launching of energy transition projects, financing tools are a major stake. But financing these projects is also facing two complementary challenges: the mobilisation of additional capital resources to face the needs, and the re-orientation of a part of this financing towards more efficient projects. In order to asses the consistency of financing tools, this study identifies three determining financing stakes: an inter-mediation with capital markets to mobilise capitals at low cost, a calibration of project financing mechanisms to meet the needs of the different actors and sectors and to limit transaction costs, and a better articulation between financial tools and regulatory tools. The authors thus propose an integrated approach to the stakes of transition financing

  1. MNE Entrepreneurial Capabilities at Intermediate Levels

    DEFF Research Database (Denmark)

    Hoenen, Anne K.; Nell, Phillip Christopher; Ambos, Björn

    2014-01-01

    at intermediate geographical levels differ from local subsidiaries and global corporate headquarters, and why those differences are important. We illustrate our arguments using data on European regional headquarters (RHQs). We find that RHQs' entrepreneurial capabilities depend on their external embeddedness...... and on the heterogeneous information that is generated through dissimilar markets within the region. Our study opens up for an interesting discussion of the independence of these mechanisms. In sum, we contribute to the understanding of the entrepreneurial role of intermediate units in general and RHQs in particular....

  2. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/power reactant storage and distribution subsystem FMEA/CIL

    Science.gov (United States)

    Ames, B. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA effort first completed an analysis of the Electrical Power Generation/Power Reactant Storage and Distribution (EPG/PRSD) subsystem hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baselines with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison are documented for the Orbiter EPG/PRSD hardware. The comparison produced agreement on all but 27 FMEAs and 9 CIL items. The discrepancy between the number of IOA findings and NASA FMEAs can be partially explained by the different approaches used by IOA and NASA to group failure modes together to form one FMEA. Also, several IOA items represented inner tank components and ground operations failure modes which were not in the NASA baseline.

  3. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    International Nuclear Information System (INIS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-01-01

    The new metastable compound Cr 1+x Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni 2 In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr 1+x Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr 1+x Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr 1.6 Sb in Ni 2 In-type structure. • The new Cr-rich phase shows half-metallic behavior

  4. Financial Intermediation and Economic Growth of Jordan 1964-1988

    OpenAIRE

    Magableh, Ali H.

    1995-01-01

    Until recently, the economics and financial literature placed little attention on the role that financial intermediation can play in accelerating the rate of economic development in less Developed Countries (LDCs). This has been changed now, however, where some instrumental role has been emphasised for financial intermediation in the process of economic development and growth. It is argued that an expansion of the financial system, size and intermediation in LDCs tends to increase the level o...

  5. Analysis of the J /ψ →π0γ* transition form factor

    Science.gov (United States)

    Kubis, Bastian; Niecknig, Franz

    2015-02-01

    In view of the first measurement of the branching fraction for J /ψ →π0e+e- by the BESIII collaboration, we analyze what can be learned on the corresponding transition form factor using dispersion theory. We show that light-quark degrees of freedom dominate the spectral function, in particular two-pion intermediate states. Estimating the effects of multipion states as well as charmonium, we arrive at a prediction for the complete form factor that should be scrutinized experimentally in the future.

  6. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates

    International Nuclear Information System (INIS)

    Lee, Yuan-Pern

    2015-01-01

    The Criegee intermediates, carbonyl oxides proposed by Criegee in 1949 as key intermediates in the ozonolysis of alkenes, play important roles in many aspects of atmospheric chemistry. Because direct detection of these gaseous intermediates was unavailable until recently, previous understanding of their reactions, derived from indirect experimental evidence, had great uncertainties. Recent laboratory detection of the simplest Criegee intermediate CH 2 OO and some larger members, produced from ultraviolet irradiation of corresponding diiodoalkanes in O 2 , with various methods such as photoionization, ultraviolet absorption, infrared absorption, and microwave spectroscopy opens a new door to improved understanding of the roles of these Criegee intermediates. Their structures and spectral parameters have been characterized; their significant zwitterionic nature is hence confirmed. CH 2 OO, along with other products, has also been detected directly with microwave spectroscopy in gaseous ozonolysis reactions of ethene. The detailed kinetics of the source reaction, CH 2 I + O 2 , which is critical to laboratory studies of CH 2 OO, are now understood satisfactorily. The kinetic investigations using direct detection identified some important atmospheric reactions, including reactions with NO 2 , SO 2 , water dimer, carboxylic acids, and carbonyl compounds. Efforts toward the characterization of larger Criegee intermediates and the investigation of related reactions are in progress. Some reactions of CH 3 CHOO are found to depend on conformation. This perspective examines progress toward the direct spectral characterization of Criegee intermediates and investigations of the associated reaction kinetics, and indicates some unresolved problems and prospective challenges for this exciting field of research

  7. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1998-01-01

    The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...

  8. Transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1982-01-01

    Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)

  9. Theoretical studies of the nucleophilic substitution of halides and amine at a sulfonyl center.

    Science.gov (United States)

    Sung, Dae Dong; Kim, Tae Joon; Lee, Ikchoon

    2009-06-25

    Gas-phase nucleophilic substitution reactions, F(-) + CH(3)SO(2)F, Cl(-) + CH(3)SO(2)Cl, Cl(-) + CH(3)SO(2)F, and NH(3) + CH(3)SO(2)Cl, have been investigated at the B3LYP/6-311+G** and MP2/6-31+G* levels of theory. A very shallow well for the reaction intermediate in a triple-well potential energy surface (PES) was observed for the identity fluoride exchange, but double well PESs were obtained for the other three reactions with three different PES profiles. NBO analyses of the transition states showed substantial charge transfer interactions in all cases which provided a much larger amount of stabilization energy compared with the corresponding species at the carbon center of methyl halides. This difference is primarily caused by the strong electropositive nature of the sulfur center. The F-S-F axial linkage in the distorted TBP type intermediate in the identity fluoride exchange reaction exhibited a weak three-center, four-electron omega-bonding, which is considered to provide stability of the intermediate. All the reactant (RC) and product complexes (PC) have Cs symmetry. The symmetry plane bisects angles HCH (of methyl group), OSO (of sulfonyl group), and HNH (of ammonia). Vicinal charge transfer interactions between the two out-of-plane C-H, S-O, and N-H bonds provide extra stabilization to the ion-dipole complexes together with H-bond formation of in-plane H atom with the nucleophile and/or leaving group.

  10. Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide

    International Nuclear Information System (INIS)

    Kukushkin, S A; Osipov, A V

    2017-01-01

    The paper focuses on the study of transformation of silicon crystal into silicon carbide crystal via substitution reaction with carbon monoxide gas. As an example, the Si(1 0 0) surface is considered. The cross section of the potential energy surface of the first stage of transformation along the reaction pathway is calculated by the method of nudged elastic bands. It is found that in addition to intermediate states associated with adsorption of CO and SiO molecules on the surface, there is also an intermediate state in which all the atoms are strongly bonded to each other. This intermediate state significantly reduces the activation barrier of transformation down to 2.6 eV. The single imaginary frequencies corresponding to the two transition states of this transformation are calculated, one of which is reactant-like, whereas the other is product-like. By methods of quantum chemistry of solids, the second stage of this transformation is described, namely, the transformation of precarbide silicon into silicon carbide. Energy reduction per one cell is calculated for this ‘collapse’ process, and bond breaking energy is also found. Hence, it is concluded that the smallest size of the collapsing islet is 30 nm. It is shown that the chemical bonds of the initial silicon crystal are coordinately replaced by the bonds between Si and C in silicon carbide, which leads to a high quality of epitaxy and a low concentration of misfit dislocations. (paper)

  11. A Multi-Scale Computational Study on the Mechanism of Streptococcus pneumoniae Nicotinamidase (SpNic

    Directory of Open Access Journals (Sweden)

    Bogdan F. Ion

    2014-09-01

    Full Text Available Nicotinamidase (Nic is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic. In particular, density functional theory (DFT, molecular dynamics (MD and ONIOM quantum mechanics/molecular mechanics (QM/MM methods have been employed. The overall mechanism occurs in two stages: (i formation of a thioester enzyme-intermediate (IC2 and (ii hydrolysis of the thioester bond to give the products. The polar protein environment has a significant effect in stabilizing reaction intermediates and in particular transition states. As a result, both stages effectively occur in one step with Stage 1, formation of IC2, being rate limiting barrier with a cost of 53.5 kJ•mol−1 with respect to the reactant complex, RC. The effects of dispersion interactions on the overall mechanism were also considered but were generally calculated to have less significant effects with the overall mechanism being unchanged. In addition, the active site lysyl (Lys103 is concluded to likely play a role in stabilizing the thiolate of Cys136 during the reaction.

  12. A multi-scale computational study on the mechanism of Streptococcus pneumoniae Nicotinamidase (SpNic).

    Science.gov (United States)

    Ion, Bogdan F; Kazim, Erum; Gauld, James W

    2014-09-29

    Nicotinamidase (Nic) is a key zinc-dependent enzyme in NAD metabolism that catalyzes the hydrolysis of nicotinamide to give nicotinic acid. A multi-scale computational approach has been used to investigate the catalytic mechanism, substrate binding and roles of active site residues of Nic from Streptococcus pneumoniae (SpNic). In particular, density functional theory (DFT), molecular dynamics (MD) and ONIOM quantum mechanics/molecular mechanics (QM/MM) methods have been employed. The overall mechanism occurs in two stages: (i) formation of a thioester enzyme-intermediate (IC2) and (ii) hydrolysis of the thioester bond to give the products. The polar protein environment has a significant effect in stabilizing reaction intermediates and in particular transition states. As a result, both stages effectively occur in one step with Stage 1, formation of IC2, being rate limiting barrier with a cost of 53.5 kJ·mol-1 with respect to the reactant complex, RC. The effects of dispersion interactions on the overall mechanism were also considered but were generally calculated to have less significant effects with the overall mechanism being unchanged. In addition, the active site lysyl (Lys103) is concluded to likely play a role in stabilizing the thiolate of Cys136 during the reaction.

  13. Intermediate-Mass Black Holes

    Science.gov (United States)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  14. Intermediate Levels of Visual Processing

    National Research Council Canada - National Science Library

    Nakayama, Ken

    1998-01-01

    ...) surface representation, here we have shown that there is an intermediate level of visual processing, between the analysis of the image and higher order representations related to specific objects; (2...

  15. Intermediate energy proton and light-ion scattering

    International Nuclear Information System (INIS)

    Moss, J.M.

    1981-01-01

    A review is presented of recent (1979-81) developments in the field of intermediate-energy proton and light-ion scattering from nuclei. New theoretical and calculational techniques of particular interest to experimentalists are discussed. Emphasis is placed on topics in nuclear structure physics - giant resonances, pion-condensation precursor phenomena, and polarization transfer (spin-flip) experiments - where intermediate energy proton and light-ion scattering has made new and unique contributions

  16. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  17. Lumbosacral transitional vertebrae in dogs: classification, prevalence, and association with sacroiliac morphology.

    Science.gov (United States)

    Damur-Djuric, Natascha; Steffen, Frank; Hässig, Michael; Morgan, Joe P; Flückiger, Mark A

    2006-01-01

    The prevalence of lumbosacral transitional vertebrae (LTV) was determined by reviewing the pelvic radiographs of 4000 medium- and large-breed dogs of 144 breeds routinely screened for canine hip dysplasia. An LTV was seen in 138 (3.5%) dogs. The prevalence was higher in German Shepherd dogs and Greater Swiss Mountain dogs than in the other breeds, suggesting a genetic predisposition. There was no gender predisposition. The transverse processes of the LTV were divided into three types based on their morphological characteristics: lumbar type or type 1; intermediate type or type 2; and sacral type or type 3. In a symmetric LTV, both transverse processes are of the same type, while in an asymmetric LTV they are not. The frequency of occurrence of symmetric and asymmetric LTV was similar. In symmetric LTV, intermediate-type transverse processes predominated. Most of the asymmetric LTV had an intermediate-type transverse process combined with a lumbar or sacral type, respectively. Highly asymmetric LTV were often angled relative to the adjacent vertebrae. We hypothesize that an LTV is not the result of transformation of a lumbar into a sacral vertebra or vice versa, but rather is an autonomous intermediate type of vertebra. It occurs when the point of contact of the pelvis with the vertebral column is slightly cranial or caudal to its normal position. The resulting formative stimulus on the vertebral ossification centers, sagittally still separated, causes the various morphologies seen in LTV including the asymmetric variations.

  18. Proceedings of the Workshop on Program Options in Intermediate-Energy Physics. Keynote address: New directions in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Brown, G.E.

    1980-05-01

    This report presents the keynote address given by G.E. Brown at a LASL colloquium on August 21, 1979, for the Workshop on Program Options in Intermediate-Energy Physics. Professor Brown reviewed major topics of interest in intermediate-energy nuclear physics and suggested experimental approaches that might be most productive in the near future. 22 figures

  19. A methodology for assessing social considerations in transport of low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Allsop, R.E.; Banister, D.J.; Holden, D.J.; Bird, J.; Downe, H.E.

    1986-05-01

    A methodology is proposed for taking into account non-radiological social aspects of the transport of low and intermediate level radioactive waste when considering the location of disposal facilities and the transport of waste to such facilities from the sites where it arises. As part of a data acquisition programme, an attitudinal survey of a sample of people unconnected with any suggested site or transport route is proposed in order to estimate levels of concern felt by people of different kinds about waste transport. Probabilities of accident occurrence during transport by road and rail are also discussed, and the limited extent of quantified information about consequences of accidents is reviewed. The scope for malicious interference with consignments of waste in transit is considered. (author)

  20. Projecting non-diffracting waves with intermediate-plane holography.

    Science.gov (United States)

    Mondal, Argha; Yevick, Aaron; Blackburn, Lauren C; Kanellakopoulos, Nikitas; Grier, David G

    2018-02-19

    We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

  1. Using a CBL Unit, a Temperature Sensor, and a Graphing Calculator to Model the Kinetics of Consecutive First-Order Reactions as Safe In-Class Demonstrations

    Science.gov (United States)

    Moore-Russo, Deborah A.; Cortes-Figueroa, Jose E.; Schuman, Michael J.

    2006-01-01

    The use of Calculator-Based Laboratory (CBL) technology, the graphing calculator, and the cooling and heating of water to model the behavior of consecutive first-order reactions is presented, where B is the reactant, I is the intermediate, and P is the product for an in-class demonstration. The activity demonstrates the spontaneous and consecutive…

  2. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ...

  3. Processing and validation of intermediate energy evaluated data files

    International Nuclear Information System (INIS)

    2000-01-01

    Current accelerator-driven and other intermediate energy technologies require accurate nuclear data to model the performance of the target/blanket assembly, neutron production, activation, heating and damage. In a previous WPEC subgroup, SG13 on intermediate energy nuclear data, various aspects of intermediate energy data, such as nuclear data needs, experiments, model calculations and file formatting issues were investigated and categorized to come to a joint evaluation effort. The successor of SG13, SG14 on the processing and validation of intermediate energy evaluated data files, goes one step further. The nuclear data files that have been created with the aforementioned information need to be processed and validated in order to be applicable in realistic intermediate energy simulations. We emphasize that the work of SG14 excludes the 0-20 MeV data part of the neutron evaluations, which is supposed to be covered elsewhere. This final report contains the following sections: section 2: a survey of the data files above 20 MeV that have been considered for validation in SG14; section 3: a summary of the review of the 150 MeV intermediate energy data files for ENDF/B-VI and, more briefly, the other libraries; section 4: validation of the data library against an integral experiment with MCNPX; section 5: conclusions. (author)

  4. Buckling Transitions and Clock Order of Two-Dimensional Coulomb Crystals

    Directory of Open Access Journals (Sweden)

    Daniel Podolsky

    2016-08-01

    Full Text Available Crystals of repulsively interacting ions in planar traps form hexagonal lattices, which undergo a buckling instability towards a multilayer structure as the transverse trap frequency is reduced. Numerical and experimental results indicate that the new structure is composed of three planes, whose separation increases continuously from zero. We study the effects of thermal and quantum fluctuations by mapping this structural instability to the six-state clock model. A prominent implication of this mapping is that at finite temperature, fluctuations split the buckling instability into two thermal transitions, accompanied by the appearance of an intermediate critical phase. This phase is characterized by quasi-long-range order in the spatial tripartite pattern. It is manifested by broadened Bragg peaks at new wave vectors, whose line shape provides a direct measurement of the temperature-dependent exponent η(T characteristic of the power-law correlations in the critical phase. A quantum phase transition is found at the largest value of the critical transverse frequency: Here, the critical intermediate phase shrinks to zero. Moreover, within the ordered phase, we predict a crossover from classical to quantum behavior, signifying the emergence of an additional characteristic scale for clock order. We discuss experimental realizations with trapped ions and polarized dipolar gases, and propose that within accessible technology, such experiments can provide a direct probe of the rich phase diagram of the quantum clock model, not easily observable in condensed matter analogues. Therefore, this work highlights the potential for ionic and dipolar systems to serve as simulators for complex models in statistical mechanics and condensed matter physics.

  5. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase

    Science.gov (United States)

    Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.

    2015-01-01

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841

  6. An improved intermediate resonance method for heterogeneous media

    International Nuclear Information System (INIS)

    Chiovato, O.; Corno, S.; Pasquantonio, F.Di.

    1977-01-01

    A new formulation is described of the Intermediate Resonance method which incorporates the previous developments suitably modified and improved, together with some new contributions. The 'intermediate' character is directly introduced in the integral operator K, allowing a more rigorous deduction of the equations for evaluating the intermediate parameters related to the nuclides involved in the system. There is no limit to the number of internal (admixed in the fuel) and external moderators. The capability to take into account the interference scattering has been extended to heterogeneous systems. The Doppler broadening is described by means of new accurate rational approximations to the broadened line shape psi. Finally the use of energy mean values suitably defined refines the values of the resonance integrals and resonance absorption cross sections. The Intermediate Resonance method so extended and improved, has been coded in a group of FORTRAN routines, which have been inserted as a calculation option in the fast section of the GGC code for the evaluation of multigroup cross sections. A series of calculations has been carried out, using these routines, and comparisons have been made with Monte Carlo and Nordheim's methods. The results obtained show that the Intermediate Resonance method developed in the present work offers considerable advantages over Nordheim's method: better accuracy in evaluating resonance absorption cross sections, and much smaller computing times. (author)

  7. Greigite: a true intermediate on the polysulfide pathway to pyrite

    Directory of Open Access Journals (Sweden)

    Benning Liane G

    2007-03-01

    Full Text Available Abstract The formation of pyrite (FeS2 from iron monosulfide precursors in anoxic sediments has been suggested to proceed via mackinawite (FeS and greigite (Fe3S4. Despite decades of research, the mechanisms of pyrite formation are not sufficiently understood because solid and dissolved intermediates are oxygen-sensitive and poorly crystalline and therefore notoriously difficult to characterize and quantify. In this study, hydrothermal synchrotron-based energy dispersive X-ray diffraction (ED-XRD methods were used to investigate in situ and in real-time the transformation of mackinawite to greigite and pyrite via the polysulfide pathway. The rate of formation and disappearance of specific Bragg peaks during the reaction and the changes in morphology of the solid phases as observed with high resolution microscopy were used to derive kinetic parameters and to determine the mechanisms of the reaction from mackinawite to greigite and pyrite. The results clearly show that greigite is formed as an intermediate on the pathway from mackinawite to pyrite. The kinetics of the transformation of mackinawite to greigite and pyrite follow a zero-order rate law indicating a solid-state mechanism. The morphology of greigite and pyrite crystals formed under hydrothermal conditions supports this conclusion and furthermore implies growth of greigite and pyrite by oriented aggregation of nanoparticulate mackinawite and greigite, respectively. The activation enthalpies and entropies of the transformation of mackinawite to greigite, and of greigite to pyrite were determined from the temperature dependence of the rate constants according to the Eyring equation. Although the activation enthalpies are uncharacteristic of a solid-state mechanism, the activation entropies indicate a large increase of order in the transition state, commensurate with a solid-state mechanism.

  8. Nuclear beta decay induced by intense electromagnetic fields: Forbidden transition examples

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1983-01-01

    A formalism developed earlier for the effect on nuclear beta decay of an intense plane-wave electromagnetic field is applied to three examples of forbidden beta transitions. The examples represent cases where the nuclear ''fragment'' contains one, two, and three nucleons; where the nuclear fragment is defined to be that smallest sub-unit of the nucleus containing the nucleon which undergoes beta decay plus any other nucleons directly angular-momentum coupled to it in initial or final states. The single-nucleon-fragment example is 113 Cd, which has a fourth-forbidden transition. The two-nucleon-fragment example is 90 Sr, which is first-forbidden. The three-nucleon-fragment example is 87 Rb, which is third-forbidden. An algebraic closed-form transition probability is found in each case. At low external-field intensity, the transition probability is proportional to z/sup L/, where z is the field intensity parameter and L is the degree of forbiddenness. At intermediate intensities, the transition probability behaves as z/sup L/-(1/2). At higher intensities, the transition probability contains the z/sup L/-(1/2) factor, a declining exponential factor, and an alternating polynomial in z. This high-intensity transition probability possesses a maximum value, which is found for each of the examples. A general rule, z = q 2 (2L-1), where q is the number of particles in the fragment, is found for giving an upper limit on the intensity at which the maximum transition probability occurs. Field-induced beta decay half-lives for all the examples are dramatically reduced from natural half-lives when evaluated at the optimum field intensity. Relative half-life reduction is greater the higher the degree of forbiddenness

  9. Geomagnetic fluctuations during a polarity transition

    Science.gov (United States)

    Audunsson, Haraldur; Levi, Shaul

    1997-01-01

    The extensive Roza Member of the Columbia River Basalt Group (Washington State) has intermediate paleomagnetic directions, bracketed by underlying normal and overlying reverse polarity flows. A consistent paleomagnetic direction was measured at 11 widely distributed outcrops; the average direction has a declination of 189° and an inclination of -5°, with greater variation in the inclination [Rietman, 1966]. In this study the Roza Member was sampled in two Pasco Basin drillcores, where it is a single cooling unit and its thickness exceeds 50 m. Excellent core recovery allowed uniform and dense sampling of the drillcores. During its protracted cooling, the Roza flow in the drillcores recorded part of a 15.5 Ma geomagnetic polarity transition. The inclination has symmetric, quasicyclic intraflow variation, while the declination is nearly constant, consistent with the results from the outcrops. Thermal models of the cooling flow provide the timing for remanence acquisition. The inclination is inferred to have progressed from 0° to -15° and back to -3°over a period of 15 to 60 years, at rates of 1.6° to 0.5°/yr. Because the geomagnetic intensity was probably weak during the transition, these apparently high rates of change are not significantly different from present-day secular variation. These results agree with the hypothesis that normal secular variation persists through geomagnetic transitions. The Iow-amplitude quasicyclical fluctuations of the field over tens of years, recorded by Roza, suggest that the geomagnetic field reverses in discrete steps, and that more than 15-60 years were required to complete this reversal.

  10. Intermediate conformation between native β-sheet and non-native α-helix is a precursor of trifluoroethanol-induced aggregation of Human Carbonic Anhydrase-II

    International Nuclear Information System (INIS)

    Gupta, Preeti; Deep, Shashank

    2014-01-01

    Highlights: • HCAII forms amyloid-like aggregates at moderate concentration of trifluoroethanol. • Protein adopts a state between β-sheet and α-helix at moderate % of TFE. • Hydrophobic surface(s) of partially structured conformation forms amyloid. • High % of TFE induces stable α-helical state preventing aggregation. - Abstract: In the present work, we examined the correlation between 2,2,2-trifluoroethanol (TFE)-induced conformational transitions of human carbonic anhydrase II (HCAII) and its aggregation propensity. Circular dichroism data indicates that protein undergoes a transition from β-sheet to α-helix on addition of TFE. The protein was found to aggregate maximally at moderate concentration of TFE at which it exists somewhere between β-sheet and α-helix, probably in extended non-native β-sheet conformation. Thioflavin-T (ThT) and Congo-Red (CR) assays along with fluorescence microscopy and transmission electron microscopy (TEM) data suggest that the protein aggregates induced by TFE possess amyloid-like features. Anilino-8-naphthalene sulfonate (ANS) binding studies reveal that the exposure of hydrophobic surface(s) was maximum in intermediate conformation. Our study suggests that the exposed hydrophobic surface and/or the disruption of the structural features protecting a β-sheet protein might be the major reason(s) for the high aggregation propensity of non-native intermediate conformation of HCAII

  11. Tandem rhodium catalysis: exploiting sulfoxides for asymmetric transition-metal catalysis.

    Science.gov (United States)

    Kou, K G M; Dong, V M

    2015-06-07

    Sulfoxides are uncommon substrates for transition-metal catalysis due to their propensity to inhibit catalyst turnover. In a collaborative effort with Ken Houk, we developed the first dynamic kinetic resolution (DKR) of allylic sulfoxides using asymmetric rhodium-catalyzed hydrogenation. A detailed mechanistic analysis of this transformation using both experimental and theoretical methods revealed rhodium to be a tandem catalyst that promoted both hydrogenation of the alkene and racemization of the allylic sulfoxide. Using a combination of deuterium labelling and DFT studies, a novel mode of allylic sulfoxide racemization via a Rh(III)-π-allyl intermediate was identified.

  12. Secondary deuterium isotope effects and transition state structure in the aromatic claisen rearrangement

    International Nuclear Information System (INIS)

    McMichael, K.D.; Korver, G.L.

    1979-01-01

    Kinetic experiments were carried out simultaneously on separate methyl salicylate solutions of allyl phenyl ether and its deuterated phenyl analogues at 170 to 195 0 C. Gas chromatographic analysis for allyl phenyl ether using an internal standard (anisole) and mechanical integration produced concentration/time data which were fitted to the exponential form of the first-order rate equation by a standard and nonlinear least-square program. At least 15 points were obtained for each run, covering 10 to 85% reaction. The derived isotope effects show no temperature dependence. Averages for 6 runs with each compound are k/sub H//k/sub α-D 2 / = 1.18 and K/sub H//k/sub γ-D 2 / = 0.95. An equilibrium α effect of 1.30 and a γ effect of 0.87 may be calculated for both deuterium atoms at 185 0 C. These results show that the C--H vibration frequencies are approximately (1.18 - 1)/(1.27 - 1) or 57 to 77% of the way from those of allyl phenyl ether to those of the cyclohexadiene intermediate. The C--H frequencies of the γ carbon in the transition state are about (0.95 - 1)/(0.88 - 1) or 22 to 62% of the way to those of the intermediate. The structure of the transition state, as far as these bonding frequencies are concerned, is consistent with the Claisen rearrangement

  13. The influence of reactive side products on the electrooxidation of methanol--a combined in situ infrared spectroscopy and online mass spectrometry study.

    Science.gov (United States)

    Reichert, R; Schnaidt, J; Jusys, Z; Behm, R J

    2014-07-21

    Aiming at a better understanding of the impact of reaction intermediates and reactive side products on electrocatalytic reactions under conditions characteristic for technical applications, i.e., at high reactant conversions, we have investigated the electrooxidation of methanol on a Pt film electrode in mixtures containing defined concentrations of the reaction intermediates formaldehyde or formic acid. Employing simultaneous in situ infrared spectroscopy and online mass spectrometry in parallel to voltammetric measurements, we examined the effects of the latter molecules on the adlayer build-up and composition and on the formation of volatile reaction products CO2 and methylformate, as well as on the overall reaction rate. To assess the individual contributions of each component, we used isotope labeling techniques, where one of the two C1 components in the mixtures of methanol with either formaldehyde or formic acid was (13)C-labeled. The data reveal pronounced effects of the additional components formaldehyde and formic acid on the reaction, although their concentration was much lower (10%) than that of the main reactant methanol. Most important, the overall Faradaic current responses and the amounts of CO2 formed upon oxidation of the mixtures are always lower than the sums of the contributions from the individual components, indicative of a non-additive behavior of both Faradaic current and CO2 formation in the mixtures. Mechanistic reasons and consequences for reactions in a technical reactor, with high reactant conversion, are discussed.

  14. The management of intermediate level wastes in Sweden

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Thegerstroem, C.

    1980-01-01

    A brief overview of current practices and research in Sweden on the management of intermediate level wastes is given. Intermediate level wastes include spent resins, filters and core components from the six power reactors in operation; radioactive wastes from nuclear fuel development at Studsvik and from non-nuclear applications are a minor contribution. (Auth.)

  15. Puzzles in quarkonium hadronic transitions with two pion emission

    CERN Document Server

    Fernández, F.; Ortega, P.G.; Entem, D.R.

    2016-01-01

    The anomalously large rates of some hadronic transitions from quarkonium are studied using QCD multipole expansion (QCDME) in the framework of a constituent quark model which has been successful in describing hadronic phenomenology. The hybrid intermediate states needed in the QCDME method are calculated in a natural extension of our constituent quark model based on the Quark Confining String (QCS) scheme. Some of the anomalies are explained due to the presence of an hybrid state with a mass near the mass of the decaying resonance whereas other are justified by the presence of molecular components in the wave function. Some unexpected results are pointed out.

  16. Strange mesonic transition form factor

    International Nuclear Information System (INIS)

    Goity, J.L.; Musolf, M.J.

    1996-01-01

    The strange-quark vector current ρ-to-π meson transition form factor is computed at one-loop order using strange meson intermediate states. A comparison is made with a φ-meson dominance model estimate. We find that one-loop contributions are comparable in magnitude to those predicted by φ-meson dominance. It is possible that the one-loop contribution can make the matrix element as large as those of the electromagnetic current mediating vector meson radiative decays. However, due to the quadratic dependence of the one-loop results on the hadronic form factor cutoff mass, a large uncertainty in the estimate of the loops is unavoidable. These results indicate that non-nucleonic strange quarks could contribute appreciable in moderate-parallel Q 2 parallel parity-violating electron-nucleus scattering measurements aimed at probing the strange-quark content of the nucleon. copyright 1996 The American Physical Society

  17. Preliminary thermal sizing of intermediate heat exchanger for NHDD system

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung Deok; Kim, Yong Wan; Chang, Jongh Wa

    2009-01-01

    Nuclear Hydrogen Development and Demonstration (NHDD) system is a Very High Temperature gascooled Reactor (VHTR) coupled with hydrogen production systems. Intermediate heat exchanger transfers heat from the nuclear reactor to the hydrogen production system. This study presented the sensitivity analysis on a preliminary thermal sizing of the intermediate heat exchanger. Printed Circuit Heat Exchanger (PCHE) was selected for the thermal sizing because the printed circuit heat exchanger has the largest compactness among the heat exchanger types. The analysis was performed to estimate the effect of key parameters including the operating condition of the intermediate system, the geometrical factors of the PCHE, and the working fluid of the intermediate system.

  18. Intermediate mass distribution of the dual resonance pomeron

    International Nuclear Information System (INIS)

    Chiu, C.B.; Matsuda, S.

    1978-01-01

    The intermediate mass distribution of the dual resonance pomeron is determined at the one-loop level and it is shown that the mass distribution obtained is remarkably similar to a suitably defined mass distribution in the dual multiperipheral model. Thus it is suggestive to identify the intermediate states of the dual resonance pomeron with multiperipheral processes. (Auth.)

  19. CONDITIONING OF INTERMEDIATE-LEVEL WASTE AT FORSCHUNGSZENTRUM JUELICH GMBH

    International Nuclear Information System (INIS)

    Krumbach, H.

    2003-01-01

    This contribution to the group of low-level, intermediate, mixed and hazardous waste describes the conditioning of intermediate-level mixed waste (dose rate above 10 mSv/h at the surface) from Research Centre Juelich (FZJ). Conditioning of the waste by supercompaction is performed at Research Centre Karlsruhe (FZK). The waste described is radioactive waste arising from research at Juelich. This waste includes specimens and objects from irradiation experiments in the research reactors Merlin (FRJ-1) and Dido (FRJ-2) at FZJ. In principle, radioactive waste at Forschungszentrum Juelich GmbH is differentiated by the surface dose rate at the waste package. Up to a surface dose rate of 10 mSv/h, the waste is regarded as low-level. The radioactive waste described here has a surface dose rate above 10 mSv/h. Waste up to 10 mSv/h is conditioned at the Juelich site according to different conditioning methods. The intermediate-level waste can only be conditioned by supercompaction in the processing facility for intermediate-level waste from plant operation at Research Centre Karlsruhe. Research Centre Juelich also uses this waste cell to condition its intermediate-level waste from plant operation

  20. Supersymmetry and intermediate symmetry breaking in SO(10) superunification

    International Nuclear Information System (INIS)

    Asatryan, H.M.; Ioannisyan, A.N.

    1985-01-01

    A scheme of simultaneous breakdown of intermediate symmetry SO(10) → SU(3)sub(c) x U(1) x SU(2)sub(L) x SU(2)sub(R) and supersymmetry by means of a single scale parameter is suggested. This intermediate symmetry, which is preferable physically, owing to the broken supersymmetry has a minimum lying lower than SU(4) x SU(2)sub(L) x SU(2)sub(R). The intermediate symmetry is broken by the vacuum expectation value of the Higgs superfields. Owing to the quantum corrections the potential minimum turns out to correspond to breakdown of the intermediate symmetry up to the standard group SU(3)sub(c) x SU(2)sub(L) x U(1)sub(y). The value of the Weinberg angle is less than that in the supersymmetric SU(5) model and agrees with the experiment

  1. Concentrations of the acute phase reactants high-sensitive C-reactive protein and YKL-40 and of interleukin-6 before and after treatment in patients with acromegaly and growth hormone deficiency

    DEFF Research Database (Denmark)

    Andreassen, Mikkel; Vestergaard, Henrik; Kristensen, Lars Østergaard

    2007-01-01

    Acromegaly is accompanied by increased cardiovascular mortality and a cluster of proatherogenic risk factors. In the general population, ischaemic heart disease (IHD) is associated with elevated levels of inflammatory markers. The acute phase reactant (APR) C-reactive protein (CRP) has been...... reported to be reduced in acromegaly and increase after treatment, suggesting that excess of GH/IGF-I could have anti-inflammatory effects. This is in accordance with results obtained in patients with growth hormone deficiency (GHD), where increased levels of CRP have been reported....

  2. The nutrition transition in the Venezuelan Amazonia: increased overweight and obesity with transculturation.

    Science.gov (United States)

    Hidalgo, G; Marini, E; Sanchez, W; Contreras, M; Estrada, I; Comandini, O; Buffa, R; Magris, M; Dominguez-Bello, M G

    2014-01-01

    Amerindians have a particularly high propensity to overweight and obesity as they change lifestyle and experience a nutrition transition. The aim of this study was to evaluate the effects of transculturation on nutritional status in three Amazonian Amerindian villages. Nutritional status was assessed in 232 volunteers: 65 Yanomami from an isolated village and 167 Guahibo subjects from villages with intermediate and high levels of transculturation. There was a significant pattern of decreasing stunting and increasing overweight and obesity across the gradient of transculturation. From the jungle Yanomami to the intermediate and transculturated Guahibo, stunting was respectively 72, 55, and 39%, and children /adult overweight was 0, 3/44, and 15/89%. These anthropometric-based patterns were confirmed by bioimpedance vector analysis. Transculturation in these Amerindian populations is associated with an increase in overweight and obesity coexisting with undernourished children. © 2014 Wiley Periodicals, Inc.

  3. Intermediate energy data

    International Nuclear Information System (INIS)

    Koning, A.J.; Fukahori, T.; Hasegawa, A.

    1998-01-01

    Subgroup 13 (SG13) on Intermediate Energy Nuclear data was formed by NEA Nuclear Science Committee to solve common problems of these types of data for nuclear applications. An overview is presented in this final report of the present activities of SG13, including data needs, high-priority nuclear data request list (nuclides), compilation of experimental data, specialists meetings and benchmarks, data formats and data libraries. Some important accomplishments are summarized, and recommendations are presented. (R.P.)

  4. Peroxynitrite efficiently mediates the interconversion of redox intermediates of myeloperoxidase

    International Nuclear Information System (INIS)

    Furtmueller, Paul Georg; Jantschko, Walter; Zederbauer, Martina; Schwanninger, Manfred; Jakopitsch, Christa; Herold, Susanna; Koppenol, Willem H.; Obinger, Christian

    2005-01-01

    Nitric oxide-derived oxidants (e.g., peroxynitrite) are believed to participate in antimicrobial activities as part of normal host defenses but also in oxidative tissue injury in inflammatory disorders. A similar role is ascribed to the heme enzyme myeloperoxidase (MPO), the most abundant protein of polymorphonuclear leukocytes, which are the terminal phagocytosing effector cells of the innate immune system. Concomitant production of peroxynitrite and release of millimolar MPO are characteristic events during phagocytosis. In order to understand the mode of interaction between MPO and peroxynitrite, we have performed a comprehensive stopped-flow investigation of the reaction between all physiological relevant redox intermediates of MPO and peroxynitrite. Both iron(III) MPO and iron(II) MPO are rapidly converted to compound II by peroxynitrite in monophasic reactions with calculated rate constants of (6.8 ± 0.1) x 10 6 M -1 s -1 and (1.3 ± 0.2) x 10 6 M -1 s -1 , respectively (pH 7.0 and 25 deg C). Besides these one- and two-electron reduction reactions of peroxynitrite, which produce nitrogen dioxide and nitrite, a one-electron oxidation to the oxoperoxonitrogen radical must occur in the fast monophasic transition of compound I to compound II mediated by peroxynitrite at pH 7.0 [(7.6 ± 0.1) x 10 6 M -1 s -1 ]. In addition, peroxynitrite induced a steady-state transition from compound III to compound II with a rate of (1.0 ± 0.3) x 10 4 M -1 s -1 . Thus, the interconversion among the various oxidation states of MPO that is prompted by peroxynitrite is remarkable. Reaction mechanisms are proposed and the physiological relevance is discussed

  5. Has Banks’ Financial Intermediation Improved in Russia?

    OpenAIRE

    Fungachova, Z.; Solanko, L.

    2010-01-01

    The aim of this paper is to analyze the increasing importance of banks in the Russian economy over the period following the financial crisis of 1998. We use several measures to assess the role of banks in domestic financial intermediation in Russia. The traditional macro-level view is complemented by the analysis of sectoral financial flows as well as by insights from micro-level studies. All of these confirm that banks are becoming increasingly important in financial intermediation. We find ...

  6. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    DEFF Research Database (Denmark)

    Diama, A.; Matthies, B.; Herwig, K. W.

    2009-01-01

    measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows...... show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously...

  7. Impenetrable Barriers in Phase-Space

    International Nuclear Information System (INIS)

    Wiggins, S.; Wiesenfeld, L.; Jaffe, C.; Uzer, T.

    2001-01-01

    Dynamical systems theory is used to construct a general phase-space version of transition state theory. Special multidimensional separatrices are found which act as impenetrable barriers in phase-space between reacting and nonreacting trajectories. The elusive momentum-dependent transition state between reactants and products is thereby characterized. A practical algorithm is presented and applied to a strongly coupled Hamiltonian

  8. Monetary Transmission and Asset - Liability management by financial institutions in transitional economies - implications for czech monetary policy

    OpenAIRE

    Derviz, Alexis

    2000-01-01

    The paper deals with the transmission of monetary policy within the financial sector. The objective is to link an optimizing stochastic model of portfolio decisions by a representative financial institution with a number of features that this optimizing behavior implies for monetary transmission and credit conditions in a transitional economy. The main example is the intermediation performance of Czech financial sector in the years 1993 to 1999.

  9. Heterophobia: Subverting Heterosexual Hegemony through Intermedial Applied Performance for Young People

    Science.gov (United States)

    Phillips, Hannah

    2016-01-01

    This article responds to intermediality through a case study of an intermedial applied performance for young people. "Heterophobia," a hybrid fusion of live performance, digital technology, social media and urban street art, aimed to challenge homophobia in schools and online. Intermediality was used as a tool to enhance young people's…

  10. 42 CFR 54a.12 - Treatment of intermediate organizations.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Treatment of intermediate organizations. 54a.12... CHARITABLE CHOICE REGULATIONS APPLICABLE TO STATES, LOCAL GOVERNMENTS AND RELIGIOUS ORGANIZATIONS RECEIVING... ABUSE PREVENTION AND TREATMENT SERVICES § 54a.12 Treatment of intermediate organizations. If a...

  11. Financial Intermediation and the Nigerian Economy: A Time Series ...

    African Journals Online (AJOL)

    ... and cointegration analysis based on Engle Granger cointegration theory and error correction methodology, we tested both short and long run relationships between financial intermediation and economic growth in Nigeria. The result revealed that a long–run relationship exists between financial intermediation and growth ...

  12. Borderline Personality Disorder in an Intermediate Psychological Therapies Service

    Science.gov (United States)

    Ryan, Seamus; Danquah, Adam N.; Berry, Katherine; Hopper, Mary

    2017-01-01

    The intermediate psychological therapies service is provided for individuals referred with common mental health problems within the primary care psychological therapies service, but whose difficulties are longstanding and/or complex. The prevalence of borderline personality disorder (BPD) in intermediate psychological therapy services has not been…

  13. General educational disciplines practice-oriented training in intermediate vocational education

    Directory of Open Access Journals (Sweden)

    Liya G. Skorobogatova

    2011-01-01

    Full Text Available The article concerns crucial issues of practice-oriented training in Russia's intermediate vocational education, designates directions of general educational disciplines study in intermediate vocational education.

  14. Intermediate inflation from a non-canonical scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, K.; Karami, K. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Karimi, P., E-mail: rezazadeh86@gmail.com, E-mail: KKarami@uok.ac.ir, E-mail: parvin.karimi67@yahoo.com [Center for Excellence in Astronomy and Astrophysics (CEAA-RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation enters in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.

  15. Estimation of intermediate grade uranium resources. Final report

    International Nuclear Information System (INIS)

    Lambie, F.W.; Kendall, G.R.; Klahn, L.J.; Davis, J.C.; Harbaugh, J.W.

    1980-12-01

    The purpose of this project is to analyze the technique currently used by DOE to estimate intermediate grade uranium (0.01 to 0.05% U 3 O 8 ) and, if possible, suggest alternatives to improve the accuracy and precision of the estimate. There are three principal conclusions resulting from this study. They relate to the quantity, distribution and sampling of intermediate grade uranium. While the results of this study must be validated further, they indicate that DOE may be underestimating intermediate level reserves by 20 to 30%. Plots of grade of U 3 O 8 versus tonnage of ore and tonnage U 3 O 8 indicate grade-tonnage relationships that are essentially log-linear, at least down to 0.01% U 3 O 8 . Though this is not an unexpected finding, it may provide a technique for reducing the uncertainty of intermediate grade endowment. The results of this study indicate that a much lower drill hole density is necessary for DOE to estimate uranium resources than for a mining company to calculate ore resources. Though errors in local estimates will occur, they will tend to cancel over the entire deposit

  16. Structure of replicating intermediates of human herpesvirus type 6

    International Nuclear Information System (INIS)

    Severini, Alberto; Sevenhuysen, Claire; Garbutt, Michael; Tipples, Graham A.

    2003-01-01

    We have studied the structure of the replicative intermediates of human herpesvirus 6 (HHV-6) using pulsed-field gel electrophoresis, partial digestion, two-dimensional gel electrophoresis, and sedimentation centrifugation. The results show that DNA replication of HHV-6 produces head-to-tail concatemeric intermediates as well as approximately equal amounts of circular monomers or oligomers. Unlike the situation in herpes simplex virus, the intermediates of human herpesvirus 6 replication are not highly branched, suggesting a difference in the mechanism of replication or a lower frequency of homologous recombination in human herpesvirus 6 compared to herpes simplex virus

  17. TRANSITIONAL DISKS AND THEIR ORIGINS: AN INFRARED SPECTROSCOPIC SURVEY OF ORION A

    International Nuclear Information System (INIS)

    Kim, K. H.; Watson, Dan M.; Manoj, P.; Forrest, W. J.; Arnold, Laura; Najita, Joan; Furlan, Elise; Sargent, Benjamin; Espaillat, Catherine; Muzerolle, James; Megeath, S. T.; Calvet, Nuria; Green, Joel D.

    2013-01-01

    Transitional disks are protoplanetary disks around young stars, with inner holes or gaps which are surrounded by optically thick outer, and often inner, disks. Here we present observations of 62 new transitional disks in the Orion A star-forming region. These were identified using the Spitzer Space Telescope's Infrared Spectrograph and followed up with determinations of stellar and accretion parameters using the Infrared Telescope Facility's SpeX. We combine these new observations with our previous results on transitional disks in Taurus, Chamaeleon I, Ophiuchus, and Perseus, and with archival X-ray observations. This produces a sample of 105 transitional disks of ''cluster'' age 3 Myr or less, by far the largest hitherto assembled. We use this sample to search for trends between the radial structure in the disks and many other system properties, in order to place constraints on the possible origins of transitional disks. We see a clear progression of host-star accretion rate and the different disk morphologies. We confirm that transitional disks with complete central clearings have median accretion rates an order of magnitude smaller than radially continuous disks of the same population. Pre-transitional disks—those objects with gaps that separate inner and outer disks—have median accretion rates intermediate between the two. Our results from the search for statistically significant trends, especially related to M-dot , strongly support that in both cases the gaps are far more likely to be due to the gravitational influence of Jovian planets or brown dwarfs orbiting within the gaps, than to any of the photoevaporative, turbulent, or grain-growth processes that can lead to disk dissipation. We also find that the fraction of Class II YSOs which are transitional disks is large, 0.1-0.2, especially in the youngest associations.

  18. Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites.

    Science.gov (United States)

    Wise, John G

    2012-06-26

    Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space.

  19. Evidence of an Intermediate Phase in bulk alloy oxide glass sysem

    Science.gov (United States)

    Chakraborty, S.; Boolchand, P.

    2011-03-01

    Reversibility windows have been observed in modified oxides (alkali-silicates and -germanates) and identified with Intermediate Phases(IPs). Here we find preliminary evidence of an IP in a ternary oxide glass, (B2 O3)5 (Te O2)95-x (V2O5)x , which is composed of network formers. Bulk glasses are synthesized across the 18% x 35 % composition range, and examined in Raman scattering, modulated DSC and molar volume experiments. Glass transition temperatures Tg (x) steadily decrease with V2O5 content x, and reveal the enthalpy of relaxation at Tg to show a global minimum in the 24% x < 27 range, the reversibility window (IP). Molar volumes reveal a minimum in this window. Raman scattering reveals a Boson mode, and at least six other vibrational bands in the 100cm-1 < ν < 1700cm-1 range. Compositional trends in vibrational mode strengths and frequency are established. These results will be presented in relation to glass structure evolution with vanadia content and the underlying elastic phases. Supported by NSF grant DMR 08-53957.

  20. Mediterranean intermediate circulation estimated from Argo data in 2003–2010

    Directory of Open Access Journals (Sweden)

    M. Menna

    2010-03-01

    Full Text Available Data from 38 Argo profiling floats are used to describe the intermediate Mediterranean currents for the period October 2003–January 2010. These floats were programmed to execute 5-day cycles, to drift at a neutral parking depth of 350 m and measure temperature and salinity profiles from either 700 or 2000 m up to the surface. At the end of each cycle the floats remained at the sea surface for about 6 h, enough time to be localised and transmit the data to the Argos satellite system. The Argos positions were used to determine the float surface and intermediate displacements. At the surface, the float motion was approximated by a linear displacement and inertial motion. Intermediate velocities estimates were used to investigate the Mediterranean circulation at 350 m, to compute the pseudo-Eulerian statistics and to study the influence of bathymetry on the intermediate currents. Maximum speeds, as large as 33 cm/s, were found northeast of the Balearic Islands (western basin and in the Ierapetra eddy (eastern basin. Typical speeds in the main along-slope currents (Liguro-Provençal-Catalan, Algerian and Libyo-Egyptian Currents were ~20 cm/s. In the central and western part of Mediterranean basin, the pseudo-Eulerian statistics show typical intermediate circulation pathways which can be related to the motion of Levantine Intermediate Water. In general our results agree with the qualitative intermediate circulation schemes proposed in the literature, except in the southern Ionian where we found westward-flowing intermediate currents. Fluctuating currents appeared to be usually larger than the mean flow. Intermediate currents were found to be essentially parallel to the isobaths over most of the areas characterized by strong bathymetry gradients, in particular, in the vicinity of the continental slopes.