WorldWideScience

Sample records for rdcds weather stations

  1. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  2. Natural Weathering Exposure Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  3. Designing a Weather Station

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  4. Optimizing Placement of Weather Stations: Exploring Objective Functions of Meaningful Combinations of Multiple Weather Variables

    Science.gov (United States)

    Snyder, A.; Dietterich, T.; Selker, J. S.

    2017-12-01

    Many regions of the world lack ground-based weather data due to inadequate or unreliable weather station networks. For example, most countries in Sub-Saharan Africa have unreliable, sparse networks of weather stations. The absence of these data can have consequences on weather forecasting, prediction of severe weather events, agricultural planning, and climate change monitoring. The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to place weather stations within each country. We should consider how we can create accurate spatio-temporal maps of weather data and how to balance the desired accuracy of each weather variable of interest (precipitation, temperature, relative humidity, etc.). We can express this problem as a joint optimization of multiple weather variables, given a fixed number of weather stations. We use reanalysis data as the best representation of the "true" weather patterns that occur in the region of interest. For each possible combination of sites, we interpolate the reanalysis data between selected locations and calculate the mean average error between the reanalysis ("true") data and the interpolated data. In order to formulate our multi-variate optimization problem, we explore different methods of weighting each weather variable in our objective function. These methods include systematic variation of weights to determine which weather variables have the strongest influence on the network design, as well as combinations targeted for specific purposes. For example, we can use computed evapotranspiration as a metric that combines many weather variables in a way that is meaningful for agricultural and hydrological applications. We compare the errors of the weather station networks produced by each optimization problem formulation. We also compare these

  5. On-line data acquisition system for Aanderaa weather station

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Diwan, S.G.

    Aanderaa Weather Station can be installed at unattended remote places for collection of various weather parameters at regular preselected intervals. The weather parameters are recorded on the magnetic spool inside a battery operated datalogger which...

  6. Weather Station: Hawaii: Oahu: Coconut Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hawaii Institute of Marine Biology (HIMB) automatic weather station (AWS) records hourly measurements of precipitation, air temperature, wind speed and...

  7. Weather Station: Palau: Koror: Ngeanges Island

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 2007, the Coral Reef Research Foundation (CRRF) has operated a Campbell Scientific automatic weather station (AWS) in Palau designed to measure...

  8. Simulated building energy demand biases resulting from the use of representative weather stations

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Voisin, Nathalie; Taylor, Z. Todd; Xie, Yulong; Kraucunas, Ian

    2018-01-01

    Numerical building models are typically forced with weather data from a limited number of “representative cities” or weather stations representing different climate regions. The use of representative weather stations reduces computational costs, but often fails to capture spatial heterogeneity in weather that may be important for simulations aimed at understanding how building stocks respond to a changing climate. We quantify the potential reduction in bias from using an increasing number of weather stations over the western U.S. The approach is based on deriving temperature and load time series using incrementally more weather stations, ranging from 8 to roughly 150, to capture weather across different seasons. Using 8 stations, one from each climate zone, across the western U.S. results in an average absolute summertime temperature bias of 7.2°F with respect to a spatially-resolved gridded dataset. The mean absolute bias drops to 2.8°F using all available weather stations. Temperature biases of this magnitude could translate to absolute summertime mean simulated load biases as high as 13.8%, a significant error for capacity expansion planners who may use these types of simulations. Increasing the size of the domain over which biases are calculated reduces their magnitude as positive and negative biases may cancel out. Using 8 representative weather stations can lead to a 20-40% overestimation of peak building loads during both summer and winter. Using weather stations close to population centers reduces both mean and peak load biases. This approach could be used by others designing aggregate building simulations to understand the sensitivity to their choice of weather stations used to drive the models.

  9. Capturing the WUnder: Using weather stations and WeatherUnderground to increase middle school students' understanding and interest in science

    Science.gov (United States)

    Schild, K. M.; Dunne, P.

    2014-12-01

    New models of elementary- and middle-school level science education are emerging in response to the need for science literacy and the development of the Next Generation Science Standards. One of these models is fostered through the NSF's Graduate Teaching Fellows in K-12 Education (GK-12) program, which pairs a graduate fellow with a science teacher at a local school for an entire school year. In our project, a PhD Earth Sciences student was paired with a local middle school science teacher with the goal of installing a weather station, and incorporating the station data into the 8th grade science curriculum. Here we discuss how we were able to use a school weather station to introduce weather and climate material, engage and involve students in the creative process of science, and motivate students through inquiry-based lessons. In using a weather station as the starting point for material, we were able to make science tangible for students and provide an opportunity for each student to experience the entire process of scientific inquiry. This hands-on approach resulted in a more thorough understanding the system beyond a knowledge of the components, and was particularly effective in challenging prior weather and climate misconceptions. We were also able to expand the reach of the lessons by connecting with other weather stations in our region and even globally, enabling the students to become members of a larger system.

  10. Very Portable Remote Automatic Weather Stations

    Science.gov (United States)

    John R. Warren

    1987-01-01

    Remote Automatic Weather Stations (RAWS) were introduced to Forest Service and Bureau of Land Management field units in 1978 following development, test, and evaluation activities conducted jointly by the two agencies. The original configuration was designed for semi-permanent installation. Subsequently, a need for a more portable RAWS was expressed, and one was...

  11. Research on Application of Automatic Weather Station Based on Internet of Things

    Science.gov (United States)

    Jianyun, Chen; Yunfan, Sun; Chunyan, Lin

    2017-12-01

    In this paper, the Internet of Things is briefly introduced, and then its application in the weather station is studied. A method of data acquisition and transmission based on NB-iot communication mode is proposed, Introduction of Internet of things technology, Sensor digital and independent power supply as the technical basis, In the construction of Automatic To realize the intelligent interconnection of the automatic weather station, and then to form an automatic weather station based on the Internet of things. A network structure of automatic weather station based on Internet of things technology is constructed to realize the independent operation of intelligent sensors and wireless data transmission. Research on networking data collection and dissemination of meteorological data, through the data platform for data analysis, the preliminary work of meteorological information publishing standards, networking of meteorological information receiving terminal provides the data interface, to the wisdom of the city, the wisdom of the purpose of the meteorological service.

  12. National Weather Service (NWS) Station Information System (SIS), Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — National Weather Service (NWS) Station Information System (SIS) contains observing station metadata from November 2016 to present. These are renditions are used for...

  13. A 31-day battery-operated recording weather station.

    Science.gov (United States)

    Richard J. Barney

    1972-01-01

    The battery-powered recording weather station measures and records wet bulb temperature, dry bulb temperature, wind travel, and rainfall for 31 days. Assembly procedures and cost of supplies and components are discussed.

  14. Development of an Open Source, Air-Deployable Weather Station

    Science.gov (United States)

    Krejci, A.; Lopez Alcala, J. M.; Nelke, M.; Wagner, J.; Udell, C.; Higgins, C. W.; Selker, J. S.

    2017-12-01

    We created a packaged weather station intended to be deployed in the air on tethered systems. The device incorporates lightweight sensors and parts and runs for up to 24 hours off of lithium polymer batteries, allowing the entire package to be supported by a thin fiber. As the fiber does not provide a stable platform, additional data (pitch and roll) from typical weather parameters (e.g. temperature, pressure, humidity, wind speed, and wind direction) are determined using an embedded inertial motion unit. All designs are open sourced including electronics, CAD drawings, and descriptions of assembly and can be found on the OPEnS lab website at http://www.open-sensing.org/lowcost-weather-station/. The Openly Published Environmental Sensing Lab (OPEnS: Open-Sensing.org) expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting-edge technology. New OPEnS labs are now being established in India, France, Switzerland, the Netherlands, and Ghana.

  15. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Kyrouac, Jenni A [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable.

  16. Design and realization of an automatic weather station at island

    Science.gov (United States)

    Chen, Yong-hua; Li, Si-ren

    2011-10-01

    In this paper, the design and development of an automatic weather station monitoring is described. The proposed system consists of a set of sensors for measuring meteorological parameters (temperature, wind speed & direction, rain fall, visibility, etc.). To increase the reliability of the system, wind speed & direction are measured redundantly with duplicate sensors. The sensor signals are collected by the data logger CR1000 at several analog and digital inputs. The CR1000 and the sensors form a completely autonomous system which works with the other systems installed in the container. Communication with the master PC is accomplished over the method of Code Division Multiple Access (CDMA) with the Compact Caimore6550P CDMA DTU. The data are finally stored in tables on the CPU as well as on the CF-Card. The weather station was built as an efficient autonomous system which operates with the other systems to provide the required data for a fully automatic measurement system.

  17. Estimation of Remote Microclimates from Weather Station Data with Applications to Landscape Architecture.

    Science.gov (United States)

    Brown, Robert Douglas

    Several components of a system for quantitative application of climatic statistics to landscape planning and design (CLIMACS) have been developed. One component model (MICROSIM) estimated the microclimate at the top of a remote crop using physically-based models and inputs of weather station data. Temperatures at the top of unstressed, uniform crops on flat terrain within 1600 m of a recording weather station were estimated within 1.0 C 96% of the time for a corn crop and 92% of the time for a soybean crop. Crop top winds were estimated within 0.4 m/s 92% of the time for corn and 100% of the time for soybean. This is of sufficient accuracy for application in landscape planning and design models. A physically-based model (COMFA) was developed for the determination of outdoor human thermal comfort from microclimate inputs. Estimated versus measured comfort levels in a wide range of environments agreed with a correlation coefficient of r = 0.91. Using these components, the CLIMACS concept has been applied to a typical planning example. Microclimate data were generated from weather station information using MICROSIM, then input to COMFA and to a house energy consumption model called HOTCAN to derive quantitative climatic justification for design decisions.

  18. Design and Implementation of a Smart Weather Station Based on Internet of Things

    Directory of Open Access Journals (Sweden)

    Mahmoud Shaker Nasr

    2017-08-01

    Full Text Available Real-time monitoring has become a crucial thing in light of a huge growing in the number of plants and cars in Iraqi cities including the city of Babylon which leading to increase the air pollution that leads to growing the number of people suffering from cancer and other diseases. Therefore, The Weather Station is proposed to monitor specific environmental elements in the Babylon city. A number of Internet of Things (IoT technologies have been used to form the proposed system. Wireless Sensor Network (WSN and Ethernet are the main technologies that are utilized with the proposed station. The design of the Weather Station consists of three parts: Hardware, Software and Web application. The Web APP is designed using JavaScript, AJAX, PHP, HTML, CSS, and MYSQL. This Web app has been shared on the public server to be accessed by authorized persons from anywhere around the world.

  19. Using Arduinos and 3D-printers to Build Research-grade Weather Stations and Environmental Sensors

    Science.gov (United States)

    Ham, J. M.

    2013-12-01

    Many plant, soil, and surface-boundary-layer processes in the geosphere are governed by the microclimate at the land-air interface. Environmental monitoring is needed at smaller scales and higher frequencies than provided by existing weather monitoring networks. The objective of this project was to design, prototype, and test a research-grade weather station that is based on open-source hardware/software and off-the-shelf components. The idea is that anyone could make these systems with only elementary skills in fabrication and electronics. The first prototypes included measurements of air temperature, humidity, pressure, global irradiance, wind speed, and wind direction. The best approach for measuring precipitation is still being investigated. The data acquisition system was deigned around the Arduino microcontroller and included an LCD-based user interface, SD card data storage, and solar power. Sensors were sampled at 5 s intervals and means, standard deviations, and maximum/minimums were stored at user-defined intervals (5, 30, or 60 min). Several of the sensor components were printed in plastic using a hobby-grade 3D printer (e.g., RepRap Project). Both passive and aspirated radiation shields for measuring air temperature were printed in white Acrylonitrile Butadiene Styrene (ABS). A housing for measuring solar irradiance using a photodiode-based pyranometer was printed in opaque ABS. The prototype weather station was co-deployed with commercial research-grade instruments at an agriculture research unit near Fort Collins, Colorado, USA. Excellent agreement was found between Arduino-based system and commercial weather instruments. The technology was also used to support air quality research and automated air sampling. The next step is to incorporate remote access and station-to-station networking using Wi-Fi, cellular phone, and radio communications (e.g., Xbee).

  20. Meteorological observations from Dauphin Island Sea Lab Weather Station 1974-1997 (NCEI Accession 0156662)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The DISL Weather Station collected twice daily meteorological observations at the east end of Dauphin Island, Alabama (30 degrees 14' 57" N, 88 degrees 04' 38" W)...

  1. Severe weather data near nuclear power station and reprocessing fuel facility in Japan

    International Nuclear Information System (INIS)

    Nagata, Tadahisa

    2017-01-01

    The main weather data are updated at any time. The strong wind and tornado (strong wind/tornado) data are opened until March 2016 in Japan. The main weather and the strong wind/tornado data near the nuclear power station (NPS) were investigated. The earthquake, Tunami and volcano were not mentioned on this report. The main weather data might not be severe. The maximum temperature had not been considered in the safety analysis of NPS. The weather data of some small observation posts near NPSs had not been considered. The unusual high temperature and the local severe rain near NPS by the global warming may be considered in future. The maximum intensities of the strong wind/tornado in Japan and near NPS were Fujita-scale 3 and 2, respectively. The maximum intensities of almost half NPSs were Fujita-scale 1. The intensity and the number of the strong winds/tornados differed depending on NPS. The Japanese main weather and strong wind/tornado might not be severe compared with other country. (author)

  2. The capacity of radar, crowdsourced personal weather stations and commercial microwave links to monitor small scale urban rainfall

    Science.gov (United States)

    Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.

    2017-12-01

    For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.

  3. High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station.

    Science.gov (United States)

    Boyd, Matthew T

    2017-06-01

    Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.

  4. optimization and renewal of a radio-weather station

    International Nuclear Information System (INIS)

    Saidani, Emna

    2012-01-01

    Our project, realised within the National Center for Nuclear Sciences and Technologies, is entitled the optimization and renewal of a radio-weather station. During this project we studied different sensors types and performances. Indeed, the work involved the development of these sensors and the communication with the data acquisition unit DAU16 to determine the data measured and collected by the unit. Theoretical studies helped us to conceive detectors types and their operation, and then it has been realized by the implementation of all sensors especially the Geiger-Muller detector called GP110i by Canberra. In order to improve the system and to avoid moving difficulty to have measurement data we have tested and studied two possibilities to use network instead of using cable connection: the PLC PK2100 and the system applied to Oued Medjerda.

  5. Data Assimilation of Dead Fuel Moisture Observations from Remote automated Weather Stations

    Czech Academy of Sciences Publication Activity Database

    Vejmelka, Martin; Kochanski, A.; Mandel, Jan

    2016-01-01

    Roč. 25, č. 5 (2016), s. 558-568 ISSN 1049-8001 R&D Projects: GA ČR GA13-34856S Grant - others:National Science Foundation(US) AGS-0835579 and DMS-1216481; NASA (US) NNX12AQ85G and NNX13AH9G. Institutional support: RVO:67985807 Keywords : data assimilation * dead fuel moisture * equilibrium * Kalman filter * remote automated weather stations * time lag model * trend surface model Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.748, year: 2016

  6. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study.

    Science.gov (United States)

    Colston, Josh M; Ahmed, Tahmeed; Mahopo, Cloupas; Kang, Gagandeep; Kosek, Margaret; de Sousa Junior, Francisco; Shrestha, Prakash Sunder; Svensen, Erling; Turab, Ali; Zaitchik, Benjamin

    2018-04-21

    Longitudinal and time series analyses are needed to characterize the associations between hydrometeorological parameters and health outcomes. Earth Observation (EO) climate data products derived from satellites and global model-based reanalysis have the potential to be used as surrogates in situations and locations where weather-station based observations are inadequate or incomplete. However, these products often lack direct evaluation at specific sites of epidemiological interest. Standard evaluation metrics of correlation, agreement, bias and error were applied to a set of ten hydrometeorological variables extracted from two quasi-global, commonly used climate data products - the Global Land Data Assimilation System (GLDAS) and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) - to evaluate their performance relative to weather-station derived estimates at the specific geographic locations of the eight sites in a multi-site cohort study. These metrics were calculated for both daily estimates and 7-day averages and for a rotavirus-peak-season subset. Then the variables from the two sources were each used as predictors in longitudinal regression models to test their association with rotavirus infection in the cohort after adjusting for covariates. The availability and completeness of station-based validation data varied depending on the variable and study site. The performance of the two gridded climate models varied considerably within the same location and for the same variable across locations, according to different evaluation criteria and for the peak-season compared to the full dataset in ways that showed no obvious pattern. They also differed in the statistical significance of their association with the rotavirus outcome. For some variables, the station-based records showed a strong association while the EO-derived estimates showed none, while for others, the opposite was true. Researchers wishing to utilize publicly available climate data

  7. UMTS Network Stations

    Science.gov (United States)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed

  8. The use of automatic weather stations to measure the soil temperature in the Mordovia State Nature Reserve (Russia in 2016

    Directory of Open Access Journals (Sweden)

    Oleg G. Grishutkin

    2017-10-01

    Full Text Available The article presents the soil temperature data obtained using two automatic weather stations located in the Mordovia State Nature Reserve (Russia. Measurements were carried out at the soil surface and at depths of 20 cm, 40 cm and 60 cm. The meteorological stations are located 15 km apart, in general, in similar landscapes. This caused similar results of meteorological measurements. Differences in the average of the daily temperature at corresponding depths are less than 2°C. The average annual temperature differs less than 0.5°C, i.е. within a sensor's error. The annual temperature trend is typical for Central Russia. And it is characterised by well warming in summer and stagnation in winter. The diurnal amplitudes are small. This can be explained by the location of both weather stations under the forest canopy and a well-developed ground vegetation cover.

  9. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  10. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  11. Comparison between weather station data in south-eastern Italy and CRU precipitation datasets

    Science.gov (United States)

    Miglietta, D.

    2009-04-01

    Monthly precipitation data in south-eastern Italy from 1920 to 2005 have been extensively analyzed. Data were collected in almost 200 weather stations located 10-20km apart from each other and almost uniformly distributed in Puglia and Basilicata regions. Apart from few years around world war II, time series are mostly complete and allow a reliable reconstruction of climate variability in the considered region. Statistically significant trends have been studied by applying the Mann-Kendall test to annual, seasonal and monthly values. A comparison has been made between observations and precipitation data given by the Climate Research Unit (CRU), University of East Anglia, with both low (30') and high (10') space resolution grid. In particular, rainfall records, time series behaviors and annual cycles at each station have been compared to the corresponding CRU data. CRU time series show a large negative trend for winter since 1970. Trend is not significant if the whole 20th century is considered (both for the whole year and for winter only). This might be considered as an evidence of recent acceleration towards increasingly dry conditions. However correlation between CRU data and observations is not very high and large percent errors are present mainly in the mountains regions, where observations show a large annual cycle, with intense precipitation in winter, which is not present in CRU data. To identify trends, therefore observed data are needed, even at monthly scale. In particular observations confirm the overall trend, but also indicate large spatial variability, with locations where precipitation has even increased since 1970. Daily precipitation data coming from a subset of weather stations have also been studied for the same time period. The distributions of maximum annual rainfalls, wet spells and dry spells were analyzed for each station, together with their time series. The tools of statistical analysis of extremes have been used in order to evaluate

  12. Separation of dry and wet periods from regular weather station data for the analysis of wind erosion risk

    DEFF Research Database (Denmark)

    Naeini, Mohammadali Saremi; Fister, Wolfgang; Heckrath, Goswin Johann

    importance, soil moisture content is often ignored in the analysis of wind data for wind erosion studies. The main reason most probably being the lack of soil moisture sensors in conventional climate stations. Soil moisture at a given point in time is determined by rain (e.g. rainfall amount, duration......), climate (e.g. air temperature, solar radiation, evaporation) and soil (e.g. infiltration rate, adhesion). The purpose of this study is to overcome the lack of soil moisture data for wind erosion risk assessment by developing a method to estimate the soil wetness based on easy available weather data......, such as daily precipitation, hourly/sub hourly ambient air temperature and hourly/sub hourly relative humidity. This new method was used to identify periods of wet and dry soil moisture conditions of a time series from 20 weather stations in Denmark. The length of the time series varied between 8 to 37 years...

  13. Solar Weather Ice Monitoring Station (SWIMS). A low cost, extreme/harsh environment, solar powered, autonomous sensor data gathering and transmission system

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2013-12-01

    The Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally respectful materials that when deployed will increase the albedo, enhancing the formation and/preservation of multi-year ice. Small scale deployments using various materials have been done in Canada, California's Sierra Nevada Mountains and a pond in Minnesota to test the albedo performance and environmental characteristics of these materials. SWIMS is a sophisticated autonomous sensor system being developed to measure the albedo, weather, water temperature and other environmental parameters. The system (SWIMS) employs low cost, high accuracy/precision sensors, high resolution cameras, and an extreme environment command and data handling computer system using satellite and terrestrial wireless communication. The entire system is solar powered with redundant battery backup on a floating buoy platform engineered for low temperature (-40C) and high wind conditions. The system also incorporates tilt sensors, sonar based ice thickness sensors and a weather station. To keep the costs low, each SWIMS unit measures incoming and reflected radiation from the four quadrants around the buoy. This allows data from four sets of sensors, cameras, weather station, water temperature probe to be collected and transmitted by a single on-board solar powered computer. This presentation covers the technical, logistical and cost challenges in designing, developing and deploying these stations in remote, extreme environments. Image captured by camera #3 of setting sun on the SWIMS station One of the images captured by SWIMS Camera #4

  14. Non-Coop Station History

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Station history documentation for stations outside the US Cooperative Observer network. Primarily National Weather Service stations assigned WBAN station IDs. Other...

  15. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  16. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  17. North America Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  18. Parametrization of the Richardson weather generator within the European Union

    NARCIS (Netherlands)

    Voet, van der P.; Kramer, K.; Diepen, van C.A.

    1996-01-01

    The Richardson model for mathematically generating daily weather data was parametrized. Thirty years' time-series of the 355 main meteorological stations in the European Union formed the database. Model parameters were derived from both observed weather station data and interpolated weather data on

  19. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  20. Improvements to water use and water stress estimates with the addition of IR and net radiometers to weather stations

    Science.gov (United States)

    Evapotranspiration (ET) is often estimated with the Penman-Monteith (P-M) equation. Net radiation (Rn) is a major component of the surface energy balance and an input to the P-M equation, but it is challenging and expensive to measure accurately. For these reasons, most weather stations do not inclu...

  1. The use of automatic weather stations to measure the soil temperature in the Mordovia State Nature Reserve (Russia) in 2016

    OpenAIRE

    Oleg G. Grishutkin

    2017-01-01

    The article presents the soil temperature data obtained using two automatic weather stations located in the Mordovia State Nature Reserve (Russia). Measurements were carried out at the soil surface and at depths of 20 cm, 40 cm and 60 cm. The meteorological stations are located 15 km apart, in general, in similar landscapes. This caused similar results of meteorological measurements. Differences in the average of the daily temperature at corresponding depths are less than 2°C. The average ann...

  2. Internet-accessible real-time weather information system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Desa, E.; Mehra, P.; Desa, E.; Gouveia, A.D.

    An internet-accessible real-time weather information system has been developed. This system provides real-time accessibility to weather information from a multitude of spatially distributed weather stations. The Internet connectivity also offers...

  3. Ocean Station Vessel

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  4. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  5. Pre-Weather Bureau Observation Networks

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The collection consists of monthly weather records from U.S. Army Forts stations (~1820-1871), U.S. Army Signal Service Stations (1871-1892), Smithsonian Institution...

  6. Broadcast media and the dissemination of weather information

    Science.gov (United States)

    Byrnes, J.

    1973-01-01

    Although television is the public's most preferred source of weather information, it fails to provide weather reports to those groups who seek the information early in the day and during the day. The result is that many people most often use radio as a source of information, yet preferring the medium of television. The public actively seeks weather information from both radio and TV stations, usually seeking information on current conditions and short range forecasts. forecasts. Nearly all broadcast stations surveyed were eager to air severe weather bulletins quickly and often. Interest in Nowcasting was high among radio and TV broadcasters, with a significant portion indicating a willingness to pay something for the service. However, interest among TV stations in increasing the number of daily reports was small.

  7. Insurance against weather risk : use of heating degree-days from non-local stations for weather derivatives

    NARCIS (Netherlands)

    Asseldonk, van M.A.P.M.

    2003-01-01

    Weather derivatives enable policy-holders to safeguard themselves against extreme weather conditions. The effectiveness and the efficiency of the risk transfer is determined by the spatial risk basis, which is the stochastic dependency of the local weather outcome being insured and the outcome of

  8. Evaluating the quality and usability of crowdsourced weather data

    Science.gov (United States)

    Koole, Martijn; Siegmund, Peter

    2016-04-01

    In April 2015 the Royal Netherlands Meteorological Institute (KNMI) launched the Weather Observations Website (WOW-NL, https://wow.knmi.nl/) in the Netherlands in cooperation with the UK Met Office, who launched a similar WOW-UK website in 2011. WOW-NL functions as a platform to collect weather data that is measured by amateurs or organizations who own an automatic weather station. Such data can be used to increase the spatial and temporal resolution of existing observation networks. This can be meaningful for better understanding of e.g. urban climate (urban heat islands) and the occurrence of extreme meteorological events. In November 2015 the number of Dutch participants of WOW-NL was approximately 250. The following meteorological parameters are uploaded to the website every 10 minutes: air temperature, air pressure, rainfall rate, humidity, wind speed and wind direction. To get an idea about the location and environment at which the weather stations are placed, participants are asked to rate their station based on exposure, type of devices used and the level of urbanization. They can also specify the elevation and add a short description of the equipment that is used. This study examines the quality of the crowd-sourced weather data by using interpolated weather data that is measured at official weather stations that are operated by KNMI. Measurements at amateur stations are compared with the interpolated measurements and differences are explained using the metadata that the participants specified. A number of days is selected where interesting meteorological situations occurred, such as extremely hot weather, cold fronts, rain fronts or heavy winds. Based on this, recommendations are presented about possible applications of crowd-sourced weather data with respect to the quality level.

  9. NOAA Weather Radio - Station Listing

    Science.gov (United States)

    Non-Zero All Hazards Logo Emergency Alert Description Event Codes Fact Sheet FAQ Organization Search COVERAGE County Coverage Listings State Coverage Listings NWR Station Search Maps SAME SAME Coding Using

  10. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    Science.gov (United States)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  11. Introducing GFWED: The Global Fire Weather Database

    Science.gov (United States)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; hide

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  12. Cape Kennedy Weather Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from original weather observations taken at Cape Kennedy Air Force Station, Florida. Elements recorded are wind speed and direction,...

  13. Introducing the Global Fire WEather Database (GFWED)

    Science.gov (United States)

    Field, R. D.

    2015-12-01

    The Canadian Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations beginning in 1980 called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded datasets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC=1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously-identified in MERRA's precipitation and reinforce the need to consider alternative sources of precipitation data. GFWED is being used by researchers around the world for analyzing historical relationships between fire weather and fire activity at large scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models. These applications will be discussed. More information on GFWED can be found at http://data.giss.nasa.gov/impacts/gfwed/

  14. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  15. Utilization of Live Localized Weather Information for Sustainable Agriculture

    Science.gov (United States)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  16. 47 CFR 87.107 - Station identification.

    Science.gov (United States)

    2010-10-01

    ... station. Identify by one of the following means: (1) Aircraft radio station call sign. (2) The type of... type of aircraft followed by the last three characters of the registration marking. Notwithstanding any... of stations are exempted from the use of a call sign: Airborne weather radar, radio altimeter, air...

  17. Microcontroller-based network for meteorological sensing and weather forecast calculations

    Directory of Open Access Journals (Sweden)

    A. Vas

    2012-06-01

    Full Text Available Weather forecasting needs a lot of computing power. It is generally accomplished by using supercomputers which are expensive to rent and to maintain. In addition, weather services also have to maintain radars, balloons and pay for worldwide weather data measured by stations and satellites. Weather forecasting computations usually consist of solving differential equations based on the measured parameters. To do that, the computer uses the data of close and distant neighbor points. Accordingly, if small-sized weather stations, which are capable of making measurements, calculations and communication, are connected through the Internet, then they can be used to run weather forecasting calculations like a supercomputer does. It doesn’t need any central server to achieve this, because this network operates as a distributed system. We chose Microchip’s PIC18 microcontroller (μC platform in the implementation of the hardware, and the embedded software uses the TCP/IP Stack v5.41 provided by Microchip.

  18. Using fire-weather forecasts and local weather observations in predicting burning index for individual fire-danger stations.

    Science.gov (United States)

    Owen P. Cramer

    1958-01-01

    Any agency engaged in forest-fire control needs accurate weather forecasts and systematic procedures for making the best use of predicted and reported weather information. This study explores the practicability of using several tabular and graphical aids for converting area forecasts and local observations of relative humidity and wind speed into predicted values for...

  19. Fire weather and large fire potential in the northern Sierra Nevada

    Science.gov (United States)

    Brandon M. Collins

    2014-01-01

    Fuels, weather, and topography all contribute to observed fire behavior. Of these, weather is not only the most dynamic factor, it is the most likely to be directly influenced by climate change. In this study 40 years of daily fire weather observations from five weather stations across the northern Sierra Nevada were analyzed to investigate potential changes or trends...

  20. Using stochastic activity networks to study the energy feasibility of automatic weather stations

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, Luca [Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano (Italy); Cesarini, Daniel [Scuola Superiore Sant’Anna, Pisa (Italy); Avvenuti, Marco [Dipartimento di Ingegneria dell’Informazione, University of Pisa (Italy)

    2015-03-10

    Automatic Weather Stations (AWSs) are systems equipped with a number of environmental sensors and communication interfaces used to monitor harsh environments, such as glaciers and deserts. Designing such systems is challenging, since designers have to maximize the amount of sampled and transmitted data while considering the energy needs of the system that, in most cases, is powered by rechargeable batteries and exploits energy harvesting, e.g., solar cells and wind turbines. To support designers of AWSs in the definition of the software tasks and of the hardware configuration of the AWS we designed and implemented an energy-aware simulator of such systems. The simulator relies on the Stochastic Activity Networks (SANs) formalism and has been developed using the Möbius tool. In this paper we first show how we used the SAN formalism to model the various components of an AWS, we then report results from an experiment carried out to validate the simulator against a real-world AWS and we finally show some examples of usage of the proposed simulator.

  1. A comparison of methods for calculating population exposure estimates of daily weather for health research

    Directory of Open Access Journals (Sweden)

    Dear Keith BG

    2006-09-01

    Full Text Available Abstract Background To explain the possible effects of exposure to weather conditions on population health outcomes, weather data need to be calculated at a level in space and time that is appropriate for the health data. There are various ways of estimating exposure values from raw data collected at weather stations but the rationale for using one technique rather than another; the significance of the difference in the values obtained; and the effect these have on a research question are factors often not explicitly considered. In this study we compare different techniques for allocating weather data observations to small geographical areas and different options for weighting averages of these observations when calculating estimates of daily precipitation and temperature for Australian Postal Areas. Options that weight observations based on distance from population centroids and population size are more computationally intensive but give estimates that conceptually are more closely related to the experience of the population. Results Options based on values derived from sites internal to postal areas, or from nearest neighbour sites – that is, using proximity polygons around weather stations intersected with postal areas – tended to include fewer stations' observations in their estimates, and missing values were common. Options based on observations from stations within 50 kilometres radius of centroids and weighting of data by distance from centroids gave more complete estimates. Using the geographic centroid of the postal area gave estimates that differed slightly from the population weighted centroids and the population weighted average of sub-unit estimates. Conclusion To calculate daily weather exposure values for analysis of health outcome data for small areas, the use of data from weather stations internal to the area only, or from neighbouring weather stations (allocated by the use of proximity polygons, is too limited. The most

  2. LOCAL WEATHER CLASSIFICATIONS FOR ENVIRONMENTAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Katarzyna PIOTROWICZ

    2013-03-01

    Full Text Available Two approaches of local weather type definitions are presented and illustrated for selected stations of Poland and Hungary. The subjective classification, continuing long traditions, especially in Poland, relies on diurnal values of local weather elements. The main types are defined according to temperature with some sub-types considering relative sunshine duration, diurnal precipitation totals, relative humidity and wind speed. The classification does not make a difference between the seasons of the year, but the occurrence of the classes obviously reflects the annual cycle. Another important feature of this classification is that only a minor part of the theoretically possible combination of the various types and sub-types occurs in all stations of both countries. The objective version of the classification starts from ten possible weather element which are reduced to four according to factor analysis, based on strong correlation between the elements. This analysis yields 3 to 4 factors depending on the specific criteria of selection. The further cluster analysis uses four selected weather elements belonging to different rotated factors. They are the diurnal mean values of temperature, of relative humidity, of cloudiness and of wind speed. From the possible ways of hierarchical cluster analysis (i.e. no a priori assumption on the number of classes, the method of furthest neighbours is selected, indicating the arguments of this decision in the paper. These local weather types are important tools in understanding the role of weather in various environmental indicators, in climatic generalisation of short samples by stratified sampling and in interpretation of the climate change.

  3. Using crowdsourced data from citizen weather stations to analyse air temperature in 'local climate zones' in Berlin, Germany

    Science.gov (United States)

    Fenner, Daniel; Meier, Fred; Bechtel, Benjamin; Otto, Marco; Scherer, Dieter

    2017-04-01

    Provision of observational data with high spatial coverage over extended time periods still remains as one of the biggest challenges in urban climate research. Classical meteorological networks are seldomly designed to monitor atmospheric conditions in a broad variety of urban environments, though the heterogeneity of urban structures leads to distinct thermal characteristics on local scales, i.e., hundreds of metres to several kilometres. One approach to overcome the aforementioned challenges of observation networks is to use data from weather stations that are maintained by citizens. The private company 'netatmo' (www.netatmo.com) produces and distributes such citizen weather stations (CWS) around the world. The stations automatically send their data to the netatmo server, and the user decides if data are publicly shared. Shared data can freely be retrieved via an application programming interface. We collected air temperature (T) data for the year 2015 for the city of Berlin, Germany, and surroundings with more than 1500 'netatmo' CWS in the study area. The entire data set was thoroughly quality checked, and filter techniques, involving data from a reference network, were developed to address different types of errors associated with CWS data. Additionally, the accuracy of 'netatmo' CWS was checked in a climate chamber and in a long-term field experiment. Since the terms 'urban' and 'rural' are ambiguous in urban climate studies, Stewart and Oke (2012) developed the 'local climate zone' (LCZ) concept to enhance understanding and interpretation of air temperature differences in urban regions. LCZ classification for the study region was conducted using the 'WUDAPT' approach by Bechtel et al. (2015). The quality-checked CWS data were used to analyse T characteristics of LCZ classes in Berlin and surroundings. Specifically, we analysed how LCZ classes are represented by CWS in 2015, how T varies within each LCZ class ('intra-LCZ variability'), and if significant

  4. Space weather and coronal mass ejections

    CERN Document Server

    Howard, Tim

    2013-01-01

    Space weather has attracted a lot of attention in recent times. Severe space weather can disrupt spacecraft, and on Earth can be the cause of power outages and power station failure. It also presents a radiation hazard for airline passengers and astronauts. These ""magnetic storms"" are most commonly caused by coronal mass ejections, or CMES, which are large eruptions of plasma and magnetic field from the Sun that can reach speeds of several thousand km/s. In this SpringerBrief, Space Weather and Coronal Mass Ejections, author Timothy Howard briefly introduces the coronal mass ejection, its sc

  5. Temperature profiles from MBT casts from the VANCOUVER from Ocean Weather Station P (OWS-P) in the North Pacific Ocean from 30 October to 1968-12-01 (NODC Accession 6900711)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the VANCOUVER within a 1-mile radius of Ocean Weather Station P (5000N 14500W) and in transit. Data were collected by the...

  6. Temperature profiles from MBT casts from the CAMPBELL Ocean Weather Station D (OWS-D) in the North Atlantic Ocean from 1964-06-26 to 1964-07-23 (NCEI Accession 6400991)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station D (4400N 04100W) and in transit. Data were collected by the...

  7. Thermoelectric generator installation at Divide Road Weather Information Systems (RWIS).

    Science.gov (United States)

    2016-04-13

    The Department of Transportation and Public Facilities (DOT&PF) has a network of Road Weather Information System (RWIS) environmental sensor stations (ESS) deployed along the road network. Six of the stations do not have access to commercial power an...

  8. Design of Frost Resistant Pavement Structure Based on Road Weather Stations (RWSs Data

    Directory of Open Access Journals (Sweden)

    Audrius Vaitkus

    2016-12-01

    Full Text Available Frost is a decisive factor influencing pavement performance in cold countries. In the EU, millions of euros are spent annually on winter maintenance. About one-third of the maintenance budget is allocated to rehabilitation due to the negative impact of frost. The negative effect of frost is restricted by using non-frost-susceptible materials within the frost zone and regulating water accumulation. However, experience shows that the thickness of constructed pavement structure is often inadequate and that frost penetrates into the subgrade of frost-susceptible materials. The aim of this paper is to introduce the thickness calculation approach of the frost resistant pavement structure using road weather station (RWS data. The subgrade susceptibility to frost and the number of equivalent single axle loads (ESALs are considered as factors too. The calculated thickness of the frost resistant pavement structure is corrected according to the specific local conditions. After performing a statistical analysis of 2012–2014 data pertaining to 26 RWSs, Lithuania was divided into four regions according to the maximum frost depths, where the maximum values depending on RWS location varied from 110.4 cm to 179.1 cm.

  9. Weather Risk Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Martina Bobriková

    2016-01-01

    Full Text Available The paper focuses on valuation of a weather derivative with payoffs depending on temperature. We use historical data from the weather station in the Slovak town Košice to obtain unique prices of option contracts in an incomplete market. Numerical examples of prices of some contracts are presented, using the Burn analysis. We provide an example of how a weather contract can be designed to hedge the financial risk of a suboptimal temperature condition. The comparative comparison of the selected option hedging strategies has shown the best results for the producers in agricultural industries who hedges against an unfavourable weather conditions. The results of analysis proved that by buying put option or call option, the farmer establishes the highest payoff in the case of temperature decrease or increase. The Long Straddle Strategy is the most expensive but is available to the farmer who hedges against a high volatility in temperature movement. We conclude with the findings that weather derivatives could be useful tools to diminish the financial losses for agricultural industries highly dependent for temperature.

  10. Estimating dew formation in rice, using seasonally averaged diel patterns of weather variables

    NARCIS (Netherlands)

    Luo, W.; Goudriaan, J.

    2004-01-01

    If dew formation cannot be measured it has to be estimated. Available simulation models for estimating dew formation require hourly weather data as input. However, such data are not available for places without an automatic weather station. In such cases the diel pattern of weather variables might

  11. Temperature profiles from MBT casts from the VANCOUVER from Ocean Weather Station P (OWS-P) in the North Pacific Ocean from 1967-12-10 to 1968-01-13 (NODC Accession 6900710)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the VANCOUVER within a 1-mile radius of Ocean Weather Station P (5000N 14500W) and in transit. Data were collected by the...

  12. Temperature profiles from MBT casts from the BARATARIA from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 1969-05-01 to 1969-05-26 (NODC Accession 6900462)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the BARATARIA within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by the...

  13. Temperature profiles from MBT casts from the WINONA from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 1964-04-01 to 1964-04-14 (NODC Accession 6400009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the WINONA within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by the...

  14. Temperature profiles from MBT casts from the GRESHAM from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 1955-12-08 to 1956-01-04 (NODC Accession 5500035)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the GRESHAM within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by the...

  15. Temperature profiles from XBT casts from the CAMPBELL from Ocean Weather Station D (OWS-D) in the North Atlantic Ocean from 1973-06-03 to 1973-07-02 (NODC Accession 7300933)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station D (4400N 04100W) and in transit. Data were collected by the...

  16. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station D (OWS-D) in the North Atlantic Ocean from 1966-08-26 to 1966-09-18 (NODC Accession 6600285)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station D (4400N 04100W) and in transit. Data were collected by the...

  17. Temperature profiles from MBT casts from the HUMBOLDT from Ocean Weather Station D (OWS-D) in the North Atlantic Ocean from 1962-07-13 to 1962-08-05 (NODC Accession 6200130)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the HUMBOLDT within a 1-mile radius of Ocean Weather Station D (4400N 04100W) and in transit. Data were collected by the...

  18. Temperature profiles from MBT casts from the HUMBOLDT from Ocean Weather Station B (OWS-B) in the North Atlantic Ocean from 1968-07-21 to 1968-08-12 (NODC Accession 6800388)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the HUMBOLDT within a 1-mile radius of Ocean Weather Station B (5630N 05100W) and in transit. Data were collected by the...

  19. Temperature profiles from MBT casts from the HUMBOLDT from Ocean Weather Station E (OWS-E) in the North Atlantic Ocean from 1962-09-18 to 1962-10-13 (NODC Accession 6200206)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the HUMBOLDT within a 1-mile radius of Ocean Weather Station E (3500N 04800W) and in transit. Data were collected by the...

  20. Temperature profiles from MBT casts from the HUMBOLDT from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean from 1963-05-26 to 1963-06-24 (NODC Accession 6300123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the HUMBOLDT within a 1-mile radius of Ocean Weather Station C (5245N 0350W) and in transit. Data were collected by the...

  1. Temperature profiles from MBT casts from the HUMBOLDT from Ocean Weather Station B (OWS-B) in the North Atlantic Ocean from 1966-03-17 to 1966-04-01 (NODC Accession 6600372)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the HUMBOLDT within a 1-mile radius of Ocean Weather Station B (56305N 05100W) and in transit. Data were collected by the...

  2. Temperature profiles from MBT casts from the HUMBOLDT from Ocean Weather Station D (OWS-D) in the North Atlantic Ocean from 1966-05-28 to 1966-06-24 (NODC Accession 6600371)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the HUMBOLDT within a 1-mile radius of Ocean Weather Station D (4400N 04100W) and in transit. Data were collected by the...

  3. Temperature profiles from MBT casts from the MCCULLOCH from Ocean Weather Station E (OWS-E) in the North Atlantic Ocean from 1967-09-24 to 1967-10-21 (NODC Accession 6700547)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the MCCULLOCH within a 1-mile radius of Ocean Weather Station E (3500N 04800W) and in transit. Data were collected by the...

  4. Temperature profiles from MBT casts from the TANEY from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 1961-10-20 to 1961-11-07 (NODC Accession 6100246)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the TANEY within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by the...

  5. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station E (OWS-E) in the North Atlantic Ocean from 1962-01-06 to 1962-01-15 (NODC Accession 6200078)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station E (3500N 04800W) and in transit. Data were collected by the...

  6. Temperature profiles from XBT casts from the CAMPBELL from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean from 1973-10-15 to 1973-11-11 (NODC Accession 7301169)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station C (5245N 03530W) and in transit. Data were collected by the...

  7. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station E (OWS-E) in the North Atlantic Ocean from 1965-11-24 to 1965-12-13 (NODC Accession 6500781)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station E (3500N 04800W) and in transit. Data were collected by the...

  8. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station B (OWS-B) in the North Atlantic Ocean from 1964-09-08 to 1964-10-01 (NODC Accession 6400046)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station B (56305N 05100W) and in transit. Data were collected by the...

  9. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station E (OWS-E) in the North Atlantic Ocean from 1967-02-27 to 1967-03-22 (NODC Accession 6700088)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station E (3500N 04800W) and in transit. Data were collected by the...

  10. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station B (OWS-B) in the North Atlantic Ocean from 1970-02-17 to 1970-03-07 (NODC Accession 7000337)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station B (5630N 05100W) and in transit. Data were collected by the...

  11. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean from 1965-06-20 to 1965-07-19 (NODC Accession 6500782)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station C (5245N 0350W) and in transit. Data were collected by the...

  12. Temperature profiles from XBT casts from the CAMPBELL from Ocean Weather Station B (OWS-B) in the North Atlantic Ocean from 1974-02-19 to 1974-03-16 (NODC Accession 7400266)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station B (5630N 05100W) and in transit. Data were collected by the...

  13. Temperature profiles from XBT casts from the CAMPBELL from Ocean Weather Station H (OWS-H) in the North Atlantic Ocean from 1973-12-18 to 1974-01-13 (NODC Accession 7400074)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station H (3800N 07100W) and in transit. Data were collected by the...

  14. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean from 1963-03-26 to 1963-04-26 (NODC Accession 6300986)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station C (5245N 0350W) and in transit. Data were collected by the...

  15. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station B (OWS-B) in the North Atlantic Ocean from 1967-04-26 to 1967-05-16 (NODC Accession 6700188)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station B (56305N 05100W) and in transit. Data were collected by the...

  16. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station E (OWS-E) in the North Atlantic Ocean from 1964-11-29 to 1964-12-22 (NODC Accession 6400064)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station E (3500N 04800W) and in transit. Data were collected by the...

  17. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station B (OWS-B) in the North Atlantic Ocean from 1963-08-22 to 1963-09-21 (NODC Accession 6300103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station B (56305N 05100W) and in transit. Data were collected by the...

  18. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean from 1965-02-21 to 1965-03-11 (NODC Accession 6500029)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station C (5245N 0350W) and in transit. Data were collected by the...

  19. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean from 1962-07-02 to 1962-08-02 (NODC Accession 6200220)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station C (5245N 0350W) and in transit. Data were collected by the...

  20. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station D (OWS-D) in the North Atlantic Ocean from 1972-05-29 to 1972-07-01 (NODC Accession 7200930)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station D (4400N 04100W) and in transit. Data were collected by the...

  1. Temperature profiles from MBT casts from the QUADRA from Ocean Weather Station P (OWS-P) in the North Pacific Ocean from 1969-02-22 to 1969-04-09 (NODC Accession 6900703)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the QUADRA within a 1-mile radius of Ocean Weather Station P (5000N 14500W) and in transit. Data were collected by the...

  2. Temperature profiles from MBT casts from the QUADRA from Ocean Weather Station P (OWS-P) in the North Pacific Ocean from 1968-12-06 to 1969-01-15 (NODC Accession 6900707)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the QUADRA within a 1-mile radius of Ocean Weather Station P (5000N 14500W) and in transit. Data were collected by the...

  3. Temperature profiles from MBT casts from the TANEY from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 1962-03-15 to 1962-04-09 (NODC Accession 6200098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the TANEY within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by the...

  4. Temperature profiles from MBT casts from the MELLON from Ocean Weather Station V (OWS-V) in the North Pacific Ocean from 1968-07-28 to 1968-08-23 (NODC Accession 6800548)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the MELLON within a 1-mile radius of Ocean Weather Station V (3400N 16400E) and in transit. Data were collected by the...

  5. Temperature profiles from XBT casts from the MELLON from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 1974-01-23 to 1974-02-24 (NODC Accession 7400215)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the MELLON within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by the...

  6. Temperature profiles from MBT casts from the INGHAM from Ocean Weather Station B (OWS-B) in the North Atlantic Ocean from 1967-01-24 to 1967-02-27 (NODC Accession 6700118)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the INGHAM within a 1-mile radius of Ocean Weather Station B (56305N 05100W) and in transit. Data were collected by the...

  7. Temperature profiles from MBT casts from the CASCO from Ocean Weather Station D (OWS-D) in the North Atlantic Ocean from 1965-09-19 to 1965-10-05 (NODC Accession 6500775)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CASCO within a 1-mile radius of Ocean Weather Station D (4400N 04100W) and in transit. Data were collected by the...

  8. Temperature profiles from MBT casts from the INGHAM from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean from 1972-03-30 to 1972-04-23 (NODC Accession 7200690)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the INGHAM within a 1-mile radius of Ocean Weather Station C (5245N 03530W) and in transit. Data were collected by the...

  9. Temperature profiles from MBT casts from the WINONA from Ocean Weather Station N (OWS-N) in the North Pacific Ocean from 1966-01-20 to 1966-02-16 (NODC Accession 6600480)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the WINONA within a 1-mile radius of Ocean Weather Station N (3000N 14000W) and in transit. Data were collected by the...

  10. Distributed Sensor Network for meteorological observations and numerical weather Prediction Calculations

    Directory of Open Access Journals (Sweden)

    Á. Vas

    2013-06-01

    Full Text Available The prediction of weather generally means the solution of differential equations on the base of the measured initial conditions where the data of close and distant neighboring points are used for the calculations. It requires the maintenance of expensive weather stations and supercomputers. However, if weather stations are not only capable of measuring but can also communicate with each other, then these smart sensors can also be applied to run forecasting calculations. This applies the highest possible level of parallelization without the collection of measured data into one place. Furthermore, if more nodes are involved, the result becomes more accurate, but the computing power required from one node does not increase. Our Distributed Sensor Network for meteorological sensing and numerical weather Prediction Calculations (DSN-PC can be applied in several different areas where sensing and numerical calculations, even the solution of differential equations, are needed.

  11. Solar radiation observation stations updated to 1979

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E.A.; Cristina, J.R.; Williams, B.B.

    1979-04-01

    The type of sensing and recording equipment for 420 stations in the US are listed alphabetically by states. The stations are divided according to whether or not they are in the basic National Weather Service, NOAA, network. Reports of summarized solar radiation data are listed in an appendix. (MHR)

  12. Temperature profiles from MBT casts from the CASTLE ROCK from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean 1964-07-01 to 1964-08-06 (NODC Accession 6400054)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CASTLE ROCK within a 1-mile radius of Ocean Weather Station C (5245N 0350W) and in transit. Data were collected by the...

  13. Lessons in weather data interoperability: the National Mesonet Program

    Science.gov (United States)

    Evans, J. D.; Werner, B.; Cogar, C.; Heppner, P.

    2015-12-01

    The National Mesonet Program (NMP) links local, state, and regional surface weather observation networks (a.k.a. mesonets) to enhance the prediction of high-impact, local-scale weather events. A consortium of 23 (and counting) private firms, state agencies, and universities provides near-real-time observations from over 7,000 fixed weather stations, and over 1,000 vehicle-mounted sensors, every 15 minutes or less, together with the detailed sensor and station metadata required for effective forecasts and decision-making. In order to integrate these weather observations across the United States, and to provide full details about sensors, stations, and observations, the NMP has defined a set of conventions for observational data and sensor metadata. These conventions address the needs of users with limited bandwidth and computing resources, while also anticipating a growing variety of sensors and observations. For disseminating weather observation data, the NMP currently employs a simple ASCII format derived from the Integrated Ocean Observing System. This simplifies data ingest into common desktop software, and parsing by simple scripts; and it directly supports basic readings of temperature, pressure, etc. By extending the format to vector-valued observations, it can also convey readings taken at different altitudes (e.g. windspeed) or depths (e.g., soil moisture). Extending beyond these observations to fit a greater variety of sensors (solar irradiation, sodar, radar, lidar) may require further extensions, or a move to more complex formats (e.g., based on XML or JSON). We will discuss the tradeoffs of various conventions for different users and use cases. To convey sensor and station metadata, the NMP uses a convention known as Starfish Fungus Language (*FL), derived from the Open Geospatial Consortium's SensorML standard. *FL separates static and dynamic elements of a sensor description, allowing for relatively compact expressions that reference a library of

  14. Temperature profiles from MBT casts from the BERING STRAIT from Ocean Weather Station V (OWS-V) in the North Pacific Ocean from 1958-11-30 to 1958-12-30 (NODC Accession 5800073)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the BERING STRAIT within a 1-mile radius of Ocean Weather Station V (3400N 16400E) and in transit. Data were collected by...

  15. Temperature profiles from MBT casts from the CASTLE ROCK from Ocean Weather Station C (OWS-C) in the North Atlantic Ocean from 1967-05-20 to 1967-06-17 (NODC Accession 6700230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CASTLE ROCK within a 1-mile radius of Ocean Weather Station C (5245N 0350W) and in transit. Data were collected by the...

  16. Temperature profiles from MBT casts from the CASTLE ROCK from Ocean Weather Station D (OWS-D) in the North Atlantic Ocean from 1967-02-22 to 1967-03-21 (NODC Accession 6700148)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CASTLE ROCK within a 1-mile radius of Ocean Weather Station D (4400N 04100W) and in transit. Data were collected by the...

  17. Power losses in electrical networks depending on weather conditions

    International Nuclear Information System (INIS)

    Zhelezko, Yu. S.; Kostyushko, V. A.; Krylov, S. V.; Nikiforov, E. P.; Savchenko, O. V.; Timashova, L. V.; Solomonik, E. A.

    2005-01-01

    Specific power losses to corona and to leakage currents over overhead insulators are presented for 110 - 750-kV transmission lines with different phase design and pole types for different weather conditions. Consumption of electric energy for ice melting on conductors of various cross sections is evaluated. Meteorological data of 1372 weather stations in Russia are processed for a period of 10 years. The territory of the country is divided into 7 regions with approximately homogeneous weather conditions. Specific power losses to corona and leakage currents over overhead insulators are presented for every region

  18. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  19. A Dynamic Programming Approach for Pricing Weather Derivatives under Issuer Default Risk

    Directory of Open Access Journals (Sweden)

    Wolfgang Karl Härdle

    2017-10-01

    Full Text Available Weather derivatives are contingent claims with payoff based on a pre-specified weather index. Firms exposed to weather risk can transfer it to financial markets via weather derivatives. We develop a utility-based model for pricing baskets of weather derivatives under default risk on the issuer side in over-the-counter markets. In our model, agents maximise the expected utility of their terminal wealth, while they dynamically rebalance their weather portfolios over a finite investment horizon. Using dynamic programming approach, we obtain semi-closed forms for the equilibrium prices of weather derivatives and for the optimal strategies of the agents. We give an example on how to price rainfall derivatives on selected stations in China in the universe of a financial investor and a weather exposed crop insurer.

  20. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions

    Science.gov (United States)

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  1. Nganyi Community Resource Centre: Community radio station ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-05-04

    May 4, 2016 ... To mark World Meteorological Day on March 23, 2015, the Kenya Meteorological Services (KMS) launched a resource centre and radio station in western Kenya to disseminate weather and climate information.

  2. Temperature profiles from MBT casts from the CHAUTAUQUA from Ocean Weather Station E (OWS-E) and H (OWS-H) in the North Atlantic Ocean from 1972-06-28 to 1972-08-03 (NODC Accession 7201022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CHAUTAUQUA within a 1-mile radius of Ocean Weather Station E (3500N 04800W), H (3800N 07100W), and in transit. Data...

  3. Temperature profiles from XBT casts from the DALLAS from Ocean Weather Station C (OWS-C) and D (OWS-D) in the North Atlantic Ocean from 1973-11-03 to 1973-11-27 (NODC Accession 7301191)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the DALLAS within a 1-mile radius of Ocean Weather Station C (5245N 03530W), D (4400N 04100W), and in transit. Data were...

  4. Temperature profiles from MBT casts from the MCCULLOCH from Ocean Weather Station E (OWS-E) and H)OWS-H) in the North Atlantic Ocean from 1969-08-08 to 1969-09-09 (NODC Accession 7000051)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the MCCULLOCH within a 1-mile radius of Ocean Weather Station E (3500N 04800W), H (3800N 07100W), and in transit. Data were...

  5. Temperature profiles from MBT casts from the INGHAM from Ocean Weather Station E (OWS-E) and H (OWS-H) in the North Atlantic Ocean from 1971-01-07 to 1971-02-02 (NODC Accession 7100301)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the INGHAM within a 1-mile radius of Ocean Weather Station E (3500N 04800W), H (3800N 07100W), and in transit. Data were...

  6. Temperature profiles from MBT casts from the ABSECON from Ocean Weather Station E (OWS-E) and H (OWS-H) in the North Atlantic Ocean from 1970-07-20 to 1970-08-19 (NODC Accession 7000910)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the ABSECON within a 1-mile radius of Ocean Weather Station E (3500N 04800W), H (3800N 07100W), and in transit. Data were...

  7. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip.

    Science.gov (United States)

    Zamora, Jane Louie Fresco; Kashihara, Shigeru; Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values.

  8. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  9. Integrated system of visualization of the meteorological information for the weather forecast - SIPROT

    International Nuclear Information System (INIS)

    Leon Aristizabal, Gloria Esperanza

    2006-01-01

    The SIPROT is an operating system in real time for the handling of weather data through of a tool; it gathers together GIS and geodatabases. The SIPROT has the capacity to receive, to analyze and to exhibit weather charts of many national and international weather data in alphanumeric and binary formats from meteorological stations and satellites, as well as the results of the simulations of global and regional meteorological and wave models. The SIPROT was developed by the IDEAM to facilitate the handling of million weather dataset that take place daily and are required like elements of judgment for the inherent workings to the analyses and weather forecast

  10. Automatic Weather Station (AWS Program operated by the University of Wisconsin-Madison during the 2012-2013 field season: Challenges and Successes

    Directory of Open Access Journals (Sweden)

    Matthew A. Lazzara

    2015-03-01

    Full Text Available This report reviews 2012-2013 field season activities of the University of Wisconsin-Madison's Antarctic Automatic Weather Station (AWS program, summarizes the science that these sites are supporting, and outlines the factors that impact the number of AWS sites serviced in any given field season. The 2012-2013 austral summer season was unusual in the AWS network history. Challenges encountered include, but are not limited to, warmer than normal conditions in the Ross Island area impacting airfield operations, changes to logistical procedures, and competition for shared resources. A flexible work plan provides the best means for taking on these challenges while maximizing AWS servicing efforts under restricted conditions and meeting the need for routine servicing that maintaining an autonomous observing network demands.

  11. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip

    Directory of Open Access Journals (Sweden)

    Jane Louie Fresco Zamora

    2015-01-01

    Full Text Available Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values.

  12. Asian Dust Weather Categorization with Satellite and Surface Observations

    Science.gov (United States)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  13. Temperature profiles from XBT casts from the BELKNAP and other platforms from multiple Ocean Weather Station (OWS) in the North Atlantic Ocean and North Pacific Ocean from 1969-02-03 to 1970-08-18 (NODC Accession 7000904)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the BELKNAP and other platforms within a 1-mile radius of Ocean Weather Station B (5630N 05100W), C (5245N 03530W), D...

  14. Characterizing Space Weather Effects in the Post-DMSP Era

    Science.gov (United States)

    Groves, K. M.

    2015-12-01

    Space weather generally refers to heliophysical phenomena or events that produce a negative impact on manmade systems. While many space weather events originate with impulsive disturbances on the sun, others result from complex internal interactions in the ionosphere-thermosphere system. The reliance of mankind on satellite-based services continues to increase rapidly, yet the global capacity for sensing space weather in the ionosphere seems headed towards decline. A number of recent ionospheric-focused space-based missions are either presently, or soon-to-be, no longer available, and the end of the multi-decade Defense Meteorological Satellite Program is now in sight. The challenge facing the space weather community is how to maintain or increase sensing capabilities in an operational environment constrained by a decreasing numbers of sensors. The upcoming launch of COSMIC-2 in 2016/2018 represents the most significant new capability planned for the future. GNSS RO data has some benefit for background ionospheric models, particularly over regions where ground-based GNSS TEC measurements are unavailable, but the space weather community has a dire need to leverage such missions for far more knowledge of the ionosphere, and specifically for information related to space weather impacts. Meanwhile, the number of ground-based GNSS sensors worldwide has increased substantially, yet progress instrumenting some vastly undersampled regions, such as Africa, remains slow. In fact, the recent loss of support for many existing ground stations in such areas under the former Scintillation Network Decision Aid (SCINDA) program may actually result in a decrease in such sensing sites over the next 1-2 years, abruptly reversing a positive trend established over the last decade. Here we present potential solutions to the challenges these developments pose to the space weather enterprise. Specific topics include modeling advances required to detect and accurately characterize

  15. Temperature profiles from MBT casts from the ARNEB and other platforms from multiple Ocean Weather Station (OWS) in the North Atlantic Ocean and North Pacific Ocean from 1951-08-28 to 1964-04-10 (NODC Accession 6900232)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the ARNEB and other platforms within a 1-mile radius of Ocean Weather Station A (6200N 03300W), B (5630N 05100W), C (5245N...

  16. Temperature profiles from MBT casts from the CIRRUS and CUMULUS from Ocean Weather Station K (OWS-K) and M (OWS-M) in the North Atlantic Ocean from 1969-01-01 to 1970-01-16 (NODC Accession 7000939)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CIRRUS and CUMULUS within a 1-mile radius of Ocean Weather Station K (4500N 01600W), M (6600N 00200E), and in transit....

  17. Temperature profiles from MBT casts from the CIRRUS and other platforms from multiple Ocean Weather Station (OWS) in the North Atlantic Ocean and North Pacific Ocean from 1967-12-06 to 1970-10-04 (NODC Accession 7101080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CIRRUS and other platforms within a 1-mile radius of Ocean Weather Station A (6200N 03300W), B (5630N 05100W), C (5245N...

  18. Decreasing trend in severe weather occurrence over China during the past 50 years

    Science.gov (United States)

    Zhang, Qinghong; Ni, Xiang; Zhang, Fuqing

    2017-04-01

    Understanding the trend of localized severe weather under the changing climate is of great significance but remains challenging which is at least partially due to the lack of persistent and homogeneous severe weather observations at climate scales while the detailed physical processes of severe weather cannot be resolved in global climate models. Based on continuous and coherent severe weather reports from over 500 manned stations, for the first time, this study shows a significant decreasing trend in severe weather occurrence across China during the past five decades. The total number of severe weather days that have either thunderstorm, hail and/or damaging wind decrease about 50% from 1961 to 2010. It is further shown that the reduction in severe weather occurrences correlates strongly with the weakening of East Asian summer monsoon which is the primary source of moisture and dynamic forcing conducive for warm-season severe weather over China.

  19. MALAYSIAN WEATHER DATA (TRY) FOR ENERGY SIMULATIONS IN BUILDINGS

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2001-01-01

    Detailed energy simulations for buildings in Malaysia have become possible after the recent construction of a Malaysian TRY (Test Reference Year) based on 21 years of hourly weather data from Subang Meteorological Station. The climatic parameters contained in the TRY are dry bulb temperature, wet...

  20. Evaluation of weather station network in Jordan اﻷردن ﻲ ــﻓ وي ــﺟـ د اﻟ ...

    African Journals Online (AJOL)

    Evaluation of weather station network in Jordan. ﯾـﻘـﺗ. ـﯾـ. م ﺷ. ــﻛـﺑـ. ﺔ اﻟ. . رﺻ. . د اﻟ. ــﺟـ. وي. ــﻓ. ﻲ. اﻷردن. ﺣﺎﻣﺪ ﻣﻮﺳﻰ اﻟﺨﻄﯿﺐ. ﻛﻠﯿﺔ. اﻟﻤﻌﻠﻤﯿﻦ،. ﺟﺎﻣﻌﺔ طﯿﺒﺔ اﻟﻤﺪﯾﻨﺔ اﻟﻤﻨﻮرة، ص. ب . 1343.

  1. The new Athens Center applied to Space Weather Forecasting

    International Nuclear Information System (INIS)

    Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G.; Mariatos, G.; Gerontidou, M.; Plainaki, C.; Papaioannou, A.; Tatsis, S.; Belov, A.; Eroshenko, E.; Yanke, V.

    2006-01-01

    The Sun provides most of the initial energy driving space weather and modulates the energy input from sources outside the solar system, but this energy undergoes many transformations within the various components of the solar-terrestrial system, which is comprised of the solar wind, magnetosphere and radiation belts, the ionosphere, and the upper and lower atmospheres of Earth. This is the reason why an Earth's based neutron monitor network can be used in order to produce a real time forecasting of space weather phenomena.Since 2004 a fully functioned new data analysis Center in real-time is in operation in Neutron Monitor Station of Athens University (ANMODAP Center) suitable for research applications. It provides a multi sided use of twenty three neutron monitor stations distributing in all world and operating in real-time given crucial information on space weather phenomena. In particular, the ANMODAP Center can give a preliminary alert of ground level enhancements (GLEs) of solar cosmic rays which can be registered around 20 to 30 minutes before the main part of lower energy particles. Therefore these energetic solar cosmic rays provide the advantage of forth warning. Moreover, the monitoring of the precursors of cosmic rays gives a forehand estimate on that kind of events should be expected (geomagnetic storms and/or Forbush decreases)

  2. Rancang Bangun Maximum Power Point Tracking pada Panel Photovoltaic Berbasis Logika Fuzzy di Buoy Weather Station

    Directory of Open Access Journals (Sweden)

    Bayu Prima Juliansyah Putra

    2013-09-01

    Full Text Available Salah satu aplikasi yang sering digunakan dalam bidang energi terbarukan adalah panel photovoltaic. Panel ini memiliki prinsip kerja berdasarkan efek photovoltaic dimana lempengan logam akan menghasilkan energi listrik apabila diberi intensitas cahaya. Untuk menghasilkan daya keluaran panel yang maksimal, maka diperlukan suatu algoritma yang biasa disebut Maximum Power Point Tracking (MPPT.MPPT yang diterapkan pada sistem photovoltaic berfungsi untuk mengatur nilai tegangan keluaran panel sehingga titik ker-janya beroperasi pada kondisi maksimal. Algoritma MPPT pada panel ini telah dilakukan dengan menggunakan logika fuzzy melalui mikrokontroler Arduino Uno sebagai pem-bangkit sinyal Pulse Width Modulation (PWM yang akan dikirimkan menuju DC-DC Buck Boost Converter. Keluaran dari buck boost converterakan dihubungkan secara langsung dengan buoy weather station untuk menyuplai energi listrik tiap komponen yang berada di dalamnya. Untuk menguji performansi dari algoritma MPPT yang telah dirancang, maka sistem akan diuji menggunakan variasi beban antara metode direct-coupled dengan MPPT menggunakan logika fuzzy. Hasil pengujian menunjukkan bahwa MPPT dengan logika fuzzy dapat menghasilkan daya maksimum daripada direct-coupled. Pada sistem panel photovoltaic ini memiliki range efisiensi 33.07589 % hingga 74.25743 %. Daya mak-simal dapat dicapai oleh sistem untuk tiap variasi beban dan efisiensi maksimal dapat dicapai pada beban 20 Ohm dari hasil pengujian sistem MPPT.

  3. Performance of an Interpolated Stochastic Weather Generator in Czechia and Nebraska

    Science.gov (United States)

    Dubrovsky, M.; Trnka, M.; Hayes, M. J.; Svoboda, M. D.; Semeradova, D.; Metelka, L.; Hlavinka, P.

    2008-12-01

    Met&Roll is a WGEN-like parametric four-variate daily weather generator (WG), with an optional extension allowing the user to generate additional variables (i.e. wind and water vapor pressure). It is designed to produce synthetic weather series representing present and/or future climate conditions to be used as an input into various models (e.g. crop growth and rainfall runoff models). The present contribution will summarize recent experiments, in which we tested the performance of the interpolated WG, with the aim to examine whether the WG may be used to produce synthetic weather series even for sites having no meteorological observations. The experiments being discussed include: (1) the comparison of various interpolation methods where the performance of the candidate methods is compared in terms of the accuracy of the interpolation for selected WG parameters; (2) assessing the ability of the interpolated WG in the territories of Czechia and Nebraska to reproduce extreme temperature and precipitation characteristics; (3) indirect validation of the interpolated WG in terms of the modeled crop yields simulated by STICS crop growth model (in Czechia); and (4) indirect validation of interpolated WG in terms of soil climate regime characteristics simulated by the SoilClim model (Czechia and Nebraska). The experiments are based on observed daily weather series from two regions: Czechia (area = 78864 km2, 125 stations available) and Nebraska (area = 200520 km2, 28 stations available). Even though Nebraska exhibits a much lower density of stations, this is offset by the state's relatively flat topography, which is an advantage in using the interpolated WG. Acknowledgements: The present study is supported by the AMVIS-KONTAKT project (ME 844) and the GAAV Grant Agency (project IAA300420806).

  4. Weather Support for the 2008 Olympic and Paralympic Sailing Events

    Directory of Open Access Journals (Sweden)

    Yan Ma

    2013-01-01

    Full Text Available The Beijing 2008 Olympic and Paralympic Sailing Competitions (referred to as OPSC hereafter were held at Qingdao during August 9–23 and September 7–13 2008, respectively. The Qingdao Meteorological Bureau was the official provider of weather support for the OPSC. Three-dimensional real-time information with high spatial-temporal resolution was obtained by the comprehensive observation system during the OPSC, which included weather radars, wind profile radars, buoys, automated weather stations, and other conventional observations. The refined forecasting system based on MM5, WRF, and statistical modules provided point-specific hourly wind forecasts for the five venues, and the severe weather monitoring and forecasting system was used in short-term forecasts and nowcasts for rainstorms, gales, and hailstones. Moreover, latest forecasting products, warnings, and weather information were communicated conveniently and timely through a synthetic, speedy, and digitalized network system to different customers. Daily weather information briefings, notice boards, websites, and community short messages were the main approaches for regatta organizers, athletes, and coaches to receive weather service products at 8:00 PM of each day and whenever new updates were available. During the period of OPSC, almost one hundred people were involved in the weather service with innovative service concept, and the weather support was found to be successful and helpful to the OPSC.

  5. Dynamical Networks Characterization of Space Weather Events

    Science.gov (United States)

    Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.

    2017-12-01

    Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show

  6. Cloud Compute for Global Climate Station Summaries

    Science.gov (United States)

    Baldwin, R.; May, B.; Cogbill, P.

    2017-12-01

    Global Climate Station Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically are statistical analyses of station data over 5-, 10-, 20-, 30-year or longer time periods. The summaries are computed from the global surface hourly dataset. This dataset totaling over 500 gigabytes is comprised of 40 different types of weather observations with 20,000 stations worldwide. NCEI and the U.S. Navy developed these value added products in the form of hourly summaries from many of these observations. Enabling this compute functionality in the cloud is the focus of the project. An overview of approach and challenges associated with application transition to the cloud will be presented.

  7. Weather types in Sosnowiec (Poland during the period 1999-2013

    Directory of Open Access Journals (Sweden)

    Dobrowolska Ksenia

    2014-09-01

    Full Text Available The study presents the structure of weather types for the city of Sosnowiec during the period 1999-2013. The analysis was carried out on the basis of daily thermal data (the average daily air temperature, the minimum and maximum daily air temperature, cloudiness and precipitation. The data was obtained from a meteorological station belonging to the Department of Climatology at the Faculty of Earth Sciences at the University of Silesia. Weather types were established according to weather type classification after Woś (2010. 48 weather types were specified on the basis of a combination of 3 selected meteorological elements (temperature, cloudiness, precipitation. The number of days in the year and the frequency of particular thermal weather types, weather subtype, weather classes and weather types were characterized, and the changeability of weather types was analyzed. Furthermore, sequences of days with specific weather types were described. The analysis conducted has lead to the conclusion that, during the research period, the weather structure for the city of Sosnowiec was characterized by a great number of weather types observed, with relatively low frequency of occurrence. Weather throughout the year was dominated by warm weather types (3--, 2--, 2--, with weather marked as 310 – very warm, moderately cloudy, without precipitation (12.9% recorded as the most frequent, followed by 221 – moderately warm, very cloudy, with precipitation (11.6%, and 210 – moderately warm, moderately cloudy, without precipitation (11.4%as the least frequent one. A diversification in the number of particular classification units in consecutive years of the examined 15-year period does not display significant variability. Short sequences of 2 and 3 days dominated the selected sequences of specific weather types.

  8. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  9. ICUD-0499 Low-cost remotely sensed environmental monitoring stations

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Thorndahl, Søren Liedtke

    2017-01-01

    This study contributes with extensive research of applying low-cost remotely sensed monitoring stations to an urban environment. Design requirements are scrutinized, including applications for remote data access, hardware design, and monitoring network design. A network of 9 monitoring stations...... measuring stream water level is deployed during July 2017. Data is streamed to a web page using cellular-based data transmission. Monitoring network performance is quantified with respect to local physical and weather conditions....

  10. NEXRAD and the Broadcast Weather Industry: Preparing to Share the Technology.

    Science.gov (United States)

    Robertson, Michele M.; Droegemeier, Kelvin K.

    1990-01-01

    This paper describes results from a survey designed to establish the current level of radar and computer technology of the television weather industry, and to assess the awareness and attitudes of television weather forecasters toward the Next Generation Weather Radar (NEXRAD) program and its potential impact on the field of broadcast meteorology. The survey was distributed to one affiliate station in each of the 213 national television markets, and a 46% response rate was achieved over a 4-week period. The survey results indicate substantial awareness of and interest in NEXRAD, along with a willingness to learn more about its capabilities and potential for use in the private sector. Survey participants suggested that potential private NEXRAD users work directly with the National Weather Service (NWS) and its affiliates so as to fully utilize the capabilities of the new radar system.

  11. Weather conditions and voter turnout in Dutch national parliament elections, 1971-2010.

    Science.gov (United States)

    Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben

    2012-07-01

    While conventional wisdom assumes that inclement weather on election day reduces voter turnout, there is remarkably little evidence available to support truth to such belief. This paper examines the effects of temperature, sunshine duration and rainfall on voter turnout in 13 Dutch national parliament elections held from 1971 to 2010. It merges the election results from over 400 municipalities with election-day weather data drawn from the nearest weather station. We find that the weather parameters indeed affect voter turnout. Election-day rainfall of roughly 25 mm (1 inch) reduces turnout by a rate of one percent, whereas a 10-degree-Celsius increase in temperature correlates with an increase of almost one percent in overall turnout. One hundred percent sunshine corresponds to a one and a half percent greater voter turnout compared to zero sunshine.

  12. Comparison of parallel temperature measurements from conventional and automatic weather stations at Fabra Observatory (Barcelona).

    Science.gov (United States)

    Aguilar, Enric; Gilabert, Alba; Prohom, Marc

    2013-04-01

    Fabra Observatory , located in a promontory at 411 meters above sea level in the outskirts of Barcelona, hosts a continuous climate record since 1913. Additionally, it has been recording since 1996 simultaneous temperature and precipitation data with conventional instruments and automated systems. The automatization of recording sites employed with climatological purposes is happening elsewhere in the country and across the globe. Unfortunately, in most cases long lasting parallel measurements, are not kept. Thereafter, this site offers an excellent opportunity to study the impact of the introduction of Automatic Weather Stations (AWS). The conventional station (CON) equips a liquid in glass thermometer, located inside a standard Stevenson screen. The automatic measurements (AWS) have been taken using MCV-STA sensors sheltered in a MCV small plate-like ventilated screen between 1996 and the end of July 2007. For our analysis, this MCV period is split in two (T1, T2) due to an obvious jump in the differences AWS-CON in October 2002, produced by unknown reasons. From August 2007 to the present (T3), a Vaisala HMP45AL sensor was placed inside a Stevenson Screen and used for automatic measurements. For daily maximum temperatures, the median differences reach 3.2°C in T1, 1.1°C in T2 and merely -0.1°C in T3. In this later period, 94% of the differences are comprised in a ±0.5°C range, compared to 23% in T2 and only 6% in T1. It is interesting to note how the overheating of the MCV screen dominates the difference series, as 85% of the AWS values taken in T1 and T2 are warmer than the conventional measurements, contrasting with only 27% of cases during T3, when the automated measurements were taken inside a Stevenson screen. These differences are highly temperature dependent: low (high) AWS temperatures are associated with small (large) differences with the CON series. This effect is also evident if temperatures are analyzed by seasons: summer differences are much

  13. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T.F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1995-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  14. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1996-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  15. Linking cluster analysis with synoptic meteorology to characterise chemical climates at six north-west European monitoring stations

    Energy Technology Data Exchange (ETDEWEB)

    Dorling, S.R.; Davies, T.D. [Univ. of East Anglia, Norwich (United Kingdom)

    1994-12-31

    Synoptic scale atmospheric circulation patterns are often good surrogates for the transport pathway to an individual monitoring station. Davies et al. (1990) supported this idea by showing that the chemistry of precipitation samples collected at United Kingdom monitoring stations were strongly related to the Lamb weather type index, a daily classification of the synoptic circulation influencing United Kingdom weather. Such a classification does not, however, optimise the distinction between airflow from different directions and thus over different pollution source regions.

  16. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Directory of Open Access Journals (Sweden)

    Kazancı Selma Zengin

    2017-12-01

    Full Text Available In recent years, Global Navigation Satellite Systems (GNSS have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK. With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  17. Establishment of Karadeniz Technical University Permanent GNSS Station as Reactivated of TRAB IGS Station

    Science.gov (United States)

    Kazancı, Selma Zengin; Kayıkçı, Emine Tanır

    2017-12-01

    In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled "Using Regional GNSS Networks to Strengthen Severe Weather Prediction" was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.

  18. New Approach To Hour-By-Hour Weather Forecast

    Science.gov (United States)

    Liao, Q. Q.; Wang, B.

    2017-12-01

    Fine hourly forecast in single station weather forecast is required in many human production and life application situations. Most previous MOS (Model Output Statistics) which used a linear regression model are hard to solve nonlinear natures of the weather prediction and forecast accuracy has not been sufficient at high temporal resolution. This study is to predict the future meteorological elements including temperature, precipitation, relative humidity and wind speed in a local region over a relatively short period of time at hourly level. By means of hour-to-hour NWP (Numeral Weather Prediction)meteorological field from Forcastio (https://darksky.net/dev/docs/forecast) and real-time instrumental observation including 29 stations in Yunnan and 3 stations in Tianjin of China from June to October 2016, predictions are made of the 24-hour hour-by-hour ahead. This study presents an ensemble approach to combine the information of instrumental observation itself and NWP. Use autoregressive-moving-average (ARMA) model to predict future values of the observation time series. Put newest NWP products into the equations derived from the multiple linear regression MOS technique. Handle residual series of MOS outputs with autoregressive (AR) model for the linear property presented in time series. Due to the complexity of non-linear property of atmospheric flow, support vector machine (SVM) is also introduced . Therefore basic data quality control and cross validation makes it able to optimize the model function parameters , and do 24 hours ahead residual reduction with AR/SVM model. Results show that AR model technique is better than corresponding multi-variant MOS regression method especially at the early 4 hours when the predictor is temperature. MOS-AR combined model which is comparable to MOS-SVM model outperform than MOS. Both of their root mean square error and correlation coefficients for 2 m temperature are reduced to 1.6 degree Celsius and 0.91 respectively. The

  19. Impacts and societal benefits of research activities at Summit Station, Greenland

    Science.gov (United States)

    Hawley, R. L.; Burkhart, J. F.; Courville, Z.; Dibb, J. E.; Koenig, L.; Vaughn, B. H.

    2017-12-01

    Summit Station began as the site for the Greenland Ice Sheet Project 2 ice core in 1989. Since then, it has hosted both summer campaign science, and since 1997, year-round observations of atmospheric and cryospheric processes. The station has been continuously occupied since 2003. While most of the science activities at the station are supported by the US NSF Office of Polar Programs, the station also hosts many interagency and international investigations in physical glaciology, atmospheric chemistry, satellite validation, astrophysics and other disciplines. Summit is the only high elevation observatory north of the Arctic circle that can provide clean air or snow sites. The station is part of the INTER-ACT consortium of Arctic research stations with the main objective to identify, understand, predict and respond to diverse environmental changes, and part of the International Arctic Systems for Observing the Atmosphere (IASOA) that coordinates Arctic research activities and provides a networked, observations-based view of the Arctic. The Summit Station Science Summit, sponsored by NSF, assembled a multidisciplinary group of scientists to review Summit Station science, define the leading research questions for Summit, and make community-based recommendations for future science goals and governance for Summit. The impact of several on-going observation records was summarized in the report "Sustaining the Science Impact of Summit Station, Greenland," including the use of station data in weather forecasts and climate models. Observations made at the station as part of long-term, year-round research or during shorter summer-only campaign seasons contribute to several of the identified Social Benefit Areas (SBAs) outlined in the International Arctic Observations Assessment Framework published by the IDA Science and Technology Policy Institute and Sustaining Arctic Observing Networks as an outcome of the 2016 Arctic Science Ministerial. The SBAs supported by research

  20. Oceanographic and surface meteorological data collected from station Schodack Island hydro/weather by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2008-04-25 to 2017-05-31 (NCEI Accession 0163416)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163416 contains oceanographic and surface meteorological data collected at Schodack Island hydro/weather, a fixed station in the Hudson River. These...

  1. Generating daily weather data for ecosystem modelling in the Congo River Basin

    Science.gov (United States)

    Petritsch, Richard; Pietsch, Stephan A.

    2010-05-01

    Daily weather data are an important constraint for diverse applications in ecosystem research. In particular, temperature and precipitation are the main drivers for forest ecosystem productivity. Mechanistic modelling theory heavily relies on daily values for minimum and maximum temperatures, precipitation, incident solar radiation and vapour pressure deficit. Although the number of climate measurement stations increased during the last centuries, there are still regions with limited climate data. For example, in the WMO database there are only 16 stations located in Gabon with daily weather measurements. Additionally, the available time series are heavily affected by measurement errors or missing values. In the WMO record for Gabon, on average every second day is missing. Monthly means are more robust and may be estimated over larger areas. Therefore, a good alternative is to interpolate monthly mean values using a sparse network of measurement stations, and based on these monthly data generate daily weather data with defined characteristics. The weather generator MarkSim was developed to produce climatological time series for crop modelling in the tropics. It provides daily values for maximum and minimum temperature, precipitation and solar radiation. The monthly means can either be derived from the internal climate surfaces or prescribed as additional inputs. We compared the generated outputs observations from three climate stations in Gabon (Lastourville, Moanda and Mouilla) and found that maximum temperature and solar radiation were heavily overestimated during the long dry season. This is due to the internal dependency of the solar radiation estimates to precipitation. With no precipitation a cloudless sky is assumed and thus high incident solar radiation and a large diurnal temperature range. However, in reality it is cloudy in the Congo River Basin during the long dry season. Therefore, we applied a correction factor to solar radiation and temperature range

  2. Objective local weather types with applications on urban air pollution and on mortality with chronicle illnesses

    Science.gov (United States)

    Mika, Janos; Ivady, Anett; Fulop, Andrea; Makra, László

    2010-05-01

    Synoptic climatology i.e. classification of the endless variability of the everyday weather states according to the pressure configuration and frontal systems relative to the point, or region of interest has long history in meteorology. Its logical alternative, i.e. classification of weather according to the observed local weather elements was less popular until the recent times when the numerical weather forecasts became able to outline not only the synoptic situation, but the near-surface meteorological variables, as well. Nowadays the computer-based statistical facilities are able to operate with matrices of multivariate diurnal samples, as well. The paper presents an attempt to define a set of local weather types using point-wise series at five rural stations, Szombathely, Pécs, Budapest, Szeged és Debrecen in the 1961-1990 reference period. Ten local variables are used, i.e. the diurnal mean temperature, the diurnal temperature range; the cloudiness, the sunshine duration, the water vapour pressure, the precipitation in a logarithmic scale, also differing trace (below 0.1 mm) and no precipitation, the relative humidity and wind speed, including the more extremity indicators of the two latter parameters, i.e. number of hours with over 80 % relative humidity and over 15 m/s wind gusts. Factor analysis of these ten variables was performed leading to 5 fairly independent variables retained for cluster analysis to obtain the local weather types. Hierarchical cluster analysis was performed to classify the 840-930 days within each month of the 30 years period. Furthers neighbour approach was preferred based on Euclidean metrics to establish optimum number of types. The 12 months and the 5 stations exhibited slightly different results but the optimum number of the types was always between 4 and 12 which is a quite reasonable number from practical considerations. According to a further reasonable compromise, the common number of the types not too bad in either

  3. Weather-power station. Solar energy, wind energy, water energy

    Energy Technology Data Exchange (ETDEWEB)

    Schatta, M

    1975-10-02

    A combined power station is described, which enables one to convert solar energy and wind energy into other forms of energy. The plant consists of a water-filled boiler, in which solar energy heats the water by concentration, solar cells, and finally wind rotors, which transform wind energy into electrical energy. The transformed energy is partly available as steam heat, partly as mechanical or electrical energy. The plant can be used for supplying heating systems or electrolysis equipment. Finally, by incorporating suitable motors, a mobile version of the system can be produced.

  4. Merging weather data with materials response data during outdoor exposure

    Science.gov (United States)

    R. Sam Williams; Anand Sanadi; Corey Halpin; Christopher White

    2002-01-01

    As part of an outdoor exposure protocol for a study of sealants, a full weather station was installed at the Forest Products Laboratory field test site near Madison, Wisconsin. Tem-perature, relative humidity, rainfall, ultraviolet (UV) radiation at 18 different wavelengths, and wind speed and direction are continuously measured. Using a specially designed apparatus,...

  5. National Scale Rainfall Map Based on Linearly Interpolated Data from Automated Weather Stations and Rain Gauges

    Science.gov (United States)

    Alconis, Jenalyn; Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo; Lester Saddi, Ivan; Mongaya, Candeze; Figueroa, Kathleen Gay

    2014-05-01

    In response to the slew of disasters that devastates the Philippines on a regular basis, the national government put in place a program to address this problem. The Nationwide Operational Assessment of Hazards, or Project NOAH, consolidates the diverse scientific research being done and pushes the knowledge gained to the forefront of disaster risk reduction and management. Current activities of the project include installing rain gauges and water level sensors, conducting LIDAR surveys of critical river basins, geo-hazard mapping, and running information education campaigns. Approximately 700 automated weather stations and rain gauges installed in strategic locations in the Philippines hold the groundwork for the rainfall visualization system in the Project NOAH web portal at http://noah.dost.gov.ph. The system uses near real-time data from these stations installed in critical river basins. The sensors record the amount of rainfall in a particular area as point data updated every 10 to 15 minutes. The sensor sends the data to a central server either via GSM network or satellite data transfer for redundancy. The web portal displays the sensors as a placemarks layer on a map. When a placemark is clicked, it displays a graph of the rainfall data for the past 24 hours. The rainfall data is harvested by batch determined by a one-hour time frame. The program uses linear interpolation as the methodology implemented to visually represent a near real-time rainfall map. The algorithm allows very fast processing which is essential in near real-time systems. As more sensors are installed, precision is improved. This visualized dataset enables users to quickly discern where heavy rainfall is concentrated. It has proven invaluable on numerous occasions, such as last August 2013 when intense to torrential rains brought about by the enhanced Southwest Monsoon caused massive flooding in Metro Manila. Coupled with observations from Doppler imagery and water level sensors along the

  6. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  7. Evaluating weather factors and material response during outdoor exposure to determine accelerated test protocols for predicting service life

    Science.gov (United States)

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2005-01-01

    To develop service life prediction methods for the study of sealants, a fully instrumented weather station was installed at an outdoor test site near Madison, WI. Temperature, relative humidiy, rainfall, ultraviolet (UV) radiation at 18 wavelengths, and wind speed and direction are being continuously measured and stored. The weather data can be integrated over time to...

  8. Analyse des précipitations annuelles à la station de Yaoundé de ...

    African Journals Online (AJOL)

    Mots-clés: Yaoundé, précipitations, saisons, sécheresse, El Niño. Analysis of the annual rainfalls in the Yaounde station from 1895 to 2006. In the context of climate change, we propose for the Yaounde weather station, in the area of the classic equatorial climate, to study the behavior of interannual rainfalls. It follows a ...

  9. Weather derivatives: Business hedge instrument from weather risks

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan S.

    2014-01-01

    Full Text Available In the late 1990s, a new financial market was developed - a market for weather derivatives, so that the risk managers could hedge their exposure to weather risk. After a rather slow start, the weather derivatives market had started to grow rapidly. Risk managers could no longer blame poor financial results on the weather. Weather risk could now be removed by hedging procedure. This paper will explain briefly what the weather derivatives are and will point out at some of the motives for use of derivatives. Thereafter we will look at the history of the weather risk market, how the weather derivatives market has developed in recent years and also who are the current and potential players in the weather derivatives market.

  10. Oceanographic and surface meteorological data collected from station Port of Albany weather/hydro by Hudson River Environmental Conditions Observing System (HRECOS) and assembled by Mid-Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) in the Hudson River from 2011-01-04 to 2017-07-31 (NCEI Accession 0163364)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163364 contains oceanographic and surface meteorological data collected at Port of Albany weather/hydro, a fixed station in the Hudson River. These...

  11. Selection for the best ETS (error, trend, seasonal) model to forecast weather in the Aceh Besar District

    Science.gov (United States)

    Amora Jofipasi, Chesilia; Miftahuddin; Hizir

    2018-05-01

    Weather is a phenomenon that occurs in certain areas that indicate a change in natural activity. Weather can be predicted using data in previous periods over a period. The purpose of this study is to get the best ETS model to predict the weather in Aceh Besar. The ETS model is a time series univariate forecasting method; its use focuses on trend and seasonal components. The data used are air temperature, dew point, sea level pressure, station pressure, visibility, wind speed, and sea surface temperature from January 2006 to December 2016. Based on AIC, AICc and BIC the smallest values obtained the conclusion that the ETS (M, N, A) is used to predict air temperature, and sea surface temperature, ETS (A, N, A) is used to predict dew point, sea level pressure and station pressure, ETS (A, A, N) is used to predict visibility, and ETS (A, N, N) is used to predict wind speed.

  12. Temperature profiles from MBT casts from the CAMPBELL from Ocean Weather Station B (OWS-B), C (OWS-C), D (OWS-D), E (OWS-E), and H (OWS-H) in the North Atlantic Ocean from 1953-10-23 to 1966-11-08 (NODC Accession 7500359)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the CAMPBELL within a 1-mile radius of Ocean Weather Station B (5630N 05100W), C (5245N 03530W), D (4400N 04100W), E (3500N...

  13. Intra and inter ‘local climate zone’ variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany

    Directory of Open Access Journals (Sweden)

    Daniel Fenner

    2017-11-01

    Full Text Available A one-year data set for the year 2015 of near-surface air temperature (T$T$, crowdsourced from ‘Netatmo’ citizen weather stations (CWS in Berlin, Germany, and surroundings was analysed. The CWS data set, which has been quality-checked and filtered in a previous study, consists of T$T$ measurements from several hundred CWS. It was investigated (1 how CWS are distributed among urban and rural environments, as represented by ‘local climate zones’ (LCZ, (2 how LCZ are characterised in T$T$ along the annual cycle and concerning intra-LCZ T$T$ variability, and (3 if significant T$T$ differences between LCZ (ΔT$\\Delta T$ can be detected with CWS data. Further, it was investigated how the results from CWS compare to reference data from standard meteorological measurement stations. It can be shown that all ‘urban’ LCZ are covered by CWS, but only few CWS are located in ‘natural’ LCZ (e.g. forests or urban parks. CWS data along the annual cycle show generally good agreement to reference data, though for some LCZ monthly means between both data sets differ up to 1 K. Intra-LCZ T$T$ variability is particularly large during night-time. Statistically significant ΔT$\\Delta T$ can be detected with CWS data between various LCZ pairs, particularly for structurally dissimilar LCZ, and the results are in agreement with existing literature on LCZ or the urban heat island. Furthermore, annual mean ΔT$\\Delta T$ in CWS data agree well with reference data, thus showing the potential of CWS data for long-term studies. Several challenges related to crowdsourced CWS data need further investigation, namely missing meta data, the non-standard measurement locations, the imbalanced availability in time and space, and potentials to combine CWS and reference data to benefit from the main advantages of both, i.e., the large number of stations and the high quality of data, respectively.

  14. Incirlik AB, Adana, Turkey. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A through F.

    Science.gov (United States)

    1977-03-15

    WEATHER SERVICE/MAC 130 INCIALIK Al TURKEY/ADANA 67-74 AE2 09010 STATION STATION NAME YEARS HOUNS 4L. S. T.1 T-.WET SULS TEMPERATURE DEPRESION (F...TURKy/ADANA 6_ _6 JUt_ STAT.ON STATIC. NiAME ER A E OT’*N’[R IR OT -! T..p. WET BULB TEMPERATURE DEPRESION (F) TOTALTOA , r 2! 1. S /o 7 .. . 6 . .i

  15. Weather conditions and political party vote share in Dutch national parliament elections, 1971-2010

    Science.gov (United States)

    Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben

    2012-11-01

    Inclement weather on election day is widely seen to benefit certain political parties at the expense of others. Empirical evidence for this weather-vote share hypothesis is sparse however. We examine the effects of rainfall and temperature on share of the votes of eight political parties that participated in 13 national parliament elections, held in the Netherlands from 1971 to 2010. This paper merges the election results for all Dutch municipalities with election-day weather observations drawn from all official weather stations well distributed over the country. We find that the weather parameters affect the election results in a statistically and politically significant way. Whereas the Christian Democratic party benefits from substantial rain (10 mm) on voting day by gaining one extra seat in the 150-seat Dutch national parliament, the left-wing Social Democratic (Labor) and the Socialist parties are found to suffer from cold and wet conditions. Cold (5°C) and rainy (10 mm) election day weather causes the latter parties to lose one or two parliamentary seats.

  16. Activities of NICT space weather project

    Science.gov (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  17. Forecasting Space Weather-Induced GPS Performance Degradation Using Random Forest

    Science.gov (United States)

    Filjar, R.; Filic, M.; Milinkovic, F.

    2017-12-01

    Space weather and ionospheric dynamics have a profound effect on positioning performance of the Global Satellite Navigation System (GNSS). However, the quantification of that effect is still the subject of scientific activities around the world. In the latest contribution to the understanding of the space weather and ionospheric effects on satellite-based positioning performance, we conducted a study of several candidates for forecasting method for space weather-induced GPS positioning performance deterioration. First, a 5-days set of experimentally collected data was established, encompassing the space weather and ionospheric activity indices (including: the readings of the Sudden Ionospheric Disturbance (SID) monitors, components of geomagnetic field strength, global Kp index, Dst index, GPS-derived Total Electron Content (TEC) samples, standard deviation of TEC samples, and sunspot number) and observations of GPS positioning error components (northing, easting, and height positioning error) derived from the Adriatic Sea IGS reference stations' RINEX raw pseudorange files in quiet space weather periods. This data set was split into the training and test sub-sets. Then, a selected set of supervised machine learning methods based on Random Forest was applied to the experimentally collected data set in order to establish the appropriate regional (the Adriatic Sea) forecasting models for space weather-induced GPS positioning performance deterioration. The forecasting models were developed in the R/rattle statistical programming environment. The forecasting quality of the regional forecasting models developed was assessed, and the conclusions drawn on the advantages and shortcomings of the regional forecasting models for space weather-caused GNSS positioning performance deterioration.

  18. Temperature profiles from MBT casts from the BIBB from Ocean Weather Station B (OWS-B), C (OWS-C), D (OWS-D), E (OWS-E), H (OWS-H), and J (OWS-J) in the North Atlantic Ocean from 1955-03-26 to 1966-10-13 (NODC Accession 7600309)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the YAKUTAT within a 1-mile radius of Ocean Weather Station B (5630N 05100W), C (5245N 03530W), D (4400N 04100W), E (3500N...

  19. The influence of weather on Golden Eagle migration in northwestern Montana

    Science.gov (United States)

    Yates, R.E.; McClelland, B.R.; Mcclelland, P.T.; Key, C.H.; Bennetts, R.E.

    2001-01-01

    We analyzed the influence of 17 weather factors on migrating Golden Eagles (Aquila chrysaetos) near the Continental Divide in Glacier National Park, Montana, U.S.A. Local weather measurements were recorded at automated stations on the flanks of two peaks within the migration path. During a total of 506 hr of observation, the yearly number of Golden Eagles in autumn counts (1994-96) averaged 1973; spring counts (1995 and 1996) averaged 605 eagles. Mean passage rates (eagles/hr) were 16.5 in autumn and 8.2 in spring. Maximum rates were 137 in autumn and 67 in spring. Using generalized linear modeling, we tested for the effects of weather factors on the number of eagles counted. In the autumn model, the number of eagles increased with increasing air temperature, rising barometric pressure, decreasing relative humidity, and interactions among those factors. In the spring model, the number of eagles increased with increasing wind speed, barometric pressure, and the interaction between these factors. Our data suggest that a complex interaction among weather factors influenced the number of eagles passing on a given day. We hypothesize that in complex landscapes with high topographic relief, such as Glacier National Park, numerous weather factors produce different daily combinations to which migrating eagles respond opportunistically. ?? 2001 The Raptor Research Foundation, Inc.

  20. A framework for standardized calculation of weather indices in Germany

    Science.gov (United States)

    Möller, Markus; Doms, Juliane; Gerstmann, Henning; Feike, Til

    2018-05-01

    Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices (WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014. Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on raster data characterized by accuracy metrics. Raster data and WIs, which fulfill data quality standards, can contribute to an increased acceptance and farmers' trust in WI products for crop yield modeling or weather index-based insurances (WIIs).

  1. Effects of weather and heliophysical conditions on emergency ambulance calls for elevated arterial blood pressure.

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta M; Dobozinskas, Paulius; Sakalyte, Gintare; Lopatiene, Kristina; Mikelionis, Nerijus

    2015-02-27

    We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009-2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs), in which the conditions for the emergency calls were made coded I.10-I.15. The Kaunas Weather Station provided daily records of air temperature (T), wind speed (WS), relative humidity, and barometric pressure (BP). We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS>600 km/s) increased the daily number of elevated arterial blood pressure (EABP) by 12% (RR=1.12; 95% confidence interval (CI) 1.04-1.21); and WS≥3.5 knots during days of Tweather conditions. These results may help in the understanding of the population's sensitivity to different weather conditions.

  2. Temperature profiles from mechanical bathythermograph (MBT) casts from the USS NIMBLE and Other Platforms from Ocean Weather Station C (OWS-C) in the North Pacific Ocean in support of the Fleet Observations of Oceanographic Data (FLOOD) project from 1957-11-03 to 1968-06-23 (NODC Accession 6900934)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the USS NIMBLE and Other Platforms within a 1-mile radius of Ocean Weather Station C (5245N 03530W) and in transit in support of the...

  3. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  4. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    Science.gov (United States)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  5. The Remote Security Station (RSS) final report

    International Nuclear Information System (INIS)

    Pletta, J.B.; Amai, W.A.; Klarer, P.; Frank, D.; Carlson, J.; Byrne, R.

    1992-10-01

    The Remote Security Station (RSS) was developed by Sandia National Laboratories for the Defense Nuclear Agency to investigate issues pertaining to robotics and sensor fusion in physical security systems. This final report documents the status of the RSS program at its completion in April 1992. The RSS system consists of the Man Portable Security Station (MaPSS) and the Telemanaged Mobile Security Station (TMSS), which are integrated by the Operator's Control Unit (OCU) into a flexible exterior perimeter security system. The RSS system uses optical, infrared, microwave, and acoustic intrusion detection sensors in conjunction with sensor fusion techniques to increase the probability of detection and to decrease the nuisance alarm rate of the system. Major improvements to the system developed during the final year are an autonomous patrol capability, which allows TMSS to execute security patrols with limited operator interaction, and a neural network approach to sensor fusion, which significantly improves the system's ability to filter out nuisance alarms due to adverse weather conditions

  6. A Meteorological Supersite for Aviation and Cold Weather Applications

    Science.gov (United States)

    Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.

    2018-05-01

    The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and

  7. Selfridge ANGB, Michigan. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    Science.gov (United States)

    1982-04-20

    umuwuommuwrU(@m~l 77 Li ’AL CLIMATOLOY FRANCH -~~iTAC- A’. 4EATHER SERVICE/MAC WEATHER CONDITIONS .’..377 3,ELFRIDGE ANG8 MI 69-70,74-81 FEB STATION STATION NAME...I TABULM~IOX CEILING) > 1800 a 1500 9. 2t 1200 *1 ~000 2t 700 a:600_ _ 2t 400 9. 2t 300 z 00 98. ECANFLE # 1 food ceiling values Independently of...iii I.2 41,01- . AL CLIMATOLOGY FRANCH ,2;TAC SKY COVER A

  8. Crowdsourcing of weather observations at national meteorological and hydrological services in Europe

    Science.gov (United States)

    Krennert, Thomas; Pistotnik, Georg; Kaltenberger, Rainer; Csekits, Christian

    2018-05-01

    National Meteorological and Hydrological Services (NMHSs) increase their efforts to deliver impact-based weather forecasts and warnings. At the same time, a desired increase in cost-efficiency prompts these services to automatize their weather station networks and to reduce the number of human observers, which leads to a lack of ground truth information about weather phenomena and their impact. A possible alternative is to encourage the general public to submit weather observations, which may include crucial information especially in high-impact situations. We wish to provide an overview of the state and properties of existing collaborations between NMHSs and voluntary weather observers or storm spotters across Europe. For that purpose, we performed a survey among 30 European NMHSs, from which 22 NMHSs returned our questionnaire. This study summarizes the most important findings and evaluates the use of crowdsourced information. 86 % of the surveyed NMHSs utilize information provided by the general public, 50 % have established official collaborations with spotter groups, and 18 % have formalized them. The observations are most commonly used for a real-time improvement of severe weather warnings, their verification, and an establishment of a climatology of severe weather events. The importance of these volunteered weather and impact observations has strongly risen over the past decade. We expect that this trend will continue and that storm spotters will become an essential part in severe weather warning, like they have been for decades in the United States of America. A rising number of incoming reports implies that quality management will become an increasing issue, and we finally discuss an idea how to handle this challenge.

  9. Phytotoxicity of fresh and weathered diesel and gasoline to willow and poplar trees

    DEFF Research Database (Denmark)

    Trapp, Stefan; Köhler, A.; Larsen, L.C.

    2001-01-01

    The toxicity of fresh and weathered gasoline and diesel fuel to willow and poplar trees was studied using a tree transpiration toxicity test. Soils were taken from an abandoned filling station. Concentrations in the samples were measured as the sum of hydrocarbons from C5 to C10 (gasoline) and C1...

  10. How accurate are the weather forecasts for Bierun (southern Poland)?

    Science.gov (United States)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why

  11. Application of the Hess-Brezowsky classification to the identification of weather patterns causing heavy winter rainfall in Brittany (France

    Directory of Open Access Journals (Sweden)

    O. Planchon

    2009-07-01

    Full Text Available An accurate knowledge of the weather patterns causing winter rainfall over the Scorff watershed in western Brittany (W. France was developed prior to studies of the impact of the climate factor on land use management, and of the hydrological reponses to rain-producing weather patterns. These two studies are carried out in the context of the climate change. The identification of rainy air-circulation types was realized using the objective computational version of the 29-type Hess and Brezowsky Grosswetterlagen system of classifying European synoptic regimes, for the cold season (November-March of the 1958–2005 period at the reference weather station of Lorient, and 13 other stations located in western and southern Brittany, including a more detailed study for the wet 2000–2001 cold season for three reference stations of the Scorff watershed (Lorient, Plouay and Plouray. The precipitation proportion (including the days with rainfall ≥20 mm was calculated by major air-circulation type (GWT: see Appendix A and by individual air-circulation subtype (GWL: see Appendix A for the studied time-period. The most frequently occurrence of rainy days associated with westerly and southerly GWL confirmed well-known observations in western Europe and so justify the use of the Hess-Brezowsky classification in other areas outside Central Europe. The southern or south-western exposure of the watershed with a hilly inland area enhanced the heavy rainfall generated by the SW and S circulation types, and increased the difference between the rainfall amounts of coastal and inland stations during the wettest days.

  12. The Origin of the "Seasons" in Space Weather

    Science.gov (United States)

    Dikpati, Mausumi; Cally, Paul S.; McIntosh, Scott W.; Heifetz, Eyal

    2017-11-01

    Powerful `space weather' events caused by solar activity pose serious risks to human health, safety, economic activity and national security. Spikes in deaths due to heart attacks, strokes and other diseases occurred during prolonged power outages. Currently it is hard to prepare for and mitigate the impact of space weather because it is impossible to forecast the solar eruptions that can cause these terrestrial events until they are seen on the Sun. However, as recently reported in Nature, eruptive events like coronal mass ejections and solar flares, are organized into quasi-periodic "seasons", which include enhanced bursts of eruptions for several months, followed by quiet periods. We explored the dynamics of sunspot-producing magnetic fields and discovered for the first time that bursty and quiet seasons, manifested in surface magnetic structures, can be caused by quasi-periodic energy-exchange among magnetic fields, Rossby waves and differential rotation of the solar interior shear-layer (called tachocline). Our results for the first time provide a quantitative physical mechanism for forecasting the strength and duration of bursty seasons several months in advance, which can greatly enhance our ability to warn humans about dangerous solar bursts and prevent damage to satellites and power stations from space weather events.

  13. MAGDAS Project for Space Weather Research and Application

    International Nuclear Information System (INIS)

    Yumoto, Kiyohumi

    2009-01-01

    The Space Environment Research Center (SERC), Kyushu University, is currently deploying a new ground-based magnetometer network of MAGnetic Data Acqusition System (MAGDAS), in cooperation with about 30 organizations in the world, in order to understand the complex Sun-Earth system for space weather research and application. SERC will conducts MAGDAS observation at 50 stations in the Circum-pan Pacific Magnetometer Network (CPMN) region, and FM-CW radar observation along the 210 deg. magnetic meridian (MM) during the IHY/ILWS/CAWSES periods. This project is actively providing the following space weather monitoring:(1) Global 3-dimensional current system to know electromagnetic coupling of the region 1 and 2 field-aligned currents, auroral electrojet current, Sq current, and equatorial electrojet current. (2) Plasma mass density along the 210 deg. MM to understand plasma environment change during space storms. (3) Ionospheric electric field intensity with 10-sec sampling at L = 1.26 to understand how the external electric field penetrates into the equatorial ionosphere.

  14. Temperature profiles from MBT casts from the DUANE from Ocean Weather Station B (OWS-B), C (OWS-C), D (OWS-D), E (OWS-E), H (OWS-H), J (OWS-J), and K (OWS-K) in the North Atlantic Ocean from 1955-04-07 to 1968-02-15 (NODC Accession 7500471)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bathythermograph data were collected from the DUANE within a 1-mile radius of Ocean Weather Station B (5630N 05100W), C (5245N 03530W), D (4400N 04100W), E (3500N...

  15. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology

    Science.gov (United States)

    Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.

    2013-12-01

    work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.

  16. Daily snow depth measurements from 195 stations in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  17. Energy Management for Automatic Monitoring Stations in Arctic Regions

    Science.gov (United States)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  18. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  19. National Weather Service

    Science.gov (United States)

    ... GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY NOAA Weather Radio StormReady Heat Lightning Hurricanes Thunderstorms Tornadoes Rip Currents Floods Winter Weather ...

  20. Classification of rainfall events for weather forecasting purposes in andean region of Colombia

    Science.gov (United States)

    Suárez Hincapié, Joan Nathalie; Romo Melo, Liliana; Vélez Upegui, Jorge Julian; Chang, Philippe

    2016-04-01

    This work presents a comparative analysis of the results of applying different methodologies for the identification and classification of rainfall events of different duration in meteorological records of the Colombian Andean region. In this study the work area is the urban and rural area of Manizales that counts with a monitoring hydro-meteorological network. This network is composed of forty-five (45) strategically located stations, this network is composed of forty-five (45) strategically located stations where automatic weather stations record seven climate variables: air temperature, relative humidity, wind speed and direction, rainfall, solar radiation and barometric pressure. All this information is sent wirelessly every five (5) minutes to a data warehouse located at the Institute of Environmental Studies-IDEA. With obtaining the series of rainfall recorded by the hydrometeorological station Palogrande operated by the National University of Colombia in Manizales (http://froac.manizales.unal.edu.co/bodegaIdea/); it is with this information that we proceed to perform behavior analysis of other meteorological variables, monitored at surface level and that influence the occurrence of such rainfall events. To classify rainfall events different methodologies were used: The first according to Monjo (2009) where the index n of the heavy rainfall was calculated through which various types of precipitation are defined according to the intensity variability. A second methodology that permitted to produce a classification in terms of a parameter β introduced by Rice and Holmberg (1973) and adapted by Llasat and Puigcerver, (1985, 1997) and the last one where a rainfall classification is performed according to the value of its intensity following the issues raised by Linsley (1977) where the rains can be considered light, moderate and strong fall rates to 2.5 mm / h; from 2.5 to 7.6 mm / h and above this value respectively for the previous classifications. The main

  1. Analysis of time series exposure rates obtained at a monitoring station around nuclear power stations

    International Nuclear Information System (INIS)

    Urabe, I.; Ogawa, Y.; Kimura, Y.; Honda, Y.; Nakashima, Y.; Yoshimoto, T.; Tsujimoto, T.

    1991-01-01

    From the investigation on the variation of AAD rates monitored in the natural environment around nuclear power station, it may be concluded; (1) Differences between monthly averaged air absorbed dose rates (AAD rates) given by all data obtained and those obtained in fine weather become larger in winter (from Dec. to Feb.) (2) Cummulative frequency distributions of AAD rates are very different among four seasons. Remarkably high AAD rates are observed by heavy rains in summer and snow falls or rains in winter. (3) Though the hypothesis that the frequency distribution of AAD rates fit to the lognormal distribution can not be accepted by chi-square test, higher part of the frequency distribution of AAD rates agree approximately with the lognormal one. (4) Identification of AAD rates due to plume exposure may be possible by statistical analysis assuming lognormal distribution of AAD rates as well as the discrimination method based on the reference standard using mean values and standard deviations of the data obtained in fine weather. (author)

  2. Impact of weather variability on nitrate leaching

    Science.gov (United States)

    Richards, Karl; Premrov, Alina; Hackett, Richard; Coxon, Catherine

    2016-04-01

    The loss of nitrate (NO3 - N) to water via leaching and overland flow contributes to eutrophication of freshwaters, transitional and near coastal waters with agriculture contributing significantly to nitrogen (N) loading to these water. Environmental regulations, such as the Nitrates and Water Framework Directives, have increased constraints on farmers to improve N management in regions at risk of NO3--N loss to water. In addition, farmers also have to manage their systems within a changing climate as the imapcts of climate change begin to impact resulting in more frequent extreme events such as floods and droughts. The objective of this study was to investigate the link between weather volatility and the concentration of leached NO3--N spring barley. Leaching was quantified under spring barley grown on a well-drained, gravelly sandy soil using ceramic cup samplers over 6 drainage years under the same farming practices and treatments. Soil solution NO3--N concentrations under spring barley grown by conventional inversion ploughing and reduced tillage were compared to weather parameters over the period. Weather was recorded at a national Met Eireann weather station on site. Soil solution NO3--N varied significantly between years. Within individual years NO3--N concentrations varied over the drainage season, with peak concentrations generally observed in the autumn time, decreasing thereafter. Under both treatments there was a three-fold difference in mean annual soil solution NO3--N concentration over the 6 years with no change in the agronomic practices (crop type, tillage type and fertiliser input). Soil solution nitrate concentrations were significantly influenced by weather parameters such as rainfall, effective drainage and soil moisture deficit. The impact of climate change in Ireland could lead to increased NO3--N loss to water further exacerbating eutrophication of sensitive estuaries. The increased impact on eutrophication of waters, related to climatic

  3. Temperature profiles from mechanical bathythermograph (MBT) casts from the C. H. DAVIS and Other Platforms from Ocean Weather Stations N (OWS-N) and OWS-P in the North Pacific Ocean in support of the Fleet Observations of Oceanographic Data (FLOOD) project from from 1958-01-16 to 1968-02-25 (NODC Accession 6900264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MBT data were collected from the C. H. DAVIS and Other Platforms within a 1-mile radius of Ocean Weather Stations N (3000N 14000W), P (50000N 14500W), and in transit...

  4. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  5. Statistical Analysis of Model Data for Operational Space Launch Weather Support at Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H., III

    2010-01-01

    The 12-km resolution North American Mesoscale (NAM) model (MesoNAM) is used by the 45th Weather Squadron (45 WS) Launch Weather Officers at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to support space launch weather operations. The 45 WS tasked the Applied Meteorology Unit to conduct an objective statistics-based analysis of MesoNAM output compared to wind tower mesonet observations and then develop a an operational tool to display the results. The National Centers for Environmental Prediction began running the current version of the MesoNAM in mid-August 2006. The period of record for the dataset was 1 September 2006 - 31 January 2010. The AMU evaluated MesoNAM hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The MesoNAM forecast winds, temperature and dew point were compared to the observed values of these parameters from the sensors in the KSC/CCAFS wind tower network. The data sets were stratified by model initialization time, month and onshore/offshore flow for each wind tower. Statistics computed included bias (mean difference), standard deviation of the bias, root mean square error (RMSE) and a hypothesis test for bias = O. Twelve wind towers located in close proximity to key launch complexes were used for the statistical analysis with the sensors on the towers positioned at varying heights to include 6 ft, 30 ft, 54 ft, 60 ft, 90 ft, 162 ft, 204 ft and 230 ft depending on the launch vehicle and associated weather launch commit criteria being evaluated. These twelve wind towers support activities for the Space Shuttle (launch and landing), Delta IV, Atlas V and Falcon 9 launch vehicles. For all twelve towers, the results indicate a diurnal signal in the bias of temperature (T) and weaker but discernable diurnal signal in the bias of dewpoint temperature (T(sub d)) in the MesoNAM forecasts. Also, the standard deviation of the bias and RMSE of T, T(sub d), wind speed and wind

  6. More and more weather records - Is global warming to blame?

    Energy Technology Data Exchange (ETDEWEB)

    Wergen, Gregor; Krug, Joachim [Institut fuer Theoretische Physik, Koeln (Germany)

    2009-07-01

    If one believes in current media coverage it seems very simple: Due to the significant, largely anthropogenic, warming of the world's average temperature, more and more weather extremes occur. Every time we have a record breaking daily maximum temperature, or an immense amount of precipitation in a certain timespan, this is intuitively blamed on global warming. However mathematically the relation between an increasing mean value and the occurrence of records is far from trivial and not completely understood. This relation and its relevance to the analysis of weather data is the subject of this talk. Given an underlying distribution, we consider the probability that an event in a succession of events is a record, when the distribution itself is shifting, or altering its form. We found some approximations that are useful for the comparison with historical climate recordings. We obtained data for the daily maximum and daily minimum temperature and the daily precipitation amount from thousands of weather stations in Europe and the United States and analyzed them with regard to record events. The results are largely in accordance with what we predict from our calculations, but also reveal some interesting deviations.

  7. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  8. Surface Weather, Signal Service and Weather Bureau

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  9. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  10. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover......) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...

  11. Implementation and spatialisation of the Canadian Fire Weather Index in the Veneto Region

    Directory of Open Access Journals (Sweden)

    Monai M

    2008-06-01

    Full Text Available Fire danger rating systems are essential tools for fire management activities, allowing optimal allocation of resources both before and during the fire danger periods. Veneto Region's Forest Service is testing the Canadian Forest Fire Weather Index (FWI System to assess fire intensity, accounting for the effect of wind and the moisture content of inflammable material. The following steps were taken to apply the FWI system: (a selection of the smallest number (ideally 10 - 15 of weather stations to obtain input data. Principal Components Analysis was carried out on 62 time-series of 30 years (1960-1990, including mean monthly temperature (minimum and maximum and rainfall. The results highlighted two principal directions of climatic variability that were interpolated by the co-kriging method, allowing to delineate 11 relatively homogeneous areas in the Veneto Region. One station representative of each area was chosen to provide daily data for computing the daily fire danger index by the Regional Rating Service; (b automation of the FWI system. A SAS v.9.1® application runs the calculations and generates a regional map of daily fire danger for the Forest Service personnel. Graphics and tabular data are also available via intranet.

  12. Annual distributions and variations of dust weather occurrence over the Tarim Basin, China

    Science.gov (United States)

    Zhao, Yong; Zhou, Yang; Wang, Minzhong; Huo, Wen; Huang, Anning; Yang, Xinhua; Yang, Fan

    2018-04-01

    The annual distribution and variations in dust weather occurrence (DWO) have been analyzed using monthly DWO data from 26 stations over the Tarim Basin during the period of 1961 to 2010. The results show that the DWO presents a significant decreasing trend for different parts of the Tarim Basin in recent decades. The monthly DWO has two peaks in the east and west. In the first half of the year, the peak is in April, but in the second half of the year, the peak is in September. According to the concentration period and concentration degree (CD) of DWO, we can find that the maximum DWO occurs in April in the eastern, western, and northern parts of the basin, but it occurs in May in the southern part. The dust weather season is shorter for the northern and eastern parts of the basin than those of the remaining parts. On average, the dust weather season initiates in April in the northeast and in May for the rest of the region. As an indicator for the length of dust weather season, the CD is significantly related to DWO, with a correlation coefficient of -0.51, revealing an interesting feature of regional climate change with declining DWO and declining dust weather season over the Tarim Basin. The correlation analysis exhibits that all the Arctic Oscillation, Antarctic Oscillation, and North Atlantic Oscillation have a negative relation with the DWO but a positive relation with the length of dust weather season.

  13. Weather swap as an instrument for weather risk management in wheat production

    Directory of Open Access Journals (Sweden)

    Marković Todor

    2012-01-01

    Full Text Available A special type of weather derivatives are weather forwards and they exists mostly in the form of weather swaps. Hedging effectiveness in wheat production with and without weather swap was analyzed in this paper using stochastic dominance. The results show that the effect of risk reduction is significant using weather swap, but geographical- basis risk and production-related basis risk are important factor that reduce the utility of weather derivatives.

  14. Influence of weather conditions on natural radioactivity

    International Nuclear Information System (INIS)

    Simion, Florin; Simion, Elena; Cuculeanu, Vasile; Mihalcea, Ion

    2011-01-01

    This paper presents the dependence of the natural radioactivity on atmospheric weather conditions: air temperature, atmospheric pressure, wind speed, atmospherical precipitations and relative humidity. The values used in the paper were taken from the environmental radioactivity monitoring in Botosani city, Romania, as measured by the Environmental Radioactivity Surveillance Station. Daily global measurements of atmospheric deposition beta and atmospheric aerosols as well were carried out, including the indirect determination of radon and thoron, and the absorbed gamma dose rate in air, as well. Sampling and measurement frequency depended on the type of sample analyzed as follows: atmospheric deposition were taken daily, atmospheric aerosols were collected 4 times/day, with a sampling interval of 5 hours while the air absorbed dose rate was determined at a hourly rate. The coefficient of multiple correlation between the type of analysis and weather conditions, was determined. By using multiple linear regression it was highlighted the natural radioactivity dependence on the atmospheric conditions and meteorological parameters by a mathematical expression that can be used to determine missing values in a time series of measured data. By predicting the measured values our procedure can be considered as a validation process of the measurement accuracy

  15. DOC/WSNSO [Department of Commerce/Weather Service Nuclear Support Office] operational support to Federal Radiological Monitoring and Assessment Center

    International Nuclear Information System (INIS)

    Mueller, P.

    1989-01-01

    The National Weather Service (NWS) is an agency of the Department of Commerce. The NWS has hundreds of weather offices throughout the United States. The Weather Service Nuclear Support Office (WSNSO) is a highly specialized unit of NWS that provides direct support to the U.S. Department of Energy's (DOE's) underground nuclear testing program. The WSNSO has been associated with the DOE for >33 yr. As a result of the unique relationship with the DOE, all WSNSO emergency response meteorologists and meteorological technicians are allowed access to classified material. Meteorological phenomena play a significant role during a Federal Radiological Monitoring and Assessment Center (FRMAC) event, and WSNSO meteorologists provide direct support to ARAC. The marriage of state-of-the-art computer systems together with proven technology provides the on-scene WSNSO meteorologist with essentially a portable fully equipped, fully functional, advanced NWS weather station. The WSNSO's emergency response personnel and hardware are at the ready and can be mobilized within 2 h. WSNSO can provide on-scene weather forecasts and critical weather data collection whenever and wherever necessary

  16. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  17. Weather types and strokes in the Augsburg region (Southern Germany)

    Science.gov (United States)

    Beck, Christoph; Ertl, Michael; Giemsa, Esther; Jacobeit, Jucundus; Naumann, Markus; Seubert, Stefanie

    2017-04-01

    Strokes are one of the leading causes of morbidity and mortality worldwide and the main reason for longterm care dependency in Germany. Concerning the economical impact on patients and healthcare systems it is of particular importance to prevent this disease as well as to improve the outcome of the affected persons. Beside the primary well-known risk factors like hypertension, cigarette smoking, physical inactivity and others, also weather seems to have pronounced influence on the occurrence and frequency of strokes. Previous studies most often focused on effects of singular meteorological variables like ambient air temperature, air pressure or humidity. An advanced approach is to link the entire suite of daily weather elements classified to air mass- or weather types to cerebrovascular morbidity or mortality. In a joint pilot study bringing together climatologists, environmental scientists and physicians from the University of Augsburg and the clinical centre Augsburg, we analysed relationships between singular meteorological parameters as well as combined weather effects (e.g. weather types) and strokes in the urban area of Augsburg and the surrounding rural region. A total of 17.501 stroke admissions to Neurological Clinic and Clinical Neurophysiology at Klinikum Augsburg between 2006 and 2015 are classified to either "ischaemic" (16.354) or "haemorrhagic" (1.147) subtype according to etiology (based on the International Classification of Diseases - 10th Revision). Spearman correlations between daily frequencies of ischaemic and haemorrhagic strokes and singular atmospheric parameters (T, Tmin, Tmax, air pressure, humidity etc.) measured at the DWD (German weather service) meteorological station at Augsburg Muehlhausen are rather low. However, higher correlations are achieved when considering sub-samples of "homogenous weather conditions" derived from synoptic circulation classifications: e.g. within almost all of 10 types arising from a classification of

  18. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    Science.gov (United States)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  19. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    Science.gov (United States)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  20. Impact of aerosols, dust, water vapor and clouds on fair weather PG and implications for the Carnegie curve

    Science.gov (United States)

    Kourtidis, Konstantinos; Georgoulias, Aristeidis

    2017-04-01

    We studied the impact of anthropogenic aerosols, fine mode natural aerosols, Saharan dust, atmospheric water vapor, cloud fraction, cloud optical depth and cloud top height on the magnitude of fair weather PG at the rural station of Xanthi. Fair weather PG was measured in situ while the other parameters were obtained from the MODIS instrument onboard the Terra and Aqua satellites. All of the above parameteres were found to impact fair weather PG magnitude. Regarding aerosols, the impact was larger for Saharan dust and fine mode natural aerosols whereas regarding clouds the impact was larger for cloud fraction while less than that of aerosols. Water vapour and ice precipitable water were also found to influence fair weather PG. Since aerosols and water are ubiquitous in the atmosphere and exhibit large spatial and temporal variability, we postulate that our understanding of the Carnegie curve might need revision.

  1. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  2. Development of predictive weather scenarios for early prediction of rice yield in South Korea

    Science.gov (United States)

    Shin, Y.; Cho, J.; Jung, I.

    2017-12-01

    International grain prices are becoming unstable due to frequent occurrence of abnormal weather phenomena caused by climate change. Early prediction of grain yield using weather forecast data is important for stabilization of international grain prices. The APEC Climate Center (APCC) is providing seasonal forecast data based on monthly climate prediction models for global seasonal forecasting services. The 3-month and 6-month seasonal forecast data using the multi-model ensemble (MME) technique are provided in their own website, ADSS (APCC Data Service System, http://adss.apcc21.org/). The spatial resolution of seasonal forecast data for each individual model is 2.5°×2.5°(about 250km) and the time scale is created as monthly. In this study, we developed customized weather forecast scenarios that are combined seasonal forecast data and observational data apply to early rice yield prediction model. Statistical downscale method was applied to produce meteorological input data of crop model because field scale crop model (ORYZA2000) requires daily weather data. In order to determine whether the forecasting data is suitable for the crop model, we produced spatio-temporal downscaled weather scenarios and evaluated the predictability by comparison with observed weather data at 57 ASOS stations in South Korea. The customized weather forecast scenarios can be applied to various application fields not only early rice yield prediction. Acknowledgement This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No: PJ012855022017)" Rural Development Administration, Republic of Korea.

  3. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  4. Weather and Climate Indicators for Coffee Rust Disease

    Science.gov (United States)

    Georgiou, S.; Imbach, P. A.; Avelino, J.; Anzueto, F.; del Carmen Calderón, G.

    2014-12-01

    Coffee rust is a disease that has significant impacts on the livelihoods of those who are dependent on the Central American coffee sector. Our investigation has focussed on the weather and climate indicators that favoured the high incidence of coffee rust disease in Central America in 2012 by assessing daily temperature and precipitation data available from 81 weather stations in the INSIVUMEH and ANACAFE networks located in Guatemala. The temperature data were interpolated to determine the corresponding daily data at 1250 farms located across Guatemala, between 400 and 1800 m elevation. Additionally, CHIRPS five day (pentad) data has been used to assess the anomalies between the 2012 and the climatological average precipitation data at farm locations. The weather conditions in 2012 displayed considerable variations from the climatological data. In general the minimum daily temperatures were higher than the corresponding climatology while the maximum temperatures were lower. As a result, the daily diurnal temperature range was generally lower than the corresponding climatological range, leading to an increased number of days where the temperatures fell within the optimal range for either influencing the susceptibility of the coffee plants to coffee rust development during the dry season, or for the development of lesions on the coffee leaves during the wet season. The coffee rust latency period was probably shortened as a result, and farms at high altitudes were impacted due to these increases in minimum temperature. Factors taken into consideration in developing indicators for coffee rust development include: the diurnal temperature range, altitude, the environmental lapse rate and the phenology. We will present the results of our study and discuss the potential for each of the derived weather and climatological indicators to be used within risk assessments and to eventually be considered for use within an early warning system for coffee rust disease.

  5. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  6. Fiscal 2000 report on geothermal energy development promotion survey. Phase 1. Report on environmental impact survey in No. C-5 Appi district (Weather); 2000 nendo chinetsu kaihatsu sokushin chosa hokokusho. No.C-5. Appi chiiki - kankyo eikyo chosa (kisho) dai 1 ji

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    For grasping the characteristics of weather, climate, and natural earthquakes in and around the geothermal survey area in the Appi district, Iwate Prefecture, observation data of weather stations or the like in the neighborhood were collected and put in an easy-to-use order. Weather and earthquake data of the 1990-1999 decade were collected and subjected to statistical processing. Weather in the Appi District Survey C area is characterized in that it assumes the Japan Sea side pattern with much snow in winter and much rain in the rainy season. In the other seasons, however, it assumes the Pacific side inland pattern. Weather data in the Appi district and its vicinity are deemed to be similar to the values observed at the Hachimantai weather station. The area covered by the survey, however, is higher than the Hachimantai weather station by 400-900m, and therefore is that much colder and has more rain and snow. As for earthquakes, a total of 647 were recorded in the decade 1990-1999. In the Appi District Survey C area, which is approximately 20km times 20km large, suffered 31.1 events/month in 1998, which indicated a great rise in seismic occurrence. The rise is now attributed to the volcanic activity of Mt. Iwate which is deemed to be waning. (NEDO)

  7. Skill prediction of local weather forecasts based on the ECMWF ensemble

    Directory of Open Access Journals (Sweden)

    C. Ziehmann

    2001-01-01

    Full Text Available Ensemble Prediction has become an essential part of numerical weather forecasting. In this paper we investigate the ability of ensemble forecasts to provide an a priori estimate of the expected forecast skill. Several quantities derived from the local ensemble distribution are investigated for a two year data set of European Centre for Medium-Range Weather Forecasts (ECMWF temperature and wind speed ensemble forecasts at 30 German stations. The results indicate that the population of the ensemble mode provides useful information for the uncertainty in temperature forecasts. The ensemble entropy is a similar good measure. This is not true for the spread if it is simply calculated as the variance of the ensemble members with respect to the ensemble mean. The number of clusters in the C regions is almost unrelated to the local skill. For wind forecasts, the results are less promising.

  8. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis.

    Science.gov (United States)

    Timmermans, Erik J; Schaap, Laura A; Herbolsheimer, Florian; Dennison, Elaine M; Maggi, Stefania; Pedersen, Nancy L; Castell, Maria Victoria; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Peter, Richard; van der Pas, Suzan; Deeg, Dorly J H

    2015-10-01

    This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Data from the population-based European Project on OSteoArthritis were used. The American College of Rheumatology classification criteria were used to diagnose OA in older people (65-85 yrs). After the baseline interview, at 6 months, and after the 12-18 months followup interview, joint pain was assessed using 2-week pain calendars. Daily values for temperature, precipitation, atmospheric pressure, relative humidity, and wind speed were obtained from local weather stations. Multilevel regression modelling was used to examine the pain-weather associations, adjusted for several confounders. The study included 810 participants with OA in the knee, hand, and/or hip. After adjustment, there were significant associations of joint pain with daily average humidity (B = 0.004, p weather conditions. Changes in weather variables between 2 consecutive days were not significantly associated with reported joint pain. The associations between pain and daily average weather conditions suggest that a causal relationship exist between joint pain and weather variables, but the associations between day-to-day weather changes and pain do not confirm causation. Knowledge about the relationship between joint pain in OA and weather may help individuals with OA, physicians, and therapists to better understand and manage fluctuations in pain.

  9. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  10. What is the benefit of driving a hydrological model with data from a multi-site weather generator compared to data from a simple delta change approach?"

    Science.gov (United States)

    Rössler, Ole; Keller, Denise; Fischer, Andreas

    2016-04-01

    In 2011 the Swiss national consortium C2SM providednew climate change scenarios were released in Switzerland that came with a comprehensive data set of temperature and precipitation changes under climate change conditions for every a large network of meteorological stations, and for aggregated as well as regions in across Switzerland. These climate change signals were generated for three emission scenarios and three different future time-periods and designed to be used asbased on a delta change factors approach. This data set proved to be very successful in Switzerland as many different users, researchers, private companies, and societal users were able to use and interpret the climate data set. Thus, a range of applications that are all based on the same climate data set enabled a comparable view on climate change impact in several disciplines. The main limitation and criticism to this data set was the usage of the delta change approach for downscaling as it comes with severe limitations such as underestimatinges changes in extreme values and neglecting changes in variability and changes in temporal sequencesneglecting changes in variability, be it year-to-year or day-to-day, and changes in temporal sequences . lacks a change in the day-to-day-variability. One way to overcome this the latter limitation is the usage of stochastic weather generators in a downscaling context. Weather generators are known to be one suitable downscaling technique, but A common limitation of most weather generators is the absence of spatial consistency rrelation in the generated daily time-series, resulting in an underestimation of areal means over several stations that are often low-biased. refer to one point scale (single-site) and lacks the spatial representation of weather. The latter A realistic representation of the inter-station correlation in the downscaled time-series This is of high particular importance in some impact studies, especially infor any hydrological impact studiesy

  11. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    Science.gov (United States)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2013-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and

  12. Vehicular-networking- and road-weather-related research in Sodankylä

    Science.gov (United States)

    Sukuvaara, Timo; Mäenpää, Kari; Ylitalo, Riika

    2016-10-01

    Vehicular-networking- and especially safety-related wireless vehicular services have been under intensive research for almost a decade now. Only in recent years has road weather information also been acknowledged to play an important role when aiming to reduce traffic accidents and fatalities via intelligent transport systems (ITSs). Part of the progress can be seen as a result of the Finnish Meteorological Institute's (FMI) long-term research work in Sodankylä within the topic, originally started in 2006. Within multiple research projects, the FMI Arctic Research Centre has been developing wireless vehicular networking and road weather services, in co-operation with the FMI meteorological services team in Helsinki. At the beginning the wireless communication was conducted with traditional Wi-Fi type local area networking, but during the development the system has evolved into a hybrid communication system of a combined vehicular ad hoc networking (VANET) system with special IEEE 802.11p protocol and supporting cellular networking based on a commercial 3G network, not forgetting support for Wi-Fi-based devices also. For piloting purposes and further research, we have established a special combined road weather station (RWS) and roadside unit (RSU), to interact with vehicles as a service hotspot. In the RWS-RSU we have chosen to build support to all major approaches, IEEE 802.11, traditional Wi-Fi and cellular 3G. We employ road weather systems of FMI, along with RWS and vehicle data gathered from vehicles, in the up-to-date localized weather data delivered in real time. IEEE 802.11p vehicular networking is supported with Wi-Fi and 3G communications. This paper briefly introduces the research work related to vehicular networking and road weather services conducted in Sodankylä, as well as the research project involved in this work. The current status of instrumentation, available services and capabilities are presented in order to formulate a clear general view of

  13. Scheduled Operation of PV Power Station Considering Solar Radiation Forecast Error

    Science.gov (United States)

    Takayama, Satoshi; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Saito, Yutaka; Takitani, Katsuyuki; Yamaguchi, Koji

    Massive penetration of photovoltaic generation (PV) power stations may cause some serious impacts on a power system operation due to their volatile and unpredictable output. Growth of uncertainty may require larger operating reserve capacity and regulating capacity. Therefore, in order to utilize a PV power station as an alternative for an existing power plant, improvement in controllability and adjustability of station output become very important factor. Purpose of this paper is to develop the scheduled operation technique using a battery system (NAS battery) and the meteorological forecast. The performance of scheduled operation strongly depends on the accuracy of solar radiation forecast. However, the solar radiation forecast contains error. This paper proposes scheduling method and rescheduling method considering the trend of forecast error. More specifically, the forecast error scenario is modeled by means of the clustering analysis of the past actual forecast error. Validity and effectiveness of the proposed method is ascertained through computational simulations using the actual PV generation data monitored at the Wakkanai PV power station and solar radiation forecast data provided by the Japan Weather Association.

  14. Providing the Larger Climate Context During Extreme Weather - Lessons from Local Television News

    Science.gov (United States)

    Woods, M.; Cullen, H. M.

    2015-12-01

    Local television weathercasters, in their role as Station Scientists, are often called upon to educate viewers about the science and impacts of climate change. Climate Central supports these efforts through its Climate Matters program. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 245 weathercasters from across the country and provides localized information on climate and ready-to-use, broadcast quality graphics and analyses in both English and Spanish. This presentation will focus on discussing best practices for integrating climate science into the local weather forecast as well as advances in the science of extreme event attribution. The Chief Meteorologist at News10 (Sacramento, CA) will discuss local news coverage of the ongoing California drought, extreme weather and climate literacy.

  15. Detection of freeze-thaw weathering effect using X-ray micro computed tomography

    Science.gov (United States)

    Park, J.; Hyun, C.; Park, H.

    2011-12-01

    Physical weathering caused by repeated freeze-thaw action of water inside rock pores or cracks was artificially simulated in laboratory. The tests were conducted on three rock types, i.e. diorite, basalt, and tuff, which are the major rock types around King Sejong Station of Korea located in Barton Peninsula, King George Island, Antarctica. The temperature of freeze-thaw cycle was also set with simulated the air temperature of the station, i.e. the maximum temperature was + 10 °C and the minimum temperature was - 20 °C. Three cylindrical specimens composed of one for each rock type with 24.6 mm diameter and 14.5 ~ 17.7 mm length were prepared, and 2 mm diameter and 7 mm shallow depth hole was drilled on the center of the specimens. To exaggerate the effect of the freeze-thaw weathering, all tests were conducted under completely saturated condition. 50 cycles of the freeze-thaw test was carried, and X-ray micro computed tomography (CT) images of each rock specimen were obtained after every 10 cycles. Using X-ray micro CT images, 3D structure was rendered and pore and crack structures were extracted. The changes of porosity, absorption rate and pore and crack structure were detected. Porosity of all specimens was decreased linearly and absorption rate of all specimens was increased linearly as weathering processes; the pore connection and crack propagation was detected in 3D rendering pore and crack structure. The change of tuff specimen is the most remarkable among three rock types used in the research, because of its relatively high initial absorption rate and low strength. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0027520).

  16. Cockpit weather information needs

    Science.gov (United States)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  17. Detailed description of the Ócsa Bird Ringing Station, Hungary

    Directory of Open Access Journals (Sweden)

    Csörgő Tibor

    2016-12-01

    Full Text Available The present paper acts as an introduction to a series that will describe the exploratory analyses of migration phenology and morphometrics of the most common passerine species at the Ócsa Bird Ringing Station. This station is situated in the Ócsa Landscape Protection Area that belongs to the Duna–Ipoly National Park, Hungary. The area is somewhat cooler and more humid than the surrounding agricultural fields and tree plantations, covered by a mosaic of diverse hygrophilous vegetation patches. Bird trapping is mostly based on Japanese mist-net lines crossing different plant communities. During the period of 1984–2015, a total of 422,862 birds were trapped and ringed here, while 202,739 local, 1,235 within country, and 443 foreign recaptures were also recorded. Each bird is characterized by the following data: location and time of capture, species, age, sex, scores of fat, pectoral muscle, wing tip abrasion, and moult, length of wing, 3rd primary, and tail, and body mass. After subjected to a rigorous quality check, digital data are deposited in the archive of the Hungarian Bird Ringing Centre, and the EURING data base. From time to time, other research projects also utilized the accessibility of wild birds captured here, thus collection of blood samples, ecto- and endoparasites was carried out at the station. The relatively long time span, large number of species and individuals, and the readily available environmental (weather, vegetation, etc. data makes the avian data collected here a suitable base for studies of various disciplines like capture methodology, habitat preferences, breeding, migration, and wintering, effects of weather and climate change, and epidemiology of viruses and parasites.

  18. Modeling the variability of solar radiation data among weather stations by means of principal components analysis

    International Nuclear Information System (INIS)

    Zarzo, Manuel; Marti, Pau

    2011-01-01

    Research highlights: →Principal components analysis was applied to R s data recorded at 30 stations. → Four principal components explain 97% of the data variability. → The latent variables can be fitted according to latitude, longitude and altitude. → The PCA approach is more effective for gap infilling than conventional approaches. → The proposed method allows daily R s estimations at locations in the area of study. - Abstract: Measurements of global terrestrial solar radiation (R s ) are commonly recorded in meteorological stations. Daily variability of R s has to be taken into account for the design of photovoltaic systems and energy efficient buildings. Principal components analysis (PCA) was applied to R s data recorded at 30 stations in the Mediterranean coast of Spain. Due to equipment failures and site operation problems, time series of R s often present data gaps or discontinuities. The PCA approach copes with this problem and allows estimation of present and past values by taking advantage of R s records from nearby stations. The gap infilling performance of this methodology is compared with neural networks and alternative conventional approaches. Four principal components explain 66% of the data variability with respect to the average trajectory (97% if non-centered values are considered). A new method based on principal components regression was also developed for R s estimation if previous measurements are not available. By means of multiple linear regression, it was found that the latent variables associated to the four relevant principal components can be fitted according to the latitude, longitude and altitude of the station where data were recorded from. Additional geographical or climatic variables did not increase the predictive goodness-of-fit. The resulting models allow the estimation of daily R s values at any location in the area under study and present higher accuracy than artificial neural networks and some conventional approaches

  19. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  20. Weathering and weathering rates of natural stone

    Science.gov (United States)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  1. Linking the M&Rfi Weather Generator with Agrometeorological Models

    Science.gov (United States)

    Dubrovsky, Martin; Trnka, Miroslav

    2015-04-01

    Realistic meteorological inputs (representing the present and/or future climates) for the agrometeorological model simulations are often produced by stochastic weather generators (WGs). This contribution presents some methodological issues and results obtained in our recent experiments. We also address selected questions raised in the synopsis of this session. The input meteorological time series for our experiments are produced by the parametric single site weather generator (WG) Marfi, which is calibrated from the available observational data (or interpolated from surrounding stations). To produce meteorological series representing the future climate, the WG parameters are modified by climate change scenarios, which are prepared by the pattern scaling method: the standardised scenarios derived from Global or Regional Climate Models are multiplied by the change in global mean temperature (ΔTG) determined by the simple climate model MAGICC. The presentation will address following questions: (i) The dependence of the quality of the synthetic weather series and impact results on the WG settings. An emphasis will be put on an effect of conditioning the daily WG on monthly WG (presently being one of our hot topics), which aims at improvement of the reproduction of the low-frequency weather variability. Comparison of results obtained with various WG settings is made in terms of climatic and agroclimatic indices (including extreme temperature and precipitation characteristics and drought indices). (ii) Our methodology accounts for the uncertainties coming from various sources. We will show how the climate change impact results are affected by 1. uncertainty in climate modelling, 2. uncertainty in ΔTG, and 3. uncertainty related to the complexity of the climate change scenario (focusing on an effect of inclusion of changes in variability into the climate change scenarios). Acknowledgements: This study was funded by project "Building up a multidisciplinary scientific

  2. Application of the minicomputer at Genkai Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, H [Kyushu Electric Power Co., Inc., Fukuoka (Japan)

    1977-03-01

    Genkai Nuclear Power Station introduced a minicomputer system for the data control purpose in addition to a process control computer introduced in the same manner as other PWR nuclear power stations. This system employs two computers; the one for on-line data aquisition, and another for data processing. The control system introduced includes four systems amoung various data control businesses in the nuclear power station. The language used is mainly an assembler language. The first is the meteorological control system which collects, edits and transmits the weather data sent from the observation instruments around the power station. The second is the personal radiation exposure control system which is designed to realize the labor-saving in book-keeping, the speed-up and the improvement of accuracy in the preparation of the reports to the authorities and the head office and the data for exposure control, and the unification of data processing. The third is the waste control system composed of three subsystems of gas, liquid and solid waste control. The fourth is the maintenance and repair control system which gives inputs to the computer according to the classification written in the slips for maintenance and repair, and prepares a number of statistical tables for maintenance control.

  3. Weatherization Works: Weatherization Assistance Program Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    The United States demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  4. Automatic processing, quality assurance and serving of real-time weather data

    Science.gov (United States)

    Williams, Matthew; Cornford, Dan; Bastin, Lucy; Jones, Richard; Parker, Stephen

    2011-03-01

    Recent advances in technology have produced a significant increase in the availability of free sensor data over the Internet. With affordable weather monitoring stations now available to individual meteorology enthusiasts, a reservoir of real time data such as temperature, rainfall and wind speed can now be obtained for most of the world. Despite the abundance of available data, the production of usable information about the weather in individual local neighbourhoods requires complex processing that poses several challenges. This paper discusses a collection of technologies and applications that harvest, refine and process this data, culminating in information that has been tailored toward the user. In this instance, this allows a user to make direct queries about the weather at any location, even when this is not directly instrumented, using interpolation methods provided by the INTAMAP project. A simplified example illustrates how the INTAMAP web processing service can be employed as part of a quality control procedure to estimate the bias and residual variance of user contributed temperature observations, using a reference standard based on temperature observations with carefully controlled quality. We also consider how the uncertainty introduced by the interpolation can be communicated to the user of the system, using UncertML, a developing standard for uncertainty representation.

  5. Weather scenarios for dose calculations with incomplete meteorological data. V.IV

    International Nuclear Information System (INIS)

    Alp, E.; Lam, L.H.; Moran, M.D.

    1985-09-01

    This report documents a study to substantiate or modify the weather scenarios proposed by the Atomic Energy Control Board Staff Position Paper on meteorological acceptance criteria for estimating the potential radiological consequences of postulated accidents (AECB, 1982) for short-, prolonged-, and long-term releases from ground level and elevated sources. The study examined available meteorological data in Canada to determine whether the AECB-proposed scenarios are sufficiently general that they are appropriate and conservative for any potential nuclear power plant in Canada, but also realistic, i.e., not so conservative that the results of dose calculations using these scenarios would be wholly unrepresentative leading to incorrect design decisions. Three different sets of scenarios were derived using three site-specific data sets from weather stations that are representative of existing nuclear power plants in Canada. When compared, the scenarios for the three sites are not significantly different from each other, especially in terms of trends, considering that they have been based on data from widely differing meteorological regions in Canada. Conservative envelopes of the scenarios for the three sites were taken to give the recommended general weather scenario set. The recommended set was then compared with the AECB proposed scenarios. The recommended scenarios are, in general, conservative

  6. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model

    Science.gov (United States)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor

    2018-03-01

    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  7. Powernext weather, benchmark indices for effective weather risk management

    International Nuclear Information System (INIS)

    2006-01-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  8. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  9. Evaluation of weather-based rice yield models in India

    Science.gov (United States)

    Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.

    2013-01-01

    The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  10. Downscaling the Local Weather Above Glaciers in Complex Topography

    Science.gov (United States)

    Horak, Johannes; Hofer, Marlis; Gutmann, Ethan; Gohm, Alexander; Rotach, Mathias

    2017-04-01

    Glaciers have experienced a substantial ice-volume loss during the 20th century. To study their response to climate change, process-based glacier mass-balance models (PBGMs) are employed, which require a faithful representation of the state of the atmosphere above the glacier at high spatial and temporal resolution. Glaciers are usually located in complex topography where weather stations are scarce or not existent at all due to the remoteness of such sites and the associated high cost of maintenance. Furthermore. the effective resolution of global circulation models is too large to adequately capture the local topography and represent local weather, which is prerequisite for atmospheric input used by PBGMs. Dynamical downscaling is a physically consistent but computationally expensive approach to bridge the scale gap between GCM output and input needed by PBGMs, while statistical downscaling is faster but requires measurements for training. Both methods have their merits, however, a computationally frugal approach that does not rely on measurements is desirable, especially for long term studies of glacier response to future climate. In this study the intermediate complexity atmospheric research model (ICAR) is employed (Gutmann et al., 2016). It simplifies the wind field physics by relying on analytical solutions derived with linear theory. ICAR then advects atmospheric quantities within this wind field. This allows for computationally fast downscaling and yields a physically consistent set of atmospheric variables. First results obtained from downscaling air temperature, precipitation amount, relative humidity and wind speed to 4 × 4 km2 are presented. Preliminary ICAR is applied for a six month simulation period during five years and evaluated for three domains located in very distinct climates, namely the Southern Alps of New Zealand, the Cordillera Blanca in Peru and the European Alps using ERA Interim reanalysis data (ERAI) as forcing data set. The

  11. Performance Assessment of a Solar powered Air Quality and Weather Station Placed on a School Rooftop in Hong Kong

    Science.gov (United States)

    Summary of compact, roof version of a Village Green Project station installed on a secondary school rooftop in Hong Kong. Preliminary comparison of the station's data against nearby regulatory monitors are summarized.

  12. Topographic imprint on chemical weathering in deeply weathered soil-mantled landscapes (southern Brazil)

    Science.gov (United States)

    Vanacker, Veerle; Schoonejans, Jerome; Ameijeiras-Marino, Yolanda; Opfergelt, Sophie; Minella, Jean

    2017-04-01

    The regolith mantle is defined as the thin layer of unconsolidated material overlaying bedrock that contributes to shape the Earth's surface. The development of the regolith mantle in a landscape is the result of in-situ weathering, atmospheric input and downhill transport of weathering products. Bedrock weathering - the physical and chemical transformations of rock to soil - contributes to the vertical development of the regolith layer through downward propagation of the weathering front. Lateral transport of soil particles, aggregates and solutes by diffusive and concentrated particle and solute fluxes result in lateral redistribution of weathering products over the hillslope. In this study, we aim to expand the empirical basis on long-term soil evolution at the landscape scale through a detailed study of soil weathering in subtropical soils. Spatial variability in chemical mass fluxes and weathering intensity were studied along two toposequences with similar climate, lithology and vegetation but different slope morphology. This allowed us to isolate the topographic imprint on chemical weathering and soil development. The toposequences have convexo-concave slope morphology, and eight regolith profiles were analysed involving the flat upslope, steep midslope and flat toeslope part. Our data show a clear topographic imprint on soil development. Along hillslope, the chemical weathering intensity of the regolith profiles increases with distance from the crest. In contrast to the upslope positions, the soils in the basal concavities develop on in-situ and transported regolith. While the chemical weathering extent on the slope convexities (the upslope profiles) is similar for the steep and gentle toposequence, there is a clear difference in the rate of increase of the chemical weathering extent with distance from the crest. The increase of chemical weathering extent along hillslope is highest for the steep toposequence, suggesting that topography enhances soil particle

  13. Prioritization Scheme for Proposed Road Weather Information System Sites: Montana Case Study

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Kaisy

    2017-08-01

    Full Text Available A model for prioritization of new proposed environmental sensor station (ESS sites is developed and presented in this paper. The model assesses the overall merit (OM of a proposed ESS site as part of a Road Weather Information System (RWIS using weather, traffic, and safety data among other variables. The purpose of the proposed model is to help in selecting optimum sites for new ESS locations, which is important in guiding RWIS system expansion. Inputs to the OM model include weather index (WI, traffic index (TI, crash index, geographic coverage, and opportunistic factors. The WI at a proposed site is determined using multiple indicators of weather severity and variability. The crash index, another major input to the OM model, incorporates crash rate along the route and the percentage of weather-related crashes over the analysis period. The TI, in turn, reflects the amount of travel on the highway network in the area surrounding the proposed ESS site. The fourth input to the merit model accounts for the ESS existing coverage in the area where the proposed site is located, while the fifth and last input is concerned with the availability and ease of access to power and communications. Model coefficients are represented by weights that reflect the contribution of each input (variable to the OM of the ESS site. Those weights are user-specified and should be selected to reflect the agency preferences and priorities. The application of the proposed merit model on sample sites in Montana demonstrated the utility of the model in ranking candidate sites using data readily available to highway agencies.

  14. Fiscal 1974 Sunshine Project result report. R and D on solar energy system (weather survey). Part 2. Guideline for using weather data; 1974 nendo kisho data ni saishite no shishin. 2. Taiyo energy system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-03-01

    This report describes the guideline for using weather data in R and D on solar energy system. Solar radiation is defined as direct, scattered and reflected radiation in a range of near UV-near IR radiation. Direct solar radiation is observed by silver disk pyrheliometer, while global solar radiation by thermostat or bimetal pyranometer. Accuracy standards of such meters are indispensable to keep the accuracy uniformly. To keep the uniformity and accuracy of observation data all over the world, the international comparative observation is held every 5 years. Solar radiation observation in Japan started in 1932 by installing silver disk pyrheliometers all over the country. In 1938 the observation stations were increased to 79 sites, however, in 1953 those were integrated into 13 long-term weather observation stations. Sunshine duration is defined as the time direct sunbeam aims at the ground, and observed generally by Jordan's heliograph which observes sunshine durations with burned holes on photosensitive recording paper by direct sunbeam through 2 small holes on both sides of a cylinder. The history of statistical processing of solar radiation and sunshine duration data in Meteorological Agency is also presented. (NEDO)

  15. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  16. Casebook on application for weather

    International Nuclear Information System (INIS)

    2009-11-01

    This book introduces the excellent cases on application using weather at the industry, research center and public office. It lists the names and application cases in 2008 and 2009, which includes research on decease in risk by weather in the industry by Sam sung institute of safety and environment, service on weather information for people by KT, application with weather information in the flight by Korean air, use on weather information for prevention of disasters by Masan city hall, upgrade for business with weather marketing, center for river forecast in NOAA and the case using weather management for high profit margins.

  17. The RMI Space Weather and Navigation Systems (SWANS) Project

    Science.gov (United States)

    Warnant, Rene; Lejeune, Sandrine; Wautelet, Gilles; Spits, Justine; Stegen, Koen; Stankov, Stan

    The SWANS (Space Weather and Navigation Systems) research and development project (http://swans.meteo.be) is an initiative of the Royal Meteorological Institute (RMI) under the auspices of the Belgian Solar-Terrestrial Centre of Excellence (STCE). The RMI SWANS objectives are: research on space weather and its effects on GNSS applications; permanent mon-itoring of the local/regional geomagnetic and ionospheric activity; and development/operation of relevant nowcast, forecast, and alert services to help professional GNSS/GALILEO users in mitigating space weather effects. Several SWANS developments have already been implemented and available for use. The K-LOGIC (Local Operational Geomagnetic Index K Calculation) system is a nowcast system based on a fully automated computer procedure for real-time digital magnetogram data acquisition, data screening, and calculating the local geomagnetic K index. Simultaneously, the planetary Kp index is estimated from solar wind measurements, thus adding to the service reliability and providing forecast capabilities as well. A novel hybrid empirical model, based on these ground-and space-based observations, has been implemented for nowcasting and forecasting the geomagnetic index, issuing also alerts whenever storm-level activity is indicated. A very important feature of the nowcast/forecast system is the strict control on the data input and processing, allowing for an immediate assessment of the output quality. The purpose of the LIEDR (Local Ionospheric Electron Density Reconstruction) system is to acquire and process data from simultaneous ground-based GNSS TEC and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution. A key module is the real-time estimation of the ionospheric slab thickness, offering additional infor-mation on the local ionospheric dynamics. The RTK (Real Time Kinematic) status mapping provides a quick look at the small-scale ionospheric effects on the RTK

  18. Effects of Weather and Heliophysical Conditions on Emergency Ambulance Calls for Elevated Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Jone Vencloviene

    2015-02-01

    Full Text Available We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009–2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs, in which the conditions for the emergency calls were made coded I.10–I.15. The Kaunas Weather Station provided daily records of air temperature (T, wind speed (WS, relative humidity, and barometric pressure (BP. We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS > 600 km/s increased the daily number of elevated arterial blood pressure (EABP by 12% (RR = 1.12; 95% confidence interval (CI 1.04–1.21; and WS ≥ 3.5 knots during days of T < 1.5 °C and T ≥ 12.5 °C by 8% (RR = 1.08; CI 1.04–1.12. An increase of T by 10 °C and an elevation of BP two days after by 10 hPa were associated with a decrease in RR by 3%. An additional effect of T was detected during days of T ≥ 17.5 °C only in females. Women and patients with grade III arterial hypertension at the time of the ambulance call were more sensitive to weather conditions. These results may help in the understanding of the population’s sensitivity to different weather conditions.

  19. Ranger© - An Affordable, Advanced, Next-Generation, Dual-Pol, X-Band Weather Radar

    Science.gov (United States)

    Stedronsky, Richard

    2014-05-01

    The Enterprise Electronics Corporation (EEC) Ranger© system is a new generation, X-band (3 cm), Adaptive Polarization Doppler Weather Surveillance Radar that fills the gap between high-cost, high-power traditional radar systems and the passive ground station weather sensors. Developed in partnership with the University of Oklahoma Advanced Radar Research Center (ARRC), the system uses relatively low power solid-state transmitters and pulse compression technology to attain nearly the same performance capabilities of much more expensive traditional radar systems. The Ranger© also employs Adaptive Dual Polarization (ADP) techniques to allow Alternating or Simultaneous Dual Polarization capability with total control over the transmission polarization state using dual independent coherent transmitters. Ranger© has been designed using the very latest technology available in the industry and the technical and manufacturing experience gained through over four decades of successful radar system design and production at EEC. The entire Ranger© design concept emphasizes precision, stability, reliability, and value using proven solid state technology combined with the most advanced motion control system ever conceived for weather radar. Key applications include meteorology, hydrology, aviation, offshore oil/gas drilling, wind energy, and outdoor event situational awareness.

  20. A Milestone in Commercial Space Weather: USTAR Center for Space Weather

    Science.gov (United States)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Scherliess, L.; Zhu, L.; Gardner, L. C.

    2009-12-01

    As of 2009, Utah State University (USU) hosts a new organization to develop commercial space weather applications using funding that has been provided by the State of Utah’s Utah Science Technology and Research (USTAR) initiative. The USTAR Center for Space Weather (UCSW) is located on the USU campus in Logan, Utah and is developing innovative applications for mitigating adverse space weather effects in technological systems. Space weather’s effects upon the near-Earth environment are due to dynamic changes in the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The UCSW has developed products for users of systems that are affected by space weather-driven ionospheric changes. For example, on September 1, 2009 USCW released, in conjunction with Space Environment Technologies, the world’s first real-time space weather via an iPhone app. Space WX displays the real-time, current global ionosphere total electron content along with its space weather drivers; it is available through the Apple iTunes store and is used around the planet. The Global Assimilation of Ionospheric Measurements (GAIM) system is now being run operationally in real-time at UCSW with the continuous ingestion of hundreds of global data streams to dramatically improve the ionosphere’s characterization. We discuss not only funding and technical advances that have led to current products but also describe the direction for UCSW that includes partnering opportunities for moving commercial space weather into fully automated specification and forecasting over the next half decade.

  1. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  2. Revisiting the extended spring indices using gridded weather data and machine learning

    Science.gov (United States)

    Mehdipoor, Hamed; Izquierdo-Verdiguier, Emma; Zurita-Milla, Raul

    2016-04-01

    The extended spring indices or SI-x [1] have been successfully used to predict the timing of spring onset at continental scales. The SI-x models were created by combining lilac and honeysuckle volunteered phenological observations, temperature data (from weather stations) and latitudinal information. More precisely, these models use a linear regression to predict the day of year of first leaf and first bloom for these two indicator species. In this contribution we revisit both the data and the method used to calibrate the SI-x models to check whether the addition of new input data or the use of non-linear regression methods could lead to improments in the model outputs. In particular, we use a recently published dataset [2] of volunteered observations on cloned and common lilac over longer period of time (1980-2014) and we replace the weather station data by 54 features derived from Daymet [3], which provides 1 by 1 km gridded estimates of daily weather parameters (maximum and minimum temperatures, precipitation, water vapor pressure, solar radiation, day length, snow water equivalent) for North America. These features consist of both daily weather values and their long- and short-term accumulations and elevation. we also replace the original linear regression by a non-linear method. Specifically, we use random forests to both identify the most important features and to predict the day of year of the first leaf of cloned and common lilacs. Preliminary results confirm the importance of the SI-x features (maximum and minimum temperatures and day length). However, our results show that snow water equivalent and water vapor pressure are also necessary to properly model leaf onset. Regarding the predictions, our results indicate that Random Forests yield comparable results to those produced by the SI-x models (in terms of root mean square error -RMSE). For cloned and common lilac, the models predict the day of year of leafing with 16 and 15 days of accuracy respectively

  3. Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  4. Weather derivatives or how an energy company can hedge its weather risks

    International Nuclear Information System (INIS)

    Tahghighi, A.; Carpentier, Ph.

    2000-01-01

    This paper gives a detailed overview of weather derivatives and explains where this new class of financial products falls. The emergence of weather derivatives came about as a response to a need in the energy sector to hedge this sector's weather risks. This article focuses on the nature of these financial contracts, what they include and how they are priced. This article concludes by stating that energy companies in Europe can no longer afford to remain exposed to weather risks in an increasingly privatized and competitive market

  5. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    Science.gov (United States)

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  6. CO2 consumption and bicarbonate fluxes by chemical weathering in North America.

    Science.gov (United States)

    Jansen, Nils; Hartmann, Jens; Lauerwald, Ronny

    2010-05-01

    Cations released by chemical weathering are mainly counterbalanced by atmospheric/soil CO2 dissolved in water. Existing approaches to quantify CO2 consumption by chemical weathering are mostly based on the parameters runoff and lithology. Land cover is not implemented as predictor in existing regional or global scale models for atmospheric/soil CO2 consumption. Here, bicarbonate fluxes in North American rivers are quantified by an empirical forward model using the predictors runoff, lithology and land cover. The model was calibrated on chemical data from 338 river monitoring stations throughout North America. It was extrapolated to the entire North American continent by applying the model equation spatially explicitly to the geodata used for model calibration. Because silicate mineral weathering derived bicarbonate in rivers originates entirely from atmospheric/soil CO2, but carbonate mineral weathering additionally releases lithogenic bicarbonate, those source minerals are distinguished to quantify the CO2 consumption by chemical weathering. Extrapolation of the model results in a total bicarbonate flux of 51 Mt C a-1 in North America; 70% of which originate from atmospheric/soil CO2. On average, chemical weathering consumes 2.64 t atmospheric/soil C km-2 a-1 (~ 30%-40% above published world average values). For a given runoff and land cover, carbonate-rich sedimentary rocks export the most bicarbonate. However, half of this is assumed to be of lithogenic origin. Thus, the most atmospheric/soil CO2 per runoff is modeled to be consumed by basic plutonics. The least bicarbonate is exported and the least CO2 is consumed per runoff by weathering of metamorphic rocks. Of the distinguished different land cover classes of which urban areas export the most bicarbonate for a given lithology and runoff, followed by shrubs, grasslands and managed lands. For a given runoff and lithology, the least bicarbonate is exported from areas with forested land cover. The model shows 1

  7. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  8. Weather Information Processing

    Science.gov (United States)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  9. A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of Multiple Weather Models

    Science.gov (United States)

    Lu, S.; Hwang, Y.; Shao, X.; Hamann, H.

    2015-12-01

    Previously, we reported the application of a "weather situation" dependent multi-model blending approach to improve the forecast accuracy of solar irradiance and other atmospheric parameters. The approach uses machine-learning techniques to classify "weather situations" by a set of atmospheric parameters. The "weather situation" classification is location-dependent and each "weather situation" has characteristic forecast errors from a set of individual input numerical weather prediction (NWP) models. The input models are thus corrected or combined differently for different "weather situations" to minimize the overall forecast error. While the original implementation of the model-blending is applicable to only point-like locations having historical data of both measurements and forecasts, here we extend the approach to provide two-dimensional (2D) gridded forecasts. An experimental 2D forecasting system has been set up to provide gridded forecasts of solar irradiance (global horizontal irradiance), temperature, wind speed, and humidity for the contiguous United States (CONUS). Validation results show around 30% enhancement of 0 to 48 hour ahead solar irradiance forecast accuracy compared to the best input NWP model. The forecasting system may be leveraged by other site- or region-specific solar energy forecast products. To enable the 2D forecasting system, historical solar irradiance measurements from around 1,600 selected sites of the remote automated weather stations (RAWS) network have been employed. The CONUS was divided into smaller sub-regions, each containing a group of 10 to 20 RAWS sites. A group of sites, as classified by statistical analysis, have similar "weather patterns", i.e. the NWPs have similar "weather situation" dependent forecast errors for all sites in a group. The model-blending trained by the historical data from a group of sites is then applied for all locations in the corresponding sub-region. We discuss some key techniques developed for

  10. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  11. An interoperable standard system for the automatic generation and publication of the fire risk maps based on Fire Weather Index (FWI)

    Science.gov (United States)

    Julià Selvas, Núria; Ninyerola Casals, Miquel

    2015-04-01

    It has been implemented an automatic system to predict the fire risk in the Principality of Andorra, a small country located in the eastern Pyrenees mountain range, bordered by Catalonia and France, due to its location, his landscape is a set of a rugged mountains with an average elevation around 2000 meters. The system is based on the Fire Weather Index (FWI) that consists on different components, each one, measuring a different aspect of the fire danger calculated by the values of the weather variables at midday. CENMA (Centre d'Estudis de la Neu i de la Muntanya d'Andorra) has a network around 10 automatic meteorological stations, located in different places, peeks and valleys, that measure weather data like relative humidity, wind direction and speed, surface temperature, rainfall and snow cover every ten minutes; this data is sent daily and automatically to the system implemented that will be processed in the way to filter incorrect measurements and to homogenizer measurement units. Then this data is used to calculate all components of the FWI at midday and for the level of each station, creating a database with the values of the homogeneous measurements and the FWI components for each weather station. In order to extend and model this data to all Andorran territory and to obtain a continuous map, an interpolation method based on a multiple regression with spline residual interpolation has been implemented. This interpolation considerer the FWI data as well as other relevant predictors such as latitude, altitude, global solar radiation and sea distance. The obtained values (maps) are validated using a cross-validation leave-one-out method. The discrete and continuous maps are rendered in tiled raster maps and published in a web portal conform to Web Map Service (WMS) Open Geospatial Consortium (OGC) standard. Metadata and other reference maps (fuel maps, topographic maps, etc) are also available from this geoportal.

  12. A Stabilizing Feedback Between Cloud Radiative Effects and Greenland Surface Melt: Verification From Multi-year Automatic Weather Station Measurements

    Science.gov (United States)

    Zender, C. S.; Wang, W.; van As, D.

    2017-12-01

    Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, palbedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, palbedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.

  13. Fort Huachuca, Libby AAF, Arizona. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    Science.gov (United States)

    1982-04-22

    AAF AZ 61-70 APP STATION STATIOq NA&W YEARS UNCT PAGE 1 0900-1100 MsI" IL. S. T.) T..p.WET &ULD TEMPERATURE DEPRESION (F) TOTAL I TTL "/ 0 1-2 53 -6 I 9...PSYCHROMETRIC SUMMARY P2 AP WEATHER SERVICE/"AC 722730 FT MUACI4UCA/LhSU VLAF AZ 6-0JUL 19 PAGE 1 c90o-11jo WET WULM TUMPERATUItE DEPRESION (P) _____TOTAL...STATIO’ STATION NAME YEARS MO.T. PAGE 1 09S0-11anHO0URS L. S. T.) WET BULB TEMPERATURE DEPRESION (F) TOTAL TOTAL ( (Fl 0 1-2 3.4 5.6 It7.8 10 11112 13

  14. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  15. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  16. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  17. The application of heliospheric imaging to space weather operations: Lessons learned from published studies

    Science.gov (United States)

    Harrison, Richard A.; Davies, Jackie A.; Biesecker, Doug; Gibbs, Mark

    2017-08-01

    The field of heliospheric imaging has matured significantly over the last 10 years—corresponding, in particular, to the launch of NASA's STEREO mission and the successful operation of the heliospheric imager (HI) instruments thereon. In parallel, this decade has borne witness to a marked increase in concern over the potentially damaging effects of space weather on space and ground-based technological assets, and the corresponding potential threat to human health, such that it is now under serious consideration at governmental level in many countries worldwide. Hence, in a political climate that recognizes the pressing need for enhanced operational space weather monitoring capabilities most appropriately stationed, it is widely accepted, at the Lagrangian L1 and L5 points, it is timely to assess the value of heliospheric imaging observations in the context of space weather operations. To this end, we review a cross section of the scientific analyses that have exploited heliospheric imagery—particularly from STEREO/HI—and discuss their relevance to operational predictions of, in particular, coronal mass ejection (CME) arrival at Earth and elsewhere. We believe that the potential benefit of heliospheric images to the provision of accurate CME arrival predictions on an operational basis, although as yet not fully realized, is significant and we assert that heliospheric imagery is central to any credible space weather mission, particularly one located at a vantage point off the Sun-Earth line.

  18. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles[mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a)

  19. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  20. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  1. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada)

    Science.gov (United States)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  2. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    Science.gov (United States)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  3. The correlation between accelerated and field corrosion tests performed in carbon steel and weathering steel coupons, coated and non-coated

    International Nuclear Information System (INIS)

    Antunes, Renato Altobelli

    2002-01-01

    The performance of four different organic coating systems applied to carbon and weathering steel coupons has been assessed in this investigation. applied on the surface of carbon steel and weathering steel coupons. The coupons have been evaluated using five different tests, three field tests and two accelerated tests. The field tests were carried out at three atmospheric stations, located at COSIPA in Cubatao-SP, at Alto da Serra in Cubatao-SP and at Paula Souza in Sao Paulo city. The accelerated tests consisted of (a) exposure to alternate cycles of ultraviolet radiation/condensation combined with salt spray cycles (UVCON combined with Salt Spray) and of (b) exposure to alternate cycles of ultraviolet radiation/condensation combined with the Prohesion test. The performance of the coatings was assessed by visual observation and photographs, using a method based on ASTM D-610, ASTM D-714 and ASTM-1654 standards to rank them. The oxide phases formed on the surfaces of the non-coated specimens of carbon and weathering steels, exposed to the same tests performed with the coated specimens, were identified using three different techniques: X-ray diffraction, Raman microscopy and Moessbauer spectroscopy. In the field tests, the specimens have been exposed for 1, 2, 3, 6 and 9 months. In the accelerated ones, the results were obtained after 1340 hours (4 cycles) test. The main component identified in all the specimens collected from the field tests and from the UVCON combined with the Prohesion test was lepidocrocite (γ-FeOOH). Goethite (α-FeOOH ) and magnetite (Fe 3 O 4 ) were identified as the other two main phases present in ali the specimens. In the UVCON combined with Salt Spray test, the dominant phase was magnetite, followed by goethite and lepidocrocite. The morphology of the rust formed on the specimens was examined by scanning electron microscopy (SEM). Structures corresponding to goethite and lepidocrocited were recognized on ali specimens, except those

  4. Weatherization Makes Headlines in Connecticut: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Connecticut demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  5. Weatherization Makes Headlines in Connecticut: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Connecticut demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  6. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  7. New York Signals Weatherization Savings: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    New York demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  8. New York Signals Weatherization Savings: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    New York demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  9. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    Science.gov (United States)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  10. Weather scenarios for dose calculations with incomplete meteorological data. V.I.(rev.1)

    International Nuclear Information System (INIS)

    Alp, E.; Lam, L.H.; Moran, M.D.

    1985-09-01

    This report documents a study to substantiate or modify the weather scenarios proposed by the Atomic Energy Control Board Staff Position Paper on meteorological acceptance criteria for estimating the potential radiological consequences of postulated accidents (AECB, 1982) for short-, prolonged-, and long-term releases from ground level and elevated sources. The study examined available meteorological data in Canada to determine whether the AECB-proposed scenarios are sufficiently general that they are appropriate and conservative for any potential nuclear power plant in Canada, but also realistic, i.e., not so conservative that the results of dose calculations using these scenarios would be wholly unrepresentative leading to incorrect design decisions. Three different sets of scenarios were derived using three site-specific data sets from weather stations that are representative of existing nuclear power plants in Canada. When compared, the scenarios for the three sites are not significantly different from each other, especially in terms of trends, considering that they have been based on data from widely differing meteorological regions in Canada. Conservative envelopes of the scenarios for the three sites were taken to give the recommended general weather scenario set. The recommended set was then compared with the AECB proposed scenarios. The recommended scenarios are, in general, conservative

  11. Nonlinear dynamics of the magnetosphere and space weather

    Science.gov (United States)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  12. From Early Exploration to Space Weather Forecasts: Canada's Geomagnetic Odyssey

    Science.gov (United States)

    Lam, Hing-Lan

    2011-05-01

    Canada is a region ideally suited for the study of space weather: The north magnetic pole is encompassed within its territory, and the auroral oval traverses its vast landmass from east to west. Magnetic field lines link the country directly to the outer magnetosphere. In light of this geographic suitability, it has been a Canadian tradition to install ground monitors to remotely sense the space above Canadian territory. The beginning of this tradition dates back to 1840, when Edward Sabine, a key figure in the “magnetic crusade” to establish magnetic observatories throughout the British Empire in the nineteenth century, founded the first Canadian magnetic observatory on what is now the campus of the University of Toronto, 27 years before the birth of Canada. This observatory, which later became the Toronto Magnetic and Meteorological Observatory, marked the beginning of the Canadian heritage of installing magnetic stations and other ground instruments in the years to come. This extensive network of ground-based measurement devices, coupled with space-based measurements in more modern times, has enabled Canadian researchers to contribute significantly to studies related to space weather.

  13. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  14. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  15. Theoretical variations of the thermal performance of different solar collectors and solar combi systems as function of the varying yearly weather conditions in Denmark

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2009-01-01

    The thermal performances of solar collectors and solar combi systems with different solar fractions are studied under the influence of the Danish Design Reference Year, DRY data file, and measured weather data from a solar radiation measurement station situated at the Technical University of Denm...

  16. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  17. Weather Information Communications (WINCOMM) Project: Dissemination of Weather Information for the Reduction of Aviation Weather-Related Accident Causal Factors

    Science.gov (United States)

    Jarrell, Michael; Tanger, Thomas

    2004-01-01

    Weather Information Communications (WINCOMM) is part of the Weather Accident Prevention (WxAP) Project, which is part of the NASA's Aviation Safety and Security Program. The goals of WINCOMM are to facilitate the exchange of tactical and strategic weather information between air and ground. This viewgraph presentation provides information on data link decision factors, architectures, validation goals. WINCOMM is capable of providing en-route communication air-to-ground, ground-to-air, and air-to-air, even on international or intercontinental flights. The presentation also includes information on the capacity, cost, and development of data links.

  18. Operation BUSTER. Project 8.2. Air Weather Service Participation in Operation BUSTER

    Science.gov (United States)

    1951-12-31

    Nearest precipitation, acattered ahoware 55u milea to Northeast* HnOHT OROöND ZEROt U, l53 »li ft MSL. HEIQHT OP BÜRSTi 5,311«U ft MSL FRESSÖRE...17 270 27 63 MERCURY WEATHER STATION AEC TEST SITE US VEGAS, N’EVADA •*IND DATA SHEET PATE 22 Octob«r 1951 BEATTY, NEVADA TD /E 220e Z...WIND DATA SHEET TOROPAH, HET/ADA TD - ^ 0300 Z 330P 3£HäE (knots) 15 350 16 010 15 030 13 130 12 050 16 050 29 050 31 060 30 060 30 070 37

  19. Innovative Approaches for the Dissemination of Near Real-time Geostationary Satellite Data for Terrestrial and Space Weather Applications

    Science.gov (United States)

    Jedlovec, G.; McGrath, K.; Meyer, P. J.; Berndt, E.

    2017-12-01

    A GOES-R series receiving station has been installed at the NASA Marshall Space Flight Center (MSFC) to support GOES-16 transition-to-operations projects of NASA's Earth science program and provide a community portal for GOES-16 data access. This receiving station is comprised of a 6.5-meter dish; motor-driven positioners; Quorum feed and demodulator; and three Linux workstations for ingest, processing, display, and subsequent product generation. The Community Satellite Processing Package (CSPP) is used to process GOES Rebroadcast data from the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-ray Irradiance Sensors (EXIS), and Space Environment In-Situ Suite (SEISS) into Level 1b and Level 2 files. GeoTIFFs of the imagery from several of these instruments are ingested into an Esri Arc Enterprise Web Map Service (WMS) server with tiled imagery displayable through a web browser interface or by connecting directly to the WMS with a Geographic Information System software package. These data also drive a basic web interface where users can manually zoom to and animate regions of interest or acquire similar results using a published Application Program Interface. While not as interactive as a WMS-driven interface, this system is much more expeditious with generating and distributing requested imagery. The legacy web capability enacted for the predecessor GOES Imager currently supports approximately 500,000 unique visitors each month. Dissemination capabilities have been refined to support a significantly larger number of anticipated users. The receiving station also supports NASA's Short-term Prediction, Research, and Transition Center's (SPoRT) project activities to dissemination near real-time ABI RGB products to National Weather Service National Centers, including the Satellite Analysis Branch, National Hurricane Center, Ocean Prediction Center, and Weather Prediction Center, where they

  20. COST ES0602: towards a European network on chemical weather forecasting and information systems

    Directory of Open Access Journals (Sweden)

    J. Kukkonen

    2009-04-01

    Full Text Available The COST ES0602 action provides a forum for benchmarking approaches and practices in data exchange and multi-model capabilities for chemical weather forecasting and near real-time information services in Europe. The action includes approximately 30 participants from 19 countries, and its duration is from 2007 to 2011 (http://www.chemicalweather.eu/. Major efforts have been dedicated in other actions and projects to the development of infrastructures for data flow. We have therefore aimed for collaboration with ongoing actions towards developing near real-time exchange of input data for air quality forecasting. We have collected information on the operational air quality forecasting models on a regional and continental scale in a structured form, and inter-compared and evaluated the physical and chemical structure of these models. We have also constructed a European chemical weather forecasting portal that includes links to most of the available chemical weather forecasting systems in Europe. The collaboration also includes the examination of the case studies that have been organized within COST-728, in order to inter-compare and evaluate the models against experimental data. We have also constructed an operational model forecasting ensemble. Data from a representative set of regional background stations have been selected, and the operational forecasts for this set of sites will be inter-compared and evaluated. The Action has investigated, analysed and reviewed existing chemical weather information systems and services, and will provide recommendations on best practices concerning the presentation and dissemination of chemical weather information towards the public and decision makers.

  1. SPoRT: Transitioning NASA and NOAA Experimental Data to the Operational Weather Community

    Science.gov (United States)

    Jedlovec, Gary J.

    2013-01-01

    Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the NASA Short-term Prediction Research and Transition (SPoRT) program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. With the ever-broadening application of real-time high resolution satellite data from current EOS, Suomi NPP, and planned JPSS and GOES-R sensors to weather forecast problems, significant challenges arise in the acquisition, delivery, and integration of the new capabilities into the decision making process of the operational weather community. For polar orbiting sensors such as MODIS, AIRS, VIIRS, and CRiS, the use of direct broadcast ground stations is key to the real-time delivery of the data and derived products in a timely fashion. With the ABI on the geostationary GOES-R satellite, the data volumes will likely increase by a factor of 5-10 from current data streams. However, the high data volume and limited bandwidth of end user facilities presents a formidable obstacle to timely access to the data. This challenge can be addressed through the use of subsetting techniques, innovative web services, and the judicious selection of data formats. Many of these approaches have been implemented by SPoRT for the delivery of real-time products to NWS forecast offices and other weather entities. Once available in decision support systems like AWIPS II, these new data and products must be integrated into existing and new displays that allow for the integration of the data with existing operational products in these systems. SPoRT is leading the way in demonstrating this enhanced capability. This paper will highlight the ways SPoRT is overcoming many of the challenges presented by the enormous data

  2. Statistical evaluation of Pacific Northwest Residential Energy Consumption Survey weather data

    Energy Technology Data Exchange (ETDEWEB)

    Tawil, J.J.

    1986-02-01

    This report addresses an issue relating to energy consumption and conservation in the residential sector. BPA has obtained two meteorological data bases for use with its 1983 Pacific Northwest Residential Energy Survey (PNWRES). One data base consists of temperature data from weather stations; these have been aggregated to form a second data base that covers the National Oceanographic and Atmospheric Administration (NOAA) climatic divisions. At BPA's request, Pacific Northwest Laboratory has produced a household energy use model for both electricity and natural gas in order to determine whether the statistically estimated parameters of the model significantly differ when the two different meteorological data bases are used.

  3. Evaluation of Driver Visibility from Mobile LIDAR Data and Weather Conditions

    Science.gov (United States)

    González-Jorge, H.; Díaz-Vilariño, L.; Lorenzo, H.; Arias, P.

    2016-06-01

    Visibility of drivers is crucial to ensure road safety. Visibility is influenced by two main factors, the geometry of the road and the weather present therein. The present work depicts an approach for automatic visibility evaluation using mobile LiDAR data and climate information provided from weather stations located in the neighbourhood of the road. The methodology is based on a ray-tracing algorithm to detect occlusions from point clouds with the purpose of identifying the visibility area from each driver position. The resulting data are normalized with the climate information to provide a polyline with an accurate area of visibility. Visibility ranges from 25 m (heavy fog) to more than 10,000 m (clean atmosphere). Values over 250 m are not taken into account for road safety purposes, since this value corresponds to the maximum braking distance of a vehicle. Two case studies are evaluated an urban road in the city of Vigo (Spain) and an inter-urban road between the city of Ourense and the village of Castro Caldelas (Spain). In both cases, data from the Galician Weather Agency (Meteogalicia) are used. The algorithm shows promising results allowing the detection of particularly dangerous areas from the viewpoint of driver visibility. The mountain road between Ourense and Castro Caldelas, with great presence of slopes and sharp curves, shows special interest for this type of application. In this case, poor visibility can especially contribute to the run over of pedestrians or cyclists traveling on the road shoulders.

  4. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    Energy Technology Data Exchange (ETDEWEB)

    Wiita, Joanne

    2013-07-30

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  5. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  6. Integration of Weather Avoidance and Traffic Separation

    Science.gov (United States)

    Consiglio, Maria C.; Chamberlain, James P.; Wilson, Sara R.

    2011-01-01

    This paper describes a dynamic convective weather avoidance concept that compensates for weather motion uncertainties; the integration of this weather avoidance concept into a prototype 4-D trajectory-based Airborne Separation Assurance System (ASAS) application; and test results from a batch (non-piloted) simulation of the integrated application with high traffic densities and a dynamic convective weather model. The weather model can simulate a number of pseudo-random hazardous weather patterns, such as slow- or fast-moving cells and opening or closing weather gaps, and also allows for modeling of onboard weather radar limitations in range and azimuth. The weather avoidance concept employs nested "core" and "avoid" polygons around convective weather cells, and the simulations assess the effectiveness of various avoid polygon sizes in the presence of different weather patterns, using traffic scenarios representing approximately two times the current traffic density in en-route airspace. Results from the simulation experiment show that the weather avoidance concept is effective over a wide range of weather patterns and cell speeds. Avoid polygons that are only 2-3 miles larger than their core polygons are sufficient to account for weather uncertainties in almost all cases, and traffic separation performance does not appear to degrade with the addition of weather polygon avoidance. Additional "lessons learned" from the batch simulation study are discussed in the paper, along with insights for improving the weather avoidance concept. Introduction

  7. Weather and mortality: a 10 year retrospective analysis of the Nouna Health and Demographic Surveillance System, Burkina Faso

    Directory of Open Access Journals (Sweden)

    Rainer Sauerborn

    2012-11-01

    Full Text Available Background: A growing body of evidence points to the emission of greenhouse gases from human activity as a key factor in climate change. This in turn affects human health and wellbeing through consequential changes in weather extremes. At present, little is known about the effects of weather on the health of sub-Saharan African populations, as well as the related anticipated effects of climate change partly due to scarcity of good quality data. We aimed to study the association between weather patterns and daily mortality in the Nouna Health and Demographic Surveillance System (HDSS area during 1999–2009. Methods: Meteorological data were obtained from a nearby weather station in the Nouna HDSS area and linked to mortality data on a daily basis. Time series Poisson regression models were established to estimate the association between the lags of weather and daily population-level mortality, adjusting for time trends. The analyses were stratified by age and sex to study differential population susceptibility. Results: We found profound associations between higher temperature and daily mortality in the Nouna HDSS, Burkina Faso. The short-term direct heat effect was particularly strong on the under-five child mortality rate. We also found independent coherent effects and strong associations between rainfall events and daily mortality, particularly in elderly populations. Conclusion: Mortality patterns in the Nouna HDSS appear to be closely related to weather conditions. Further investigation on cause-specific mortality, as well as on vulnerability and susceptibility is required. Studies on local adaptation and mitigation measures to avoid health impacts from weather and climate change is also needed to reduce negative effects from weather and climate change on population health in rural areas of the sub-Saharan Africa.

  8. The scope of the Weatherization Assistance Program: The weatherized population and the resource base

    Energy Technology Data Exchange (ETDEWEB)

    Power, M.; Eisenberg, J.F.; Michels, E. (Economic Opportunity Research Inst., Washington, DC (United States)); Witherspoon, M.J. (National Association for State Community Service Programs, Washington, DC (United States)); Brown, M.A. (Oak Ridge National Lab., TN (United States))

    1992-05-01

    This study is one of five parts of the US Department of Energy's national evaluation of its Weatherization Assistance Program (WAP). It has three major goals: (1) to enumerate the size and sources of investment in low-income weatherization; (2) to provide a count of the number of low-income units weatherized by all weatherization programs and characterized the type and tenure of those homes; and (3) to document the extent to which the DOE/WAP funding has been expanded though use of external resources.

  9. The scope of the Weatherization Assistance Program: The weatherized population and the resource base

    Energy Technology Data Exchange (ETDEWEB)

    Power, M.; Eisenberg, J.F.; Michels, E. [Economic Opportunity Research Inst., Washington, DC (United States); Witherspoon, M.J. [National Association for State Community Service Programs, Washington, DC (United States); Brown, M.A. [Oak Ridge National Lab., TN (United States)

    1992-05-01

    This study is one of five parts of the US Department of Energy`s national evaluation of its Weatherization Assistance Program (WAP). It has three major goals: (1) to enumerate the size and sources of investment in low-income weatherization; (2) to provide a count of the number of low-income units weatherized by all weatherization programs and characterized the type and tenure of those homes; and (3) to document the extent to which the DOE/WAP funding has been expanded though use of external resources.

  10. Weather Type classification over Chile; patterns, trends, and impact in precipitation and temperature

    Science.gov (United States)

    Frias, T.; Trigo, R. M.; Garreaud, R.

    2009-04-01

    The Andes Cordillera induces considerable disturbances on the structure and evolution of the pressure systems that influences South America. Different weather types for southern South America are derived from the daily maps of geopotential height at 850hPa corresponding to a 42 year period, spanning from 1958 to 2000. Here we have used the ECWMF ERA-40 reanalysis dataset to construct an automated version of the Lamb Weather type (WTs) classification scheme (Jones et al., 1993) developed for the UK. We have identified 8 basic WTs (Cyclonic, Anticyclonic and 6 main directional types) following a similar methodology to that previously adopted by Trigo and DaCamara, 2000 (for Iberia). This classification was applied to two regions of study (CLnorth and CLsouth) which differ 20° in latitude, so that the vast Chile territory could be covered. Then were assessed the impact of the occurrence of this weather types in precipitation in Chile, as well as in the distribution of precipitation and temperature fields (reanalysis data) in southern half of South America. The results allow to conclude that the precipitation in central region of Chile is largely linked with the class occurrence (concerning CLnorth) of cyclonic circulation and of West quadrant (SW, W and NW), despite of it's relatively low frequency. In CLsouth, for its part, it is verified that the most frequent circulation is from the west quadrant, although the associated amount of rainfall is lower than in CLnorth. There was also a general decrease of precipitation at local weather stations chosen in the considered period of study, particularly in austral winter.

  11. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  12. Teaching weather and climate science in primary schools - a pilot project from the UK Met Office

    Science.gov (United States)

    Orrell, Richard; Liggins, Felicity; Challenger, Lesley; Lethem, Dom; Campbell, Katy

    2017-04-01

    Wow Schools is a pilot project from the Met Office with an aim to inspire and educate the next generation of scientists and, uniquely, use the data collected by schools to improve weather forecasts and warnings across the UK. Wow Schools was launched in late 2015 with a competition open to primary schools across the UK. 74 schools entered the draw, all hoping to be picked as one of the ten lucky schools taking part in the pilot scheme. Each winning school received a fully automatic weather station (AWS), enabling them to transmit real-time local weather observations to the Met Office's Weather Observation Website (WOW - wow.metoffice.gov.uk), an award winning web portal for uploading and sharing a range of environmental observations. They were also given a package of materials designed to get students out of the classroom to observe the weather, get hands-on with the science underpinning weather forecasting, and analyse the data they are collecting. The curriculum-relevant materials were designed with the age group 7 to 11 in mind, but could be extended to support other age groups. Each school was offered a visit by a Wow Schools Ambassador (a Met Office employee) to bring the students' learning to life, and access to a dedicated forecast for its location generated by our new supercomputer. These forecasts are improved by the school's onsite AWS reinforcing the link between observations and forecast production. The Wow Schools pilot ran throughout 2016. Here, we present the initial findings of the project, examining the potential benefits and challenges of working with schools across the UK to: enrich students' understanding of the science of weather forecasting; to source an ongoing supply of weather observations and discover how these might be used in the forecasting process; and explore what materials and business model(s) would be most useful and affordable if a wider roll-out of the initiative was undertaken.

  13. Fabulous Weather Day

    Science.gov (United States)

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  14. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  15. Weatherization is a Hit in Michigan: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Michigan demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  16. Weatherization Builds on Delaware's Innovative Past: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Delaware demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  17. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    Science.gov (United States)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  18. The Effects of Heat Advection on UK Weather and Climate Observations in the Vicinity of Small Urbanized Areas

    Science.gov (United States)

    Bassett, Richard; Cai, Xiaoming; Chapman, Lee; Heaviside, Clare; Thornes, John E.

    2017-10-01

    Weather and climate networks traditionally follow rigorous siting guidelines, with individual stations located away from frost hollows, trees or urban areas. However, the diverse nature of the UK landscape suggests that the feasibility of siting stations that are truly representative of regional climate and free from distorting local effects is increasingly difficult. Whilst the urban heat island is a well-studied phenomenon and usually accounted for, the effect of warm urban air advected downwind is rarely considered, particularly at rural stations adjacent to urban areas. Until recently, urban heat advection (UHA) was viewed as an urban boundary-layer process through the formation of an urban plume that rises above the surface as it is advected. However, these dynamic UHA effects are shown to also have an impact on surface observations. Results show a significant difference in temperatures anomalies (p careful interpretation of long-term temperature data taken near small urban areas.

  19. Powernext weather, benchmark indices for effective weather risk management; Powernext Weather, des indices de reference pour gerer le risque meteo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    According to the U.S. Department of Energy, an estimated 25% of the GNP is affected by weather-related events. The variations in temperature - even small ones - can also have long-lasting effects on the operational results of a company. Among other, the Energy supply sector is sensitive to weather risks: a milder or harsher than usual winter leads to a decrease or increase of energy consumption. The price of electricity on power trading facilities like Powernext is especially sensitive to odd changes in temperatures. Powernext and Meteo-France (the French meteorological agency) have joined expertise in order to promote the use of weather indices in term of decision making or underlying of hedging tools to energy actors, end users from any other sector of activity and specialists of the weather risk hedging. The Powernext Weather indices are made from information collected by Meteo-France's main observation network according to the norms of international meteorology, in areas carefully selected. The gross data are submitted to a thorough review allowing the correction of abnormalities and the reconstitution of missing data. Each index is fashioned to take into account the economic activity in the various regions of the country as represented by each region's population. This demographic information represents a fair approximation of the weight of the regional economic activity. This document presents the Powernext/Meteo France partnership for the elaboration of efficient weather-related risk management indices. (J.S.)

  20. Enhanced seasonal predictability of the summer mean temperature in Central Europe favored by new dominant weather patterns

    Science.gov (United States)

    Hoffmann, P.

    2018-04-01

    In this study two complementary approaches have been combined to estimate the reliability of the data-driven seasonal predictability of the meteorological summer mean temperature (T_{JJA}) over Europe. The developed model is based on linear regressions and uses early season predictors to estimate the target value T_{JJA}. We found for the Potsdam (Germany) climate station that the monthly standard deviations (σ) from January to April and the temperature mean ( m) in April are good predictors to describe T_{JJA} after 1990. However, before 1990 the model failed. The core region where this model works is the north-eastern part of Central Europe. We also analyzed long-term trends of monthly Hess/Brezowsky weather types as possible causes of the dynamical changes. In spring, a significant increase of the occurrences for two opposite weather patterns was found: Zonal Ridge across Central Europe (BM) and Trough over Central Europe (TRM). Both currently make up about 30% of the total alternating weather systems over Europe. Other weather types are predominantly decreasing or their trends are not significant. Thus, the predictability may be attributed to these two weather types where the difference between the two Z500 composite patterns is large. This also applies to the north-eastern part of Central Europe. Finally, the detected enhanced seasonal predictability over Europe is alarming, because severe side effects may occur. One of these are more frequent climate extremes in summer half-year.

  1. Climate Prediction - NOAA's National Weather Service

    Science.gov (United States)

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction

  2. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Harrison, J.R.

    1982-11-01

    An overview is given of the Safety Case for the Sizewell B nuclear power station as presented in the Pre-Construction Safety Report. Information which has been made available since its publication is included. Safety is considered for normal operation of the reactor and under fault conditions. Faults considered are those due to external hazards such as earthquakes, extreme weather conditions and aircraft crashes, internal hazards such as fire and missiles and reactor faults. Reactor fault studies described include transient analyses of pressurised faults and of loss-of-coolant accidents and the evaluation of the radiological consequences of design basis faults. (U.K.)

  3. Graphical tools for TV weather presentation

    Science.gov (United States)

    Najman, M.

    2010-09-01

    Contemporary meteorology and its media presentation faces in my opinion following key tasks: - Delivering the meteorological information to the end user/spectator in understandable and modern fashion, which follows industry standard of video output (HD, 16:9) - Besides weather icons show also the outputs of numerical weather prediction models, climatological data, satellite and radar images, observed weather as actual as possible. - Does not compromise the accuracy of presented data. - Ability to prepare and adjust the weather show according to actual synoptic situtation. - Ability to refocus and completely adjust the weather show to actual extreme weather events. - Ground map resolution weather data presentation need to be at least 20 m/pixel to be able to follow the numerical weather prediction model resolution. - Ability to switch between different numerical weather prediction models each day, each show or even in the middle of one weather show. - The graphical weather software need to be flexible and fast. The graphical changes nee to be implementable and airable within minutes before the show or even live. These tasks are so demanding and the usual original approach of custom graphics could not deal with it. It was not able to change the show every day, the shows were static and identical day after day. To change the content of the weather show daily was costly and most of the time impossible with the usual approach. The development in this area is fast though and there are several different options for weather predicting organisations such as national meteorological offices and private meteorological companies to solve this problem. What are the ways to solve it? What are the limitations and advantages of contemporary graphical tools for meteorologists? All these questions will be answered.

  4. Transportable IOT measurement station for direct-broadcast satellites

    Science.gov (United States)

    Ulbricht, Michael

    A transportable 11.7-12.5-GHz flux-density measurement facility for use in the in-orbit testing (IOT) of the FRG TV-Sat direct-broadcast satellites is described. Major components include a 1.2-m-diameter antenna, the fluxmeter, a radiometer to determine atmospheric attenuation, a weather station, and a control and data-processing computer; all of the components are mounted on a 5.10 x 2.35 x 2.70-m trailer. IOT performance parameters include gain/temperature ratio 15.9 dB/K, measurement range -97 to -117 dBW/sq m, measurement accuracy less than 0.5 dB rms, and measurement rate 250-650 msec. Photographs and a block diagram are provided.

  5. Road weather information for travelers : improving road weather messages and dissemination methods.

    Science.gov (United States)

    2010-01-01

    The Federal Highway Administration (FHWA) Road Weather Management Program (RWMP) recently completed a study titled Human Factors Analysis of Road Weather Advisory and Control Information (Publication No. FHWAJPO- 10-053). The goal of the study was to...

  6. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  7. Comparison of Microclimate Simulated weather data to ASHRAE Clear Sky Model and Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Bhandari, Mahabir S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-01

    In anticipation of emerging global urbanization and its impact on microclimate, a need exists to better understand and quantify microclimate effects on building energy use. Satisfaction of this need will require coordinated research of microclimate impacts on and from “human systems.” The Urban Microclimate and Energy Tool (Urban-MET) project seeks to address this need by quantifying and analyzing the relationships among climatic conditions, urban morphology, land cover, and energy use; and using these relationships to inform energy-efficient urban development and planning. Initial research will focus on analysis of measured and modeled energy efficiency of various building types in selected urban areas and temporal variations in energy use for different urban morphologies under different microclimatic conditions. In this report, we analyze the differences between microclimate weather data sets for the Oak Ridge National Laboratory campus produced by ENVI-met and Weather Research Forecast (WRF) models, the ASHRAE clear sky which defines the maximum amounts of solar radiation that can be expected, and measured data from a weather station on campus. Errors with climate variables and their impact on building energy consumption will be shown for the microclimate simulations to help prioritize future improvement for use in microclimate simulation impacts to energy use of buildings.

  8. The Joint Airport Weather Studies Project - Current analysis highlights in the aviation safety context

    Science.gov (United States)

    Mccarthy, J.

    1984-01-01

    The principal objective of the Joint Airport Weather Studies Project was to obtain high-resolution velocity, turbulence, and thermodynamic data on a convective outflow called a microburst, an intense downdraft and resulting horizontal outflow near the surface. Data collection occurred during the summer of 1982 near Denver, CO. Data sensors included three pulsed-microwave Doppler and two pulsed CO2 lidar radars, along with 27 Portable Automated Mesonet surface weather stations, the FAA's low-level-wind-shear alert system (LLWSAS), and five instrumented research aircraft. Convective storms occurred on 75 of 91 operational days, with Doppler data being collected on at least 70 microbursts. Analyses reported included a thorough examination of microburst-climatology statistics, the capability of the LLWSAS to detect adequately and accurately the presence of low-altitude wind shear danger to aircraft, the capability of a terminal Doppler radar system development to provide improved wind-shear detection and warning, and progress toward improved wind-shear training for pilots.

  9. Pilot's Automated Weather Support System (PAWSS) concepts demonstration project. Phase 1: Pilot's weather information requirements and implications for weather data systems design

    Science.gov (United States)

    Crabill, Norman L.; Dash, Ernie R.

    1991-01-01

    The weather information requirements for pilots and the deficiencies of the current aviation weather support system in meeting these requirements are defined. As the amount of data available to pilots increases significantly in the near future, expert system technology will be needed to assist pilots in assimilating that information. Some other desirable characteristics of an automation-assisted system for weather data acquisition, dissemination, and assimilation are also described.

  10. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    Flux stations have been widely used to monitor emission rates of CO2 from various ecosystems for climate research for over 30 years [1]. The stations provide accurate and continuous measurements of CO2 emissions with high temporal resolution. Time scales range from 20 times per second for gas concentrations, to 15-minute, hourly, daily, and multi-year periods. The emissions are measured from the upwind area ranging from thousands of square meters to multiple square kilometers, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in emissions due to weather events, as well as changes caused by variations in human-triggered events (pressure leaks, control releases, etc.). Stations can also detect any slow changes related to seasonal dynamics and human-triggered low-frequency processes (leakage diffusion, etc.). In the past, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular research group. In the last 3-5 years, due to significant efforts of global and regional CO2 monitoring networks (e.g., FluxNet, Ameriflux, Carbo-Europe, ICOS, etc.) and technological developments, the flux station methodology became fairly standardized and processing protocols became quite uniform [1]. A majority of current stations compute CO2 emission rates using the eddy covariance method, one of the most direct and defensible micrometeorological techniques [1]. Presently, over 600 such flux stations are in operation in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, and airplanes). Atmospheric monitoring of emission rates using such stations is now recognized as an effective method in regulatory and industrial applications, including carbon storage [2-8]. Emerging projects utilize flux stations to continuously monitor large areas before and after the injections, to locate and

  11. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  12. Monitoring jonosfere i svemirskog vremena u Bosni i Hercegovini : Monitoring of ionosphere and space weather in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Džana Horozović

    2015-12-01

    Full Text Available Zbog svoje disperzivne prirode, jonosfera uzrokuje kašnjenje koda, odnosno ubrzanje faze signala Globalnih navigacijskih satelitskih sistema - GNSS. Usprkos napretku metoda GNSS pozicioniranja, jonosferska refrakcija je još uvijek jedan od najvećih izvora pogrešaka geodetskog pozicioniranja i navigacije. Različiti fenomeni svemirskog vremena, kao: solarni vjetar, geomagnetna oluja, solarna radijacija, može oštetiti GNSS satelite, dalekovode i elektrodistributivnu mrežu, itd. Zato je važno ustanoviti metode istraživanja i monitoringa svemirskog vremena. Istraživanje jonosfere i svemirskog vremena je predmet ovog rada. Opisan je postupak konstruiranja SID (engl. sudden ionospheric disturbances – iznenadne jonosferske smetnje monitora. Analiza je pokazala da je jonosferska monitoring stanica u Sarajevu SRJV_ION 0436 sposobna otkriti pojačano zračenje. : Due to its dispersive nature, ionosphere causes a group delay or phase acceleration of the signals from Global navigation satellite systems - GNSS. Despite the progress of GNSS positioning methods, the ionospheric refraction is still one of the greatest source of the errors in the geodetic positioning and navigation. Different phenomenons oft he space weather: solar wind, geomagnetic storm, solar radiation, can damage GNSS, and electric power distribution networks but That is why it's important to establish research and monitoring methods of the space weather. The subject of this paper is the investigation of ionosphere and space weather. Procedure of constructing a SID (engl. Sudden ionospheric disturbances monitor station are described. The analysis showed that ionosphere monitoring station in Sarajevo, SRJV_ION 0436, was able to detect increased solar radiation.

  13. GNSS monitoring of the ionosphere for Space Weather services

    Science.gov (United States)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  14. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  15. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  16. A 17-year Record of Meteorological Observations Across the Gran Campo Nevado Ice Cap in Southern Patagonia, Chile, Related to Synoptic Weather Types and Climate Modes

    Directory of Open Access Journals (Sweden)

    Stephanie S. Weidemann

    2018-05-01

    Full Text Available The network of long-term meteorological observations in Southernmost Patagonia is still sparse but crucial to improve our understanding of climatic variability, in particular in the more elevated and partially glaciated Southernmost Andes. Here we present a unique 17-year meteorological record (2000–2016 of four automatic weather stations (AWS across the Gran Campo Nevado Ice Cap (53°S in the Southernmost Andes (Chile and the conventional weather station Jorge Schythe of the Instituto de la Patagonia in Punta Arenas for comparison. We revisit the relationship between in situ observations and large-scale climate models as well as mesoscale weather patterns. For this purpose, a 37-year record of ERA Interim Reanalysis data has been used to compute a weather type classification based on a hierarchical correlation-based leader algorithm. The orographic perturbation on the predominantly westerly airflow determines the hydroclimatic response across the mountain range, leading to significant west-east gradients of precipitation, air temperature and humidity. Annual precipitation sums heavily drop within only tens of kilometers from ~7,500 mm a−1 to less than 800 mm a−1. The occurrence of high precipitation events of up to 620 mm in 5 days and wet spells of up to 61 consecutive days underscore the year-around wet conditions in the Southernmost Andes. Given the strong link between large-scale circulation and orographically controlled precipitation, the synoptic-scale weather conditions largely determine the precipitation and temperature variability on all time scales. Major synoptic weather types with distinct low-pressure cells in the Weddell Sea or Bellingshausen Sea, causing a prevailing southwesterly, northwesterly or westerly airflow, determine the weather conditions in Southernmost Patagonia during 68% of the year. At Gran Campo Nevado, more than 80% of extreme precipitation events occur during the persistence of these weather types. The

  17. A Method for Correlation of Gravestone Weathering and Air Quality (SO2), West Amidlands, UK

    Science.gov (United States)

    Carlson, Michael John

    From the beginning of the Industrial Revolution through the environmental revolution of the 1970s Britain suffered the effects of poor air quality primarily from particulate matter and acid in the form of NOx and SO x compounds. Air quality stations across the region recorded SO 2 beginning in the 1960s however the direct measurement of air quality prior to 1960 is lacking and only anecdotal notations exist. Proxy records including lung tissue samples, particulates in sediments cores, lake acidification studies and gravestone weathering have all been used to reconstruct the history of air quality. A 120-year record of acid deposition reconstructed from lead-lettered marble gravestone weathering combined with SO2 measurements from the air monitoring network across the West Midlands, UK region beginning in the 1960s form the framework for this study. The study seeks to create a spatial and temporal correlation between the gravestone weathering and measured SO 2. Successful correlation of the dataset from 1960s to the 2000s would allow a paleo-air quality record to be generated from the 120-year record of gravestone weathering. Decadal gravestone weathering rates can be estimated by non-linear regression analysis of stone loss at individual cemeteries. Gravestone weathering rates are interpolated across the region through Empirical Bayesian Kriging (EBK) methods performed through ArcGISRTM and through a land use based approach based on digitized maps of land use. Both methods of interpolation allow for the direct correlation of gravestone weathering and measured SO2 to be made. Decadal scale correlations of gravestone weathering rates and measured SO2 are very weak and non-existent for both EBK and the land use based approach. Decadal results combined together on a larger scale for each respective method display a better visual correlation. However, the relative clustering of data at lower SO2 concentrations and the lack of data at higher SO2 concentrations make the

  18. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  19. "Share weather" : Design and evaluation of a new concept for sharing weather information

    OpenAIRE

    Elevant, Katarina

    2013-01-01

    Already centuries ago, humans had observed the weather in their everyday lives, seeking ways to understand, comprehend, and predict it. Until the present day, weather has had tremendous impacts on our lives and with climate change human civilizations as well. With new media technologies weather constitutes a part of the information services used by many residents of modern cities, people and businesses worldwide. The rise of Web 2.0, a cyberspace where individuals may connect and interact und...

  20. Exploring the Architectural Tradespace of Severe Weather Monitoring Nanosatellite Constellations

    Science.gov (United States)

    Hitomi, N.; Selva, D.; Blackwell, W. J.

    2014-12-01

    MicroMAS-1, a 3U nanosatellite developed by MIT/LL, MIT/SSL, and University of Massachusetts, was launched on July 13, 2014 and is scheduled for deployment from the International Space Station in September. The development of MicroMAS motivates an architectural analysis of a constellation of nanosatellites with the goal of drastically reducing the cost of observing severe storms compared with current monolithic missions such as the Precision and All-Weather Temperature and Humidity (PATH) mission from the NASA Decadal Survey. Our goal is to evolve the instrument capability on weather monitoring nanosatellites to achieve higher performance and better satisfy stakeholder needs. Clear definitions of performance requirements are critical in the conceptual design phase when much of the project's lifecycle cost and performance will be fixed. Ability to perform trade studies and optimization of performance needs with instrument capability will enable design teams to focus on key technologies that will introduce high value and high return on investment. In this work, we approach the significant trades and trends of constellations for monitoring severe storms by applying our rule-based decision support tool. We examine a subset of stakeholder groups listed in the OSCAR online database (e.g., weather, climate) that would benefit from severe storm weather data and their respective observation requirements (e.g. spatial resolution, accuracy). We use ten parameters in our analysis, including atmospheric temperature, humidity, and precipitation. We compare the performance and cost of thousands of different possible constellations. The constellations support hyperspectral sounders that cover different portions of the millimeter-wave spectrum (50-60 GHz, 118GHz, 183GHz) in different orbits, and the performance results are compared against those of the monolithic PATH mission. Our preliminary results indicate that constellations using the hyperspectral millimeter wave sounders can

  1. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  2. Weather Augmented Risk Determination (WARD) System

    Science.gov (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  3. Analysis of antenna position measurements and weather station network data during the ALMA long baseline campaign of 2015

    Science.gov (United States)

    Hunter, Todd R.; Lucas, Robert; Broguière, Dominique; Fomalont, Ed B.; Dent, William R. F.; Phillips, Neil; Rabanus, David; Vlahakis, Catherine

    2016-07-01

    In a radio interferometer, the geometrical antenna positions are determined from measurements of the observed delay to each antenna from observations across the sky of many point sources whose positions are known to high accuracy. The determination of accurate antenna positions relies on accurate calibration of the dry and wet delay of the atmosphere above each antenna. For the Atacama Large Millimeter/Submillimeter Array (ALMA), with baseline lengths up to 15 kilometers, the geography of the site forces the height above mean sea level of the more distant antenna pads to be significantly lower than the central array. Thus, both the ground level meteorological values and the total water column can be quite different between antennas in the extended configurations. During 2015, a network of six additional weather stations was installed to monitor pressure, temperature, relative humidity and wind velocity, in order to test whether inclusion of these parameters could improve the repeatability of antenna position determinations in these configurations. We present an analysis of the data obtained during the ALMA Long Baseline Campaign of October through November 2015. The repeatability of antenna position measurements typically degrades as a function of antenna distance. Also, the scatter is more than three times worse in the vertical direction than in the local tangent plane, suggesting that a systematic effect is limiting the measurements. So far we have explored correcting the delay model for deviations from hydrostatic equilibrium in the measured air pressure and separating the partial pressure of water from the total pressure using water vapor radiometer (WVR) data. Correcting for these combined effects still does not provide a good match to the residual position errors in the vertical direction. One hypothesis is that the current model of water vapor may be too simple to fully remove the day-to-day variations in the wet delay. We describe possible new avenues of

  4. Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data

    Science.gov (United States)

    Moore, Angelyn W.; Webb, Frank H.; Fishbein, Evan F.; Fielding, Eric J.; Owen, Susan E.; Granger, Stephanie L.; Bjoerndahl, Fredrik; Loefgren, Johan; Fang, Peng; Means, James D.; hide

    2013-01-01

    Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected data

  5. The Impact of Climatological Conditions on Low Enriched Uranium Loading Station Operations for the HEU Blend Down Project

    International Nuclear Information System (INIS)

    Chang, R.C.

    2002-01-01

    A computer model was developed using COREsim to perform a time motion study for the Low Enriched Uranium (LEU) Loading Station operations. The project is to blend Highly Enriched Uranium (HEU) with Natural Uranium (NU) to produce LEU to be shipped to Tennessee Valley Authority (TVA) for further processing. To cope with a project cost reduction, the LEU Loading Station concept has changed from an enclosed building with air-conditioning to a partially enclosed building without air conditioning. The LEU Loading Station is within a radiological contaminated area; two pairs of coveralls and negative pressure respirator are required. As a result, inclement weather conditions, especially heat stress, will affect and impact the LEU loading operations. The purposes of the study are to determine the climatological impacts on LEU Loading operations, resources required for committed throughputs, and to find out the optimum process pathways for multi crews working simultaneously in the space-lim ited LEU Loading Station

  6. Using C-Band Dual-Polarization Radar Signatures to Improve Convective Wind Forecasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center

    Science.gov (United States)

    Amiot, Corey G.; Carey, Lawrence D.; Roeder, William P.; McNamara, Todd M.; Blakeslee, Richard J.

    2017-01-01

    The United States Air Force's 45th Weather Squadron (45WS) is the organization responsible for monitoring atmospheric conditions at Cape Canaveral Air Force Station and NASA Kennedy Space Center (CCAFS/KSC) and issuing warnings for hazardous weather conditions when the need arises. One such warning is issued for convective wind events, for which lead times of 30 and 60 minutes are desired for events with peak wind gusts of 35 knots or greater (i.e., Threshold-1) and 50 knots or greater (i.e., Threshold-2), respectively (Roeder et al. 2014).

  7. Wildland fire as a self-regulating mechanism: the role of previous burns and weather in limiting fire progression.

    Science.gov (United States)

    Parks, Sean A; Holsinger, Lisa M; Miller, Carol; Nelson, Cara R

    2015-09-01

    Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-process feedback between vegetation and fire exist, they have been geographically limited or did not consider the influence of time between fires and weather. The availability of remotely sensed data identifying fire activity over the last four decades provides an opportunity to explicitly quantify-the ability of wildland fire to limit the progression of subsequent fire. Furthermore, advances in fire progression mapping now allow an evaluation of how daily weather as a top-down control modifies this effect. In this study, we evaluated the ability of wildland fire to create barriers that limit the spread of subsequent fire along a gradient representing time between fires in four large study areas in the western United States. Using fire progression maps in conjunction with weather station data, we also evaluated the influence of daily weather. Results indicate that wildland fire does limit subsequent fire spread in all four study areas, but this effect decays over time; wildland fire no longer limits subsequent fire spread 6-18 years after fire, depending on the study area. We also found that the ability of fire to regulate, subsequent fire progression was substantially reduced under extreme conditions compared to moderate weather conditions in all four study areas. This study increases understanding of the spatial feedbacks that can lead to self-regulating landscapes as well as the effects of top-down controls, such as weather, on these feedbacks. Our results will be useful to managers who seek to restore natural fire regimes or to exploit recent burns when managing fire.

  8. Taking Weatherization to New Heights in Colorado: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Colorado demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  9. Weatherization is a Natural Choice for Montana: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Montana demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  10. Weatherization is a Natural Choice for Montana: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Montana demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  11. Weatherization Sails on Maryland's Legacy of Innovation: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Maryland demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  12. Weatherization Plays a Starring Role in Mississippi: Weatherization Assistance Close-Up Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    D& R International

    2001-10-10

    Mississippi demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  13. EVALUATION OF DRIVER VISIBILITY FROM MOBILE LIDAR DATA AND WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    H. González-Jorge

    2016-06-01

    Full Text Available Visibility of drivers is crucial to ensure road safety. Visibility is influenced by two main factors, the geometry of the road and the weather present therein. The present work depicts an approach for automatic visibility evaluation using mobile LiDAR data and climate information provided from weather stations located in the neighbourhood of the road. The methodology is based on a ray-tracing algorithm to detect occlusions from point clouds with the purpose of identifying the visibility area from each driver position. The resulting data are normalized with the climate information to provide a polyline with an accurate area of visibility. Visibility ranges from 25 m (heavy fog to more than 10,000 m (clean atmosphere. Values over 250 m are not taken into account for road safety purposes, since this value corresponds to the maximum braking distance of a vehicle. Two case studies are evaluated an urban road in the city of Vigo (Spain and an inter-urban road between the city of Ourense and the village of Castro Caldelas (Spain. In both cases, data from the Galician Weather Agency (Meteogalicia are used. The algorithm shows promising results allowing the detection of particularly dangerous areas from the viewpoint of driver visibility. The mountain road between Ourense and Castro Caldelas, with great presence of slopes and sharp curves, shows special interest for this type of application. In this case, poor visibility can especially contribute to the run over of pedestrians or cyclists traveling on the road shoulders.

  14. An Intelligent Weather Station

    Science.gov (United States)

    Mestre, Gonçalo; Ruano, Antonio; Duarte, Helder; Silva, Sergio; Khosravani, Hamid; Pesteh, Shabnam; Ferreira, Pedro M.; Horta, Ricardo

    2015-01-01

    Accurate measurements of global solar radiation, atmospheric temperature and relative humidity, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight, self-powered and portable sensor was developed, using a nearest-neighbors (NEN) algorithm and artificial neural network (ANN) models as the time-series predictor mechanisms. The hardware and software design of the implemented prototype are described, as well as the forecasting performance related to the three atmospheric variables, using both approaches, over a prediction horizon of 48-steps-ahead. PMID:26690433

  15. An Intelligent Weather Station

    Directory of Open Access Journals (Sweden)

    Gonçalo Mestre

    2015-12-01

    Full Text Available Accurate measurements of global solar radiation, atmospheric temperature and relative humidity, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight, self-powered and portable sensor was developed, using a nearest-neighbors (NEN algorithm and artificial neural network (ANN models as the time-series predictor mechanisms. The hardware and software design of the implemented prototype are described, as well as the forecasting performance related to the three atmospheric variables, using both approaches, over a prediction horizon of 48-steps-ahead.

  16. Impact of space weather on human heart rate during the years 2011-2013

    Science.gov (United States)

    Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K.

    2017-08-01

    During the last years a possible link between different levels of solar and geomagnetic disturbances and human physiological parameters is suggested by several published studies. In this work the examination of the potential association between heart rate variations and specific space weather activities was performed. A total of 482 individuals treated at Hippocratio General Hospital in Athens, the Cardiology clinics of Nikaia General Hospital in Piraeus and the Heraklion University Hospital in Crete, Greece, were assessed from July 2011 to April 2013. The heart rate of the individuals was recorded by a Holter monitor on a n hourly basis, while the hourly variations of the cosmic ray intensity measured by the Neutron Monitor Station of the Athens University and of the geomagnetic index Dst provided by the Kyoto Observatory were used. The ANalysis Of VAriance (ANOVA) and the Multiple Linear Regression analysis were used for analysis of these data. A statistically significant effect of both cosmic rays and geomagnetic activity on heart rate was observed, which may indicate that changes in space weather could be linked to heart rate variations.

  17. Weatherization Savings Takes Root in New Mexico: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    New Mexico demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  18. AWE: Aviation Weather Data Visualization Environment

    Science.gov (United States)

    Spirkovska, Lilly; Lodha, Suresh K.; Norvig, Peter (Technical Monitor)

    2000-01-01

    Weather is one of the major causes of aviation accidents. General aviation (GA) flights account for 92% of all the aviation accidents, In spite of all the official and unofficial sources of weather visualization tools available to pilots, there is an urgent need for visualizing several weather related data tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment AWE), presents graphical displays of meteorological observations, terminal area forecasts, and winds aloft forecasts onto a cartographic grid specific to the pilot's area of interest. Decisions regarding the graphical display and design are made based on careful consideration of user needs. Integral visual display of these elements of weather reports is designed for the use of GA pilots as a weather briefing and route selection tool. AWE provides linking of the weather information to the flight's path and schedule. The pilot can interact with the system to obtain aviation-specific weather for the entire area or for his specific route to explore what-if scenarios and make "go/no-go" decisions. The system, as evaluated by some pilots at NASA Ames Research Center, was found to be useful.

  19. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  20. Evaluation of the new French operational weather radar product for the field of urban hydrology

    OpenAIRE

    EMMANUEL, Isabelle; ANDRIEU, Hervé; TABARY, P

    2012-01-01

    The main objective of this paper is to evaluate, at the urban scale, the accuracy of the new French operational radar processing chain deployed within the French operational weather radar network. Such an evaluation is conducted by comparing radar data resulting from this processing chain (with a 1-km² resolution) to rain gauge data at four different time scales, i.e. 5,15, 30 and 60 min. These data are supplied by the Trappes Radar Station, located 30 km southwest of Paris. A total of 69 rai...

  1. Assessing Weather Curiosity in University Students

    Science.gov (United States)

    Stewart, A. E.

    2017-12-01

    This research focuses upon measuring an individual's level of trait curiosity about the weather using the Weather Curiosity Scale (WCS). The measure consists of 15 self-report items that describe weather preferences and/or behaviors that people may perform more or less frequently. The author reports on two initial studies of the WCS that have used the responses of 710 undergraduate students from a large university in the southeastern United States. In the first study, factor analysis of the 15 items indicated that the measure was unidimensional - suggesting that its items singularly assessed weather curiosity. The WCS also was internally consistent as evidenced by an acceptable Cronbach's alpha, a = .81). The second study sought to identify other personality variables that may relate with the WCS scores and thus illuminate the nature of weather curiosity. Several clusters of personality variables appear to underlie the curiosity levels people exhibited, the first of which related to perceptual curiosity (r = .59). Being curious about sights, sounds, smells, and textures generally related somewhat to curiosity about weather. Two measures of trait sensitivity to environmental stimulation, the Highly Sensitive Person Scale (r = .47) and the Orientation Sensitivity Scale of the Adult Temperament Questionnaire (r = .43), also predicted weather curiosity levels. Finally, possessing extraverted personality traits (r = .34) and an intense style of experiencing one's emotions (r = .33) related to weather curiosity. How can this measure be used in K-12 or post-secondary settings to further climate literacy? First, the WCS can identify students with natural curiosities about weather and climate so these students may be given more challenging instruction that will leverage their natural interests. Second, high-WCS students may function as weather and climate ambassadors during inquiry-based learning activities and thus help other students who are not as oriented to the

  2. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    Science.gov (United States)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  3. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    Science.gov (United States)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  4. New Technologies for Weather Accident Prevention

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  5. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... English Español Can the Weather Affect My Child's Asthma? KidsHealth / For Parents / Can the Weather Affect My ... Asthma? Print Can the Weather Affect My Child's Asthma? Yes. Weather conditions can bring on asthma symptoms. ...

  6. NWS Weather Fatality, Injury and Damage Statistics

    Science.gov (United States)

    ... Weather Awareness Floods, Wind Chill, Tornadoes, Heat... Education Weather Terms, Teachers, Statistics government web resources and services. Natural Hazard Statistics Statistics U.S. Summaries 78-Year List of Severe Weather Fatalities Preliminary Hazardous Weather Statistics for 2017 Now

  7. ... AND HERE COMES THE WEATHER - Austrian TV and radio weather news in the eye of the public

    Science.gov (United States)

    Keul, A.; Holzer, A. M.; Wostal, T.

    2010-09-01

    Media weather reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although weather reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-weather and a storm situation. It identified the importance of intelligible wording of the weather forecast messages for lay people. Without quality control, weather information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV weather, seems justified. This need for further research was addressed by a second and larger field experiment in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio weather reports were used and a more realistic listening and viewing situation was created by presenting the latest weather forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the weather reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The weather media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in weather forecasts or even meteorological terms, which might also be important for fully understanding the severe weather warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV weather reports a narrow compromise between general

  8. A Severe Weather Laboratory Exercise for an Introductory Weather and Climate Class Using Active Learning Techniques

    Science.gov (United States)

    Grundstein, Andrew; Durkee, Joshua; Frye, John; Andersen, Theresa; Lieberman, Jordan

    2011-01-01

    This paper describes a new severe weather laboratory exercise for an Introductory Weather and Climate class, appropriate for first and second year college students (including nonscience majors), that incorporates inquiry-based learning techniques. In the lab, students play the role of meteorologists making forecasts for severe weather. The…

  9. Meteorological observations at Syowa Station, Antarctica, 2008 by the 49th Japanese Antarctic Research Expedition

    Directory of Open Access Journals (Sweden)

    Hideshi Yoshimi

    2013-07-01

    Full Text Available This report describes the result of meteorological observations at Syowa Station by the Meteorological Observation Team of the 49th Japanese Antarctic Research Expedition (JARE-49 during the period 1 February 2008 to 27 January 2009. The observation methods, instruments, and statistical methods used by the JARE-49 team are nearly the same as those used by the JARE-48 observation team. Remarkable weather phenomena observed during the period of JARE-49 are as follows. 1 On 1 September 2008, the record minimum temperature for September was observed in the upper atmosphere (pressure greater than 175 hPa. 2 The monthly mean temperature at Syowa Station during October 2008 was -17.5°C; this is the lowest monthly mean October temperature recorded at Syowa Station. 3 The total ozone over Syowa Station was less than or equal to 220 m atm-cm during the period from late August to late November, and was close to minimum levels during the period from mid-September to mid-October. The lowest total ozone in 2008, recorded on 16 October 2008, was 140 m atm-cm.

  10. Integrating K-means Clustering with Kernel Density Estimation for the Development of a Conditional Weather Generation Downscaling Model

    Science.gov (United States)

    Chen, Y.; Ho, C.; Chang, L.

    2011-12-01

    In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the

  11. Engaging Earth- and Environmental-Science Undergraduates Through Weather Discussions and an eLearning Weather Forecasting Contest

    Science.gov (United States)

    Schultz, David M.; Anderson, Stuart; Seo-Zindy, Ryo

    2013-06-01

    For students who major in meteorology, engaging in weather forecasting can motivate learning, develop critical-thinking skills, improve their written communication, and yield better forecasts. Whether such advances apply to students who are not meteorology majors has been less demonstrated. To test this idea, a weather discussion and an eLearning weather forecasting contest were devised for a meteorology course taken by third-year undergraduate earth- and environmental-science students. The discussion consisted of using the recent, present, and future weather to amplify the topics of the week's lectures. Then, students forecasted the next day's high temperature and the probability of precipitation for Woodford, the closest official observing site to Manchester, UK. The contest ran for 10 weeks, and the students received credit for participation. The top students at the end of the contest received bonus points on their final grade. A Web-based forecast contest application was developed to register the students, receive their forecasts, and calculate weekly standings. Students who were successful in the forecast contest were not necessarily those who achieved the highest scores on the tests, demonstrating that the contest was possibly testing different skills than traditional learning. Student evaluations indicate that the weather discussion and contest were reasonably successful in engaging students to learn about the weather outside of the classroom, synthesize their knowledge from the lectures, and improve their practical understanding of the weather. Therefore, students taking a meteorology class, but not majoring in meteorology, can derive academic benefits from weather discussions and forecast contests. Nevertheless, student evaluations also indicate that better integration of the lectures, weather discussions, and the forecasting contests is necessary.

  12. Predictability of extreme weather events for NE U.S.: improvement of the numerical prediction using a Bayesian regression approach

    Science.gov (United States)

    Yang, J.; Astitha, M.; Anagnostou, E. N.; Hartman, B.; Kallos, G. B.

    2015-12-01

    Weather prediction accuracy has become very important for the Northeast U.S. given the devastating effects of extreme weather events in the recent years. Weather forecasting systems are used towards building strategies to prevent catastrophic losses for human lives and the environment. Concurrently, weather forecast tools and techniques have evolved with improved forecast skill as numerical prediction techniques are strengthened by increased super-computing resources. In this study, we examine the combination of two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) by utilizing a Bayesian regression approach to improve the prediction of extreme weather events for NE U.S. The basic concept behind the Bayesian regression approach is to take advantage of the strengths of two atmospheric modeling systems and, similar to the multi-model ensemble approach, limit their weaknesses which are related to systematic and random errors in the numerical prediction of physical processes. The first part of this study is focused on retrospective simulations of seventeen storms that affected the region in the period 2004-2013. Optimal variances are estimated by minimizing the root mean square error and are applied to out-of-sample weather events. The applicability and usefulness of this approach are demonstrated by conducting an error analysis based on in-situ observations from meteorological stations of the National Weather Service (NWS) for wind speed and wind direction, and NCEP Stage IV radar data, mosaicked from the regional multi-sensor for precipitation. The preliminary results indicate a significant improvement in the statistical metrics of the modeled-observed pairs for meteorological variables using various combinations of the sixteen events as predictors of the seventeenth. This presentation will illustrate the implemented methodology and the obtained results for wind speed, wind direction and precipitation, as well as set the research steps that will be

  13. Regional-seasonal weather forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  14. Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration

    Science.gov (United States)

    Shiri, Jalal; Nazemi, Amir Hossein; Sadraddini, Ali Ashraf; Landeras, Gorka; Kisi, Ozgur; Fard, Ahmad Fakheri; Marti, Pau

    2013-02-01

    SummaryAccurate estimation of reference evapotranspiration is important for irrigation scheduling, water resources management and planning and other agricultural water management issues. In the present paper, the capabilities of generalized neuro-fuzzy models were evaluated for estimating reference evapotranspiration using two separate sets of weather data from humid and non-humid regions of Spain and Iran. In this way, the data from some weather stations in the Basque Country and Valencia region (Spain) were used for training the neuro-fuzzy models [in humid and non-humid regions, respectively] and subsequently, the data from these regions were pooled to evaluate the generalization capability of a general neuro-fuzzy model in humid and non-humid regions. The developed models were tested in stations of Iran, located in humid and non-humid regions. The obtained results showed the capabilities of generalized neuro-fuzzy model in estimating reference evapotranspiration in different climatic zones. Global GNF models calibrated using both non-humid and humid data were found to successfully estimate ET0 in both non-humid and humid regions of Iran (the lowest MAE values are about 0.23 mm for non-humid Iranian regions and 0.12 mm for humid regions). non-humid GNF models calibrated using non-humid data performed much better than the humid GNF models calibrated using humid data in non-humid region while the humid GNF model gave better estimates in humid region.

  15. Weather Derivatives – Origin, Types and Application

    OpenAIRE

    Piotr Binkowski

    2008-01-01

    The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europ...

  16. Weatherization in Arkansas: A Gem of a Program: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    Arkansas demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  17. Weather Derivatives – Origin, Types and Application

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-01-01

    Full Text Available The number of companies that are exposed to the revenues loss risk caused by weather variability is still increasing. The businesses that are mostly exposed to weather risk are following: energy, agriculture, constructions and transport. That situation has initiated dynamic growth of weather derivatives markets as well as the awareness of the weather risk among the market participants. Presently, the weather derivatives markets evaluate rapidly in all the mature economies: USA, Asia and Europe. Constructing weather derivatives relies on qu- antifying climate factors in the form of indexes, what is quite simple task, more difficultly can be gathering precise historical data of required climate factors. Taking into consideration so far development of derivatives especially the financial derivatives based on different types of indexes financial market has at disposal wide range of different types of proved derivatives (futures, forward, options, swaps, which can be successfully utilised on the weather-driven markets both for hedging weather risk and speculating.

  18. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore...

  19. Tales of future weather

    NARCIS (Netherlands)

    Hazeleger, W.; Van den Hurk, B.J.J.M.; Min, E.; Van Oldenborgh, G.J.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A.

    2015-01-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The

  20. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  1. The Spirit of North Dakota: Alive in Weatherization; Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    North Dakota demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  2. A Tribute to Weatherization Solutions in South Dakota: Weatherization Assistance Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    South Dakota demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  3. Integrating Sphere-based Weathering Device

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...

  4. Accelerated laboratory weathering of acrylic lens materials

    Science.gov (United States)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  5. 36 CFR 910.71 - Weather protection.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Weather protection. 910.71 Section 910.71 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL... DEVELOPMENT AREA Glossary of Terms § 910.71 Weather protection. Weather protection means a seasonal or...

  6. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  7. Earth aeolian wind streaks: Comparison to wind data from model and stations

    Science.gov (United States)

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  8. Weather, day length and physical activity in older adults: Cross-sectional results from the European Prospective Investigation into Cancer and Nutrition (EPIC Norfolk Cohort.

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Wu

    Full Text Available A wide range of environmental factors have been related to active ageing, but few studies have explored the impact of weather and day length on physical activity in older adults. We investigate the cross-sectional association between weather conditions, day length and activity in older adults using a population-based cohort in England, the European Prospective Investigation into Cancer and Nutrition (EPIC Norfolk study.Physical activity was measured objectively over 7 days using an accelerometer and this was used to calculate daily total physical activity (counts per minute, daily minutes of sedentary behaviour and light, moderate and vigorous physical activity (LMVPA. Day length and two types of weather conditions, precipitation and temperature, were obtained from a local weather station. The association between these variables and physical activity was examined by multilevel first-order autoregressive modelling.After adjusting for individual factors, short day length and poor weather conditions, including high precipitation and low temperatures, were associated with up to 10% lower average physical activity (p<0.01 and 8 minutes less time spent in LMVPA but 15 minutes more sedentary time, compared to the best conditions.Day length and weather conditions appear to be an important factor related to active ageing. Future work should focus on developing potential interventions to reduce their impact on physical activity behaviours in older adults.

  9. Geography and Weather: Mountain Meterology.

    Science.gov (United States)

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  10. Using Artificial Intelligence to Inform Pilots of Weather

    Science.gov (United States)

    Spirkovska, Lilly; Lodha, Suresh K.

    2006-01-01

    An automated system to assist a General Aviation (GA) pilot in improving situational awareness of weather in flight is now undergoing development. This development is prompted by the observation that most fatal GA accidents are attributable to loss of weather awareness. Loss of weather awareness, in turn, has been attributed to the difficulty of interpreting traditional preflight weather briefings and the difficulty of both obtaining and interpreting traditional in-flight weather briefings. The developmental automated system not only improves weather awareness but also substantially reduces the time a pilot must spend in acquiring and maintaining weather awareness.

  11. Trends of air pollution in Denmark - Normalised by a simple weather index model

    International Nuclear Information System (INIS)

    Kiilsholm, S.; Rasmussen, A.

    2000-01-01

    This report is a part of the Traffic Pool projects on 'Traffic and Environments', 1995-99, financed by the Danish Ministry of Transport. The Traffic Pool projects included five different projects on 'Surveillance of the Air Quality', 'Atmospheric Modelling', 'Atmospheric Chemistry Modelling', 'Smog and ozone' and 'Greenhouse effects and Climate', [Rasmussen, 2000]. This work is a part of the project on 'Surveillance of the Air Quality' with the main objectives to make trend analysis of levels of air pollution from traffic in Denmark. Other participants were from the Road Directory mainly focusing on measurement of traffic and trend analysis of the air quality utilising a nordic model for the air pollution in street canyons called BLB (Beregningsmodel for Luftkvalitet i Byluftgader) [Vejdirektoratet 2000], National Environmental Research Institute (HERI) mainly focusing on. measurements of air pollution and trend analysis with the Operational Street Pollution Model (OSPM) [DMU 2000], and the Copenhagen Environmental Protection Agency mainly focusing on measurements. In this study a more simple statistical model has been developed for trend analysis of the air quality. The model is filtering out the influence of the variations from year to year in the meteorological conditions on the air pollution levels. The weather factors found most important are wind speed, wind direction and mixing height. Measurements of CO, NO and NO 2 from three streets in Copenhagen have been used, these streets are Jagtvej, Bredgade and H. C. Andersen's Boulevard (HCAB). The years 1994-1996 were used for evaluation of the method and annual indexes of air pollution index dependent only on meteorological parameters, called WEATHIX, were calculated for the years 1990-1997 and used for normalisation of the observed air pollution trends. Meteorological data were taken from either the background stations at the H.C. Oersted - building situated close to one of the street stations or the synoptic

  12. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    Science.gov (United States)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  13. Effects of Weather on Tourism and its Moderation

    Science.gov (United States)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  14. Prevalence of weather sensitivity in Germany and Canada

    Science.gov (United States)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  15. Five case studies of multifamily weatherization programs

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, L; Wilson, T.; Lewis, G. [Synertech Systems Corp. (United States); MacDonald, M. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The multifamily case studies that are the subject of this report were conducted to provide a better understanding of the approach taken by program operators in weatherizing large buildings. Because of significant variations in building construction and energy systems across the country, five states were selected based on their high level of multifamily weatherization. This report summarizes findings from case studies conducted by multifamily weatherization operations in five cities. The case studies were conducted between January and November 1994. Each of the case studies involved extensive interviews with the staff of weatherization subgrantees conducting multifamily weatherization, the inspection of 4 to 12 buildings weatherized between 1991 and 1993, and the analysis of savings and costs. The case studies focused on innovative techniques which appear to work well.

  16. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    Science.gov (United States)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  17. Severe Weather Data Inventory (SWDI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety...

  18. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  19. Noise pollution survey of a two-storey intersection station in Tehran metropolitan subway system.

    Science.gov (United States)

    Ghotbi, Mohammad Reza; Monazzam, Mohammad Reza; Baneshi, Mohammad Reza; Asadi, Mohammad; Fard, Samaneh Momen Bellah

    2012-01-01

    According to the world population increase and demand on transportation in mega cities, modern and low-cost technologies are remarkably considered. Meanwhile, subway system, as a means to transfer a large population of people, is extremely welcomed due to its particular advantages including time and cost savings, traffic jam avoidance, and unaffected by weather. Nevertheless, despite the benefits of these technologies, such devices also have been associated with disadvantages for human. In many subway systems, noisy environments are clearly observed; therefore, workers and even the passengers are exposed to higher noise levels than permissible limit. In this research, noise measurements were performed at Imam Khomeini Station as the most crowded intersection subway station in Tehran. In this descriptive-sectional survey, the amount of noise pollution was investigated at both stories of Imam Khomeini Intersection Station. A variety of noise pollution indicators such as L(eq) 10 min were separately measured at each storey through five measurement points from 7 A.M. to 10 P.M. It was shown that the equivalent sound level range at Imam Khomeini station towards Elmo Sanat and Imam Khomeini towards Mirdamad were between 70.56-79.54 and 68.35-79.12 dB (A), respectively. It was indicated that except for the entrance stairs to the subway waiting platform and the first section of the platform on both stories, other measurement stations have the same equivalent sound levels.

  20. Portable Weather Applications for General Aviation Pilots.

    Science.gov (United States)

    Ahlstrom, Ulf; Ohneiser, Oliver; Caddigan, Eamon

    2016-09-01

    The objective of this study was to examine the potential benefits and impact on pilot behavior from the use of portable weather applications. Seventy general aviation (GA) pilots participated in the study. Each pilot was randomly assigned to an experimental or a control group and flew a simulated single-engine GA aircraft, initially under visual meteorological conditions (VMC). The experimental group was equipped with a portable weather application during flight. We recorded measures for weather situation awareness (WSA), decision making, cognitive engagement, and distance from the aircraft to hazardous weather. We found positive effects from the use of the portable weather application, with an increased WSA for the experimental group, which resulted in credibly larger route deviations and credibly greater distances to hazardous weather (≥30 dBZ cells) compared with the control group. Nevertheless, both groups flew less than 20 statute miles from hazardous weather cells, thus failing to follow current weather-avoidance guidelines. We also found a credibly higher cognitive engagement (prefrontal oxygenation levels) for the experimental group, possibly reflecting increased flight planning and decision making on the part of the pilots. Overall, the study outcome supports our hypothesis that portable weather displays can be used without degrading pilot performance on safety-related flight tasks, actions, and decisions as measured within the constraints of the present study. However, it also shows that an increased WSA does not automatically translate to enhanced flight behavior. The study outcome contributes to our knowledge of the effect of portable weather applications on pilot behavior and decision making. © 2016, Human Factors and Ergonomics Society.

  1. Employing Tropospheric Numerical Weather Prediction Model for High-Precision GNSS Positioning

    Science.gov (United States)

    Alves, Daniele; Gouveia, Tayna; Abreu, Pedro; Magário, Jackes

    2014-05-01

    In the past few years is increasing the necessity of realizing high accuracy positioning. In this sense, the spatial technologies have being widely used. The GNSS (Global Navigation Satellite System) has revolutionized the geodetic positioning activities. Among the existent methods one can emphasize the Precise Point Positioning (PPP) and network-based positioning. But, to get high accuracy employing these methods, mainly in real time, is indispensable to realize the atmospheric modeling (ionosphere and troposphere) accordingly. Related to troposphere, there are the empirical models (for example Saastamoinen and Hopfield). But when highly accuracy results (error of few centimeters) are desired, maybe these models are not appropriated to the Brazilian reality. In order to minimize this limitation arises the NWP (Numerical Weather Prediction) models. In Brazil the CPTEC/INPE (Center for Weather Prediction and Climate Studies / Brazilian Institute for Spatial Researches) provides a regional NWP model, currently used to produce Zenithal Tropospheric Delay (ZTD) predictions (http://satelite.cptec.inpe.br/zenital/). The actual version, called eta15km model, has a spatial resolution of 15 km and temporal resolution of 3 hours. In this paper the main goal is to accomplish experiments and analysis concerning the use of troposphere NWP model (eta15km model) in PPP and network-based positioning. Concerning PPP it was used data from dozens of stations over the Brazilian territory, including Amazon forest. The results obtained with NWP model were compared with Hopfield one. NWP model presented the best results in all experiments. Related to network-based positioning it was used data from GNSS/SP Network in São Paulo State, Brazil. This network presents the best configuration in the country to realize this kind of positioning. Actually the network is composed by twenty stations (http://www.fct.unesp.br/#!/pesquisa/grupos-de-estudo-e-pesquisa/gege//gnss-sp-network2789/). The

  2. Directable weathering of concave rock using curvature estimation.

    Science.gov (United States)

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  3. Development of GNSS PWV information management system for very short-term weather forecast in the Korean Peninsula

    Science.gov (United States)

    Park, Han-Earl; Yoon, Ha Su; Yoo, Sung-Moon; Cho, Jungho

    2017-04-01

    Over the past decade, Global Navigation Satellite System (GNSS) was in the spotlight as a meteorological research tool. The Korea Astronomy and Space Science Institute (KASI) developed a GNSS precipitable water vapor (PWV) information management system to apply PWV to practical applications, such as very short-term weather forecast. The system consists of a DPR, DRS, and TEV, which are divided functionally. The DPR processes GNSS data using the Bernese GNSS software and then retrieves PWV from zenith total delay (ZTD) with the optimized mean temperature equation for the Korean Peninsula. The DRS collects data from eighty permanent GNSS stations in the southern part of the Korean Peninsula and provides the PWV retrieved from GNSS data to a user. The TEV is in charge of redundancy of the DPR. The whole process is performed in near real-time where the delay is ten minutes. The validity of the GNSS PWV was proved by means of a comparison with radiosonde data. In the experiment of numerical weather prediction model, the GNSS PWV was utilized as the initial value of the Weather Research & Forecasting (WRF) model for heavy rainfall event. As a result, we found that the forecasting capability of the WRF is improved by data assimilation of GNSS PWV.

  4. Studies on the seasonal variation of atmospheric electricity parameters at a tropical station in Kolkata, India

    Science.gov (United States)

    De, S. S.; Paul, Suman; Barui, S.; Pal, Pinaki; Bandyopadhyay, B.; Kala, D.; Ghosh, A.

    2013-12-01

    The paper deals with the analyses of the atmospheric vertical potential gradient (PG) from the ground for 90 fair weather days during 2006-2009 measured at Kolkata (Lat: 22.56°N). The variations of PG have been studied extensively to investigate their values during monsoon and winter seasons. Higher values of PG at Kolkata are observed due to higher abundance of pollutant particles. The observed PG are compared with the results of Potsdam station (Lat: 52°N) and Johannesburg station (Lat: 26°S), with 9 years data and 2 years data respectively. The correlations studies are carried out among PG, PDC (Point Discharge Current) as well as negative and positive carrier conductivities. The corresponding correlation coefficients are obtained as 0.93, -0.842 and -0.844.

  5. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    classification and use a range of different techniques and input data. The first method uses external information from multispectral satellite images to detect clutter. The information in the visual, near-infrared, and infrared parts of the spectrum can be used to distinguish between cloud and cloud-free areas......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality....... Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised...

  6. Simulation of Martian EVA at the Mars Society Arctic Research Station

    Science.gov (United States)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  7. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  8. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  9. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Science.gov (United States)

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  10. Cost-Loss Analysis of Ensemble Solar Wind Forecasting: Space Weather Use of Terrestrial Weather Tools

    Science.gov (United States)

    Henley, E. M.; Pope, E. C. D.

    2017-12-01

    This commentary concerns recent work on solar wind forecasting by Owens and Riley (2017). The approach taken makes effective use of tools commonly used in terrestrial weather—notably, via use of a simple model—generation of an "ensemble" forecast, and application of a "cost-loss" analysis to the resulting probabilistic information, to explore the benefit of this forecast to users with different risk appetites. This commentary aims to highlight these useful techniques to the wider space weather audience and to briefly discuss the general context of application of terrestrial weather approaches to space weather.

  11. Federal Aviation Administration weather program to improve aviation safety

    Science.gov (United States)

    Wedan, R. W.

    1983-01-01

    The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.

  12. Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications

    Science.gov (United States)

    Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas

    2014-05-01

    The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed

  13. Recent Weather Technologies Delivered to America's Space Program by the Applied Meteorology Unit

    Science.gov (United States)

    Bauman, WIlliam, H., III; Crawford, Winifred

    2009-01-01

    The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products

  14. Weatherization Works--Summary of Findings from the Retrospective Evaluation of the U.S. DOE's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carroll, David [APPRISE, Inc., Princeton, NJ (United States); Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Blasnik, Michael [Blasnik & Associates, Roslindale, MA (United States); Dalhoff, Greg [Dalhoff & Associates, Verona, WI (United States); Berger, Jacqueline [APPRISE, Inc., Princeton, NJ (United States); Rose, Erin M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eisenberg, Joel Fred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ucar, Ferit [APPRISE, Inc., Princeton, NJ (United States); Bensch, Ingo [Energy Center of Wisconsin, Madison, WI (United States); Cowan, Claire [Energy Center of Wisconsin, Madison, WI (United States)

    2015-10-01

    This report presents a summary of the studies and analyses that compose the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program (WAP). WAP provides grants to Grantees (i.e., states) that then provide grants to Subgrantees (i.e., local weatherization agencies) to weatherize low-income homes. This evaluation focused on the WAP Program Year 2008. The retrospective evaluation produced twenty separate reports, including this summary. Four separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, small multifamily, and large multifamily. Other reports address the environmental emissions, macroeconomic, and health and household-related benefits attributable to WAP, and characterize the program, its recipients, and those eligible for the program. Major field studies are also summarized, including a major indoor air quality study and a follow-up ventilation study, an in-depth in-field assessment of weatherization work and quality, and a study that assesses reasons for variations in energy savings across homes. Results of surveys of weatherization staff, occupants, occupants satisfaction with weatherization services provided, and weatherization trainees are summarized. Lastly, this report summarizes a set of fifteen case studies of high-performing and unique local weatherization agencies.

  15. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    Science.gov (United States)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    /Meteorological Assimilation Data Ingest System (MADIS), as well as the Kennedy Space Center ICape Canaveral Air Force Station wind tower network. The scripts provide NWS MLB and SMG with several options for setting a desirable runtime configuration of the LDIS to account for adjustments in grid spacing, domain location, choice of observational data sources, and selection of background model fields, among others. The utility of an improved LDIS will be demonstrated through postanalysis warm and cool season case studies that compare high-resolution model output with and without the ADAS analyses. Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting model.

  16. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    Science.gov (United States)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  17. Using Music to Communicate Weather and Climate

    Science.gov (United States)

    Williams, P.; Aplin, K. L.; Brown, S.

    2017-12-01

    Depictions of weather and other atmospheric phenomena are common throughout the arts. Unlike in the visual arts, however, there has been little study of meteorological inspiration in music. This presentation will discuss the frequencies with which different weather types have been depicted in music over time, covering the period from the seventeenth century to the present day. Beginning with classical orchestral music, we find that composers were generally influenced by their own country's climate in the type of weather they chose to represent. Depictions of weather vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. Pieces depicting stormy weather tend to be in minor keys, whereas pieces depicting fair weather tend to be in major keys. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Moving onto modern popular music, we have identified and analyzed over 750 songs referring to different weather types. We find that lyrical references to bad weather peaked in songs written during the stormy 1950s and 60s, when there were many hurricanes, before declining in the relatively calm 1970s and 80s. This finding again suggests a causal link between song-writers' meteorological environments and compositional outputs. Composers and song-writers have a unique ability to emotionally connect their listeners to the environment. This ability could be exploited to communicate environmental science to a broader audience. Our work provides a catalogue of cultural responses to weather before (and during the early stages of) climate change. The effects of global warming may influence musical expression in future, in which case our work will provide a baseline for comparison.

  18. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2007 (NODC Accession 0058101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  19. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2006 (NODC Accession 0058100)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  20. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2004 (NODC Accession 0058098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  1. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2003 (NODC Accession 0058097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  2. Temperature, salinity, photosynthetically active radiation and weather parameters at SEAKEYS stations in the Florida Keys, 2005 (NODC Accession 0058099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains data collected at several Coastal-Marine Automated Network (C-MAN) stations in the Florida Keys National Marine Sanctuary and Florida Bay....

  3. Chromium isotope fractionation during oxidative weathering of a modern basaltic weathering profile

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    Chromium can be used as a tracer of redox sensitive environmental processes. In soils Cr (III) is inert, immobile and resides predominantly in minerals, clays and oxides. Cr (VI) is toxic, soluble and mobile and is usually lost from the soil to local run off. Chromium isotopes have been shown...... to fractionate under both reducing and oxidizing conditions [1, 2]. Recent studies on d53Cr isotopes in laterite soils show that oxidative weathering of Cr-bearing rocks is accompanied by an isotopic fractionation, where by the lighter isotopes are retained in the residual soil and the heavier isotope...... is enriched in local runoff [1]. This study aims to quantify the stable Cr isotope composition of two modern basaltic weathering profiles, to help better understand the processes that oxidize inert Cr (III) to toxic Cr (VI). We sampled basaltic weathering profiles and associated river waters from areas of two...

  4. Space Weather Research: Indian perspective

    Science.gov (United States)

    Bhardwaj, Anil; Pant, Tarun Kumar; Choudhary, R. K.; Nandy, Dibyendu; Manoharan, P. K.

    2016-12-01

    Space weather, just like its meteorological counterpart, is of extreme importance when it comes to its impact on terrestrial near- and far-space environments. In recent years, space weather research has acquired an important place as a thrust area of research having implications both in space science and technology. The presence of satellites and other technological systems from different nations in near-Earth space necessitates that one must have a comprehensive understanding not only of the origin and evolution of space weather processes but also of their impact on technology and terrestrial upper atmosphere. To address this aspect, nations across the globe including India have been investing in research concerning Sun, solar processes and their evolution from solar interior into the interplanetary space, and their impact on Earth's magnetosphere-ionosphere-thermosphere system. In India, over the years, a substantial amount of work has been done in each of these areas by various agencies/institutions. In fact, India has been, and continues to be, at the forefront of space research and has ambitious future programs concerning these areas encompassing space weather. This review aims at providing a glimpse of this Indian perspective on space weather research to the reader and presenting an up-to-date status of the same.

  5. Six- and three-hourly meteorological observations from 223 USSR stations

    Energy Technology Data Exchange (ETDEWEB)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A. [All-Russian Research Inst. of Hydrometeorologicl Information, Obninsk (Russia). World Data Centre; Kaiser, D.P. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  6. Space Weather and Real-Time Monitoring

    Directory of Open Access Journals (Sweden)

    S Watari

    2009-04-01

    Full Text Available Recent advance of information and communications technology enables to collect a large amount of ground-based and space-based observation data in real-time. The real-time data realize nowcast of space weather. This paper reports a history of space weather by the International Space Environment Service (ISES in association with the International Geophysical Year (IGY and importance of real-time monitoring in space weather.

  7. Seafloor weathering buffering climate: numerical experiments

    Science.gov (United States)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  8. A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data

    International Nuclear Information System (INIS)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-01-01

    Highlights: • Weather has a significant impact on both the peak electricity demand and energy use. • Weather impact varies with building type, building efficiency level, and location. • Simulated results using TMY3 weather data can under or over estimate those of AMY. • It is crucial to assess performance of buildings using long-term actual weather data. • Findings enable building stakeholders to make better decisions on weather impact. - Abstract: Buildings consume more than one third of the world’s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980–2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: (1) annual weather variation has a greater impact on the peak electricity demand than it does

  9. A microcontroller-based data-acquisition system for meteorological station monitoring

    International Nuclear Information System (INIS)

    Rosiek, S.; Batlles, F.J.

    2008-01-01

    This paper presents a study of feasibility of different existing methodologies linked to field's data acquisition from remote meteorological stations. The data transmission serves to collect field's meteorological information, such as temperature, humidity and radiation. In our study the experimental data is registered in a weather station located about 100 km from University of Almeria. Various existing techniques are studied, especially Radio, GSM (global system of mobile communication) and GPRS (general packet radio service). In the result of these studies has been designed a system of field's data acquisition (herein referred as Meteologger) which we are going to present in this paper. The system is based on an ATmega 16 microcontroller, which scans 8 sensors together at any programmable intervals. This paper presents the study of the mentioned project, application and some main characteristics of the prototype system and its program. We attempt to implement the system, and subsequently present the performance of tests regarding the mentioned system. To verify its functioning some comparison of this measurement system with two others commercial data-acquisition system (Campbell and Hobo H8) has been carried out

  10. A microcontroller-based data-acquisition system for meteorological station monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Rosiek, S.; Batlles, F.J. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain)

    2008-12-15

    This paper presents a study of feasibility of different existing methodologies linked to field's data acquisition from remote meteorological stations. The data transmission serves to collect field's meteorological information, such as temperature, humidity and radiation. In our study the experimental data is registered in a weather station located about 100 km from the University of Almeria. Various existing techniques are studied, especially Radio, GSM (global system of mobile communication) and GPRS (general packet radio service). In the result of these studies has been designed a system of field's data acquisition (herein referred as Meteologger) which we are going to present in this paper. The system is based on an ATmega 16 microcontroller, which scans 8 sensors together at any programmable intervals. This paper presents the study of the mentioned project, application and some main characteristics of the prototype system and its program. We attempt to implement the system, and subsequently present the performance of tests regarding the mentioned system. To verify its functioning some comparison of this measurement system with two others commercial data-acquisition system (Campbell and Hobo H8) has been carried out. (author)

  11. 44 CFR 15.3 - Access to Mt. Weather.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Access to Mt. Weather. 15.3... HOMELAND SECURITY GENERAL CONDUCT AT THE MT. WEATHER EMERGENCY ASSISTANCE CENTER AND AT THE NATIONAL EMERGENCY TRAINING CENTER § 15.3 Access to Mt. Weather. Mt. Weather contains classified material and areas...

  12. The Challenge of Weather Prediction

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. The Challenge of Weather Prediction Old and Modern Ways of Weather Forecasting. B N Goswami. Series Article Volume 2 Issue 3 March 1997 pp 8-15. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Weatherization Beyond the Numbers: Case Studies of Fifteen High-performing Weatherization Agencies - Conducted May 2011 through July 2012

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    The report presents fifteen individual case studies of high-performing and unique local weatherization agencies. This research was one component of the retrospective evaluation of the U.S. Department of Energy s Weatherization Assistance Program. The agencies were chosen to represent a range of contexts and approaches to weatherization. For example, the set of agencies includes a mix of urban and rural agencies, those that mainly use in-house crews to weatherize homes versus those that use contractor crews, and a mix of locations, from very cold climates to moderate to hot humid and dry climates. The case studies were mainly based on site visits to the agencies that encompassed interviews with program directors, weatherization crews, and recipients of weatherization. This information was supplemented by secondary materials. The cases document the diversity of contexts and challenges faced by the agencies and how they operate on a day-by-day basis. The cases also high common themes found throughout the agencies, such as their focus on mission and respect for their clients.

  14. Validation of a station-prototype designed to integrate temporally soil N2O fluxes: IPNOA Station prototype.

    Science.gov (United States)

    Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico

    2016-04-01

    Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014

  15. 49 CFR 192.231 - Protection from weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  16. Reducing prediction uncertainty of weather controlled systems

    NARCIS (Netherlands)

    Doeswijk, T.G.

    2007-01-01

    In closed agricultural systems the weather acts both as a disturbance and as a resource. By using weather forecasts in control strategies the effects of disturbances can be minimized whereas the resources can be utilized. In this situation weather forecast uncertainty and model based control are

  17. Enhancing the Awareness of the Interaction of the Space Weather and Public: Some Case Studies in Turkey

    Science.gov (United States)

    Tulunay, Y.; Tulunay, E.; Kocabas, Z.; Altuntas, E.; Yapici, T.; Senalp, E. T.; Hippler, R.

    2009-04-01

    Tour-Mobile Bus 5. Rocket / balloon launch participation for European web quiz winner and journalists 6. Space Weather / Solar / Aurora / Rocket / Balloon movie production for TV 7. Space Weather / Sun /Heliospheric public science festival & public fair in Schwerin castle (main SWEETS festival during ESW 2007) 8. Space Weather telescope video link with Australian (Antarctic Mawson station) and Japanese locations for Schwerin castle festival (no. 7 deliverable) 9. Space Weather planetarium show in Poland, Finland, France and Portugal (4 new languages) 10. Updated Space Weather / Solar CD-Rom / DVD in 7 new languages, poster / flyer 11. Cosmic ray spark chambers 12. Space Weather storm forecast map 13. Mirror system for solar movie 14. FP6 SWEETS / IHY / COST 724 Case Sub-project: "I LOVE MY SUN" (An outreach Activity in Turkey: The Space Weather and the Sun as conceived by the School Children of age 7-11) 15. Press Releases 16. FP6 SWEETS Related Art 17. Turkish Translations in IHY and COST webpages 18. Impact of the SWEETS References Tulunay Y. (2007), FP6 SWEETS (SSA) Activity Report of the Participant No. 16: the METU in Ankara, Türkiye, 31 December 2007, www.ae.metu.edu.tr/~cost.

  18. [Effect of weather on odontogenic abscesses].

    Science.gov (United States)

    Nissen, G; Schmidseder, R

    1978-11-01

    An increased frequency of odontogenous abcesses was observed on certain days in the course of routine clinical practice. We therefore investigated the possibility of a statistically significant weather-related odontogenous soft-tissue purulence originating from chronic apical periodontitis. Medical reports of patients treated between 1970 and 1977 were used. Our study indicated that the frequency of odontogenous abcesses was significantly higher with cyclonic weather conditions, i.e., weather with low barometric pressure.

  19. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  20. Extreme value analysis of meteorological parameters observed during the period 1994-2001 at Kakrapar Atomic Power Station

    International Nuclear Information System (INIS)

    Ramkumar, S.; Dole, M.L.; Nankar, D.P.; Rajan, M.P.; Gurg, R.P.

    2003-01-01

    In the design of engineering structures, an understanding of extreme weather conditions that may occur at the site of interest is very essential, so that the structures can be designed to withstand such situations. In this report an analysis of extreme values of meteorological parameters observed at Kakrapar Atomic Power Station site for the period 1994 -2001 is described. The parameters considered are maximum and minimum air temperature, maximum wind speed and gust, and maximum rainfall in a month, in a day, in an hour and annual rainfall. The extreme value analysis reveals that annual rainfall, maximum monthly rainfall, minimum air temperature and maximum wind speed at 10 m obey Fisher-Tippet Type -1 distribution whereas maximum daily rainfall, maximum hourly rainfall, maxinlum air temperature and maximum wind speed at 30 m obey Fisher-Tippet Type -2 distribution function. There is no difference in correlation coefficients and fit both extreme value distribution function. Co-efficients of the distribution functions for each variable are established. Extreme values of parameters corresponding to return periods of 50 and 100 years are derived. These derived extreme values are particularly useful for arriving at suitable design basis values to ensure the safety of any civil structure in and around Kakrapar Atomic Power Station site with respect to stresses due to weather conditions. (author)

  1. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  2. Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hollander, A.

    2014-09-01

    The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of new materials, technologies, behavior-change models, and processes.

  3. Biological reduction of dust nuisance on power station waste dumps

    Energy Technology Data Exchange (ETDEWEB)

    Kozel, J

    1978-01-01

    The results of pot trials and succeeding field trials carried out in 1966-72 to find out the best method of reclamationand stabilishing the fly ash and cinder waste dump at the Melnik power station are summarised. The material consists mainly of fine particles with a size range of less than 1 micron to 0.16 mm in diam., and creates a source of blown dust in dry weather. Treatment of the waste material before sowing grass and legume species, the species tested, sowing rates, applied fertilizers, irrigation and treatment of the resulting swards are discussed. The most suitable species were Festuca rubra, F. ovina, perennial ryegrass and Italian ryegrass; the cost of stabilising the dump was lowest with Italian ryegrass. (In English)

  4. Detecting Weather Radar Clutter by Information Fusion With Satellite Images and Numerical Weather Prediction Model Output

    DEFF Research Database (Denmark)

    Bøvith, Thomas; Nielsen, Allan Aasbjerg; Hansen, Lars Kai

    2006-01-01

    A method for detecting clutter in weather radar images by information fusion is presented. Radar data, satellite images, and output from a numerical weather prediction model are combined and the radar echoes are classified using supervised classification. The presented method uses indirect...... information on precipitation in the atmosphere from Meteosat-8 multispectral images and near-surface temperature estimates from the DMI-HIRLAM-S05 numerical weather prediction model. Alternatively, an operational nowcasting product called 'Precipitating Clouds' based on Meteosat-8 input is used. A scale...

  5. 46 CFR 44.01-13 - Heavy weather plan.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Heavy weather plan. 44.01-13 Section 44.01-13 Shipping... VOYAGES Administration § 44.01-13 Heavy weather plan. (a) Each heavy weather plan under § 44.01-12(b) must... Inspection. Approval of a heavy weather plan is limited to the current hurricane season. (b) The cognizant...

  6. A Analysis of the Development of Weather Concepts

    Science.gov (United States)

    Mroz, Paul John

    Weather information in all forms is poorly understood and often misinterpreted by the general public. Weather literacy is necessary for everyone if critical weather messages, designed to save lives and protect property, are to be effective. The purpose of this study was to seek content and causal evidence for a developmental concept of Weather Information Processing that was consistent with Piagetian Cognitive Stages of Development. Three ordinal Content Stages Of Weather Information Processing (phenomena, process and mechanism) and three ordinal Causal Explanation Stages Of Weather Information Processing (non-real, natural, and scientifically valid abstract ideas) were explored for their relationship with Piaget's Pre-Operational, Concrete and Formal Stages of Development. One hundred and fifty -five elementary and secondary school students from two school districts were administered a written Piagetian exam. Commonly available television weather programs were categorized, randomly assigned and viewed by 42 randomly selected students who were administered three Piagetian tasks. Students were clinically interviewed for the level of content information and causal explanations (reasoning). Results indicated that content information and causal reasoning of students to televised weather information is significantly related (p Cognitive Stages of Development. Two Piagetian logic operations (seriation and correlation) were established as significantly different (p Information Processing and have implications for teaching and presenting weather information to the public.

  7. The Early Years: The Wonders of Weather

    Science.gov (United States)

    Ashbrook, Peggy

    2013-01-01

    This article reports on the wonders of winter weather, as it often inspires teachers' and students' interest in collecting weather data, especially if snow falls. Beginning weather data collection in preschool will introduce children to the concepts of making regular observations of natural phenomena, recording the observations (data),…

  8. Towards a National Space Weather Predictive Capability

    Science.gov (United States)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  9. Semi-automatic handling of meteorological ground measurements using WeatherProg: prospects and practical implications

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; De Mascellis, Roberto; Manna, Piero; Terribile, Fabio

    2016-04-01

    WeatherProg is a computer program for the semi-automatic handling of data measured at ground stations within a climatic network. The program performs a set of tasks ranging from gathering raw point-based sensors measurements to the production of digital climatic maps. Originally the program was developed as the baseline asynchronous engine for the weather records management within the SOILCONSWEB Project (LIFE08 ENV/IT/000408), in which daily and hourly data where used to run water balance in the soil-plant-atmosphere continuum or pest simulation models. WeatherProg can be configured to automatically perform the following main operations: 1) data retrieval; 2) data decoding and ingestion into a database (e.g. SQL based); 3) data checking to recognize missing and anomalous values (using a set of differently combined checks including logical, climatological, spatial, temporal and persistence checks); 4) infilling of data flagged as missing or anomalous (deterministic or statistical methods); 5) spatial interpolation based on alternative/comparative methods such as inverse distance weighting, iterative regression kriging, and a weighted least squares regression (based on physiography), using an approach similar to PRISM. 6) data ingestion into a geodatabase (e.g. PostgreSQL+PostGIS or rasdaman). There is an increasing demand for digital climatic maps both for research and development (there is a gap between the major of scientific modelling approaches that requires digital climate maps and the gauged measurements) and for practical applications (e.g. the need to improve the management of weather records which in turn raises the support provided to farmers). The demand is particularly burdensome considering the requirement to handle climatic data at the daily (e.g. in the soil hydrological modelling) or even at the hourly time step (e.g. risk modelling in phytopathology). The key advantage of WeatherProg is the ability to perform all the required operations and

  10. Newspaper Clippings and Articles (Weather-related)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather-related newspaper articles and photos, almost exclusively from Baltimore, MD and nearby areas. Includes storm damage, rainfall reports, and weather's affect...

  11. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  12. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  13. Weatherization Assistance Program Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2018-02-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy e ciency of their homes, while ensuring their health and safety. The Program supports 8,500 jobs and provides weatherization services to approximately 35,000 homes every year using DOE funds.

  14. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C K; Henebry, G M [Geographic Information Science Center of Excellence (GIScCE), South Dakota State University, Brookings, SD (United States); De Beurs, K M [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States); Akhmadieva, Z K [Kazakhstan Scientific Research Institute of Ecology and Climate, Ministry of Environment Protection of the Republic of Kazakhstan, Astana (Kazakhstan); Groisman, P Y, E-mail: Geoffrey.Henebry@sdstate.ed [National Climatic Data Center, University Corporation for Atmospheric Research, Asheville, NC (United States)

    2009-10-15

    We present time series analyses of recently compiled climate station data which allowed us to assess contemporary trends in growing season weather across Kazakhstan as drivers of a significant decline in growing season normalized difference vegetation index (NDVI) recently observed by satellite remote sensing across much of Central Asia. We used a robust nonparametric time series analysis method, the seasonal Kendall trend test to analyze georeferenced time series of accumulated growing season precipitation (APPT) and accumulated growing degree-days (AGDD). Over the period 2000-2006 we found geographically extensive, statistically significant (p<0.05) decreasing trends in APPT and increasing trends in AGDD. The temperature trends were especially apparent during the warm season and coincided with precipitation decreases in northwest Kazakhstan, indicating that pervasive drought conditions and higher temperature excursions were the likely drivers of NDVI declines observed in Kazakhstan over the same period. We also compared the APPT and AGDD trends at individual stations with results from trend analysis of gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis v4 and gridded daily near surface air temperature from the National Centers for Climate Prediction Reanalysis v2 (NCEP R2). We found substantial deviation between the station and the reanalysis trends, suggesting that GPCC and NCEP data substantially underestimate the geographic extent of recent drought in Kazakhstan. Although gridded climate products offer many advantages in ease of use and complete coverage, our findings for Kazakhstan should serve as a caveat against uncritical use of GPCC and NCEP reanalysis data and demonstrate the importance of compiling and standardizing daily climate data from data-sparse regions like Central Asia.

  15. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan

    International Nuclear Information System (INIS)

    Wright, C K; Henebry, G M; De Beurs, K M; Akhmadieva, Z K; Groisman, P Y

    2009-01-01

    We present time series analyses of recently compiled climate station data which allowed us to assess contemporary trends in growing season weather across Kazakhstan as drivers of a significant decline in growing season normalized difference vegetation index (NDVI) recently observed by satellite remote sensing across much of Central Asia. We used a robust nonparametric time series analysis method, the seasonal Kendall trend test to analyze georeferenced time series of accumulated growing season precipitation (APPT) and accumulated growing degree-days (AGDD). Over the period 2000-2006 we found geographically extensive, statistically significant (p<0.05) decreasing trends in APPT and increasing trends in AGDD. The temperature trends were especially apparent during the warm season and coincided with precipitation decreases in northwest Kazakhstan, indicating that pervasive drought conditions and higher temperature excursions were the likely drivers of NDVI declines observed in Kazakhstan over the same period. We also compared the APPT and AGDD trends at individual stations with results from trend analysis of gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis v4 and gridded daily near surface air temperature from the National Centers for Climate Prediction Reanalysis v2 (NCEP R2). We found substantial deviation between the station and the reanalysis trends, suggesting that GPCC and NCEP data substantially underestimate the geographic extent of recent drought in Kazakhstan. Although gridded climate products offer many advantages in ease of use and complete coverage, our findings for Kazakhstan should serve as a caveat against uncritical use of GPCC and NCEP reanalysis data and demonstrate the importance of compiling and standardizing daily climate data from data-sparse regions like Central Asia.

  16. Estimating Tropical Cyclone Precipitation from Station Observations

    Institute of Scientific and Technical Information of China (English)

    REN Fumin; WANG Yongmei; WANG Xiaoling; LI Weijing

    2007-01-01

    In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM,by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.

  17. A Method for Estimating Meteorite Fall Mass from Weather Radar Data

    Science.gov (United States)

    Laird, C.; Fries, M.; Matson, R.

    2017-01-01

    Techniques such as weather RADAR, seismometers, and all-sky cameras allow new insights concerning the physics of meteorite fall dynamics and fragmentation during "dark flight", the period of time between the end of the meteor's luminous flight and the concluding impact on the Earth's surface. Understanding dark flight dynamics enables us to rapidly analyze the characteristics of new meteorite falls. This analysis will provide essential information to meteorite hunters to optimize recovery, increasing the frequency and total mass of scientifically important freshly-fallen meteorites available to the scientific community. We have developed a mathematical method to estimate meteorite fall mass using reflectivity data as recorded by National Oceanic and Atmospheric Administration (NOAA) Next Generation RADAR (NEXRAD) stations. This study analyzed eleven official and one unofficial meteorite falls in the United States and Canada to achieve this purpose.

  18. Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet

    Science.gov (United States)

    Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang

    2013-05-01

    Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.

  19. Designing and Implementing Weather Generators as Web Services

    Directory of Open Access Journals (Sweden)

    Rassarin Chinnachodteeranun

    2016-12-01

    Full Text Available Climate and weather realizations are essential inputs for simulating crop growth and yields to analyze the risks associated with future conditions. To simplify the procedure of generating weather realizations and make them available over the Internet, we implemented novel mechanisms for providing weather generators as web services, as well as a mechanism for sharing identical weather realizations given a climatological information. A web service for preparing long-term climate data was implemented based on an international standard, Sensor Observation Service (SOS. The weather generator services, which are the core components of the framework, analyze climatological data, and can take seasonal climate forecasts as inputs for generating weather realizations. The generated weather realizations are encoded in a standard format, which are ready for use to crop modeling. All outputs are generated in SOS standard, which broadens the extent of data sharing and interoperability with other sectoral applications, e.g., water resources management. These services facilitate the development of other applications requiring input weather realizations, as these can be obtained easily by just calling the service. The workload of analysts related to data preparation and handling of legacy weather generator programs can be reduced. The architectural design and implementation presented here can be used as a prototype for constructing further services on top of an interoperable sensor network system.

  20. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    Science.gov (United States)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  1. NOAA Weather and Climate Toolkit (WCT)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The...

  2. Generation of sequences of daily radiation values using a library of Markov transition matrices. Application of weather station in tre University od Vigo; Generacion de secuencias de radiacion diaria utilizando librerias de matrices de Markov. Aplicacion a la estacion meteorologica de la Universidad de Vigo

    Energy Technology Data Exchange (ETDEWEB)

    Sieres, J. A.; Vazquez, M.; Fernandez-Seara, J.

    2004-07-01

    In this paper, the generation of sequences of daily radiation values using a library of Markov transition matrices is analysed. The paper describes the fundamentals of the method employed and how sequences of daily radiation can be generated using as input monthly averaged values of the clearness index. The method is applied to the location where the Solar Energy Lab Weather Station of the University of Vigo (longitude 8 degree 41' 18'' O, latitude 42 degree 10' 9'' N) is placed. Radiation sequences are generated for the years 2002 and 2003 and the results are compared with measured radiation values. Results of statistical tests show a bad performance of the generation method for the location studied. (Author)

  3. Longing for Clouds - Does Beautiful Weather have to be Fine?

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2016-01-01

    Full Text Available Any attempt to outline a meteorological aesthetics centered on so-called beautiful weather has to overcome several difficulties: In everyday life, the appreciation of the weather is mostly related to practical interests or reduced to the ideal of stereotypical fine weather that is conceived according to blue-sky thinking irrespective of climate diversity. Also, an aesthetics of fine weather seems, strictly speaking, to be impossible given that such weather conditions usually allow humans to focus on aspects other than weather, which contradicts the autotelic character of beauty. The unreflective equation of beautiful weather with moderately sunny weather and a cloudless sky also collides with the psychological need for variation: even living in a “paradisal” climate would be condemned to end in monotony. Finally, whereas fine weather is related in modern realistic literature to cosmic harmony and a universal natural order, contemporary literary examples show that in the age of the climate change, fine weather may be deceitful and its passive contemplation, irresponsible. This implies the necessity of a reflective aesthetic attitude on weather, as influenced by art, literature, and science, which discovers the poetics of bad weather and the wonder that underlies average weather conditions.

  4. SPace weather applications in a technology-dependent society

    Science.gov (United States)

    Ngwira, C. M.

    2017-12-01

    Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.

  5. World War II Weather Record Transmittances

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World War II Weather Record Transmittances are a record of the weather and meteorological data observed during World War II and transferred to the archive. It...

  6. Photovoltaic power supply for the bird and weather station on Scharhoern Island

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The aim of the project was to commission a reliable power supply for a bird sanctuary station which would take particular consideration of the requirements in a seabird protection area. The conventional type of power supply with a diesel generator was unsuitable due to problems caused by noise, exhaust and costly maintenance. Wind generators also cause noise and have to be protected from birds in flight, and thus also pose problems. A sea cable for connection to the mains is extremely uneconomical, considering the low power requirements and the large expense in order to have control over high and low tide. The requirements put on the power supply are: (i) no disturbing noise (especially during breeding time); (ii) no exhausts (especially during breeding time); (iii) no moving parts which could be of disturbance to the birds (e.g. wind generator); (iv) unobtrusively embedded in the countryside; (v) low maintenance and easy handling; (vi) high availability and reliability, considering the restricted access to the plant because of its exposed position. An important task within this project was the development of a special base construction for the solar generator frames, taking into consideration the specific conditions on Scharhoern. The island of Scharhoern is a sand dune in the mud flats, which is washed over by the sea when there are heavy storm floods. In addition, extreme wind speeds are often measured (up to 200 km/h). (author). figs., tabs., photos., appendices.

  7. Ionospheric effects during severe space weather events seen in ionospheric service data products

    Science.gov (United States)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  8. A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold-wet period, part II: discriminant analysis

    Science.gov (United States)

    Michailidou, C.; Maheras, P.; Arseni-Papadimititriou, A.; Kolyva-Machera, F.; Anagnostopoulou, C.

    2009-06-01

    A discriminant analysis is applied in order to determine the relationships between circulation types in the middle troposphere and prevailing weather types over two major Greek cities, Athens and Thessaloniki. In order to describe the synoptic conditions, an automatic classification scheme for the Greek region is used. For each circulation type identified (14 in total), several meteorological parameters at the 500 hPa level are calculated such as geopotential heights and their anomalies, temperature and relative vorticity. Weather group-types that reflect the conditions at the surface, were previously defined using a two-step cluster analysis. These types result from a combination of five meteorological parameters—maximum temperature, precipitation amount, relative humidity, wind velocity and sunshine duration. The study period is 43 years long (1958-2000) and is restricted to the cold and wet period of the year, from December until March. For Athens, six weather types are developed, whereas for Thessaloniki five are produced. By means of a stepwise discriminant analysis (DA) model, the most important variables from the 500 hPa level are found and are used to generate the necessary functions that can discriminate weather types over the two stations. The aim of the present study is first to discriminate weather types effectively and to identify the most important discriminating variables, and second, to connect these weather types to elements of the prevailing synoptic pattern, through mathematical functions provided by DA. The results of the evaluation of the aforementioned procedure are considered to be very satisfactory.

  9. Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10): a World Weather Research Programme Project

    Science.gov (United States)

    Isaac, G. A.; Joe, P. I.; Mailhot, J.; Bailey, M.; Bélair, S.; Boudala, F. S.; Brugman, M.; Campos, E.; Carpenter, R. L.; Crawford, R. W.; Cober, S. G.; Denis, B.; Doyle, C.; Reeves, H. D.; Gultepe, I.; Haiden, T.; Heckman, I.; Huang, L. X.; Milbrandt, J. A.; Mo, R.; Rasmussen, R. M.; Smith, T.; Stewart, R. E.; Wang, D.; Wilson, L. J.

    2014-01-01

    A World Weather Research Programme (WWRP) project entitled the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) was developed to be associated with the Vancouver 2010 Olympic and Paralympic Winter Games conducted between 12 February and 21 March 2010. The SNOW-V10 international team augmented the instrumentation associated with the Winter Games and several new numerical weather forecasting and nowcasting models were added. Both the additional observational and model data were available to the forecasters in real time. This was an excellent opportunity to demonstrate existing capability in nowcasting and to develop better techniques for short term (0-6 h) nowcasts of winter weather in complex terrain. Better techniques to forecast visibility, low cloud, wind gusts, precipitation rate and type were evaluated. The weather during the games was exceptionally variable with many periods of low visibility, low ceilings and precipitation in the form of both snow and rain. The data collected should improve our understanding of many physical phenomena such as the diabatic effects due to melting snow, wind flow around and over terrain, diurnal flow reversal in valleys associated with daytime heating, and precipitation reductions and increases due to local terrain. Many studies related to these phenomena are described in the Special Issue on SNOW-V10 for which this paper was written. Numerical weather prediction and nowcast models have been evaluated against the unique observational data set now available. It is anticipated that the data set and the knowledge learned as a result of SNOW-V10 will become a resource for other World Meteorological Organization member states who are interested in improving forecasts of winter weather.

  10. Variations in pollen counts largely explained by climate and weather

    Science.gov (United States)

    Jung, Stephan; Damialis, Athanasios; Estrella, Nicole; Jochner, Susanne; Menzel, Annette

    2017-04-01

    The interaction between climate and vegetation is well studied within phenology. Climatic / weather conditions affect e.g. flowering date, length of vegetation period, start and end of the season and the plant growth. Besides phenological stages also pollen counts can be used to investigate the interaction between climate and vegetation. Pollen emission and distribution is directly influenced by temperature, wind speed, wind direction and humidity/precipitation. The objective of this project is to study daily/sub daily variations in pollen counts of woody and herbaceous plant species along an altitudinal gradient with different climatic conditions during the vegetation period. Measurements of pollen were carried out with three volumetric pollen traps installed at the altitudes 450 m a.s.l (Freising), 700 m a.s.l (Garmisch-Partenkirchen), and 2700 m a.s.l (Schneefernerhaus near Zugspitze) representing gradient from north of Munich towards the highest mountain of Germany. Airborne pollen concentrations were recorded during the years 2014-2015. The altitudinal range of these three stations accompanied by different microclimates ("space for time approach") can be used as proxy for climate change and to assess its impact on pollen counts and thus allergenic risk for human health. For example the pollen season is shortened and pollen amount is reduced at higher sites. For detailed investigations pollen of the species Plantago, Quercus, Poaceae, Cupressaceae, Cyperacea, Betula and Platanus were chosen, because those are found in appropriate quantities. In general, pollen captured in the pollen traps to a certain extent has its origin from the immediate surrounding. Thus, it mirrors local species distribution. But furthermore the distance of pollen transport is also based on (micro-) climatic conditions, land cover and topography. The pollen trap shortly below the summit of Zugspitze (Schneefernerhaus) has an alpine environment without vegetation nearby. Therefore, this

  11. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    Science.gov (United States)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  12. Now, Here's the Weather Forecast...

    Science.gov (United States)

    Richardson, Mathew

    2013-01-01

    The Met Office has a long history of weather forecasting, creating tailored weather forecasts for customers across the world. Based in Exeter, the Met Office is also home to the Met Office Hadley Centre, a world-leading centre for the study of climate change and its potential impacts. Climate information from the Met Office Hadley Centre is used…

  13. History of surface weather observations in the United States

    Science.gov (United States)

    Fiebrich, Christopher A.

    2009-04-01

    In this paper, the history of surface weather observations in the United States is reviewed. Local weather observations were first documented in the 17th Century along the East Coast. For many years, the progression of a weather observation from an initial reading to dissemination remained a slow and laborious process. The number of observers remained small and unorganized until agencies including the Surgeon General, Army, and General Land Office began to request regular observations at satellite locations in the 1800s. The Smithsonian was responsible for first organizing a large "network" of volunteer weather observers across the nation. These observers became the foundation for today's Cooperative Observer network. As applications of weather data continued to grow and users required the data with an ever-decreasing latency, automated weather networks saw rapid growth in the later part of the 20th century. Today, the number of weather observations across the U.S. totals in the tens of thousands due largely to privately-owned weather networks and amateur weather observers who submit observations over the internet.

  14. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    Science.gov (United States)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  15. A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Chang, Wen-Kuei; Lin, Hung-Wen

    2013-05-01

    Buildings consume more than one third of the world?s total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980 to 2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: 1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; 2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; 3) the weather impact is greater for buildings in colder climates than warmer climates; 4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small

  16. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.

    2018-01-01

    Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.

  17. Bringing Space Weather Down to Earth

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2005-05-01

    Most of the public has no idea what Space Weather is, but a number of innovative programs, web sites, magazine articles, TV shows and planetarium shows have taken space weather from an unknown quantity to a much more visible field. This paper reviews new developments, including the new Space Weather journal, the very popular spaceweather.com website, new immersive planetarium shows that can go "on the road", and well-publicized Sun-Earth Day activities. Real-time data and reasonably accurate spaceweather forecasts are available from several websites, with many subscribers. Even the renaissance of amateur radio because of Homeland Security brings a new generation of learners to wonder what is going on in the Sun today. The NSF Center for Integrated Space Weather Modeling has a dedicated team to reach both the public and a greater diversity of new scientists.

  18. Measuring weather for aviation safety in the 1980's

    Science.gov (United States)

    Wedan, R. W.

    1980-01-01

    Requirements for an improved aviation weather system are defined and specifically include the need for (1) weather observations at all airports with instrument approaches, (2) more accurate and timely radar detection of weather elements hazardous to aviation, and (3) better methods of timely distribution of both pilot reports and ground weather data. The development of the discrete address beacon system data link, Doppler weather radar network, and various information processing techniques are described.

  19. Surface and snowdrift sublimation at Princess Elisabeth station, East Antarctica

    Directory of Open Access Journals (Sweden)

    W. Thiery

    2012-08-01

    Full Text Available In the near-coastal regions of Antarctica, a significant fraction of the snow precipitating onto the surface is removed again through sublimation – either directly from the surface or from drifting snow particles. Meteorological observations from an Automatic Weather Station (AWS near the Belgian research station Princess Elisabeth in Dronning Maud Land, East-Antarctica, are used to study surface and snowdrift sublimation and to assess their impacts on both the surface mass balance and the surface energy balance during 2009 and 2010. Comparison to three other AWSs in Dronning Maud Land with 11 to 13 yr of observations shows that sublimation has a significant influence on the surface mass balance at katabatic locations by removing 10–23% of their total precipitation, but at the same time reveals anomalously low surface and snowdrift sublimation rates at Princess Elisabeth (17 mm w.e. yr−1 compared to 42 mm w.e. yr−1 at Svea Cross and 52 mm w.e. yr−1 at Wasa/Aboa. This anomaly is attributed to local topography, which shields the station from strong katabatic influence, and, therefore, on the one hand allows for a strong surface inversion to persist throughout most of the year and on the other hand causes a lower probability of occurrence of intermediately strong winds. This wind speed class turns out to contribute most to the total snowdrift sublimation mass flux, given its ability to lift a high number of particles while still allowing for considerable undersaturation.

  20. Progress in space weather predictions and applications

    Science.gov (United States)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  1. Weather during bloom affects pollination and yield of highbush blueberry.

    Science.gov (United States)

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.

  2. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  3. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Cautley, Dan [Energy Center of Wisconsin, Madison, WI (United States); Francisco, Paul [Univ. of Illinois, Urbana-Champaign, IL (United States); Hawkins, Beth A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brennan, Terry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  4. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    Science.gov (United States)

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds

  5. Modeling rock weathering in small watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; van der Weijden, C.H.

    2014-01-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and

  6. A teaching-learning sequence about weather map reading

    Science.gov (United States)

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-07-01

    In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a weather forecast. Sixty PET capabilities and difficulties in understanding weather maps were investigated, using inquiry-based learning activities. The results show that most PET became more capable of reading weather maps and assigning wind direction and speed on them. Our results also show that PET could be guided to understand meteorology concepts useful in everyday life and in teaching their future students.

  7. Weather, transport mode choices and emotional travel experiences

    NARCIS (Netherlands)

    Böcker, L.; Dijst, M.J.; Faber, J.

    2016-01-01

    With climate change high on the political agenda, weather has emerged as an important issue in travel behavioral research and urban planning. While various studies demonstrate profound effects of weather on travel behaviors, limited attention has been paid to subjective weather experiences and the

  8. Weatherization Works II - Summary of Findings from the ARRA Period Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carroll, David [APPRISE, Inc.. Princeton, NJ (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Dalhoff, Greg [Dalhoff & Associates. Verona, WI (United STates); Blasnik, Michael [Blasnik & Associates, Boston, MA (United States); Eisenberg, Joel Fred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowan, Claire [Energy Center of Wisconsin, Madison, WI (United States); Conlon, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2015-10-01

    This report presents a summary of the American Recovery and Reinvestment Act of 2009 (ARRA) evaluation of the U.S. Department of Energy s low-income Weatherization Program. This evaluation focused on the WAP Program Year 2010. The ARRA evaluation produced fourteen separate reports, including this summary. Three separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, and large multifamily. Other reports address the environmental emissions benefits attributable to WAP, and characterize the program. Special studies were conducted to: estimate the impacts of weatherization and healthy homes interventions on asthma-related Medicaid claims in a small cohort in Washington State; assess how weatherization recipients communicate their weatherization experiences to those in their social network, and assess processes implemented to defer homes for weatherization. Small studies addressed energy use in refrigerators, WAP as implemented in the U.S. territories for the first time, and weatherization s impacts on air conditioning energy savings. The national occupant survey was mined for additional insights on the impacts of weatherization on household budgets and energy behaviors post-weatherization. Lastly, the results of a survey of weatherization training centers are summarized.

  9. Pushing the Envelope of Extreme Space Weather

    Science.gov (United States)

    Pesnell, W. D.

    2014-12-01

    Extreme Space Weather events are large solar flares or geomagnetic storms, which can cost billions of dollars to recover from. We have few examples of such events; the Carrington Event (the solar superstorm) is one of the few that had superlatives in three categories: size of solar flare, drop in Dst, and amplitude of aa. Kepler observations show that stars similar to the Sun can have flares releasing millions of times more energy than an X-class flare. These flares and the accompanying coronal mass ejections could strongly affect the atmosphere surrounding a planet. What level of solar activity would be necessary to strongly affect the atmosphere of the Earth? Can we map out the envelope of space weather along the evolution of the Sun? What would space weather look like if the Sun stopped producing a magnetic field? To what extreme should Space Weather go? These are the extremes of Space Weather explored in this talk.

  10. Weather In Some Islands

    Institute of Scientific and Technical Information of China (English)

    王良华

    2007-01-01

    There are four seasons in a year. When spring comes, the weather is mild(温和的). Summer comes after spring. Summer is the hottest season of the year. Autumn follows summer. It is the best season of the year. Winter is the coldest season of the year. Some islands(岛) have their own particular(特别的) seasons because their weather is very much affected(影响) by the oceans(海洋) around them. In Britain, winter is not very cold and summer is not very hot.

  11. Numerical simulation of rainfall and temperature over Kenya using weather research and forecasting-environmental modelling system (WRF-EMS

    Directory of Open Access Journals (Sweden)

    Sagero Obaigwa Philip

    2016-01-01

    Full Text Available This paper focuses on one of the high resolution models used for weather forecasting at Kenya Meteorological Department (KMD. It reviews the skill and accuracy of the Weather Research and Forecasting (WRF - Environmental Modeling System (EMS model, in simulating weather over Kenya. The study period was March to May 2011, during the rainy season over Kenya. The model output was compared with the observed data from 27 synoptic stations spread over the study area, to determine the performance of the model in terms of its skill and accuracy in forecasting. The spatial distribution of rainfall and temperature showed that the WRF model was capable of reproducing the observed general pattern especially for temperature. The model has skill in forecasting both rainfall and temperature over the study area. However, the model may underestimate rainfall of more than 10 mm/day and displace its location and overestimate rainfall of less than 1 mm/day. Therefore, during the period of enhanced rainfall especially in the month of April and part of May the model forecast needs to be complemented by other models or forecasting methods before giving a forecast. There is need to improve its performance over the domain through review of the parameterization of small scale physical processes and more observed data need to be simulated into the model.

  12. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    International Nuclear Information System (INIS)

    Stauffer, R.E.; Wittchen, B.D.

    1991-01-01

    The authors use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) US. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. The authors attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by So 4 because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1 ) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks

  13. Combining traditional weather forecasting, science in Kenya | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-02-24

    Feb 24, 2012 ... Kenyan farmers have relied on the indigenous weather prediction methods of the Nganyi rainmakers for generations. But extreme weather caused by climate change is affecting the natural signs that rainmakers use to predict weather. Many fear traditional methods are therefore becoming redundant and ...

  14. A comparison of weather variables linked to infectious disease patterns using laboratory addresses and patient residence addresses.

    Science.gov (United States)

    Djennad, Abdelmajid; Lo Iacono, Giovanni; Sarran, Christophe; Fleming, Lora E; Kessel, Anthony; Haines, Andy; Nichols, Gordon L

    2018-04-27

    To understand the impact of weather on infectious diseases, information on weather parameters at patient locations is needed, but this is not always accessible due to confidentiality or data availability. Weather parameters at nearby locations are often used as a proxy, but the accuracy of this practice is not known. Daily Campylobacter and Cryptosporidium cases across England and Wales were linked to local temperature and rainfall at the residence postcodes of the patients and at the corresponding postcodes of the laboratory where the patient's specimen was tested. The paired values of daily rainfall and temperature for the laboratory versus residence postcodes were interpolated from weather station data, and the results were analysed for agreement using linear regression. We also assessed potential dependency of the findings on the relative geographic distance between the patient's residence and the laboratory. There was significant and strong agreement between the daily values of rainfall and temperature at diagnostic laboratories with the values at the patient residence postcodes for samples containing the pathogens Campylobacter or Cryptosporidium. For rainfall, the R-squared was 0.96 for the former and 0.97 for the latter, and for maximum daily temperature, the R-squared was 0.99 for both. The overall mean distance between the patient residence and the laboratory was 11.9 km; however, the distribution of these distances exhibited a heavy tail, with some rare situations where the distance between the patient residence and the laboratory was larger than 500 km. These large distances impact the distributions of the weather variable discrepancies (i.e. the differences between weather parameters estimated at patient residence postcodes and those at laboratory postcodes), with discrepancies up to ±10 °C for the minimum and maximum temperature and 20 mm for rainfall. Nevertheless, the distributions of discrepancies (estimated separately for minimum and maximum

  15. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  16. Radiological impact of atmospheric releases from a coal-fired power station

    International Nuclear Information System (INIS)

    Aigueperse, J.; Chalabreysse, J.; Coulon, R.; Grauby, A.; Uzzan, G.

    1982-01-01

    As the first stage of a study carried out under contract with the Commission of the European Communities for the comparative assessment of the risks to which the individuals of a regional population are exposed, the paper seeks to evaluate atmospheric releases from a coal-fired thermal power station. The station is of traditional design with an installed capacity of 415MW(e) and uses only lignite-type coal produced from a coal basin situated nearby. Gaseous effluents are released from four stacks. The area close to the station is rural in nature: there are a number of small farms, fairly abundant natural vegetation and some fairly well-populated zones with various industries. The main feature of the weather conditions is the strong prevailing winds in the optimum direction. A radiation measurement campaign involving the main 238 U and 232 Th daughter products was carried out focussing on: (1) the coal burnt in the power station; (2) the solid residues resulting from combustion (fly ash, wet ash); (3) gaseous effluents by means of direct sampling from the two release stacks. The information obtained on the releases has made it possible, with the help of dispersion and transfer models, to evaluate the atmospheric concentration of the different radionuclide released as well as their deposition and presence in the biotope in the plant vicinity. The effective dose equivalents received by persons living in the zone of maximum exposure and consuming food produced in that zone were assessed at approximately 7x10 -5 Sv.a -1 at the end of the plant's operating period. Finally, the main radionuclides were measured at a number of points near the plant with the aim of verifying the model evaluations for a particular situation. (author)

  17. Radiological impact of atmospheric releases from a coal-fired power station

    Energy Technology Data Exchange (ETDEWEB)

    Aigueperse, J; Chalabreysse, J; Coulon, R; Grauby, A [CEA Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Protection; Uzzan, G [Association EURATOM-CEA, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, 92 (France). Dept. de Protection

    1982-01-01

    As the first stage of a study carried out under contract with the Commission of the European Communities for the comparative assessment of the risks to which the individuals of a regional population are exposed, the paper seeks to evaluate atmospheric releases from a coal-fired thermal power station. The station is of traditional design with an installed capacity of 415MW(e) and uses only lignite-type coal produced from a coal basin situated nearby. Gaseous effluents are released from four stacks. The area close to the station is rural in nature: there are a number of small farms, fairly abundant natural vegetation and some fairly well-populated zones with various industries. The main feature of the weather conditions is the strong prevailing winds in the optimum direction. A radiation measurement campaign involving the main /sup 238/U and /sup 232/Th daughter products was carried out focussing on: (1) the coal burnt in the power station; (2) the solid residues resulting from combustion (fly ash, wet ash); (3) gaseous effluents by means of direct sampling from the two release stacks. The information obtained on the releases has made it possible, with the help of dispersion and transfer models, to evaluate the atmospheric concentration of the different radionuclide released as well as their deposition and presence in the biotope in the plant vicinity. The effective dose equivalents received by persons living in the zone of maximum exposure and consuming food produced in that zone were assessed at approximately 7x10/sup -5/Sv.a/sup -1/ at the end of the plant's operating period. Finally, the main radionuclides were measured at a number of points near the plant with the aim of verifying the model evaluations for a particular situation.

  18. Post-Palaeozoic evolution of weathered landsurfaces in Uganda by tectonically controlled deep weathering and stripping

    Science.gov (United States)

    Taylor, R. G.; Howard, K. W. F.

    1998-11-01

    A model for the evolution of weathered landsurfaces in Uganda is developed using available geotectonic, climatic, sedimentological and chronological data. The model demonstrates the pivotal role of tectonic uplift in inducing cycles of stripping, and tectonic quiescence for cycles of deep weathering. It is able to account for the development of key landforms, such as inselbergs and duricrust-capped plateaux, which previous hypotheses of landscape evolution that are based on climatic or eustatic controls are unable to explain. Development of the Ugandan landscape is traced back to the Permian. Following late Palaeozoic glaciation, a trend towards warmer and more humid climates through the Mesozoic enabled deep weathering of the Jurassic/mid-Cretaceous surface in Uganda during a period of prolonged tectonic quiescence. Uplift associated with the opening South Atlantic Ocean terminated this cycle and instigated a cycle of stripping between the mid-Cretaceous and early Miocene. Deep weathering on the succeeding Miocene to recent (African) surface has occurred from Miocene to present but has been interrupted in the areas adjacent to the western rift where development of a new drainage base level has prompted cycles of stripping in the Miocene and Pleistocene.

  19. Weathering of the New Albany Shale, Kentucky, USA: I. Weathering zones defined by mineralogy and major-element composition

    Science.gov (United States)

    Tuttle, M.L.W.; Breit, G.N.

    2009-01-01

    Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C

  20. Combining traditional weather forecasting, science in Kenya | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    24 févr. 2012 ... Kenyan farmers have relied on the indigenous weather prediction methods of the Nganyi rainmakers for generations. But extreme weather caused by climate change is affecting the natural signs that rainmakers use to predict weather. Many fear traditional methods are therefore becoming redundant and ...