WorldWideScience

Sample records for rcra post-closure permits

  1. Proposed modifications to the RCRA post-closure permit for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Bear Creek Hydrogeologic Regime (BCHR). These permit conditions define the requirements for RCRA post-closure corrective action groundwater monitoring at the S-3 Ponds, the Oil Landfarm, and the Bear Creek Burial Grounds (units A, C-West, and Walk-in Pits). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for the Bear Creek Valley (BCV) Watershed, (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA post-closure corrective action monitoring program during 1996, and (3) update applicable technical procedures with revised versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP). With these modifications, the Y-12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2.0 provides the technical justification for each proposed permit modification. The proposed changes to permit language are provided in Section 3.0 (S-3 Ponds), Section 4.0 (Oil Landfarm), and Section 5.0 (Bear Creek Burial Grounds). Sections 6.0 and 7.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the PCP Attachments

  2. Proposed modifications to the RCRA post-closure permit for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Bear Creek Hydrogeologic Regime (BCHR). These permit conditions define the requirements for RCRA post-closure corrective action groundwater monitoring at the S-3 Ponds, the Oil Landfarm, and the Bear Creek Burial Grounds (units A, C-West, and Walk-in Pits). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for the Bear Creek Valley (BCV) Watershed, (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA post-closure corrective action monitoring program during 1996, and (3) update applicable technical procedures with revised versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP). With these modifications, the Y-12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2.0 provides the technical justification for each proposed permit modification. The proposed changes to permit language are provided in Section 3.0 (S-3 Ponds), Section 4.0 (Oil Landfarm), and Section 5.0 (Bear Creek Burial Grounds). Sections 6.0 and 7.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the PCP Attachments.

  3. Proposed modifications to the RCRA post-closure permit for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments

  4. Proposed modifications to the RCRA post-closure permit for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report presents proposed modifications to several conditions of the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (CRHR) (permit number TNHW-088, EPA ID No. TN3 89 009 0001). These permit conditions define the requirements for RCRA post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (CRSDB) and Kerr Hollow Quarry (KHQ), and RCRA post-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (CRSPs). Modification of these PCP conditions is requested to: (1) clarify the planned integration of RCRA post-closure corrective action groundwater monitoring at the CRSPs with the monitoring program to be established in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) record of decision (ROD), (2) revise several of the current technical requirements for groundwater monitoring based on implementation of the RCRA monitoring programs during 1996, (3) replace several of the technical procedures included in the PCP with updated versions recently issued by the Y-12 Plant Groundwater Protection Program (GWPP), and (4) correct inaccurate regulatory citations and references to permit conditions and permit attachments. With these modifications, the Y- 12 Plant will continue to meet the full intent of all regulatory obligations for post-closure care of these facilities. Section 2 provides the technical justification for each proposed permit modification. Section 3.0 contains proposed changes to Section II of the PCP. Modifications to site-specific permit conditions are presented in Section 4.0 (CRSDB), Section 5.0 (CRSPs), and Section 6.0 (KHQ). Sections 7.0 and 8.0 reference updated and revised procedures for groundwater sampling, and monitoring well plugging and abandonment, respectively. Appendix A includes all proposed revisions to the permit attachments.

  5. Calendar Year 2007 Resource Conservation and Recovery Act Annual Monitoring Report for the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee - RCRA Post-Closure Permit Nos. TNHW-113, TNHW-116, and TNHW-128

    Energy Technology Data Exchange (ETDEWEB)

    Elvado Environmental

    2008-02-01

    This report contains groundwater quality monitoring data obtained during calendar year (CY) 2007 at the following hazardous waste treatment, storage, and disposal (TSD) units located at the US Department of Energy (DOE) Y-12 National Security Complex (hereafter referenced as Y-12) in Oak Ridge, Tennessee; this S-3 Site, Oil Landfarm, Bear Creek Burial Grounds/Walk-In Pits (BCBG/WIP), Eastern S-3 Site Plume, Chestnut Ridge Security Pits (CRSP), Chestnut Ridge Sediment Disposal Baste (CRSDB), few Hollow Quarry (KHQ), and East Chestnut Ridge Waste Pile (ECRWP). Hit monitoring data were obtained in accordance with the applicable Resource Conservation and Recovery Act of 1976 (RCRA) hazardous waste post-closure permit (PCP). The Tennessee Department of Environment and Conservation (TDEC) - Division of Solid Waste Management issued the PCPs to define the requirements for RCRA post-closure inspection, maintenance, and groundwater monitoring at the specified TSD units located within the Bear Creek Hydrogeologic Regime (PCP no. TNHW-116), Upper East Fork Poplar Creek Hydrogeologic Regime (PCP no. TNHW-113), and Chestnut Ridge Hydrogeologic Regime (PCP no. TNHW-128). Each PCP requires the Submittal of an annual RCRA groundwater monitoring report containing the groundwater sampling information and analytical results obtained at each applicable TSD unit during the preceding CY, along with an evaluation of groundwater low rates and directions and the analytical results for specified RCRA groundwater target compounds; this report is the RCRA annual groundwater monitoring report for CY 2007. The RCRA post-closure groundwater monitoring requirements specified in the above-referenced PCP for the Chestnut Ridge Regime replace those defined in the previous PCP (permit no. TNHW-088), which expired on September 18, 2005, but remained effective until the TDEC issued the new PCP in September 2006. The new PCP defines site-specific groundwater sampling and analysis requirements for the

  6. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann

    2010-11-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep

  7. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-05-01

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specified in Title 40, Code of Federal Regulations (CFR) section 270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below

  8. Proposed modifications to the RCRA post-closure permit for the Upper East Fork Poplar Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report presents proposed modifications to the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (permit number TNHW-088, EPA ID No. TN3 89 009 0001). The modifications are proposed to: (1) revise the current text for two of the Permit Conditions included in Permit Section II - General Facility Conditions, and (2) update the PCP with revised versions of the Y-12 Plant Groundwater Protection Program (GWPP) technical field procedures included in several of the Permit Attachments. The updated field procedures and editorial revisions are Class 1 permit modifications, as specified in Title 40, Code of Federal Regulations (CFR) {section}270.42; Appendix I - Classification of Permit Modifications. These modifications are summarized below.

  9. Hanford Facility RCRA permit handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  10. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    International Nuclear Information System (INIS)

    Boehmer, Ann M.

    2009-01-01

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  11. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Ann M.

    2009-05-31

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  12. Addendum to the post-closure permit application for the Bear Creek hydrogeologic regime at the Y-12 plant: Walk-in pits

    International Nuclear Information System (INIS)

    1995-04-01

    In June 1987, the Resource Conservation and Recovery Act (RCRA) Closure/Post-Closure Plan for the Bear Creek Burial Grounds (BCBG) located at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval.The Closure Plan has been modified and revised several times. This document is an addendum to the Post-Closure Permit Application submitted to TDEC in June, 1994. This addendum contains information on the Walk-In Pits of the BCBG which is meant to supplement the information provided in the Post-Closure Permit Application submitted for the BCBG. This document is not intended to be a stand-alone document.

  13. Post-closure permit application for the Kerr Hollow Quarry at the Y-12 plant

    International Nuclear Information System (INIS)

    1995-06-01

    The Kerr Hollow Quarry (KHQ) is located on U.S. Department of Energy (DOE) property at the Y-12 Plant, Oak Ridge, Tennessee. The Oak Ridge Y-12 Plant was built by the U.S. Army Corps of Engineers in 1943 as part of the Manhattan Project. Until 1992, the primary mission of the Y-12 Plant was the production and fabrication of nuclear weapons components. Activities associated with these functions included production of lithium compounds, recovery of enriched uranium from scrap material, and fabrication of uranium and other materials into finished parts for assemblies. The Kerr Hollow Quarry was used for waste disposal of a variety of materials including water-reactive and shock-sensitive chemicals and compressed gas cylinders. These materials were packaged in various containers and sank under the water in the quarry due to their great weight. Disposal activities were terminated in November, 1988 due to a determination by the Tennessee Department of Environment and Conservation that the quarry was subject to regulations under the Resource Conservation and Recovery Act of 1993. Methods of closure for the quarry were reviewed, and actions were initiated to close the quarry in accordance with closure requirements for interim status surface impoundments specified in Tennessee Rules 1200-1-11-.05(7) and 1200-1-11-.05(11). As part of these actions, efforts were made to characterize the physical and chemical nature of wastes that had been disposed of in the quarry, and to remove any containers or debris that were put into the quarry during waste disposal activities. Closure certification reports (Fraser et al. 1993 and Dames and Moore 1993) document closure activities in detail. This report contains the post-closure permit application for the Kerr Hollow Quarry site

  14. Addendum to the post-closure permit application for the Bear Creek Hydrogeologic Regime at the Y-12 Plant: Walk-in pits. Revision 2

    International Nuclear Information System (INIS)

    1995-04-01

    The revised Closure Plan was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits (WIPs) of the Bear Creek Burial Grounds (BCBG). However, a strategy was developed to include the B Area [a solid waste management unit (SWMU)] with the WIPs so that both areas would be closed under one cap. The plan was presented to the State of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. Therefore, in November 1992, the Closure Plan for B Area and the WIPs was prepared separately from that of the other sites associated with the BCBG and was presented in a RCRA Closure Plan. The Closure Plan revision issued April 1993 was intended to reflect the placement of the Kerr Hollow Quarry debris at the WIPs, revise the closure data, and acknowledge that the disposition of a monitoring well within the closure site could not be verified. A Post-Closure Permit Application (PCPA) was to include the WIPs; however, at the time of submittal, closure of the WIPs had not been certified. This addendum contains information on the WIPs to accompany the BCBG PCPA. The purpose of this document is to supplement the information provided in the BCBG PCPA. This document is not intended to be a stand-alone document. Only additional information regarding the WIPs is included in the sections of this document, which correspond to sections of the PCPA submitted in June 1994

  15. Annual report, RCRA post-closure monitoring and inspections for the mercury landfill hazardous waste trenches for the period October 1995--October 1996

    Energy Technology Data Exchange (ETDEWEB)

    Emer, D.F.; Smith, J.L.

    1997-01-01

    The Area 23 Hazardous Waste Trenches were closed in-place in September 1993. Post-closure monitoring of the Area 23 Hazardous Waste Trenches began in October 1993. The post-closure monitoring program is used to verify that the Area 23 Hazardous Waste Trench covers are performing properly, and that there is no water infiltrating into the waste trenches. The performance of the Area 23 Hazardous Waste Trenches is currently monitored using 30 neutron access tubes positioned on and along the margins of the covers. Soil moisture measurements are obtained in the soils directly beneath the trenches and compared to baseline conditions from the first year of post-closure operation. This report documents the post-closure activities between October 1995 and October 1996.

  16. Annual report, RCRA post-closure monitoring and inspections for the mercury landfill hazardous waste trenches for the period October 1995--October 1996

    International Nuclear Information System (INIS)

    Emer, D.F.; Smith, J.L.

    1997-01-01

    The Area 23 Hazardous Waste Trenches were closed in-place in September 1993. Post-closure monitoring of the Area 23 Hazardous Waste Trenches began in October 1993. The post-closure monitoring program is used to verify that the Area 23 Hazardous Waste Trench covers are performing properly, and that there is no water infiltrating into the waste trenches. The performance of the Area 23 Hazardous Waste Trenches is currently monitored using 30 neutron access tubes positioned on and along the margins of the covers. Soil moisture measurements are obtained in the soils directly beneath the trenches and compared to baseline conditions from the first year of post-closure operation. This report documents the post-closure activities between October 1995 and October 1996

  17. Post-closure permit application for the Upper East Fork Poplar Creek hydrogeologic regime at the Y-12 Plant: New Hope Pond and Eastern S-3 ponds plume. Revision 2

    International Nuclear Information System (INIS)

    1995-02-01

    The intent of this Post-Closure, Permit Application (PCPA) is to satisfy the post-closure permitting requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-11. This application is for the entire Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), which is within the Bear Creek Valley (BCV). This PCPA has been prepared to include the entire East Fork Regime because, although there are numerous contaminant sources within the regime, the contaminant plumes throughout the East Fork Regime have coalesced and can no longer be distinguished as separate plumes. This PCPA focuses on two recognized Resource Conservation and Recovery Act (RCRA) interim status units: New Hope Pond (NHP) and the eastern S-3 Ponds plume. This PCPA presents data from groundwater assessment monitoring throughout the regime, performed since 1986. Using this data, this PCPA demonstrates that NHP is not a statistically discernible source of groundwater contaminants and that sites upgradient of NHP are the likely sources of groundwater contamination seen in the NHP vicinity. As such, this PCPA proposes a detection monitoring program to replace the current assessment monitoring program for NHP

  18. Post-closure permit application for the Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant

    International Nuclear Information System (INIS)

    Greer, J.K. Jr.; Kimbrough, C.W.

    1989-01-01

    This report contains information related to the closure and post closure of the Chestnut Ridge Sediment Disposal Basin of the Y-12 plant. Information concerning the background of the basin, geology, hydrology, and analysis of the sediments is included

  19. First annual report RCRA post-closure monitoring and inspections for the U-3fi waste unit. Final report, July 1995--October 1996

    International Nuclear Information System (INIS)

    Emer, D.F.

    1997-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi RCRA Unit, located in Area 3 of the Nevada Site (NTS), Nye County, Nevada during the July 1995 to October 1996 period. Inspections of the U-3fi RCRA Unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 420 ft ER3-3 borehole and detect changes that may be indicative of moisture movement in the regulated interval. This is the first annual report on the U-3fi closure and includes the first year baseline monitoring data as well as one quarter of compliance monitoring data

  20. Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-05-01

    In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc

  1. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the period October 2000-July 2001

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 2000--July 2001 monitoring period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in July 2001. There has been no subsidence at any of the markers since monitoring began eight years ago. Precipitation for the period October 2000 through July 2001 was 9.42 centimeters (cm) (3.71 inches [in]) (U.S. National Weather Service, 2001). The prior year annual rainfall (January 2000 through December 2000) was 10.44 cm (4.1 1 in.). The recorded average annual rainfall for this site from 1972 to January 2000 is 14.91 cm (5.87 in.). The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that may be indicative of moisture movement at a point located directly beneath each trench. All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the trenches

  2. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, for the Period October 1999-October 2000

    Energy Technology Data Exchange (ETDEWEB)

    D. F. Emer

    2001-03-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the Area 23 Hazardous Waste Trenches Resource Conservation and Recovery Act (RCRA) unit, located in Area 23 of the Nevada Test Site, Nye County, Nevada, during the October 1999-October 2000 period. Inspections of the Area 23 Hazardous Waste Trenches RCRA unit are conducted to determine and document the physical condition of the covers, facilities, and any unusual conditions that could impact the proper operation of the waste unit closure. Physical inspections of the closure were completed quarterly and indicated that the site is in good condition with no significant findings noted. An annual subsidence survey of the elevation markers was conducted in August 2000. There has been no subsidence at any of the markers since monitoring began seven years ago. The objective of the neutron logging program is to monitor the soil moisture conditions along 30 neutron access tubes and detect changes that maybe indicative of moisture movement at a point located directly beneath each trench. Precipitation for the period October 1999 through October 2000 was 10.44 centimeters (cm) (4.11 inches [in.]) (U.S. National Weather Service, 2000). The prior year annual rainfall (January 1999 through December 1999) was 10.13cm (3.99 in.). The highest 30-day cumulative rainfall occurred on March 8, 2000, with a total of 6.63 cm (2.61 in.). The heaviest daily precipitation occurred on February 23,2000, with a total of 1.70 cm (0.67 in.) falling in that 24-hour period. The recorded average annual rainfall for this site, from 1972 to January 1999, is 15.06 cm (5.93 in.). All monitored access tubes are within the compliance criteria of less than 5 percent residual volumetric moisture content at the compliance point directly beneath each respective trench. Soil conditions remain dry and stable underneath the

  3. Hanford facility RCRA permit condition II.U.1 report: mapping of underground piping

    Energy Technology Data Exchange (ETDEWEB)

    Hays, C.B.

    1996-09-27

    The purpose of this report is to fulfill Condition Il.U.1. of the Hanford Facility (HF) Resource Conservation and Recovery Act (RCRA) Permit. The HF RCRA Permit, Number WA7890008967, became effective on September 28, 1994 (Ecology 1994). Permit Conditions Il.U. (mapping) and II.V. (marking) of the HF RCRA Permit, Dangerous Waste (OW) Portion, require the mapping and marking of dangerous waste underground pipelines subject to the provisions of the Washington Administrative Code (WAC) Chapter 173-303. Permit Condition Il.U.I. requires the submittal of a report describing the methodology used to generate pipeline maps and to assure their quality. Though not required by the Permit, this report also documents the approach used for the field marking of dangerous waste underground pipelines.

  4. POST-CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON PAD FACILITY, NEVADA. TEST SITE NEVADA, FOR THE PERIOD JANUARY 2004 - DECEMBER 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection, 1995) and the Federal Facility Agreement and Consent Order of 1996 on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02, Decontamination Pond (RCRA), requires post-closure inspections. CAS 06-04-01, Decon Pad Oil/Water Separator, is located inside the fence at the Building 6-605 compound. This report covers the annual period January 2004 through December 2004

  5. RCRA Part A permit characterization plan for the U-2bu subsidence crater. Revision 1

    International Nuclear Information System (INIS)

    1998-04-01

    This plan presents the characterization strategy for Corrective Action Unit (CAU) 109, U-2bu Subsidence Crater (referred to as U-2bu) in Area 2 at the Nevada Test Site (NTS). The objective of the planned activities is to obtain sufficient characterization data for the crater soils and observed wastes under the conditions of the current Resource Conservation and Recovery Act (RCRA) Part A permit. The scope of the characterization plan includes collecting surface and subsurface soil samples with hand augers and for the purpose of site characterization. The sampling strategy is to characterize the study area soils and look for RCRA constituents. Observable waste soils and surrounding crater soils will be analyzed and evaluated according to RCRA closure criteria. Because of the status of the crater a RCRA Part A permit site, acquired radionuclide analyses will only be evaluated in regards to the health and safety of site workers and the disposition of wastes generated during site characterization. The U-2bu Subsidence Crater was created in 1971 by a Lawrence Livermore National Laboratory underground nuclear test, event name Miniata, and was used as a land-disposal unit for radioactive and hazardous waste from 1973 to 1988

  6. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    International Nuclear Information System (INIS)

    Johnson, J.E.

    1995-01-01

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State's Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP's Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m 3 of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals

  7. RCRA permit modifications and the functional equivalency demonstration: A case study

    International Nuclear Information System (INIS)

    Kinker, J.; Lyon, W.; Carnes, R.; Loehr, C.; Elsberry, K.; Garcia, P.

    1996-01-01

    Hazardous waste operating permits issued under the Resource Conservation and Recovery Act (RCRA) often impose requirements, typically by reference to the original permit application, that specific components and equipment be used. Consequently, changing these items, even for the purpose of routine maintenance, may first require that the owner/operator request a potentially time-consuming and costly permit modification. However, the owner/operator may demonstrate that a modification is not required because the planned changes are functionally equivalent, as defined by RCRA, to the original specifications embodied by the permit. The Controlled-Air Incinerator at Los Alamos National Laboratory is scheduled for maintenance and improvements that involve replacement of components. The incinerator's carbon adsorption unit/high efficiency particulate air filtration system, in particular, was redesigned to improve reliability and minimize maintenance. A study was performed to determine whether the redesigned unit would qualify as functionally equivalent to the original component. in performing this study, the following steps were taken: (a) the key performance factors were identified; (b) performance data describing the existing unit were obtained; (c) performance of both the existing and redesigned units was simulated; and (d) the performance data were compared to ascertain whether the components could qualify as functionally equivalent

  8. INEL RCRA [Resource Conservation and Recovery Act] permit for incineration of hazardous waste: Status report

    International Nuclear Information System (INIS)

    McFee, J.N.; Dalton, J.D.; Bohrer, H.A.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) was constructed to reduce the volume of low-level radioactive waste at the Idaho National Engineering Laboratory (INEL). To address the problem of radioactively contaminated ignitable hazardous waste resulting from INEL activities, a development program was carried out to evaluate WERF's ability to meet the regulated criteria for incinerating liquid and solid ignitable waste. Concurrently, INEL submitted its hazardous waste Part B application under the Resource Conservation and Recovery Act (RCRA). As required, and as a major step in the permitting process, the WERF incinerator portion of the permit application included a proposed trial burn, which is a demonstration test of the incinerator's ability to destroy hazardous materials. The trial burn plan was designed to demonstrate the system performance for liquid and solid ignitable wastes at three operating conditions, using a prepared mix of materials representative of waste to be processed. EPA Region X reviewed and commented on the plan prior to the trial burn. Results of the liquid feed trial burn showed a greater than 97% probability of meeting the RCRA-dictated DRE value for chlorinated solvents and a greater than 99% probability for nonchlorinated solvents. Nonchlorinated solid waste results were calculated at a 93% probability of meeting the required DRE, with a 75% probability for chlorinated solid wastes. In addition, the incinerator DRE continued to improve long after the assumed pre-test equilibrium period had ended. The trial burn demonstrates that the WERF incinerator can safely and adequately destroy ignitable hazardous and mixed waste and provides a significant enhancement of the INEL's waste management system

  9. RCRA permitting strategies for the development of innovative technologies: Lessons from Hanford

    International Nuclear Information System (INIS)

    Gajewski, S.W.; Donaghue, J.F.

    1994-01-01

    The Hanford Site restoration is the largest waste cleanup operation in history. The Hanford plutonium production mission generated two-thirds of all the nuclear waste, by volume, in the Department of Energy (DOE) Complex. Cleanup challenges include not only large stored volumes of radioactive, hazardous, and mixed waste, but contaminated soil and groundwater and scores of major structures slated for decontamination, decommissioning, and demolition. DOE and its contractors will need to invent the technology required to do the job on a timetable driven by negotiated milestones, public concerns, and budgetary constraints. This paper will discuss the effort at Hanford to develop an integrated, streamlined strategy for compliance with the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) in the conduct of research, development, and demonstration (RD ampersand D) of innovative cleanup technologies. The aspects that will be discussed include the following: the genesis of the RD ampersand D permitting challenge at Hanford; permitting options in the existing regulatory framework; regulatory options that offered the best fit for Hanford RD ampersand D activities, and the problems associated with them; and conclusions and recommendations made to regulatory bodies

  10. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification.

  11. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification

  12. RCRA Part B permit modifications for cost savings and increased flexibility at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Jierree, C.; Ticknor, K.

    1996-10-01

    With shrinking budgets and downsizing, a need for streamlined compliance initiatives became evident at the Rocky Flats Environmental Technology Site (RFETS). Therefore, Rocky Mountain Remediation Services (RMRS) at the RFETS successfully and quickly modified the RFETS RCRA Part B Permit to obtain significant cost savings and increased flexibility. This 'was accomplished by requesting operations personnel to suggest changes to the Part B Permit which did not diminish overall compliance and which would be most. cost beneficial. The U.S. Department of Energy (DOE) subsequently obtained approval of those changes from the Colorado Department of Public Health and the Environment (CDPHE)

  13. 1993 RCRA Part B permit renewal application, Savannah River Site: Volume 10, Consolidated Incineration Facility, Section C, Revision 1

    International Nuclear Information System (INIS)

    Molen, G.

    1993-08-01

    This section describes the chemical and physical nature of the RCRA regulated hazardous wastes to be handled, stored, and incinerated at the Consolidated Incineration Facility (CIF) at the Savannah River Site. It is in accordance with requirements of South Carolina Hazardous Waste Management Regulations R.61-79.264.13(a) and(b), and 270.14(b)(2). This application is for permit to store and teat these hazardous wastes as required for the operation of CIF. The permit is to cover the storage of hazardous waste in containers and of waste in six hazardous waste storage tanks. Treatment processes include incineration, solidification of ash, and neutralization of scrubber blowdown

  14. Resource Conservation and Recovery Act (RCRA) Part B permit application for Production Associated Units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1995-05-01

    Attention is focused on permit applications for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; and Cyanide Treatment Unit. This report addresses the following areas: facility description; waste characteristics; process information; ground water monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plant, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification

  15. Resource Conservation and Recovery Act (RCRA) Part B permit application for Production Associated Units at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    Attention is focused on permit applications for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; and Cyanide Treatment Unit. This report addresses the following areas: facility description; waste characteristics; process information; ground water monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plant, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification.

  16. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    International Nuclear Information System (INIS)

    Traynor, J. L.

    2001-01-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure

  17. Area 6 Decontamination Pond Corrective Action Unit 92 Post-Closure Inspection Annual Report for the Period January 2000-December 2000

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Traynor

    2001-03-01

    The Area 6 Decontamination Pond, Corrective Action Unit 92, was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP, 1995]) and the Federal Facility Agreement and Consent Order (NDEP, 1996) on May 11, 1999. Historically the Decontamination Pond was used for the disposal of partially treated liquid effluent discharged from the Decontamination Facility (Building 6-05) and the Industrial Laundry (Building 6-07) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1996). The Decontamination Pond was constructed and became operational in 1979. Releases of RCRA-regulated hazardous waste or hazardous waste constituents have not been discharged to the Decontamination Pond since 1988 (DOE/NV, 1996). The pipe connecting the Decontamination Pond and Decontamination Facility and Industrial Laundry were cut and sealed at the Decontamination Pad Oil/Water Separator in 1992. The Decontamination Pond was closed in place by installing a RCRA cover. Fencing was installed around the periphery to prevent accidental damage to the cover. Post-closure monitoring at the site consists of quarterly inspections of the RCRA cover and fencing, and a subsidence survey. Additional inspections are conducted if: Precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period, or An earthquake occurs with a magnitude exceeding 4.5 on the Richter scale within 100 kilometers (km) (62 miles [mi]) of the closure.

  18. Resource conversation and recovery act (RCRA) Contingency Plan for interim status or permitted units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1992-08-01

    The official mission of the Y-12 Plant is to serve as a manufacturing technology center for key processes such that capabilities are maintained for safe, secure, reliable, and survivable nuclear weapons systems and other applications of national importance. The Y-12 RCRA Contingency Plan will be reviewed and revised if necessary if the facility RCRA operating permits are revised, the plan is inadequate in an emergency, the procedures herein can be improved, the facility's operations change in a manner that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent's Office and the Emergency Preparedness Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste interim status or permitted treatment, storage, or disposal facilities. The 90-day storage areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement

  19. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials.

  20. Resource Conservation and Recovery Act (RCRA) Part B Permit Application for Production Associated Units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-09-01

    This is the RCRA required permit application for Radioactive and Hazardous Waste Management at the Oak Ridge Y-12 Plant for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; Cyanide Treatment Unit. All four of these units are associated with the recovery of enriched uranium and other metals from wastes generated during the processing of nuclear materials

  1. POST-CLOSURE INSPECTION REPORT FOR CORRECTIVE ACTION UNIT 92: AREA 6 DECON POND FACILITY, NEVADA TEST SITE, NEVADA FOR CALENDAR YEAR 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility, Nevada Test Site, Nevada. CAU 92 was closed in accordance with the Resource Conservation and Recovery Act (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection (NDEP), 1995) and the Federal Facility Agreement and Consent Order of 1996. Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by the NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs): CAS 06-04-01, Decon Pad Oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in]) in a 24-hour period. This report covers calendar year 2005. Quarterly site inspections were performed in March, June, September, and December of 2005. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Five additional inspections were performed after precipitation events that exceeded 1.28 cm (0.50 in) within a 24-hour period during 2005. No significant changes in site conditions were noted during these inspections, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A. Precipitation records for 2005 are included in Appendix C

  2. RCRA corrective action and closure

    International Nuclear Information System (INIS)

    1995-02-01

    This information brief explains how RCRA corrective action and closure processes affect one another. It examines the similarities and differences between corrective action and closure, regulators' interests in RCRA facilities undergoing closure, and how the need to perform corrective action affects the closure of DOE's permitted facilities and interim status facilities

  3. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  4. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    International Nuclear Information System (INIS)

    2010-01-01

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  5. Post-Closure Inspection Report for Corrective Action Unit 92: Area 6 Decon Pond Facility, Nevada Test Site, Nevada, for Calendar Year 2006

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This Post-Closure Inspection Report provides an analysis and summary of inspections for Corrective Action Unit (CAU) 92, Area 6 Decon Pond Facility. CAU 92 was closed according to the ''Resource Conservation and Recovery Act'' (RCRA) Part B Operational Permit (Nevada Division of Environmental Protection [NDEP], 1995) and the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 (FFACO, 1996). Closure activities were completed on February 16, 1999, and the Closure Report (U.S. Department of Energy, Nevada Operations Office, 1999) was approved and a Notice of Completion issued by NDEP on May 11, 1999. CAU 92 consists of two Corrective Action Sites (CASs), CAS 06-04-01, Decon Pad Oil/Water Separator; and CAS 06-05-02, Decontamination Pond (RCRA). Both CASs have use restrictions; however, only CAS 06-05-02 requires post-closure inspections. Visual inspections of the cover and fencing at CAS 06-05-02 are performed quarterly. Additional inspections are conducted if precipitation occurs in excess of 1.28 centimeters (cm) (0.50 inches [in.]) in a 24-hour period. This report covers calendar year 2006. Quarterly site inspections were performed in March, June, September, and December of 2006. All observations indicated the continued integrity of the unit. No issues or concerns were noted, and no corrective actions were necessary. Copies of the inspection checklists and field notes completed during each inspection are included in Appendix A of this report, and photographs taken during the site inspections are included in Appendix B of this report. One additional inspection was performed after a precipitation event that exceeded 1.28 cm (0.50 in.) within a 24-hour period during 2006. No significant changes in site conditions were noted during this inspection, and no corrective actions were necessary. A copy of the inspection checklist and field notes completed during this additional inspection is included in Appendix A of this report. Precipitation records for 2006

  6. A successful environmental remediation program closure and post-closure activities (CAPCA) Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bowers, M.H.

    1991-01-01

    The Resource Conservation and Recovery Act (RCRA) closure of eleven waste management units at the Department of Energy's (DOE's) Oak Ridge Y-12 Plant is nearing completion. The Oak Ridge Y-12 Plant is managed by Martin Marietta Energy Systems, Inc. for the US Department of Energy under Contract DE-AC05-84OR21400. The Closure and Post Closure Program (CAPCA) has been accomplished on an accelerated schedule through the efforts of a dedicated team from several organizations. This paper relates experience gained from the program that can be of benefit on other DOE environmental remediation projects. Technical design and construction aspects, as well as project management considerations, are discussed

  7. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    International Nuclear Information System (INIS)

    2010-01-01

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  8. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  9. Design Alternative Evaluation No. 3: Post-Closure Ventilation

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The objective of this study is to provide input to the Enhanced Design Alternatives (EDA) for License Application Design Selection (LADS). Its purpose is to develop and evaluate conceptual designs for post-closure ventilation alternatives that enhance repository performance. Post-closure ventilation is expected to enhance repository performance by limiting the amount of water contacting the waste packages. Limiting the amount of water contacting the waste packages will reduce corrosion

  10. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    International Nuclear Information System (INIS)

    2009-01-01

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  11. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Protection and Technical Services

    2009-09-30

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  12. Post-closure Safety of the Borehole Disposal Concept

    International Nuclear Information System (INIS)

    Little, R.

    2016-01-01

    Conclusion: • BDC post-closure safety assessments have been undertaken over last 15-20 years. • Consistent with best international practice and IAEA guidance: – used structure assessment approach; – peer reviewed; – iterative. • Built confidence in BDC as a safe long-term management option for DSRSs at both a generic and site-specific level

  13. 40 CFR 265.280 - Closure and post-closure.

    Science.gov (United States)

    2010-07-01

    ... contaminants caused by wind erosion; and (4) Compliance with § 265.276 concerning the growth of food-chain... and post-closure care objectives of paragraph (a) of this section: (1) Type and amount of hazardous..., including amount, frequency, and pH of precipitation; (5) Geological and soil profiles and surface and...

  14. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  15. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-16

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  16. Corrective Action Management Unit Report of Post-Closure Care Activities Calendar Year 2017.

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Little, Bonnie Colleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The Corrective Action Management Unit (CAMU) at Sandia National Laboratories, New Mexico (SNL/NM) consists of a containment cell and ancillary systems that underwent regulatory closure in 2003 in accordance with the Closure Plan in Appendix D of the Class 3 Permit Modification (SNL/NM September 1997). The containment cell was closed with wastes in place. On January 27, 2015, the New Mexico Environment Department (NMED) issued the Hazardous Waste Facility Operating Permit (Permit) for Sandia National Laboratories (NMED January 2015). The Permit became effective February 26, 2015. The CAMU is undergoing post-closure care in accordance with the Permit, as revised and updated. This CAMU Report of Post-Closure Care Activities documents all activities and results for Calendar Year (CY) 2017 as required by the Permit. The CAMU containment cell consists of engineered barriers including a cover system, a bottom liner with a leachate collection and removal system (LCRS), and a vadose zone monitoring system (VZMS). The VZMS provides information on soil conditions under the cell for early leak detection. The VZMS consists of three monitoring subsystems, which include the primary subliner (PSL), a vertical sensor array (VSA), and the Chemical Waste Landfill (CWL) sanitary sewer (CSS) line. The PSL, VSA, and CSS monitoring subsystems are monitored quarterly for soil moisture concentration, the VSA is monitored quarterly for soil temperature, and the VSA and CSS monitoring subsystems are monitored annually for volatile organic compound (VOC) concentrations in the soil vapor at various depths. Baseline data for the soil moisture, soil temperature, and soil vapor were established between October 2003 and September 2004.

  17. Clues to interpretation of RCRA regulations

    International Nuclear Information System (INIS)

    Siebach, P.R.; Brown, P.H.

    1992-01-01

    Waste waters from industrial facilities are often treated at waste water treatment plants and then discharged to streams or rivers, or may be reused. Discharges of pollutants to waterways are regulated under the Clean Water Act, and require a permit. The Resource Conservation and Recovery Act (RCRA) regulates the management of solid wastes. This paper discusses the status of waste water treatment plant discharges and sludges pursuant to RCRA. It concludes that some exceptions to RCRA allow waste water treatment plants to accept dilute solvent mixtures, treat them, and discharge effluent without needing a RCRA permit. If residual sludges do not exhibit a hazardous characteristic, then they may be managed as nonhazardous solid waste. For DOE and other generators of mixed waste (both radioactive and hazardous), this may allow sludges to be managed as low level radioactive waste. (author)

  18. Performance Assessment of a Post-Closure Pyrophoric Event

    International Nuclear Information System (INIS)

    Duguid, J.O.; Senger, R.K.; Leem, J.

    2002-01-01

    This paper describes analyses of a potential post-closure pyrophoric event in a waste package containing uranium metal spent fuel. The analyses include temperature at adjacent waste packages caused by the event and the dose to humans due to the event. The thermal analyses show that the event would not be expected to damage the adjacent waste packages. The dose analyses show that the doses due to the event are small. These analyses provide support to screening arguments used to demonstrate that the pyrophoric event should not be considered in the total system performance assessment model

  19. Post-closure resaturation of a deep radioactive waste repository

    International Nuclear Information System (INIS)

    Cox, I.C.S.; Rodwell, W.R.

    1989-03-01

    The post-closure resaturation of a deep radioactive waste repository has been modelled for a number of generic disposal concepts. A combination of numerical ground water flow simulations and analytical calculations has been used to investigate the variation of repository fluid pressure and degree of water saturation with time, and to determine the factors influencing resaturation times. The host rock permeability was found to be the most important determining factor. For geological environments regarded as likely for a waste repository, resaturation is predicted to be a short term process compared with gas generation and contaminant migration timescales. (author)

  20. Post-Closure Inspection Report for Corrective Action Unit 90: Area 2 Bitcutter Containment, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 90, Area 2 Bitcutter Containment, is identified in the ''Federal Facility Agreement and Consent Order'' of 1996. The post-closure requirements for CAU 90 are described in Section VII.B.8.b of the Nevada Test Site ''Resource Conservation and Recovery Act'' Permit for a Hazardous Waste Management Facility Number NEV HW0021, dated November 2005. Post-closure activities consist of the following: Semiannual inspections of the site using inspection checklists; Photographic documentation; Field note documentation; and Preparation and submittal of an annual Post-Closure Inspection Report. This annual report covers the period of July 2006 to June 2007 and consists of a summary of the results of the inspections, copies of the inspection checklists and field notes, maintenance and repair records (if any), photographs, and conclusions and recommendations. The inspection checklists are provided in Appendix A, a copy of the field notes is provided in Appendix B, and copies of photographs taken during the inspections are provided in Appendix C

  1. Post-Closure Inspection Report for Corrective Action Unit 90: Area 2 Bitcutter Containment, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2008-01-01

    Corrective Action Unit (CAU) 90, Area 2 Bitcutter Containment, is identified in the Federal Facility Agreement and Consent Order of 1996, as amended February 2008. The post-closure requirements for CAU 90 are described in Section VII.B.8.b of the Nevada Test Site Resource Conservation and Recovery Act Permit for a Hazardous Waste Management Facility Number NEV HW0021, dated November 2005. Post-closure activities consist of the following: (1) Semiannual inspections of the site using inspection checklists; (2) Photographic documentation; (3) Field note documentation; and (4) Preparation and submittal of an annual Post-Closure Inspection Report. This annual report covers the period of July 2007 to June 2008 and consists of a summary of the results of the inspections, copies of the inspection checklists and field notes, maintenance and repair records (if any), photographs, and conclusions and recommendations. The inspection checklists are provided in Appendix A, a copy of the field notes is provided in Appendix B, and copies of photographs taken during the inspections are provided in Appendix C

  2. Post-closure radiation dose assessment for Yucca Mountain repository

    International Nuclear Information System (INIS)

    Jia Mingyan; Zhang Xiabin; Yang Chuncai

    2006-01-01

    A brief introduction of post-closure long-term radiation safety assessment results was represented for the yucca mountain high-level waste geographic disposal repository. In 1 million years after repository closure, for the higher temperature repository operating mode, the peak annual dose would be 150 millirem (120 millirem under the lower-temperature operating mode) to a reasonably maximally exposed individual approximately 18 kilometers (11 miles) from the repository. The analysis of a drilling intrusion event occurring at 30,000 years indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers (11 miles) downstream of the repository would be 0.002 millirem. The analysis of an igneous activity scenario, including a volcanic eruption event and igneous intrusion event indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers downstream of the repository would be 0.1 millirem. (authors)

  3. Integrating scientific results for a post-closure safety demonstration

    International Nuclear Information System (INIS)

    Taylor, E.C.; Ramspott, L.D.; Sinnock, S.; Sprecher, W.M.

    1994-01-01

    The U.S. Department of Energy (DOE) is developing a nuclear waste management system that will accept high-level radioactive waste, transport it, store it, and ultimately emplace it in a deep geologic repository. The key activity now is determining whether Yucca Mountain, Nevada is suitable as a site for the repository. If so, the crucial technological advance will be the demonstration that disposal of nuclear waste will be safe for thousands of years after closure. Recent regulatory, legal, and scientific developments imply that the safety demonstration must be simple. The scientific developments taken together support a simple set of hypotheses that constitute a post-closure safety argument for a repository at Yucca Mountain. If the understanding of Yucca Mountain hydrology presented in the Site Characterization Plan proves correct, then these hypotheses might be confirmed by combining results of Surface-Based Testing with early testing results in the Exploratory Studies Facility

  4. Performance Assessment of a Post-Closure Pyrophoric Event

    International Nuclear Information System (INIS)

    Duguid, James; Senger, R.; Leem, J.

    2001-01-01

    The U.S. Department of Energy (DOE) spent nuclear fuel (DSNF) is categorized into eleven different spent fuel groups. Group 7, is predominantly uranium metal spent fuel from N Reactor that could oxidize rapidly in the presence of air when a waste package is breached. Such rapid oxidation constitutes a pyrophoric event. The consequences of a post closure pyrophoric event were evaluated in terms of its potential to damage adjacent waste packages and consequences of it in terms of long-term dose to humans. This work was conducted as part of the total system performance assessment (TSPA) of DOE spent fuel for the National Spent Nuclear Fuel Program. These analyses were performed in support of the site recommendation for a repository at Yucca Mountain, Nevada

  5. Barriers and post-closure monitoring (AL121125)

    International Nuclear Information System (INIS)

    Bostick, K.V.; Janecky, D.

    1995-01-01

    This project focuses on the rapid implementation of near-surface barriers, biotreatment, and post-closure monitoring technology. It uses water-permeable and biologic barriers that chemically capture and/or degrade contaminants without significantly altering the natural water flow regime. Barrier approaches are being tested for two different applications. The first is the use of barriers for confinement of chemical contaminants for in-trench treatments with leach systems or an in-place bioreactor. The second is an enhancement of the current practice of emplacing grout or clay slurry walls into direct horizontal surface and subsurface water flows around a contaminated area by integrating permeable reactive barriers and petroleum reservoir gel/foam/polymer technology

  6. Post-closure performance assessment treatment of the biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, M A [UK Nirex Ltd., Harwell, Oxfordshire (United Kingdom); Egan, M J [AEA Technology, Risley, Cheshire (United Kingdom); Thorne, M C [Electrowatt, Horsham, Sussex (United Kingdom); Williams, J A [AEA Technology, Risley, Cheshire (United Kingdom)

    1996-07-01

    The Nirex strategy for radioactive waste disposal is based on a system of engineered and natural barriers, providing long-term isolation of the waste from those parts of the environment that are in contact with or readily available for use by humans (i.e. the biosphere). Even so, there remains the possibility that, on a timescale of thousands to tens of thousands of years, small quantities of poorly-sorbed, long-lived radionuclides may be released from the engineered disposal system, ultimately to emerge into the biosphere. Biosphere models are used in post-closure performance assessments to quantify the competing effects of dilution and accumulation processes on radionuclide concentrations in the accessible environment. Understanding biosphere processes and their time dependence is necessary not only to determine the radiological impact of possible future releases, but also to characterise the dynamics of transport in groundwater and the location, duration and extent of any such releases. Nirex is developing a new biosphere model for use in post-closure radiological assessments for the proposed Sellafield repository. A compartment modelling approach has been adopted, as in studies performed previously, but the system will be dynamic, allowing changes with time in both the properties of compartments and the transfers between compartments. The transport model considers both mass transport within the biosphere and the migration of radionuclides, thereby ensuring that a self-consistent description of the biosphere, in a spatially-extensive domain is maintained. The above approach is designed to link the assessment models used by the Nirex assessment team more closely into the Nirex biosphere research programme than has hitherto been possible with time-invariant assessment models. (author)

  7. Post-closure performance assessment treatment of the biosphere

    International Nuclear Information System (INIS)

    Broderick, M.A.; Egan, M.J.; Thorne, M.C.; Williams, J.A.

    1996-01-01

    The Nirex strategy for radioactive waste disposal is based on a system of engineered and natural barriers, providing long-term isolation of the waste from those parts of the environment that are in contact with or readily available for use by humans (i.e. the biosphere). Even so, there remains the possibility that, on a timescale of thousands to tens of thousands of years, small quantities of poorly-sorbed, long-lived radionuclides may be released from the engineered disposal system, ultimately to emerge into the biosphere. Biosphere models are used in post-closure performance assessments to quantify the competing effects of dilution and accumulation processes on radionuclide concentrations in the accessible environment. Understanding biosphere processes and their time dependence is necessary not only to determine the radiological impact of possible future releases, but also to characterise the dynamics of transport in groundwater and the location, duration and extent of any such releases. Nirex is developing a new biosphere model for use in post-closure radiological assessments for the proposed Sellafield repository. A compartment modelling approach has been adopted, as in studies performed previously, but the system will be dynamic, allowing changes with time in both the properties of compartments and the transfers between compartments. The transport model considers both mass transport within the biosphere and the migration of radionuclides, thereby ensuring that a self-consistent description of the biosphere, in a spatially-extensive domain is maintained. The above approach is designed to link the assessment models used by the Nirex assessment team more closely into the Nirex biosphere research programme than has hitherto been possible with time-invariant assessment models. (author)

  8. Field test of a post-closure radiation monitor

    International Nuclear Information System (INIS)

    Reed, S.; Christy, C.E.; Heath, R.E.

    1995-01-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy's Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. A prototype LPRMS probe was built, and B ampersand W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE's Office of Technology Development (EM-50) through METC. The system was used to measure soil and water with known uranium contamination levels, both in drums and in situ at depths up to 3 meters. For comparison purposes, measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics. This paper presents a description and the results of the field tests. The results were used to characterize the lower detection limits, precision and bias of the system, which allowed the DOE to judge the monitoring system's ability to meet its long-term post-closure radiation monitoring needs. Based on the test results, the monitoring system has been redesigned for fabrication and testing in a potential Phase III of this program. If the DOE feels that this system can meet its needs and chooses to continue into Phase III of this program, this redesigned full scale prototype system will be built and tested for a period of approximately a year. Such a system can be used at a variety of radioactively contaminated sites

  9. RCRA corrective action program guide (Interim)

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The US Department of Energy (DOE) is responsible for compliance with an increasingly complex spectrum of environmental regulations. One of the most complex programs is the corrective action program proposed by the US Environmental Protection Agency (EPA) under the authority of the Resource Conservation and Recovery Act (RCRA) as amended by the Hazardous and Solid Waste Amendments (HSWA). The proposed regulations were published on July 27, 1990. The proposed Subpart S rule creates a comprehensive program for investigating and remediating releases of hazardous wastes and hazardous waste constituents from solid waste management units (SWMUs) at facilities permitted to treat, store, or dispose of hazardous wastes. This proposed rule directly impacts many DOE facilities which conduct such activities. This guidance document explains the entire RCRA Corrective Action process as outlined by the proposed Subpart S rule, and provides guidance intended to assist those persons responsible for implementing RCRA Corrective Action at DOE facilities.

  10. Implementing RCRA during facility deactivation

    International Nuclear Information System (INIS)

    Lebaron, G.J.

    1997-01-01

    RCRA regulations require closure of permitted treatment, storage and disposal (TSD) facilities within 180 days after cessation of operations, and this may essentially necessitate decommissioning to complete closure. A more cost effective way to handle the facility would be to significantly reduce the risk to human health and the environment by taking it from its operational status to a passive, safe, inexpensive-to-maintain surveillance and maintenance condition (deactivation) prior to decommissioning. This paper presents an innovative approach to the cost effective deactivation of a large, complex chemical processing facility permitted under RCRA. The approach takes into account risks to the environment posed by this facility in comparison to risks posed by neighboring facilities at the site. The paper addresses the manner in which: 1) stakeholders and regulators were involved; 2) identifies a process by which the project proceeds and regulators and stakeholders were involved; 3) end points were developed so completion of deactivation was clearly identified at the beginning of the project, and 4) innovative practices were used to deactivate more quickly and cost effectively

  11. Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-04-01

    This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

  12. POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA FOR CALENDAR YEAR 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-01

    This post-closure inspection report includes the results of inspections, maintenance and repair activities, and conclusions and recommendations for Calendar Year 2005 for nine Corrective Action Units located on the Tonopah Test Range , Nevada.

  13. 40 CFR 265.118 - Post-closure plan; amendment of plan.

    Science.gov (United States)

    2010-07-01

    ... mail. In addition, for facilities without approved post-closure plans, it must also be provided during... requirements. At the end of the specified period of suspension, the Regional Ad-min-is-tra-tor would then...

  14. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 112: AREA 23 HAZARDOUS WASTE TRENCHES, NEVADA TEST SITE, NEVADA; FOR THE PERIOD OCTOBER 2003 - SEPTEMBER 2004

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2004-01-01

    Corrective Action Unit (CAU) 112, Area 23 Hazardous Waste Trenches, Nevada Test Site (NTS), Nevada, is a Resource Conservation and Recovery Act (RCRA) unit located in Area 23 of the NTS. This annual Post-Closure Inspection and Monitoring Report provides the results of inspections and monitoring for CAU 112. This report includes a summary and analysis of the site inspections, repair and maintenance, meteorological information, and neutron soil moisture monitoring data obtained at CAU 112 for the current monitoring period, October 2003 through September 2004. Inspections of the CAU 112 RCRA unit were performed quarterly to identify any significant physical changes to the site that could impact the proper operation of the waste unit. The overall condition of the covers and facility was good, and no significant findings were observed. The annual subsidence survey of the elevation markers was conducted on August 23, 2004, and the results indicated that no cover subsidence4 has occurred at any of the markers. The elevations of the markers have been consistent for the past 11 years. The total precipitation for the current reporting period, october 2003 to September 2004, was 14.0 centimeters (cm) (5.5 inches [in]) (National Oceanographic and Atmospheric Administration, Air Resources Laboratory, Special Operations and Research Division, 2004). This is slightly below the average rainfall of 14.7 cm (5.79 in) over the same period from 1972 to 2004. Post-closure monitoring verifies that the CAU 112 trench covers are performing properly and that no water is infiltrating into or out of the waste trenches. Sail moisture measurements are obtained in the soil directly beneath the trenches and compared to baseline conditions for the first year of post-closure monitoring, which began in october 1993. neutron logging was performed twice during this monitoring period along 30 neutron access tubes to obtain soil moisture data and detect any changes that may indicate moisture movement

  15. When RCRA meets ALARA

    International Nuclear Information System (INIS)

    Kirner, N.P.

    1990-01-01

    This paper proposes a method to identify an inconsistency between RCRA and AEA and for distinguishing a true inconsistency from a compliance difficulty. The paper also provides examples of each situation, accommodating specific RCRA requirements to maintain adherence to radiation protection requirements. The proposed method is derived from radiation protection guidance to Federal agencies for occupational exposure that was issued by EPA, under authority derived from Executive Order 10831, the AEA, and Reorganization Plan No. 3 of 1970. This EPA guidance was approved by President Reagan on January 20, 1987 and closely reflects the guidance of national and international radiation standard-setting groups

  16. RCRA facility stabilization initiative

    International Nuclear Information System (INIS)

    1995-02-01

    The RCRA Facility Stabilization Initiative was developed as a means of implementing the Corrective Action Program's management goals recommended by the RIS for stabilizing actual or imminent releases from solid waste management units that threaten human health and the environment. The overall goal of stabilization is to, as situations warrant, control or abate threats to human health and/or the environment from releases at RCRA facilities, and/or to prevent or minimize the further spread of contamination while long-term remedies are pursued. The Stabilization initiative is a management philosophy and should not be confused with stabilization technologies

  17. Financial risks of post-closure custodial care for the Barnwell radioactive waste disposal facility - 16155

    International Nuclear Information System (INIS)

    Baird, Robert D.; Newberry, William F.

    2009-01-01

    This paper reports evaluations of the adequacy of the Barnwell Extended Care Fund in light of identified risks, with the conclusion that the fund is sufficient to cover the costs and uncertainties associated with planned post-closure care of the Barnwell, South Carolina low-level radioactive waste disposal facility. It reviews background information pertinent to the facility's post-closure monitoring and maintenance and describes financial responsibility for post-closure activities. It identifies and briefly characterizes the activities planned to be conducted following facility closure and presents the midrange estimate of planned post-closure costs. The paper identifies and quantifies sources of uncertainty in activities and costs planned for post-closure care and presents 50-, 80-, and 95-percent confidence levels of planned costs. The fund is currently sufficient to cover some but not all of the costs that might be incurred as a result of unplanned events. The paper identifies, characterizes, and quantifies unplanned events, possible consequences, and probabilities of occurrence. The paper presents costs that might be incurred in responding to the unplanned initiating events and identifies levels of confidence that the fund is adequate to cover such costs. (authors)

  18. Safe disposal of radioactive waste. Post-closure safety assessment of permanent repository in Novi han

    International Nuclear Information System (INIS)

    Mateeva, M.

    2007-01-01

    A presented material is the third part of the monograph with title 'Safe disposal of radioactive waste. Post-closure safety assessment of the permanent repository in Novi Han'. This part deals with review of the scenario selection procedure. The process system of permanent repository for radioactive waste is describing in details for different levels. Preliminary screening process of features, events and processes is presented here. Interaction matrixes for basic disposal system components are constructed. Final selection and grouping between the included features, events and processes is done. Selected and defined scenarios for post-closure safety assessment are presented too. Key words: post-closure safety assessment, scenario generation procedure, process system, process influence diagram, and interaction matrix

  19. RCRA corrective action determination of no further action

    International Nuclear Information System (INIS)

    1996-06-01

    On July 27, 1990, the U.S. Environmental Protection Agency (EPA) proposed a regulatory framework (55 FR 30798) for responding to releases of hazardous waste and hazardous constituents from solid waste management units (SWMUs) at facilities seeking permits or permitted under the Resource Conservation and Recovery Act (RCRA). The proposed rule, 'Corrective Action for Solid Waste Management Units at Hazardous Waste Facilities', would create a new Subpart S under the 40 CFR 264 regulations, and outlines requirements for conducting RCRA Facility Investigations, evaluating potential remedies, and selecting and implementing remedies (i.e., corrective measures) at RCRA facilities. EPA anticipates instances where releases or suspected releases of hazardous wastes or constituents from SWMUs identified in a RCRA Facility Assessment, and subsequently addressed as part of required RCRA Facility Investigations, will be found to be non-existent or non-threatening to human health or the environment. Such releases may require no further action. For such situations, EPA proposed a mechanism for making a determination that no further corrective action is needed. This mechanism is known as a Determination of No Further Action (DNFA) (55 FR 30875). This information Brief describes what a DNFA is and discusses the mechanism for making a DNFA. This is one of a series of Information Briefs on RCRA corrective action

  20. NGLW RCRA Storage Study

    International Nuclear Information System (INIS)

    Waters, R.J.; Ochoa, R.; Fritz, K.D.; Craig, D.W.

    2000-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning

  1. NGLW RCRA Storage Study

    Energy Technology Data Exchange (ETDEWEB)

    R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

    2000-06-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

  2. 40 CFR 264.228 - Closure and post-closure care.

    Science.gov (United States)

    2010-07-01

    ... remaining wastes to a bearing capacity sufficient to support final cover; and (iii) Cover the surface....112 must include both a plan for complying with paragraph (a)(1) of this section and a contingent plan... practicably removed at closure; and (ii) The owner or operator must prepare a contingent post-closure plan...

  3. Interim status of closure/post-closure plan for 183-H solar evaporation basins

    International Nuclear Information System (INIS)

    1988-03-01

    This report describes a plan for decommissioning several solar evaporation basins on the Hanford reservation. The document describes procedures for sampling during decommissioning and a plan for certification of the resulting completed landfill. Additional plans deal with the training, security of the site, and post-closure monitoring

  4. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, A. J. [National Security Technologies, LLC, Las Vegas, NV (United States). Nevada Test Site; Lantow, Tiffany A. [National Security Technologies, LLC, Las Vegas, NV (United States). Nevada Test Site

    2015-03-25

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2014 and includes inspection and repair activities completed at the following CAUs; CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Photographs taken during inspections are included in Appendix D. The annual post-closure inspections were conducted on May 28, 2014. Maintenance was required at CAU 407. Animal burrows were backfilled and erosion repairs were performed. Vegetation monitoring was performed at CAU 407 in June 2014. The vegetation monitoring report is included in Appendix E.

  5. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-06-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as

  6. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2008-01-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as

  7. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for Fiscal Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, Alissa J. [Nevada Field Office, Las Vegas, NV (United States)

    2015-01-01

    This report serves as the combined annual report for post-closure activities for several Corrective Action Units (CAUs). The locations of the sites are shown in Figure 1. This report covers fiscal year 2014 (October 2013–September 2014). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, 111, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches (in.) in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 in. in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. In addition to visual inspections, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted at CAU 110. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. The results of the vegetation surveys and an analysis of the soil moisture monitoring data at CAU 110 are presented in this report. Results of additional monitoring at CAU 111 are documented annually in the Nevada National Security Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites and in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site, which will be prepared in approximately June 2015. All required inspections, maintenance, and monitoring were conducted in accordance with the post-closure requirements of the permit. It is recommended to continue

  8. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2009 and includes inspection and repair activities completed at the following seven CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 426: Cactus Spring Waste Trenches (TTR); (5) CAU 453: Area 9 UXO Landfill (TTR); (6) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR); and (7) CAU 487: Thunderwell Site (TTR). The annual post-closure inspections were conducted May 5-6, 2009. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2009, and the vegetation monitoring report is included in Attachment F. Maintenance was performed at CAU 453. Animal burrows observed during the annual inspection were backfilled, and a depression was restored to grade on June 25, 2009. Post-closure site inspections should continue as scheduled. Vegetation survey inspections have been conducted annually at CAUs 400, 404, 407, and 426. Discontinuation of vegetation surveys is recommended at the CAU 400 Bomblet Pit and CAU 426, which have been successfully revegetated. Discontinuation of vegetation surveys is also recommended at CAU 404, which has been changed to an administrative closure with no inspections

  9. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-05-28

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2009 and includes inspection and repair activities completed at the following seven CAUs: · CAU 400: Bomblet Pit and Five Points Landfill (TTR) · CAU 407: Roller Coaster RadSafe Area (TTR) · CAU 424: Area 3 Landfill Complexes (TTR) · CAU 426: Cactus Spring Waste Trenches (TTR) · CAU 453: Area 9 UXO Landfill (TTR) · CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) · CAU 487: Thunderwell Site (TTR) The annual post-closure inspections were conducted May 5–6, 2009. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2009, and the vegetation monitoring report is included in Attachment F. Maintenance was performed at CAU 453. Animal burrows observed during the annual inspection were backfilled, and a depression was restored to grade on June 25, 2009. Post-closure site inspections should continue as scheduled. Vegetation survey inspections have been conducted annually at CAUs 400, 404, 407, and 426. Discontinuation of vegetation surveys is recommended at the CAU 400 Bomblet Pit and CAU 426, which have been successfully revegetated. Discontinuation of vegetation surveys is also recommended at CAU 404, which has been changed to an administrative closure with no inspections required. Vegetation

  10. Post-Closure Inspection Report for the Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-06-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal

  11. Post-Closure Inspection Report for the Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal

  12. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

  13. Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts

    International Nuclear Information System (INIS)

    Webb, S.; Itamura, M.

    2004-01-01

    Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt

  14. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-21

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

  15. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, A. J.

    2014-03-03

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2013 and includes inspection and repair activities completed at the following CAUs: • CAU 400: Bomblet Pit and Five Points Landfill (TTR) • CAU 407: Roller Coaster RadSafe Area (TTR) • CAU 424: Area 3 Landfill Complexes (TTR) • CAU 453: Area 9 UXO Landfill (TTR) • CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Field notes are included in Appendix D. Photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted on May 14, 2013. Maintenance was performed at CAU 400, CAU 424, and CAU 453. At CAU 400, animal burrows were backfilled. At CAU 424, erosion repairs were completed at Landfill Cell A3-3, subsidence was repaired at Landfill Cell A3-4, and additional lava rock was placed in high-traffic areas to mark the locations of the surface grade monuments at Landfill Cell A3-3 and Landfill Cell A3-8. At CAU 453, two areas of subsidence were repaired and animal burrows were backfilled. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2013. The vegetation monitoring report is included in Appendix F.

  16. An approach to handling timescales in post-closure safety assessment

    International Nuclear Information System (INIS)

    Bailey, L.; Littleboy, A.

    2002-01-01

    Previous Nirex post-closure assessments of deep geological disposal have been based on the use of probabilistic safety analysis covering many millions of years. However, Nirex has also published an assessment methodology in which the assessment timescale is divided into a number of discrete periods of time (time frames). Nirex is currently at the stage of planning the next update to its generic post-closure performance assessment and is considering the merits of using an assessment methodology based on time frames, in order to improve links with operational assessments and the provision of advice on the packaging of wastes, and to encourage stakeholder dialogue. This paper has been prepared as part of Nirex's aim, wherever possible, to 'preview', or seek input from others on, its ideas for new work to generate discussion and feedback. It describes an evolution of Nirex's published assessment methodology and outlines how it could be applied in an updated post-closure performance assessment of the Nirex generic phased disposal concept. (authors)

  17. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada: For Fiscal Year 2015 (October 2014–September 2015), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-03-01

    This report serves as the combined annual report for post-closure activities for the following closed corrective action units (CAUs); CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2015 (October 2014 through September 2015). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and are summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report.

  18. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada: For Fiscal Year 2015 (October 2014-September 2015), Revision 0

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2016-01-01

    This report serves as the combined annual report for post-closure activities for the following closed corrective action units (CAUs); CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2015 (October 2014 through September 2015). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and are summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report.

  19. ORGDP RCRA/PCB

    International Nuclear Information System (INIS)

    Rodgers, T.

    1986-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected after a study of various alternatives which are covered in Report No. X-OE-141. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performance testing

  20. Novi Han Radioactive Waste Repository post-closure safety assessment, ver.2

    International Nuclear Information System (INIS)

    Mateeva, M.

    2003-01-01

    The methodology for the post-closure safety assessment is presented. The assessment context includes regulatory framework (protection principles); scope and time frame; radiological and technical requirements; modeling etc. The description of the Novi Han disposal system contains site location. meteorological, hydrological and seismological characteristics; waste and repository description and human activities characteristics. The next step in the methodology is scenario development and justification. The systematic generation os exposure scenarios is considered as central to the post-closure safety assessment. The most important requirements for the systematic scenario generation approach are: transparency, comprehensiveness (all possible FEPs influencing the the disposal system and the radionuclide release should be considered); relevant future evolutions; identification of critical issues and investigation of the robustness of the system. For the source-pathway-receptor analysis the Process System is divided into near-field, geosphere/atmosphere and biosphere, describing the key facets controlling the potential radionuclide migration to the environment. The schematic division of the Novi Han near-field Process System into lower-level conceptual features is presented and discussed. As a result of the examinations of the FEPs three classes of scenarios are identified for the Novi Han post-closure safety assessment: Environmental evolution scenarios (geological change and climate change); future human action scenarios (human intrusion and archaeological action); Scenarios with very low probability (terrorism, crashes, explosions). The safety assessment iteration leads to identification of a modern scenario generation approach, assessment of key radionuclide releases, geological and hydrological evaluation, identification of the key parameters from sensitivity analysis etc. Examples of conceptual models are given. For the mathematical modeling the AMBER code is used

  1. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2010 and includes inspection and repair activities completed at the following seven CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 426: Cactus Spring Waste Trenches (TTR); (5) CAU 453: Area 9 UXO Landfill (TTR); (6) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR); and (7) CAU 487: Thunderwell Site (TTR).

  2. Development of database and QA systems for post closure performance assessment on a potential HLW repository

    International Nuclear Information System (INIS)

    Hwang, Y. S.; Kim, S. G.; Kang, C. H.

    2002-01-01

    In TSPA of long-term post closure radiological safety on permanent disposal of HLW in Korea, appropriate management of input and output data through QA is necessary. The robust QA system is developed using the T2R3 principles applicable for five major steps in R and D's. The proposed system is implemented in the web-based system so that all participants in TSRA are able to access the system. In addition, the internet based input database for TSPA is developed. Currently data from literature surveys, domestic laboratory and field experiments as well as expert elicitation are applied for TSPA

  3. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2013-01-28

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2012 and includes inspection and repair activities completed at the following CAUs: · CAU 400: Bomblet Pit and Five Points Landfill (TTR) · CAU 407: Roller Coaster RadSafe Area (TTR) · CAU 424: Area 3 Landfill Complexes (TTR) · CAU 453: Area 9 UXO Landfill (TTR) · CAU 487: Thunderwell Site (TTR)

  4. Resource Conservation and Recovery Act closure report: Area 2, Bitcutter and Postshot Containment Shops

    International Nuclear Information System (INIS)

    Petrello, Jaclyn

    1996-01-01

    Post-closure monitoring requirements for CASs 02-20-01 (Bitcutter/Ps Inj.) and Wells (3) (RCRA) and CAS 02-20-03 (Wastewater Pit) are managed through the RCRA permit, which is renewed every 5 years. Post-closure monitoring requirements are described in that permit.

  5. Resource Conservation and Recovery Act closure report: Area 2, Bitcutter and Postshot Containment Shops

    Energy Technology Data Exchange (ETDEWEB)

    Petrello, Jaclyn [Nevada Field Office, Las Vegas, NV (United States)

    1996-12-01

    Post-closure monitoring requirements for CASs 02-20-01 (Bitcutter/Ps Inj.) and Wells (3) (RCRA) and CAS 02-20-03 (Wastewater Pit) are managed through the RCRA permit, which is renewed every 5 years. Post-closure monitoring requirements are described in that permit.

  6. POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA, FOR CALENDAR YEAR 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-04-01

    This Post-Closure Inspection Report provides an analysis and summary of the semi-annual inspections conducted at the Tonopah Test Range (TTR) during Calendar Year 2004. The report includes the inspection and/or repair activities completed at the following nine Corrective Action Units (CAUs) located at TTR, Nevada: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2,6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). Site inspections were conducted on July 7,2004, and November 9-10,2004. All inspections were conducted according to the post-closure plans in the approved Closure Reports (CRs). The post-closure inspection plan for each CAU is included in Appendix B, with the exception of CAU 400 and CAU 423. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. In addition, post-closure inspections are not currently required at CAU 423; however, the CR is being revised to include inspection requirements. The inspection checklists for each site inspection are included in Appendix C, the field notes are included in Appendix D, and the site photographs are included in Appendix E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2004, and the vegetation monitoring report is included in Appendix F. In addition, topographic survey results of two repaired landfill cells in CAU 424 are included in Appendix G. Maintenance and/or repairs were performed at the CAU 400 Five Points Landfill, CAU 407, CAU 424, CAU 427, and CAU 487. CAU 400 repairs included mending the fence, reseeding of a flood damaged area, and

  7. Contingent post-closure plan, hazardous waste management units at selected maintenance facilities, US Army National Training Center, Fort Irwin, California

    International Nuclear Information System (INIS)

    1992-01-01

    The National Training Center (NTC) at Fort Irwin, California, is a US Army training installation that provides tactical experience for battalion/task forces and squadrons in a mid- to high-intensity combat scenario. Through joint exercises with US Air Force and other services, the NTC also provides a data source for improvements of training doctrines, organization, and equipment. To meet the training and operational needs of the NTC, several maintenance facilities provide general and direct support for mechanical devices, equipment, and vehicles. Maintenance products used at these facilities include fuels, petroleum-based oils, lubricating grease, various degreasing solvents, antifreeze (ethylene glycol), transmission fluid, brake fluid, and hydraulic oil. Used or spent petroleum-based products generated at the maintenance facilities are temporarily accumulated in underground storage tanks (USTs), collected by the NTC hazardous waste management contractor (HAZCO), and stored at the Petroleum, Oil, and Lubricant (POL) Storage Facility, Building 630, until shipped off site to be recovered, reused, and/or reclaimed. Spent degreasing solvents and other hazardous wastes are containerized and stored on-base for up to 90 days at the NTC's Hazardous Waste Storage Facility, Building 703. The US Environmental Protection Agency (EPA) performed an inspection and reviewed the hazardous waste management operations of the NTC. Inspections indicated that the NTC had violated one or more requirements of Subtitle C of the Resource Conservation and Recovery Act (RCRA) and as a result of these violations was issued a Notice of Noncompliance, Notice of Necessity for Conference, and Proposed Compliance Schedule (NON) dated October 13, 1989. The following post-closure plan is the compliance-based approach for the NTC to respond to the regulatory violations cited in the NON

  8. RCRA closure of eight land-based units at the Y-12 plant

    International Nuclear Information System (INIS)

    Stone, J.E.; Welch, S.H.

    1988-01-01

    Eight land-based hazardous waste management units at the Oak Ridge Y-12 Plant are being closed under an integrated multi-year program. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. These units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. The closure of these sites will be funded by a new Department of Energy budget category, the Environmental Restoration Budget Category (ERBC), which is intended to provide greater flexibility in the response to closure and remedial activities. A major project, Closure and Post-Closure Activities (CAPCA), has been identified for ERBC funding to close and remediate the land units in accordance with RCRA requirements. Establishing the scope of this program has required the development of risk assessments and the preparation of an integrated schedule

  9. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2008 and includes inspection and repair activities completed at the following ten CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR) CAU 404: Roller Coaster Lagoons and Trench (TTR) CAU 407: Roller Coaster RadSafe Area (TTR) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) CAU 424: Area 3 Landfill Complexes (TTR) CAU 426: Cactus Spring Waste Trenches (TTR) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR) CAU 453: Area 9 UXO Landfill (TTR) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) CAU 487: Thunderwell Site (TTR)

  10. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-03-19

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2008 and includes inspection and repair activities completed at the following ten CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR) CAU 404: Roller Coaster Lagoons and Trench (TTR) CAU 407: Roller Coaster RadSafe Area (TTR) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) CAU 424: Area 3 Landfill Complexes (TTR) CAU 426: Cactus Spring Waste Trenches (TTR) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR) CAU 453: Area 9 UXO Landfill (TTR) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) CAU 487: Thunderwell Site (TTR)

  11. Making the post-closure safety case for the proposed yucca mountain repository

    International Nuclear Information System (INIS)

    Swift, P.; Van Luik, A.

    2008-01-01

    This presentation provided an overview of the Yucca Mountain repository post-closure safety case. The safety case concept is being integrated into the license application being prepared for Yucca Mountain, by giving particularly close attention to the treatment of uncertainties, thereby bringing available lines of evidence into the supporting information, as appropriate, to build a comprehensive argument for safety and regulatory compliance. For Yucca Mountain, it is expected that there will be open questions in the safety case to be presented to the regulator and a programme will be outlined on what information is to be gathered (and how) prior to the next iteration in the licensing process to address such open issues. A one-hundred year operational phase is foreseen and planned, and the changes in knowledge and approaches that occur over time will have to be accommodated through the formal licensing process. (authors)

  12. The 2002 Drigg post-closure safety case: implementation of a multiple factor safety case

    International Nuclear Information System (INIS)

    Lean, C.B.; Grimwood, P.D.; Watts, L.; Fowler, L.; Thomson, G.; Kelly, E.; Hodgkinson, D.

    2004-01-01

    British Nuclear Fuels plc (BNFL) owns and operates the Drigg disposal site, which is the UK's principal facility for the disposal of low level radioactive waste (LLW). Disposals are carried out under the terms of an authorization granted by the UK Environment Agency (the Agency). The Agency periodically reviews the authorization to take account of new information and any revisions to regulatory requirements. In September 2002 new Operational Environmental and Post-Closure Safety Cases (OESC and PCSC respectively) were submitted to the Agency to support the next authorization review. The OESC assesses radiological safety aspects up until closure of the site, including a post-operational management phase, whilst the PCSC considers the longer-term radiological safety. The Drigg disposal facility has been operational since 1959. For the first 3 decades of operations, disposals were solely by tumble tipping wastes into excavated trenches. This was phased out in favour of vault disposal and disposals to the trenches were completed in 1995. The first vault (Vault 8) commenced operations in 1988 and construction of future vaults is planned up to the estimated end of disposal operations in about 50 years time. This paper describes the main components of the 2002 Drigg PCSC and how they relate to each other. Central to the safety case is a systematic comprehensive post-closure radiological safety assessment (PCRSA). However, the importance of the more qualitative aspects of the safety case, including a demonstration of optimisation, is also highlighted. In addition, other confidence-building activities which are key to developing and presenting the safety case are discussed. (author)

  13. Consideration of post-closure controls for a near surface low level waste disposal site

    International Nuclear Information System (INIS)

    Clegg, R.; Pinner, A.; Smith, A.; Quartermaine, J.

    1997-01-01

    There is currently an ongoing programme of disposal of low level radioactive wastes by British Nuclear Fuels plc (BNFL) at Drigg, Cumbria, and this programme is likely to continue through the first few decades of the 21st century. Although control of the site is anticipated for a period of about 100 years post-closure, eventually restrictions on access will lapse. Thereafter, the possibility of human actions leading to exposure to, and/or exhumation of, the wastes exists and has to be addressed in post-closure radiological performance assessments. Potential modes of intrusion into the Drigg site have been studied using a suite of computer codes developed specifically for this purpose. Required inputs to these codes include information on possible future uses of the site and the various human actions associated with those uses. This information was obtained from a group of experts using formal elicitation procedures. Although the most likely site uses, notably those involving agricultural activities, are unlikely to result in intrusion into the wastes, others, such a urban development, do have the potential to result in such intrusion. In these circumstances, it seemed appropriate to give consideration to the degree to which documentary records and markers could protect the Drigg site against intrusive activities. Overall, it is concluded that provided that a variety of documentary records are established, ranging from local council archives to mass produced maps, then memory of the site can realistically be assumed whilst civilization continues to exist. However, if this first line of defence fails, markers constitute a second warning system. Finally, assessment calculations can be used to demonstrate that, even if these two lines of defence fail, risks from intrusion and radiation doses contingent upon intrusive events having occurred would not be unacceptably large. (author). 10 refs, 1 fig., 1 tab

  14. Annual Hanford Site environmental permitting status report

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1998-01-01

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, 'best efforts' means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for

  15. Long-term gas and brine migration at the Waste Isolation Pilot Plant: Preliminary sensitivity analyses for post-closure 40 CFR 268 (RCRA), May 1992

    International Nuclear Information System (INIS)

    1992-12-01

    This report describes preliminary probabilistic sensitivity analyses of long term gas and brine migration at the Waste Isolation Pilot Plant (WIPP). Because gas and brine are potential transport media for organic compounds and heavy metals, understanding two-phase flow in the repository and the surrounding Salado Formation is essential to evaluating long-term compliance with 40 CFR 268.6, which is the portion of the Land Disposal Restrictions of the Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act that states the conditions for disposal of specified hazardous wastes. Calculations described here are designed to provide guidance to the WIPP Project by identifying important parameters and helping to recognize processes not yet modeled that may affect compliance. Based on these analyses, performance is sensitive to shaft-seal permeabilities, parameters affecting gas generation, and the conceptual model used for the disturbed rock zone surrounding the excavation. Brine migration is less likely to affect compliance with 40 CFR 268.6 than gas migration. However, results are preliminary, and additional iterations of uncertainty and sensitivity analyses will be required to provide the confidence needed for a defensible compliance evaluation. Specifically, subsequent analyses will explicitly include effects of salt creep and, when conceptual and computational models are available, pressure-dependent fracturing of anhydrite marker beds

  16. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  17. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  18. What do implementers need in terms of regulatory safety criteria for the post-closure phase?

    International Nuclear Information System (INIS)

    Cahen, B.

    2010-01-01

    Bruno Cahen, Director Safety Division (ANDRA) presented the point of view of the NEA Integration Group for the Safety Case (IGSC) on 'What do implementers need in terms of regulatory safety criteria for the post-closure phase?' B. Cahen acknowledged that the national experience in siting and developing conceptual designs of geological disposal is growing rapidly. It implies increasing opportunities for interactions between implementers and regulators. There has been large development of international guidance in the recent years. Many regulators have already developed a regulatory framework. The implementers need practical, transparent and deliverable regulations. These regulations should draw on experiences gained from development of geological disposal projects. The IGSC has identified five key questions that the RF may focus on: 1. Over what time frame are the waste deemed to present a hazard? 2. Over what time frames are regulatory criteria applied and do they change over time? 3. Over what time frame(s) are safety assessments required to be conducted? 4. How do implementers have to address uncertainties in the long time frames? 5. What happens after cut-offs: are additional analyses needed? What types of arguments are to be used? Stable, understandable and practical criteria mean, namely, that they need to be developed on a strong scientific and societal basis, that there is consistency of safety options and requirements for different types of waste, that, in the longer time frames, the emphasis is given to robust systems, passive safety and multiple safety functions and that the criteria should fit the various phases of the project (siting, designing, operating, closure and post-closure). Experience feedback from safety cases shows that safety priorities depend very much on time frames. The derived safety criteria for the individual components should lead to measurable, verifiable specifications. The assessment of geological repository post-closure safety

  19. SR 97: post-closure safety of a deep repository for spent nuclear fuel in Sweden

    International Nuclear Information System (INIS)

    2000-01-01

    A major activity of the Nuclear Energy Agency (NEA) in the field of radioactive waste management is the organisation of independent, international peer reviews of national studies and projects. The NEA peer reviews help national programmes to assess their achievements. The review reports also provide reference information to be shared with others on what is desirable and what is feasible. This report presents the common views of the International Review Team (IRT) established by the NEA Secretariat on behalf of the Swedish Nuclear Power Inspectorate (SKI) to perform a peer review of a post-closure safety study of a deep repository for spent nuclear fuel in Sweden, Safety Report 97, produced by the Swedish Spent Fuel and Waste Management Company (SKB). The review is based on the main reports of the project and supporting documents, on information exchanged with SKB staff both through the intermediary of SKI and in direct interaction at a week-long workshop in Sweden, on a visit of the SKB's Aespoe Hard Rock Laboratory and Canister Laboratory, as well as on internal discussions within the IRT. (authors)

  20. NEA perspectives on timescales and criteria in post-closure safety of geological disposal

    International Nuclear Information System (INIS)

    Preter, P. de; Smith, P.; Pescatore, C.; Forinash, B.

    2006-01-01

    A key challenge in the development of safety cases for geological repositories is associated with the long periods of time over which radioactive wastes that are disposed of in repositories remain hazardous. The OECD Nuclear Energy Agency (NEA) has recently examined issues related to timescales in the context of two projects under the auspices of the Radioactive Waste Management Committee (RWMC): the Timescales Initiative and the Long-Term Safety Criteria (LTSC) Initiative. These projects examine, respectively, the treatment of timescales in actual safety cases and in the development of radiological protection criteria for geological disposal. They treat different aspects of timescales but have some overlap and have shown some convergence of the results achieved to date. Based on these projects, this paper examines general considerations in the handling of timescales, including ethical principles, evolution of the hazards of radioactive waste over time, and uncertainty in the evolution of repository systems (including geological features). The implications of these considerations are examined in terms of repository siting; levels of protection in regulations; planning for pre-closure and post-closure actions; and development and presentation of safety cases. A comparison is made with previous NEA work related to timescales, in order to show evolutions in current understanding. (authors)

  1. NEA perspectives on timescales and criteria in post-closure safety of geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    Preter, P. de [ONDRAF/NIRAS, Brussels (Belgium); Smith, P. [Safety Assessment Management Ltd, SAM Ltd. (United Kingdom); Pescatore, C.; Forinash, B. [OECD/NEA, Nuclear Energy Agency, 92 - Issy les Moulineaux (France)

    2006-07-01

    A key challenge in the development of safety cases for geological repositories is associated with the long periods of time over which radioactive wastes that are disposed of in repositories remain hazardous. The OECD Nuclear Energy Agency (NEA) has recently examined issues related to timescales in the context of two projects under the auspices of the Radioactive Waste Management Committee (RWMC): the Timescales Initiative and the Long-Term Safety Criteria (LTSC) Initiative. These projects examine, respectively, the treatment of timescales in actual safety cases and in the development of radiological protection criteria for geological disposal. They treat different aspects of timescales but have some overlap and have shown some convergence of the results achieved to date. Based on these projects, this paper examines general considerations in the handling of timescales, including ethical principles, evolution of the hazards of radioactive waste over time, and uncertainty in the evolution of repository systems (including geological features). The implications of these considerations are examined in terms of repository siting; levels of protection in regulations; planning for pre-closure and post-closure actions; and development and presentation of safety cases. A comparison is made with previous NEA work related to timescales, in order to show evolutions in current understanding. (authors)

  2. Considering timescales in the post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2009-01-01

    A key challenge in the development of safety cases for the deep geological disposal of radioactive waste is handling the long time frame over which the radioactive waste remains hazardous. The intrinsic hazard of the waste decreases with time, but some hazard remains for extremely long periods. Safety cases for geological disposal typically address performance and protection for thousands to millions of years into the future. Over such periods, a wide range of events and processes operating over many different timescales may impact on a repository and its environment. Uncertainties in the predictability of such factors increase with time, making it increasingly difficult to provide definite assurances of a repository's performance and the protection it may provide over longer timescales. Timescales, the level of protection and the assurance of safety are all linked. Approaches to handling timescales for the geological disposal of radioactive waste are influenced by ethical principles, the evolution of the hazard over time, uncertainties in the evolution of the disposal system (and how these uncertainties themselves evolve) and the stability and predictability of the geological environment. Conversely, the approach to handling timescales can affect aspects of repository planning and implementation including regulatory requirements, siting decisions, repository design, the development and presentation of safety cases and the planning of pre- and post-closure institutional controls such as monitoring requirements. This is an area still under discussion among NEA member countries. This report reviews the current status and ongoing discussions of this issue. (author)

  3. The treatment of climate-driven environmental change and associated uncertainty in post-closure assessments

    International Nuclear Information System (INIS)

    Wilmot, R.D.

    1993-01-01

    The post-closure performance of radioactive waste repositories is influenced by a range of processes such as groundwater flow and fracture movement which are in turn affected by conditions in the surface environment. For deep repositories the period for which an assessment must be performed is in the order of 10 6 years. The geological record of the last 10 6 years shows that surface environmental conditions have varied considerably over such time-scales. A model of surface environmental change, known as TIME4, has been developed on behalf of the UK Department of the Environment for use with the probabilistic risk assessment code VANDAL. This paper describes the extent of surface environmental change, discusses possible driving mechanisms for such changes and summarises the processes which have been incorporated within the TIME4 model. The underlying cause of change in surface environment sub-systems is inferred to be climate change but considerable uncertainty remains over the mechanisms of such change. Methods for treating these uncertainties are described. (author)

  4. Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Michael Marquand [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Little, Bonnie Colleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid waste was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.

  5. Development and Presentation of the Drigg Post-Closure Safety Case

    International Nuclear Information System (INIS)

    Kelly, Eugene; Watts, Len; Grimwood, Paul

    2001-01-01

    Drigg is an operational facility for the near-surface disposal of solid low level radioactive waste (LLW). The disposal facility is located in Cumbria, north-west England, near the Sellafield nuclear site, and is owned and operated by British Nuclear Fuels plc (BNFL). Disposals at Drigg are carried out under the terms of an authorisation granted by the UK Environment Agency. Periodically the Drigg authorisation is subject to formal regulatory review. The current regulatory guidance, 'Disposal Facilities on Land for Low and Intermediate Level Radioactive Wastes: Guidance on Requirements for Authorisation' (the GRA) was published in 1997 and contains guidance on the principles and requirements against which the Environment Agency will consider applications for disposal authorisation. BNFL has undertaken to produce an updated Drigg postclosure safety case (PCSC) in September 2002 to support the next authorisation review. In preparation for this, BNFL published a 'Status Report on the Development of the 2002 Drigg PCSC' in March 2000. This paper discusses the main components of the Drigg PCSC and how they relate to each other. Central to the safety case will be a systematic, post-closure radiological safety assessment (PCRSA). However the main focus of this paper is on the other main components of the PCSC which are presented in conjunction with the PCRSA to make a complete and integrated safety case. In addition other confidence building activities which are key to developing and presenting the safety case are discussed, in particular communications with the stakeholders

  6. Amchitka Mud Pit Sites 2006 Post-Closure Monitoring and Inspection Report, Amchitka Island, Alaska, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2006-09-01

    In 2001, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA/NSO) remediated six areas associated with Amchitka mud pit release sites located on Amchitka Island, Alaska. This included the construction of seven closure caps. To ensure the integrity and effectiveness of remedial action, the mud pit sites are to be inspected every five years as part of DOE's long-term monitoring and surveillance program. In August of 2006, the closure caps were inspected in accordance with the ''Post-Closure Monitoring and Inspection Plan for Amchitka Island Mud Pit Release Sites'' (Rev. 0, November 2005). This post-closure monitoring report provides the 2006 cap inspection results.

  7. RIP Input Tables From WAPDEG for LA Design Selection: Continuous Post-Closure Ventilation Design- Open Loop

    International Nuclear Information System (INIS)

    K.G. Mon; P.K. Mast; R. Howard; J.H. Lee

    1999-01-01

    The purpose of this calculation is to document (1) the Waste Package Degradation (WAPDEG) version 3.09 (CRWMS M and O 1998b). Software Routine Report for WAPDEG (Version 3.09) simulations used to analyze waste package degradation and failure under the repository exposure conditions characterized by the open loop option of the post-closure ventilation design and, (2) post-processing of these results into tables of waste package degradation time histories suitable for use as input into the Integrated Probabilistic Simulator for Environmental Systems version 5.19.0 1 (RIP) computer program (Golder Associates 1998). Specifically, the WAPDEG simulations discussed in this calculation correspond to waste package emplacement conditions (repository environment and design) defined in the Total System Performance Assessment-Viability Assessment (TSPA-VA), with the exception that the open loop option of the post-closure ventilation License Application Design Selection (LADS) Design Alternative (Design Alternative 3b) was analyzed. The open loop post-closure ventilation design alternative, under which airways to the surface remain open after repository closure, could result in substantial cooling and drying of the potential repository. In open loop post-closure ventilation, expanded air heated by waste decay would move up an exhaust shaft, pulling denser, cooler air into the repository through intake shafts. The exchange of air with the atmosphere could remove more heat and moisture. As a result of the enhanced ventilation relative to the TSPA-VA base-case design, different temperature and relative humidity time histories at the waste package surface are calculated (input to the WAPDEG simulations), and consequently different waste package failure histories (as calculated by WAPDEG) result

  8. Post-Closure Inspection Report for the Tonopah Test Range, Nevada. For Calendar Year 2015, Revision 0

    International Nuclear Information System (INIS)

    Matthews, Patrick; Petrello, Jaclyn

    2016-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed corrective action units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2015 and includes inspection and repair activities completed at the following CAUs; CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved closure reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Field notes are included in Appendix D. The annual post-closure inspections were conducted on May 12, 2015. Maintenance was required at CAU 453. Cracking along the north trench was repaired. One monument is missing at CAU 424; it will be replaced in 2016. Postings at CAUs 407, 424, 453, and 487 contain contact information for TTR Security. It was noted that protocols may not be in place to ensure that the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) is notified if access is needed at these sites. NNSA/NFO is working with the U.S. Air Force and Sandia to determine whether more appropriate contact information or new protocols are warranted for each CAU. Based on these inspections, there has not been a significant change in vegetation, and vegetation monitoring was not recommended at CAU 400 or CAU 407 in 2015.

  9. Pre/post-closure assessment of groundwater pharmaceutical fate in a wastewater‑facility-impacted stream reach

    Science.gov (United States)

    Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.

    2016-01-01

    Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.

  10. Post-Closure Inspection Report for the Tonopah Test Range, Nevada. For Calendar Year 2015, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States); Petrello, Jaclyn [Navarro, Las Vegas, NV (United States)

    2016-03-01

    This report provides the results of the annual post-closure inspections conducted at the closed corrective action units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2015 and includes inspection and repair activities completed at the following CAUs; CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved closure reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Field notes are included in Appendix D. The annual post-closure inspections were conducted on May 12, 2015. Maintenance was required at CAU 453. Cracking along the north trench was repaired. One monument is missing at CAU 424; it will be replaced in 2016. Postings at CAUs 407, 424, 453, and 487 contain contact information for TTR Security. It was noted that protocols may not be in place to ensure that the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) is notified if access is needed at these sites. NNSA/NFO is working with the U.S. Air Force and Sandia to determine whether more appropriate contact information or new protocols are warranted for each CAU. Based on these inspections, there has not been a significant change in vegetation, and vegetation monitoring was not recommended at CAU 400 or CAU 407 in 2015.

  11. Rocky Flats Solar Evaporation Ponds RCRA hybrid-closure case study

    International Nuclear Information System (INIS)

    Ogg, R.T.; Everett, L.G.; Cullen, S.J.

    1994-01-01

    The Solar Evaporation Ponds (SEP)/Operable Unit 4 (OU 4), located at the Rocky Flats Plant (RFP) sixteen miles northwest of Denver, Colorado, is currently undergoing remediation/Resource Conservation and Recovery Act (RCRA) closure in accordance with the Rocky Flats Interagency Agreement (IAG) signed by the US Department of Energy (DOE), US Environmental Protection Agency (EPA) and Colorado Department of Health (CDH) on January 22, 1991. Based on the ''Phase 1'' (source and soils) RCRA Facility Investigation/Remedial Investigation (RFM data and interpretations), the DOE and EG and G Rocky Flats, Inc. (EG and G) have selected a permanent surface engineered/isolation barrier as the technological option for remediation of the SEP. The DOE and EG and G will utilize all natural materials to create an ''impermeable'' barrier/structure to isolate the waste being left in place from impacting human health and the environment for a minimum of 1,000 years. Their rationale for utilizing natural materials is two fold; (1) optimize long term performance of the barrier and; (2) design a structure which will be near maintenance free (passive remediation) for 1,000 years. The DOE and EG and G have taken a proactive approach in providing post closure performance assessment for this RCRA closure action. An integrated monitoring system has been designed which will include monitoring the engineered barrier, vadose zone and ground water systems. Rocky Flats will integrate instrumentation into the permanent engineered barrier which will provide early warning of potential liquid migration through the barrier and into the waste zone

  12. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention

  13. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

  14. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

  15. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    International Nuclear Information System (INIS)

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-01-01

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  16. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills.

    Science.gov (United States)

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-06-01

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Methods of calculating the post-closure performance of high-level waste repositories

    International Nuclear Information System (INIS)

    Ross, B.

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs

  18. Methods of calculating the post-closure performance of high-level waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. (ed.)

    1989-02-01

    This report is intended as an overview of post-closure performance assessment methods for high-level radioactive waste repositories and is designed to give the reader a broad sense of the state of the art of this technology. As described here, ''the state of the art'' includes only what has been reported in report, journal, and conference proceedings literature through August 1987. There is a very large literature on the performance of high-level waste repositories. In order to make a review of this breadth manageable, its scope must be carefully defined. The essential principle followed is that only methods of calculating the long-term performance of waste repositories are described. The report is organized to reflect, in a generalized way, the logical order to steps that would be taken in a typical performance assessment. Chapter 2 describes ways of identifying scenarios and estimating their probabilities. Chapter 3 presents models used to determine the physical and chemical environment of a repository, including models of heat transfer, radiation, geochemistry, rock mechanics, brine migration, radiation effects on chemistry, and coupled processes. The next two chapters address the performance of specific barriers to release of radioactivity. Chapter 4 treats engineered barriers, including containers, waste forms, backfills around waste packages, shaft and borehole seals, and repository design features. Chapter 5 discusses natural barriers, including ground water systems and stability of salt formations. The final chapters address optics of general applicability to performance assessment models. Methods of sensitivity and uncertainty analysis are described in Chapter 6, and natural analogues of repositories are treated in Chapter 7. 473 refs., 19 figs., 2 tabs.

  19. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for Fiscal Year 2011 (October 2010-September 2011)

    International Nuclear Information System (INIS)

    2012-01-01

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): (1) CAU 90, Area 2 Bitcutter Containment; (2) CAU 91, Area 3 U-3fi Injection Well; (3) CAU 92, Area 6 Decon Pond Facility; (4) CAU 110, Area 3 WMD U-3ax/bl Crater; and (5) CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2011 (October 2010-September 2011). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. Inspections include an evaluation of the condition of the units and identification of any deficiencies that may compromise the integrity of the units. The condition of covers, fencing, signs, gates, and locks is documented. In addition, soil moisture monitoring and subsidence surveys are conducted at CAU 110. The results of the inspections, summary of maintenance activities, results of vegetations surveys, and analysis of monitoring data are presented in this report. Copies of the inspection checklists are included as Appendix A. Field notes completed during each inspection are included in Appendix B. Photographs taken during the inspections are included in Appendix C. It is recommended to continue semiannual inspections at CAUs 90 and 91; quarterly inspections at CAUs 92, 110, and 112; and additional inspections at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. At CAU 92, it is recommended to remove the wave barriers, as they have not proven to be necessary to protect the cover. At CAU 110, it is recommended to continue annual vegetation monitoring and soil moisture monitoring, and to reduce the frequency of

  20. Effectiveness of the Vertical Gas Ventilation Pipes for Promoting Waste Stabilization in Post-Closure Phase

    Directory of Open Access Journals (Sweden)

    Yasumasa Tojo

    2015-06-01

    Full Text Available To make inside of the municipal solid waste (MSW landfill aerobic as much as possible is thought to be preferable for promoting waste stabilization, reducing pollutant's load in leachate, minimizing greenhouse gas emission and shortening post-closure-care period. In Japan, installation of semi-aerobic landfill structure has widely spread in order to promote waste stabilization in MSW landfill from 1980s. In semi-aerobic landfill structure, outlet of main leachate collection pipe is opened to atmosphere. Heat generated by aerobic degradation of waste causes natural convection and natural aeration arises from the outlet of leachate collection pipe to the gas vents. It is so-called stack effect. This air flow is thought to be effective for purifying leachate flowing through drainage layer and leachate collection pipes. And it is also thought to be contributing to expanding aerobic region in waste layer in landfill. Recently, measures attempting the promotion of waste stabilization are taken at several landfills at where stabilization of waste delays, in which many vertical gas vents are newly installed and close structure to semi-aerobic landfill is created. However, in many cases, these gas vents are not connected to leachate collection pipes. Many vertical gas vents are just installed without scientific proof regarding whether they can contribute for waste stabilization. In this study, how such installation of gas vents is effective for waste stabilization and aerobization of waste layer was discussed by numerical analysis. In numerical analysis, heat transfer, gas movement by pressure, gas diffusion, biological degradation of organic matter, and heat generation by biodegradation were taken into account. Simulations were carried out by using the general purpose simulator of finite element method. Three types of landfill structure were assumed. As the results, the following information were obtained. In dig-down type landfill, installation of gas

  1. Hazardous Waste/IGD: EF_RCRA

    Data.gov (United States)

    U.S. Environmental Protection Agency — EF_RCRA is a subset of facilities from FRS_INTEREST and FRS_FACILITY_SITE which are updated on a monthly basis as part of the Locational Reference Tables (LRT)...

  2. Interpreting the SARA and RCRA training requirements

    International Nuclear Information System (INIS)

    Moreland, W.M.; Wells, S.M.

    1987-01-01

    The Resource Conservation and Recovery Act (RCRA) and the Superfund Amendments and Reauthorization Act (SARA) promulgated by the EPA (RCRA) and the OSHA (SARA) require hazardous materials training for all individuals working with hazardous materials. Facilities that are involved in the generation, storage, treatment, transportation, or disposal/removal of hazardous materials/waste must comply with all relevant training regulations. Using the guidelines contained in the RCRA and SARA regulations, decisions must be made to determine: the type of regulatory requirement based on facility function (i.e., whether the facility is a RCRA or CERCLA facility). The type of training required for specific categories of workers (e.g. managers, supervisors, or general site workers). The level of training needed for each category of worker. This presentation outlines how the Environmental Compliance and Health Protection Technical Resources and Training Group, working with waste operations personnel, establishes specific training requirements

  3. Post-Closure Inspection Report for the Tonopah Test Range, Nevada: For Calendar Year 2017, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Juan; Matthews, Patrick

    2018-05-01

    This report provides the results of the annual post-closure inspections conducted at the closed corrective action units (CAUs) located on the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). This report covers calendar year 2017 and includes visual inspection and repair activities completed at the following CAUs: • CAU 400: Bomblet Pit and Five Points Landfill (TTR) • CAU 407: Roller Coaster RadSafe Area (TTR) • CAU 424: Area 3 Landfill Complexes (TTR) • CAU 453: Area 9 UXO Landfill (TTR) • CAU 487: Thunderwell Site (TTR) Visual inspections were conducted according to the post-closure plans in the approved closure reports and subsequent correspondence with the Nevada Division of Environmental Protection. The annual post-closure inspections were conducted on May 23, 2017. No maintenance or repair issues were noted at CAU 400 and CAU 487. Maintenance items and subsequent repairs include the following: • CAU 407: A large animal burrow was observed in the southeast corner of the cover during the inspection. Two additional animal burrows were discovered during repair actions. All cover defects were repaired on January 9, 2018. • CAU 424: CAS 03-08-002-A304 (Landfill Cell A3-4): A new monument was installed and the subsidence area was repaired on January 9, 2018. • CAU 424: CAS 03-08-002-A308 (Landfill Cell A3-8): Lava rock, used to mark the two eastern monument locations, was noted as missing during the inspection. The lava rock was replaced on January 9, 2018. • CAU 453: Five large animal burrows, located near the east–central portion of cover, was noted during the inspection. Eight additional animal burrows were discovered during repair actions. All cover defects were repaired on January 9, 2018.

  4. Resource Conservation and Recovery Act, Part B permit application

    International Nuclear Information System (INIS)

    1993-01-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws

  5. Consideration of timescales in post-closure safety of geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2006-11-01

    by a number of general considerations, which are described first. Three broad areas in the regulation and practice of repository planning and implementation affected by timescales issues are then discussed: - repository siting and design and the levels of protection required in regulation; - the planning of pre- and post-closure actions; and - developing and presenting a safety case. Finally, a synthesis of findings is made, including a review of the statements made in the 2004 'lessons learnt' report in light of the discussions contained in the present report. Many of the issues treated in the course of the project are subject to various interpretations, and remain under discussion in national programmes, as well as internationally. Therefore, the findings in this report should not be viewed as conclusive, but rather as a contribution in moving ahead the debate and understanding the similarities and differences among approaches in national programmes. (authors)

  6. Preliminary post-closure safety assessment of repository concepts for low level radioactive waste at the Bruce Site, Ontario

    International Nuclear Information System (INIS)

    Little, R.H.; Penfold, J.S.S.; Egan, M.J.; Leung, H.

    2005-01-01

    The preliminary post-closure safety assessment of permanent repository concepts for low-level radioactive waste (LLW) at the Ontario Power Generation (OPG) Bruce Site is described. The study considered the disposal of both short and long-lived LLW. Four geotechnically feasible repository concepts were considered (two near-surface and two deep repositories). An approach consistent with best international practice was used to provide a reasoned and comprehensive analysis of post-closure impacts of the repository concepts. The results demonstrated that the deep repository concepts in shale and in limestone, and the surface repository concept on sand should meet radiological protection criteria. For the surface repository concept on glacial till, it appears that increased engineering such as grouting of waste and voids should be considered to meet the relevant dose constraint. Should the project to develop a permanent repository for LLW proceed, it is expected that this preliminary safety assessment would need to be updated to take account of future site-specific investigations and design updates. (author)

  7. Project Management Approach to Transition of the Miamisburg Closure Project From Environmental Cleanup to Post-Closure Operations

    International Nuclear Information System (INIS)

    Carpenter, C.P.; Marks, M.L.; Smiley, S.L.; Gallaher, D.M.; Williams, K.D.

    2006-01-01

    The U.S. Department of Energy (DOE) used a project management approach to transition the Miamisburg Closure Project from cleanup by the Office of Environmental Management (EM) to post-closure operations by the Office of Legacy Management (LM). Two primary DOE orders were used to guide the site transition: DOE Order 430.1B, Real Property Asset Management, for assessment and disposition of real property assets and DOE Order 413.3, Program and Project Management for Acquisition of Capital Assets, for project closeout of environmental cleanup activities and project transition of post-closure activities. To effectively manage these multiple policy requirements, DOE chose to manage the Miamisburg Closure Project as a project under a cross-member transitional team using representatives from four principal organizations: DOE-LM, the LM contractor S.M. Stoller Corporation, DOE-EM, and the EM contractor CH2M Hill Mound Inc. The mission of LM is to manage the Department's post-transition responsibilities and long-term care of legacy liabilities and to ensure the future protection of human health and the environment for cleanup sites after the EM has completed its cleanup activities. (authors)

  8. Post-Closure Inspection Report for Corrective Action Unit 427: Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit[CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427. Area 3 Septic Waste Systems 2 and 6. Tonopah Test Range, Nevada, report number DOE/NV-561. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. The annual post-closure inspection at CAU 427 consists of the following: Verification of the presence of all leachfield and septic tank below-grade markers; Verification that the warning signs are in-place, intact, and readable; and Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on June 20, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C

  9. Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure monitoring requirements for the Area 9 Unexploded Ordnance Landfill (Corrective Action Unit[CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV-284. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5,1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. Post-closure monitoring at CAU 453 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000 and November 21, 2000. Both site inspections were conducted after NDEP approval of the CR, and in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C

  10. Post-Closure Strategy for Use-Restricted Sites on the Nevada National Security Site, Nevada Test and Training Range, and Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Silvas, A. J.

    2014-01-01

    The purpose of this Post-Closure Strategy is to provide a consistent methodology for continual evaluation of post-closure requirements for use-restricted areas on the Nevada National Security Site (NNSS), Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR) to consolidate, modify, or streamline the program. In addition, this document stipulates the creation of a single consolidated Post-Closure Plan that will detail the current post-closure requirements for all active use restrictions (URs) and outlines its implementation and subsequent revision. This strategy will ensure effective management and control of the post-closure sites. There are currently over 200 URs located on the NNSS, NTTR, and TTR. Post-closure requirements were initially established in the Closure Report for each site. In some cases, changes to the post-closure requirements have been implemented through addenda, errata sheets, records of technical change, or letters. Post-closure requirements have been collected from these multiple sources and consolidated into several formats, such as summaries and databases. This structure increases the possibility of inconsistencies and uncertainty. As more URs are established and the post-closure program is expanded, the need for a comprehensive approach for managing the program will increase. Not only should the current requirements be obtainable from a single source that supersedes all previous requirements, but the strategy for modifying the requirements should be standardized. This will enable more effective management of the program into the future. This strategy document and the subsequent comprehensive plan are to be implemented under the assumption that the NNSS and outlying sites will be under the purview of the U.S. Department of Energy, National Nuclear Security Administration for the foreseeable future. This strategy was also developed assuming that regulatory control of the sites remains static. The comprehensive plan is not

  11. Environmental permits and approvals plan for high-level waste interim storage, Project W-464

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1998-01-01

    This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464

  12. RCRA land unit closures at the Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Welch, S.H.; Kelly, B.A.; Delozier, M.F.P.; Manrod, W.E.

    1987-01-01

    Eight land-based hazardous waste management units at the Y-12 Plant are being closed under an integrated multi-year program. Closure plans for the units have been submitted and are in various stages of revision and regulatory review. These units will be closed by various combinations of methods, including liquid removal and treatment, sludge stabilization, contaminated sludge and/or soil removal, and capping. The closure of these sites will be funded by a new Department of Energy budget category, the Environmental Restoration Budget Category (ERBC), which is intended to provide greater flexibility in the response to closure and remedial activities. A major project, Closure and Post-Closure Activities (CAPCA), has been identified for ERBC funding to close and remediate the land units in accordance with RCRA requirements. Establishing the scope of this program has required the development of a detailed set of assumptions and a confirmation program for each assumption. Other significant activities in the CAPCA program include the development of risk assessments and the preparation of an integrated schedule

  13. The Pinellas Plant RCRA facility investigation - A case study

    International Nuclear Information System (INIS)

    Kilbury, Richard; Keshian, Berg; Farley, Dwain; Meyer, David; Ingle, David; Biedermann, Charles

    1992-01-01

    Under the direction of the U.S. Department of Energy Albuquerque Field Office Environmental Restoration Program, a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) was completed at the Pinellas Plant to fulfill requirements of the Hazardous and Solid Waste Amendments of 1984 (HSWA) permit issued on February 9, 1990 by the U.S. Environmental Protection Agency (EPA). This RFI addressed potential contaminant releases and environmental conditions at 15 solid waste management units (SWMUs). The RFI characterization program began in April 1990 and was completed in May 1991. The scope of RFI data collection activities is presented in the Pinellas Plant RFI Workplan issued in May 1990 and approved by EPA on April 16, 1991. An RFI Report was submitted to EPA on September 1, 1991. This paper presents a summary of RFI results and conclusions. Primary environmental concerns at the Pinellas Plant are emphasized. (author)

  14. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2006-08-01

    This Post-Closure Inspection and Monitoring Report (PCIMR) provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 WMD [Waste Management Division] U-3ax/bl Crater. This PCIMR includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110, for the annual period July 2005 through June 2006. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, cover vegetation, perimeter fence, and UR warning signs was good. Settling was observed that exceeded the action level as specified in Section VILB.7 of the Hazardous Waste Permit Number NEV HW009 (Nevada Division of Environmental Protection, 2000). This permit states that cracks or settling greater than 15 centimeters (6 inches) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection. Along the east edge of the cover (repaired previously in August 2003, December 2003, May 2004, October 2004), an area of settling was observed during the December 2005 inspection to again be above the action level, and required repair. This area and two other areas of settling on the cover that were first observed during the December 2005 inspection were repaired in February 2006. The semiannual subsidence surveys were done in September 2005 and March 2006. No significant subsidence was observed in the survey data. Monument 5 shows the greatest amount of subsidence (-0.015 m [-0.05 ft] compared to the baseline survey of 2000). This amount is negligible and near the resolution of the survey instruments; it does not indicate that subsidence is occurring on the cover. Soil moisture results obtained to date indicate that the CAU 110 cover is performing as expected. Time Domain Reflectometry (TDR) data indicated an increase in soil moisture (1

  15. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2006-01-01

    This Post-Closure Inspection and Monitoring Report (PCIMR) provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 WMD [Waste Management Division] U-3ax/bl Crater. This PCIMR includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110, for the annual period July 2005 through June 2006. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, cover vegetation, perimeter fence, and UR warning signs was good. Settling was observed that exceeded the action level as specified in Section VILB.7 of the Hazardous Waste Permit Number NEV HW009 (Nevada Division of Environmental Protection, 2000). This permit states that cracks or settling greater than 15 centimeters (6 inches) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection. Along the east edge of the cover (repaired previously in August 2003, December 2003, May 2004, October 2004), an area of settling was observed during the December 2005 inspection to again be above the action level, and required repair. This area and two other areas of settling on the cover that were first observed during the December 2005 inspection were repaired in February 2006. The semiannual subsidence surveys were done in September 2005 and March 2006. No significant subsidence was observed in the survey data. Monument 5 shows the greatest amount of subsidence (-0.015 m [-0.05 ft] compared to the baseline survey of 2000). This amount is negligible and near the resolution of the survey instruments; it does not indicate that subsidence is occurring on the cover. Soil moisture results obtained to date indicate that the CAU 110 cover is performing as expected. Time Domain Reflectometry (TDR) data indicated an increase in soil moisture (1

  16. Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench Tonopah Test Range, Nevada, Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2001-06-01

    Post-closure monitoring requirements for the Roller Coaster Sewage Lagoons and North Disposal Trench (Corrective Action Unit [CAW 404]) (Figure 1) are described in Closure Report for Corrective Action Unit 404, Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, report number DOE/NV--187. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. Post-closure monitoring at CAU 404 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

  17. Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench Tonopah Test Range, Nevada, Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure monitoring requirements for the Roller Coaster Sewage Lagoons and North Disposal Trench (Corrective Action Unit[CAW 404]) (Figure 1) are described in Closure Report for Corrective Action Unit 404, Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, report number DOE/NV-187. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. Post-closure monitoring at CAU 404 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C

  18. Resource Conservation and Recovery Act (RCRA)

    International Nuclear Information System (INIS)

    1989-01-01

    This Resource Conservation and Recovery Act (RCRA) Facility Investigation Program Plan has been developed to provide a framework for the completion of RCRA Facility Investigations (RFI) at identified units on the Savannah Rive Site (SRS) facility. As such, the RFI Program Plan provides: technical guidance for all work to be performed, managerial control, a practical, scientific approach. The purpose of this Overview is to demonstrate how the basic RFI Program Plan elements (technical, management, and approach) are interwoven to provide a practical and workable plan. The goal of the RFI Program Plan is to provide a systematic, uniform approach for performance and reporting. In addition, the RFI Program Plan has been developed to be specific to the SRS facility and to adhere to the Environmental Protection Agency (EPA) RFI guidance received as part of the SRS. The US EPA publication ''Characterization of Hazardous Waste Sites'' has been liberally adapted for use in this RFI Program Plan

  19. Costs of RCRA corrective action: Interim report

    International Nuclear Information System (INIS)

    Tonn, B.; Russell, M.; Hwang Ho-Ling; Goeltz, R.; Warren, J.

    1991-09-01

    This report estimates the cost of the corrective action provisions of the Resource Conservation and Recovery Act (RCRA) for all non-federal facilities in the United States. RCRA is the federal law which regulates the treatment, storage, disposal, and recovery of hazardous waste. The 1984 amendment to RCRA, known as the Hazardous and Solid Waste Amendments, stipulates that facilities that treat, store or dispose of hazardous wastes (TSDs) must remediate situations where hazardous wastes have escaped into the environment from their solid waste management units (SWMUs). The US Environmental Protection Agency (USEPA 1990a), among others, believes that the costs of RCRA corrective action could rival the costs of SUPERFUND. Evaluated herein are costs associated with actual remedial actions. The remedial action cost estimating program developed by CH2M Hill is known as the Cost of Remedial Action Model (CORA). It provides cost estimates, in 1987 dollars, by technology used to remediate hazardous waste sites. Rules were developed to categorize each SWMU in the RTI databases by the kinds of technologies that would be used to remediate them. Results were then run through CORA using various assumptions for variable values that could not be drawn from the RTI databases and that did not have CORA supplied default values. Cost estimates were developed under several scenarios. The base case assumes a TSD and SWMU universe equal to that captured in the RTI databases, a point of compliance at the SWMU boundary with no ability to shift wastes from SWMU to SWMU, and a best-as-practical clean-up to health-based standards. 11 refs., 12 figs., 12 tabs

  20. Development of vault model 'VERMIN' for post closure behaviour of repositories for non-heat generating radioactive wastes

    International Nuclear Information System (INIS)

    1983-10-01

    The computer model VERMIN has been developed to simulate the post closure time dependent behaviour of the vault section of a Land 3 and a Land 2 type repository. Development was carried out within the constraints of the computer code SYVAC. Output from the new model, in terms of radionuclide fluxes versus time, provides the source term for that code. A number of conceptual designs for different geological conditions were produced and used to develop the model. Unlike SYVAC, the boundary of the vault was considered to be at the interface between the damaged rock zone and the undamaged host rock. VERMIN treats the vault as a series of engineered barriers namely: waste matrix, waste package, backfill material liner and the damaged rock zone. For the Land 3 repository, the vault was considered to be fully saturated and consequently corrosion, leading to eventual package failure, will occur. VERMIN allows for package failure and subsequent leaching and then calculates the migration of nuclides from within the vault out to its boundary. One dimensional advection and two dimensional diffusion/dispersion are modelled allowing for retardation due to sorption radionuclide saturation and radionuclide decay. Radioactive decay chains up to eight members can be modelled by VERMIN. (author)

  1. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 110: AREA 3 WMD U-3AX/BL CRATER, NEVADA TEST SITE, NEVADA FOR THE PERIOD JULY 2004 - JUNE 2005

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-08-01

    This Post-Closure Inspection and Monitoring report provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 Waste Management Division (WMD) U-3ax/bl Crater. This report includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110, for the annual period July 2004 through June 2005. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, cover vegetation, perimeter fence, and use restriction warning signs was good. Settling was observed that exceeded the action level as specified in Section VII.B.7 of the Hazardous Waste Permit Number NEV HW009 (Nevada Division of Environmental Protection, 2000). This permit states that cracks or settling greater than 15 centimeters (cm) (6 inches [in]) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection.

  2. The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility

    International Nuclear Information System (INIS)

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

    2002-01-01

    The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme

  3. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-08-01

    This Post-Closure Inspection and Monitoring Report provides the results and inspections and monitoring for Corrective Action Unit 110: Area 3 Waste Management Division U-3ax/bl Crater, Nevada Test Site, Nevada. This report includes an analysis and summary of the site inpsections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at Corrective Action Unit 110, for the annual period July 2005 thrugh June 2006.

  4. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for fiscal year 2013 (October 2012 - September 2013)

    International Nuclear Information System (INIS)

    2014-01-01

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and, CAU 112, Area 23 Hazardous Waste Trenches

  5. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for fiscal year 2013 (October 2012 - September 2013)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-01-31

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and, CAU 112, Area 23 Hazardous Waste Trenches.

  6. Critical parameters and measurement methods for post closure monitoring: A review of the state of the art and recommendations for further studies

    International Nuclear Information System (INIS)

    Morrison, H.F.; Majer, E.L.; Tsang, C.F.

    1987-05-01

    Both NRC and EPA regulations require programs of post closure monitoring to detect substantial and detrimental deviations from expected performance. The unexpected in this case would involve anomalous stress changes that might rupture the canisters or changes in the hydrologic regime that might accelerate corrosion. In the event of leakage brought about by any means transport of radionuclides to the accessible environment could occur through unexpected changes in the hydrologic flow regime caused either by the long term effects of the thermal loading by the waste or by changes in regional stress or hydrology. Studies of performance confirmation have identified six parameters or conditions that should be monitored that are associated with the thermal, mechanical and hydrologic phenomena introduced by the waste heat: temperature, stress, displacement, pore pressure, groundwater velocity and permeability. Since it is the thermal load that continues to increase after decommissioning, and which continues to alter the stress field and the hydrological regime, these same six parameters remain the critical ones in post closure monitoring. At two of the repository sites fractures have been clearly shown to be critical in modelling and performance confirmation; at the tuff site fluid saturation is also a critical parameter and for all the sites estimates of the groundwater velocity through the site are very important. Changes in fracture properties, saturation and fluid flow are thus of continuing importance in post closure monitoring. 14 refs., 19 figs

  7. Development of a long-term post-closure radiation monitor: Phase 2, Topical report, March 1994--July 1995

    International Nuclear Information System (INIS)

    Reed, S.E.

    1995-07-01

    The long-term monitoring of a hazardous waste site for migration of radionuclides requires installation of radiation sensors at a large number of subsurface locations. The concept under development employs a passive in-ground measurement probe which contains a scintillator coupled to an optical lightguide. The overall goal of the Long-Term Post-Closure Radiation Monitor System (LPRMS) development program is to configure a long-term radiation monitor using commercially available, demonstrated components to the largest extent possible. The development program is planned as a three phase program spanning a total time of 53 months. The problems to be solved during Phase 1 were primarily those associated with selection of the most appropriate components (scintillator, coupling optics, optical fiber, and opto-electronics) to maximize the signal reaching the detectors and thereby minimizing the integration time required to obtain a reliable measure of radiation. Phase 2 (the current Phase) encompassed the fabrication and testing of the prototype LPRMS probe at a contaminated DOE site, the Fernald Environmental Management Project, in southwestern Ohio. Uranium isotopes are the primary contaminants of concern at this site. The single probe and opto-electronic device were used to made measurements in-situ at relatively shallow subsurface depths. The end objective of Phase 2 was the design of a full-scale prototype system which incorporates all the features expected to be necessary on a commercial system, including 50 meter depth of measurement, multiplexing of multiple probes, and remote transmission of data. This full-scale prototype will be fabricated and field tested for 12 months during Phase 3, and a commercial design will be developed based upon the data gathered and experience gained during the entire program

  8. Establishing a regulatory framework for a RCRA corrective action program

    International Nuclear Information System (INIS)

    Krueger, J.W.

    1989-01-01

    Recently, the environmental community has become keenly aware of problems associated with integration of the demanding regulations that apply to environmental restoration activities. Once can not attend an EPA-sponsored conference on Superfund without hearing questions concerning the Resource, Conservation, and Recovery Act (RCRA) and the applicability of the National Contingency Plan (NCP) to sites that do not qualify for the National Priorities List (NPL). In particular, the U.S. Department of Energy (DOE) has been greatly criticized for its inability to define a comprehensive approach for cleaning up its hazardous waste sites. This article presents two decision flowcharts designed to resolve some of this confusion for DOE. The RCRA/CERCLA integration diagram can help the environmental manager determine which law applies and under what conditions, and the RCRA corrective action decision flowchart can guide the manager in determining which specific sections of RCRA apply to a RCRA-lead environmental restoration program

  9. Obtaining variances from the treatment standards of the RCRA Land Disposal Restrictions

    International Nuclear Information System (INIS)

    1990-05-01

    The Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs) [40 CFR 268] impose specific requirements for treatment of RCRA hazardous wastes prior to disposal. Before the LDRs, many hazardous wastes could be land disposed at an appropriately designed and permitted facility without undergoing treatment. Thus, the LDRs constitute a major change in the regulations governing hazardous waste. EPA does not regulate the radioactive component of radioactive mixed waste (RMW). However, the hazardous waste component of an RMW is subject to RCRA LDR regulations. DOE facilities that manage hazardous wastes (including radioactive mixed wastes) may have to alter their waste-management practices to comply with the regulations. The purpose of this document is to aid DOE facilities and operations offices in determining (1) whether a variance from the treatment standard should be sought and (2) which type (treatability or equivalency) of petition is appropriate. The document also guides the user in preparing the petition. It shall be noted that the primary responsibility for the development of the treatability petition lies with the generator of the waste. 2 figs., 1 tab

  10. Monitoring in the post-closure phase. Development of wireless techniques for data transmission from the repository to the surface

    International Nuclear Information System (INIS)

    Schroeder, Thomas J.; Rosca-Bocancea, Ecaterina; Hart, Jaap

    2015-01-01

    When the in-situ monitoring in a geological disposal facility is continued during the post-closure phase, monitoring data need to be transmitted wirelessly from the repository to the surface. Wireless data transmission is used today in many applications, but the large attenuation by the geologic medium between the disposal facility and the surface makes the application of high-frequency based techniques impractical. As part of the EURATOM FP-7 project MoDeRn (Monitoring Developments for safe Repository operation and staged closure), NRG has investigated the feasibility of wireless data transmission through an argillaceous host rock (Boom Clay), making use of low frequency magnetic fields. The main focus of the contribution was to analyze and optimize the energy efficiency of this technique. Therefore, a mathematical model description has been developed that allows to estimate the expected signal strength on the earth's surface on basis of the most relevant characteristics of transmitter, receiver and transmission path. The model is used to analyze the complex interactions of different system parameters, and is applied to design an optimized set-up for through-the-earth data transmission and to estimate minimum energy demands for signal transmission. To demonstrate the potentials of this technique, experiments were performed in the 225 m deep underground research facility HADES in Mol, Belgium. Signal propagation and attenuation by the geologic medium between the HADES and the surface has been measured, and the site-specific magnetic background noise at the surface in Mol has been characterized. Based on the results, optimum conditions for signal transmission have been derived and data transmission experiments have been performed. Results show that despite large local interferences on the surface in Mol, wireless data transmission through 225 m of a geological medium is possible. Data transmission rates up to 100 bit/s has been successfully tested. The

  11. Monitoring in the post-closure phase. Development of wireless techniques for data transmission from the repository to the surface

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thomas J.; Rosca-Bocancea, Ecaterina; Hart, Jaap [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2015-07-01

    When the in-situ monitoring in a geological disposal facility is continued during the post-closure phase, monitoring data need to be transmitted wirelessly from the repository to the surface. Wireless data transmission is used today in many applications, but the large attenuation by the geologic medium between the disposal facility and the surface makes the application of high-frequency based techniques impractical. As part of the EURATOM FP-7 project MoDeRn (Monitoring Developments for safe Repository operation and staged closure), NRG has investigated the feasibility of wireless data transmission through an argillaceous host rock (Boom Clay), making use of low frequency magnetic fields. The main focus of the contribution was to analyze and optimize the energy efficiency of this technique. Therefore, a mathematical model description has been developed that allows to estimate the expected signal strength on the earth's surface on basis of the most relevant characteristics of transmitter, receiver and transmission path. The model is used to analyze the complex interactions of different system parameters, and is applied to design an optimized set-up for through-the-earth data transmission and to estimate minimum energy demands for signal transmission. To demonstrate the potentials of this technique, experiments were performed in the 225 m deep underground research facility HADES in Mol, Belgium. Signal propagation and attenuation by the geologic medium between the HADES and the surface has been measured, and the site-specific magnetic background noise at the surface in Mol has been characterized. Based on the results, optimum conditions for signal transmission have been derived and data transmission experiments have been performed. Results show that despite large local interferences on the surface in Mol, wireless data transmission through 225 m of a geological medium is possible. Data transmission rates up to 100 bit/s has been successfully tested. The

  12. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  13. Annual Report RCRA Post-Closure Monitoring and Inspections for Corrective Action Unit 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the Period October 2001 - October 2002

    International Nuclear Information System (INIS)

    Richardson, G.

    2003-01-01

    This annual monitoring and inspection report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2001 to October 2002 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 128-meter (m) (420-feet [ft]) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft)

  14. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the period October 2000-October 2001

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2000 to October 2001 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron-logging program is to monitor the soil moisture conditions along the 128-meter (m) (420-ft) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft) or to detect changes that may be indicative of subsidence within the disposal unit itself

  15. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  16. Climate change and landscape development in post-closure safety assessment of solid radioactive waste disposal: Results of an initiative of the IAEA.

    Science.gov (United States)

    Lindborg, T; Thorne, M; Andersson, E; Becker, J; Brandefelt, J; Cabianca, T; Gunia, M; Ikonen, A T K; Johansson, E; Kangasniemi, V; Kautsky, U; Kirchner, G; Klos, R; Kowe, R; Kontula, A; Kupiainen, P; Lahdenperä, A-M; Lord, N S; Lunt, D J; Näslund, J-O; Nordén, M; Norris, S; Pérez-Sánchez, D; Proverbio, A; Riekki, K; Rübel, A; Sweeck, L; Walke, R; Xu, S; Smith, G; Pröhl, G

    2018-03-01

    The International Atomic Energy Agency has coordinated an international project addressing climate change and landscape development in post-closure safety assessments of solid radioactive waste disposal. The work has been supported by results of parallel on-going research that has been published in a variety of reports and peer reviewed journal articles. The project is due to be described in detail in a forthcoming IAEA report. Noting the multi-disciplinary nature of post-closure safety assessments, here, an overview of the work is given to provide researchers in the broader fields of radioecology and radiological safety assessment with a review of the work that has been undertaken. It is hoped that such dissemination will support and promote integrated understanding and coherent treatment of climate change and landscape development within an overall assessment process. The key activities undertaken in the project were: identification of the key processes that drive environmental change (mainly those associated with climate and climate change), and description of how a relevant future may develop on a global scale; development of a methodology for characterising environmental change that is valid on a global scale, showing how modelled global changes in climate can be downscaled to provide information that may be needed for characterising environmental change in site-specific assessments, and illustrating different aspects of the methodology in a number of case studies that show the evolution of site characteristics and the implications for the dose assessment models. Overall, the study has shown that quantitative climate and landscape modelling has now developed to the stage that it can be used to define an envelope of climate and landscape change scenarios at specific sites and under specific greenhouse-gas emissions assumptions that is suitable for use in quantitative post-closure performance assessments. These scenarios are not predictions of the future, but

  17. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV-283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in

  18. Transparency in risk assessments - Presenting the 'expectation value' of post-closure risks from radioactive waste repositories

    International Nuclear Information System (INIS)

    Wilmot, R.D.; Galson, D.A.; Pollard, S.J.T.; Smith, R.E.; Yearsley, R.A.

    1999-01-01

    The Environment Agency of England and Wales (the 'Agency') has an extremely broad regulatory remit covering aspects of flood defence, integrated pollution control, water quality, waste management, abstraction control, navigation, fisheries, conservation and recreation. Risk assessment, as a regulatory and management tool plays an essential role in the targeting and prioritisation of this activity, as well as in aiding site-specific decisions on authorisations for abstraction, discharge and/or disposal. From a regulatory perspective, the majority of the Agency's risk assessment activity is focused on critically reviewing risk assessments submitted to the Agency in support of requests for authorisation. With increasing calls for openness in all areas of regulatory decision-making, new demands are being placed on risk assessments with a view to allowing far more transparency and traceability of 'process' and 'content' than has historically been the case. The Agency is responsible for the licensing of radioactive waste disposal facilities in England and Wales. It has issued guidance on what is expected of an application for an authorisation to dispose of low and intermediate level radioactive waste to land - the 'Guidance on Requirements for Authorisation' (the 'GRA'). The GRA includes a risk target and places a strong emphasis on confidence-building during the preparation and assessment of post-closure safety cases for such facilities. In this paper we discuss a recent study commissioned by the Agency which has examined the use of expectation value of risk in assessments and considered ways of improving transparency. The study has concluded that the expectation value is an appropriate measure of risk for comparison with a single-value criterion, provided that the scope of the assessment does not involve undue speculation regarding the FEPs (Features, Events and Processes) to be included. Low probability or speculative events and processes for which no data can be

  19. Resource Conservation and Recovery Act (RCRA) new-employee training manual for the Operations Division RCRA personnel

    Energy Technology Data Exchange (ETDEWEB)

    Barkenbus, B.D.

    1987-03-01

    This manual has been prepared for the training of new employees who will work with RCRA hazardous waste management in the Operations Division. It will be taught by a person who is trained in hazardous waste regulations/procedures. It consists of nine modules. The topics of these modules are: RCRA Training, Hazardous Waste Regulations, Transportation Regulations, Hazardous Waste Management at ORNL, Chemical Hazards and Safety, Hazardous Waste Operations Training, Sampling of Hazardous Waste, Hazardous Waste Identification/Classification, and RCRA Contingency Plans and Emergency Procedures. The on-the-job training areas are identified in the modules. They are an integral part of training.

  20. NPL deletion policy for RCRA-regulated TSD facilities finalized

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Under a new policy published by EPA on March 20, 1995, certain sites may be deleted from the National Priorities List (NPL) and deferred to RCRA corrective action. To be deleted from the NPL, a site must (1) be regulated under RCRA as a treatment, storage, or disposal (TSD) facility and (2) meet the four criteria specified by EPA. The new NPL deletion policy, which does not pertain to federal TSD facilities, became effective on April 19, 1995. 1 tab

  1. Accelerating RCRA corrective action: The principles of the DOE approach

    International Nuclear Information System (INIS)

    Kimmell, T.A.; Green, D.R.; Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The US Department of Energy (DOE) is involved in the remediation of environmental contamination at many of its facilities under the Resource Conservation and Recovery Act (RCRA). RCRA's corrective action provisions were established by the Hazardous and Solid Waste Amendments of 1984 (HSWA). In response to the HSWA mandate, EPA established a program for the conduct of RCRA corrective action that was similar to that established under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). In addition, EPA developed and implemented its ''stabilization'' initiative as a means of quickly addressing immediate risks posed by releases until long term solutions can be applied. To improve the efficiency of environmental restoration at its facilities, DOE is developing guidance and training programs on accelerated environmental restoration under RCRA. A RCRA guidance document, entitled ''Accelerating RCRA Corrective Action at DOE Facilities,'' is currently being developed by DOE's Office of Environmental Policy and Assistance. The new guidance document will outline a decision-making process for determining if acceleration is appropriate for individual facilities, for identifying, evaluating, and selecting options for program acceleration, and for implementing selected acceleration options. The document will also discuss management and planning strategies that provide a firm foundation for accelerating RCRA corrective action. These strategies include a number of very basic principles that have proven effective at DOE and other federal facilities, as well as some new approaches. The purpose of this paper is to introduce DOE's new guidance document, discuss the general approach presented in the guidance for accelerating RCRA corrective action, and to emphasize some of the more important principles of effective management and planning

  2. EPA seeks to make RCRA more effective through legislative changes

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Since RCRA was enacted in 1976 and amended in 1984, hazardous waste management has been transformed. To protect human health and the environment as mandated by the act, EPA has developed a complex cradle-to-grave system for managing hazardous waste. The agency recognizes that some targeted legislative changes could make RCRA even more useful, particularly by (1) establishing some open-quotes middle groundclose quotes for waste posing low risks, and (2) emphasizing sensible and enforceable hazardous waste management practices

  3. Resource Conservation and Recovery Act (RCRA) general contingency plan for hazardous waste treatment, storage, and disposal units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Skaggs, B.E.

    1993-11-01

    The Y-12 RCRA Contingency Plan will be continually reviewed and revised if any of the following occur: the facility permit is revised, the plan is inadequate in an emergency, the procedures herein can be improved, the operations of the facility change in a way that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent's Office and the Emergency Management Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste treatment, storage, or disposal units. The 90-day accumulation areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement

  4. Resource Conservation and Recovery Act (RCRA) contingency plan for hazardous waste treatment, storage, and disposal units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-08-01

    The Y-12 RCRA Contingency Plan will be continually reviewed and revised if any of the following occur: the facility permit is revised, the plan is inadequate in an emergency, the procedures can be improved, the operations of the facility change in a way that alters the plan, the emergency coordinator changes, or the emergency equipment list changes. Copies of the Y-12 Emergency Management Plan are available at the Plant Shift Superintendent's Office and the Emergency Management Office. This document serves to supplement the Y-12 Emergency Management Plan to be appropriate for all RCRA hazardous waste treatment, storage, or disposal units. The 90-day accumulation areas at the Y-12 Plant have a separate contingency supplement as required by RCRA and are separate from this supplement

  5. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  6. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  7. RCRA Facilities Assessment (RFA), Oak Ridge National Laboratory, container storage accumulation areas

    International Nuclear Information System (INIS)

    1987-01-01

    The Oak Ridge National Laboratory (ORNL) remedial action strategy is based on a memorandum from the Environmental Protection Agency (EPA) to the Department of Energy (DOE) in which EPA elected to enforce regulatory requirements for ORNL through its amended Resource Conservation and Recovery Act (RCRA) authority. This report, which completes the requirements of II.A.1 of the Hazardous and Solid Waste Amendments (HSWA) permit, identifies areas near the point of waste generation in which wastes are accumulated before they are transferred into the permitted waste storage facilities. In includes background information on each area and an assessment of the need for further remedial attention. The waste accumulation areas described in this addendum bear identification numbers indicative of the WAGs of which they are a part. Waste accumulation areas that are located inside a building and in which there is no potential for releases to the environment are not included in this report

  8. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada, for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May 2007. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated the site and soil cover were in good condition. No new cracks or fractures were observed in the soil cover during the annual inspection. A crack on the west portion of the cover was observed during the last quarterly inspection in December 2006. This crack was filled with bentonite as part of the maintenance activities conducted in February 2007 and will be monitored during subsequent annual inspections. The vegetation on the soil cover was adequate but showing signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. New DOE Office of Legacy Management signs with updated emergency phone numbers were installed as part of this annual inspection, no issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C as part of the maintenance activities conducted in February 2007. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. A vegetation survey of the UC-1 CMP cover and adjacent areas was conducted as part of the annual inspection in May 2007. The vegetation survey indicated that revegetation continues to be successful, although stressed due to the area's prevailing drought conditions. The vegetation should continue to be monitored to document any changes in the plant community and to identify conditions that could potentially require remedial action to maintain a viable

  9. Derivation of quantitative acceptance criteria for disposal of radioactive waste to near surface facilities: Development and implementation of an approach for the post-closure phase

    International Nuclear Information System (INIS)

    Torres, C.

    2000-01-01

    The International Atomic Energy Agency has established a project to develop and illustrate, through practical examples, an approach that allows the derivation of quantitative waste acceptance criteria for near surface disposal of radioactive waste. The first phase focussed on the derivation of example post-closure safety waste acceptance criteria through the use of a safety assessment approach that allows for the derivation of values in a clear and well documented manner. The approach consists of five steps: the specification of the assessment context; the description of the disposal system; the development and justification of scenarios; the formulation and implementation of models; and the calculation and derivation of example values. The approach has been successfully used to derive activity values for the disposal of radioactive waste to illustrative near surface facilities. (author)

  10. Validation of a physically based catchment model for application in post-closure radiological safety assessments of deep geological repositories for solid radioactive wastes.

    Science.gov (United States)

    Thorne, M C; Degnan, P; Ewen, J; Parkin, G

    2000-12-01

    The physically based river catchment modelling system SHETRAN incorporates components representing water flow, sediment transport and radionuclide transport both in solution and bound to sediments. The system has been applied to simulate hypothetical future catchments in the context of post-closure radiological safety assessments of a potential site for a deep geological disposal facility for intermediate and certain low-level radioactive wastes at Sellafield, west Cumbria. In order to have confidence in the application of SHETRAN for this purpose, various blind validation studies have been undertaken. In earlier studies, the validation was undertaken against uncertainty bounds in model output predictions set by the modelling team on the basis of how well they expected the model to perform. However, validation can also be carried out with bounds set on the basis of how well the model is required to perform in order to constitute a useful assessment tool. Herein, such an assessment-based validation exercise is reported. This exercise related to a field plot experiment conducted at Calder Hollow, west Cumbria, in which the migration of strontium and lanthanum in subsurface Quaternary deposits was studied on a length scale of a few metres. Blind predictions of tracer migration were compared with experimental results using bounds set by a small group of assessment experts independent of the modelling team. Overall, the SHETRAN system performed well, failing only two out of seven of the imposed tests. Furthermore, of the five tests that were not failed, three were positively passed even when a pessimistic view was taken as to how measurement errors should be taken into account. It is concluded that the SHETRAN system, which is still being developed further, is a powerful tool for application in post-closure radiological safety assessments.

  11. Quarterly RCRA Groundwater Monitoring Data for the Period July through September 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.

    2007-02-01

    This report provides information about RCRA groundwater monitoring for the period July through September 2006. Eighteen Resource Conservation and Recovery Act (RCRA) sites were sampled during the reporting quarter.

  12. EPA R1 RCRA Corrective Action 2020 Baseline Site Property Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — Property boundaries as indicated in figures of all facilities subject to RCRA Corrective Action on the 2020 baseline in Region 1. For more information on the RCRA...

  13. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    International Nuclear Information System (INIS)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-01-01

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude

  14. Achieving RCRA compliance in DOE defense waste management operations

    International Nuclear Information System (INIS)

    Frankhauser, W.A.; Shepard, M.D.

    1989-01-01

    The U.S. Department of Energy (DOE) generates significant volumes of radioactive mixed waste (RMW) through its defense-related activities. Defense RMW is co-regulated by DOE and the U.S. Environmental Protection Agency/State agencies in accordance with requirements of the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). This paper highlights some of the problems encountered in co-regulation and discusses achievements of the defense waste management program in integrating RCRA requirements into RMW operations. Defense waste sites are planning facility modifications and major new construction projects to develop treatment, storage and disposal capacity for existing RMW inventories and projected needs

  15. RCRA facility investigation/corrective measures study work plan for the 100-DR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et. al. 1990a), signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations. Some of the TSD facilities are included in the operable units. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-DR-1 source operable unit Source operable units include facilities and unplanned release sites that are potential sources of contamination

  16. Preparation of radioactive ''mixed'' waste samples for measurement of RCRA [Resource Conservation and Recovery Act] organic compounds

    International Nuclear Information System (INIS)

    Tomkins, B.A.; Caton, J.E.

    1987-01-01

    A radioactive ''mixed'' waste typically contains alpha-, beta-, or gamma-emitting radionuclides and varying quantities of semivolatile or volatile organic species, some or all of which may be named specifically by the Resource Conservation and Recovery Act (RCRA). Because there are no acceptable means available currently for disposing of these mixed wastes, they are presently stored above-ground in sealed drums. For this reason, analytical procedures which can determine RCRA organics in radioactive waste are necessary for deciding the proper approach for disposal. An important goal of this work is the development of methods for preparing mixed waste samples in a manner which allows the RCRA organics to be measured in conventional organic analysis laboratories without special precautions. Analytical procedures developed for handling mixed waste samples must satisfy not only the usual constraints present in any trace-level organic chemical determination, but also those needed to insure the protection of the operator from radioactive contamination. Consequently, procedures should be designed to use the least amount of radioactive sample commensurate with achieving acceptable sensitivity with the RCRA analytical methods. Furthermore, the unusual laboratory glassware which would normally be used should be replaced with disposable materials wherever possible, in order to reduce the ''clean-up'' time required, and thereby reduce the operator's exposure to radioactivity. Actual sample handling should be reduced to the absolute minimum. Finally, the final isolate must exhibit a sufficiently low level of alpha, beta, or gamma activity to permit detailed characterization in a conventional organic analysis laboratory. 4 refs., 5 tabs

  17. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Science.gov (United States)

    2011-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 239 and 258 [EPA-EPA-R10-RCRA-2010-0953; FRL-9247-5] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA...

  18. RCRA groundwater data analysis protocol for the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Chou, C.J.; Jackson, R.L.

    1992-04-01

    The Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring program currently involves site-specific monitoring of 20 facilities on the Hanford Site in southeastern Washington. The RCRA groundwater monitoring program has collected abundant data on groundwater quality. These data are used to assess the impact of a facility on groundwater quality or whether remediation efforts under RCRA corrective action programs are effective. Both evaluations rely on statistical analysis of groundwater monitoring data. The need for information on groundwater quality by regulators and environmental managers makes statistical analysis of monitoring data an important part of RCRA groundwater monitoring programs. The complexity of groundwater monitoring programs and variabilities (spatial, temporal, and analytical) exhibited in groundwater quality variables indicate the need for a data analysis protocol to guide statistical analysis. A data analysis protocol was developed from the perspective of addressing regulatory requirements, data quality, and management information needs. This data analysis protocol contains four elements: data handling methods; graphical evaluation techniques; statistical tests for trend, central tendency, and excursion analysis; and reporting procedures for presenting results to users

  19. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    International Nuclear Information System (INIS)

    Leaphart, D.M.; Reed, S.R.; Rankin, W.N.

    1995-01-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution disposal methods, and cost

  20. Local-scale modelling of density-driven flow for the phases of repository operation and post-closure at Beberg

    International Nuclear Information System (INIS)

    Jaquet, O.; Siegel, P.

    2004-09-01

    A hydrogeological model was developed for Beberg with the aim of evaluating the impact of a repository (for the operational and post-closure phases) while accounting for the effects of density-driven flow. Two embedded scales were taken into account for this modelling study: a local scale at which the granitic medium was considered as a continuum and a repository scale, where the medium is fractured and therefore was regarded to be discrete. The following step-wise approach was established to model density-driven flow at both repository and local scale: (a) modelling fracture networks at the repository scale, (b) upscaling the hydraulic properties to a continuum at local scale and (c) modelling density-driven flow to evaluate repository impact at local scale. The results demonstrate the strong impact of the repository on the flow field during the phase of operation. The distribution of the salt concentration is affected by a large upcoming effect with increased relative concentration and by the presence of fracture zones carrying freshwater from the surface. The concentrations obtained for the reference case, expressed in terms of percentage with respect to the maximum (prescribed) value in the model, are as follows: ca 30% for the phase of desaturation, and ca 20% for the resaturation phase. For the reference case, the impact of repository operations appears no longer visible after a resaturation period of about 20 years after repository closure; under resaturation conditions, evidence of the operational phase has already disappeared in terms of the observed hydraulic and concentration fields. Sensitivity calculations have proven the importance of explicitly discretising repository tunnels when assessing resaturation time and maximum concentration values. Furthermore, the definition of a fixed potential as boundary condition along the model's top surface is likely to provide underestimated values for the maximum concentration and overestimated flow rates in the

  1. Mobilization plan for the Y-12 9409-5 tank storage facility RCRA closure plan. Final report. Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    This mobilization plan identifies the activities and equipment necessary to begin the field sampling for the Oak Ridge Y-12 9409-5 Diked Tank Storage Facility (DTSF) Resource Conservation and Recovery Act (RCRA) closure. Elements of the plan outline the necessary components of each mobilization task and identify whether SAIC or the Martin Marietta Energy Systems, Inc. Y-12 Environmental Restoration Division will be responsible for task coordination. Field work will be conducted in two phases: mobilization phase and soil sampling phase. Training and medical monitoring, access, permits and passes, decontamination/staging area, equipment, and management are covered in this document

  2. Post-Closure Inspection Letter Report for Corrective Action Unit 112: Area 23 Hazardous Waste Trenches, Nevada Test Site, Nevada, Revision 0, January 2007

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This letter selves as the post closure monitoring letter report for the above CAU for the period October 2005 - September 2006. Quarterly inspections were conducted on December 12,2005, on March 23, 2006, on June 20,2006, and on September 19,2006, to observe the condition of the gate, use-restriction warning signs, monuments, fencing, trenches, soil covers, and monitoring well covers. The first inspection was conducted on December 12, 2005. Signs, fencing, riprap, monuments, and monitoring well covers were in excellent condition. No cracking, erosion, or subsidence was observed on the covers. No issues or concerns were identified, and no corrective actions were recommended. The second inspection was conducted on March 23, 2006. Signs, fencing, riprap, monuments, and monitoring well covers were in excellent condition. No cracking, erosion, or subsidence was observed on the covers. No issues or concerns were identified, and no corrective actions were recommended. The third inspection was conducted on June 20, 2006. Signs, fencing, riprap, monuments, and monitoring well covers were in excellent condition. No cracking, erosion, or subsidence was observed on the covers. No issues or concerns were identified, and no corrective actions were recommended. The fourth inspection was conducted on September 19, 2006. Signs, fencing, riprap, monuments, and monitoring well covers were in excellent condition. No cracking, erosion, or subsidence was observed on the covers. No issues or concerns were identified, and no corrective actions were recommended

  3. The post-closure radiological safety case for a spent fuel repository in Sweden - An international peer review of the SKB license-application study of March 2011

    International Nuclear Information System (INIS)

    2012-01-01

    Sweden is at the forefront among countries developing plans for a deep geological repository of highly radioactive waste. There is no such repository in operation yet worldwide, but Sweden, Finland and France are approaching the licensing stage. At the request of the Swedish government, the NEA organised an international peer review of the post-closure radiological safety case produced by the Swedish Nuclear Fuel and Waste Management Company (SKB) in support of the application for a general licence to construct and operate a spent nuclear fuel geological repository in the municipality of Oesthammar. The purpose of the review was to help the Swedish government, the public and relevant organisations by providing an international reference regarding the maturity of SKB's spent fuel disposal programme vis-a-vis best practices in long-term disposal safety and radiological protection. The International Review Team (IRT) consisted of ten international specialists, who were free of conflict of interest with the SKB and brought complementary expertise to the review. This report provides the background and findings of the international peer review. The review's findings are presented at several levels of detail in order to be accessible to both specialist and non-specialist readers

  4. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

    2005-04-01

    This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

  5. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  6. Characterizing cemented TRU waste for RCRA hazardous constituents

    International Nuclear Information System (INIS)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A.

    1996-01-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol

  7. Analysis of TRU waste for RCRA-listed elements

    International Nuclear Information System (INIS)

    Mahan, C.; Gerth, D.; Yoshida, T.

    1996-01-01

    Analytical methods for RCRA listed elements on Portland cement type waste have been employed using both microwave and open hot plate digestions with subsequent analysis by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), graphite furnace atomic absorption (GFAA) and cold vapor atomic absorption and fluorescence (CVAA/CVAFS). Four different digestion procedures were evaluated including an open hot plate nitric acid digestion, EPA SW-846 Method 3051, and 2 methods using modifications to Method 3051. The open hot plate and the modified Method 3051, which used aqua regia for dissolution, were the only methods which resulted in acceptable data quality for all 14 RCRA-listed elements. Results for the nitric acid open hot plate digestion were used to qualify the analytical methods for TRU waste characterization, and resulted in a 99% passing score. Direct chemical analysis of TRU waste is being developed at Los Alamos National Laboratory in an attempt to circumvent the problems associated with strong acid digestion methods. Technology development includes laser induced breakdown spectroscopy (LIBS), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), dc arc CID atomic emission spectroscopy (DC-AES), and glow discharge mass spectrometry (GDMS). Analytical methods using the Portland cement matrix are currently being developed for each of the listed techniques. Upon completion of the development stage, blind samples will be distributed to each of the technology developers for RCRA metals characterization

  8. Glossary of CERCLA, RCRA and TSCA related terms and acronyms

    International Nuclear Information System (INIS)

    1993-10-01

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993

  9. National RCRA Hazardous Waste Biennial Report Data Files

    Science.gov (United States)

    The United States Environmental Protection Agency (EPA), in cooperation with the States, biennially collects information regarding the generation, management, and final disposition of hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 (RCRA), as amended. Collection, validation and verification of the Biennial Report (BR) data is the responsibility of RCRA authorized states and EPA regions. EPA does not modify the data reported by the states or regions. Any questions regarding the information reported for a RCRA handler should be directed to the state agency or region responsible for the BR data collection. BR data are collected every other year (odd-numbered years) and submitted in the following year. The BR data are used to support regulatory activities and provide basic statistics and trend of hazardous waste generation and management. BR data is available to the public through 3 mechanisms. 1. The RCRAInfo website includes data collected from 2001 to present-day (https://rcrainfo.epa.gov/rcrainfoweb/action/main-menu/view). Users of the RCRAInfo website can run queries and output reports for different data collection years at this site. All BR data collected from 2001 to present-day is stored in RCRAInfo, and is accessible through this website. 2. An FTP site allows users to access BR data files collected from 1999 - present day (ftp://ftp.epa.gov/rcrainfodata/). Zip files are available for download directly from this

  10. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 1: hydrogeological model development - conceptual basis and data

    International Nuclear Information System (INIS)

    Degnan, P.; Littleboy, A.

    1997-01-01

    United Kingdom Nirex Limited ('Nirex') is responsible for providing and managing facilities for the safe disposal of intermediate and certain low-level radioactive waste (ILW and LLW respectively). Government policy is that the preferred disposal route for such wastes is a deep geological repository. The repository concept aims to use a combination of natural and engineered barriers to achieve the necessary degree of long-term isolation and containment of the radioactive wastes. Since 1987, Nirex has carried out an extensive technical programme directed at the science of safe disposal. The work comprises a research programme into the long-term performance of waste forms and the engineered and natural barriers, including the characterisation of candidate geological settings to assess their suitability to host a deep waste repository ('DWR'). Between mid-1991 and March 1997 the geological characterisation programme was concentrated on establishing the suitability, or otherwise, of a candidate site at Sellafield, West Cumbria. In July 1994, as part of a detailed site investigation programme, Nirex applied for planning permission to develop an underground Rock Characterisation Facility (RCF) at Longlands Farm near Sellafield. This application was rejected by the planning authority and Nirex's appeal against that decision led to a local planning inquiry which ran from September 1995 until February 1996. In line with the Inspector's Report, in March 1997 the Nirex appeal was dismissed by the Secretary of State for the Environment. The Company's response to that decision, and its readiness to contribute to the new government's review of the way forward, are described in the Nirex Annual Report for 1996-97. This report - Nirex 97 - is founded on the understanding developed through the Nirex technical programme. It reports the outcome of an assessment of the post-closure safety performance, over hundreds of thousands of years, of a repository system located in a potential

  11. Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes

    International Nuclear Information System (INIS)

    2006-01-01

    The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single-blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory concern and encompass the range of concentrations anticipated in waste characterization samples. The WIPP requires analyses of homogeneous solid wastes to demonstrate compliance with regulatory requirements. These analyses must be performed by laboratories that demonstrate acceptable performance in this PDP. These analyses are referred to as WIPP analyses, and the samples on which they are performed are referred to as WIPP samples. Participating laboratories must analyze PDP samples using the same procedures used for WIPP samples.

  12. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2006-01-01

    This report provides a summary and analysis of visual site inspections and soil gas sampling results for Corrective Action Unit (CAU) 342, Area 23 Mercury Fire Training Pit. CAU 342 is identified in the Federal Facility Agreement and Consent Order of 1996 and consists of Corrective Action Site 23-56-01, Former Mercury Fire Training Pit. This report covers calendar years 2004 and 2005. Visual site inspections were conducted on May 20 and November 14, 2004, and May 17 and November 15, 2005. No significant findings were observed during these inspections. The site was in good condition, and no repair activities were required. Soil gas samples were collected on November 29, 2005, for analysis of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs), and samples were collected on December 1, 2005, for analysis of base gases. Base gas concentrations in the monitoring well show a high concentration of carbon dioxide and a low concentration of oxygen, which is an indication of biodegradation of total petroleum hydrocarbons (TPH) in the soil. Results for VOCs and SVOCs are unchanged, with VOCs below or near laboratory method detection limits and no SVOCs detected above laboratory method detection limits. Post-closure monitoring was required for six years after closure of the site. Therefore, since 2005 was the sixth year of monitoring, the effectiveness of natural attenuation of the TPH-impacted soil by biodegradation was evaluated. The base gas concentrations indicate that biodegradation of TPH in the soil is occurring; therefore, it is recommended that monitoring be discontinued. Visual site inspections should continue to be performed biannually to ensure that the signs are in place and readable and that the use restriction has been maintained. The results of the site inspections will be documented in a letter report and submitted annually

  13. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 110: Area 3 WMD U-3ax/bl Crater, Nevada Test Site, Nevada, For the Period July 2007-June 2008

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-08-01

    This Post-Closure Inspection and Monitoring Report (PCIMR) provides the results of inspections and monitoring for Corrective Action Unit (CAU) 110, Area 3 WMD [Waste Management Division] U-3ax/bl Crater. This PCIMR includes an analysis and summary of the site inspections, repairs and maintenance, meteorological information, and soil moisture monitoring data obtained at CAU 110 for the period July 2007 through June 2008. Site inspections of the cover were performed quarterly to identify any significant changes to the site requiring action. The overall condition of the cover, perimeter fence, and use restriction (UR) warning signs was good. However, settling was observed that exceeded the action level as specified in Section VII.B.7 of the Hazardous Waste Permit Number NEV HW021 (Nevada Division of Environmental Protection, 2005). This permit states that cracks or settling greater than 15 centimeters (6 inches) deep that extend 1.0 meter (m) (3 feet [ft]) or more on the cover will be evaluated and repaired within 60 days of detection. Two areas of settling and cracks were observed on the south and east edges of the cover during the September 2007 inspection that exceeded the action level and required repair. The areas were repaired in October 2007. Additional settling and cracks were observed along the east side of the cover during the December 2007 inspection that exceeded the action level, and the area was repaired in January 2008. Significant animal burrows were also observed during the March 2008 inspection, and small mammal trapping and relocation was performed in April 2008. The semiannual subsidence surveys were performed in September 2007 and March 2008. No significant subsidence was observed in the survey data. Monument 5 shows the greatest amount of subsidence (-0.02 m [-0.08 ft] compared to the baseline survey of 2000). This amount is negligible and near the resolution of the survey instruments; it does not indicate that subsidence is occurring overall on

  14. Closure of hazardous and mixed radioactive waste management units at DOE facilities

    International Nuclear Information System (INIS)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA

  15. Financial responsibilities under RCRA. Hearing before the Subcommittee on Commerce, Transportation, and Tourism of the Committee on Energy and Commerce, House of Representatives, Ninety-Ninth Congress, First Session on H. R. 3692, November 13, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Representatives of environmental organizations, the Hazardous Waste Treatment Council, and regulators were among those testifying at a hearing on H.R. 3692, which amends the Resource Conservation and Recovery Act (RCRA) of 1976. The bill is in response to concerns that the Environmental Protection Agency (EPA) has not compiled with the intent of RCRA in its failure to move beyond interim permits to issue final permits to land disposal facilities accepting hazardous wastes. Reported leakage and environmental risks from sites operating under interim permits raises questions about how disposal companies could deal with liability claims. At issue was whether Congress needs to take new action to develop regulations under which financially responsible companies can operate or whether new EPA rules can solve the problem. A spokesman for EPA reviewed the liability insurance problem and the status of the insurance market in this context. Material submitted for the record follows the text of H.R. 3692 and the testimony of 11 witnesses.

  16. RCRA facility investigation/corrective measures study work plan for the 100-HR-3 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order, signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. Also included in the Tri-Party Agreement are 55 Resource Conservation and Recovery Act (RCRA) treatment, storage, or disposal (TSD) facilities that will be closed or permitted to operate in accordance with RCRA regulations, under the authority of Chapter 173-303 Washington Administrative Code (WAC). Some of the TSD facilities are included in the operable units. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-HR-3 operable unit. The 100-HR-3 operable unit underlies the D/DR and H Areas, the 600 Area between them, and the six source operable units these areas contain. The 100-HR-3 operable unit includes all contamination found in the aquifer soils and water within its boundary. Source operable units include facilities and unplanned release sites that are potential sources of contamination. Separate work plans have been initiated for the 100-DR-1 (DOE-RL 1992a) and 100-HR-1 (DOE-RL 1992b) source operable units

  17. CY2003 RCRA GROUNDWATER MONITORING WELL SUMMARY REPORT

    International Nuclear Information System (INIS)

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year (CY) 2003 field activities associated with the installation of two new groundwater monitoring wells in the A-AX Waste Management Area (WMA) and four groundwater monitoring wells in WMA C in the 200 East Area of the Hanford Nuclear Reservation. All six wells were installed by Fluor Hanford Inc. (FH) for CH2M Hill Hanford Group, Inc. (CHG) in support of Draft Hanford Facility Agreement and Consent Order (Tri-Party Agreement) M-24-00 milestones and ''Resource Conservation and Recovery Act of 1976'' (RCRA) groundwater monitoring requirements. Drilling data for the six wells are summarized in Table 1

  18. RCRA corrective measures using a permeable reactive iron wall US Coast Guard Support Center, Elizabeth City, North Carolina

    International Nuclear Information System (INIS)

    Schmithors, W.L.; Vardy, J.A.

    1997-01-01

    A chromic acid release was discovered at a former electroplating shop at the U.S. Coast Guard Support Center in Elizabeth City, North Carolina. Initial investigative activities indicated that chromic acid had migrated into the subsurface soils and groundwater. In addition, trichloroethylene (TCE) was also discovered in groundwater during subsequent investigations of the hexavalent chromium (Cr VI) plume. Corrective measures were required under the Resource Conservation and Recovery Act (RCRA). The in-situ remediation method, proposed under RCRA Interim Measures to passively treat the groundwater contaminants, uses reactive zero-valent iron to reductively dechlorinate the chlorinated compounds and to mineralize the hexavalent chromium. A 47 meter by 0.6 meter subsurface permeable iron wall was installed downgradient of the source area to a depth of 7 meters using a direct trenching machine. The iron filings were placed in the ground as the soils were excavated from the subsurface. This is the first time that direct trenching was used to install reactive zero-valent iron filings. Over 250 metric tons of iron filings were used as the reactive material in the barrier wall. Installation of the iron filings took one full day. Extensive negotiations with regulatory agencies were required to use this technology under the current facility Hazardous Waste Management Permit. All waste soils generated during the excavation activities were contained and treated on site. Once contaminant concentrations were reduced the waste soils were used as fill material

  19. RCRA Treatment, Disposal, and Storage Site Boundaries in Louisiana, Geographic NAD83, EPA (2002) [RCRA_TSD_LA_poly_EPA_2002)

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a shapefile of RCRA Treatment, Storage, and Disposal facility boundaries developed by PRC Environmental Management, Inc (PRC) per a Work Assignment from the...

  20. Quarterly RCRA Groundwater Monitoring Data for the Period April Through June 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.

    2006-11-01

    This report provides information about RCRA groundwater monitoring for the period April through June 2006. Seventeen RCRA sites were sampled during the reporting quarter. Sampled sites include seven monitored under groundwater indicator evaluation (''detection'') programs, eight monitored under groundwater quality assessment programs, and two monitored under final-status programs.

  1. RCRA, a state perspective: the buck should stop with us

    Energy Technology Data Exchange (ETDEWEB)

    McCall, III, M N

    1977-11-01

    The states must carry the ball of realizing the Resource Conservation and Recovery Act (RCRA); state agencies and the EPA can work together, though they don't always agree; adequate funding is absolutely necessary. The states' perspective of their role is threefold-regulation, assistance, and leadership, with maximum input into implementation. A National Governors' Association committee on waste management was established. Neither RCRA itself nor supporting committee reports allow definition of open dumps and sanitary landfills with other than traditional meaning. Conducting the open dump inventory should be the responsibility of the states, with financial support from EPA. The existence of state nonimportation laws should not preclude that state from receiving money for a hazardous waste program. The criteria for defining hazardous wastes must be realistic if an unmanageable list is to be avoided. State solid waste management agencies must provide aid to local government and private industry. The state-not EPA- is the best level of government to carry out an effective solid waste program. The Federal program should concentrate on resource and energy conservation, research and development, demonstration projects, establishing markets for recycled materials, and education and training programs. Planning should be coordinated through state agencies.

  2. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3 fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    International Nuclear Information System (INIS)

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good

  3. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.

    Science.gov (United States)

    Appleton, J D; Cave, M R; Miles, J C H; Sumerling, T J

    2011-03-01

    Least squares (LS), Theil's (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated ²²⁶Ra in the < 2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m⁻³ whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m⁻³ for a moderately permeable geological unit to about 40 Bq m⁻³ for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m⁻³ is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil ²²⁶Ra ratio shows that whereas the published data are

  4. Evaluation of SKB's report 'Deep repository for spent nuclear fuel: SR 97 - Post-closure safety', Focusing on the assessment of transport processes in the geosphere

    International Nuclear Information System (INIS)

    Woerman, A.; Shulan Xu

    2000-01-01

    This report describes a critical review of the safety assessment performed on the final repository for nuclear waste in Sweden that is proposed by SKB in 'Deep Repository for Spent Nuclear Fuel: SR 97 - Post-closure Safety'. The review was requested by the Swedish Nuclear Power Inspectorate (SKI). The waste repository consists of several barriers that work together with the purpose of delaying radionuclide migration and reducing the activity that eventually affects the biosphere. A main criticism is the lack of a formal risk analysis and uncertainties in several analyses that make it difficult to comprehend the overall risk of the repository. A formal risk analysis should comprise a probabilistic treatment of all components included in the system. This is not the case in the SKB's report since the probabilistic analyses are limited only to certain aspects. The use of conservative model parameters are not a substitute for risk analysis nor can they compensate for possible model biases. Bias can be expected in most of the existing models of radionuclide migration in fractured bedrock. SKB should present a clear comparison on the importance of the different barrier components (uranium-dioxide matrix, copper canister, buffer and bedrock) on the retardation of radionuclides. It is unclear as to what extent the capacity of the bedrock to retain migrating radionuclides is critical to the capacity of the repository. A large part of the SR 97 report is focused on retardation processes in bedrock and a reader can interpret this as the technical weight given on retardation in the bedrock. However, with the present state of knowledge, it is our opinion that we cannot with an acceptable degree of accuracy predict the radionuclide transport in bedrock or quantify risk levels associated with radioactivity in the biosphere. There are large uncertainties concerning the way by which sorption processes should be formulated and the impact of colloids on the transport that can be

  5. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 2; hydrogeological conceptual model development - effective parameters and calibration appendix

    International Nuclear Information System (INIS)

    Jackson, C.; Watson, S.

    1997-01-01

    United Kingdom Nirex Limited ('Nirex') is responsible for providing and managing facilities for the safe disposal of intermediate and certain low-level radioactive waste (ILW and LLW respectively). Government policy is that the preferred disposal route for such wastes is a deep geological repository. The repository concept aims to use a combination of natural and engineered barriers to achieve the necessary degree of long-term isolation and containment of the radioactive wastes. Since 1987, Nirex has carried out an extensive technical programme directed at the science of safe disposal. The work comprises a research programme into the long-term performance of waste forms and the engineered and natural barriers, including the characterisation of candidate geological settings to assess their suitability to host a deep waste repository ('DWR'). Between mid-1991 and March 1997 the geological characterisation programme was concentrated on establishing the suitability, or otherwise, of a candidate site at Sellafield, West Cumbria. In July 1994, as part of a detailed site investigation programme, Nirex applied for planning permission to develop an underground Rock Characterisation Facility (RCF) at Longlands Farm near Sellafield. This application was rejected by the planning authority and Nirex's appeal against that decision led to a local planning inquiry which ran from September 1995 until February 1996. In line with the Inspector's Report, in March 1997 the Nirex appeal was dismissed by the Secretary of State for the Environment. The Company's response to that decision, and its readiness to contribute to the new government's review of the way forward, are described in the Nirex Annual Report for 1996-97. This report - Nirex 97 - is founded on the understanding developed through the Nirex technical programme. It reports the outcome of an assessment of the post-closure safety performance, over hundreds of thousands of years, of a repository system located in a potential

  6. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 3; the groundwater pathway

    International Nuclear Information System (INIS)

    Baker, A.; Chambers, A.; Jackson, C.

    1997-01-01

    United Kingdom Nirex Limited ('Nirex') is responsible for providing and managing facilities for the safe disposal of intermediate and certain low-level radioactive waste (ILW and LLW respectively). Government policy is that the preferred disposal route for such wastes is a deep geological repository. The repository concept aims to use a combination of natural and engineered barriers to achieve the necessary degree of long-term isolation and containment of the radioactive wastes. Since 1987, Nirex has carried out an extensive technical programme directed at the science of safe disposal. The work comprises a research programme into the long-term performance of waste forms and the engineered and natural barriers, including the characterisation of candidate geological settings to assess their suitability to host a deep waste repository ('DWR'). Between mid-1991 and March 1997 the geological characterisation programme was concentrated on establishing the suitability, or otherwise, of a candidate site at Sellafield, West Cumbria. In July 1994, as part of a detailed site investigation programme, Nirex applied for planning permission to develop an underground Rock Characterisation Facility (RCF) at Longlands Farm near Sellafield. This application was rejected by the planning authority and Nirex's appeal against that decision led to a local planning inquiry which ran from September 1995 until February 1996. In line with the Inspector's Report, in March 1997 the Nirex appeal was dismissed by the Secretary of State for the Environment. The Company's response to that decision, and its readiness to contribute to the new government's review of the way forward, are described in the Nirex Annual Report for 1996-97. This report - Nirex 97 - is founded on the understanding developed through the Nirex technical programme. It reports the outcome of an assessment of the post-closure safety performance, over hundreds of thousands of years, of a repository system located in a potential

  7. Nirex 97 an assessment of the post-closure performance of a deep waste repository at Sellafield. Volume 2; hydrogeological conceptual model development - effective parameters and calibration

    International Nuclear Information System (INIS)

    Jackson, C.; Watson, S.

    1997-01-01

    United Kingdom Nirex Limited ('Nirex') is responsible for providing and managing facilities for the safe disposal of intermediate and certain low-level radioactive waste (ILW and LLW respectively). Government policy is that the preferred disposal route for such wastes is a deep geological repository. The repository concept aims to use a combination of natural and engineered barriers to achieve the necessary degree of long-term isolation and containment of the radioactive wastes. Since 1987, Nirex has carried out an extensive technical programme directed at the science of safe disposal. The work comprises a research programme into the long-term performance of waste forms and the engineered and natural barriers, including the characterisation of candidate geological settings to assess their suitability to host a deep waste repository ('DWR'). Between mid-1991 and March 1997 the geological characterisation programme was concentrated on establishing the suitability, or otherwise, of a candidate site at Sellafield, West Cumbria. In July 1994, as part of a detailed site investigation programme, Nirex applied for planning permission to develop an underground Rock Characterisation Facility (RCF) at Longlands Farm near Sellafield. This application was rejected by the planning authority and Nirex's appeal against that decision led to a local planning inquiry which ran from September 1995 until February 1996. In line with the Inspector's Report, in March 1997 the Nirex appeal was dismissed by the Secretary of State for the Environment. The Company's response to that decision, and its readiness to contribute to the new government's review of the way forward, are described in the Nirex Annual Report for 1996-97. This report - Nirex 97 - is founded on the understanding developed through the Nirex technical programme. It reports the outcome of an assessment of the post-closure safety performance, over hundreds of thousands of years, of a repository system located in a potential

  8. RCRA facility investigation for the townsite of Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Dorries, A.M.; Conrad, R.C.; Nonno, L.M.

    1992-01-01

    During World War II, Los Alamos, New Mexico was established as an ideal location for the secrecy and safety needed for the research and development required to design a nuclear fission bomb. Experiments carried out in the 1940s generated both radioactive and hazardous waste constituents on what is presently part of the Los Alamos townsite. Under the RCRA permit issued to Los alamos national Laboratory in 1990, the Laboratory is scheduled for investigation of its solid waste management units (SWMUs). The existing information on levels of radioactivity on the townsite is principally data from soil samples taken during the last site decontamination in 1976, little information on the presence of hazardous constituents exists today. This paper addresses pathway analysis and a preliminary risk assessment for current residents of the Los Alamos townsite. The estimated dose levels, in mrem per year, show that the previously decontaminated SWMU areas on the Los Alamos townsite will not contribute a radiation dose of any concern to the current residents

  9. RCRA corrective action ampersand CERCLA remedial action reference guide

    International Nuclear Information System (INIS)

    1994-07-01

    This reference guide provides a side-by-side comparison of RCRA corrective action and CERCLA Remedial Action, focusing on the statutory and regulatory requirements under each program, criterial and other factors that govern a site's progress, and the ways in which authorities or requirements under each program overlap and/or differ. Topics include the following: Intent of regulation; administration; types of sites and/or facilities; definition of site and/or facility; constituents of concern; exclusions; provisions for short-term remedies; triggers for initial site investigation; short term response actions; site investigations; remedial investigations; remedial alternatives; clean up criterial; final remedy; implementing remedy; on-site waste management; completion of remedial process

  10. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  11. Evolution of chemical conditions and estimated solubility controls on radionuclides in the residual waste layer during post-closure aging of high-level waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Denham, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Millings, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2012-08-28

    This document provides information specific to H-Area waste tanks that enables a flow and transport model with limited chemical capabilities to account for varying waste release from the tanks through time. The basis for varying waste release is solubilities of radionuclides that change as pore fluids passing through the waste change in composition. Pore fluid compositions in various stages were generated by simulations of tank grout degradation. The first part of the document describes simulations of the degradation of the reducing grout in post-closure tanks. These simulations assume flow is predominantly through a water saturated porous medium. The infiltrating fluid that reacts with the grout is assumed to be fluid that has passed through the closure cap and into the tank. The results are three stages of degradation referred to as Reduced Region II, Oxidized Region II, and Oxidized Region III. A reaction path model was used so that the transitions between each stage are noted by numbers of pore volumes of infiltrating fluid reacted. The number of pore volumes to each transition can then be converted to time within a flow and transport model. The bottoms of some tanks in H-Area are below the water table requiring a different conceptual model for grout degradation. For these simulations the reacting fluid was assumed to be 10% infiltrate through the closure cap and 90% groundwater. These simulations produce an additional four pore fluid compositions referred to as Conditions A through D and were intended to simulate varying degrees of groundwater influence. The most probable degradation path for the submerged tanks is Condition C to Condition D to Oxidized Region III and eventually to Condition A. Solubilities for Condition A are estimated in the text for use in sensitivity analyses if needed. However, the grout degradation simulations did not include sufficient pore volumes of infiltrating fluid for the grout to evolve to Condition A. Solubility controls for use

  12. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-01

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with

  13. Special Focus Areas for Hazardous Waste Cleanups under the Resource Conservation and Recovery Act (RCRA)

    Science.gov (United States)

    In order to manage the new and changing needs of the RCRA Corrective Action Program, EPA is constantly exploring program enhancements, alternate exposure pathways, and new technologies available to protect human health and environment.

  14. Low-level mixed waste: An RCRA perspective for NRC licensees

    International Nuclear Information System (INIS)

    1990-08-01

    The publication presents an overview of RCRA requirements for commercially-generated low-level mixed waste. It is designed for Nuclear Regulatory Commission (NRC) licensees who may not be familiar with EPA regulations that apply to their waste products

  15. Cleanups In My Community (CIMC) - RCRA and Base Realignment and Closure (BRAC) Federal Facilities, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Resource Conservation and Recovery Act (RCRA) Base Realignment and Closure (BRAC) sites as part of the CIMC web service. The...

  16. RCRA closures at Rocky Flats Plant: A programmatic perspective and case study

    International Nuclear Information System (INIS)

    Ogg, Randy T.; Peterman, Bruce D.

    1992-01-01

    The Interagency Agreement (IAG) integrates a unique mechanism for remediating hazardous waste sites at the Rocky Flats Plant (RFP), which include utilizing RCRA and CERCLA technical/regulatory processes. Pursuant to the IAG signed by the Department of Energy (DOE), Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH) on January 22, 1991, sixteen operable units (OUs) were defined for characterization and remediation at RFP. Of the sixteen OUs, six are classified as Resource Conservation and Recovery Act (RCRA) closure units. The six RCRA interim status closure units are: Solar Evaporation Ponds-OU 4, Present LandfUl-OU 7, Original Process Waste Lines-OU 9, Other Outside Closures-OU 10, West Spray Field-OU II, and Inside Building Closures-OU 15. The IAG will function as a technical/regulatory mechanism for managing/complying with all aspects of the RCRA interim status closure units at RFP. (author)

  17. EPA Linked Open Data: Resource Conservation and Recovery Act Handlers (RCRA)

    Data.gov (United States)

    U.S. Environmental Protection Agency — RCRAInfo is EPA’s comprehensive information system that supports the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste...

  18. Environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-09-01

    This document presents an Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG 6) at Oak Ridge National Laboratory (ORNL). This document updates a draft monitoring plan developed in 1993. The draft plan was never finalized awaiting resolution of the mechanisms for addressing RCRA concerns at a site where the CERCLA process resulted in a decision to defer action, i.e., postpone closure indefinitely. Over the past two years the Tennessee Department of Environment and Conservation (TDEC), US Department of Energy (DOE), and US Environmental Protection Agency (EPA) Region IV, have agreed that RCRA authority at the site will be maintained through a post- closure permit; ''closure'' in this case referring to deferred action. Both a Revised Closure Plan (DOE 1995a) and a Post-Closure Permit Application (DOE 1995b) have been developed to document this agreement; relevant portions of the EMP will be included in the RCRA Post-Closure Permit Application. As the RCRA issues were being negotiated, DOE initiated monitoring at WAG 6. The purpose of the monitoring activities was to (1) continue to comply with RCRA groundwater quality assessment requirements, (2) install new monitoring equipment, and (3) establish the baseline conditions at WAG 6 against which changes in contaminant releases could be measured. Baseline monitoring is scheduled to end September 30, 1995. Activities that have taken place over the past two years are summarized in this document

  19. Annual report of 1995 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    The Kerr Hollow Quarry (KHQ) and the Chestnut Ridge Sediment Disposal Basin (CRSDB) are inactive waste management sites located at the Oak Ridge Y-12 Plant. The KHQ and CRSDB are regulated as treatment, storage, or disposal (TSD) facilities under the Resource Conservation and Recovery Act (RCRA). The facilities were granted interim status in calendar year (CY) 1986 under Tennessee Department of Environment and Conservation (TDEC) Hazardous Waste Management Rule 1200-1-11-.05. Historical environmental monitoring data and baseline characterization under interim status indicated that releases of contaminants to groundwater had not occurred; thus, the detection monitoring was implemented at the sites until either clean closure was completed or post-closure permits were issued. The CRSDB was closed in Cy 1989 under a TDEC-approved RCRA closure plan. A revised RCRA PCPA for the CRSDB was submitted by DOE personnel to TDEC staff in September 1994. A final post-closure permit was issued by the TDEC on September 18, 1995. Closure activities at KHQ under RCRA were completed in October 1993. The Record of Decision will also incorporate requirements of the RCRA post-closure permit once it is issued by the TDEC

  20. Calendar Year 1997 Annual Groundwater Monitoring Report For The Upper East Fork Poplar Creek Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation Wd Recovery Act (RCRA) post-closure permit (PCP) for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) at the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. Issued by the Tennessee Department of Environment and Conservation (TDEC), the PCP defines the RCRA post-closure corrective action monitoring requirements for the portion of the groundwater contaminant plume that has migrated into the East Fork Regime ftom the S-3 Ponds, a closed RCW-regulated former surface impoundment located in Bear Creek Valley near the west end of the Y-12 Plant. In addition to the RCIL4 post-closure corrective action monitoring results, this report contains the groundwater and surface water monitoring data obtained during CY 1997 to fulfill requirements of DOE Order 5400.1.

  1. Temporal trend analysis of RCRA groundwater monitoring data

    International Nuclear Information System (INIS)

    Need, E.A.

    1994-01-01

    Statistical analysis of RCRA groundwater monitoring data at a uranium hexafluoride processing facility showed a statistically significant increase in the concentration of gross beta activity in monitor wells downgradient of surface impounds storing calcium fluoride sludge and high pH water. Because evidence of leakage had not been detected in lysimeters installed beneath the impounds, the operator sought an evaluation of other potential causes of the result, including natural variability. This study determined that all five data sets showed either long-term excursionary (spike-like), or seasonal forms of temporal variation. Gross beta had an upward long-term trend with multiple excursions that almost appeared to be seasonal. Gross alpha had an upward long-term trend with multiple excursions that were clearly not seasonal. Specific conductance had both upward and downward long-term trends but no other variations. pH had a downward long-term trend with multiple excursions that were clearly not seasonal. Fluoride had a downward long-term trend without excursions but with clear seasonal variations. The gross beta result that appeared to be a significant change was a spike event on the upward long-term trend

  2. Ci PERMIT

    CERN Multimedia

    Relations with the Host States Service

    1999-01-01

    The Swiss Permanent Mission to the International Organisations at Geneva recalls that only the spouses and children of members of personnel resident in Switzerland and in possession of a legitimation card of types 'B', 'C', 'D' or 'E' issued by the Swiss Federal Department of Foreign Affairs are entitled to benefit from a Ci Permit.The 'demande d'attestation de permis Ci' (request for a Ci permit attestation) can be sent to the Mission only through Personnel Division (Administrative Services, Office 33/1-025).Additional information on access by family members of CERN officials to the Swiss labour market are available to you on the Web site of the Relations with the Host States Service (cf. document entitled 'Employment in Switzerland for spouses and children of CERN officials' dated March 1996).Relations with the Host States Servicehttp://www.cern.ch/relations/Tel. 72848

  3. Resource Conservation and Recovery Act: Part B, Permit application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 5, contains Appendices E1, H1, I1--3, K1, K2, and L1. These appendices cover a RCRA ground water monitoring waiver, a list of job titles, the operational closure plan, the waste retrieval plan for wastes placed during the test phase, and listings of agreements between WIPP, DOE, and various state and federal agencies. 91 refs., 21 figs., 3 tabs

  4. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Reporting and statistical evaluation of the subsequent year (sixth) data

    International Nuclear Information System (INIS)

    McMahon, L.W.; Mercier, T.M.

    1992-02-01

    This annual report has historically been prepared to meet the annual reporting requirements of the Tennessee Department of and Environment and Conservation (TDEC), Hazardous Waste Management Regulation 1200-1-11-.05 (6)(e), for detection monitoring data collected on Resource Conservation and Recovery Act (RCRA) wells in place around facilities which are accorded interim status. The regulatory authority for these units at the Y-12 Plant is currently in transition. A Federal Facility Agreement (FFA) with an effective date of January 1, 1992, has been negotiated with the Department of Energy (DOE) for the Oak Ridge Reservation. This agreement provides a framework for remediation of the Oak Ridge Reservation so that both RCRA and CERCLA requirements are integrated into the remediation process and provides for State, EPA, and DOE to proceed with CERCLA as the lead regulatory requirement and RCRA as an applicable or relevant and appropriate requirement. This report is presented for the RCRA certified wells for two interim status units at the Y-12 Plant. These units are Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin. Kerr Hollow is currently undergoing clean closure under RCRA. The Chestnut Ridge Sediment Disposal Basin (CRSDB) was closed in 1989 under a TDEC approved RCRA closure plan. The relevance of a RCRA Post-Closure Permit to either of these units is a matter of contention between DOE and TDEC since the FFA does not contemplate post-closure permits

  5. An example of system integration for RCRA policy analysis

    International Nuclear Information System (INIS)

    Tonn, B.; Goeltz, R.; Schmidt, K.

    1991-01-01

    This paper describes the synthesis of various computer technologies and software systems used on a project to estimate the costs of remediating Solid Waste Management Units (SWMUs) that fall under the corrective action provisions of the Resource Conservation and Recovery Act (RCRA). The project used two databases collected by Research Triangle Institute (RTI) that contain information on SWMUs and a PC-based software system called CORA that develops cost estimates for remediating SWMUs. The project team developed rules to categorize every SWMU in the databases by the kinds of technologies required to clean them up. These results were input into CORA, which estimated costs associated with the technologies. Early on, several computing challenges presented themselves. First, the databases have several hundred thousand records each. Second, the categorization rules could not be written to cover all combinations of variables. Third, CORA is run interactively and the analysis plan called for running CORA tens of thousands of times. Fourth, large data transfers needed to take place between RTI and Oak Ridge National Laboratory. Solutions to these problems required systems integration. SWMU categorization was streamlined by using INTERNET as was the data transfer. SAS was used to create files used by a program called SuperKey that was used to run CORA. Because the analysis plan required the generation of hundreds of thousands of cost estimates, memory management software was needed to allow the portable IBM P70 to do the job. During the course of the project, several other software packages were used, including: SAS System for Personal Computers (SAS/PC), DBase III, LOTUS 1-2-3, PIZAZZ PLUS, LOTUS Freelance Plus, and Word Perfect. Only the comprehensive use of all available hardware and software resources allowed this project to be completed within the time and budget constraints. 5 refs., 3 figs., 3 tabs

  6. Successful completion of a RCRA closure for the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Lippitt, J.M.; Kolthoff, K.

    1995-01-01

    This paper discusses the successful completion of a RCRA (Resource Conservation and Recovery Act) closure of a HF (hydrofluoric acid) tank car at FEMP, which is on the national priorities list of hazardous waste sites and is undergoing CERCLA remediation. The HF tank car closure was conducted by FERMCO. Through a combination of sound planning and team work, the HF tank car was closed safely and ahead of schedule. During > 22,000 hr field work required for construction modifications and neutralization of 9,600 gallons of HF and decontamination rinseates, there were no OSHA recordable incidents. The system design avoided additional costs by maximizing use of existing equipment and facilities. This successful closure of the HF tank car demonstrates FEMP's commitment to reducing risks and cleaning up the facility in a manner consistent with objectives of RCRA regulations and the Ohio EPA hazardous waste rules. This in turn facilitated ongoing negotiations with Ohio EPA to integrate RCRA closure and the ongoing CERCLA remediation activities. This paper addresses why the unit was clean closed under an approved RCRA Closure Plan. Integration of EPA regulations for RCRA and CERCLA programs and the DOE-Orders impacting design, construction and operation of an acid neutralization system is also reviewed. The paper concludes with a discussion of lessons learned in the process in preparing the closure plant and through final project close out

  7. Performance test results of noninvasive characterization of RCRA surrogate waste by prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Propp, W.A.

    1997-11-01

    A performance evaluation to determine the feasibility of using prompt gamma neutron activation analysis (PGNAA) for noninvasive, quantitative assay of mixed waste containers was sponsored by DOE's Office of Technology Development (OTD), the Mixed Waste Focus Area (MWFA), and the Idaho National Engineering and Environmental Laboratory (INEEL). The evaluation was conducted using a surrogate waste, based on Portland cement, that was spiked with three RCRA metals, mercury, cadmium, and lead. The results indicate that PGNAA has potential as a process monitor. However, further development is required to improve its sensitivity to meet regulatory requirements for determination of these RCRA metals

  8. RCRA and operational monitoring 1994 fiscal year work plan, WBS 1.5.3

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    RCRA & Operational Monitoring (ROM) Program Office manages the direct funded Resource Conservation Recovery Act (RCRA) and Operational Monitoring under Work Breakdown Structure (WBS) 1.5.3. The ROM Program Office is a Branch of liquid Waste Disposal, a part of Restoration and Remediation of Westinghouse Hanford Company (WHC). The Fiscal Year Work Plan (FYWP) takes it direction from the Multi-Year Program Plan (MYPP). The FYWP provides the near term, enhanced details for the Program Office to use as baseline Cost, Scope and Schedule. Changs Control administered during the fiscal year is against the baseline provided by the FYWP.

  9. Exiting RCRA Subtitle C regulation data for supporting a new regulatory path for immobilized mixed debris

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C.L. [Jetseal, Inc., Idaho Falls, ID (United States); Carson, S.D.; Cheng, Wu-Ching [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    This paper presents analytical and empirical data that provide technical support for the position that mixed debris (debris contaminated with both radioactive and hazardous constituents) treated by immobilization in accordance with 40 CFR 268.45 can exit RCRA Subtitle C requirements at the time the treatment is complete. Pathways analyses and risk assessments of low-level waste and RCRA mixed waste disposal facilities show that these two types of facilities provide equivalent long-term (> 100 years) performance and protection of human health and the environment. A proposed two-tier approach for waste form performance criteria is discussed.

  10. RCRA and operational monitoring 1994 fiscal year work plan, WBS 1.5.3

    International Nuclear Information System (INIS)

    1993-12-01

    RCRA ampersand Operational Monitoring (ROM) Program Office manages the direct funded Resource Conservation Recovery Act (RCRA) and Operational Monitoring under Work Breakdown Structure (WBS) 1.5.3. The ROM Program Office is a Branch of liquid Waste Disposal, a part of Restoration and Remediation of Westinghouse Hanford Company (WHC). The Fiscal Year Work Plan (FYWP) takes it direction from the Multi-Year Program Plan (MYPP). The FYWP provides the near term, enhanced details for the Program Office to use as baseline Cost, Scope and Schedule. Changs Control administered during the fiscal year is against the baseline provided by the FYWP

  11. Calendar Year 1997 Annual Groundwater Monitoring Report For The Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater and surface water monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCIU) post- closure permit (PCP) for the Bear Creek Hydrogeologic Regime (Bear Creek Regime), and as otherwise required by U.S. Department of Energy (DOE) Order 5400.1. In July 1997, the Temessee Department of Environment and Conservation (TDEC) approved several modifications to the RCRA post-closure corrective action monitoring requirements specified in the PCP. This report has been prepared in accordimce with these modified requirements.

  12. WIPP's Hazardous Waste Facility Permit Renewal Application

    International Nuclear Information System (INIS)

    Most, W.A.; Kehrman, R.F.

    2009-01-01

    Hazardous waste permits issued by the New Mexico Environment Department (NMED) have a maximum term of 10-years from the permit's effective date. The permit condition in the Waste Isolation Pilot Plant's (WIPP) Hazardous Waste Facility Permit (HWFP) governing renewal applications, directs the Permittees to submit a permit application 180 days prior to expiration of the Permit. On October 27, 1999, the Secretary of the NMED issued to the United States Department of Energy (DOE), the owner and operator of WIPP, and to Washington TRU Solutions LLC (WTS), the Management and Operating Contractor and the cooperator of WIPP, a HWFP to manage, store, and dispose hazardous waste at WIPP. The DOE and WTS are collectively known as the Permittees. The HWFP is effective for a fixed term not to exceed ten years from the effective date of the Permit. The Permittees may renew the HWFP by submitting a new permit application at least 180 calendar days before the expiration date, of the HWFP. The Permittees are not proposing any substantial changes in the Renewal Application. First, the Permittees are seeking the authority to dispose of Contact-Handled and Remote-Handled TRU mixed waste in Panel 8. Panels 4 through 7 have been approved in the WIPP Hazardous Waste Facility Permit as it currently exists. No other change to the facility or to the manner in which hazardous waste is characterized, managed, stored, or disposed is being requested. Second, the Permittees also seek to include the Mine Ventilation Rate Monitoring Plan, as Attachment Q in the HWFP. This Plan has existed as a separate document since May 2000. The NMED has requested that the Plan be submitted as part of the Renewal Application. The Permittees have been operating to the Mine Ventilation Rate Monitoring Plan since the Plan was submitted. Third, some information submitted in the original WIPP RCRA Part B Application has been updated, such as demographic information. The Permittees will submit this information in the

  13. Post-Closure Evaluation of the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site in Support of the Site-Wide Environmental Impact Statement

    International Nuclear Information System (INIS)

    2011-01-01

    The post-closure performance of the Area 3 Radioactive Waste Management Site (RWMS) and Area 5 RWMS are evaluated for the Site-Wide Environmental Impact Statement using current performance assessment and composite analysis methods and models. Two alternatives with different future waste volumes and inventories are evaluated. The No Action Alternative evaluates the inventory disposed through fiscal year (FY) 2010 plus an additional 4.5E5 cubic meters (m3) (1.59E7 cubic feet (ft3)) of waste disposed at the Area 5 RWMS. The Expanded Operations Alternative evaluates the FY 2010 inventory plus an additional 1.42E6 m3 (5.03E7 ft3) of waste disposed at the Area 5 RWMS and 4.93E4 m3 (1.74E6 ft3) disposed at the Area 3 RWMS. Both the No Action and Expanded Operations Alternatives have a reasonable expectation of meeting all performance objectives of U.S. Department of Energy Order DOE O 435.1, 'Radioactive Waste Management.' No significant difference between the two alternatives was found because the waste concentrations are similar. The performance assessment model assesses radiological risk for residents at the RWMS boundary where risk is more closely related to waste concentration than total waste inventory. Results for the composite analysis also indicate that the dose constraint and dose limit can be met for both alternatives.

  14. Enhancement of the methodology of repository design and post-closure performance assessment for preliminary investigation stage (3). Progress report on NUMO-JAEA collaborative research in FY2013 (Joint research)

    International Nuclear Information System (INIS)

    Shibata, Masahiro; Sawada, Atsushi; Tachi, Yukio; Makino, Hitoshi; Wakasugi, Keiichiro; Mitsui, Seiichiro; Kitamura, Akira; Oda, Chie; Ishidera, Takamitsu; Suyama, Tadahiro; Hatanaka, Koichiro; Kamei, Gento; Yoshikawa, Hideki; Senba, Takeshi; Seo, Toshihiro; Kurosawa, Susumu; Goto, Junichi; Shibutani, Sanae; Goto, Takahiro; Kubota, Shigeru; Inagaki, Manabu; Moriya, Toshifumi; Suzuki, Satoru; Ishida, Keisuke; Nishio, Hikaru; Makiuchi, Akie; Fujihara, Hiroshi

    2015-03-01

    JAEA and NUMO have conducted a collaborative research work which is designed to enhance the methodology of repository design and post-closure performance assessment in preliminary investigation stage. With regard to (1) study on host rock suitability in terms of hydrology, based on some examples of developing method of hydro-geological structure model, acquired knowledge are arranged using the tree diagram, and model uncertainty and its influence on the evaluation items were discussed. With regard to (2) study on scenario development, the developed approach for “defining conditions” has been reevaluated and improved from practical viewpoints. In addition, the uncertainty evaluation for the effect of use of cementitious material, as well as glass dissolution model, was conducted with analytical evaluation. With regard to (3) study on setting radionuclide migration parameters, based on survey of precedent procedures, multiple-approach for distribution coefficient of rocks was established, and the adequacy of the approach was confirmed through its application to sedimentary rock and granitic rock. Besides, an approach for solubility setting was developed including the procedure of selection of solubility limiting solid phase. The adequacy of the approach was confirmed through its application to key radionuclides. (author)

  15. RCRA corrective action for underground storage tanks -- Subtitle C for Subtitle I

    International Nuclear Information System (INIS)

    1995-08-01

    The purpose of this report is to provide guidance to DOE and DOE contractor personnel responsible for planning and implementation of corrective measures addressing cleanup of releases of hazardous materials or regulated substances from underground storage tanks regulated under RCRA Subtitle C or Subtitle I

  16. 76 FR 76158 - Agency Information Collection Activities; Proposed Collection; Comment Request; RCRA Expanded...

    Science.gov (United States)

    2011-12-06

    ... contents of the docket, and to access those documents in the public docket that are available..., including through the use of appropriate automated electronic, mechanical, or other technological collection... as State, local, or Tribal governments. Title: RCRA Expanded Public Participation. ICR numbers: EPA...

  17. Strategic alternatives ranking methodology: Multiple RCRA incinerator evaluation test case

    International Nuclear Information System (INIS)

    Baker, G.; Thomson, R.D.; Reece, J.; Springer, L.; Main, D.

    1988-01-01

    This paper presents an important process approach to permit quantification and ranking of multiple alternatives being considered in remedial actions or hazardous waste strategies. This process is a methodology for evaluating programmatic options in support of site selection or environmental analyses. Political or other less tangible motivations for alternatives may be quantified by means of establishing the range of significant variables, weighting their importance, and by establishing specific criteria for scoring individual alternatives. An application of the process to a recent AFLC program permitted ranking incineration alternatives from a list of over 130 options. The process forced participation by the organizations to be effected, allowed a consensus of opinion to be achieved, allowed complete flexibility to evaluate factor sensitivity, and resulted in strong, quantifiable support for any subsequent site-selection action NEPA documents

  18. The implications of RCRA [Resource Conservation and Recovery Act] regulation for the disposal of transuranic and high-level waste

    International Nuclear Information System (INIS)

    Sigmon, C.F.; Sharples, F.E.; Smith, E.D.

    1988-01-01

    In May of 1987 the Department of Energy (DOE) published a rule interpreting the definition of ''byproduct'' under the Atomic Energy Act. This byproduct rule clarified the role of the Resource Conservation and Recovery Act (RCRA) in the regulation of DOE's radioactive waste management activities. According to the rule, only the radioactive portion of DOE's mixed radioactive and hazardous waste (mixed waste), including mixed transuranic (TRU) and high-level waste (HLW), is exempt from RCRA under the byproduct exemption. The portion of a waste that is hazardous as defined by RCRA is subject to full regulation under RCRA. Because the radioactive and hazardous portions of m any, if not most, DOE wastes are likely to be inseparable, the rule in effect makes most mixed wastes subject to dual regulation. The potential application of RCRA to facilities such as the Waste Isolation Pilot Plant (WIPP) and the HLW repository creates unique challenges for both the DOE and regulatory authorities. Strategies must be developed to assure compliance with RCRA without either causing excessive administrative burdens or abandoning the goal of minimizing radiation exposure. This paper will explore some of the potential regulatory options for and recent trends in the regulation of TRU and HLW under RCRA

  19. Calandar year 1996 annual groundwater monitoring report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The Bear Creek Regime encompasses a portion of Bear Creek Valley (BCV) west of the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid) that contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring in the Bear Creek Regime is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). This report contains the information and monitoring data required under the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Bear Creek Hydrogeologic Regime (post-closure permit), as modified and issued by the Tennessee Department of Environment and Conservation (TDEC) in September 1995 (permit no. TNHW-087). In addition to the signed certification statement and the RCRA facility information summarized below, permit condition II.C.6 requires the annual monitoring report to address groundwater monitoring activities at the three RCRA Hazardous Waste Disposal Units (HWDUs) in the Bear Creek Regime that are in post-closure corrective action status (the S-3 Site, the Oil Landfarm, and the Bear Creek Burial Grounds/Walk-In Pits).

  20. Dewatering and RCRA partial closure action on solar evaporation ponds, Rocky Flats Plant, Golden, Colorado

    International Nuclear Information System (INIS)

    1991-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (DOE/EA-0487) on its proposal to partially close five solar evaporation ponds at the Rocky Flats Plant (RFP) pursuant to the requirements of the Resource Conservation and Recovery Act (RCRA). This proposal would be known as a RCRA partial closure and would be accomplished by dewatering the ponds, where necessary, and converting any remaining sludge or evaporator concentrate to a solid wasteform (pondcrete and saltcrete). The pond sites would be stabilized to prevent erosion or other disturbance to the soil and to prevent infiltration of rain or snowmelt. The solid wasteform would be transported offsite for disposal. The five solar ponds (designated 207-A, 207-B (north, center, and south), and 207-C), are the only solar evaporation ponds that exist at the RFP. A finding of no significant impact is included

  1. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  2. Groundwater Monitoring Plan for the 1301-N, 1324-N/NA, and 1325-N RCRA Facilities

    International Nuclear Information System (INIS)

    Hartman, Mary J.

    2001-01-01

    The 1301-N and 1325-N Liquid Waste Disposal Facilities, the 1324-N Surface Impoundment, and the 1324-NA Percolation Pond, located in the 100 N Area of the Hanford Site, are regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The closure plans for these facilities stipulate that groundwater is monitored according to the 100-N Pilot Project: Proposed Consolidated Groundwater Monitoring Program (BHI-00725). This document supplements the consolidated plan by providing information on sampling and analysis protocols, quality assurance, data management, and a conceptual model for the RCRA sites. Monitoring well networks, constituents, and sampling frequency remain the same as in the consolidated plan or the previous groundwater monitoring plan (Hartman 1996)

  3. Groundwater monitoring plan for the Hanford Site 216-B-3 pond RCRA facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Chou, C.J.

    1998-06-01

    The 216-B-3 pond system was a series of ponds for disposal of liquid effluent from past Hanford production facilities. In operation since 1945, the B Pond system has been a RCRA facility since 1986, with Resource Conservation and Recovery Act (RCRA) interim-status groundwater monitoring in place since 1988. In 1994, discharges were diverted from the main pond, where the greatest potential for contamination was thought to reside, to the 3C expansion pond. In 1997, all discharges to the pond system were discontinued. In 1990, the B Pond system was elevated from detection groundwater monitoring to an assessment-level status because total organic halogens and total organic carbon were found to exceed critical means in two wells. Subsequent groundwater quality assessment failed to find any specific hazardous waste contaminant that could have accounted for the exceedances, which were largely isolated in occurrence. Thus, it was recommended that the facility be returned to detection-level monitoring

  4. Quarterly report of RCRA groundwater monitoring data for period April 1, 1993 through June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jungers, D.K.

    1993-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between May 24 and August 20, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from samples collected during the April through June quarter but also data from earlier sampling events that were not previously reported.

  5. Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry

  6. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    International Nuclear Information System (INIS)

    1995-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and open-quotes Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilitiesclose quotes (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported

  7. SACM and the RCRA stabilization initiative: Similarities of principles and applicability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the corrective action provisions of the Resource Conservation and Recovery Act (RCRA) provide standards for the remediation of environmental media contaminated with hazardous substances or hazardous waste, respectively. In both cases, prior to the US Environmental Protection Agency`s (EPA) development of the two subject reform initiatives, existing formal processes specified the level of site investigation required, the process for reaching a decision on the method of remediation, public participation in the decision process, and enforcement authorities that include orders and schedules of compliance. Traditionally, implementation of these processes has resulted in a great amount of time, effort, and money being expended before actual remediation began. Following criticism from the public and the regulated community, the EPA has proposed streamlining reforms for hazardous waste site cleanup under both CERCLA and RCRA that will begin remediation sooner with lower costs. The purpose of this Information Brief is to discuss the common goals, processes, and strategies of the Superfund Accelerated Cleanup Model (SACM) and the RCRA Stabilization Initiative.

  8. Guide to ground water remediation at CERCLA response action and RCRA corrective action sites

    International Nuclear Information System (INIS)

    1995-10-01

    This Guide contains the regulatory and policy requirements governing remediation of ground water contaminated with hazardous waste [including radioactive mixed waste (RMW)], hazardous substances, or pollutants/contaminants that present (or may present) an imminent and substantial danger. It was prepared by the Office of Environmental Policy and Assistance, RCRA/CERCLA Division (EH-413), to assist Environmental Program Managers (ERPMs) who often encounter contaminated ground water during the performance of either response actions under CERCLA or corrective actions under Subtitle C of RCRA. The Guide begins with coverage of the regulatory and technical issues that are encountered by ERPM's after a CERCLA Preliminary Assessment/Site Investigation (PA/SI) or the RCRA Facility Assessment (RFA) have been completed and releases into the environment have been confirmed. It is based on the assumption that ground water contamination is present at the site, operable unit, solid waste management unit, or facility. The Guide's scope concludes with completion of the final RAs/corrective measures and a determination by the appropriate regulatory agencies that no further response action is necessary

  9. RCRA and CERCLA requirements affecting cleanup activities at a federal facility superfund site

    International Nuclear Information System (INIS)

    Walsh, T.J.

    1994-01-01

    The Fernald Environmental Management Project (FEMP) achieved success on an integrated groundwater monitoring program which addressed both RCRA and CERCLA requirements. The integrated plan resulted in a cost savings of approximately $2.6 million. At present, the FEMP is also working on an integrated closure process to address Hazardous Waste Management Units (HWMUs) at the site. To date, Ohio EPA seems willing to discuss an integrated program with some stipulations. If an integrated program is implemented, a cost savings of several million dollars will be realized since the CERCLA documents can be used in place of a RCRA closure plan. The success of an integrated program at the FEMP is impossible without the support of DOE and the regulators. Since DOE is an owner/operator of the facility and Ohio EPA regulates hazardous waste management activities at the FEMP, both parties must be satisfied with the proposed integration activities. Similarly, US EPA retains CERCLA authority over the site along with a signed consent agreement with DOE, which dictates the schedule of the CERCLA activities. Another federal facility used RCRA closure plans to satisfy CERCLA activities. This federal facility was in a different US EPA Region than the FEMP. While this approach was successful for this site, an integrated approach was required at the FEMP because of the signed Consent Agreement and Consent Decree. For federal facilities which have a large number of HWMUs along with OUs, an integrated approach may result in a timely and cost-effective cleanup

  10. Glossary of CERCLA, RCRA and TSCA related terms and acronyms. Environmental Guidance

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This glossary contains CERCLA, RCRA and TSCA related terms that are most often encountered in the US Department of Energy (DOE) Environmental Restoration and Emergency Preparedness activities. Detailed definitions are included for key terms. The CERCLA definitions included in this glossary are taken from the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended and related federal rulemakings. The RCRA definitions included in this glossary are taken from the Resource Conservation and Recovery Act (RCRA) and related federal rulemakings. The TSCA definitions included in this glossary are taken from the Toxic Substances and Control Act (TSCA) and related federal rulemakings. Definitions related to TSCA are limited to those sections in the statute and regulations concerning PCBs and asbestos.Other sources for definitions include additional federal rulemakings, assorted guidance documents prepared by the US Environmental Protection Agency (EPA), guidance and informational documents prepared by the US Department of Energy (DOE), and DOE Orders. The source of each term is noted beside the term. Terms presented in this document reflect revised and new definitions published before July 1, 1993.

  11. Results of RCRA groundwater quality assessment at the 216-B-3 Pond Facility

    International Nuclear Information System (INIS)

    Barnett, D.B.; Teel, S.S.

    1997-06-01

    This document describes a groundwater quality assessment of the 216-B-3 pond system, a Resources Conservation and Recovery act of 1976 (RCRA) waste facility. In 1990, sampling and chemical analysis of groundwater underlying the facility indicated that the contamination indicator parameters, total organic halogens (TOX), and total organic carbon (TOC) had exceeded established limits in two wells. This discovery placed the facility into RCRA groundwater assessment status and subsequently led to a more detailed hydrochemical analysis of groundwater underlying the facility. Comprehensive chemical analyses of groundwater samples from 1994 through 1996 revealed one compound, tris (2-chloroethyl) phosphate (TRIS2CH), that may have contributed to elevated TOX concentrations. No compound was identified as a contributor to TOC. Detailed evaluations of TOX, TOC, and TRIS2CH and comparison of occurrences of these parameters led to conclusions that (1) with few exceptions, these constituents occur at low concentrations below or near limits of quantitation; (2) it is problematic whether the low concentrations of TRIS2CH represent a contaminant originating from the facility or if it is a product of well construction; and (3) given the low and diminishing concentration of TOX, TOC, and TRIS2CH, no further investigation into the occurrent of these constituents is justified. Continued groundwater monitoring should include an immediate recalculation of background critical means of upgradient/downgradient comparisons and a return to seminannual groundwater monitoring under a RCRA indicator parameter evaluation program

  12. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    French, Sean B.; Christensen, Candace; Jennings, Terry L.; Jaros, Christopher L.; Wykoff, David S.; Crowell, Kelly J.; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  13. Resource Conservation and Recovery Act, Part B permit application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 3, is Appendix C2 continued. This appendix contains information on shipping; inventories of chemicals present in waste; chemical compatibility of wastes; the methodology to determine compatibility; analytical data regarding volatile organic compounds (VOC), metals, and solvents; and a description of sampling programs of waste drum gases

  14. Resource Conservation and Recovery Act Part B permit application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 1, contains a site and facility description of WIPP; procedures for waste analysis and characterization, testing, monitoring, inspection, and training; hazard prevention, safety and security plans; plans for closure; and a discussion of other applicable laws. Also included are maps, photographs, and diagrams of the facilities and surrounding areas. 180 refs., 75 figs., 24 tabs

  15. Resource Conservation and Recovery Act, Part B Permit Application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 2, contains Appendices B1, C1, and C2. These appendices describe the surface hydrology of the area, provide a description of the physical and chemical characteristics of wastes to be placed in WIPP, and outline a waste analysis plan which gives an overview of the total waste inventory planned for WIPP. 34 refs., 107 figs., 27 tabs

  16. Resource Conservation and Recovery Act, Part B Permit Application

    International Nuclear Information System (INIS)

    1991-02-01

    The Waste Isolation Pilot Plant (WIPP) project was authorized by the Department of Energy National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Public Law 96-164) as a research and development facility to demonstrate the safe, environmentally sound disposal of transuranic (TRU) radioactive wastes derived from the defense activities of the United States. The WIPP facility is owned and operated by the US Department of Energy (DOE). The TRU waste to be received at WIPP consists largely of such items as laboratory glassware and utensils, tools, scrap metal, shielding, personnel protection equipment, and solidified sludges from the treatment of waste water. Approximately 60 percent of this waste is ''mixed,'' that is, it is also contaminated with hazardous waste or hazardous waste constituents as defined by the Resource Conservation and Recovery Act (RCRA) and by the New Mexico Hazardous Waste Management Regulations (HWMR-5). Therefore, emplacement of TRU mixed waste in the WIPP repository is subject to regulation under HWMR-5 and RCRA. The permit application under the Resource Conservation and Recovery Act for WIPP is divided into five volumes. This document, Volume 4, contains Appendices C3, C4, and D1--D10. These appendices cover information on environmental impacts, site characterization, geology and hydrology of the area, monitoring of the environment, compatibility of waste forms and containers, and removal of volatile organic compounds (VOC)

  17. Procedural method for the development of scenarios in the post-closure phase. Report on the working package 1. Development of the international status of science and technology concerning methods and tools for operational and long-term safety cases; Vorgehensweise bei der Entwicklung von Szenarien fuer die Nachverschlussphase. Bericht zum Arbeitspaket 1. Weiterentwicklung des internationalen Stands von Wissenschaft und Technik zu Methoden und Werkzeugen fuer Betriebs- und Langzeitsicherheitsnachweise

    Energy Technology Data Exchange (ETDEWEB)

    Beuth, Thomas; Mayer, Kim-Marisa

    2016-09-15

    The report on the procedural method for the development of scenarios in the post-closure phase covers the following topics: development of scenarios and derivation of calculation cases, approaches for verification of derived scenarios, human penetration in a final repository (including national and international regulations and guidelines and safety standards).

  18. Federal Fisheries Permit (FFP)/ Federal Processor Permit (FPP) Permit Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Federal Fisheries Permit (FFP) is required for vessels of the United States which are used to fish for groundfish in the Gulf of Alaska or Bering Sea and...

  19. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration{trademark} technology

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.F. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D&D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration{trademark} (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs.

  20. Selective removal/recovery of RCRA metals from waste and process solutions using polymer filtration trademark technology

    International Nuclear Information System (INIS)

    Smith, B.F.

    1997-01-01

    Resource Conservation and Recovery Act (RCRA) metals are found in a number of process and waste streams at many DOE, U.S. Department of Defense, and industrial facilities. RCRA metals consist principally of chromium, mercury, cadmium, lead, and silver. Arsenic and selenium, which form oxyanions, are also considered RCRA elements. Discharge limits for each of these metals are based on toxicity and dictated by state and federal regulations (e.g., drinking water, RCRA, etc.). RCRA metals are used in many current operations, are generated in decontamination and decommissioning (D ampersand D) operations, and are also present in old process wastes that require treatment and stabilization. These metals can exist in solutions, as part of sludges, or as contaminants on soils or solid surfaces, as individual metals or as mixtures with other metals, mixtures with radioactive metals such as actinides (defined as mixed waste), or as mixtures with a variety of inert metals such as calcium and sodium. The authors have successfully completed a preliminary proof-of-principle evaluation of Polymer Filtration trademark (PF) technology for the dissolution of metallic mercury and have also shown that they can remove and concentrate RCRA metals from dilute solutions for a variety of aqueous solution types using PF technology. Another application successfully demonstrated is the dilute metal removal of americium and plutonium from process streams. This application was used to remove the total alpha contamination to below 30 pCi/L for the wastewater treatment plant at TA-50 at Los Alamos National Laboratory (LANL) and from nitric acid distillate in the acid recovery process at TA-55, the Plutonium Facility at LANL (ESP-CP TTP AL16C322). This project will develop and optimize the PF technology for specific DOE process streams containing RCRA metals and coordinate it with the needs of the commercial sector to ensure that technology transfer occurs

  1. Consolidated permit regulations and hazardous waste management system: Environmental Protection Agency. Notice of issuance of regulation interpretation memorandum.

    Science.gov (United States)

    1981-12-10

    The Environmental Protection Agency (EPA) is issuing today a Regulation Interpretation Memorandum (RIM) which provides official interpretation of the issue of whether a generator who accumulates hazardous waste pursuant to 40 CFR 262.34, may qualify for interim status after November 19, 1980. This issue arose when the requirements for submitting a Part A permit application (one of the prerequisites to qualifying for interim status) were amended on November 19, 1980. The provisions interpreted today are part of the Consolidated Permit Regulations promulgated under Subtitle C of the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act, as amended (RCRA).

  2. Permit.LOA table

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table includes the effective dates by vessel and permit number for each issued letter of authorization (LOA) by the Permit Office (APSD)

  3. State Licenses & Permits

    Data.gov (United States)

    Small Business Administration — Starting a business? Confused about whether you need a business license or permit? Virtually every business needs some form of license or permit to operate legally....

  4. Self-assembled monolayers on mosoporous supports (SAMMS) for RCRA metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiangdong; Liu, Jun; Fryxell, G. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The Mixed Waste Focus Area has declared mercury removal and stabilization as the first and fourth priorities among 30 prioritized deficiencies. Resource Conservation and Recovery Act (RCRA) metal and mercury removal has also been identified as a high priority at DOE sites such as Albuquerque, Idaho Falls, Oak Ridge, Hanford, Rocky Flats, and Savannah River. Under this task, a proprietary new technology, Self-Assembled Monolayers on Mesoporous Supports (SAMMS), for RCRA metal ion removal from aqueous wastewater and mercury removal from organic wastes such as vacuum pump oils is being developed at Pacific Northwest National Laboratory (PNNL). The six key features of the SAMMS technology are (1) large surface area (>900 m{sup 2}/g) of the mesoporous oxides (SiO{sub 2}, ZrO{sub 2}, TiO{sub 2}) ensures high capacity for metal loading (more than 1 g Hg/g SAMMS); (2) molecular recognition of the interfacial functional groups ensures the high affinity and selectivity for heavy metals without interference from other abundant cations (such as calcium and iron) in wastewater; (3) suitability for removal of mercury from both aqueous wastes and organic wastes; (4) the Hg-laden SAMMS not only pass TCLP tests, but also have good long-term durability as a waste form because the covalent binding between mercury and SAMMS has good resistance to ion exchange, oxidation, and hydrolysis; (5) the uniform and small pore size (2 to 40 nm) of the mesoporous silica prevents bacteria (>2000 nm) from solubilizing the bound mercury; and (6) SAMMS can also be used for RCRA metal removal from gaseous mercury waste, sludge, sediment, and soil.

  5. RCRA facility investigation report for the 200-PO-1 operable unit. Revision 1

    International Nuclear Information System (INIS)

    1997-05-01

    This Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) report is prepared in support of the RFI/corrective measures study process for the 200-PO-1 Groundwater Operable Unit in the 200 East Area of the Hanford Site. This report summarizes existing information on this operable unit presented in the 200 East and PUREX Aggregate Area Management Study Reports, contaminant specific studies, available modeling data, and groundwater monitoring data summary reports. Existing contaminant data are screened against current regulatory limits to determine contaminants of potential concern (COPC). Each identified COPC is evaluated using well-specific and plume trend analyses

  6. Evaluation of SKB's report 'Deep repository for spent nuclear fuel: SR 97 - Post-closure safety', Focusing on the assessment of transport processes in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Woerman, A.; Shulan Xu [Uppsala Univ. (Sweden). Dept. of Geoscience

    2000-12-01

    This report describes a critical review of the safety assessment performed on the final repository for nuclear waste in Sweden that is proposed by SKB in 'Deep Repository for Spent Nuclear Fuel: SR 97 - Post-closure Safety'. The review was requested by the Swedish Nuclear Power Inspectorate (SKI). The waste repository consists of several barriers that work together with the purpose of delaying radionuclide migration and reducing the activity that eventually affects the biosphere. A main criticism is the lack of a formal risk analysis and uncertainties in several analyses that make it difficult to comprehend the overall risk of the repository. A formal risk analysis should comprise a probabilistic treatment of all components included in the system. This is not the case in the SKB's report since the probabilistic analyses are limited only to certain aspects. The use of conservative model parameters are not a substitute for risk analysis nor can they compensate for possible model biases. Bias can be expected in most of the existing models of radionuclide migration in fractured bedrock. SKB should present a clear comparison on the importance of the different barrier components (uranium-dioxide matrix, copper canister, buffer and bedrock) on the retardation of radionuclides. It is unclear as to what extent the capacity of the bedrock to retain migrating radionuclides is critical to the capacity of the repository. A large part of the SR 97 report is focused on retardation processes in bedrock and a reader can interpret this as the technical weight given on retardation in the bedrock. However, with the present state of knowledge, it is our opinion that we cannot with an acceptable degree of accuracy predict the radionuclide transport in bedrock or quantify risk levels associated with radioactivity in the biosphere. There are large uncertainties concerning the way by which sorption processes should be formulated and the impact of colloids on the transport

  7. CERCLA and RCRA requirements affecting cleanup of a hazardous waste management unit at a Superfund site: A case study

    International Nuclear Information System (INIS)

    Walsh, T.J.

    1995-03-01

    The Fernald Environmental Management Project (FEMP) attempted to address both RCRA and CERCLA requirements at the fire training facility (FTF) by integrating a CERCLA removal action work plan with a RCRA closure plan. While the regulatory agencies involved with the FTF cleanup agreed the integrated document was a good idea, implementation proved complicated, owing to disposition of clean debris from a Superfund site, treatment of contaminated media, duration of cleanup activities, and cleanup certification. While all the complications have not been resolved, solutions to all have been proposed to Ohio EPA and U.S. EPA. Both agencies have worked closely with FEMP to find the most effective fulfillment of RCRA and CERCLA requirements

  8. Identification of permit and waste acceptance criteria provisions requiring modification for acceptance of commercial mixed waste

    International Nuclear Information System (INIS)

    1994-03-01

    In October 1990, representatives of States and compact regions requested that the US Department of Energy (DOE) explore an agreement with host States and compact regions under which DOE would accept commercial mixed low-level radioactive waste (LLW) at DOE's own treatment and disposal facilities. A program for DOE management of commercial mixed waste is made potentially more attractive in light of the low commercial mixed waste volumes, high regulatory burdens, public opposition to new disposal sites, and relatively high cost of constructing commercial disposal facilities. Several studies were identified as essential in determining the feasibility of DOE accepting commercial mixed waste for disposal. The purpose of this report is to identify any current or proposed waste acceptance criteria (WAC) or Resource Conservation and Recovery Act (RCRA) provisions that would have to be modified for commercial mixed waste acceptance at specified DOE facilities. Following the introduction, Section 2 of this report (a) provides a background summary of existing and proposed mixed waste disposal facilities at each DOE site, and (b) summarizes the status of any RCRA Part B permit and WAC provisions relating to the disposal of mixed waste, including provisions relating to acceptance of offsite waste. Section 3 provides overall conclusions regarding the current status and permit modifications that must be implemented in order to grant DOE sites authority under their permits to accept commercial mixed waste for disposal. Section 4 contains a list of references

  9. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Duane G.

    2007-03-26

    WMA TX-TY contains underground, single-shell tanks that were used to store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and the remaining waste is regulated under the RCRA as modi¬fied in 40 CFR Part 265, Subpart F and Washington State’s Hazardous Waste Management Act . WMA TX-TY was placed in assessment monitoring in 1993 because of elevated specific conductance. A groundwater quality assessment plan was written in 1993 describing the monitoring activities to be used in deciding whether WMA TX-TY had affected groundwater. That plan was updated in 2001 for continued RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years. Also, this plan describes activities for continuing the groundwater assessment at WMA TX TY.

  10. Quarterly report of RCRA groundwater monitoring data for period April 1 through June 30, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and ''Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities,'' as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company manages RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. This quarterly report contains data received between May 20 and August 19, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter but also data from earlier sampling events that were not previously reported

  11. HANFORD TANK FARM RESOURCE CONSERVATION and RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2007-01-01

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper

  12. Tradeable carbon permits

    International Nuclear Information System (INIS)

    Koutstaal, P.R.

    1995-01-01

    The research project on tradeable carbon permits has focused on three elements. First of all, the practical implications of designing a system of tradeable emission permits for reducing CO2 has been studied. In the second part, the consequences of introducing a system of tradeable carbon permits for entry barriers have been considered. Finally, the institutional requirements and welfare effects of coordination of CO2 abatement in a second-best world have been examined

  13. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    International Nuclear Information System (INIS)

    ROGERS, P.M.

    2000-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted

  14. Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, P.M.

    2000-06-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

  15. Automatic Commercial Permit Sets

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Paul [Folsom Labs, Inc., San Francisco, CA (United States)

    2017-12-21

    Final report for Folsom Labs’ Solar Permit Generator project, which has successfully completed, resulting in the development and commercialization of a software toolkit within the cloud-based HelioScope software environment that enables solar engineers to automatically generate and manage draft documents for permit submission.

  16. Construction of mixed waste storage RCRA facilities, Buildings 7668 and 7669: Environmental assessment

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy has prepared an environmental assessment, DOE/EA-0820, to assess the potential environmental impacts of constructing and operating two mixed waste Resource Conservation and Recovery Act (RCRA) storage facilities. The new facilities would be located inside and immediately west of the security-fenced area of the Oak Ridge National Laboratory Hazardous Waste Management Area in Melton Valley, Tennessee. Based on the analyses in the environmental assessment, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department is issuing this finding of no significant impact

  17. Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

  18. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    International Nuclear Information System (INIS)

    1989-06-01

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations

  19. The marriage of RCRA and CERCLA at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Shelton, D.C.; Brooks, L.M.

    1998-01-01

    A key goal of the Rocky Flats Cleanup Agreement (RFCA) signed in July of 1996 was to provide a seamless marriage of the Resource Conservation and Recovery Act (RCRA) (and other media specific programs) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the implementing agencies of each. This paper examines the two years since the signing of RFCA and identifies the successes, failures, and stresses of the marriage. RFCA has provided an excellent vehicle for regulatory and substantive progress at the Department of Energy's Rocky Flats facility. The key for a fully successful marriage is to build on the accomplishments to date and to continually improve the internal and external systems and relationships. To date, the parties can be proud of both the substantial accomplishment of substantive environmental work and the regulatory systems that have enabled the work

  20. Environmental Restoration Contractor Resource Conservation and Recovery Act Permit Implementation Plan

    International Nuclear Information System (INIS)

    Lewis, R.A.

    1996-05-01

    This document contains the revised Environmental Restoration Contractor (ERC) Implementation Plan for compliance with the Dangerous Waste and Hazardous and Solid Waste Amendment portions of the Resource Conservation and Recovery Act (RCRA) Permit for the Treatment, Storage, and Disposal of Dangerous Waste (hereafter referred to as the open-quotes Permitclose quotes). The Permit became effective on September 28, 1994. The ERC has developed the Permit Implementation Plan to ensure that the Permit is properly implemented within the ERC project and functions. The plan contains a list of applicable permit conditions, descriptions, responsible organizations, and the status of compliance. The ERC's responsibilities for Permit implementation are identified within both project and functional organizations. Project Managers are responsible for complying with conditions specific to a particular treatment, storage, or disposal (TSD) unit. TSD-specific compliance in include items such as closure plan deliverables, reporting and record keeping requirements, or compliance with non-unit-specific tasks such as spill reporting and emergency response. Functional organizations are responsible for sitewide activities, such as coordinating Permit modifications and developing personnel training programs

  1. A RCRA clean closure of a unique site - Kerr Hollow quarry at the Y-12 Plant

    International Nuclear Information System (INIS)

    Stone, J.E.; Yemington, C.

    1991-01-01

    An abandoned rock quarry, Kerr Hollow Quarry (KHQ), near the DOE Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, was used from 1951-1988 as a site to treat RCRA wastes which were reactive, corrosive, or ignitable and which posed major concerns for personnel safety. The wastes were generated from operations at the Y-12 Plant and Oak Ridge National Laboratory and were previously treated by allowing the wastes to react with the water in KHQ. When closure of the site was required by the RCRA regulations, a closure method was selected to allow for clean closure of the quarry without treatment or removal of the water in KHQ. The method proposed to and approved by the Tennessee Department of Health and Environment (TDHE) was one of surveying the containers in the quarry by a submersible Remotely Operated Vehicle (ROV) using sonar and visually inspecting the containers by camera to confirm that all containers are breached and empty. Any container found intact would be breached to allow the contents to react with water and form non-hazardous residue. The progress of this unique type of closure is presented along with a summary of the problems encountered, planning activities, equipment utilized and other information about the closure. All work was done with remotely operated equipment. This work is being performed by Sonsub, Inc. This closure project showed the practicality and cost benefits of telerobotic systems for work on hazardous waste sites. In addition to the intangible benefit of reduced exposure of workers, insurance costs are much lower and efficiency is higher. Daily start-up time is reduced since there is no need to don protective suits or other gear. Productivity is higher since personnel work only in clean areas where they are not hampered by protective gear. Cleanup time at shift end is minimized since the remote equipment does not leave the hazardous area and personnel need not go through decontamination

  2. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah Sd.

    2001-01-01

    The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is the first in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from RCRA borehole bore samples and composite samples. Intact cores from two RCRA boreholes (299-W22-48 and 299-W22-50) near the SX Tank Farm and four, large-quantity grab samples from outcrop sediment on and off the Hanford Site were sampled to better understand the fate of contaminants in the vadose zone beneath underground storage tanks at the Hanford Site. Borehole and outcrop samples analyzed for this report are located outside the tank farms, and therefore may be considered standard or background samples from which to compare contaminated sediments within the tank farms themselves. This report presents our interpretation of the physical, chemical, and mineralogical properties of the uncontaminated vadose zone sediments, and variations in the vertical distribution of these properties. The information presented in this report is intended to support preparation of the S-SX Field Investigation Report to be prepared by CH2M Hill Hanford Group, Inc. as well as future remediation actions at the S-SX Tank Farm

  3. Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    International Nuclear Information System (INIS)

    Evans, S.K.

    2002-01-01

    This Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about sampling design, required analyses, and sample collection and handling procedures, is to be used in conjunction with the Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System

  4. Permitted Marine Hydrokinetic Projects

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data represents pending or issued preliminary permits or issued licenses for marine hydrokinetic projects that produce energy from waves or directly from the...

  5. BCDC Minor Permits

    Data.gov (United States)

    California Natural Resource Agency — An administrative permit can be issued for an activity that qualifies as a minor repair or improvement in a relatively short period of time and without a public...

  6. Allegheny County Asbestos Permits

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Current asbestos permit data issued by the County for commercial building demolitions and renovations as required by the EPA. This file is updated daily and can be...

  7. Floodplain District Permit

    Data.gov (United States)

    Montgomery County of Maryland — The purpose of a Floodplain District Permit (FPDP) is to control floodplain development in order to protect persons and property from danger and destruction and to...

  8. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  9. RCRA and Operational Monitoring (ROM). Multi-Year Program Plan and Fiscal Year 95 Work Plan WBS 1.5.3

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-17

    This document contains information concerning the RCRA and Operational Monitoring Program at Hanford Reservation. Information presented includes: Schedules for ground water monitoring activities, program cost baseline, program technical baseline, and a program milestone list.

  10. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Fire Department Hose Training Facility (904-113G)

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-04-01

    This report documents the Resource Conservation and Recovery Act (RCRA) Facility Investigation/Remedial Investigation/Baseline Risk Assessment (RFI/RI/BRA) for the Fire Department Hose Training Facility (FDTF) (904-113G).

  11. Title V Permitting Statistics Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Title V Permitting Statistics Inventory contains measured and estimated nationwide statistical data, consisting of counts of permitted sources, types of permits...

  12. Feasibility study of X-ray K-edge analysis of RCRA heavy metal contamination of sludge packaged in drums

    International Nuclear Information System (INIS)

    Jensen, T.

    1999-01-01

    A study has been completed to assess the capabilities of X-ray K-edge analysis in the measurement of RCRA metal contamination of sludge packaged in drums. Results were obtained for mercury and lead contamination. It was not possible to measure cadmium contamination using this technique. No false positive signals were observed. In cases where uniformity of the sludge can be assumed, this analysis can provide a quick, accurate measurement of heavy-metal contamination

  13. Borehole Data Package for Calendar Year 2000-2001 RCRA Wells at Single-Shell Tank Waste Management Area T

    International Nuclear Information System (INIS)

    Horton, Duane G; Hodges, Floyd N

    2001-01-01

    This document compiles information of the drilling and construction, well development, pump installation, and sediment and groundwater sampling applicable to the installation of five new RCRA wells in calendar year 2000 - 2001. Appendix A contains the Well Summary Sheets (as-built diagrams); the Well Construction Summary Reports, and the geologist's logs; Appendix B contains physical properties data; and Appendix C contains the borehole geophysical logs

  14. RCRA [Resource Conservation and Recovery Act] ground-water monitoring projects for Hanford facilities: Annual progress report for 1988

    International Nuclear Information System (INIS)

    Fruland, R.M.; Lundgren, R.E.

    1989-04-01

    This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs

  15. A review of state regulations that exceed those of the federal Resource Conservation and Recovery Act (RCRA)

    International Nuclear Information System (INIS)

    Coutant, C.C.; Heckman, C.L.

    1988-04-01

    This report identifies and provides information on state hazardous waste management programs and regulations in states where the US Department of Energy (DOE) has facilities. The objective is to describe for the DOE defense program and its contractors how state requirements are more stringent than the federal regulations under the Resource Conservation and Recovery Act (RCRA). DOE defense programs are located in 13 of the 50 states. Most of these states have regulations that are essentially equivalent to the federal RCRA requirements as they existed prior to the 1984 amendments, but their regulations are, in most instances, more stringment than the federal requirements. Differences are both substantive and procedural, and they are summarized and tabulated herein. All but three of these 13 states have been granted Final Authorization from the US Environmental Protection Agency (EPA) to operate their own hazardous waste management program in accord with the federal RCRA program prior to the 1984 amendments; two of the three others have some stage of Interim Authorization. EPA currently administers all of the provisions of the 1984 amendments, including requirements for corrective action under Sect. 3004(u). Two states, Colorado and Tennessee, have been granted revisions to their Final Authorizations delegating responsibility for the hazardous wastes. Responsible state agencies (with appropriate telephone numbers) are indicated, as are the relevant laws and current regulatory statutes

  16. Characterization of sediment in a leaching trench RCRA (Resource Conservation and Recovery Act) site

    International Nuclear Information System (INIS)

    Zimmerman, M.G.; Kossik, C.D.

    1988-01-01

    Hazardous materials potentially were disposed of into a pair of leaching trenches from 1975 until Resource Conservation and Recovery Act (RCRA) regulations were imposed in 1985. These leaching trenches now are used for disposal of nonhazardous process water. The typical effluent (approximately 3 million gal/d) consisted of water with trace quantities of laboratory, maintenance, and fuel fabrication process chemicals. The largest constituent in the waste stream was uranium in low concentrations. This paper describes the project used to analyze and characterize the sediments in and below the leaching trenches. Two phases of sediment sampling were performed. The first phase consisted of taking samples between the bottom of the trenches and groundwater to locate contamination in the deep sediments under the trenches. To accomplish this sampling, a series of wells were drilled, and samples were obtained for every five feet in depth. The second phase consisted of samples taken at three depths in a series of positions along each trench. Sampling was completed to determine contamination levels in the shallow sediments and loose material washed into the trenches from the process sewer system. The project results were that no measurable contamination was found in the deep sediments. Measurable contamination from metals, such as chromium and nickel, was found in the shallow sediments. The primary contaminant in the shallow sediments was uranium. The concentration of contaminants decreased rapidly to near-background levels at shallow depths below the bottoms of the trenches

  17. RCRA materials analysis by laser-induced breakdown spectroscopy: Detection limits in soils

    International Nuclear Information System (INIS)

    Koskelo, A.; Cremers, D.A.

    1994-01-01

    The goal of the Technical Task Plan (TTP) that this report supports is research, development, testing and evaluation of a portable analyzer for RCRA and other metals. The instrumentation to be built will be used for field-screening of soils. Data quality is expected to be suitable for this purpose. The data presented in this report were acquired to demonstrate the detection limits for laser-induced breakdown spectroscopy (LIBS) of soils using instrument parameters suitable for fieldable instrumentation. The data are not expected to be the best achievable with the high pulse energies available in laboratory lasers. The report presents work to date on the detection limits for several elements in soils using LIBS. The elements targeted in the Technical Task Plan are antimony, arsenic, beryllium, cadmium, chromium, lead, selenium, and zirconium. Data for these elements are presented in this report. Also included are other data of interest to potential customers for the portable LIBS apparatus. These data are for barium, mercury, cesium and strontium. Data for uranium and thorium will be acquired during the tasks geared toward mixed waste characterization

  18. Sulfur polymer cement encapsulation of RCRA toxic metals and metal oxides

    International Nuclear Information System (INIS)

    Calhoun, C.L. Jr.; Nulf, L.E.; Gorin, A.H.

    1995-06-01

    A study was conducted to determine the suitability of Sulfur Polymer Cement (SPC) encapsulation technology for the stabilization of RCRA toxic metal and metal oxide wastes. In a series of bench-scale experiments, the effects of sodium sulfide additions to the waste mixture, residence time, and temperature profile were evaluated. In addition, an effort was made to ascertain the degree to which SPC affords chemical stabilization as opposed to physical encapsulation. Experimental results have demonstrated that at the 25 wt % loading level, SPC can effectively immobilize Cr, Cr 2 O 3 , Hg, Pb, and Se to levels below regulatory limits. SPC encapsulation also has been shown to significantly reduce the leachability of other toxic compounds including PbO, PbO 2 , As 2 O 3 , BaO, and CdO. In addition, data has confirmed sulfide conversion of Hg, Pb, PbO, PbO 2 , and BaO as the product of their reaction with SPC

  19. Quarterly report of RCRA groundwater monitoring data for period October 1, 1992--December 31, 1992

    International Nuclear Information System (INIS)

    1993-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 CFR 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. Long-term laboratory contracts were approved on October 22, 1991. DataChem Laboratories of Salt Lake City, Utah, performs the hazardous chemicals analyses for the Hanford Site. Analyses for coliform bacteria are performed by Columbia/Biomedical Laboratories and for dioxin by TMS Analytical Services, Inc. International Technology Analytical Services Richland, Washington performs the radiochemical analyses. This quarterly report contains data that were received prior to March 8, 1993. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported

  20. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    International Nuclear Information System (INIS)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O'Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-01-01

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples

  1. Characterization of Vadose Zone Sediment: Uncontaminated RCRA Borehole Core Samples and Composite Samples

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Schaef, Herbert T.; Williams, Bruce A.; Lanigan, David C.; Horton, Duane G.; Clayton, Ray E.; Mitroshkov, Alexandre V.; Legore, Virginia L.; O' Hara, Matthew J.; Brown, Christopher F.; Parker, Kent E.; Kutnyakov, Igor V.; Serne, Jennifer N.; Last, George V.; Smith, Steven C.; Lindenmeier, Clark W.; Zachara, John M.; Burke, Deborah S.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.14, 4.16, 5.20, 5.22, 5.43, and 5.45. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in February 2002. The overall goal of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities. To meet this goal, CH2M HILL Hanford Group, Inc. asked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediment from within the S-SX Waste Management Area. This report is one in a series of four reports to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from Resource Conservation and Recovery Act (RCRA) borehole bore samples and composite samples.

  2. Permit application modifications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document contains the Permit Application Modifications for the Y-12 Industrial Landfill V site on the Oak Ridge Reservation. These modifications include the assessment of stability of the proposed Landfill V under static and loading conditions. Analyses performed include the general slope stability, veneer stability of the bottom liner and cover system, and a liquefaction potential assessment of the foundation soils.

  3. Permit application modifications

    International Nuclear Information System (INIS)

    1995-11-01

    This document contains the Permit Application Modifications for the Y-12 Industrial Landfill V site on the Oak Ridge Reservation. These modifications include the assessment of stability of the proposed Landfill V under static and loading conditions. Analyses performed include the general slope stability, veneer stability of the bottom liner and cover system, and a liquefaction potential assessment of the foundation soils

  4. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  5. Post-Closure Monitoring Report for Corrective Action Unit 98, Frenchman Flat, Underground Test Area, Nevada National Security Site, Nevada for Calendar Year 2016 (January 2016–December 2016), Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States)

    2017-06-01

    Corrective Action Unit (CAU) 98: Frenchman Flat on the Nevada National Security Site was the location of 10 underground nuclear tests. CAU 98 underwent a series of investigations and actions in accordance with the Federal Facility Agreement and Consent Order to assess contamination of groundwater by radionuclides from the tests. A Closure Report completed that process in 2016 and called for long-term monitoring, use restrictions (URs), and institutional controls to protect the public and environment from potential exposure to contaminated groundwater. Three types of monitoring are performed for CAU 98: water quality, water level, and institutional control. These are evaluated to determine whether the UR boundaries remain protective of human health and the environment, and to ensure that the regulatory boundary objectives are being met. Additionally, monitoring data are used to evaluate consistency with the groundwater flow and contaminant transport models because the contaminant boundaries (CBs) calculated with the models are the primary basis of the UR boundaries. In summary, the monitoring results from 2016 indicate the regulatory controls on the closure of CAU 98 remain effective in protection of human health and the environment. Recommendations resulting from this first year of monitoring activities include formally incorporating wells UE-5 PW-1, UE-5 PW-2, and UE-5 PW-3 into the groundwater-level monitoring network given their strategic location in the basin; and early development of a basis for trigger levels for the groundwater-level monitoring given the observed trends. Additionally, it is recommended to improve the Real Estate/Operations Permit process for capturing information important for evaluating the impact of activities on groundwater resources, and to shift the reporting requirement for this annual report from the second quarter of the federal fiscal year (end of March) to the second quarter of the calendar year (end of June).

  6. Permitting issues in Virginia

    International Nuclear Information System (INIS)

    Kennel, R.P.

    1992-01-01

    As background, LG and E Development Corporation (formerly Hadson) has successfully put 16 Qualifying Facilities in the ground over the past 9 years in California, Maine, Virginia, and North Carolina. Each of these qualifying facilities has had some environmental innovative first, so there is no apology for the authors' environmental credentials. In Virginia, there are four identical 60 MW stoker coal cogeneration projects in Southampton County, Altavista, Hopewell, and -lastly-Buena Vista. The Buena Vista cogeneration project becomes the exception that proves the permitting rules. It has been in the permitting process for over 4 years; and despite being the cleanest coal project ever considered east of the Mississippi (design at 0.1 lbs/MMBtu for both So 2 and NO x ), it has suffered serous consequences from permitting delays and BACT ratcheting. As a simple comparison of importance, the Virginia Power Mt. Storm coal power facility emits approximately 150,000 tons of So 2 per year, while the Buena Vista project will actually emit approximately 150 tons of SO 2 per year (not including 1,500' tons of purchased SO 2 offsets). Both are similar distances from the Shenandoah National Park which has been the primary environmental point of concern in Virginia

  7. Effectiveness evaluation of three RCRA caps at the Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Shevenell, L.A. [Nevada Bureau of Mines and Geology, Reno, NV (United States); Goldstrand, P.M. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Geological Sciences

    1994-01-01

    Because installation of Resource Conservation and Recovery Act (RCRA)- engineered caps is costly, it is prudent to evaluate the effectiveness of this procedure for hydrologically isolating contaminants. The objective for installation of five-part engineered caps at the Y-12 Plant was to (1) satisfy the regulatory compliance issues, (2) minimize the risk of direct contact with the wastes, and (3) reduce rainfall infiltration. Although the original objectives of installing the caps were not to alter groundwater flow, a potential effect of reducing infiltration is to minimize leaching, thus retarding groundwater contaminant migration from the site. Hence, cap effectiveness with respect to reduced groundwater contaminant migration is evaluated using groundwater data in this report. Based on the available data at the Y-12 capped areas, evaluation of cap effectiveness includes studying water level and chemical variability in nearby monitoring wells. Three caps installed during 1989 are selected for evaluation in this report. These caps are located in three significantly different hydrogeologic settings: overlying a karst aquifer (Chestnut Ridge Security Pits [CRSP]), overlying shales located on a hill slope (Oil Landfarm Waste Management Area [OLWMA]), and overlying shales in a valley floor which is a site of convergent groundwater flow (New Hope Pond [NHP]). Presumably, the caps have been effective in minimizing risk of direct contact with the wastes and halting direct rainfall infiltration into the sites over the extent of the capped areas, but no evidence is presented in this report to directly demonstrate this. The caps installed over the three sites appear to have had a minimal effect on groundwater contaminant migration from the respective sites. Following cap construction, no changes in the configuration of the water table were observed. Migration of contaminant plumes occurred at all three sites, apparently without regard to the timing of cap installation.

  8. Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials

    International Nuclear Information System (INIS)

    Bell, J.T.; Haas, P.A.; Rudolph, J.C.

    1995-01-01

    The Oak Ridge National Laboratory (ORNL) is participating in a program to apply a molten salt oxidation (MSO) process to treatment of mixed (radioactive and RCRA) wastes. The salt residues from the MSO treatment will require further separations or other processing to prepare them for final disposal. A bench-scale MSO apparatus is being installed at ORNL and will be operated on real Oak Ridge wastes. The treatment concepts to be tested and demonstrated on the salt residues from real wastes are described

  9. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order; TOPICAL

    International Nuclear Information System (INIS)

    Evans, S.K.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system

  10. Lean in Air Permitting Guide

    Science.gov (United States)

    The Lean in Air Permitting Guide is designed to help air program managers at public agencies better understand the potential value and results that can be achieved by applying Lean improvement methods to air permitting processes.

  11. Pacific Islands Region Fishing Permits

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sustainable Fisheries Division Permits Program issues around 300 permits annually for pelagic longline and troll & handline, bottomfish, crustacean (lobster...

  12. Vessel Permit System Data Set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GARFO issues federal fishing permits annually to owners of fishing vessels who fish in the Greater Atlantic region, as required by federal regulation. These permits...

  13. Issues in radioactive mixed waste compliance with RCRA [Resource Conservation and Recovery Act]: Some examples from ongoing operations at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eaton, D.L.; Smith, T.H.; Clements, T.L. Jr.; Hodge, V.

    1990-01-01

    Radioactive mixed waste is subject to regulation under both the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). The regulation of such waste is the responsibility of the Environmental Protection Agency (EPA) and either the Nuclear Regulatory Commission (NRC) or the Department of Energy (DOE), depending on whether the waste is commercially generated or defense-related. The recent application of the RCRA regulations to ongoing operations at the DOE's Idaho National Engineering Laboratory (INEL) are described in greater detail. 8 refs., 2 figs

  14. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring)

  15. Calendar Year 1997 Annual Groundwater Monitoring Report For The Chestnut Ridge Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-02-01

    This report contains the groundwater monitoring data obtained during calendar year (CY) 1997 in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit (PCP) for the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). In July 1997, the Tennessee Department of Environment and Conservation (TDEC) approved modifications to several of the permit conditions that address RCRA pow-closure corrective action groundwater monitoring at the Chestnut Ridge Security Pits (Security Pits), and RCIU4 post-closure detection groundwater monitoring at the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin) and Kerr Hollow Quarry. This report has been prepared in accordance with these modified permit requirements. Also included in this report are the groundwater and surface water monitoring data obtained during CY 1997 for the purposes ofi (1) detection monitoring at nonhazardous solid waste disposal facilities (SWDFS) in accordance with operating permits and applicable regulations, (2) monitoring in accordance with Comprehensive Environmental Response, Compensation, and Recove~ Act Records of Decision (now pefiormed under the Integrated Water Quality Program for the Oak Ridge Reservation), and (3) monitoring needed to comply with U.S. Department of Energy Order 5400.1.

  16. National spent fuel program preliminary report RCRA characteristics of DOE-owned spent nuclear fuel DOE-SNF-REP-002. Revision 3

    International Nuclear Information System (INIS)

    1995-07-01

    This report presents information on the preliminary process knowledge to be used in characterizing all Department of Energy (DOE)-owned Spent Nuclear Fuel (SNF) types that potentially exhibit a Resource Conservation and Recovery Act (RCRA) characteristic. This report also includes the process knowledge, analyses, and rationale used to preliminarily exclude certain SNF types from RCRA regulation under 40 CFR section 261.4(a)(4), ''Identification and Listing of Hazardous Waste,'' as special nuclear and byproduct material. The evaluations and analyses detailed herein have been undertaken as a proactive approach. In the event that DOE-owned SNF is determined to be a RCRA solid waste, this report provides general direction for each site regarding further characterization efforts. The intent of this report is also to define the path forward to be taken for further evaluation of specific SNF types and a recommended position to be negotiated and established with regional and state regulators throughout the DOE Complex regarding the RCRA-related policy issues

  17. National spent fuel program preliminary report RCRA characteristics of DOE-owned spent nuclear fuel DOE-SNF-REP-002. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report presents information on the preliminary process knowledge to be used in characterizing all Department of Energy (DOE)-owned Spent Nuclear Fuel (SNF) types that potentially exhibit a Resource Conservation and Recovery Act (RCRA) characteristic. This report also includes the process knowledge, analyses, and rationale used to preliminarily exclude certain SNF types from RCRA regulation under 40 CFR {section}261.4(a)(4), ``Identification and Listing of Hazardous Waste,`` as special nuclear and byproduct material. The evaluations and analyses detailed herein have been undertaken as a proactive approach. In the event that DOE-owned SNF is determined to be a RCRA solid waste, this report provides general direction for each site regarding further characterization efforts. The intent of this report is also to define the path forward to be taken for further evaluation of specific SNF types and a recommended position to be negotiated and established with regional and state regulators throughout the DOE Complex regarding the RCRA-related policy issues.

  18. Approach to geologic repository post closure system performance assessment

    International Nuclear Information System (INIS)

    Pahwa, S.B.; Felton, W.; Duguid, J.O.

    1992-01-01

    An essential part of the license application for a geologic repository will be the demonstration of compliance with the standards set by the Environmental Protection Agency. The performance assessments that produce the demonstration must rely on models of various levels of detail. The most detailed of these models are needed for understanding thoroughly the complex physical and chemical processes affecting the behavior of the system. For studying the behavior of major components of the system, less detailed models are often useful. For predicting the behavior of the total system, models of a third kind may be needed. These models must cover all the important processes that contribute to the behavior of the system, because they must estimate the behavior under all significant conditions for 10,000 years. In addition, however, computer codes that embody these models must calculate very rapidly because of the EPA standard's requirement for probabilistic estimates, which will be produced by sampling thousands of times from probability distributions of parameters. For this reason, the total-system models must be less complex than the detailed-process and subsystem models. The total-system performance is evaluated through modeling of the following components: Radionuclide release from the engineered-barrier system. Fluid flow in the geologic units. Radionuclide transport to the accessible environment. Radionuclide release to the accessible environment and dose to man

  19. Threats and opportunities for post-closure development in dolomitic ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... slimes dams include the establishment of a large game reserve on donated land as well as ... capitalise on existing infrastructure and former expertise and benefit from the ...

  20. Review of SKB's report, SR 97 - Post-closure safety

    International Nuclear Information System (INIS)

    Holmlund, P.

    2000-01-01

    The climate and glaciation scenarios are described in detail and largely adequately supported by data. The deficiencies that I have chosen to point out are serious from the point of view of principle. I have not attempted to assess the significance of these deficiencies for a future repository. The climate predictions used in the reports are internationally generally accepted models, which can be said to be uncontroversial. However, they have been overutilized in that too much confidence has been placed in the results. The uncontroversial part of the climate scenario is the predicted development, that is, that there will be alternating cold and warm periods over the next hundred thousand year period, like we have experienced during the last glacial cycle. However, time and temperature data are naturally highly uncertain. As a reviewer, it is difficult for me to understand why priority has not been given to reconstructing events that have occurred at the possible repository sites studied in the report instead of performing general calculations based on the highly inaccurate future scenarios. High resolution data are available from the last glacial cycle. Geological evidence is also available which provides information on temperature conditions within and beneath the ice and, thereby, also provides information on the hydrology of the ice and beneath the ice. We know a great deal about these conditions, but nothing about the future. The modelling of extent of the ice sheet is not significantly different from other model experiments, which means that it largely reflects what most researchers consider to have occurred and likely to occur. However, the modelling results relating to the temperature distribution are highly controversial. These results are not supported by other modelling data, which on the contrary clearly indicate temperature patterns in and beneath the ice, which deviate from SR 97. The classification into ice divide zones and melting zones lacks a physical basis for the meanings given to these concepts in the report. Although these are only qualitative descriptions of the model designers' assumptions, the results are used quantitatively. Furthermore, the coupling to hydrology includes irrelevant descriptions of how the subglacial drainage in temperate glaciers has a seasonal variation, due to a hydraulic coupling between the surface and the base of the ice. The ice sheets that have covered and will cover Scandinavia are of a cold polar type, which lacks this hydrological coupling between the ice surface and the base, apart from possibly in frontal zones. The report clearly describes the ice as temperate, which must be considered to be an error that has a considerable impact on predictions concerning the subglacial water flow. GCM models have not been applied. The climate is complex and changes in the topography in the form of a growing North American continental ice sheet, change the circulation pattern and, thereby, the distribution of precipitation. Knowledge is available in this area, but this knowledge is not applied in the report. Furthermore, the fact that no sensitivity tests have been conducted of the climate and glacial scenario is surprising

  1. Threats and opportunities for post-closure development in dolomitic ...

    African Journals Online (AJOL)

    2009-12-09

    Dec 9, 2009 ... This uncertainty is exacerbated by the long time periods required for pro-active ... The loss of 'institutional memory' and local expertise has been identified as .... being lost, Potchefstroom may suffer from extended water short-.

  2. Threats and opportunities for post-closure development in dolomitic ...

    African Journals Online (AJOL)

    Mining-related impacts such as large-scale land degradation associated with dewatering of karstic aquifers and widespread pollution of surface water and groundwater systems are discussed. Based on this, potential threats and opportunities for post-mining scenarios are identified in a series of 3 papers. Part 1 of this series ...

  3. Threats and opportunities for post-closure development in dolomitic ...

    African Journals Online (AJOL)

    Owing to the pivotal role of water in the semi-arid area and the fact that some of the most important groundwater resources of South Africa were impacted on by deep-level mining, this paper in 3 parts adopted a largely hydraulic perspective. The loss of 'institutional memory' and local expertise has been identified as the ...

  4. 40 CFR 264.119 - Post-closure notices.

    Science.gov (United States)

    2010-07-01

    ...) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... closure of each hazardous waste disposal unit, the owner or operator must submit to the local zoning... disposal unit of the facility. For hazardous wastes disposed of before January 12, 1981, the owner or...

  5. Threats and opportunities for post-closure development in dolomitic ...

    African Journals Online (AJOL)

    Large-scale environmental degradation in the form of sinkholes and widespread radioactive pollution exacerbate such fears. ... Possibilities for using waste land such as sinkhole areas and slimes dams include the establishment of a large game reserve on donated land as well as using tailings for biofuel production and ...

  6. 40 CFR 258.61 - Post-closure care requirements.

    Science.gov (United States)

    2010-07-01

    ... the final cover; (2) Maintaining and operating the leachate collection system in accordance with the...) Maintaining and operating the gas monitoring system in accordance with the requirements of § 258.23. (b) The... stop managing leachate if the owner or operator demonstrates that leachate no longer poses a threat to...

  7. Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for Single-Shell Tank (SST) Waste Management Areas

    International Nuclear Information System (INIS)

    MCCARTHY, M.M.

    1999-01-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly

  8. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-03-01

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980`s, while work was being performed in this area, nine empty, partially buried drums, labeled `du Pont Freon 11`, were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit.

  9. RCRA Facility Investigation/Remedial Investigation Report for Gunsite 720 Rubble Pit Unit (631-16G) - March 1996

    International Nuclear Information System (INIS)

    Palmer, E.

    1996-03-01

    Gunsite 720 Rubble Pit Unit is located on the west side of SRS. In the early to mid 1980's, while work was being performed in this area, nine empty, partially buried drums, labeled 'du Pont Freon 11', were found. As a result, Gunsite 720 became one of the original waste units specified in the SRS RCRA Facility Assessment (RFA). The drums were excavated on July 30, 1987 and placed on a pallet at the unit. Both the drums and pallet were removed and disposed of in October 1989. The area around the drums was screened during the excavation and the liquid (rainwater) that collected in the excavated drums was sampled prior to disposal. No evidence of hazardous materials was found. Based on the review of the analytical data and screening techniques used to evaluate all the chemicals of potential concern at Gunsite 720 Rubble Pit Unit, it is recommended that no further remedial action be performed at this unit

  10. 75 FR 984 - Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at CERCLA and RCRA Sites

    Science.gov (United States)

    2010-01-07

    ...The Environmental Protection Agency (EPA or the Agency) is announcing a 50-day public comment period for draft recommended interim preliminary remediation goals (PRGs) developed in the Draft Recommended Interim Preliminary Remediation Goals for Dioxin in Soil at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) Sites. EPA's Office of Solid Waste and Emergency and Emergency Response (OSWER) has developed the draft recommended interim PRGs for dioxin in soil. These draft recommended interim PRGs were calculated using existing, peer- reviewed toxicity values and current EPA equations and default exposure assumptions. This Federal Register notice is intended to provide an opportunity for public comment on the draft recommended interim PRGs. EPA will consider any public comments submitted in accordance with this notice and may revise the draft recommended interim PRGs thereafter.

  11. Phase 1 RCRA Facility Investigation & Corrective Measures Study Work Plan for Single Shell Tank (SST) Waste Management Areas

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTHY, M.M.

    1999-08-01

    This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) Corrective Action Program (RCAP) for single-shell tank (SST) farms at the US. Department of Energy's (DOE'S) Hanford Site. The DOE Office of River Protection (ORP) initiated the RCAP to address the impacts of past and potential future tank waste releases to the environment. This work plan defines RCAP activities for the four SST waste management areas (WMAs) at which releases have contaminated groundwater. Recognizing the potential need for future RCAP activities beyond those specified in this master work plan, DOE has designated the currently planned activities as ''Phase 1.'' If a second phase of activities is needed for the WMAs addressed in Phase 1, or if releases are detected at other SST WMAs, this master work plan will be updated accordingly.

  12. Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials

    International Nuclear Information System (INIS)

    Bell, J.T.; Haas, P.A.; Rudolph, J.C.

    1993-01-01

    The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies

  13. Identification, classification and management of industrial waste in Kavir steel complex according to the Bazel convention and RCRA

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Ehrampoush

    2016-06-01

    Full Text Available Introduction: Requiring industries for implementing industrial waste management programs and planning for proper waste disposal is essential in order to achieve sustainable development. Therefore, industrial waste management program was done in Kavir Steel Complex, in Aran va Bidgol region to identify and classify industrial waste and also to present solutions for improving waste management. In this complex, production process is hot rolling steel and the product is rebar. Material and Method: The preset study was conducted in Kavir Steel Complex. Following survey of production process and sources of waste, the type and volume of produced waste were identified and measured during 3 months. Then, the classification of wastes was done according to the Bazel Convention and Resource Conservation and Recovery Act (RCRA, and finally new industrial & health solid waste management program was presented. Result: Considering the volume, industrial waste of production process in Kavir Steel Complex was between 130 to 180 grams per each ton of rebar. Main industrial waste included oxide of steel billet, industrial sludge, used oil and lubricant which were classified according to the RCRA: 8 materials with T code, 1 with C code, 5 with I code and 3 materials with C code. Conclusion: The results revealed that the most amount of industrial waste in Kavir Steel Complex is the waste of steel billet and industrial sludge, and more than 90% of Kavir steel industrial waste were reused and recycled inside or outside of this complex. It is recommended that used oil to be transport and maintain in the safe containers.

  14. Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements

    International Nuclear Information System (INIS)

    French, Sean B.; Johns-Hughes, Kathryn W.

    2011-01-01

    Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

  15. Compendium of ORD and OSWER documents relevant to RCRA corrective action

    International Nuclear Information System (INIS)

    1992-04-01

    Throughout the past decade, several offices within the US Environmental Protection Agency (EPA) have been involved in hazardous waste management technologies research, remedial action at chemically contaminated sites, and regulatory development for permitting hazardous waste management facilities. The primary offices involved in these activities include the Office of Research and Development (ORD) and the Office of Solid Waste and Emergency Response (OSWER). During this period, substantial knowledge and experience have been gained relevant to the a placability of remedial action technologies in various environmental setting

  16. 2008 Contruction General Permits & Multi-Sector General Permits

    Data.gov (United States)

    U.S. Environmental Protection Agency — View stormwater notices of intent (NOIs) for construction projects under EPA's 2008 Construction General Permit (CGP), for Low Erosivity Waivers (LEWs) submitted...

  17. Noncooperative models of permit markets

    Energy Technology Data Exchange (ETDEWEB)

    Godal, Odd

    2011-07-15

    The applicability of some popular and basic permit market theories has been questioned. Drawing on noncooperative equilibrium theory for pure exchange economies, this article adapts several well-established alternative models to permit exchange. Some qualitative properties of the associated equilibria are provided, including two games with equilibria that in a sense coincide. Nevertheless, as there exist quite a few models potentially applicable to emissions trading, with equilibria that range from autarky to Pareto optimality, it seems that economics lacks a broadly accepted basic theory for permit markets. (Author)

  18. Example evaluation of a permit application for a proposed hazardous-waste landfill in eastern Adams County, Colorado

    Science.gov (United States)

    Banta, E.R.

    1986-01-01

    A project was undertaken by the U.S. Geological Survey in cooperation with the U. S. Environmental Protection Agency to demonstrate methods by which RCRA (Resources Conservation and Recovery Act of 1976) Part B permit applications might be evaluated. The purpose of the project was to prepare a report that would supplement a series of case studies to be made available to permit writers in the U.S. Environmental Protection Agency. Four sites in the United States were chosen for their potential applicability to geologically similar sites. The Adams County, Colorado, site was chosen to be representative of sites in the Upper Cretaceous Pierre Shale. The intent of this report is to provide an example of how available earth-science information might be used in evaluating an application and not to evaluate the acceptability of the site. Because this study is an evaluation of a permit application, the data used are limited to the data supplied in the application and in published reports. Of the five criteria required by the U.S. Environmental Protection Agency to be addressed in the permit application considered in the case study, the application was evaluated to be inadequate in addressing three criteria: (1) Site characterization, (2) ability to monitor the location, and (3) flow paths and 100-foot time of travel. Details of the inadequacies and a description of the information needed to eliminate the inadequacies are included in the report. (USGS)

  19. Permit trading and credit trading

    DEFF Research Database (Denmark)

    Boom, Jan-Tjeerd; R. Dijstra, Bouwe

    This paper compares emissions trading based on a cap on total emissions (permit trading) and on relative standards per unit of output (credit trading). Two types of market structure are considered: perfect competition and Cournot oligopoly. We find that output, abatement costs and the number...... of firms are higher under credit trading. Allowing trade between permit-trading and credit-trading sectors may increase in welfare. With perfect competition, permit trading always leads to higher welfare than credit trading. With imperfect competition, credit trading may outperform permit trading....... Environmental policy can lead to exit, but also to entry of firms. Entry and exit have a profound impact on the performance of the schemes, especially under imperfect competition. We find that it may be impossible to implement certain levels of total industry emissions. Under credit trading several levels...

  20. Factors Influencing Learner Permit Duration

    Directory of Open Access Journals (Sweden)

    Johnathon P. Ehsani

    2016-12-01

    Full Text Available An increasing number of countries are requiring an extended learner permit prior to independent driving. The question of when drivers begin the learner permit period, and how long they hold the permit before advancing to independent licensure has received little research attention. Licensure timing is likely to be related to “push” and “pull” factors which may encourage or inhibit the process. To examine this question, we recruited a sample of 90 novice drivers (49 females and 41 males, average age of 15.6 years soon after they obtained a learner permit and instrumented their vehicles to collect a range of driving data. Participants completed a series of surveys at recruitment related to factors that may influence licensure timing. Two distinct findings emerged from the time-to-event analysis that tested these push and pull factors in relation to licensure timing. The first can be conceptualized as teens’ motivation to drive (push, reflected in a younger age when obtaining a learner permit and extensive pre-permit driving experience. The second finding was teens’ perceptions of their parents’ knowledge of their activities (pull; a proxy for a parents’ attentiveness to their teens’ lives. Teens who reported higher levels of their parents’ knowledge of their activities took longer to advance to independent driving. These findings suggest time-to-licensure may be related to teens’ internal motivation to drive, and the ability of parents to facilitate or impede early licensure.

  1. The National Solar Permitting Database

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-31

    "The soft costs of solar — costs not associated with hardware — remain stubbornly high. Among the biggest soft costs are those associated with inefficiencies in local permitting and inspection. A study by the National Renewable Energy Laboratory and Lawrence Berkeley National Laboratory estimates that these costs add an average of $0.22/W per residential installation. This project helps reduce non-hardware/balance of system (BOS) costs by creating and maintaining a free and available site of permitting requirements and solar system verification software that installers can use to reduce time, capital, and resource investments in tracking permitting requirements. Software tools to identify best permitting practices can enable government stakeholders to optimize their permitting process and remove superfluous costs and requirements. Like ""a Wikipedia for solar permitting"", users can add, edit, delete, and update information for a given jurisdiction. We incentivize this crowdsourcing approach by recognizing users for their contributions in the form of SEO benefits to their company or organization by linking back to users' websites."

  2. 50 CFR 679.4 - Permits.

    Science.gov (United States)

    2010-10-01

    ... this section, with the exception that an IFQ hired master permit or a CDQ hired master permit need not... program permit or card type is: Permit is in effect from issue date through the end of: For more... section (C) Halibut & sablefish hired master permits Specified fishing year Paragraph (d)(2) of this...

  3. Revised RCRA closure plan for the Interim Drum Yard (S-030) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Smith, C.M.

    1994-09-01

    The Interim Drum Yard (IDY) facility is a containerized waste storage area located in the Y-12 exclusion area. It was used to store waste materials which are regulated by RCRA (Resource Conservation and Recovery Act); uranyl nitrate solutions were also stored there. The closure plan outlines the actions required to achieve closure of IDY and is being submitted in accordance with TN Rule 1200-1-11.05(7) and 40 CFR 265.110

  4. Detailed analysis of a RCRA landfill for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-04-01

    The purpose of this detailed analysis is to provide a preliminary compilation of data, information, and estimated costs associated with a RCRA landfill alternative for UNC Disposal Site. This is in response to Environmental Protection Agency (EPA) comment No. 6 from their review of a open-quotes Feasibility Study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee.close quotes

  5. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk- In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-01-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Subsequently, this plan was modified again and approved as Y/TS-395, Revised RCRA Closure Plan for the Bear Creek Burial Grounds (February 29, 1988). Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. The plan was presented to the state of Tennessee on March 8, 1990, and the Department of Energy was requested to review other unique alternatives to close the site. This amended closure plan goes further to include inspection and maintenance criteria along with other details

  6. Borehole Data Package for Calendar Year 2001 RCRA Wells at Single-Shell Tank Waste Management Area U

    International Nuclear Information System (INIS)

    Horton, Duane G.

    2002-01-01

    This document provides information on the construction of three new RCRA wells at Waste Management Area U in September 2001. These wells were constructed to the specifications and requirements described in Washington Administrative Codes 173-160 and 173-303. Grab samples for geological description and archive were collected every 5 ft throughout the wells. Borehole and drill cuttings were monitored regularly for organic vapors and radionuclide contaminants. At well 299-W18-40, beta-gamma activity was found to be slightly above background at 120 ft below ground surface. All other measurements were below background. Cesium-137 was found at the ground surface and at 3 ft below ground surface (bgs). No other manmade contamination was found. At well 299-W19-44, no radionuclide contamination was found, but several intervals of high carbon monoxide were detected. Cesium-137 was detected at 3 ft bgs at 0.4 pCi/g. At well 299-W19-45, no radionuclide contamination was found, but several intervals of high carbon monoxide were detected. Cesium-137 was detected near the surface at 0.4 pCi/g. No other manmade radionuclide was detected. At well 299-W19-45, samples for geological description and archive were collected every 5 ft throughout the well. No contamination was noted. Cesium-137 was detected near the surface at 0.4 to 1.4 pCi/g. No other manmade radionuclide was detected

  7. The elimination of chlorinated, chlorofluorocarbon, and other RCRA hazardous solvents from the Y-12 Plant's enriched uranium operations

    International Nuclear Information System (INIS)

    Johnson, D.H.; Patton, R.L.; Thompson, L.M.

    1990-01-01

    A major driving force in waste minimization within the plant is the reduction of mixed radioactive wastes associated with operations on highly enriched uranium. High enriched uranium has a high concentration of the uranium-235 isotope (up to 97.5% enrichment) and is radioactive, giving off alpha and low level gamma radiation. The material is fissionable with as little as two pounds dissolved in water being capable of producing a spontaneous chain reaction. For these reasons the material is processed in small batches or small geometries. Additionally, the material is completely recycled because of its strategic and monetary value. Since the early eighties, the plant has had an active waste minimization program which has concentrated on substitution of less hazardous solvents wherever possible. The following paper summarizes efforts in two areas - development of a water-based machining coolant to replace perchloroethylene and substitution of an aliphatic solvent to replace solvents producing hazardous wastes as defined by the Resource, Conservation, and Recovery Act (RCRA)

  8. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1991-09-01

    WAG 6 comprises a shallow land burial facility used for disposal of low-level radioactive wastes (LLW) and, until recently, chemical wastes. As such, the site is subject to regulation under RCRA and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). To comply with these regulations, DOE, in conjunction with the Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), developed a strategy for closure and remediation of WAG 6 by 1997. A key component of this strategy was to complete an RFI by September 1991. The primary objectives of the RFI were to evaluate the site's potential human health and environmental impacts and to develop a preliminary list of alternatives to mitigate these impacts. The WAG 6 one of three solid waste management units evaluated Oak Ridge National Laboratory (ORNL) existing waste disposal records and sampling data and performed the additional sampling and analysis necessary to: describe the nature and extent of contamination; characterize key contaminant transport pathways; and assess potential risks to human health and the environment by developing and evaluating hypothetical receptor scenarios. Estimated excess lifetime cancer risks as a result for exposure to radionuclides and chemicals were quantified for each hypothetical human receptor. For environmental receptors, potential impacts were qualitatively assessed. Taking into account regulatory requirements and base line risk assessment results, preliminary site closure and remediation objectives were identified, and a preliminary list of alternatives for site closure and remediation was developed

  9. RCRA facility investigation/corrective measures study work plan for the 100-HR-1 operable unit, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1992-09-01

    Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US. Environmental Protection Agency's (EPA's) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under the Hanford Federal Facility Agreement and Consent Order, signed by the Washington State Department of Ecology (Ecology), EPA, and the US Department of Energy (DOE), more than 1,000 inactive waste disposal and unplanned release sites on the Hanford Site have been grouped into a number of source and groundwater operable units. These operable units contain contamination in the form of hazardous waste, radioactive/hazardous mixed waste, and other CERCLA hazardous substances. This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the RCRA facility investigation/corrective measures study (RFI/CMS) for the 100-HR-1 source operable unit. Source operable units include facilities and unplanned release sites that are potential sources of contamination. The 100-HR-3 operable unit underlies the D/DR and H Areas, the 600 Area between them, and the six source operable units these areas contain. The 100-HR-3 operable unit includes all contamination found in the aquifer soils and water within its boundary. Separate work plans have been initiated for the 100-HR-3 groundwater operable unit (DOE-RL 1992a) and the 100-DR-1 (DOE-RL 1992b) source operable units

  10. FIRE PERMIT NOW ON EDH!

    CERN Multimedia

    TIS General Safety Group or

    2001-01-01

    The electronic version of the Fire Permit form is now active. The aim of the Fire Permit procedure is to reduce the risk of fire or explosion. It is mandatory when performing 'hot work' (mainly activities which involve the use of naked flames or other heat sources - e.g. welding, brazing, cutting, grinding, etc.). Its use is explained in the CERN Fire Protection Code E. (Fire Protection) The new electronic form, which is substantially unchanged from the previous authorizing procedure, will be available on the Electronic Document Handling system (https://edh.cern.ch/) as of 1st September 2001. From this date use of the paper version should be discontinued.

  11. Hydroelectric Generating Facilities General Permit ...

    Science.gov (United States)

    2017-08-28

    The Notice of Availability of the Final NPDES General Permits (HYDROGP) for Discharges at Hydroelectric Generating Facilities in Massachusetts (MAG360000) and New Hampshire (NHG360000) and Tribal Lands in the State of Massachusetts was published in the Federal Register on December 7, 2009 (see 74 Fed. Reg. No. 233, pages 64074 - 64075).

  12. 50 CFR 660.25 - Permits.

    Science.gov (United States)

    2010-10-01

    ... change and the reasons for the request. If the permit requested to be changed to the base permit is..., vessel owner, or permit owner for any reason. The sablefish at-sea processing exemption will expire upon... ownership. (G) For a request to change a permit's ownership that is necessitated by divorce, the individual...

  13. 10 CFR 50.23 - Construction permits.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Construction permits. 50.23 Section 50.23 Energy NUCLEAR... Description of Licenses § 50.23 Construction permits. A construction permit for the construction of a... part 52 of this chapter, the construction permit and operating license are deemed to be combined in a...

  14. Statistical methods for determination of background levels for naturally occuring radionuclides in soil at a RCRA facility

    International Nuclear Information System (INIS)

    Guha, S.; Taylor, J.H.

    1996-01-01

    It is critical that summary statistics on background data, or background levels, be computed based on standardized and defensible statistical methods because background levels are frequently used in subsequent analyses and comparisons performed by separate analysts over time. The final background for naturally occurring radionuclide concentrations in soil at a RCRA facility, and the associated statistical methods used to estimate these concentrations, are presented. The primary objective is to describe, via a case study, the statistical methods used to estimate 95% upper tolerance limits (UTL) on radionuclide background soil data sets. A 95% UTL on background samples can be used as a screening level concentration in the absence of definitive soil cleanup criteria for naturally occurring radionuclides. The statistical methods are based exclusively on EPA guidance. This paper includes an introduction, a discussion of the analytical results for the radionuclides and a detailed description of the statistical analyses leading to the determination of 95% UTLs. Soil concentrations reported are based on validated data. Data sets are categorized as surficial soil; samples collected at depths from zero to one-half foot; and deep soil, samples collected from 3 to 5 feet. These data sets were tested for statistical outliers and underlying distributions were determined by using the chi-squared test for goodness-of-fit. UTLs for the data sets were then computed based on the percentage of non-detects and the appropriate best-fit distribution (lognormal, normal, or non-parametric). For data sets containing greater than approximately 50% nondetects, nonparametric UTLs were computed

  15. NPDES permits and water analyses

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1975-01-01

    Provisions of the Federal Water Pollution Control Act, as amended by P. L. 92-500, including an explanation of the National Pollutant Discharge Elimination System (NPDES), and EPA's criteria for the analysis of pollutants are discussed. The need for a revision of current restrictive variance procedures is pointed out. References for the comparison of analytical methods for water pollutants under permits, including radioactive parameters, are tabulated. (U.S.)

  16. Addendum to the RCRA Assessment Report for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    International Nuclear Information System (INIS)

    Chou, C.J.; Johnson, V.G.

    1999-01-01

    The initial Resource Conservation and Recovery Act (RCRA) groundwater quality assessment report for Waste Management Area S-SX (PNNL-11810) was issued in January 1998. The report stated a plan for conducting continued assessment would be developed after addressing Washington State Department of Ecology (Ecology) comments on initial findings in PNNL-11810. Comments from Ecology were received by US Department of Energy, Richland Operations Office (DOE-RL) on September 24, 1998. Shortly thereafter, Ecology and DOE began dispute resolution and related negotiations about tank farm vadose issues. This led to proposed new Tri-Party Agreement milestones covering a RCRA Facility Investigation-Corrective Measures Study (RFI/CMS) of the four single-shell tank farm waste management areas that were in assessment status (Waste Management Areas B-BX-BY, S-SX, T and TX-TY). The RCRA Facility Investigation includes both subsurface (vadose zone and groundwater) and surface (waste handling facilities and grounds) characterization. Many of the Ecology comments on PNNL-11810 are more appropriate for, and in many cases are superseded by, the RFI/CMS at Waste Management Area S-SX. The proposed Tri-Party Agreement milestone changes that specify the scope and schedule for the RFI/CMS work plans (Tri-Party Agreement change number M-45-98-0) were issued for public comment in February 1999. The Tri-Party Agreement narrative indicates the ongoing groundwater assessments will be integrated with the RFI/CMS work plans. This addendum documents the disposition of the Ecology comments on PNNL-11810 and identifies which comments were more appropriate for the RFI/CMS work plan

  17. Addendum to the RCRA Assessment Report for Single-Shell Tank Waste Management Area S-SX at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C.J.; Johnson, V.G.

    1999-10-07

    The initial Resource Conservation and Recovery Act (RCRA) groundwater quality assessment report for Waste Management Area S-SX (PNNL-11810) was issued in January 1998. The report stated a plan for conducting continued assessment would be developed after addressing Washington State Department of Ecology (Ecology) comments on initial findings in PNNL-11810. Comments from Ecology were received by US Department of Energy, Richland Operations Office (DOE-RL) on September 24, 1998. Shortly thereafter, Ecology and DOE began dispute resolution and related negotiations about tank farm vadose issues. This led to proposed new Tri-Party Agreement milestones covering a RCRA Facility Investigation-Corrective Measures Study (RFI/CMS) of the four single-shell tank farm waste management areas that were in assessment status (Waste Management Areas B-BX-BY, S-SX, T and TX-TY). The RCRA Facility Investigation includes both subsurface (vadose zone and groundwater) and surface (waste handling facilities and grounds) characterization. Many of the Ecology comments on PNNL-11810 are more appropriate for, and in many cases are superseded by, the RFI/CMS at Waste Management Area S-SX. The proposed Tri-Party Agreement milestone changes that specify the scope and schedule for the RFI/CMS work plans (Tri-Party Agreement change number M-45-98-0) were issued for public comment in February 1999. The Tri-Party Agreement narrative indicates the ongoing groundwater assessments will be integrated with the RFI/CMS work plans. This addendum documents the disposition of the Ecology comments on PNNL-11810 and identifies which comments were more appropriate for the RFI/CMS work plan.

  18. Low temperature setting iron phosphate ceramics as a stabilization and solidification agent for incinerator ash contaminated with transuranic and RCRA metals

    International Nuclear Information System (INIS)

    Medvedev, P.G.; Hansen, M.; Wood, E.L.; Frank, S.M.; Sidwell, R.W.; Giglio, J.J.; Johnson, S.G.; Macheret, J.

    1997-01-01

    Incineration of combustible Mixed Transuranic Waste yields an ash residue that contains oxides of Resource Conservation and Recovery Act (RCRA) and transuranic metals. In order to dispose of this ash safely, it has to be solidified and stabilized to satisfy appropriate requirements for repository disposal. This paper describes a new method for solidification of incinerator ash, using room temperature setting iron phosphate ceramics, and includes fabrication procedures for these waste forms as well as results of the MCC-1 static leach test, XRD analysis, scanning electron microscopy studies and density measurements of the solidified waste form produced

  19. Forest Products Industry Permitting Information

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  20. 5 CFR 734.202 - Permitted activities.

    Science.gov (United States)

    2010-01-01

    ... (CONTINUED) POLITICAL ACTIVITIES OF FEDERAL EMPLOYEES Permitted Activities § 734.202 Permitted activities. Employees may take an active part in political activities, including political management and political campaigns, to the extent not expressly prohibited by law and this part. ...

  1. 300 area TEDF permit compliance monitoring plan

    International Nuclear Information System (INIS)

    BERNESKI, L.D.

    1998-01-01

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease

  2. Rosebud Casino and Hotel NPDES Proposed Permit

    Science.gov (United States)

    Indian Country, Minor Permit, proposed permit SD-0034584, Rosebud Casino and Hotel, South Dakota, is authorized to discharge from its wastewater treatment facility in Todd County, South Dakota to an unnamed drainageway(s) tributary to Rock Creek.

  3. 300 area TEDF permit compliance monitoring plan

    Energy Technology Data Exchange (ETDEWEB)

    BERNESKI, L.D.

    1998-11-20

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  4. Air permitting of IGCC plants

    Energy Technology Data Exchange (ETDEWEB)

    Chitikela, S.R.

    2007-07-01

    The IGCC process is, currently, the preferred choice over conventional thermal power production in regard to cleanup of fuel and significantly reduced contaminant emissions. The air permitting requirements include the review of: feed preparation and PM emissions; feed gasification and contaminant emissions; elemental sulfur recovery and SO{sub 2} emissions; options for carbon-dioxide recovery; syngas characteristics for combustion; CT design and combustion mechanisms; air contaminant emissions of CT; controlled CT emissions of nitrogen-oxides and carbon-monoxide gases using the SCR and oxidation catalysts, respectively; and, emission of volatile organic compounds (VOCs), and hazardous air pollutants (HAPs). However, the IGCC processes are being rigorously reviewed for the system integration and reliability, and significant reduction of air contaminant emissions (including the greenhouse gases). This paper included a review of IGCC air contaminant emission rates, and various applicable regulatory requirements, such as NSR (New Source Review), NSPS (New Source Performance Standards), and MACT (Maximum Achievable Control Technology). The IGCC facility's NOX, CO, SO{sub 2}, PM, VOCs, and HAPs emission rates would be significantly low. Thus, effective, construction and installation, and operation air permits would be necessary for IGCC facilities.

  5. 7 CFR 319.75-3 - Permits.

    Science.gov (United States)

    2010-01-01

    ... Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Port Operations, Permit Unit... article may be imported only after issuance of a written permit by Plant Protection and Quarantine. (b) An application for a written permit should be submitted to the Animal and Plant Health Inspection Service, Plant...

  6. 77 FR 25082 - Picture Permit Imprint Indicia

    Science.gov (United States)

    2012-04-27

    ... POSTAL SERVICE 39 CFR Part 111 Picture Permit Imprint Indicia AGENCY: Postal Service\\TM\\. ACTION... Service, Domestic Mail Manual (DMM[supreg]) 604.5 to add picture permit imprint indicia standards allowing...: The use of picture permit imprint indicia is designed to improve the effectiveness of a mailpiece by...

  7. 40 CFR 70.6 - Permit content.

    Science.gov (United States)

    2010-07-01

    ... § 70.5(d) of this part. (B) Prompt reporting of deviations from permit requirements, including those... corrective actions or preventive measures taken. The permitting authority shall define “prompt” in relation... and air pollution control equipment), practices, or operations regulated or required under the permit...

  8. RCRA Closure Plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-04-01

    In June 1987, the RCRA Closure/Postclosure Plan for the Bear Creek Burial Grounds (BCBG) was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review and approval. TDEC modified and issued the plan approved on September 30, 1987. Y/TS-395 was initially intended to apply to A Area, C-West, B Area, and the Walk-In Pits of BCBG. However, a concept was developed to include the B Area (non-RCRA regulated) in the Walk-In Pits so that both areas would be closed under one cap. This approach included a tremendous amount of site preparation with an underlying stabilization base of 16 ft of sand for blast protection. In January 1993, the Closure Plan was revised to include inspection and maintenance criteria and to reflect that future monitoring and remediation would be conducted as part of the ongoing Comprehensive Environmental Response, Compensation, and Liability Act activities at the Oak Ridge Y-12 Plant. This Closure Plan revision is intended to reflect the placement of the Kerr Hollow Quarry debris at the Walk-In Pits, revise the closure dates, and acknowledge that the disposition of a monitoring well within the closure site cannot be verified

  9. Superfund TIO videos. Set A. Regulatory overview - CERCLA's relationship to other programs: RCRA, Title III, UST, CWA, SDWA. Part 1. Audio-Visual

    International Nuclear Information System (INIS)

    1990-01-01

    The videotape is divided into five sections. Section 1 provides definitions and historical information on both the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The four types of RCRA regulatory programs - Subtitles C, D, I, and J - are described. Treatment, storage, and disposal (TSD) and recycling facilities are also discussed. Section 2 discusses the history behind the Emergency Planning and Community Right-to-Know Act (Title III). The four major provisions of Title III, which are emergency planning, emergency release notification, community right-to-know reporting, and the toxic chemical release inventory are covered. Section 3 outlines the UST program covering notification, record keeping, and the UST Trust Fund. Section 4 outlines the six major provisions of the Clean Water Act (CWA): water quality, pretreatment, prevention of oil and hazardous substance discharges, responses to oil and hazardous substance discharges, discharges of hazardous substances into the ocean, and dredge and fill. Section 5 explains the purpose, regulations, and standards of the Safe Drinking Water Act (SDWA). Specific issues such as underground injection, sole source aquifers, and lead contamination are discussed

  10. Combination RCRA groundwater monitoring plan for the 216-A-10, 216-A-36B, and 216-A-37-1 PUREX cribs

    International Nuclear Information System (INIS)

    Lindberg, J.W.

    1997-06-01

    This document presents a groundwater quality assessment monitoring plan, under Resource Conservation and Recovery Act of 1976 (RCRA) regulatory requirements for three RCRA sites in the Hanford Site's 200 East Area: 216-A-10, 216-A-36B, and 216-A-37-1 cribs (PUREX cribs). The objectives of this monitoring plan are to combine the three facilities into one groundwater quality assessment program and to assess the nature, extent, and rate of contaminant migration from these facilities. A groundwater quality assessment plan is proposed because at least one downgradient well in the existing monitoring well networks has concentrations of groundwater constituents indicating that the facilities have contributed to groundwater contamination. The proposed combined groundwater monitoring well network includes 11 existing near-field wells to monitor contamination in the aquifer in the immediate vicinity of the PUREX cribs. Because groundwater contamination from these cribs is known to have migrated as far away as the 300 Area (more than 25 km from the PUREX cribs), the plan proposes to use results of groundwater analyses from 57 additional wells monitored to meet environmental monitoring requirements of US Department of Energy Order 5400.1 to supplement the near-field data. Assessments of data collected from these wells will help with a future decision of whether additional wells are needed

  11. RCRA and operational monitoring (ROM): Multi-year program plan and fiscal year 96 work plan. WBS 1.5.3, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The RCRA & Operational Monitoring (ROM) Program Office manages the Hanford Site direct funded Resource Conservation and Recovery Act (RCRA) and Operational Monitoring under Work Breakdown Structure (WBS) 1.01.05.03. The ROM Program Office is included in Hanford Technical Services, a part of Projects & Site Services of Westinghouse Hanford Company (WHC). The 1996 Multi-Year Program Plan (MYPP) includes the Fiscal Year Work Plan (FYWP). The Multi-Year Program Plan takes its direction from the Westinghouse Planning Baseline Integration Organization. The MYPP provides both the near term, enhanced details and the long term, projected details for the Program Office to use as baseline Cost, Scope and Schedule. Change Control administered during the fiscal year is against the baseline provided by near term details of this document. The MYPP process has been developed by WHC to meet its internal planning and integration needs and complies with the requirements of the US Department of Energy, Richland Operations Office (RL) Long Range Planning Process Directive (RLID 5000.2). Westinghouse Hanford Company (WHC) has developed the multi-year planning process for programs to establish the technical, schedule and cost baselines for program and support activities under WHC`s scope of responsibility. The baseline information is developed by both WHC indirect funded support services organization, and direct funded programs in WHC. WHC Planning and Integration utilizes the information presented in the program specific MYPP and the Program Master Baseline Schedule (PMBS) to develop the Site-Wide Integrated Schedule.

  12. RCRA and operational monitoring (ROM): Multi-year program plan and fiscal year 96 work plan. WBS 1.5.3, Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    The RCRA ampersand Operational Monitoring (ROM) Program Office manages the Hanford Site direct funded Resource Conservation and Recovery Act (RCRA) and Operational Monitoring under Work Breakdown Structure (WBS) 1.01.05.03. The ROM Program Office is included in Hanford Technical Services, a part of Projects ampersand Site Services of Westinghouse Hanford Company (WHC). The 1996 Multi-Year Program Plan (MYPP) includes the Fiscal Year Work Plan (FYWP). The Multi-Year Program Plan takes its direction from the Westinghouse Planning Baseline Integration Organization. The MYPP provides both the near term, enhanced details and the long term, projected details for the Program Office to use as baseline Cost, Scope and Schedule. Change Control administered during the fiscal year is against the baseline provided by near term details of this document. The MYPP process has been developed by WHC to meet its internal planning and integration needs and complies with the requirements of the US Department of Energy, Richland Operations Office (RL) Long Range Planning Process Directive (RLID 5000.2). Westinghouse Hanford Company (WHC) has developed the multi-year planning process for programs to establish the technical, schedule and cost baselines for program and support activities under WHC's scope of responsibility. The baseline information is developed by both WHC indirect funded support services organization, and direct funded programs in WHC. WHC Planning and Integration utilizes the information presented in the program specific MYPP and the Program Master Baseline Schedule (PMBS) to develop the Site-Wide Integrated Schedule

  13. Resource Conservation and Recovery Act permit modifications and the functional equivalency demonstration: a case study

    International Nuclear Information System (INIS)

    Elsberry, K.; Garcia, P.; Carnes, R.; Kinker, J.; Loehr, C.; Lyon, W.

    1996-01-01

    Hazardous waste operating permits issued under the Resource Conservation and Recovery Act (RCRA) often impose requirements that specific components and equipment be used. Consequently, changing these items, may first require that the owner/operator request a potentially time-consuming and costly permit modification. However, the owner/operator may demonstrate that a modification is not required because the planned changes are ''functionally equivalent.'' The Controlled-Air Incinerator at Los Alamos National Laboratory is scheduled for maintenance and improvements. The incinerator's carbon adsorption unit/high efficiency particulate air filtration system, was redesigned to improve reliability and minimize maintenance. A study was performed to determine whether the redesigned unit would qualify as functionally equivalent to the original component. In performing this study, the following steps were taken: (a) the key performance factors were identified; (b) performance data describing the existing unit were obtained; (c) performance of both the existing and redesigned units was simulated; and (d) the performance data were compared to ascertain whether the components could qualify as functionally equivalent. In this case, the key performance data included gas residence time and distribution of flow over the activated carbon. Because both units were custom designed and fabricated, a simple comparison of manufacturers' specifications was impossible. Therefore, numerical simulation of each unit design was performed using the TEMPEST thermal-hydraulic computer code to model isothermal hydrodynamic performance under steady-state conditions. The results of residence time calculations from the model were coupled with flow proportion and sampled using a Monte Carlo-style simulation to derive distributions that describe the predicted residence times

  14. Groundwater Treatment at SRS: An Innovative Approach

    International Nuclear Information System (INIS)

    Jorque, M.A.; Golshir, G.H.; Davis, B.

    1998-03-01

    The SRS is located in southwestern South Carolina, occupying an almost circular area of approximately 800 km2 within Aiken, Barnwell, and Allendale counties. The site lies approximately 36 km southeast of Augusta, Georgia, and is bounded by the Savannah River along its southwestern border. Prior to the establishment of the SRS in 1952, the area was largely a rural agricultural community. As part of the defense complex, the SRS produced special nuclear materials for the national defense.From 1955 until 1988, unlined earthen basins were used to dispose of wastewater from the SRS separations facilities located in the F and H areas. Approximately 300 million liters of wastewater was transported annually from the process area through underground piping to the basins. The wastewater was allowed to evaporate and to seep into the underlying formations. There were three basins in the F-Area covering a total of about 3 hectares; while the H-Area was served by four basins covering about 6 hectares. The seepage basins closure was started in 1989 and SCDHEC certified the closures as completed in 1991.Groundwater monitoring conducted in accordance with the provisions of the RCRA Permits determined that the underlying hydrogeologic units were contaminated by tritium, radioactive metals (primarily Cesium 137, Strontium 90, and Uranium 235), nitrate and heavy metals, some of which are defined as hazardous by RCRA. Under the terms and conditions of the RCRA Post- Closure Permits, it was necessary to remediate the contaminated groundwater plumes

  15. Analysis of soil and water at the Four Mile Creek seepline near the F ampersand H Areas of SRS

    International Nuclear Information System (INIS)

    Haselow, J.S.; Harris, M.; Looney, B.B.; Halverson, N.V.; Gladden, J.B.

    1990-01-01

    Until 1988, solutions containing sodium hydroxide, nitride acid, low levels of radionuclides (mostly tritiated water) and some metals were discharged to unlined seepage basins at the F and H Areas of the Savannah River Site (SRS) as part of normal operations (Killian et al, 1987a,b). The basins are now being closed according to the Resource Conservation and Recovery Act (RCRA). As part of the closure, a Part B Post-Closure Care Permit is being prepared. The information included in this report will fulfill some of the data requirements for that Part B permit. Several soil and water samples were collected along the Four Mile Creek (FMC) seepline at the F ampersand H Areas of the Savannah River Site. The samples were analyzed for concentrations of metals, radionuclides, and inorganic constituents. The goal of the work reported herein is to document the impacts from the basins of FMC has been completed in a phased approach

  16. Annual Hanford Site Environmental Permitting Status Report

    International Nuclear Information System (INIS)

    HOMAN, N.A.

    2000-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year

  17. Annual Hanford Site Environmental Permitting status report

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    1999-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies

  18. RCRA Facility Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes hazardous waste information, which is mostly contained in the Resource Conservation and Recovery Act Information (RCRAInfo) System, a national...

  19. 41 CFR 102-74.500 - Can Federal agencies disapprove permit applications or cancel issued permits?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Can Federal agencies disapprove permit applications or cancel issued permits? 102-74.500 Section 102-74.500 Public Contracts and... cancel issued permits? Yes, Federal agencies may disapprove any permit application or cancel an issued...

  20. An analysis of the CERCLA response program and the RCRA corrective action program in determining cleanup strategies for federal facilities which have been proposed for listing on the National Priorities List

    International Nuclear Information System (INIS)

    Baker, P.; Vinson, R.

    1994-01-01

    This document was prepared as an issue paper for the Department of Energy to serve in the decision-making process for environmental restoration activities. The paper compares cleanup requirements under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and those currently proposed under Subpart S of the Resource Conservation and Recovery Act (RCRA). The history and regulatory framework for both laws is discussed, and the process for environmental restoration actions under both regulatory programs is compared and contrasted. Contaminants regulated under CERCLA and RCRA differ significantly in that radioactive contaminants are subject to Environmental Protection Agency jurisdiction only under CERCLA. The DOE has the jurisdiction to implement radioactive waste management and cleanup levels under the Atomic Energy Act (AEA) at nuclear weapons facilities. For sites with significant amounts of contaminants which are radioactive only, cleanup under RCRA can present significant advantages, since the DOE can then manage restoration activities under its own authority. There are, conversely several significant advantages for a remedial action being conducted at a CERCLA site recognized on the National Priorities List (NPL). Other provisions in the CERCLA remediation and the RCRA corrective action process offer both advantages and disadvantages related to DOE environmental restoration programs. This paper presents a discussion of significant issues which should be considered in such negotiations

  1. RPP Environmental Permits and Related Documentation

    International Nuclear Information System (INIS)

    DEXTER, M.L.

    2001-01-01

    This document contains the current list of environmental permits and related documentation for RPP facilities and activities. Copies of these permits and related approvals are maintained by RPP Environmental. In addition, notices of Correction and Notices of Violation are issued by State and Federal Regulators which are tracked by RPP Environmental to resolve any recently identified deficiencies. A listing of these recent Notices is provided as an attachment to this document. These permits, approval conditions, and recent regulatory agency notices, constitute an important element of the RPP Authorization Envelope. Permits are issued frequently and the reader is advised to check with RPP environmental for new permits or approval conditions. Interpretation of permit or approval conditions should be coordinated with RPP Environmental. This document is updated on a quarterly basis

  2. RPP Environmental Permits and Related Documentation

    International Nuclear Information System (INIS)

    DEXTER, M.L.

    2000-01-01

    This document contains the current list of environmental permits and related documentation for RPP facilities and activities. Copies of these permits and related approvals are maintained by RPP Environmental. In addition, Notices of Correction and Notices of Violation are issued by State and Federal Regulators which are tracked by RPP Environmental to resolve any recently identified deficiencies. A listing of these recent Notices is provided as an attachment to this document. These permits, approval conditions, and recent regulatory agency notices, constitute an important element of the RPP Authorization Envelope. Permits are issued frequently and the reader is advised to check with RPP environmental for new permits or approval conditions. Interpretation of permit or approval conditions should be coordinated with RPP Environmental. This document will be updated on a quarterly basis

  3. Hanford Facility Resource Conservation and Recovery Act Permit General Inspection Plan

    International Nuclear Information System (INIS)

    Beagles, D.S.

    1995-02-01

    This inspection plan describes the activities that shall be conducted for a general inspection of the Hanford Facility. RCRA includes a requirement that general facility inspections be conducted of the 100, 200 East, 200 West, 300, 400, and 1100 areas and the banks of the Columbia River. This plan meets the RCRA requirements and also provides for scheduling of inspections and defines general and specific items to be noted during the inspections

  4. Development of guidance for preparing treatability variance petitions from the RCRA Land Disposal Restrictions for DOE [Department of Energy] mixed-waste streams

    International Nuclear Information System (INIS)

    Harms, T.; Scheuer, N.; Martin, R.; Van Epp, T.; Triplett, M.

    1990-01-01

    In response to the Department of Energy's (DOE) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) treatment requirements, a treatability variance guidance document is being prepared for use by DOE facilities and operations offices. The guidance document, although applicable to non-mixed hazardous waste streams, provides specific guidance regarding radioactive mixed-waste streams. Preparation of the guidance manual has involved developing an overview of the Land Disposal Restrictions, as well as an overview of the petition preparation process. The DOE internal review requirements are specifically addressed in the manual. Specific data requirements and engineering analyses are also described. A discussion of EPA's criteria for granting a treatability variance is also provided. A checklist for completeness of the petition is provided. Model language for use in DOE treatability variance petitions will be provided in a petition for a DOE waste stream as an appendix to the document

  5. Impacts of proposed RCRA regulations and other related federal environmental regulations on fossil fuel-fired facilities: Final report, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Estimation of the costs associated with implementation of the Resource Conservation and Recovery Act (RCRA) regulations for non-hazardous and hazardous material disposal in the utility industry are provided. These costs are based on engineering studies at a number of coal-fired power plants in which the costs for hazardous and non-hazardous disposal are compared to the costs developed for the current practice design for each utility. The relationship of the three costs is displayed. The emphasis of this study is on the determination of incremental costs rather than the absolute costs for each case (current practice, non-hazardous, or hazardous). For the purpose of this project, the hazardous design cost was determined for minimum versus maximum compliance.

  6. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  7. 40 CFR 71.6 - Permit content.

    Science.gov (United States)

    2010-07-01

    ... § 71.5(d). (B) Prompt reporting of deviations from permit requirements, including those attributable to... prompt or otherwise specifies a time frame for reporting deviations, that definition or time frame shall... and air pollution control equipment), practices, or operations regulated or required under the permit...

  8. 40 CFR 71.25 - Permit content.

    Science.gov (United States)

    2010-07-01

    ... such reports; and (ii) Prompt reporting of any deviations from permit requirements, including those... “prompt” in the permit for each situation and will do so in relation to the degree and type of deviation... reasonable times any facilities, equipment (including monitoring and air pollution control equipment...

  9. Review and revision of overload permit classification.

    Science.gov (United States)

    2013-02-01

    The Michigan Department of Transportation (MDOT) allows trucks that exceed their legal loads to cross : bridges if they apply and are approved for a permit. More than 30,000 permits have been processed each : year since 2002, providing a vital servic...

  10. 7 CFR 330.208 - Courtesy permits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Courtesy permits. 330.208 Section 330.208 Agriculture... PRODUCTS; GARBAGE Movement of Plant Pests § 330.208 Courtesy permits. The Deputy Administrator may issue... subject to regulation under the Plant Protection Actor any other act, as a courtesy to facilitate movement...

  11. 32 CFR 552.90 - Permit office.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Permit office. 552.90 Section 552.90 National... CEMETERIES REGULATIONS AFFECTING MILITARY RESERVATIONS Fort Lewis Land Use Policy § 552.90 Permit office... non-training acess to the range complex. The office is open 0700-1900 hours, seven days a week, for...

  12. 50 CFR 21.31 - Rehabilitation permits.

    Science.gov (United States)

    2010-10-01

    ..., foster parenting, research projects, or other permitted activities with persons permitted or otherwise... Response Coordinator or other designated Service representative and obtain permission from the On-Scene Coordinator. All activities within the location of the spill are subject to the authority of the On-Scene...

  13. 77 FR 10183 - Reissuance of Nationwide Permits

    Science.gov (United States)

    2012-02-21

    ... Civil Works Program (Engineer Circular 1165- 2-211). The current Engineer Circular applies to Corps..., Corps of Engineers Reissuance of Nationwide Permits; Notice #0;#0;Federal Register / Vol. 77 , No. 34..., Corps of Engineers RIN 0710-AA71 Reissuance of Nationwide Permits AGENCY: Army Corps of Engineers, DoD...

  14. 40 CFR 233.21 - General permits.

    Science.gov (United States)

    2010-07-01

    ... ensure compliance with existing permit conditions an any reporting monitoring, or prenotification... apply for an individual permit. This discretionary authority will be based on concerns for the aquatic environment including compliance with paragraph (b) of this section and the 404(b)(1) Guidelines (40 CFR part...

  15. 75 FR 2560 - Issuance of Permits

    Science.gov (United States)

    2010-01-15

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R9-IA-2010-N006] [96300-1671-0000-P5] Issuance of Permits AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of issuance of permits..., 2009 PH.D, Department of 16, 2009. Cardiology Children's Hospital. Dated: January 8, 2010. Brenda Tapia...

  16. 50 CFR 21.41 - Depredation permits.

    Science.gov (United States)

    2010-10-01

    ... PLANTS (CONTINUED) MIGRATORY BIRD PERMITS Control of Depredating and Otherwise Injurious Birds § 21.41... control purposes. No permit is required merely to scare or herd depredating migratory birds other than... other means of concealment, decoys, duck calls, or other devices to lure or entice birds within gun...

  17. EPA Region 2 Discharge Pipes for Facilites with NPDES Permits from the Permit Compliance GIS Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Permit and Compliance System (PCS) contains data on the National Pollution Discharge Elimination Systems (NPDES) permit-holding facilities. This includes...

  18. 77 FR 22267 - Eagle Permits; Changes in the Regulations Governing Eagle Permitting

    Science.gov (United States)

    2012-04-13

    ... with rotating wind turbines. Permit Duration and Transferability In February 2011, we published draft... permit applicants, because of the known risk to eagles from collisions with wind turbines and electric... change does not affect the tenure of any other migratory bird or eagle permit type. DATES: Electronic...

  19. Permit to Work System in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Shyen, A.K.S.; Azwafarina Zarmira Aznan; Md Derus Ibrahim

    2015-01-01

    A Permit-To-Work System is an essential part of the job risk assessment process. An effective Permit-To-Work System would help to prevent accident that usually involves maintenance and construction activities. In Malaysian Nuclear Agency, Radiation Safety and Health Division (BKS) has been given the responsibility to implement the system in order to fulfill the requirement of providing a safe and healthy workplace and environment for its employees as pledged in the Occupational Safety, Health and Environmental Policy. This paper presents the roles and functions of Permit-To-Work System, together with the process flow and challenges ahead. (author)

  20. 78 FR 25678 - Georgia: Final Authorization of State Hazardous Waste Management Program Revisions

    Science.gov (United States)

    2013-05-02

    ...: Final Authorization of State Hazardous Waste Management Program Revisions AGENCY: Environmental... of changes to its hazardous waste program under the Resource Conservation and Recovery Act (RCRA... Gwendolyn Gleaton, Permits and State Programs Section, RCRA Programs and Materials Management Branch, RCRA...

  1. 78 FR 36822 - Special Permit Applications

    Science.gov (United States)

    2013-06-19

    ... lithium battery that exceeds the net quantity weight restriction when transported by motor vehicle and... Dassault Falcon Jet Corp. Little Ferry, NJ May 13, 2013. To modify the special permit to add an additional...

  2. 32 CFR 935.11 - Permits.

    Science.gov (United States)

    2010-07-01

    ... shall be issued under other authority that is inconsistent with this part. The Commander may issue.... (b) To the extent it is not inconsistent with this part, any permit or registration issued pursuant...

  3. Storm Water General Permit 2 for Construction

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — General permit #2 for storm water discharges associated with industrial activity for Construction Activities in Iowa for the National Pollutant Discharge Elimination...

  4. 50 CFR 660.707 - Permits.

    Science.gov (United States)

    2010-10-01

    ... or downloaded from the Southwest Region home page (http://swr.nmfs.noaa.gov/permits.htm) to apply for... the vessel is fishing for, taking, retaining, possessing, or landing HMS shoreward of the outer...

  5. 77 FR 4271 - Special Permit Marking Removal

    Science.gov (United States)

    2012-01-27

    ... the logistical and cost concerns regarding the ability of the railroad industry to comply with the... incorporating the applicable GRL Special Permits into the HMR (and FRA's subsequent approval notice) those...

  6. Web Air Permits (WAP R7)

    Data.gov (United States)

    U.S. Environmental Protection Agency — THIS DATA ASSET NO LONGER ACTIVE: This is metadata documentation for Web Air Permits in Region 7 (WAP R7), a Lotus Notes application that once tracked comment...

  7. 2013 EPA Vessels General Permit (VGP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information for any vessel that submitted a Notice of Intent (NOI), Notice of Termination (NOT), or annual report under EPA's 2013 Vessel General Permit (VGP)....

  8. Gulf of Mexico Shrimp Permit Gear Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data set contains annual vessel gear characterization of permit holders shrimp vessel. Data includes net type, TED type, BRD type, etc.

  9. 2011 EPA Pesticide General Permit (PGP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The 2011 EPA Pesticide General Permit (PGP) covers discharges of biological pesticides, and chemical pesticides that leave a residue, in areas where EPA is the NPDES...

  10. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  11. 30 CFR 773.10 - Review of permit history.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Review of permit history. 773.10 Section 773.10... REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.10 Review of permit history. (a) We, the regulatory authority, will rely upon the permit history information you, the applicant, submit under § 778.12 of this...

  12. 40 CFR 60.4124 - Hg budget permit revisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg budget permit revisions. 60.4124... Coal-Fired Electric Steam Generating Units Permits § 60.4124 Hg budget permit revisions. Except as provided in § 60.4123(b), the permitting authority will revise the Hg Budget permit, as necessary, in...

  13. 9 CFR 78.2 - Handling of certificates, permits, and “S” brand permits for interstate movement of animals.

    Science.gov (United States)

    2010-01-01

    ... âSâ brand permits for interstate movement of animals. 78.2 Section 78.2 Animals and Animal Products... certificates, permits, and “S” brand permits for interstate movement of animals. (a) Any certificate, permit, or “S” brand permit required by this part for the interstate movement of animals shall be delivered...

  14. RCRA closure plan for the Bear Creek Burial Grounds B Area and Walk-In Pits at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-11-01

    The Bear Creek Burial Grounds (BCBG) are located on the southwest flank of Pine Ridge ∼1.5 miles west of the Oak Ridge Y-12 Plant in Bear Creek Valley. This facility consists of several contiguous disposal sites identified as Burial Grounds A, B, C, and D. Each burial site consists of a series of trenches used for disposal of solid wastes and, in some cases, liquid wastes. Initially, the RCRA Closure/Postclosure plan for the BCBG was intended to apply to A Area, C-West, B Area, and the walk-in pits for BCBG. However, a plan was provided to include the B Area in the walk-in pits so that both areas cold be closed under one cap. The closure plan for B Area and the walk-in pits is presented in this document. The actual quantity and identity of materials is uncertain. The largest volume of material disposed in BCBG consists of uranium-contaminated industrial trash (paper, wood, steel, glass, and rubble)

  15. RCRA Facility Investigation/Remedial Investigation Report with Baseline Risk Assessment for the Central Shops Burning/Rubble Pit (631-6G), Volume 1 Final

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Burning/Rubble Pits at the Savannah River Site were usually shallow excavations approximately 3 to 4 meters in depth. Operations at the pits consisted of collecting waste on a continuous basis and burning on a monthly basis. The Central Shops Burning/Rubble Pit 631- 6G (BRP6G) was constructed in 1951 as an unlined earthen pit in surficial sediments for disposal of paper, lumber, cans and empty galvanized steel drums. The unit may have received other materials such as plastics, rubber, rags, cardboard, oil, degreasers, or drummed solvents. The BRP6G was operated from 1951 until 1955. After disposal activities ceased, the area was covered with soil. Hazardous substances, if present, may have migrated into the surrounding soil and/or groundwater. Because of this possibility, the United States Environmental Protection Agency (EPA) has designated the BRP6G as a Solid Waste Management Unit (SWMU) subject to the Resource Conservation Recovery Act/Comprehensive Environmental Response, Compensation and Liability Act (RCRA/CERCLA) process.

  16. Characterization of Vadose Zone Sediment: RCRA Borehole 299-E33-338 Located Near the B-BX-BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmeier, Clark W.; Serne, R. Jeffrey; Bjornstad, Bruce N.; Gee, Glendon W.; Schaef, Herbert T.; Lanigan, David C.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Kutnyakov, Igor V.; Baum, Steven R.; Geiszler, Keith N.; Brown, Christopher F.; Valenta, Michelle M.; Vickerman, Tanya S.; Royack, Lisa J.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Table 4.8. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in June 2003. The overall goals of the of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., are: 1) to define risks from past and future single-shell tank farm activities, 2) to identify and evaluate the efficacy of interim measures, and 3) to aid via collection of geotechnical information and data, future decisions that must be made by the U.S. Department of Energy (DOE) regarding the near-term operations, future waste retrieval, and final closure activities for the single-shell tank waste management areas. For a more complete discussion of the goals of the Tank Farm Vadose Zone Project, see the overall work plan, Phase 1 RCRA Facility Investigation/Corrective Measures Study Work Plan for the Single-Shell Tank Waste Management Areas (DOE 1999). Specific details on the rationale for activities performed at the B-BX-BY tank farm waste management area are found in CH2M HILL (2000).

  17. 77 FR 71818 - Endangered Species Recovery Permit Applications

    Science.gov (United States)

    2012-12-04

    ... following permit requests. Applicant Permit No. TE-78622A Applicant: William J. Mautz, Hilo, Hawaii The...-179036 Applicant: Cullen A. Wilkerson, Richmond, California The applicant requests a permit renewal to...

  18. State Waste Discharge Permit ST-4502 Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    BROWN, M.J.; LECLAIR, M.D.

    2000-09-27

    Plan has been developed to demonstrate compliance with regulatory requirements set forth in Permit ST-3502 and as a line management tool for use in maintaining configuration control of permit as well as documentation used to implement permit requirements.

  19. State Waste Discharge Permit ST-4502 Implementation Plan

    International Nuclear Information System (INIS)

    BROWN, M.J.; LECLAIR, M.D.

    2000-01-01

    Plan has been developed to demonstrate compliance with regulatory requirements set forth in Permit ST-3502 and as a line management tool for use in maintaining configuration control of permit as well as documentation used to implement permit requirements

  20. IFQ Halibut/Sablefish and CDQ Halibut Permit Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Under the IFQ Halibut/Sablefish Permit Program and CDQ Halibut Permit Program permits are issued for harvesting and receiving/processing halibut, and non-trawl...

  1. Banking and back-loading emission permits

    International Nuclear Information System (INIS)

    Chaton, Corinne; Creti, Anna; Peluchon, Benoît

    2015-01-01

    In this article we focus on the so-called back-loading policy adopted by the European Commission to increase the carbon market price. This environmental measure consists of removing a share of the allowances allocated for a given period in order to reallocate some or all of them later on. To analyze the impact of the permits back-loading, we determine the CO 2 price equilibrium with and without the policy measure, considering not only the market for permits but also the output market of regulated sectors. We propose a two-period model, where the market for permits is perfectly competitive, and the output market can be either competitive or oligopolistic. First, we define the condition under which banking from one period to another is optimal. This condition, that is the absence of arbitrage opportunities (AOA), depends not only from the period initial allocation but also on production market fundamentals. When this condition is satisfied, the market for emission is shown intertemporally efficient. Second, we point out that the back-loading measure may create inefficiencies or leave unaffected the permits price, if it alters the AOA. -- Highlights: •Relationship between the market for permits and the output market of regulated sectors. •Analysis of CO 2 prices and banking. •Impact of a recent environmental policy measure (backloading) on CO 2 prices

  2. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  3. 75 FR 19987 - Endangered and Threatened Species Permit Applications

    Science.gov (United States)

    2010-04-16

    ... applied for scientific research permits to conduct certain activities with endangered species under the...) within Arizona. Permit TE-178778 Applicant: Marks Lab of Aquatic Ecology, Flagstaff, Arizona. Applicant...

  4. 50 CFR 18.31 - Scientific research permits and public display permits.

    Science.gov (United States)

    2010-10-01

    ... the population stock and the marine ecosystem. In determining whether to issue a public display permit... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Scientific research permits and public..., DEPARTMENT OF THE INTERIOR (CONTINUED) TAKING, POSSESSION, TRANSPORTATION, SALE, PURCHASE, BARTER...

  5. Draft postclosure permit application for Bear Creek Hydrogeologic Regime at the Oak Ridge Y-12 Plant Oil Landform Hazardous Waste Disposal Unit

    International Nuclear Information System (INIS)

    1991-08-01

    The Oil Landfarm Hazardous-Waste Disposal Unit (HWDU) is located approximately one and one-half miles west of the Department of Energy's (DOE) Y-12 Plant in Oak Ridge, Tennessee. The Oil Landfarm HWDU consists of three disposal plots and along with the Bear Creek Burial Grounds and the S-3 Site comprise the Bear Creek Valley Waste Disposal Area (BCVWDA). The facility was used for the biological degradation of waste oil and machine coolants via landfarming, a process involving the application of waste oils and coolants to nutrient-adjusted soil during the dry months of the year (April to October). The Oil Landfarm HWDU has been closed as a hazardous-waste disposal unit and therefore will be subject to post-closure care. The closure plan for the Oil Landfarm HWDU is provided in Appendix A.1. A post-closure plan for the Oil Landfarm HWDU is presented in Appendix A.2. The purpose of this plan is to identify and describe the activities that will be performed during the post-closure care period. This plan will be implemented and will continue throughout the post-closure care period

  6. Permitting of Wind Energy Facilities: A Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NWCC Siting Work Group

    2002-08-01

    This handbook has been written for individuals and groups involved in evaluating wind projects: decision-makers and agency staff at all levels of government, wind developers, interested parties and the public. Its purpose is to help stakeholders make permitting wind facility decisions in a manner which assures necessary environmental protection and responds to public needs.

  7. 27 CFR 19.157 - Operating permits.

    Science.gov (United States)

    2010-04-01

    ... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Qualification of Distilled Spirits Plants § 19.157... file an application for registration under § 19.151 shall make application for and obtain an operating permit before commencing any of the following operations: (1) Distilling for industrial use. (2...

  8. 75 FR 54649 - Endangered Wildlife; Permits

    Science.gov (United States)

    2010-09-08

    ...-02997A Applicant: University of Hawaii, Hilo, Hawaii. The applicant requests a permit to take (capture...-listed Drosophila species on the island of Kauai in the State of Hawaii for the purpose of enhancing its... in the State of Hawaii: Astelia waialealae (painiu), Canavalia napaliensis (awikiwiki), Chamaesyce...

  9. 15 CFR 5.4 - Permits.

    Science.gov (United States)

    2010-01-01

    ... standards relating to appearance, safety, sanitation, maintenance, and efficiency of operation. Due regard... the Government and prospective patrons of the stand. (f) The permit shall describe the location of the stand proper and the location of any vending machines which are operated in conjunction with it. ...

  10. 9 CFR 93.802 - Import permit.

    Science.gov (United States)

    2010-01-01

    ... CONVEYANCE AND SHIPPING CONTAINERS Elephants, Hippopotami, Rhinoceroses, and Tapirs § 93.802 Import permit. (a) An elephant, hippopotamus, rhinoceros, or tapir shall not be imported into the United States... export an elephant, hippopotamus, rhinoceros, or tapir to the United States; (2) The name and address of...

  11. 19 CFR 12.107 - Importations permitted.

    Science.gov (United States)

    2010-04-01

    ... TREASURY SPECIAL CLASSES OF MERCHANDISE Pre-Columbian Monumental and Architectural Sculpture and Murals § 12.107 Importations permitted. Pre-Columbian monumental or architectural sculpture or mural for which... sculpture or mural, in a form acceptable to the Secretary, certifying that such exportation was not in...

  12. 78 FR 43268 - Special Permit Applications

    Science.gov (United States)

    2013-07-19

    ... an amount qualifying as hazardous material. (modes 1, 2, 3, 4) 15860-N......... Apple Inc. 49 CFR To... strength stiffness. 13581-M......... Bengal Products 49 CFR To modify the Inc. Baton 173.306(a)(3). special............ Carleton 49 CFR 173.302a To modify the Technologies special permit to Inc. (Former change a drawing Grantee...

  13. 50 CFR 648.4 - Vessel permits.

    Science.gov (United States)

    2010-10-01

    ... carrying passengers for hire. (8) Atlantic bluefish vessels. (i) Commercial. Any vessel of the United... lands Atlantic bluefish in or from the EEZ in excess of the recreational possession limit specified at § 648.164 must have been issued and carry on board a valid commercial bluefish vessel permit. (ii) Party...

  14. 40 CFR 70.5 - Permit applications.

    Science.gov (United States)

    2010-07-01

    ... establish. Where an existing part 70 permit would prohibit such construction or change in operation, the... information only if it is related to the proposed change. Information required under paragraph (c) of this... part shall state that, based on information and belief formed after reasonable inquiry, the statements...

  15. Resource Conservation and Recovery Act: Part B permit application. Volume 9. Chapter E, Appendix E1-Chapter H, Appendix H3

    International Nuclear Information System (INIS)

    1995-01-01

    Volume nine contains the following appendices: RCRA groundwater protection information; Examples of inspection sheets, logs and instructions for systems/equipment requiring inspection under 20 NMAC 4.1, Subpart V; Material safety data sheets; List of hazardous waste management job titles; and Waste Isolation Pilot Plant RCRA hazardous waste management job description

  16. 50 CFR 648.88 - Multispecies open access permit restrictions.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Multispecies open access permit... Management Measures for the NE Multispecies and Monkfish Fisheries § 648.88 Multispecies open access permit restrictions. (a) Handgear permit. A vessel issued a valid open access NE multispecies Handgear permit is...

  17. Renewable Energy Permitting Barriers in Hawaii: Experience from the Field

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Donnelly, C.; Atkins, D.; Fields, R.; Black, C.

    2013-03-01

    This white paper presents a summary of the solicited input from permitting agencies and renewable energy developers on the permitting process in Hawaii to provide stakeholders in Hawaii, particularly those involved in permitting, with information on current permitting barriers that renewable energy developers are experiencing.

  18. 40 CFR 144.51 - Conditions applicable to all permits.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) UNDERGROUND INJECTION CONTROL PROGRAM Permit Conditions § 144.51 Conditions applicable... permit. Any permit noncompliance constitutes a violation of the Safe Drinking Water Act and is grounds... denial of a permit renewal application; except that the permittee need not comply with the provisions of...

  19. 50 CFR 21.21 - Import and export permits.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Import and export permits. 21.21 Section... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD PERMITS Specific Permit Provisions § 21.21 Import and export... must have a permit to import or export migratory birds, their parts, nests, or eggs. You must meet the...

  20. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI.

  1. Phase 2 sampling and analysis plan, Quality Assurance Project Plan, and environmental health and safety plan for the Clinch River Remedial Investigation: An addendum to the Clinch River RCRA Facility Investigation plan

    International Nuclear Information System (INIS)

    Cook, R.B.; Adams, S.M.; Beauchamp, J.J.; Bevelhimer, M.S.; Blaylock, B.G.; Brandt, C.C.; Etnier, E.L.; Ford, C.J.; Frank, M.L.; Gentry, M.J.; Greeley, M.S.; Halbrook, R.S.; Harris, R.A.; Holladay, S.K.; Hook, L.A.; Howell, P.L.; Kszos, L.A.; Levine, D.A.; Skiles, J.L.; Suter, G.W.

    1992-12-01

    This document contains a three-part addendum to the Clinch River Resource Conservation and Recovery Act (RCRA) Facility Investigation Plan. The Clinch River RCRA Facility Investigation began in 1989, as part of the comprehensive remediation of facilities on the US Department of Energy Oak Ridge Reservation (ORR). The ORR was added to the National Priorities List in December 1989. The regulatory agencies have encouraged the adoption of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) terminology; therefore, the Clinch River activity is now referred to as the Clinch River Remedial Investigation (CRRI), not the Clinch River RCRA Facility Investigation. Part 1 of this document is the plan for sampling and analysis (S ampersand A) during Phase 2 of the CRRI. Part 2 is a revision of the Quality Assurance Project Plan for the CRRI, and Part 3 is a revision of the Environmental Health and Safety Plan for the CRRI. The Clinch River RI (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the DOE Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. Primary areas of investigation are Melton Hill Reservoir, the Clinch River from Melton Hill Dam to its confluence with the Tennessee River, Poplar Creek, and Watts Bar Reservoir. The contaminants identified in the Clinch River/Watts Bar Reservoir (CR/WBR) downstream of the ORR are those associated with the water, suspended particles, deposited sediments, aquatic organisms, and wildlife feeding on aquatic organisms. The purpose of the Phase 2 S ampersand A Plan is to describe the proposed tasks and subtasks developed to meet the primary objectives of the CRRI

  2. Should advertising by aesthetic surgeons be permitted?

    Directory of Open Access Journals (Sweden)

    Neeraj Nagpal

    2017-01-01

    Full Text Available Cosmetic, aesthetic and cutaneous surgical procedures require qualified specialists trained in the various procedures and competent to handle complications. However, it also requires huge investments in terms of infrastructure, trained staff and equipment. To be viable advertising is essential to any establishment which provides cosmetic and aesthetic procedures. Business men with deep pockets establish beauty chains which also provide these services and advertise heavily to sway public opinion in their favour. However, these saloons and spas lack basic medical facilities in terms of staff or equipment to handle any complication or medical emergency. To have a level playing field ethical advertising should be permitted to qualified aesthetic surgeons as is permitted in the US and UK by their respective organisations.

  3. Market Power in Laboratory Emission Permit Markets

    International Nuclear Information System (INIS)

    Godby, R.

    2002-01-01

    Many proposals suggesting the use of markets to control pollution assume markets will be competitive. When markets do not exhibit competitive characteristics, however, should they still be expected to result in efficiency improvement relative to traditional approaches? This paper employs experimental economic methods to examine the effect of market structure on the use of marketable emissions permits. Results indicate that in a market with one dominant firm and a number of fringe firms, strategic manipulation occurs repeatedly in the laboratory as predicted by market power models, undermining the allocative and dynamic efficiency benefits such markets offer. When firms compete in a downstream product market dominated by the same single firm, market efficiency can actually be reduced with the implementation of permit markets. Final market efficiencies reflect initial endowments and are influenced by competitive conditions elsewhere in the economy, indicating that policy-makers should carefully consider whether markets are appropriate in such circumstances

  4. PUREX Storage Tunnels dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-12-01

    This report is part of a dangerous waste permit application for the storage of wastes from the Purex process at Hanford. Appendices are presented on the following: construction drawings; HSW-5638, specifications for disposal facility for failed equipment, Project CA-1513-A; HWS-8262, specification for Purex equipment disposal, Project CGC 964; storage tunnel checklist; classification of residual tank heels in Purex storage tunnels; emergency plan for Purex facility; training course descriptions; and the Purex storage tunnels engineering study

  5. Hanford Site air operating permit application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  6. Hanford Site air operating permit application

    International Nuclear Information System (INIS)

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ''regulated'' pollutants. Regulated pollutants include ''criteria'' pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ''Hazardous'' Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995

  7. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  8. Permit processes for nuclear power. International lessons

    International Nuclear Information System (INIS)

    Gaahlin, Emil; Nilsson, Isabelle; Pettersson, Maria; Soederholm, Patrik

    2010-01-01

    The overall objective of this report is to analyze and compare the legal permitting and planning process for (first and foremost) new nuclear power stations in a number of selected countries. In this way the report provides relevant knowledge that could form the basis for discussing the efficiency of various national licensing processes (include the Swedish one). The study builds heavily on the analysis of legal documents and regulations, and addresses both the formal requirements for licensing and territorial planning procedures as well as the issues of public participation and access to justice in the respective countries. In addition to this legal approach, however, we also adopt an investor's perspective on the legislation, i.e., an analysis of the legal rules can influence investment decisions in practice. Furthermore, the study relies largely on a synthesis of previous studies as well as interviews with researchers, electricity companies and government officials in Sweden and abroad. The countries that are compared include Sweden, Finland, France, Canada, Switzerland, Great Britain, USA and South Korea. These include those that currently invest in new nuclear power as well as those who have recently reformed their plant permitting processes. The analysis highlights important differences among the various countries, including issues such as the political influence on the licensing process, the allocation of political power between the national and local levels, means of interacting with regular citizens, and the overall transparency and predictability of the legislation. Some selected practical experiences of the current legislation are also presented. The report first provides a short background to the role and the status of nuclear power in the global energy system, and we then present a rather comprehensive comparison of the permitting processes in the above countries. Each country section comprises a short background, a presentation of the existing

  9. Review. Deep repository for spent nuclear fuel SR 97 - Post-closure safety

    International Nuclear Information System (INIS)

    Stephansson, Ove

    2000-01-01

    SKB states that the chosen scenarios provide good coverage of future evolutionary pathways for the deep repository. This is not the case. SKB has not made full use of the established interaction matrices and the new method of THMC diagrams to generate the relevant and important scenarios and to construct the important pathways of variables and processes, either in the established interaction matrices and the presented THMC diagrams. Hence, SKB is demonstrating in SR 97 that they lack a well thought through, sound and solid method to select and evaluate scenarios for the purpose of demonstrating the safety of a deep repository for spent nuclear fuel. The evolution of the system is presented for the components of the repository system (fuel, canister, buffer/backfill, geosphere) and the effects of four different scenarios, but time only enters into the system for discrete events or processes, e.g. description of the relative radiotoxicity and heat decay of the fuel, temperature distribution, iron exchange process, pH in buffer, redox capacity and radionuclear release at the three sites. There is a lack of method and way of describing the evolution of the complete repository system, including the major scenarios, as a function of time. It is essential that SKB is able to: - consider the full range of potential scenarios, - grade the scenarios according to their significance for repository design and performance and safety assessment, - consider whether simple engineering actions could be taken to inhibit the development of adverse scenarios. This cannot be done with the system presented in SR 97, and so SKB do not have a full predictive capability - which is required for the engineering design of such an important and costly structure as a repository. Geoscientific investigation material for three selected sites are presented by SKB in the technical report dealing with waste, repository design and sites. Here a general overview is missing of the geological and rock mechanical development of the respective areas and their place in space and time during the geological evolution of the Baltic Shield. This makes it difficult to rank the suggested sites based on their past, present and future geological evolution. The problem of large discrepancies in data needs to be resolved before stress measurements are performed at future sites. For stress measurements in general and the demand of good quality data at the future sites, there is a need for integrated stress analysis where data from different stress measurements methods (overcoring, hydrofracturing, hydraulic testing of pre-existing fractures and focal mechanism studies) are combined in an integrated stress analysis. Results from orientation of horizontal components from the stress measurements at the three sites clearly demonstrate the relatively large variation in orientation both at each site and between different sites. The relationship between the state of stress and the location and orientation of the major fracture zones is of outmost importance in a future location of a final repository. Preliminary repository layout was constructed by SKB for each selected repository site to accommodate approximately 4,000 canisters. From rock stability point of view the deposition tunnels should be oriented parallel with the orientation of the maximum horizontal principal stress. This is one of the fundamental principles in rock engineering. However, SKB prefer to orient the tunnel axes perpendicular to the maximum stress because the fracture zones and their respect distance, the orientation of water-bearing fracture zones and the area for repository location does not allow a proper tunnel orientation with respect to the orientation of the horizontal rock stresses. The orientation of the tunnels as suggested might lead to spalling or other types of failure of the tunnels and deposition hole. There has been a number of international studies about this problem and SKB has to give this problem additional studies to form a strategy for the future orientation of tunnels and deposition holes. In chapter 5 of the report on Waste, repository design and sites, SKB presents site-specific adaptation of the repository. In the section about repository design, there is a lack of information about the design method that will be applied for the repository. There are no references to standard literature about rock engineering design and design methods for underground constructions. There is a need for SKB to determine the design methods as this information is independent of the selection of a finale site for a repository. SKB advocates 'Design as you go' as an active approach during the process leading up to a finished repository and claims this as being important for safety. This method of constructing underground space can be applied for structures were safety demands are not particular important. However, the method is far from being applicable for construction of a final repository of radioactive waste. The public opinion will hardly accept such a strategy. This approach is also difficult to manage for the authorities as revised plans, safety documents and control systems have to be checked and revised continuously. To some extent this approach has been demonstrated during the present construction of the extension of the CLAB facilities of SKB and has not been functioning well. The design method 'design as you go' cannot be accepted for a repository for radioactive waste. The design issues need to be sorted out beforehand. Only minor variations can be allowed at the time of excavation, e.g. the precise position of the canister holes

  10. Deep repository for spent nuclear fuel. SR 97 - Post-closure safety. Main Report. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Hedin, A. [ed.

    1999-11-01

    In preparation for coming site investigations for siting of a deep repository for spent nuclear fuel, the Swedish Government and nuclear regulatory authorities have requested an assessment of the repository's long-term safety. The purpose is to demonstrate whether the risk of harmful effects in individuals in the vicinity of the repository complies with the acceptance criterion formulated by the Swedish regulatory authorities, i.e. that the risk may not exceed 10{sup -6} per year. Geological data are taken from three sites in Sweden to shed light on different conditions in Swedish granitic bedrock. The future evolution of the repository system is analyzed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings are postulated to persist. The four other scenarios show how the evolution of the repository differs from that in the base scenario if the repository contains a few initially defective canisters, in the event of climate change, earthquakes, and future inadvertent human intrusion. The time horizon for the analyses is at most one million years, in accordance with preliminary regulations. By means of model studies and calculations, the base scenario analyzes how the radioactivity of the fuel declines with time, the repository's thermal evolution as a result of the decay heat in the fuel, the hydraulic evolution in buffer and backfill when they become saturated with water, and the long-term groundwater flow in the geosphere on the three sites. The overall conclusion of the analyses in the base scenario is that the copper canisters isolating capacity is not threatened by either the mechanical or chemical stresses to which it is subjected. The safety margins are great even in a million-year perspective. The internal evolution in initially defective canisters and the possible resultant migration of radionuclides in buffer, geosphere and biosphere are analyzed in the canister defect scenario. Releases from the geosphere are converted to doses in different ecosystems. The variation in flow-related data in the geosphere has the greatest impact on the result, followed by data uncertainties for the biosphere. Other conclusions are that our understanding of fuel dissolution needs to be improved, and that the probability and size of initial canister defects that escape quality-control inspection is difficult to estimate. Risk analyses in the form of simplified probabilistic calculations are also performed. The risk analyses show that all sites lie well below the acceptance criterion. The maximum risk for release to a well is never more than 0.5 percent of the acceptance criterion, even when the calculations are extended a million years into the future. The same applies to releases to peat land for times up to 100,000 years, while the maximum risk here grows to about one-tenth of the acceptance criterion at the least favourable site at times after 100,000 years. The consequences of future climate change are explored in the climate scenario. A conceivable sequence of events, including severe glaciation, on each of the three sites is sketched for the coming 150,000 years. In the climate scenario as well, the overall conclusion is that the isolating capacity of the copper canister is not threatened by either mechanical or chemical stresses. As far as the retarding capacity of the repository is concerned, for example in the event of initial canister damage, the most important changes take place in the biosphere. The repository sites are expected to be covered by ice sheets or sea during long periods, and the aggregate effect of climate change will therefore be a reduction of the dose consequences compared with a situation where the present-day climate persists. In the earthquake scenario, the consequences of earthquakes are analyzed by means of model studies where site-specific data are used for the structure of the geosphere and for earthquake statistics. The analysis method is new and includes several highly pessimistic simplifications. The analyses show that the probability of canister damage is comparable with the probability assumed for initial damage in the canister defect scenario. In the evaluation of the analysis method, it is shown how less pessimistic assumptions should lead to no canister damage at all in the model studies. The method will be refined. The scenario that deals with future inadvertent human actions that could conceivably affect the repository is surrounded by great uncertainties, chiefly because the evolution of human society is unpredictable. SR 97 discusses how conceivable societal evolutions and future human actions that affect the repository can nevertheless be categorized to some extent. In an illustrative example, a situation is analyzed where a canister in the repository is inadvertently penetrated by rock drillers. (abstract truncated)

  11. Data Management to Support a Post-closure Safety Case for Higher Activity Wastes

    International Nuclear Information System (INIS)

    Carter, Alexander; Bailey, Lucy

    2016-01-01

    Lessons Learned: • Make sure data and modelling responsibilities and accountabilities are clearly defined and in the hands of suitable qualified and experienced staff. • Make clear what types of data are, and are not, within the scope of the data management system. • Consider data quality from the outset and record this with the data where possible (ideally during acquisition). • Don’t underestimate the time taken to manage data and quality check models – needs senior management support with business prioritisation to work most effectively. • Store data in an electronic format which can be retrieved and used/reused – consider automatic export into modelling software, data reports etc. (well received by reviewers). • Take care with data precision. • Make sure you understand where models exist in your organisation and how significant they are to your business. • Make sure uncertainties in model outputs are understood and communicated with the results

  12. Post-closure biosphere assessment modelling: comparison of complex and more stylised approaches

    Energy Technology Data Exchange (ETDEWEB)

    Walke, Russell C. [Quintessa Limited, The Hub, 14 Station Road, Henley-on-Thames (United Kingdom); Kirchner, Gerald [University of Hamburg, ZNF, Beim Schlump 83, 20144 Hamburg (Germany); Xu, Shulan; Dverstorp, Bjoern [Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden)

    2014-07-01

    Geological facilities are the preferred option for disposal of high-level radioactive waste, due to their potential to provide isolation from the surface environment (biosphere) on very long time scales. Safety cases developed in support of geological disposal include assessment of potential impacts on humans and wildlife in order to demonstrate compliance with regulatory criteria. As disposal programmes move from site-independent/generic assessments through site selection to applications for construction/operation and closure, the degree of understanding of the present-day site increases, together with increased site-specific information. Assessments need to strike a balance between simple models and more complex approaches that draw more extensively on this site-specific information. This paper explores the relative merits of complex versus more stylised biosphere models in the context of a site-specific assessment. The complex biosphere model was developed by the Swedish Nuclear Fuel and Waste Management Co (SKB) for the Formark candidate site for a spent nuclear fuel repository in Sweden. SKB's model is built on a landscape evolution model, whereby radionuclide releases to distinct hydrological basins/sub-catchments (termed 'objects') are represented as they evolve through land rise and climate change. The site is located on the Baltic coast with a terrestrial landscape including lakes, mires, forest and agriculture. The land at the site is projected to continue to rise due to post-glacial uplift leading to ecosystem transitions in excess of ten thousand years. The simple biosphere models developed for this study include the most plausible transport processes and represent various types of ecosystem. The complex biosphere models adopt a relatively coarse representation of the near-surface strata, which is shown to be conservative, but also to under-estimate the time scale required for potential doses to reach equilibrium with radionuclide fluxes to the biosphere. Some radionuclides do not reach equilibrium within the time frame that the biosphere evolves at the Forsmark site, making associated dose factors sensitive to time scales assumed for biosphere evolution. Comparison of the results generated by both types of model demonstrates that, for areas that evolve from marine, through lakes and mires to terrestrial systems with organic soils, the approach adopted in SKB's model is conservative. However, higher dose factors are possible when potential for long-term irrigation with shallow groundwater is considered. Surveys of groundwater wells in the Forsmark area today show that some shallow groundwater is used to water plants, which demonstrates that small scale irrigation from such sources cannot be ruled out for present-day or warmer climate states. Complex models use more of the available site-specific information and contribute to an understanding of complex process interactions and effects of system heterogeneity. The study shows, however, that simple 'reference' biosphere models enable processes that control potential radionuclide impacts to be identified, taking into account climate variability. They help to build understanding and confidence in more complex modelling approaches, quantify the conservatisms involved and remain a valuable tool for nuclear waste disposal licensing procedures. (authors)

  13. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2012

    International Nuclear Information System (INIS)

    2013-01-01

    This report summarizes the 2012 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. A revised plan is in preparation. The Long-Term Surveillance Plan for the Salmon, Mississippi, Site is intended for release in 2013. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi The State of Mississippi owns the surface real estate subject to certain restrictions related to subsurface penetration. The State is the surface operator; the Mississippi Forestry Commission is its agent. The federal government owns the subsurface real estate (including minerals and some surface features), shares right-of-entry easements with the State, and retains rights related to subsurface monitoring. The U.S. Department of Energy (DOE) Office of Legacy Management (LM), a successor agency to the U.S. Atomic Energy Commission, is responsible for the long-term surveillance of the subsurface real estate.

  14. Preliminary Post-Closure Safety Assessment and Preoperational Radiomonitoring of Anarak Near Surface Repository

    International Nuclear Information System (INIS)

    Bagheri, A.

    2016-01-01

    Conclusion: • The results of design scenario demonstrate that the effect of surface water erosion scenario is acceptable. The results suggest that doses would still be well below the typical acceptance criteria, even with cautious assumptions likely to result in over-estimates of dose in surface water erosion scenario. • (Assuming the representative person who is living near the repository, 1100 years after closure and in case of water erosion scenario the maximum total dose is less than 0.2 mSv y -1 . Furthermore, the maximum dose is caused by 241 Am that is equal to 0.15 mSv y -1 ). The activity concentration levels of the natural and artificial radionuclides were determined in the all samples collected from Anarak site and surrounding area using active and passive device. All results showed the background level of the natural and artificial radionuclides before any operation in Anarak Near Surface Disposal Facility.

  15. IDENTIFICATION OF DOE'S POST-CLOSURE MONITORING NEEDS AND REQUIREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    The 2006 plan sets an ambitious agenda for the U.S. Department of Energy (DOE), Office of Environmental Management (EM) and the remediation of sites contaminated by decades of nuclear weapons production activities. The plan's primary objective is to reduce overall clean up costs by first eliminating the environmental problems that are most expensive to control and safely maintain. In the context of the 2006 Plan, closure refers to the completion of area or facility specific cleanup projects. The cleanup levels are determined by the planned future use of the site or facility. Use restrictions are still undecided for most sites but are highly probable to exclude residential or agricultural activities. Most of the land will be remediated to ''industrial use'' levels with access restrictions and some areas will be closed-off through containment. Portions of the site will be reserved for waste disposal, either as a waste repository or the in-situ immobilization of contaminated soil and groundwater, and land use will be restricted to waste disposal only. The land used for waste disposal will require monitoring and maintenance activities after closure. Most of the land used for industrial use may also require such postclosure activities. The required postclosure monitoring and maintenance activities will be imposed by regulators and stakeholders. Regulators will not approve closure plans without clearly defined monitoring methods using approved technologies. Therefore, among all other more costly and labor-intensive closure-related activities, inadequate planning for monitoring and lack of appropriate monitoring technologies can prevent closure. The purpose of this project is to determine, document, and track the current and evolving postclosure monitoring requirements at DOE-EM sites. This information will aid CMST-CP in guiding its postclosure technology development and deployment efforts.

  16. Deep repository for spent nuclear fuel. SR 97 - Post-closure safety. Main Report. Summary

    International Nuclear Information System (INIS)

    Hedin, A.

    1999-11-01

    In preparation for coming site investigations for siting of a deep repository for spent nuclear fuel, the Swedish Government and nuclear regulatory authorities have requested an assessment of the repository's long-term safety. The purpose is to demonstrate whether the risk of harmful effects in individuals in the vicinity of the repository complies with the acceptance criterion formulated by the Swedish regulatory authorities, i.e. that the risk may not exceed 10 -6 per year. Geological data are taken from three sites in Sweden to shed light on different conditions in Swedish granitic bedrock. The future evolution of the repository system is analyzed in the form of five scenarios. The first is a base scenario where the repository is postulated to be built entirely according to specifications and where present-day conditions in the surroundings are postulated to persist. The four other scenarios show how the evolution of the repository differs from that in the base scenario if the repository contains a few initially defective canisters, in the event of climate change, earthquakes, and future inadvertent human intrusion. The time horizon for the analyses is at most one million years, in accordance with preliminary regulations. By means of model studies and calculations, the base scenario analyzes how the radioactivity of the fuel declines with time, the repository's thermal evolution as a result of the decay heat in the fuel, the hydraulic evolution in buffer and backfill when they become saturated with water, and the long-term groundwater flow in the geosphere on the three sites. The overall conclusion of the analyses in the base scenario is that the copper canisters isolating capacity is not threatened by either the mechanical or chemical stresses to which it is subjected. The safety margins are great even in a million-year perspective. The internal evolution in initially defective canisters and the possible resultant migration of radionuclides in buffer, geosphere and biosphere are analyzed in the canister defect scenario. Releases from the geosphere are converted to doses in different ecosystems. The variation in flow-related data in the geosphere has the greatest impact on the result, followed by data uncertainties for the biosphere. Other conclusions are that our understanding of fuel dissolution needs to be improved, and that the probability and size of initial canister defects that escape quality-control inspection is difficult to estimate. Risk analyses in the form of simplified probabilistic calculations are also performed. The risk analyses show that all sites lie well below the acceptance criterion. The maximum risk for release to a well is never more than 0.5 percent of the acceptance criterion, even when the calculations are extended a million years into the future. The same applies to releases to peat land for times up to 100,000 years, while the maximum risk here grows to about one-tenth of the acceptance criterion at the least favourable site at times after 100,000 years. The consequences of future climate change are explored in the climate scenario. A conceivable sequence of events, including severe glaciation, on each of the three sites is sketched for the coming 150,000 years. In the climate scenario as well, the overall conclusion is that the isolating capacity of the copper canister is not threatened by either mechanical or chemical stresses. As far as the retarding capacity of the repository is concerned, for example in the event of initial canister damage, the most important changes take place in the biosphere. The repository sites are expected to be covered by ice sheets or sea during long periods, and the aggregate effect of climate change will therefore be a reduction of the dose consequences compared with a situation where the present-day climate persists. In the earthquake scenario, the consequences of earthquakes are analyzed by means of model studies where site-specific data are used for the structure of the geosphere and for earthquake statistics. The analysis method is new and includes several highly pessimistic simplifications. The analyses show that the probability of canister damage is comparable with the probability assumed for initial damage in the canister defect scenario. In the evaluation of the analysis method, it is shown how less pessimistic assumptions should lead to no canister damage at all in the model studies. The method will be refined. The scenario that deals with future inadvertent human actions that could conceivably affect the repository is surrounded by great uncertainties, chiefly because the evolution of human society is unpredictable. SR 97 discusses how conceivable societal evolutions and future human actions that affect the repository can nevertheless be categorized to some extent. In an illustrative example, a situation is analyzed where a canister in the repository is inadvertently penetrated by rock drillers. Dose and risk are calculated for the drilling personnel and for a family that settles on the site at a later time. The principal conclusion of the SR 97 safety assessment is that the prospects of building a safety deep repository for spent nuclear fuel in Swedish granitic bedrock are very good. The results of the assessment also serve as a basis for formulating requirements and preferences regarding the bedrock in site investigations, for designing a programme for site investigations, for formulating functional requirements on the repository's barriers, and for prioritization of research. The next stage in the siting of a deep repository entails investigation of the bedrock at a number of candidate sites in Sweden. It is SKBs judgement that the scope of the safety assessment and confidence in its results satisfy the requirements that should be made in preparation for such a stage

  17. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    Science.gov (United States)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings, roads, and so on) during the Site closure efforts resulted in major changes to surface and shallow groundwater flow. Consistent with previous documentation of uranium operations and contamination, only very small amounts of highly enriched uranium are found in a small number of water samples, generally from the former Solar Ponds complex and central Industrial Area. Depleted uranium is more widely distributed at the site, and water samples exhibit the full range of depleted plus natural uranium mixtures. However, one third of the samples are found to contain only natural uranium, and three quarters of the samples are found to contain more than 90% natural uranium - substantial fractions given that the focus of these analyses was on evaluating potentially contaminated waters. Following site closure, uranium concentrations have increased at some locations, particularly for surface water samples. Overall, isotopic ratios at individual locations have been relatively consistent, indicating that the increases in concentrations are due to decreases in dilution flow following removal of impermeable surfaces and buildings.

  18. 40 CFR 264.145 - Financial assurance for post-closure care.

    Science.gov (United States)

    2010-07-01

    ... days before the date on which hazardous waste is first received for disposal. The trustee must be an... made before the initial receipt of hazardous waste for disposal. A receipt from the trustee for this... least 60 days before the date on which hazardous waste is first received for disposal. The bond must be...

  19. Review. Deep repository for spent nuclear fuel SR 97 - Post-closure safety

    Energy Technology Data Exchange (ETDEWEB)

    Stephansson, Ove [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Civil and Environmental Engineering

    2000-12-01

    SKB states that the chosen scenarios provide good coverage of future evolutionary pathways for the deep repository. This is not the case. SKB has not made full use of the established interaction matrices and the new method of THMC diagrams to generate the relevant and important scenarios and to construct the important pathways of variables and processes, either in the established interaction matrices and the presented THMC diagrams. Hence, SKB is demonstrating in SR 97 that they lack a well thought through, sound and solid method to select and evaluate scenarios for the purpose of demonstrating the safety of a deep repository for spent nuclear fuel. The evolution of the system is presented for the components of the repository system (fuel, canister, buffer/backfill, geosphere) and the effects of four different scenarios, but time only enters into the system for discrete events or processes, e.g. description of the relative radiotoxicity and heat decay of the fuel, temperature distribution, iron exchange process, pH in buffer, redox capacity and radionuclear release at the three sites. There is a lack of method and way of describing the evolution of the complete repository system, including the major scenarios, as a function of time. It is essential that SKB is able to: - consider the full range of potential scenarios, - grade the scenarios according to their significance for repository design and performance and safety assessment, - consider whether simple engineering actions could be taken to inhibit the development of adverse scenarios. This cannot be done with the system presented in SR 97, and so SKB do not have a full predictive capability - which is required for the engineering design of such an important and costly structure as a repository. Geoscientific investigation material for three selected sites are presented by SKB in the technical report dealing with waste, repository design and sites. Here a general overview is missing of the geological and rock mechanical development of the respective areas and their place in space and time during the geological evolution of the Baltic Shield. This makes it difficult to rank the suggested sites based on their past, present and future geological evolution. The problem of large discrepancies in data needs to be resolved before stress measurements are performed at future sites. For stress measurements in general and the demand of good quality data at the future sites, there is a need for integrated stress analysis where data from different stress measurements methods (overcoring, hydrofracturing, hydraulic testing of pre-existing fractures and focal mechanism studies) are combined in an integrated stress analysis. Results from orientation of horizontal components from the stress measurements at the three sites clearly demonstrate the relatively large variation in orientation both at each site and between different sites. The relationship between the state of stress and the location and orientation of the major fracture zones is of outmost importance in a future location of a final repository. Preliminary repository layout was constructed by SKB for each selected repository site to accommodate approximately 4,000 canisters. From rock stability point of view the deposition tunnels should be oriented parallel with the orientation of the maximum horizontal principal stress. This is one of the fundamental principles in rock engineering. However, SKB prefer to orient the tunnel axes perpendicular to the maximum stress because the fracture zones and their respect distance, the orientation of water-bearing fracture zones and the area for repository location does not allow a proper tunnel orientation with respect to the orientation of the horizontal rock stresses. The orientation of the tunnels as suggested might lead to spalling or other types of failure of the tunnels and deposition hole. There has been a number of international studies about this problem and SKB has to give this problem additional studies to form a strategy for the future orientation of tunnels and deposition holes. In chapter 5 of the report on Waste, repository design and sites, SKB presents site-specific adaptation of the repository. In the section about repository design, there is a lack of information about the design method that will be applied for the repository. There are no references to standard literature about rock engineering design and design methods for underground constructions. There is a need for SKB to determine the design methods as this information is independent of the selection of a finale site for a repository. SKB advocates 'Design as you go' as an active approach during the process leading up to a finished repository and claims this as being important for safety. This method of constructing underground space can be applied for structures were safety demands are not particular important. (abstract truncated)

  20. 40 CFR 146.73 - Financial responsibility for post-closure care.

    Science.gov (United States)

    2010-07-01

    ...-closure by using a trust fund, surety bond, letter of credit, financial test, insurance or corporate... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Financial responsibility for post... Standards Applicable to Class I Hazardous Waste Injection Wells § 146.73 Financial responsibility for post...

  1. Post-Closure Inspection and Monitoring Report for the Salmon, Mississippi, Site Calendar Year 2007

    International Nuclear Information System (INIS)

    2008-01-01

    This report summarizes inspection and monitoring activities performed on and near the Salmon, Mississippi, Site in calendar year 2007. The Draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report is submitted to comply with that requirement. The Tatum Salt Dome was used by the U.S. Atomic Energy Commission (AEC) for underground nuclear testing during the cold war. The land surface above the salt dome, the Salmon Site, is located in Lamar County, Mississippi, approximately 12 miles west of Purvis (Figure 1). The U.S. Department of Energy (DOE), the successor to the AEC, is responsible for long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned this responsibility effective October 2006

  2. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This report summarizes the annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site in calendar year 2010. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon, MS, Site is a federally owned site located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS (Figure 1). The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the 1,470-acre site. DOE's Office of Legacy Management (LM) is the operating agent for the surface and subsurface real estate.

  3. Corrective Action Management Unit Report of Post-Closure Care Activities Calendar Year 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Little, Bonnie Colleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The Corrective Action Management Unit (CAMU) at Sandia National Laboratories, New Mexico (SNL/NM) consisted of a containment cell, two treatment systems, four associated waste staging and storage areas, and support areas; all were used for management of remediation wastes between 1997 and 2003.

  4. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-03-01

    This report summarizes the 2011 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site1). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi.

  5. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This report summarizes the annual inspection, sampling, and maintenance activities performed on and near the Salmon, Mississippi, Site in calendar year 2009. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report complies with the annual report requirement. The Salmon, MS, Site is located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS The site encompasses 1,470 acres and is not open to the general public. The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned responsibility for the site effective October 1, 2006

  6. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-03-01

    This report summarizes the 2012 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. A revised plan is in preparation. The Long-Term Surveillance Plan for the Salmon, Mississippi, Site is intended for release in 2013. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi The State of Mississippi owns the surface real estate subject to certain restrictions related to subsurface penetration. The State is the surface operator; the Mississippi Forestry Commission is its agent. The federal government owns the subsurface real estate (including minerals and some surface features), shares right-of-entry easements with the State, and retains rights related to subsurface monitoring. The U.S. Department of Energy (DOE) Office of Legacy Management (LM), a successor agency to the U.S. Atomic Energy Commission, is responsible for the long-term surveillance of the subsurface real estate

  7. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-03-01

    This report summarizes the annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site in calendar year 2010. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon, MS, Site is a federally owned site located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS (Figure 1). The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the 1,470-acre site. DOE's Office of Legacy Management (LM) is the operating agent for the surface and subsurface real estate.

  8. A Post Closure Safety Assessment for Radioactive Wastes from Advanced nuclear fuel Cycle

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Hwang, Yong Soo

    2010-01-01

    KAERI has developed the KIEP-21 (Korean, Innovative, Environmentally Friendly, and Proliferation Resistant System for the 21st Century). It is an advanced nuclear fuel cycle option with a pyro-process and a GEN-IV SFR. A pyro-process consists of two distinctive processes, an electrolytic reduction process and an electro-refining and winning process. When the pyro-process is applied, it generates five streams of wastes. To compare pyro-process advantage over the direct disposal of Spent Nuclear Fuel (SNF), the PWR SNF of the 45,000 MWD burn-up has been assumed. A safety assessment model for pyro-process wastes and representative results are presented in this report

  9. 40 CFR 265.145 - Financial assurance for post-closure care.

    Science.gov (United States)

    2010-07-01

    ... care. 265.145 Section 265.145 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... made, multiplied by an amount equivalent to 85 percent of the most recent investment rate or of the...; and (B) In connection with that procedure, no matters came to his attention which caused him to...

  10. Post-closure biosphere assessment modelling: comparison of complex and more stylised approaches.

    Science.gov (United States)

    Walke, Russell C; Kirchner, Gerald; Xu, Shulan; Dverstorp, Björn

    2015-10-01

    Geological disposal facilities are the preferred option for high-level radioactive waste, due to their potential to provide isolation from the surface environment (biosphere) on very long timescales. Assessments need to strike a balance between stylised models and more complex approaches that draw more extensively on site-specific information. This paper explores the relative merits of complex versus more stylised biosphere models in the context of a site-specific assessment. The more complex biosphere modelling approach was developed by the Swedish Nuclear Fuel and Waste Management Co (SKB) for the Formark candidate site for a spent nuclear fuel repository in Sweden. SKB's approach is built on a landscape development model, whereby radionuclide releases to distinct hydrological basins/sub-catchments (termed 'objects') are represented as they evolve through land rise and climate change. Each of seventeen of these objects is represented with more than 80 site specific parameters, with about 22 that are time-dependent and result in over 5000 input values per object. The more stylised biosphere models developed for this study represent releases to individual ecosystems without environmental change and include the most plausible transport processes. In the context of regulatory review of the landscape modelling approach adopted in the SR-Site assessment in Sweden, the more stylised representation has helped to build understanding in the more complex modelling approaches by providing bounding results, checking the reasonableness of the more complex modelling, highlighting uncertainties introduced through conceptual assumptions and helping to quantify the conservatisms involved. The more stylised biosphere models are also shown capable of reproducing the results of more complex approaches. A major recommendation is that biosphere assessments need to justify the degree of complexity in modelling approaches as well as simplifying and conservative assumptions. In light of the uncertainties concerning the biosphere on very long timescales, stylised biosphere models are shown to provide a useful point of reference in themselves and remain a valuable tool for nuclear waste disposal licencing procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Review comments on the SR 97 post-closure safety assessment

    International Nuclear Information System (INIS)

    Geier, J.

    2000-01-01

    These review comments concern an assessment of the long-term safety of a deep repository for spent nuclear fuel, titled Safety Report 97 (SR 97), which was prepared by the Swedish Nuclear Fuel Waste Management Company (SKB). The primary focus of this review is on hydrogeologic issues relating to groundwater flow, hydrologic uncertainty, and the potential for radionuclide transport from leaking canisters. The main hydrological model that was used in SR 97 is based on a continuum conceptual model of groundwater flow in fractured bedrock. Major problems with this model include the following: The validity of the continuum model is arguable for the type of rock that is present at these sites. The suitability of the model for the intended purpose of predicting streamlines and travel times for groundwater flow through the rock mass has not been adequately demonstrated. The comparison with alternative, discrete models yielded more divergent results than has been recognized in the SR 97 reports. The comparison with alternative models did not consider significant, realistic sources of uncertainty in the alternative models, evaluation of which would have likely led to greater divergence. The SR 97 model of radionuclide transport is based on a 1-D streamtube formulation, within which the predicted release of radionuclides to the biosphere is dominated by a parameter called the F ratio. A key factor in this parameter is the flow wetted surface. All of the hydrologic models used in SR 97 relied upon essentially the same set of geometric assumptions to estimate flow wetted surface from conductive fracture frequency in boreholes. Hence the predictions of the alternative models are not independent. Alternative methods of estimating flow wetted surface are needed to obtain a realistic evaluation of the uncertainty regarding radionuclide release. The alternative 3-D hydrologic models were used only to predict streamtube parameters, not for actual transport simulations. Hence the comparison between the main hydrologic conceptual model and alternative models does not include a full assessment of the effects of flow field complexity on radionuclide transport. As this is one of the major distinctions between the continuum model and the alternative models, the comparison must be regarded as incomplete. Besides these major hydrological issues, miscellaneous comments are offered on aspects of the repository system design and site descriptions that relate to hydrology

  12. On the estimation of bias in post-closure performance assessment of underground radioactive waste disposal

    International Nuclear Information System (INIS)

    Thompson, B.G.J.; Gralewski, Z.A.; Grindrod, P.

    1995-01-01

    This paper proposes a systematic method for recording and evaluating bias in performance assessments for underground radioactive waste disposal facilities. The bias estimation approach comprises three principal components: (1) creation of a relational database containing historical assumptions and decisions made during the assessment, (2) investigation of the impact of some identified sources of internal bias through alternative assessment calculations, and (3) investigation of the impact of some identified sources of external bias by estimating degrees of belief probability. Bias corrections may help avoid unnecessary concerns by explaining and scoping the impacts of principal differences without the need to undertake additional site investigation, research, and performance analysis

  13. No-migration variance petition

    International Nuclear Information System (INIS)

    1990-03-01

    Volume V contains the appendices for: closure and post-closure plans; RCRA ground water monitoring waver; Waste Isolation Division Quality Program Manual; water quality sampling plan; WIPP Environmental Procedures Manual; sample handling and laboratory procedures; data analysis; and Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant

  14. No-migration variance petition. Appendices C--J: Volume 5, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Volume V contains the appendices for: closure and post-closure plans; RCRA ground water monitoring waver; Waste Isolation Division Quality Program Manual; water quality sampling plan; WIPP Environmental Procedures Manual; sample handling and laboratory procedures; data analysis; and Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant.

  15. Waste-to-energy permitting sourcebook

    International Nuclear Information System (INIS)

    Longwell, D.; Wegrecki, A.; Williams, D.

    1992-10-01

    Environmental issues, regulatory processes and approvals important in obtaining a permit to construct and/or operate a waste-to-energy (WTE) facility are identified and discussed. Environmental issues include: (1) air emission levels, their control and potential impacts, (2) ash leachability, treatment, and disposal, (3) potential health risks from emissions, and (4) other issues such as need/benefit and public perception of WTE. Laws, regulations and approvals that can affect project development are identified and listed, and potential regulatory trends are discussed. A general permit acquisition plan is also presented. An analysis of environmental and regulatory data obtained from the literature, regulatory agencies, and specific projects is presented. California and Massachusetts, both with regulations generally more stringent than federal regulations and considered environmentally conservative, were selected for detailed state regulatory review. Two project case histories (Commerce Refuse-to-Energy (RTE) Project in California and SEMASS WTE Project in Massachusetts) were selected to illustrate: (1) how regulations are actually applied to a project, (2) project-specific permit and operating conditions, and (3) project-specific environmental issues. Modern WTE plots employ state-of-the-art air emission control technologies and strategies to reduce air emission is to levels below regulatory requirements and to reduce estimated health risks to within EPA's acceptable risk range. WTE ash leachate can exhibit hazardous waste characteristics, primarily lead and cadmium. However, modern landfills utilize liners and leachate collection systems to prevent infiltration of leachate into the groundwater supply. Modern WTE plants employ dry systems and have zero process wastewater discharge

  16. PERMITTING LEADERSHIP IN THE UNITED STATES

    International Nuclear Information System (INIS)

    Ken Nemeth

    2002-01-01

    In accordance with the Southern States Energy Board (SSEB) proposal, as incorporated into NETL/DE-FC26-97FT34199, the objective of this agreement is to streamline the environmental technology permitting process site-to-site, state-to-state, and industry-to-industry to achieve remediation and waste processing faster, better and cheaper. SSEB is working with member Governors, legislators and regulators to build consensus on streamlining the permitting process for new and innovative technologies for addressing the legacy of environmental problems from 50 years of weapons research, development and production. This report reviews mechanisms whereby industry consortiums and the Department of Energy (DOE) have been working with State regulators and other officials in technology deployment decisions within the DOE complex. The historic development of relationships with State regulators is reviewed and the current nature of the relationships examined. The report contains observations from internal DOE reviews as well as recommendations from the General Accounting Office (GAO) and other external organizations. The report discusses reorganization initiatives leading up to a DOE Top-to-Bottom review of the Environmental Management (EM) Program and highlights points of consideration for maintaining effective linkages with State regulators. It notes how the proposed changes will place new demands upon the National Energy Technology Laboratory (NETL) and how NETL can leverage its resources by refocusing existing EM efforts specifically to states that have DOE facilities within their borders (host-states). Finally, the report discusses how SSEB's Permitting Leadership in the United States (PLUS) program can provide the foundation for elements of NETL's technical assistance program that are delivered to regulators and other decision- makers in host-states. As a regional compact commission, SSEB provides important direct linkages to regulators and stakeholders who need technical

  17. Tradable permit allocations and sequential choice

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Ian A. [Centre for Economic Research, ETH Zuerich, Zurichbergstrasse 18, 8092 Zuerich (Switzerland)

    2011-01-15

    This paper investigates initial allocation choices in an international tradable pollution permit market. For two sovereign governments, we compare allocation choices that are either simultaneously or sequentially announced. We show sequential allocation announcements result in higher (lower) aggregate emissions when announcements are strategic substitutes (complements). Whether allocation announcements are strategic substitutes or complements depends on the relationship between the follower's damage function and governments' abatement costs. When the marginal damage function is relatively steep (flat), allocation announcements are strategic substitutes (complements). For quadratic abatement costs and damages, sequential announcements provide a higher level of aggregate emissions. (author)

  18. PSD Permit for the Marblehead Lime Company

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  19. Honda Permits to Install 1 Year Aggregation

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  20. RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 5, Technical Memorandums 06-09A, 06-10A, and 06-12A

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-09-01

    This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).