WorldWideScience

Sample records for rays electronic resource

  1. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  2. Electronic Resource Management and Design

    Science.gov (United States)

    Abrams, Kimberly R.

    2015-01-01

    We have now reached a tipping point at which electronic resources comprise more than half of academic library budgets. Because of the increasing work associated with the ever-increasing number of e-resources, there is a trend to distribute work throughout the library even in the presence of an electronic resources department. In 2013, the author…

  3. Assessing the quantum physics impacts on future x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Mark J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anisimov, Petr Mikhaylovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-06

    A new quantum mechanical theory of x-ray free electron lasers (XFELs) has been successfully developed that has placed LANL at the forefront of the understanding of quantum effects in XFELs. Our quantum theory describes the interaction of relativistic electrons with x-ray radiation in the periodic magnetic field of an undulator using the same mathematical formalism as classical XFEL theory. This places classical and quantum treatments on the same footing and allows for a continuous transition from one regime to the other eliminating the disparate analytical approaches previously used. Moreover, Dr. Anisimov, the architect of this new theory, is now considered a resource in the international FEL community for assessing quantum effects in XFELs.

  4. X-ray Free-electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, J.; /DESY; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  5. Electron-ion-x-ray spectrometer system

    International Nuclear Information System (INIS)

    Southworth, S.H.; Deslattes, R.D.; MacDonald, M.A.

    1993-01-01

    The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays

  6. Radio emission, cosmic ray electrons, and the production of γ-rays in the galaxy

    International Nuclear Information System (INIS)

    Webber, W.R.; Simpson, G.A.; Cane, H.V.

    1980-01-01

    Using a perspective based on new radio data, we have reexamined the traditional derivation of the interstellar electron spectrum using the galactic nonthermal radio spectrum. The radio spectrum derived in the polar directions is now used as a base for this derivation rather than the anticenter spectrum. The interstellar electron spectrum between 70 and 1200 MeV is found to have an exponent -2.14 +- 0.06, steeper than previously determined, and leading to electron fluxes at low energies up to a factor of 10 larger than previously predicted. The electron spectrum below approx.20 MeV measured at Earth is used along with solar modulation arguments to suggest that this interstellar electron spectrum flattens to an exponent of -1.6 +- 0.1 between 5 and 70 MeV. We then use radio maps to predict the γ-ray fluxes produced by the bremsstrahlung process to be expected from these electrons. Using the radio maps, we fiest define L/sub eff/, the effective path length for radio emission in various directions, to predict the effective path length for γ-ray emission. The spectral shapes of γ-rays predicted when the contribution from π 0 decay is included, show little evidence of a pion-decay bump and agree well with those observed, indicating that large changes in the cosmic-ray electron to proton ratio from that observed locally are unlikely along a line of sight. The differences in the predicted and observed γ-ray intensities in the galactic plane are small. However, in the polar direction, the predicted γ-ray flux using the radio data is approx.6 times larger than that actually observed. This is indicative of the fact that the radio emissivity is considerably thicker than the γ-ray emissivity disk, and the cosmic-ray electron population extends beyond the gaseous disk of the Galaxy. This technique of estimating the γ-ray intensity using the radio data is compared with the usual technique which employs estimates of the column density of hydrogen

  7. Electronic Resource Management Systems

    Directory of Open Access Journals (Sweden)

    Mark Ellingsen

    2004-10-01

    Full Text Available Computer applications which deal with electronic resource management (ERM are quite a recent development. They have grown out of the need to manage the burgeoning number of electronic resources particularly electronic journals. Typically, in the early years of e-journal acquisition, library staff provided an easy means of accessing these journals by providing an alphabetical list on a web page. Some went as far as categorising the e-journals by subject and then grouping the journals either on a single web page or by using multiple pages. It didn't take long before it was recognised that it would be more efficient to dynamically generate the pages from a database rather than to continually edit the pages manually. Of course, once the descriptive metadata for an electronic journal was held within a database the next logical step was to provide administrative forms whereby that metadata could be manipulated. This in turn led to demands for incorporating more information and more functionality into the developing application.

  8. Bremsstrahlung X rays from Jovian auroral electrons

    International Nuclear Information System (INIS)

    Barbosa, D.D.

    1990-01-01

    The spectrum of X rays from the planet Jupiter is calculated according to an auroral electron beam model. The electrons are assumed to be accelerated by a field-aligned potential drop and penetrate into the atmosphere as a Maxwellian beam of primaries which are scattered, degraded in energy, and merged with a population of ionization secondaries having a power law energy distribution. The soft X rays observed by the Einstein Observatory satelltie are due to bremsstrahlung from the sedondary electrons in the H 2 atmosphere. A good match to the X ray data is obtained if the power law spectral index of the secondary electrons, γ e , is ≅ 2, yielding a power law slope for the photon flux γ X = γ e + 1 ≅ 3. The X ray intensity is best reconciled with a beam of primaries having a characteristic energy 30-100 keV and penetrating the homopause with an auroral energy flux typically of 10-20 ergs cm -2 s -1 but no greater than 50 ergs cm -2 s -1

  9. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-11-05

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration is to consolidate all electronic resources into a single and centralized location. This would allow for better information sharing among library staff.

  10. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    International Nuclear Information System (INIS)

    Behrens, Christopher

    2012-11-01

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  11. Characterization and control of femtosecond electron and X-ray beams at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher

    2012-11-15

    X-ray free-electron lasers (FELs) open up new frontiers in photon science, and in order to take full advantage of these unique accelerator-based light sources, the characterization and control of the femtosecond electron and X-ray beams is essential. Within this cumulative thesis, recent results achieved within the active research field of femtosecond electron and X-ray beams at FELs are reported.The basic principles of X-ray FELs are described, and concepts of longitudinal electron beam diagnostics with femtosecond accuracy are covered. Experimental results obtained with a transverse deflecting structure (TDS) and spectroscopy of coherent terahertz radiation are presented, and the suppression of coherent optical radiation effects, required for diagnostics utilizing a TDS, is demonstrated. Control of the longitudinal phase space by using multiple radio frequencies for longitudinal electron beam tailoring is presented, and a new technique of reversible electron beam heating with two TDSs is described. For the characterization of femtosecond X-ray pulses, a novel method based on dedicated longitudinal phase space diagnostics for electron beams is introduced, and recent measurements with a streaking technique using external terahertz fields are presented.

  12. Electron ray tracing with high accuracy

    International Nuclear Information System (INIS)

    Saito, K.; Okubo, T.; Takamoto, K.; Uno, Y.; Kondo, M.

    1986-01-01

    An electron ray tracing program is developed to investigate the overall geometrical and chromatic aberrations in electron optical systems. The program also computes aberrations due to manufacturing errors in lenses and deflectors. Computation accuracy is improved by (1) calculating electrostatic and magnetic scalar potentials using the finite element method with third-order isoparametric elements, and (2) solving the modified ray equation which the aberrations satisfy. Computation accuracy of 4 nm is achieved for calculating optical properties of the system with an electrostatic lens

  13. Two electron response to an intense x-ray free electron laser pulse

    International Nuclear Information System (INIS)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T

    2009-01-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne 8+ and Ar 16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10 17 to 10 22 W/cm 2 .

  14. Deducing Electron Properties from Hard X-Ray Observations

    Science.gov (United States)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  15. PRINCIPLES OF CONTENT FORMATION EDUCATIONAL ELECTRONIC RESOURCE

    Directory of Open Access Journals (Sweden)

    О Ю Заславская

    2017-12-01

    Full Text Available The article considers modern possibilities of information and communication technologies for the design of electronic educational resources. The conceptual basis of the open educational multimedia system is based on the modular architecture of the electronic educational resource. The content of the electronic training module can be implemented in several versions of the modules: obtaining information, practical exercises, control. The regularities in the teaching process in modern pedagogical theory are considered: general and specific, and the principles for the formation of the content of instruction at different levels are defined, based on the formulated regularities. On the basis of the analysis, the principles of the formation of the electronic educational resource are determined, taking into account the general and didactic patterns of teaching.As principles of the formation of educational material for obtaining information for the electronic educational resource, the article considers: the principle of methodological orientation, the principle of general scientific orientation, the principle of systemic nature, the principle of fundamentalization, the principle of accounting intersubject communications, the principle of minimization. The principles of the formation of the electronic training module of practical studies in the article include: the principle of systematic and dose based consistency, the principle of rational use of study time, the principle of accessibility. The principles of the formation of the module for monitoring the electronic educational resource can be: the principle of the operationalization of goals, the principle of unified identification diagnosis.

  16. Implementing CORAL: An Electronic Resource Management System

    Science.gov (United States)

    Whitfield, Sharon

    2011-01-01

    A 2010 electronic resource management survey conducted by Maria Collins of North Carolina State University and Jill E. Grogg of University of Alabama Libraries found that the top six electronic resources management priorities included workflow management, communications management, license management, statistics management, administrative…

  17. Two electron response to an intense x-ray free electron laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L R; Parker, J S; Meharg, K J; Armstrong, G S J; Taylor, K T, E-mail: l.moore@qub.ac.u [DAMTP, David Bates Building, Queen' s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne{sup 8+} and Ar{sup 16+} exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 10{sup 17} to 10{sup 22} W/cm{sup 2}.

  18. Managing electronic resources a LITA guide

    CERN Document Server

    Weir, Ryan O

    2012-01-01

    Informative, useful, current, Managing Electronic Resources: A LITA Guide shows how to successfully manage time, resources, and relationships with vendors and staff to ensure personal, professional, and institutional success.

  19. Food processing using electrons and X-rays

    International Nuclear Information System (INIS)

    Clouston, J.G.

    1985-01-01

    The ionizing radiation which will be used as process energy for the preservation of food, will be limited to high energy electrons (less than 10 MeV), X-rays (less than 5 MeV) and gamma rays emitted by cobalt-60 (1.17;1.33 MeV) and cesium -137 (0.663 MeV). When a foodstuff is irradiated with any of these radiations absorption of the radiant energy will initiate a variety of reactions between its atomic and molecular constituents causing permanent chemical, physical and biological changes. This paper focusses on radiation processing using electron or X-ray generators in the range 2 to 10 MeV

  20. Measurement of Cosmic-Ray TeV Electrons

    Science.gov (United States)

    Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Mueller, D.; Musser, J.; Nutter, S.; Park, N.; Tarle, G.; Wakely, S.

    2011-09-01

    The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. At these energies distant sources will not contribute to the local electron spectrum due to the strong energy losses of the electrons and thus TeV observations will reflect the distribution and abundance of nearby acceleration sites. CREST will detect electrons indirectly by measuring the characteristic synchrotron photons generated in the Earth's magnetic field. The instrument consist of an array of 1024 BaF2 crystals viewed by photomultiplier tubes surrounded by a hermetic scintillator shield. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica during the 2011-12 season.

  1. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Higley, Daniel J., E-mail: dhigley@stanford.edu; Yuan, Edwin [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hirsch, Konstantin; Dakovski, Georgi L.; Jal, Emmanuelle; Lutman, Alberto A.; Coslovich, Giacomo; Hart, Philip; Hoffmann, Matthias C.; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Stöhr, Joachim; Nuhn, Heinz-Dieter; Reid, Alex H.; Dürr, Hermann A.; Schlotter, William F. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Liu, Tianmin; MacArthur, James P. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); and others

    2016-03-15

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L{sub 3,2}-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.

  2. Electron beam requirements for soft x-ray/XUV free-electron lasers

    International Nuclear Information System (INIS)

    Goldstein, J.C.

    1987-01-01

    A discussion of the electron beam quality (peak current, energy spread, and transverse emittance) required to drive short wavelength free-electron lasers in the XUV (10-100 nm) and soft x-ray (<10 nm) optical wavelength ranges is presented

  3. X-ray analysis of electron Bernstein wave heating in MST

    Energy Technology Data Exchange (ETDEWEB)

    Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.; Almagri, A.; Forest, C. B. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  4. Scattered hard X-ray and γ-ray generation from a chromatic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Welch, D. R.; Miller, C. L. [Voss Scientific, Albuquerque, New Mexico 87108 (United States)

    2015-11-14

    An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1–3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1–3 MeV photons with a total count of 10{sup 11}. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and γ-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V{sup 4} and detected photon counts of nearly 10{sup 6} at a radial distance of 1 m which corresponds to dose ∼40 μrad at 1 m.

  5. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  6. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  7. Gender Analysis Of Electronic Information Resource Use: The Case ...

    African Journals Online (AJOL)

    Based on the findings the study concluded that access and use of electronic information resources creates a “social digital divide” along gender lines. The study ... Finally, the library needs to change its marketing strategies on the availability of electronic information resources to increase awareness of these resources.

  8. Users satisfaction with electronic information resources and services ...

    African Journals Online (AJOL)

    This study investigated users satisfaction on the use of electronic information resources and services in MTN Net libraries in ABU & UNIBEN. Two objectives and one null hypotheses were formulated and tested with respect to the users' satisfaction on electronic information resources and services in MTN Net libraries in ...

  9. Energy dispersive X-ray analysis in the electron microscope

    CERN Document Server

    Bell, DC

    2003-01-01

    This book provides an in-depth description of x-ray microanalysis in the electron microscope. It is sufficiently detailed to ensure that novices will understand the nuances of high-quality EDX analysis. Includes information about hardware design as well as the physics of x-ray generation, absorption and detection, and most post-detection data processing. Details on electron optics and electron probe formation allow the novice to make sensible adjustments to the electron microscope in order to set up a system which optimises analysis. It also helps the reader determine which microanalytical me

  10. Comparative effectiveness of gamma-rays and electron beams in food irradiation

    International Nuclear Information System (INIS)

    Hayashi, Toru

    1991-01-01

    Ionizing radiations which can be used for the treatment of foods are gamma-rays from Co-60 and Cs-137, accelerated electrons from a machine at an energy of 10 MeV or lower and X-rays from a machine at an energy of 5 MeV or lower. The Joint FAO/IAEA/WHO Expert Committee on the Wholesomeness of Irradiated Food held in 1980 concluded that the foods irradiated at overall average doses up to 10 kGy with the radiation listed above are wholesome for human consumption. While most of the commercial food irradiations are conducted with gamma-rays from Co-60, accelerated electrons are increasingly utilized for treating foods. An important difference between gamma-rays and accelerated electrons is the penetration capacity in materials. The penetration capacity of gamma-rays is much higher than that of accelerated electrons. Another important difference is the dose rate. The dose rates of gamma-rays from commercial Co-60 sources are 1-100 Gy/min, while those of electron beams from electron accelerators are 10 3 -10 6 Gy/s. Ideally a comparison of the effect of different types of ionizing radiation should be carried out at the same dose rate but this has been difficult due to the design of irradiators. It is very difficult to draw a definite conclusion on the difference in the effectiveness in food irradiation between gamma-rays and electron beams based on published data. This chapter deals with as many reports as possible on the comparative effectiveness of gamma-rays and electron beams and on the effect of dose rate on chemical reactions and living organisms, whether or not they demonstrate any dependency of the effect of irradiation on dose rate and type of radiation. (author)

  11. Cosmic-ray electrons and galactic radio emission - a conflict

    International Nuclear Information System (INIS)

    Badhwar, G.D.; Daniel, R.R.; Stephens, S.A.

    1977-01-01

    Reference is made to attempts in the past to deduce information of astrophysical importance from a study of the galactic non-thermal continuum in relation to cosmic ray electrons observed in the neighbourhood of the Earth. Such investigations were carried out using the cosmic ray electron data obtained from a single experiment or by making use of an average spectrum derived from world data, although it was known that the flux values observed by different investigators in any energy band differed by as much as a factor of 4. This has led to conflicting conclusions being drawn from the analysis of data of different observers. The present authors used a different approach for analysing the observational data, based on arguments of internal consistency between each measured electron spectrum and the magnetic field strength and the dimension of the radio-emitting region required to explain the radio observations. Such an approach makes it possible to highlight the inconsistencies associated with some of the electron measurements and permits certain inferences of cosmic ray and astrophysical interest. From the discussion it is concluded that the observed spectral index of the radio continuum in the Galaxy is in conflict with some of the cosmic ray electron measurements; also that the absolute intensities of cosmic ray electrons as measured in some experiments are so low that they cannot be reconciled either with the interstellar magnetic field limits or with the extent of the galactic disk, and it is likely that the field strength derived from Faraday rotation measurements gives only a lower limit to the local magnetic field in the Galaxy. (U.K.)

  12. Organizational matters of competition in electronic educational resources

    Directory of Open Access Journals (Sweden)

    Ирина Карловна Войтович

    2015-12-01

    Full Text Available The article examines the experience of the Udmurt State University in conducting competitions of educational publications and electronic resources. The purpose of such competitions is to provide methodological support to educational process. The main focus is on competition of electronic educational resources. The technology of such contests is discussed through detailed analysis of the main stages of the contest. It is noted that the main task of the preparatory stage of the competition is related to the development of regulations on competition and the definition of criteria for selection of the submitted works. The paper also proposes a system of evaluation criteria of electronic educational resources developed by members of the contest organizing committee and jury members. The article emphasizes the importance of not only the preparatory stages of the competition, but also measures for its completion, aimed at training teachers create quality e-learning resources.

  13. Quantum theory for 1D X-ray free electron laser

    Science.gov (United States)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  14. A compact x-ray free electron laser

    International Nuclear Information System (INIS)

    Barletta, W.; Attac, M.; Cline, D.B.

    1988-01-01

    We present a design concept and simulation of the performance of a compact x-ray, free electron laser driven by ultra-high gradient rf-linacs. The accelerator design is based on recent advances in high gradient technology by a LLNL/SLAC/LBL collaboration and on the development of bright, high current electron sources by BNL and LANL. The GeV electron beams generated with such accelerators can be concerted to soft x-rays in the range from 2--10 nm by passage through short period, high fields strength wigglers as are being designed at Rocketdyne. Linear light sources of this type can produce trains of picosecond (or shorter) pulses of extremely high spectral brilliance suitable for flash holography of biological specimens in vivo and for studies of fast chemical reactions. 12 refs., 8 figs., 4 tabs

  15. Bulk sensitive hard x-ray photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Weber, N.; Escher, M.; Merkel, M. [Focus GmbH, Neukirchner Str. 2, D-65510 Hünstetten (Germany); Gloskovskii, A.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  16. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  17. Cosmic ray electrons and protons, and their antiparticles

    International Nuclear Information System (INIS)

    Boezio, Mirko

    2014-01-01

    Cosmic rays are a sample of solar, galactic, and extragalactic matter. Their origin, acceleration mechanisms, and subsequent propagation toward Earth have intrigued scientists since their discovery. These issues can be studied via analysis of the energy spectra and composition of cosmic rays. Protons are the most abundant component of the cosmic radiation, and many experiments have been dedicated to the accurate measurement of their spectra. Complementary information is provided by electrons, which comprise about 1% of the cosmic radiation. Because of their low mass, electrons experience severe energy losses through synchrotron emission in the galactic magnetic field and inverse Compton scattering of radiation fields. Electrons therefore provide information on the local galactic environment that is not accessible from the study of the cosmic ray nuclei. Antiparticles, namely antiprotons and positrons, are produced in the interaction between cosmic ray nuclei and the interstellar matter. They are therefore intimately linked to the propagation mechanisms of the parent nuclei. Novel sources of primary cosmic ray antiparticles of either astrophysical (e.g., positrons from pulsars) or exotic origin (e.g., annihilation of dark matter particles) may exist. The nature of dark matter is one of the most prominent open questions in science today. An observation of positrons from pulsars would open a new observation window on these sources. Several experiments equipped with state-of-the art detector systems have recently presented results on the energy spectra of electrons, protons, and their antiparticles with a significant improvement in statistics and better control of systematics The status of the field will be reviewed, with a focus on these recent scientific results. (author)

  18. CHALLENGES OF ELECTRONIC INFORMATION RESOURCES IN ...

    African Journals Online (AJOL)

    This paper discusses the role of policy for proper and efficient library services in the electronic era. It points out some of the possible dangers of embarking in electronic resources without a proper focus at hand. Thus, it calls for today's librarians and policy makers to brainstorm and come up with working policies suitable to ...

  19. Detection of X-ray fluorescence of light elements by electron counting in a low-pressure gaseous electron multiplier

    International Nuclear Information System (INIS)

    Pansky, A.; Breskin, A.; Chechik, R.; Malamud, G.

    1992-12-01

    Ionization electrons deposited by soft X-rays in a low pressure (10 Torr) gas medium are efficiently counted by a multistage electron multiplier, providing an accurate measurement of the X-ray photon energy. Energy resolution of 56-28% FWHM were measured for X-rays of 110-676 eV, recording electrical induced charges or visible photons emitted during the avalanche process. It is demonstrated that a combined analysis of the number of electron trail length of an event, provides a powerful and competitive way of resolving ultra soft X-rays. We present the experimental technique, discuss the advantages and limitations of the Primary Electron Counter, and suggest ways to improve its performances. (authors)

  20. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  1. Use of Electronic Resources in a Private University in Nigeria ...

    African Journals Online (AJOL)

    The study examined awareness and constraints in the use of electronic resources by lecturers and students of Ajayi Crowther University, Oyo, Nigeria. It aimed at justifying the resources expended in the provision of electronic resources in terms of awareness, patronage and factors that may be affecting awareness and use ...

  2. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  3. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-05-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system as potential replacements namely: Proquest 360 Resource Manager, Ex Libris Alma and Open Source CORAL ERMS. After comparing and trialling the systems, it was decided to go for Proquest 360 Resource Manager.

  4. Study of electrons distribution produced by laser-plasma interaction on x-ray generation

    International Nuclear Information System (INIS)

    Nikzad, L.; Sadighi-Bonabi, R.

    2010-01-01

    Complete text of publication follows. In the present work, X-ray beams are generated from interaction of relativistic electron beams produced by interaction of 500 mJ, 30 femtosecond Ti:sapphire laser pulses with thin solid targets such as lead, molybdenum and tungsten. After interaction of an intense pulsed laser with He gas-jet, a micron-scale laser produced plasma, creates and accelerates electron bunches, which propagate in the ion channel produced in the wake of the laser pulse. When an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within very short distance. These accelerated electrons with Megaelectron-Volt energy and different distributions, can interact with targets to generate X-ray radiation with Kiloelectron-Volt energy, providing to be close enough to the gas-jet, where the relativistic accelerated electrons exist. Here, to determine the results, Monte Carlo simulation (MCNP-4C code) is employed to present Bremsstrahlung and characteristic X-ray production by quasi-Maxwellian and quasi-monoenergetic electron beams for three samples with different thicknesses. The outcome shows that for one specific electron spectrum and one definite target, the energy which the maximum characteristic x-ray flux takes place, varies with thickness. Also, for each material the energy which this maximum happens is constant for all thicknesses, for both produced electron spectra. For each sample, x-ray flux is calculated for different thicknesses and the thickness which the maximum characteristic x-ray flux occurs is obtained. Besides, it is concluded that by increasing the atomic number of the target, maximum X-ray flux moves towards higher energy. Also, comparison of the results for three targets and two electron distributions shows that by using quasi-monoenergetic electron spectra, more intense and narrower characteristic X-ray can be produced compared to the quasi-Maxwellian electron distribution, almost for all

  5. use of electronic resources by graduate students of the department

    African Journals Online (AJOL)

    respondent's access electronic resources from the internet via Cybercafé .There is a high ... KEY WORDS: Use, Electronic Resources, Graduate Students, Cybercafé. INTRODUCTION ... Faculty of Education, University of Uyo, Uyo. Olu Olat ...

  6. Quantitative energy-dispersive electron probe X-ray microanalysis ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique us- ing an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle. EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such ...

  7. Attosecond time-energy structure of X-ray free-electron laser pulses

    Science.gov (United States)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  8. Electron-confinement studies on EBT-S using soft-x-ray techniques

    International Nuclear Information System (INIS)

    Hillis, D.L.; Haste, G.R.; Berry, L.A.

    1982-08-01

    Soft x-ray bremsstrahlung measurements have been performed on the ELMO Bumpy Torus (EBT-S) plasma to determine the electron temperature T/sub e/ and electron density n/sub e/ using a calibrated Si(Li) detector over a wide range of operating conditions. The purpose of this paper is to outline the necessary assumptions and essential x-ray techniques that are inherent in soft x-ray measurements in order to investigate the electron heating and confinement properties of EBT-S. In addition, by utilizing the electron density as determined by the soft x-ray measurements, the previous EBT-S confinement analyses have been extended. The steady-state plasma of EBT-S is heated by microwaves using a cw gyrotron that can operate up to power levels of 200 kW. From the soft x-ray measurements, both the electron temperature and density are found to increase at higher microwave power levels. For operation at microwave power levels of 200 kW, T/sub e/ approaches 1 keV while n/sub e/ approaches 1.2 x 10 12 cm -3 . In general, confinement properties are found to improve with increased microwave power. The data are compared with neoclassical transport scaling and the electron transport is found to be collisionless (nu/Ω < 1) as well as neoclassical

  9. Electron-electron correlation, resonant photoemission and X-ray emission spectra

    International Nuclear Information System (INIS)

    Parlebas, J.C.; Kotani, Akio; Tanaka, Satoshi.

    1991-01-01

    In this short review paper we essentially focus on the high energy spectroscopies which involve second order quantum processes, i.e., resonance photoemission, Auger and X-ray emission spectroscopies, denoted respectively by RXPS, AES and XES. First, we summarize the main 3p-RXPS and AES results obtained in Cu and Ni metals; especially we recall that the satellite near the 3p-threshold in the spectra, which arises from a d-hole pair bound state, needs a careful treatment of the electron-electron correlation. Then we analyze the RXPS spectra in a few Ce compounds (CeO 2 , Ce 2 O 3 and CeF 3 ) involving 3d or 4d core levels and we interpret the spectra consistently with the other spectroscopies, such as core XPS and XAS which are first order quantum processes. Finally within the same one-impurity model and basically with the same sets of parameters, we review a theory for the Ce 5p→3d XES, as well as for the corresponding RXES, where (1) the incident X-ray is tuned to resonate with the 3d→4f transition and (2) the X-ray emission due to the 5p→3d transition is actually observed. The paper ends with a general discussion. (author) 77 refs

  10. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    © 2016 Optical Society of America. X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

  11. Active silicon x-ray for measuring electron temperature

    International Nuclear Information System (INIS)

    Snider, R.T.

    1994-07-01

    Silicon diodes are commonly used for x-ray measurements in the soft x-ray region between a few hundred ev and 20 keV. Recent work by Cho has shown that the charge collecting region in an underbiased silicon detector is the depletion depth plus some contribution from a region near the depleted region due to charge-diffusion. The depletion depth can be fully characterized as a function of the applied bias voltage and is roughly proportional to the squart root of the bias voltage. We propose a technique to exploit this effect to use the silicon within the detector as an actively controlled x-ray filter. With reasonable silicon manufacturing methods, a silicon diode detector can be constructed in which the sensitivity of the collected charge to the impinging photon energy spectrum can be changed dynamically in the visible to above the 20 keV range. This type of detector could be used to measure the electron temperature in, for example, a tokamak plasma by sweeping the applied bias voltage during a plasma discharge. The detector samples different parts of the energy spectrum during the bias sweep, and the data collected contains enough information to determine the electron temperature. Benefits and limitations of this technique will be discussed along with comparisons to similar methods for measuring electron temperature and other applications of an active silicon x-ray filter

  12. Electronic resource management practical perspectives in a new technical services model

    CERN Document Server

    Elguindi, Anne

    2012-01-01

    A significant shift is taking place in libraries, with the purchase of e-resources accounting for the bulk of materials spending. Electronic Resource Management makes the case that technical services workflows need to make a corresponding shift toward e-centric models and highlights the increasing variety of e-formats that are forcing new developments in the field.Six chapters cover key topics, including: technical services models, both past and emerging; staffing and workflow in electronic resource management; implementation and transformation of electronic resource management systems; the ro

  13. Progress in x-ray microanalysis in the analytical electron microscope

    International Nuclear Information System (INIS)

    Williams, D.B.

    1987-01-01

    Analytical electron microscopes (AEM) consisting of x-ray energy dispersive spectrometers (EDS) interfaced to scanning transmission electron microscopes have been available for more than a decade. During that time, progress towards reaching the fundamental limits of the technique has been slow. The progress of x-ray microanalysis in AEM is examined in terms of x-ray detector technology; the EDS/AEM interface; accuracy of microanalysis; and spatial resolution and detectability limits. X-ray microanalysis in the AEM has substantial room for improvement in terms of the interface between the detector and the microscope. Advances in microscope design and software should permit 10nm resolution with detectability limits approaching 0.01wt percent. 16 refs., 2 figs., 1 tab

  14. Utilization of electronic information resources by academic staff at ...

    African Journals Online (AJOL)

    The study investigated the utilization of Electronic Information resources by the academic staff of Makerere University in Uganda. It examined the academic staff awareness of the resources available, the types of resources provided by the Makerere University Library, the factors affecting resource utilization. The study was ...

  15. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    Science.gov (United States)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  16. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  17. Evaluation of secondary electron filter for removing contaminant electrons from high-energy 6 MV x-ray beam

    International Nuclear Information System (INIS)

    Kumagai, Kozo

    1988-01-01

    When using high energy X-rays, the dose increases at the skin surface and build-up region of beam contamination of secondary electrons coming out from the inner surface of the lineac head. At our radiotherapy department, many cases of external otitis from severe skin reactions, particularly resulting from whole brain irradiation of primary and metastatic brain tumors with a 6 MV X-ray lineac, have been encountered. An investigation was made of the physical aspects of a 6 MV X-ray beam using three electron filters, lead lucite, lead glass and lucite to remove secondary electrons. Transparent materials for filters should be preferable for locating the light field. The following results were obtained: 1) For removing secondary electrons, a lead lucite filter was found best. 2) The lead lucite filter proved most effective for removing secondary electrons from the area of treatment. It reduced the dose of irradiation to the skin surface and build-up region, and furthermore improved the depth dose relative to that without filters. 3) From a clinical standpoint, skin reactions such as external otitis remarkably decreased using a lead lucite filter. 4) It thus appears necessary to use a high energy X-ray with newly designed filters to reduce beam contamination of secondary electrons. (author)

  18. Electronic Resources Management Project Presentation 2012

    KAUST Repository

    Ramli, Rindra M.

    2012-01-01

    This presentation describes the electronic resources management project undertaken by the KAUST library. The objectives of this project is to migrate information from MS Sharepoint to Millennium ERM module. One of the advantages of this migration

  19. Harmonic lasing in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    E. A. Schneidmiller

    2012-08-01

    Full Text Available Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed might be a cheap and efficient way of extension of wavelength ranges of existing and planned x-ray free electron laser (FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of x-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned x-ray FEL (XFEL facilities. In particular, Linac Coherent Light Source (LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25–30 keV providing multigigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow one to extend operating range (ultimately up to 100 keV, to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other x-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact x-ray FELs (driven by electron beams with a relatively low energy, allowing the use of the standard undulator technology instead of

  20. Sterilizing effect of irradiation for Zuogui powder with electron beam and γ rays

    International Nuclear Information System (INIS)

    Yue Ling; Kong Qiulian; Qi Wenyuan; Bao Yingzi; Chen Zhijun; Yuan Zhongyi

    2012-01-01

    The sterilizing effect of electron beam and γ-rays on Zuogui powder was studied. The D 10 values of electron beam and γ-rays on aerobic bacterial count and mould and yeasts were ascertained by survival microorganism. The results indicated that the D 10 values of electron beam and γ-rays irradiation for aerobic bacterial count were 2.602 kGy and 2.597 kGy, compared to 3.112 kGy and 3.208 kGy for mould and yeasts. The results in the current study suggested that the sterilizing effect of electron beam and γ-rays on Zuogui powder complied with D 10 rules. (authors)

  1. Hard x-ray measurements of the hot-electron rings in EBT-S

    International Nuclear Information System (INIS)

    Hillis, D.L.

    1982-06-01

    A thorough understanding of the hot electron rings in ELMO Bumpy Torus-Scale (EBT-S) is essential to the bumpy torus concept of plasma production, since the rings provide bulk plasma stability. The hot electrons are produced via electron cyclotron resonant heating using a 28-GHz cw gyrotron, which has operated up to power levels of 200 kW. The parameters of the energetic electron rings are studied via hard x-ray measurement techniques and with diamagnetic pickup coils. The hard x-ray measurements have used collimated NaI(Tl) detectors to determine the electron temperature T/sub e/ and electron density n/sub e/ for the hot electron annulus. Typical values of T/sub e/ are 400 to 500 keV and of n/sub e/ 2 to 5 x 10 11 cm -3 . The total stored energy of a single energetic electron ring as measured by diamagnetic pickup loops approaches approx. 40 J and is in good agreement with that deduced from hard x-ray measurements. By combining the experimental measurements from hard x-rays and the diamagnetic loops, an estimate can be obtained for the volume of a single hot electron ring. The ring volume is determined to be approx. 2.2 litres, and this volume remains approximately constant over the T-mode operating regime. Finally, the power in the electrons scattered out of the ring is measured indirectly by measuring the x-ray radiation produced when those electrons strike the chamber walls. The variation of this radiation with increasing microwave power levels is found to be consistent with classical scattering estimates

  2. Growth and trends in Auger-electron spectroscopy and x-ray photoelectron spectroscopy for surface analysis

    International Nuclear Information System (INIS)

    Powell, C.J.

    2003-01-01

    A perspective is given of the development and use of surface analysis, primarily by Auger-electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS), for solving scientific and technological problems. Information is presented on growth and trends in instrumental capabilities, instrumental measurements with reduced uncertainties, knowledge of surface sensitivity, and knowledge and effects of sample morphology. Available analytical resources are described for AES, XPS, and secondary-ion mass spectrometry. Finally, the role of the American Vacuum Society in stimulating improved surface analyses is discussed

  3. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    Science.gov (United States)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine

  4. Rocket measurements of X-rays and energetic electrons through an auroral arc

    International Nuclear Information System (INIS)

    Aarsnes, K.; Stadsnes, J.; Soeraas, F.

    1976-01-01

    Preliminary results from rocket measurements on auroral electron precipitation are discussed as far as the spatial structure and time and space variations in the primary electron fluxes are concerned. The analysis demonstrates that there was a good overall correspondence between the X-ray and electron data. By using a well collimated X-ray detector on a spinning rocket, it was possible to get additional information on the overall electron precipitation pattern

  5. Practical guide to electronic resources in the humanities

    CERN Document Server

    Dubnjakovic, Ana

    2010-01-01

    From full-text article databases to digitized collections of primary source materials, newly emerging electronic resources have radically impacted how research in the humanities is conducted and discovered. This book, covering high-quality, up-to-date electronic resources for the humanities, is an easy-to-use annotated guide for the librarian, student, and scholar alike. It covers online databases, indexes, archives, and many other critical tools in key humanities disciplines including philosophy, religion, languages and literature, and performing and visual arts. Succinct overviews of key eme

  6. Utilisation of Electronic Information Resources By Lecturers in ...

    African Journals Online (AJOL)

    This study assesses the use of information resources, specifically, electronic databases by lecturers/teachers in Universities and Colleges of Education in South Western Nigeria. Information resources are central to teachers' education. It provides lecturers/teachers access to information that enhances research and ...

  7. Electron Dynamics by Inelastic X-Ray Scattering

    CERN Document Server

    Schülke, Winfried

    2007-01-01

    The book offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based inelastic X-ray scattering (IXS) spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

  8. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    International Nuclear Information System (INIS)

    Cornelius, Andrew L.

    2016-01-01

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  9. Discipline, availability of electronic resources and the use of Finnish National Electronic Library - FinELib

    Directory of Open Access Journals (Sweden)

    Sanna Torma

    2004-01-01

    Full Text Available This study elaborated relations between digital library use by university faculty, users' discipline and the availability of key resources in the Finnish National Electronic Library (FinELib, Finnish national digital library, by using nationwide representative survey data. The results show that the perceived availability of key electronic resources by researchers in FinELib was a stronger predictor of the frequency and purpose of use of its services than users' discipline. Regardless of discipline a good perceived provision of central resources led to a more frequent use of FinELib. The satisfaction with the services did not vary with the discipline, but with the perceived availability of resources.

  10. The Role of the Acquisitions Librarian in Electronic Resources Management

    Science.gov (United States)

    Pomerantz, Sarah B.

    2010-01-01

    With the ongoing shift to electronic formats for library resources, acquisitions librarians, like the rest of the profession, must adapt to the rapidly changing landscape of electronic resources by keeping up with trends and mastering new skills related to digital publishing, technology, and licensing. The author sought to know what roles…

  11. The ALTA cosmic ray experiment electronics system

    International Nuclear Information System (INIS)

    Brouwer, W.; Burris, W.J.; Caron, B.; Hewlett, J.; Holm, L.; Hamilton, A.; McDonald, W.J.; Pinfold, J.L.; Price, P.; Schaapman, J.R.; Sibley, L.; Soluk, R.A.; Wampler, L.J.

    2005-01-01

    Understanding the origin and propagation of high-energy cosmic rays is a fundamental area of astroparticle physics with major unanswered questions. The study of cosmic rays with energy more than 10 14 eV, probed only by ground-based experiments, has been restricted by the low particle flux. The Alberta Large-area Time-coincidence Array (ALTA) uses a sparse array of cosmic ray detection stations located in high schools across a large geographical area to search for non-random high-energy cosmic ray phenomena. Custom-built ALTA electronics is based on a modular board design. Its function is to control the detectors at each ALTA site allowing precise measurements of event timing and energy in the local detectors as well as time synchronization of all of the sites in the array using the global positioning system

  12. From Storage Rings to Free Electron Lasers for Hard X-Rays

    International Nuclear Information System (INIS)

    Nuhn, H

    2004-01-01

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities

  13. From Storage Rings to Free Electron Lasers for Hard X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H

    2004-01-09

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities.

  14. From storage rings to free electron lasers for hard x-rays

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    2004-01-01

    The intensity of x-ray sources has increased at a rapid rate since the late 1960s by ten orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed, a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the x-ray free electron laser based on the principle of self-amplified spontaneous emission will be the basis of fourth generation x-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, it will then discuss some of the differences between storage ring and free electron laser based approaches, and will close with an update of the present development of x-ray free electron laser user facilities

  15. Analysis of Pedagogic Potential of Electronic Educational Resources with Elements of Autodidactics

    Directory of Open Access Journals (Sweden)

    Igor A.

    2018-03-01

    Full Text Available Introduction: in recent years didactic properties of electronic educational resources undergo considerable changes, nevertheless, the question of studying of such complete phenomenon as “an electronic educational resource with autodidactics elements” remains open, despite sufficient scientific base of researches of the terms making this concept. Article purpose – determination of essence of electronic educational resources with autodidactics elements. Materials and Methods: the main method of research was the theoretical analysis of the pedagogical and psychological literature on the problem under study. We used the theoretical (analysis, synthesis, comparison and generalization methods, the method of interpretation, pedagogical modeling, and empirical methods (observation, testing, conversation, interview, analysis of students’ performance, pedagogical experiment, peer review. Results: we detected the advantages of electronic educational resources in comparison with traditional ones. The concept of autodidactics as applied to the subject of research is considered. Properties of electronic educational resources with a linear and nonlinear principle of construction are studied.The influence of the principle of construction on the development of the learners’ qualities is shown. We formulated an integral definition of electronic educational resources with elements of autodidactics, namely, the variability, adaptivity and cyclicity of training. A model of the teaching-learning process with electronic educational resources is developed. Discussion and Conclusions: further development of a problem will allow to define whether electronic educational resources with autodidactics elements pedagogical potential for realization of educational and self-educational activity of teachers have, to modify technological procedures taking into account age features of students, their specialties and features of the organization of process of training of

  16. Preservation and conservation of electronic information resources of ...

    African Journals Online (AJOL)

    The major holdings of the broadcast libraries of the Nigerian Television Authority (NTA) are electronic information resources; therefore, providing safe places for general management of these resources have aroused interest in the industry in Nigeria for sometimes. The need to study the preservation and conservation of ...

  17. The relative biological effectiveness (RBE) of high-energy electrons, x-rays and Co-60 gamma-rays

    International Nuclear Information System (INIS)

    Kiyono, Kunihiro

    1974-01-01

    Linac (Mitsubishi-Shimizu 15 MeV medical linear accelerator) electron beams with actual generated energies of 8, 10, 12 and 15 MeV were compared with X-ray beams having energies of 8 and 10 MV. The RBE values were calculated from 50 percent hatch-ability (LD 50 ) in silk-worm embryos, 30-days lethality (LDsub(50/30)) in ddY mice, and mean lethal dose (Do) in cultured mouse YL cells or human FL cells. To estimate the RBE in clinical experiments, LRD (leukocyte reduction dose) value was calculated for each patient irradiated on the chest or lumbar vertebrae. It was concluded that there is little difference in practical significance between 8 to 10 MV X-rays and 8 to 15 MeV electrons, and that the biological effects of Linac radiations are about 90 to 100 percent of the effect of 60 Co gamma rays. The RBE values gradually decreased, contrary to the elevation of energy between 8 and 15 MeV for electrons and between 8 and 10 MV for X-rays. These values were compared with those of earlier reviews of work in this field, and were briefly discussed. (Evans, J.)

  18. Building an electronic resource collection a practical guide

    CERN Document Server

    Lee, Stuart D

    2004-01-01

    This practical book guides information professionals step-by-step through building and managing an electronic resource collection. It outlines the range of electronic products currently available in abstracting and indexing, bibliographic, and other services and then describes how to effectively select, evaluate and purchase them.

  19. Analysis of Human Resources Management Strategy in China Electronic Commerce Enterprises

    Science.gov (United States)

    Shao, Fang

    The paper discussed electronic-commerce's influence on enterprise human resources management, proposed and proved the human resources management strategy which electronic commerce enterprise should adopt from recruitment strategy to training strategy, keeping talent strategy and other ways.

  20. The physics of radiotherapy X-rays and electrons

    CERN Document Server

    Metcalfe, Peter; Hoban, Peter

    2012-01-01

    The Physics of Radiotherapy X-Rays and Electrons is an updated successor to The Physics of Radiotherapy X-Rays from Linear Accelerators published in 1997. This new volume includes a significant amount of new material, including new chapters on electrons in radiotherapy and IMRT, IGRT, and tomotherapy, which have become key developments in radiation therapy. Also updated from the earlier edition are the physics beam modeling chapters, including Monte Carlo methods, adding those mysterious electrons, as well as discourse on radiobiological modeling including TCP, NTCP, and EUD and the impact of these concepts on plan analysis and inverse planning. This book is intended as a standard reference text for postgraduate radiation oncology medical physics students. It will also be of interest to radiation oncology registrars and residents, dosimetrists, and radiation therapists. The new text contains review questions at the end of each chapter and full bibliographic entries. Fully indexed. Selected questions and ans...

  1. Using XML Technologies to Organize Electronic Reference Resources

    OpenAIRE

    Huser, Vojtech; Del Fiol, Guilherme; Rocha, Roberto A.

    2005-01-01

    Provision of access to reference electronic resources to clinicians is becoming increasingly important. We have created a framework for librarians to manage access to these resources at an enterprise level, rather than at the individual hospital libraries. We describe initial project requirements, implementation details, and some preliminary results.

  2. Electronic zooming TV readout system for an x-ray microscope

    International Nuclear Information System (INIS)

    Kinoshita, K.; Matsumura, T.; Inagaki, Y.; Hirai, N.; Sugiyama, M.; Kihara, H.; Watanabe, N.; Shimanuki, Y.

    1993-01-01

    The electronic zooming TV readout system using the X-ray zooming tube has been developed for purposes of real-time readout of very high resolution X-ray image, e.g. the output image from an X-ray microscope. The system limiting resolution is 0.2∼0.3 μm and it is easy to operate in practical applications

  3. Electronic Resources and Mission Creep: Reorganizing the Library for the Twenty-First Century

    Science.gov (United States)

    Stachokas, George

    2009-01-01

    The position of electronic resources librarian was created to serve as a specialist in the negotiation of license agreements for electronic resources, but mission creep has added more functions to the routine work of electronic resources such as cataloging, gathering information for collection development, and technical support. As electronic…

  4. Comparative effects of gamma-rays and electron beams on peroxide formation in phosphatidylcholine

    International Nuclear Information System (INIS)

    Todoriki, S.; Hayashi, T.

    1994-01-01

    Phosphatidylcholine was irradiated in the state of a film or liposome with gamma-rays or electron beams, and the amount of peroxide was determined to compare the effects of the two types of radiation. The amounts of peroxide formed in both the film and liposome with gamma-rays were significantly larger than those with electron beams, when the samples were irradiated at the same dose. Proteins such as bacteriorhodopsin reduced the degree of peroxide formation in liposome, and the effect of gamma-rays was much larger than that of electron beams, even in the presence of protein. The results of the present investigation indicate that the effects of gamma-rays on peroxide formation in phosphatidylcholine were significantly larger than those of electron beams, irrespective of the state of the lipid

  5. X-ray electron charge density distribution in silicon

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    During the last two years new highly accurate X-ray structure amplitudes for silicon have been published. Also the scattering phases of some 'forbidden' reflections have been determined using the X-ray three-beam case. This allows the construction of most precise valence and difference electron density plots and the comparison with those calculated on the basis of the Aldret-Hart X-ray pendelloesung data or theoretically. The density plots are discussed in details of both, the bond and the atomic site. The contributions of various Fourier components and the influence of different temperature factors on the difference density are studied. (author)

  6. Electron temperature from x-ray continuum measurements on the NIF

    Science.gov (United States)

    Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration

    2017-10-01

    We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.

  7. ‘Excess’ of primary cosmic ray electrons

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2015-10-01

    Full Text Available With the accurate cosmic ray (CR electron and positron spectra (denoted as Φe− and Φe+, respectively measured by AMS-02 Collaboration, the difference between the electron and positron fluxes (i.e., ΔΦ=Φe−−Φe+, dominated by the propagated primary electrons, can be reliably inferred. In the standard model, the spectrum of propagated primary CR electrons at energies ≥30GeV softens with the increase of energy. The absence of any evidence for such a continuous spectral softening in ΔΦ strongly suggests a significant ‘excess’ of primary CR electrons and at energies of 100–400GeV the identified excess component has a flux comparable to that of the observed positron excess. Middle-age but ‘nearby’ supernova remnants (e.g., Monogem and Geminga are favored sources for such an excess.

  8. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  9. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    International Nuclear Information System (INIS)

    Yang Wanli; Qiao Ruimin

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode–electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries. (topical review)

  10. Structural enzymology using X-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Christopher Kupitz

    2017-07-01

    Full Text Available Mix-and-inject serial crystallography (MISC is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i room temperature structures at near atomic resolution, (ii time resolution ranging from microseconds to seconds, and (iii convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.

  11. Stochastic stimulated electronic x-ray Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Victor Kimberg

    2016-05-01

    → π * transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations.

  12. Electronic Resources Management System: Recommendation Report 2017

    KAUST Repository

    Ramli, Rindra M.

    2017-01-01

    This recommendation report provides an overview of the selection process for the new Electronic Resources Management System. The library has decided to move away from Innovative Interfaces Millennium ERM module. The library reviewed 3 system

  13. X-ray microscopy resource center at the Advanced Light Source

    International Nuclear Information System (INIS)

    Meyer-Ilse, W.; Koike, M.; Beguiristain, R.; Maser, J.; Attwood, D.

    1992-07-01

    An x-ray microscopy resource center for biological x-ray imaging vvill be built at the Advanced Light Source (ALS) in Berkeley. The unique high brightness of the ALS allows short exposure times and high image quality. Two microscopes, an x-ray microscope (XM) and a scanning x-ray microscope (SXM) are planned. These microscopes serve complementary needs. The XM gives images in parallel at comparable short exposure times, and the SXM is optimized for low radiation doses applied to the sample. The microscopes extend visible light microscopy towards significantly higher resolution and permit images of objects in an aqueous medium. High resolution is accomplished by the use of Fresnel zone plates. Design considerations to serve the needs of biological x-ray microscopy are given. Also the preliminary design of the microscopes is presented. Multiple wavelength and multiple view images will provide elemental contrast and some degree of 3D information

  14. Sensitivity Analysis of X-ray Spectra from Scanning Electron Microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Thomas Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Weber, Charles F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bekar, Kursat B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-10-01

    The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samples (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).

  15. Simultaneous investigation of parent electrons and bremsstrahlung x rays by rocket-borne detectors

    International Nuclear Information System (INIS)

    Vij, K.K.; Venkatesan, D.; Sheldon, W.R.; Kern, J.W.; Benbrook, J.R.; Whalen, B.A.

    1975-01-01

    Simultaneous measurements of the energy spectrum of precipitating electrons and the resulting bremsstrahlung X ray spectrum were carried out during an auroral event on March 3, 1971, at the Churchill Research Range, Manitoba, Canada. The electron data were obtained with detectors on a Black Brant VB sounding rocket (275-km apogee), while the X ray flux was measured by an instrument package that was boosted to 60 km on an Arcas rocket. The X ray package was deployed on a parachute at apogee to provide a slow descent through the atmosphere. Thick target bremsstrahlung theory is used to calculate the X ray flux produced by the incident electrons, and a Monte Carlo method is used to predict the X ray spectrum at various altitudes appropriate for comparison with the measured X ray data. Satisfactory agreement between theory and experiment is obtained, and the value of the constant in the thick target theory has been estimated to be (2plus-or-minus0.5) times10 -5

  16. Simultaneous investigation of parent electrons and bremsstrahlung x rays by Rocket--Borne detectors

    International Nuclear Information System (INIS)

    Vij, K.K.; Venkatesan, D.; Sheldon, W.R.; Kern, J.W.; Benbrook, J.R.; Whalen, B.A.

    1975-01-01

    Simultaneous measurements of the energy spectrum of precipitating electrons and the resulting bremsstrahlung X ray spectrum were carried out during an auroral event on March 3, 1971, at the Churchill Research Range, Manitoba, Canada. The electron data were obtained with detectors on a Black Brant VB sounding rocket (275-km apogee), while the X ray flux was measured by an instrument package that was boosted to 60 km on an Arcas rocket. The X ray package was deployed on a parachute apogee to provide a slow descent through the atmosphere. Thick target bremsstrahlung theory is used to calculate the X ray flux produced by the incident electrons, and a Monte Carlo method is used to predict the X ray spectrum at various altitudes appropriate for comparison with the measured X ray data. Satisfactory agreement between theory and experiment is obtained, and the value of the constant in the thick target theory has been estimated to be (2plus-or-minus0.5) times10 -5 . (auth)

  17. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    International Nuclear Information System (INIS)

    Lone, M.A.; Wong, P.Y.

    1995-01-01

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPD's are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPD's to electrons and γ-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for online monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of γ-ray sensitivity of an SPD placed in a mixed electron and γ-ray field. (author). 30 refs., 1 tab., 8 figs

  18. Sensitivity of self-powered detector probes to electron and gamma-ray fields

    Energy Technology Data Exchange (ETDEWEB)

    Lone, M A; Wong, P Y [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    A self-powered detector (SPD) is a simple, passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPD`s are used in nuclear reactors to monitor neutron and gamma fields. Responses of SPD`s to electrons and {gamma}-rays of various energies were investigated with Monte Carlo simulations. Transmission filters were studied for the design of threshold SPD probes used for online monitoring of the energy spectrum of high-power industrial electron accelerator beams. Filters were also investigated for the enhancement of {gamma}-ray sensitivity of an SPD placed in a mixed electron and {gamma}-ray field. (author). 30 refs., 1 tab., 8 figs.

  19. Soft x-ray spectroscopy studies of novel electronic materials using synchrotron radiation

    Science.gov (United States)

    Newby, David, Jr.

    Soft x-ray spectroscopy can provide a wealth of information on the electronic structure of solids. In this work, a suite of soft x-ray spectroscopies is applied to organic and inorganic materials with potential applications in electronic and energy generation devices. Using the techniques of x-ray absorption (XAS), x-ray emission spectroscopy (XES), and x-ray photoemission spectroscopy (XPS), the fundamental properties of these different materials are explored. Cycloparaphenylenes (CPPs) are a recently synthesized family of cyclic hydrocarbons with very interesting properties and many potential applications. Unusual UV/Visible fluorescence trends have spurred a number of theoretical investigations into the electronic properties of the CPP family, but thus far no comprehensive electronic structure measurements have been conducted. XPS, XAS, and XES data for two varieties, [8]- and [10]-CPP, are presented here, and compared with the results of relevant DFT calculations. Turning towards more application-centered investigations, similar measurements are applied to two materials commonly used in solid oxide fuel cell (SOFC) cathodes: La1-xSrxMnO 3 (LSMO) and La1-xSr1- xCo1-yFe yO3 (LSCF). Both materials are structurally perovskites, but they exhibit strikingly different electronic properties. SOFC systems very efficiently produce electricity by catalyzing reactions between oxygen and petroleum-based hydrocarbons at high temperatures (> 800 C). Such systems are already utilized to great effect in many industries, but more widespread adoption could be had if the cells could operate at lower temperatures. Understanding the electronic structure and operational evolution of the cathode materials is essential for the development of better low-temperature fuel cells. LSCF is a mixed ion-electron conductor which holds promise for low-temperature SOFC applications. XPS spectra of LSCF thin films are collected as the films are heated and gas-dosed in a controlled environment. The

  20. The Internet School of Medicine: use of electronic resources by medical trainees and the reliability of those resources.

    Science.gov (United States)

    Egle, Jonathan P; Smeenge, David M; Kassem, Kamal M; Mittal, Vijay K

    2015-01-01

    Electronic sources of medical information are plentiful, and numerous studies have demonstrated the use of the Internet by patients and the variable reliability of these sources. Studies have investigated neither the use of web-based resources by residents, nor the reliability of the information available on these websites. A web-based survey was distributed to surgical residents in Michigan and third- and fourth-year medical students at an American allopathic and osteopathic medical school and a Caribbean allopathic school regarding their preferred sources of medical information in various situations. A set of 254 queries simulating those faced by medical trainees on rounds, on a written examination, or during patient care was developed. The top 5 electronic resources cited by the trainees were evaluated for their ability to answer these questions accurately, using standard textbooks as the point of reference. The respondents reported a wide variety of overall preferred resources. Most of the 73 responding medical trainees favored textbooks or board review books for prolonged studying, but electronic resources are frequently used for quick studying, clinical decision-making questions, and medication queries. The most commonly used electronic resources were UpToDate, Google, Medscape, Wikipedia, and Epocrates. UpToDate and Epocrates had the highest percentage of correct answers (47%) and Wikipedia had the lowest (26%). Epocrates also had the highest percentage of wrong answers (30%), whereas Google had the lowest percentage (18%). All resources had a significant number of questions that they were unable to answer. Though hardcopy books have not been completely replaced by electronic resources, more than half of medical students and nearly half of residents prefer web-based sources of information. For quick questions and studying, both groups prefer Internet sources. However, the most commonly used electronic resources fail to answer clinical queries more than half

  1. Dose properties of x-ray beams produced by laser-wakefield-accelerated electrons

    International Nuclear Information System (INIS)

    Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D

    2005-01-01

    Given that laser wakefield acceleration (LWFA) has been demonstrated experimentally to accelerate electron beams to energies beyond 25 MeV, it is reasonable to assess the ability of existing LWFA technology to compete with conventional radiofrequency linear accelerators in producing electron and x-ray beams for external-beam radiotherapy. We present calculations of the dose distributions (off-axis dose profiles and central-axis depth dose) and dose rates of x-ray beams that can be produced from electron beams that are generated using state-of-the-art LWFA. Subsets of an LWFA electron energy distribution were propagated through the treatment head elements (presuming an existing design for an x-ray production target and flattening filter) implemented within the EGSnrc Monte Carlo code. Three x-ray energy configurations (6 MV, 10 MV and 18 MV) were studied, and the energy width ΔE of the electron-beam subsets varied from 0.5 MeV to 12.5 MeV. As ΔE increased from 0.5 MeV to 4.5 MeV, we found that the off-axis and central-axis dose profiles for x-rays were minimally affected (to within about 3%), a result slightly different from prior calculations of electron beams broadened by scattering foils. For ΔE of the order of 12 MeV, the effect on the off-axis profile was of the order of 10%, but the central-axis depth dose was affected by less than 2% for depths in excess of about 5 cm beyond d max . Although increasing ΔE beyond 6.5 MeV increased the dose rate at d max by more than 10 times, the absolute dose rates were about 3 orders of magnitude below those observed for LWFA-based electron beams at comparable energies. For a practical LWFA-based x-ray device, the beam current must be increased by about 4-5 orders of magnitude. (note)

  2. Trends in the electronic X-ray image formation and processing

    International Nuclear Information System (INIS)

    Meyer-Ebrecht, D.; Spiesberger, W.

    1976-01-01

    A report is given on the technological progress in components for the electronic imaging and reproduction in X-ray diagnostics which could enable the partial replacement of radiophotography. Furthermore, electronic post processing methods, in particular in tomography, are reviewed. (ORU) [de

  3. Synchronization and sequencing of data acquisition and control electronics at the European X-ray free electron laser

    International Nuclear Information System (INIS)

    Gessler, Patrick

    2015-11-01

    The 3.5 km long European X-Ray Free Electron Laser, currently under construction in northern Germany, will deliver bursts of up to 2700 short X-ray pulses every 100 ms, providing wavelengths between 0.05 and 6 nm, and a repetition rate of 4.5 MHz to several experiment stations. It allows in-depth research in various scientific fields. In order to set-up the beam, position samples and capture the measured variables, information from the accelerator, diagnostic devices and detectors have to be digitized, converted, processed, transferred, concentrated, distributed, reorganized, controlled and saved. All these steps have to be accurately synchronized and sequenced relative to the actual electron bunch or photon pulse in order to guarantee correct data acquisition timings and unique identification of each bunch passing the beamlines. This document provides a complete description of the planning, design, realization and evaluation of the European XFEL Timing System, which implements the synchronization and sequencing of the data acquisition and control electronics for the European X-Ray Free-Electron Laser Facility.

  4. Calculated and measured dose distribution in electron and X-ray irradiated water phantom

    CERN Document Server

    Ziaie, F; Bulka, S; Afarideh, H; Hadji-Saeid, S M

    2002-01-01

    The Bremsstrahlung yields produced by incident electrons on a tantalum converter have been calculated by using a Monte-Carlo computer code. The tantalum thickness as an X-ray converter was optimized for 2, 2.5, 5, 7.5, and 10 MeV electron beams. The dose distribution in scanning and conveyor direction for both 2 MeV electron and X-ray converted from 2 MeV electron beam have been calculated and compared with experimental results. The economical aspects of low energy electron conversion were discussed as well.

  5. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  6. Soft X-ray imaging with axisymmetry microscope and electronic readout

    International Nuclear Information System (INIS)

    Sauneuf, A.; Cavailler, C.; Henry, Ph.; Launspach, J.; Mascureau, J. de; Rostaing, M.

    1984-11-01

    An axisymmetric microscope with 10 X magnification has been constructed; its resolution has been measured using severals grids, backlighted by an X-ray source and found to be near 25 μm. So it could be used to make images of laser driven plasmas in the soft X-ray region. In order to see rapidly those images we have associated it with a new detector. It is a small image converter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a CCD working in the spectral range. An electronic image readout chain, which is identical to those we use with streak cameras, then processes automatically and immediatly the images given by the microscope

  7. Influence of Bernstein modes on the efficiency of electron cyclotron resonance x-ray source

    International Nuclear Information System (INIS)

    Andreev, V. V.; Nikitin, G.V.; Savanovich, V.Yu.; Umnov, A.M.; Elizarov, L.I.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-01-01

    The article considers the factors influencing the temperature of hot electron component in an electron cyclotron resonance (ECR) x-ray source. In such sources the electron heating occurs often due to extraordinary electromagnetic wave propagating perpendicularly to the magnetic field. In this case the possibility of the absorption of Bernstein modes is regarded as an additional mechanism of electron heating. The Bernstein modes in an ECR x-ray source can arise due to either linear transformation or parametric instability of external transversal wave. The article briefly reviews also the further experiments which will be carried out to study the influence of Bernstein modes on the increase of hot electron temperature and consequently of x-ray emission

  8. ANALYTICAL REVIEW OF ELECTRONIC RESOURCES FOR THE STUDY OF LATIN

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2014-04-01

    Full Text Available The article investigates the current state of development of e-learning content in the Latin language. It is noted that the introduction of ICT in the educational space has expanded the possibility of studying Latin, opened access to digital libraries resources, made it possible to use scientific and educational potential and teaching Latin best practices of world's leading universities. A review of foreign and Ukrainian information resources and electronic editions for the study of Latin is given. Much attention was paid to the didactic potential of local and online multimedia courses of Latin, electronic textbooks, workbooks of interactive tests and exercises, various dictionaries and software translators, databases and digital libraries. Based on analysis of the world market of educational services and products the main trends in the development of information resources and electronic books are examined. It was found that multimedia courses with interactive exercises or workbooks with interactive tests, online dictionaries and translators are the most widely represented and demanded. The noticeable lagging of Ukrainian education and computer linguistics in quantitative and qualitative measures in this industry is established. The obvious drawback of existing Ukrainian resources and electronic editions for the study of Latin is their noninteractive nature. The prospects of e-learning content in Latin in Ukraine are outlined.

  9. Elektronik Bilgi Kaynaklarının Seçimi / Selection of Electronic Information Resources

    Directory of Open Access Journals (Sweden)

    Pınar Al

    2003-04-01

    Full Text Available For many years, library users have used only from the printed media in order to get the information that they have needed. Today with the widespread use of the Web and the addition of electronic information resources to library collections, the use of information in the electronic environment as well as in printed media is started to be used. In time, such types of information resources as, electronic journals, electronic books, electronic encyclopedias, electronic dictionaries and electronic theses have been added to library collections. In this study, selection criteria that can be used for electronic information resources are discussed and suggestions are provided for libraries that try to select electronic information resources for their collections.

  10. Comptonization of gamma rays by cold electrons

    International Nuclear Information System (INIS)

    Xu, Yueming; Ross, R.R.; Mccray, R.

    1991-01-01

    An analytic method is developed for calculating the emergent spectrum of gamma-rays and X-rays scattered in a homogeneous medium with low-temperature electrons. The Klein-Nishina corrections of the scattering cross section and absorption processes are taken in account. The wavelength relaxation and the spatial diffusion problems are solved separately, and the emergent spectrum is calculated by convolving the evolution function of the spectrum in an infinite medium with the photon luminosity resulting from the spatial diffusion in a finite sphere. The analytic results are compared with that of Monte Carlo calculations and it is concluded that the analytic result is quite accurate. 9 refs

  11. X-ray photoelectron and x-ray-induced auger electron spectroscopic data, 2

    International Nuclear Information System (INIS)

    Baba, Yuji; Sasaki, Teikichi

    1984-04-01

    The intrinsic data of the X-ray photoelectron spectra (XPS) and X-ray-induced Auger electron spectra (XAES) for 4d transition-metals and related oxides were obtained by means of a spherical electron spectrometer. The metallic surfaces were cleaned by two different metheds : mechanical filing and Ar + ion etching. In the case of the Ar + io n bombarded Y, Zr, and Nb metals, the binding energies of the core-lines and the kinetic energies of the Auger lines shift from those for the mechanically filed surfaces. The energy shifts were interpreted in terms of the ion-induced lattice distortion of the metal surfaces. The oxides examined are typical compounds such as Y 2 O 3 , ZrO 2 , Nb 2 O 5 , MoO 3 and RuO 2 . The data consists of 4 wide scans, 33 core-line spectra, 10 valence-band spectra and 12 XAES spectra. The peak positions of the core-lines and the Auger lines were summarized in 6 tables together with their chemical shifts. (author)

  12. X-ray photoelectron and x-ray-induced Auger electron spectroscopic data, 1

    International Nuclear Information System (INIS)

    Baba, Yuji; Sasaki, T.A.

    1984-02-01

    The intrinsic data of the X-ray photoelectron spectra (XPS) and X-ray-induced Auger electron spectra (XAES) for 3d transition-metals and related oxides were presented. The clean surfaces of the metals were obtained by two different methods ; mechanical filings and Ar + ion etchings. The oxides examined are typical compounds such as Sc 2 O 3 , TiO 2 , V 2 O 5 and NiO. The report consists of 4 wide scans, 26 core-line spectra, 10 valence-band spectra and 20 XAES spectra. The peak positions of the core-lines and the Auger lines were summarized in 8 tables together with their chemical shifts. (author)

  13. Key electronic states in lithium battery materials probed by soft X-ray spectroscopy

    International Nuclear Information System (INIS)

    Yang, Wanli; Liu, Xiaosong; Qiao, Ruimin; Olalde-Velasco, Paul; Spear, Jonathan D.; Roseguo, Louis; Pepper, John X.; Chuang, Yi-de; Denlinger, Jonathan D.; Hussain, Zahid

    2013-01-01

    Highlights: •Key electronic states in battery materials revealed by soft X-ray spectroscopy. •Soft X-ray absorption consistently probes Mn oxidation states in different systems. •Soft X-ray absorption and emission fingerprint battery operations in LiFePO 4 . •Spectroscopic guidelines for selecting/optimizing polymer materials for batteries. •Distinct SEI formation on same electrode material with different crystal orientations. -- Abstract: The formidable challenges for developing a safe, low-cost, high-capacity, and high-power battery necessitate employing advanced tools that are capable of directly probing the key electronic states relevant to battery performance. Synchrotron based soft X-ray spectroscopy directly measures both the occupied and unoccupied states in the vicinity of the Fermi level, including transition-metal-3d and anion-p states. This article presents the basic concepts on how fundamental physics in electronic structure could provide valuable information for lithium-ion battery applications. We then discuss some of our recent studies on transition-metal oxide based cathodes, silicon based anode, and solid-electrolyte-interphase through soft X-ray absorption and emission spectroscopy. We argue that spectroscopic results reveal the evolution of electronic states for fingerprinting, understanding, and optimizing lithium-ion battery operations

  14. Access to electronic resources by visually impaired people

    Directory of Open Access Journals (Sweden)

    Jenny Craven

    2003-01-01

    Full Text Available Research into access to electronic resources by visually impaired people undertaken by the Centre for Research in Library and Information Management has not only explored the accessibility of websites and levels of awareness in providing websites that adhere to design for all principles, but has sought to enhance understanding of information seeking behaviour of blind and visually impaired people when using digital resources.

  15. Calculation of X-ray emission produced by a quasi-monoenergetic electron distribution

    International Nuclear Information System (INIS)

    Fanaei, M.; Sadighi-Bonabi, R.

    2010-01-01

    Complete text of publication follows. By using an intense ultrafast laser interaction with plasma, generation of accelerated relativistic electrons with quasi monoenergetic spectrum has been possible. Analytic expressions for spectra and emission efficiencies of x-rays bremsstrahlung and characteristic line emission produced by a quasi-monoenergetic electron distribution from several targets are investigated. In this work, a Gaussian profile is assumed for the quasi-monoenergetic electron spectrum. The produced x-ray radiations are compared with the previous achieved results for a Maxwellian electron profile. These results and achievements are discussed in detail. Also, the outcomes can be evaluated with the experimental and simulated results.

  16. Perspective on the Cosmic-ray Electron Spectrum above TeV

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Kun; Wang, Bing-Bing; Bi, Xiao-Jun; Lin, Su-Jie; Yin, Peng-Fei [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-02-20

    The AMS-02 has measured the cosmic-ray electron (plus positron) spectrum up to ∼TeV with unprecedented precision. The spectrum can be well described by a power law without any obvious features above 10 GeV. The satellite instrument Dark Matter Particle Explorer (DAMPE), which was launched a year ago, will measure the electron spectrum up to 10 TeV with high-energy resolution. The cosmic electrons beyond TeV may be attributed to few local cosmic-ray sources, such as supernova remnants. Therefore, spectral features, such as cut-off and bumps, can be expected at high energies. In this work, we provide a careful study on the perspective of the electron spectrum beyond TeV. We first examine our astrophysical source models on the latest leptonic data of AMS-02 to give a self-consistent picture. Then we focus on the discussion about the candidate sources, which could be electron contributors above TeV. Depending on the properties of the local sources (especially on the nature of Vela), DAMPE may detect interesting features in the electron spectrum above TeV in the future.

  17. High-Performance X-ray Detection in a New Analytical Electron Microscope

    Science.gov (United States)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  18. Liquid-metal-jet anode electron-impact x-ray source

    International Nuclear Information System (INIS)

    Hemberg, O.; Otendal, M.; Hertz, H.M.

    2003-01-01

    We demonstrate an anode concept, based on a liquid-metal jet, for improved brightness in compact electron-impact x-ray sources. The source is demonstrated in a proof-of-principle experiment where a 50 keV, ∼100 W electron beam is focused on a 75 μm liquid-solder jet. The generated x-ray flux and brightness is quantitatively measured in the 7-50 keV spectral region and found to agree with theory. Compared to rotating-anode sources, whose brightness is limited by intrinsic thermal properties, the liquid-jet anode could potentially be scaled to achieve a brightness >100x higher than current state-of-the-art sources. Applications such as mammography, angiography, and diffraction would benefit from such a compact high-brightness source

  19. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    International Nuclear Information System (INIS)

    Sedrati, R.; Attallah, R.

    2014-01-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥10GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data

  20. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    Energy Technology Data Exchange (ETDEWEB)

    Sedrati, R., E-mail: rafik.sedrati@univ-annaba.org; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥10GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  1. Library training to promote electronic resource usage

    DEFF Research Database (Denmark)

    Frandsen, Tove Faber; Tibyampansha, Dativa; Ibrahim, Glory

    2017-01-01

    Purpose: Increasing the usage of electronic resources is an issue of concern for many libraries all over the world. Several studies stress the importance of information literacy and instruction in order to increase the usage. Design/methodology/approach: The present article presents the results...

  2. Why and How to Measure the Use of Electronic Resources

    Directory of Open Access Journals (Sweden)

    Jean Bernon

    2008-11-01

    Full Text Available A complete overview of library activity implies a complete and reliable measurement of the use of both electronic resources and printed materials. This measurement is based on three sets of definitions: document types, use types and user types. There is a common model of definitions for printed materials, but a lot of questions and technical issues remain for electronic resources. In 2006 a French national working group studied these questions. It relied on the COUNTER standard, but found it insufficient and pointed out the need for local tools such as web markers and deep analysis of proxy logs. Within the French national consortium COUPERIN, a new working group is testing ERMS, SUSHI standards, Shibboleth authentication, along with COUNTER standards, to improve the counting of the electronic resources use. At this stage this counting is insufficient and its improvement will be a European challenge for the future.

  3. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    Directory of Open Access Journals (Sweden)

    J. Szlachetko

    2014-03-01

    Full Text Available Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s to femtoseconds (10−15 s and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS, we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments.

  4. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  5. Measurements of absolute M-subshell X-ray production cross sections of Th by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Moy, A., E-mail: aurelien.moy@cea.fr [GM, CNRS, Université de Montpellier II, Place E. Bataillon, F-34095 Montpellier (France); CEA, DEN, DTEC, SGCS, LMAC, F-30207 Bagnols-sur-Cèze (France); Merlet, C. [GM, CNRS, Université de Montpellier II, Place E. Bataillon, F-34095 Montpellier (France); Dugne, O. [CEA, DEN, DTEC, SGCS, LMAC, F-30207 Bagnols-sur-Cèze (France)

    2014-08-31

    Highlights: • The M X-ray production cross sections of Th were measured by electron impact. • The M-subshell ionization cross sections of Th were determined from 3 to 38 keV. • Theoretical ionization cross-sections are in agreement with our experimental results. - Abstract: Measurements of absolute M-subshell X-ray production cross sections for element Th were made by electron impact for energies ranging from the ionization threshold up to 38 keV. Experimental data were obtained by measuring the X-ray intensity emitted from ultrathin Th films deposited onto self-supporting C backing films. The measurements were conducted with an electron microprobe using high-resolution wavelength dispersive spectrometers. Recorded intensities were converted into absolute X-ray production cross sections by means of atomic data and estimation of the number of primary electrons, target thickness, and detector efficiency. Our experimental X-ray production cross sections, the first to be reported for the M subshells of Th, are compared with X-ray production cross sections calculated with the mean of ionization cross sections obtained from the distorted-wave Born approximation. The Mα X-ray production cross section calculated is in excellent agreement with the measurements, allowing future use for standardless quantification in electron probe microanalysis.

  6. X-ray analysis and mapping by wavelength dispersive X-ray spectroscopy in an electron microscope

    International Nuclear Information System (INIS)

    Tanaka, Miyoko; Takeguchi, Masaki; Furuya, Kazuo

    2008-01-01

    A compact and easy-to-use wavelength dispersive X-ray spectrometer using a multi-capillary X-ray lens attached to a scanning (transmission) electron microscope has been tested for thin-film analysis. B-K spectra from thin-film boron compounds (B 4 C, h-BN, and B 2 O 3 ) samples showed prominent peak shifts and detailed structural differences. Mapping images of a thin W/Si double-layer sample resolved each element clearly. Additionally, a thin SiO 2 film grown on a Si substrate was imaged with O-K X-rays. Energy and spatial resolution of the system is also discussed

  7. Obtaining attosecond x-ray pulses using a self-amplified spontaneous emission free electron laser

    Directory of Open Access Journals (Sweden)

    A. A. Zholents

    2005-05-01

    Full Text Available We describe a technique for the generation of a solitary attosecond x-ray pulse in a free-electron laser (FEL, via a process of self-amplified spontaneous emission. In this method, electrons experience an energy modulation upon interacting with laser pulses having a duration of a few cycles within single-period wiggler magnets. Two consecutive modulation sections, followed by compression in a dispersive section, are used to obtain a single, subfemtosecond spike in the electron peak current. This region of the electron beam experiences an enhanced growth rate for FEL amplification. After propagation through a long undulator, this current spike emits a ∼250   attosecond x-ray pulse whose intensity dominates the x-ray emission from the rest of the electron bunch.

  8. Measurement of total calcium in neurons by electron probe X-ray microanalysis.

    Science.gov (United States)

    Pivovarova, Natalia B; Andrews, S Brian

    2013-11-20

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis

  9. Study of distribution of electron density in heteropolymolybdates by method of X-ray electron spectroscopy

    International Nuclear Information System (INIS)

    Molchanov, V.N.; Kazanskij, L.P.; Torchenkova, E.A.; Spitsyn, V.I.

    1978-01-01

    X-ray electron spectra of some iso- and heteropolymolybdates relating to different structure types are investigated to study electron structure of complex polyoxyion-heteropolyanions. Binding energies of Modsub(5/2) and 01s-electrons in iso- and heteropolycompounds line are measured and their interdependence is detected. The effective charge of oxygen and molybdenum atoms in heteropolymolybdates increases with decreasing a number of external sphere cations per an oxygen atom and a number of Mo=0 multiple bonds

  10. X-ray acquisition and electronic digital readout by charge coupled devices

    International Nuclear Information System (INIS)

    Cavailler, C.; Launspach, J.; Mens, A.; Sauneuf, R.

    1985-09-01

    X-ray imaging adapted to laser-matter interaction experiments consists in recording plasma images from its X-ray emission; these phenomena have between 100 ps and some nanoseconds duration. Investigation of the laser-driven plasma may require the formation and the detection of two-dimensional images formed by X-ray microscopes or spectrometers in the soft X-ray range (from about 50 eV to some keV). To reach that purpose, we have developed and tested two opto-electronic chains. The first one is built around a small image converter tube with a soft X-ray photocathode and P20 phosphor screen deposited on a fiber optic plate; the electronic image appearing on the screen is read by a C.C.D. working in the visible spectral range. The second one, designed to work below 100eV is realized with a very thin phosphor screen deposited on the fiber optic input of a visible microchannel image intensifier; the output image is then read by a C.C.D. in the same manner than previously

  11. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  12. Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations

    International Nuclear Information System (INIS)

    Chen Xing; Chu Wangsheng; Cai Quan; Xia Dingguo; Wu Zhonghua; Wu Ziyu

    2006-01-01

    PVP-protected Cu/Pt clusters were prepared by glycol/water reduction method and characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD) and absorption spectra. TEM and XRD analysis show that the Cu/Pt clusters with different molar ratio have fcc structure with particle size of about 4 nm, while the lattice parameters in these clusters reduce with increasing Cu concentration. From the X-ray absorption near edge structure (XANES) at Cu-K edge and Pt-L 2,3 edge, we demonstrate that the d-electronic states of Cu and Pt are affected by the local environment as a function of Cu/Pt molar ratio. With increasing Cu concentration, Pt loses a fraction of 5d electrons and the hybridization between p- and d-states at Cu sites is enhanced

  13. Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chu Wangsheng [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); University of Science and Technology of China, Hefei, 230036 (China); Cai Quan [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Xia Dingguo [College of Environmental and Energy Engineering, Beijing University of Technology, 100022 Beijing (China); Wu Zhonghua [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China) and National Center for Nanoscience and Technology (China)]. E-mail: wuzy@ihep.ac.cn

    2006-11-15

    PVP-protected Cu/Pt clusters were prepared by glycol/water reduction method and characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD) and absorption spectra. TEM and XRD analysis show that the Cu/Pt clusters with different molar ratio have fcc structure with particle size of about 4 nm, while the lattice parameters in these clusters reduce with increasing Cu concentration. From the X-ray absorption near edge structure (XANES) at Cu-K edge and Pt-L{sub 2,3} edge, we demonstrate that the d-electronic states of Cu and Pt are affected by the local environment as a function of Cu/Pt molar ratio. With increasing Cu concentration, Pt loses a fraction of 5d electrons and the hybridization between p- and d-states at Cu sites is enhanced.

  14. Electron and photon emissions from gold nanoparticles irradiated by X-ray photons

    Energy Technology Data Exchange (ETDEWEB)

    Casta, R., E-mail: castaromain@gmail.com, E-mail: romain.casta@irsamc.ups-tlse.fr; Champeaux, J.-P.; Moretto-Capelle, P.; Sence, M.; Cafarelli, P. [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, CNRS, UMR 5589 (France)

    2015-01-15

    In this paper, we develop a totally new probabilistic model for the electron and photon emission of gold nanoparticles irradiated by X-ray photons. This model allows direct applications to recent researches about the radiotherapy enhancement by gold nanoparticles in the context of cancer treatment. Our model uses, in a complete original way, simulated Auger cascade and stopping power to compute electron emission spectra, photon emission spectra and released energy inside the material of gold nanoparticles. It allows us to present new results about the electron and photon emission of gold nanoparticle irradiated by hard X-rays.

  15. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  16. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  17. Effects of Electronic Information Resources Skills Training for Lecturers on Pedagogical Practices and Research Productivity

    Science.gov (United States)

    Bhukuvhani, Crispen; Chiparausha, Blessing; Zuvalinyenga, Dorcas

    2012-01-01

    Lecturers use various electronic resources at different frequencies. The university library's information literacy skills workshops and seminars are the main sources of knowledge of accessing electronic resources. The use of electronic resources can be said to have positively affected lecturers' pedagogical practices and their work in general. The…

  18. Statistical and coherence properties of radiation from X-ray free electron lasers

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-01

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  19. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  20. Soft-X ray electronics for temperature measurement in SST-1 tokamak

    International Nuclear Information System (INIS)

    Kumari, Praveena; Raval, Jayesh V.; Chauhan, Harsad; Hansalia, C.J.; Joisa, Y.S.; Rajpal, Rachana

    2015-01-01

    Soft-X ray diagnostic is used for the measurement of core temperature of plasma in tokamak. Signal conditioning electronics is designed, developed and tested for Soft-X ray measurement in SST-1. Silicon Surface Barrier Detectors (SBD) are used for detection of Soft -X ray. The detector is very sensitive and have a large leakage current (1-10) nA/cm"2. The preamplifier is designed to measure (10-100) nA of current signal. Virtual bias is supplied to detector through preamplifier. The front end electronics are mounted directly on the feed through in air side. Detectors are interfaced with feed through by 2-wire shielded cable. In the way of getting good results, problems are identified and troubleshooted. Soft-X ray signals are observed consistently in SST-1 campaign XIII. Different scheme were tested during the plasma experimental shots to get better measurement. This poster will describe the design details, interfacing with detector, problem faced, remedy and results. (author)

  1. Transport equation theory of electron backscattering and x-ray production

    International Nuclear Information System (INIS)

    Fathers, D.J.; Rez, P.

    1978-02-01

    A transport equation theory of electron backscattering and x ray production is derived and applied to energy dissipation of 30-KeV electrons for copper as a function of depth and to the energy distribution of backscattered electrons for copper, aluminum, and gold. These results are plotted and compared with experiment. Plots for variations of backscattering with atomic number and with angle of incidence, and polar plots of backscattering for 30-keV electrons at normal incidence are also presented. 10 references, seven figures

  2. Visible/IR light and x-rays in femtosecond synchronism from an x-ray free-electron laser

    International Nuclear Information System (INIS)

    Adams, B. A.; Experimental Facilities Division

    2005-01-01

    A way is proposed to obtain pulses of visible/infrared light in femtosecond synchronism with x-rays from an x-ray free-electron laser (XFEL), using the recently proposed emittance-slicing technique. In an XFEL undulator, only the short section of an electron bunch whose emittance is left unchanged by the slicing will emit intense coherent x-rays in the XFEL undulator. At the same time, the bunch emits highly collimated transition undulator radiation (TUR) into a cone whose opening angle is the reciprocal relativisticity parameter gamma. Due to the variation of the transverse momentum induced by the emittance slicing, the effective number of charges contributing to the TUR varies along the bunch, and is higher in the sliced-out part that emits the coherent x-rays. As with coherent synchrotron radiation (CSR), the TUR is thus coherently enhanced (CTUR) at near-infrared wavelengths. Coming from the same part of the bunch the CTUR and the coherent x-rays are perfectly synchronized to each other. Because both types of radiation are generated in the long straight XFEL undulator, there are no dispersion effects that might induce a timing jitter. With typical XFEL parameters, the energy content of the single optical cycle of near-IR CTUR light is about 100 Nano-Joule, which is quite sufficient for most pump-probe experiments

  3. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    Science.gov (United States)

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  4. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons

    International Nuclear Information System (INIS)

    Chihara, Junzo

    1987-01-01

    X-ray scattered intensity from a liquid metal as an electron-ion mixture is described using the structure factors, which are exactly expressed in terms of the static and dynamic direct correlation functions. This intensity for a metal is shown to differ from the usual scattered intensity from a non-metal in two points: the atomic form factor and the incoherent (Compton) scattering factor. It is shown that the valence electron form factor, which constitutes the atomic form factor in a liquid metal, leads to a determination of the electron-electron and electron-ion structure factors by combining the ionic structure factor. It is also shown that a part of the electron structure factor, which appears as the incoherent x-ray scattering, is usually approximated as the electron structure factor of the jellium model in the case of a simple metal. As a by-product, the x-ray scattered intensity from a crystalline metal and the inelastic scattering from a liquid metal are given by taking account of the presence of conduction electrons. In this way, we clarify some confusion which appeared in the proposal by Egelstaff et al for extracting the electron-electron correlation function in a metal from x-ray and neutron scattering experiments. A procedure to extract the electron-electron and electron-ion structure factors in a liquid metal is proposed on the basis of formula for scattered intensity derived here. (author)

  5. X-ray electron investigation of technetium compounds

    International Nuclear Information System (INIS)

    Gerasimov, V.N.; Kryuchkov, S.V.; Kuzina, A.F.; Kulakov, V.M.; Pirozhkov, S.V.; Spitsyn, V.I.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1982-01-01

    Investigation results of a number of technetium compounds using the method of X-ray electron spectroscopy have been presented for the first time. Calculation of effective charge for compounds without Tc-Tc bond and cluster complexes with strong Tc-Tc bond is made. Strong interdependence of effective charge and properties of technetium clusters is shown. Binding energies for certain cluster complexes of technetium with halides are given

  6. X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas

    Science.gov (United States)

    Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.

    2018-06-01

    In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  7. Electron beam produced in a transient hollow cathode discharge: beam electron distribution function, X-ray emission and solid target ablation

    International Nuclear Information System (INIS)

    Nistor, Magdalena

    2000-01-01

    This research thesis aims at a better knowledge of phenomena occurring during transient hollow cathode discharges. The author first recalls the characteristics of such a discharge which make it different from conventional pseudo-spark discharges. The objective is to characterise the electron beam produced within the discharge, and the phenomena associated with its interaction with a solid or gaseous target, leading to the production of an X ray or visible radiation. Thus, the author reports the measurement (by magnetic deflection) of the whole time-averaged electronic distribution function. Such a knowledge is essential for a better use of the electron beam in applications such as X-ray source or material ablation. As high repetition frequency pulse X ray sources are very interesting tools, he reports the development and characterisation of Bremsstrahlung X rays during a beam-target interaction. He finally addresses the implementation of a spectroscopic diagnosis for the filamentary plasma and the ablation of a solid target by the beam [fr

  8. Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma

    Directory of Open Access Journals (Sweden)

    L. Nikzad

    2012-02-01

    Full Text Available Simulation of x-ray generation from bombardment of various solid targets by quasimonoenergetic electrons is considered. The electron bunches are accelerated in a plasma produced by interaction of 500 mJ, 30 femtosecond laser pulses with a helium gas jet. These relativistic electrons propagate in the ion channel generated in the wake of the laser pulse. A beam of MeV electrons can interact with targets to generate x-ray radiation with keV energy. The MCNP-4C code based on Monte Carlo simulation is employed to compare the production of bremsstrahlung and characteristic x rays between 10 and 100 keV by using two quasi-Maxwellian and quasimonoenergetic energy distributions of electrons. For a specific electron spectrum and a definite sample, the maximum x-ray flux varies with the target thickness. Besides, by increasing the target atomic number, the maximum x-ray flux is increased and shifted towards a higher energy level. It is shown that by using the quasimonoenergetic electron profile, a more intense x ray can be produced relative to the quasi-Maxwellian profile (with the same total energy, representing up to 77% flux enhancement at K_{α} energy.

  9. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    Energy Technology Data Exchange (ETDEWEB)

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  10. Light from electron avalanches and background rejection in X-ray astronomy

    International Nuclear Information System (INIS)

    Siegmund, O.H.W.; Sanford, P.W.; Mason, I.M.; Culhane, J.L.; Cockshott, R.

    1980-01-01

    A modified version of the parallel plate imaging proportional counter, developed to register images of cosmic x-ray sources in the focal planes of x-ray telescopes, has been constructed to investigate the application of risetime discrimination to the scintillation pulses caused by the electron avalanche process. It is shown that efficient background event rejection (> 90%) is achieved and the application of this system for x-ray astronomy is discussed. (U.K.)

  11. M series resonant x-ray lines of barium for near threshold electron excitation

    International Nuclear Information System (INIS)

    Morgon, D.V.

    1992-01-01

    An investigation of the M series resonant x-ray emission lines of barium for near threshold electron excitation was undertaken with a vacuum double crystal spectrometer equipped with potassium acid phthalate crystals. X-ray continuum isochromats were obtained for barium samples using the double crystal spectrometer as a monochrometer set to pass 532 eV photons. The rotatable anode allowed the samples to be observed by either the double crystal spectrometer or a soft x-ray appearance potential spectrometer, which was used for monitoring the surface of the varium sample for contamination, and to provide a cross-check for the double crystal spectrometer data. Barium M series characteristic x-ray spectra for 2.0 keV electron excitation were obtained for a variety of samples, and it was discovered that the fluorescent and resonant x-ray emission line energies remained virtually the same, regardless of the chemical condition of the sample. The continuum resonance effect was observed for near-threshold energy electron excitation, but it was significantly weaker than the same effect observed previously for lanthanum or cerium. The electron excitation energy and intensity of this effect were strongly dependent on the chemical condition of the barium sample. X-ray continuum isochromats were observed for pure and contaminated barium samples at a photon energy of 532 eV. For pure metallic barium, a peak associated with 4f electronic states was observed at an energy of about 10.2 eV above the Fermi level. When the sample was exposed to 1.5 x 10 4 Langmuir of air, the 4f structure became more sharply peaked, and shifted to an energy of about 12.0 eV above the Fermi level. A continuum isochromat of barium oxide was also observed. Chemical shifts in barium M IV and M V appearance potential spectra are therefore caused soley by shifts in the energy position of the empty 4f electronic states relative to the Fermi level

  12. Hartmann characterization of the PEEM-3 aberration-corrected X-ray photoemission electron microscope.

    Science.gov (United States)

    Scholl, A; Marcus, M A; Doran, A; Nasiatka, J R; Young, A T; MacDowell, A A; Streubel, R; Kent, N; Feng, J; Wan, W; Padmore, H A

    2018-05-01

    Aberration correction by an electron mirror dramatically improves the spatial resolution and transmission of photoemission electron microscopes. We will review the performance of the recently installed aberration corrector of the X-ray Photoemission Electron Microscope PEEM-3 and show a large improvement in the efficiency of the electron optics. Hartmann testing is introduced as a quantitative method to measure the geometrical aberrations of a cathode lens electron microscope. We find that aberration correction leads to an order of magnitude reduction of the spherical aberrations, suggesting that a spatial resolution of below 100 nm is possible at 100% transmission of the optics when using x-rays. We demonstrate this improved performance by imaging test patterns employing element and magnetic contrast. Published by Elsevier B.V.

  13. Electronic Commerce Resource Centers. An Industry--University Partnership.

    Science.gov (United States)

    Gulledge, Thomas R.; Sommer, Rainer; Tarimcilar, M. Murat

    1999-01-01

    Electronic Commerce Resource Centers focus on transferring emerging technologies to small businesses through university/industry partnerships. Successful implementation hinges on a strategic operating plan, creation of measurable value for customers, investment in customer-targeted training, and measurement of performance outputs. (SK)

  14. Auger electron and X-ray spectroscopy of hollow atoms

    NARCIS (Netherlands)

    Morgenstern, R; Johnson, RL; Schmidtbocking, H; Sonntag, BF

    1997-01-01

    Hollow atoms as formed during collisions of multiply charged ions on metallic, semiconducting and insulating surfaces have in recent years successfully been investigated by various spectroscopic methods: low- and high-resolution X-ray spectroscopy as well as high resolution Auger electron

  15. X-ray comb generation from nuclear-resonance-stabilized x-ray free-electron laser oscillator for fundamental physics and precision metrology

    Directory of Open Access Journals (Sweden)

    B. W. Adams

    2015-03-01

    Full Text Available An x-ray free-electron laser oscillator (XFELO is a next-generation x-ray source, similar to free-electron laser oscillators at VUV and longer wavelengths but using crystals as high-reflectivity x-ray mirrors. Each output pulse from an XFELO is fully coherent with high spectral purity. The temporal coherence length can further be increased drastically, from picoseconds to microseconds or even longer, by phase-locking successive XFELO output pulses, using the narrow nuclear resonance lines of nuclei such as ^{57}Fe as a reference. We show that the phase fluctuation due to the seismic activities is controllable and that due to spontaneous emission is small. The fluctuation of electron-bunch spacing contributes mainly to the envelope fluctuation but not to the phase fluctuation. By counting the number of standing-wave maxima formed by the output of the nuclear-resonance-stabilized (NRS XFELO over an optically known length, the wavelength of the nuclear resonance can be accurately measured, possibly leading to a new length or frequency standard at x-ray wavelengths. A NRS-XFELO will be an ideal source for experimental x-ray quantum optics as well as other fundamental physics. The technique can be refined for other, narrower resonances such as ^{181}Ta or ^{45}Sc.

  16. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  17. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams

    Science.gov (United States)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Kneip, S.; Najmudin, Z.; Mangles, S. P. D.; Vargas, M.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2018-04-01

    The electric and magnetic fields responsible for electron acceleration in a Laser Wakefield Accelerator (LWFA) also cause electrons to radiate x-ray photons. Such x-ray pulses have several desirable properties including short duration and being well collimated with tunable high energy. We measure the scaling of this x-ray source experimentally up to laser powers greater than 100 TW. An increase in laser power allows electron trapping at a lower density as well as with an increased trapped charge. These effects resulted in an x-ray fluence that was measured to increase non-linearly with laser power. The fluence of x-rays was also compared with that produced from K-α emission resulting from a solid target interaction for the same energy laser pulse. The flux was shown to be comparable, but the LWFA x-rays had a significantly smaller source size. This indicates that such a source may be useful as a backlighter for probing high energy density plasmas with ultrafast temporal resolution.

  18. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  19. Generation of relativistic electron bunches in plasma synchrotron Gyrac-x for hard x-ray production

    International Nuclear Information System (INIS)

    Andreev, V.V.; Umnov, A.M.

    2000-01-01

    Experiment performed on plasma synchrotron Gyrac-X operating on synchrotron gyromagnetic autoresonance (SGA) is described. Gyrac-X is a compact plasma x-ray source in which kinetic energy of relativistic electrons obtained under SGA converts into x-ray by falling e-bunches on to a heavy metal target. The plasma synchrotron acts in a regime of a magnetic field pulse packet under constant level of microwave power. Experiments and numerical modeling of the process showed that such a regime allowed obtaining dense short lived relativistic electron bunches with average electron energy of 500 keV - 4.5 MeV. Parameters of the relativistic electron bunch (energy, density and volume) and dynamics of the electron bunches can be controlled by varying the parameters of the SGA process. Possibilities of x-ray intensity increase are also discussed

  20. Simulating Terrestrial Gamma Ray Flashes due to cosmic ray shower electrons and positrons

    Science.gov (United States)

    Connell, Paul

    2017-04-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate the relativistic runaway electron avalanches, RREA, that are presumed to be the cause of Terrestrial Gamma Ray Flashes and their powerful accompanying Ionization/Excitation Flashes. We show here results of LEPTRACK simulations of RREA by the interaction of MeV energy electrons/positrons and photons in cosmic ray showers traversing plausible electric field geometries expected in storm clouds. The input beams of MeV shower products were created using the CORSIKA software package from the Karlsruhe Institute of Technology. We present images, videos and plots showing the different Ionization, Excitation and gamma-ray photon density fields produced, along with their time and spatial profile evolution, which depend critically on where the line of shower particles intercept the electric field geometry. We also show a new effect of incoming positrons in the shower, which make up a significant fraction of shower products, in particular their apparent "orbiting" within a high altitude negative induced shielding charge layer, which has been conjectured to produce a signature microwave emission, as well as a short range 511 keV annihilation line. The interesting question posed is if this conjectured positron emission can be observed and correlated with TGF orbital observations to show if a TGF originates in the macro E-fields of storm clouds or the micro E-fields of lightning leaders where this positron "orbiting" is not likely to occur.

  1. Changes of surface electron states of InP under soft X-rays irradiation

    International Nuclear Information System (INIS)

    Yang Zhian; Yang Zushen; Jin Tao; Qui Rexi; Cui Mingqi; Liu Fengqin

    1999-01-01

    Changes of surface electronic states of InP under 1 keV X-ray irradiation is studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet ray energy spectroscopy (UPS). The results show that the soft X-ray irradiation has little effect on In atoms but much on P atoms. The authors analysed the mechanism of irradiation and explained the major effect

  2. Radiation hardness of GaAs sensors against gamma-rays, neutrons and electrons

    Energy Technology Data Exchange (ETDEWEB)

    Šagátová, Andrea, E-mail: andrea.sagatova@stuba.sk [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava (Slovakia); University Centre of Electron Accelerators, Slovak Medical University, Ku kyselke 497, 911 06 Trenčín (Slovakia); Zaťko, Bohumír; Dubecký, František [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Ly Anh, Tu [Faculty of Applied Science, University of Technology VNU HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Nečas, Vladimír; Sedlačková, Katarína; Pavlovič, Márius [Institute of Nuclear and Physical Engineering, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava (Slovakia); Fülöp, Marko [University Centre of Electron Accelerators, Slovak Medical University, Ku kyselke 497, 911 06 Trenčín (Slovakia)

    2017-02-15

    Highlights: • Radiation hardness of SI GaAs detectors against gamma-rays, neutrons and electrons was compared. • Good agreement was achieved between the experimental results and displacement damage factor of different types of radiation. • CCE and FWHM first slightly improved (by 1–8%) and just then degraded with the cumulative dose. • An increase of detection efficiency with cumulative dose was observed. - Abstract: Radiation hardness of semi-insulating GaAs detectors against {sup 60}Co gamma-rays, fast neutrons and 5 MeV electrons was compared. Slight improvements in charge collection efficiency (CCE) and energy resolution in FWHM (Full Width at Half Maximum) were observed at low doses with all kinds of radiation followed by their degradation. The effect occurred at a dose of about 10 Gy of neutrons (CCE improved by 1%, FWHM by 5% on average), at 1 kGy of electrons (FWHM decreased by 3% on average) and at 10 kGy of gamma-rays (CCE raised by 5% and FWHM dropped by 8% on average), which is in agreement with the relative displacement damage of the used types of radiation. Gamma-rays of MeV energies are 1000-times less damaging than similar neutrons and electrons about 10-times more damaging than photons. On irradiating the detectors with neutrons and electrons, we observed a global increase in their detection efficiency, which was caused probably by enlargement of the active detector area as a consequence of created radiation defects in the base material. Detectors were still functional after a dose of 1140 kGy of ∼1 MeV photons, 104 kGy of 5 MeV electrons but only up to 0.576 kGy of fast (∼2 to 30 MeV) neutrons.

  3. Electron confinement studies on the EBT-S Bumpy Torus Experiment using soft x-ray techniques

    International Nuclear Information System (INIS)

    Hillis, D.L.; Haste, G.R.; Berry, L.A.

    1983-01-01

    Soft x-ray bremsstrahlung measurements have been performed on the ELMO Bumpy Torus (EBT-S) plasma to determine the electron temperature T/sub e/ and electron density density n/sub e/ using a calibrated Si(Li) detector over a wide range of operating conditions. The purpose of this paper is to outline the necessary assumptions and essential x-ray techniques that are inherent in soft x-ray measurements in order to investigate the electron heating and confinement properties of EBT-S. In addition, by utilizing the electron density as determined by the soft x-ray measurements, the previous EBT-S confinement analyses have been extended. The steady-state plasma of EBT-S is heated by microwaves using a continuous wave (cw) gyrotron that can operate up to power levels of 200 kW. From the soft x-ray measurements, both the electron temperature and density are found to increase at higher microwave power levels. For operation at microwave power levels of 200 kW, T/sub e/ approaches 1 keV while n/sub e/ approaches 1.2 x 10 12 cm - 3 . In general, confinement properties are found to improve with increased microwave power. The data are compared with neoclassical transport scaling and the electron transport is found to be collisionless (#betta#/Ω<1) as well as neoclassical

  4. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  5. Electron beam production and characterization for the PLEIADES Thomson X-ray source

    International Nuclear Information System (INIS)

    Brown, W.J.; Hartemann, F.V.; Tremaine, A.M.; Springer, P.T.; Le Sage, G.P.; Barty, C.P.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Slaughter, D.R.; Rosenzweig, J.B.; Anderson, S.; Gibson, D.J.

    2002-01-01

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. Simulations of beam production, transport, and focus are presented. It is shown that a 1 ps, 500 pC electron bunch with a normalized emittance of less than 5 πmm-mrad can be delivered to the interaction point. Initial electron measurements are presented. Calculations of expected x-ray flux are also performed, demonstrating an expected peak spectral brightness of 1020 photons/s/mm2/mrad2/0.1% bandwidth. Effects of RF phase jitter are also presented, and planned phase measurements and control methods are discussed

  6. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function {Phi}(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  7. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2011-01-01

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function Φ(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  8. The energy spectrum of cosmic-ray electrons measured with H.E.S.S

    International Nuclear Information System (INIS)

    Egberts, Kathrin

    2009-01-01

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse γ rays from the Galactic plane. (orig.)

  9. The energy spectrum of cosmic-ray electrons measured with H.E.S.S.

    Energy Technology Data Exchange (ETDEWEB)

    Egberts, Kathrin

    2009-03-30

    The spectrum of cosmic-ray electrons has so far been measured using balloon and satellite-based instruments. At TeV energies, however, the sensitivity of such instruments is very limited due to the low flux of electrons at very high energies and small detection areas of balloon/satellite based experiments. The very large collection area of ground-based imaging atmospheric Cherenkov telescopes gives them a substantial advantage over balloon/ satellite based instruments when detecting very-high-energy electrons (> 300 GeV). By analysing data taken by the High Energy Stereoscopic System (H.E.S.S.), this work extends the known electron spectrum up to 4 TeV - a range that is not accessible to direct measurements. However, in contrast to direct measurements, imaging atmospheric Cherenkov telescopes such as H.E.S.S. detect air showers that cosmic-ray electrons initiate in the atmosphere rather than the primary particle. Thus, the main challenge is to differentiate between air showers initiated by electrons and those initiated by the hadronic background. A new analysis technique was developed that determines the background with the support of the machine-learning algorithm Random Forest. It is shown that this analysis technique can also be applied in other areas such as the analysis of diffuse {gamma} rays from the Galactic plane. (orig.)

  10. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  11. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  12. X-ray analysis of a single aerosol particle with combination of scanning electron microscope and synchrotron radiation X-ray microscope

    International Nuclear Information System (INIS)

    Toyoda, Masatoshi; Kaibuchi, Kazuki; Nagasono, Mitsuru; Terada, Yasuko; Tanabe, Teruo; Hayakawa, Shinjiro; Kawai, Jun

    2004-01-01

    We developed a microscope by a combination of synchrotron radiation X-ray fluorescence (SR-XRF) microscope and scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDX). SR-XRF is appropriate to detect trace and micro amount of elements and sensitive to heavy elements in an analyte but it cannot observe the real time image. SEM-EDX can observe the secondary electron image of a single particle in real time and is appropriate to detect lighter elements. This combination microscope can ensure the identification of the XRF spectrum to the SEM image without transferring the sample. For aerosol analysis, it is important to analyze each particle. The present method makes feasible to analyze not only the average elemental composition as the total particles but also elemental composition of each particle, which is dependent on the particle shape and size. The microscope was applied to an individual aerosol particle study. The X-ray spectra were different among the particles, but also different between SR-XRF and SEM-EDX for the same particle, due to the difference in fluorescence yields between X-ray excitation and electron excitation

  13. Thermal Electrons in Gamma-Ray Burst Afterglows

    Energy Technology Data Exchange (ETDEWEB)

    Ressler, Sean M.; Laskar, Tanmoy [Department of Astronomy, University of California, 501 Campbell Hall, Berkeley, CA 94720-3411 (United States)

    2017-08-20

    To date, nearly all multi-wavelength modeling of long-duration γ -ray bursts has ignored synchrotron radiation from the significant population of electrons expected to pass the shock without acceleration into a power-law distribution. We investigate the effect of including the contribution of thermal, non-accelerated electrons to synchrotron absorption and emission in the standard afterglow model, and show that these thermal electrons provide an additional source of opacity to synchrotron self-absorption, and yield an additional emission component at higher energies. The extra opacity results in an increase in the synchrotron self-absorption frequency by factors of 10–100 for fiducial parameters. The nature of the additional emission depends on the details of the thermal population, but is generally observed to yield a spectral peak in the optical brighter than radiation from the nonthermal population by similar factors a few seconds after the burst, remaining detectable at millimeter and radio frequencies several days later.

  14. Size effect in X-ray and electron diffraction patterns from hydroxyapatite particles

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Buffat, P.-A.

    2001-01-01

    High-resolution transmission electron microscopy (HRTEM), electron microdiffraction, and X-ray diffraction were used to study hydroxyapatite specimens with particle sizes from a few nanometers to several hundreds of nanometers. Diffuse scattering (without clear reflections in transmission diffraction patterns) or strongly broadened peaks in X-ray diffraction patterns are characteristic for agglomerated hydroxyapatite nanocrystals. However, HRTEM and microdiffraction showed that this cannot be considered as an indication of the amorphous state of the matter but rather as the demonstration of size effect and the morphological and structural features of hydroxyapatite nanocrystals

  15. The stationary non-equilibrium plasma of cosmic-ray electrons and positrons

    Science.gov (United States)

    Tomaschitz, Roman

    2016-06-01

    The statistical properties of the two-component plasma of cosmic-ray electrons and positrons measured by the AMS-02 experiment on the International Space Station and the HESS array of imaging atmospheric Cherenkov telescopes are analyzed. Stationary non-equilibrium distributions defining the relativistic electron-positron plasma are derived semi-empirically by performing spectral fits to the flux data and reconstructing the spectral number densities of the electronic and positronic components in phase space. These distributions are relativistic power-law densities with exponential cutoff, admitting an extensive entropy variable and converging to the Maxwell-Boltzmann or Fermi-Dirac distributions in the non-relativistic limit. Cosmic-ray electrons and positrons constitute a classical (low-density high-temperature) plasma due to the low fugacity in the quantized partition function. The positron fraction is assembled from the flux densities inferred from least-squares fits to the electron and positron spectra and is subjected to test by comparing with the AMS-02 flux ratio measured in the GeV interval. The calculated positron fraction extends to TeV energies, predicting a broad spectral peak at about 1 TeV followed by exponential decay.

  16. The SAGE spectrometer: A tool for combined in-beam γ-ray and conversion electron spectroscopy

    International Nuclear Information System (INIS)

    Papadakis, P; Herzberg, R-D; Pakarinen, J; Butler, P A; Cox, D; Cresswell, J R; Parr, E; Sampson, J; Greenlees, P T; Sorri, J; Hauschild, K; Jones, P; Julin, R; Peura, P; Rahkila, P; Sandzelius, M; Coleman-Smith, P J; Lazarus, I H; Letts, S C; Pucknell, V F E

    2011-01-01

    The SAGE spectrometer allows simultaneous in-beam γ-ray and internal conversion electron measurements, by combining a germanium detector array with a highly segmented silicon detector and an electron transport system. SAGE is coupled with the ritu gas-filled recoil separator and the great focal-plane spectrometer for recoil-decay tagging studies. Digital electronics are used both for the γ ray and the electron parts of the spectrometer. SAGE was commissioned in the Accelerator Laboratory of the University of Jyvaeskylae in the beginning of 2010.

  17. Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands)

    1993-12-31

    Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z{sub eff}. In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z{sub eff}, and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs.

  18. Measurement of electron density profiles by soft X-ray tomography on the RTP tokamak

    International Nuclear Information System (INIS)

    Cruz, D.F. da; Donne, A.J.H.; Lyadina, E.S.; Rutteman, R.H.; Tanzi, C.P.

    1993-01-01

    Tomographic diagnosis of the soft x-ray emissivity profile is a powerful method for studying several plasma parameters. The x-ray emissivity is a complicated function of plasma quantities like the electron density and temperature, and the impurity content in the plasma. These quantities can be studied separately provided that information is available on the remaining parameters. Soft x-ray emissivity profiles have already been used successfully in other machines to determine local values of impurity densities and the effective charge Z eff . In the RTP tokamak the electron density profile has been inferred from a modelling of the x-ray emissivity in situations where information is available on the electron temperature profile, the value of Z eff , and the relative proportion of the impurities. The method can be useful for the study of hollow density profiles that cannot be properly reconstructed by Abel inversion of interferometer or reflectometer data. (author) 7 refs., 2 figs

  19. Electron capture isotopes as cosmic ray 'hydrometers'

    International Nuclear Information System (INIS)

    Raisbeck, G.M.; Comstock, G.; Perron, C.; Yiou, F.

    1975-01-01

    Following our earlier work, a computer program has been developed to investigate in detail the survival of pure electron capture isotopes in cosmic rays as a function of their propagation conditions. It is found that this survival is very insensitive to certain parameters such as the type of path length distribution, but very sensitive to the density of the medium in which they are formed. Observation of these isotopes may thus provide clues as to this density. (orig.) [de

  20. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  1. A comparison of mutagenic effects of common wheat by electron beam, fast neutron and 60Co gamma ray irradiation

    International Nuclear Information System (INIS)

    An Daochang; Wang Linqing

    1988-02-01

    After winter wheat was irradiated by electron beam, fast neutron and γ-rays, respectively, the RBE value of electron beam to both fast neutrons and γ-rays was less than one, the RBE value of fast neutron to γ-rays was largely more than one. This results indicated that biological effect of M 1 generation induced by electron beam was less than that of fast neutrons very much, and similar to γ-ray irradiation. With electron beam irradiation, the half-lethal doses of M 1 generation were from 185 to 370 Gy, closer to 370 Gy, the lethal doses from 740 to 925 Gy. M 2 mutation efficiency with electron beam treatment was larger as compared with that with both fast neutrons and γ-rays. A wider mutation spectrum and higher mutation efficiency compared with other physical mutagens can be obtained with electron beam irradiation, about 30% higher than that with γ-ray irradiation. The best doses of irradiation with electron beam were 370 to 555 Gy. Fast neutrons, a better dose of which was 25 Gy, could induce more mutants than that with γ-rays in M 2 generation. The dose in which biological injury reached to 50% was the best dose for M 2 mutants by electron beam irradiation

  2. Galactic x-ray and gamma-ray emission and the nature of the interstellar electron spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Protheroe, R J; Wolfendale, A W [Durham Univ. (UK). Dept. of Physics

    1980-12-01

    An analysis is made of all available data, both direct and indirect, on the energy spectrum of cosmic ray electrons. It is shown that the data are consistent with an injection spectrum having a constant exponent, ..gamma.. = 2.1 +- 0.1, over a wide range of energy: 10-10sup(g) MeV. Attention is drawn to the role of a possible deficit of sources in reducing the intensity of local electrons both above 10 GeV and below a few hundred MeV.

  3. Galactic X-ray and gamma-ray emission and the nature of the interstellar electron spectrum

    International Nuclear Information System (INIS)

    Protheroe, R.J.; Wolfendale, A.W.

    1980-01-01

    An analysis is made of all available data, both direct and indirect, on the energy spectrum of cosmic ray electrons. It is shown that the data are consistent with an injection spectrum having a constant exponent, γ = 2.1 +- 0.1, over a wide range of energy: 10-10sup(g) MeV. Attention is drawn to the role of a possible deficit of sources in reducing the intensity of local electrons both above 10 GeV and below a few hundred MeV. (orig.)

  4. Electron acceleration in supernova remnants and diffuse gamma rays above 1 GeV

    DEFF Research Database (Denmark)

    Pohl, M.; Esposito, J.A.

    1998-01-01

    V. The time dependence stems from the Poisson fluctuations in the number of SNRs within a certain volume and within a certain time interval. As far as cosmic-ray electrons are concerned, the Galaxy looks like actively bubbling Swiss cheese rather than a steady, homogeneously filled system. Our finding has...... important consequences for studies of the Galactic diffuse gamma-ray emission, for which a strong excess over model predictions above 1 GeV has recently been reported. While these models relied on an electron injection spectrum with index 2.4 (chosen to fit the local electron flux up to 1 TeV), we show...

  5. Femtosecond X-ray Pulses from a Spatially Chirped Electron Bunch in a SASE FEL

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P.

    2003-01-14

    We propose a simple method to produce short x-ray pulses using a spatially chirped electron bunch in a SASE FEL. The spatial chirp is generated using an rf deflector which produces a transverse offset (in y and/or y') correlated with the longitudinal bunch position. Since the FEL gain is very sensitive to an initial offset in the transverse phase space at the entrance of the undulator, only a small portion of the electron bunch with relatively small transverse offset will interact significantly with the radiation, resulting in an x-ray pulse length much shorter than the electron bunch length. The x-ray pulse is also naturally phase locked to the rf deflector and so allows high precision timing synchronization. We discuss the generation and transport of such a spatially chirped electron beam and show that tens of femtosecond long pulse can be generated for the linac coherent light source (LCLS).

  6. Atomic holography with electrons and x-rays: Theoretical and experimental studies

    International Nuclear Information System (INIS)

    Len, P.M.

    1997-06-01

    Gabor first proposed holography in 1948 as a means to experimentally record the amplitude and phase of scattered wavefronts, relative to a direct unscattered wave, and to use such a open-quotes hologramclose quotes to directly image atomic structure. But imaging at atomic resolution has not yet been possible in the way he proposed. Much more recently, Szoeke in 1986 noted that photoexcited atoms can emit photoelectron of fluorescent x-ray wavefronts that are scattered by neighboring atoms, thus yielding the direct and scattered wavefronts as detected in the far field that can then be interpreted as holographic in nature. By now, several algorithms for directly reconstructing three-dimensional atomic images from electron holograms have been proposed (e.g. by Barton) and successfully tested against experiment and theory. Very recently, Tegze and Faigel, and Grog et al. have recorded experimental x-ray fluorescence holograms, and these are found to yield atomic images that are more free of the kinds of aberrations caused by the non-ideal emission or scattering of electrons. The basic principles of these holographic atomic imaging methods are reviewed, including illustrative applications of the reconstruction algorithms to both theoretical and experimental electron and x-ray holograms. The author also discusses the prospects and limitations of these newly emerging atomic structural probes

  7. Beamline for X-ray Free Electron Laser of SACLA

    International Nuclear Information System (INIS)

    Tono, K; Togashi, T; Ohashi, H; Kimura, H; Takahashi, S; Takeshita, K; Tomizawa, H; Goto, S; Inubushi, Y; Sato, T; Yabashi, M

    2013-01-01

    A beamline for X-ray free electron laser (XFEL) has been developed at SACLA, SPring-8 Angstrom Compact free electron LAser. The beamline delivers and diagnoses an XFEL beam without degrading the beam quality. The transport optics are applicable in the range of 4–30 keV with a double-crystal monochromator or 4–15 keV with either of two double-mirror systems. A photon diagnostic system of the beamline monitors intensity, photon energy, center-of-mass position, and spatial profile in shot-by-shot and non-destructive manners.

  8. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    Science.gov (United States)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  9. Generation of low KV x-ray portal images with mega-voltage electron beams

    International Nuclear Information System (INIS)

    Kenny, J.; Ebert, M.

    2004-01-01

    Full text: The increasing complexity of radiation therapy plans and reduced target margins, have made accurate localization of patients at treatment a crucial quality assurance issue. Mega-voltage portal images, the standard for treatment localization, are inherently low in contrast because x-ray attenuation at these energies is similar for most body tissues. Thus anatomical features are difficult to distinguish and match to features on a reference diagnostic image. This project investigates the possibly of using x-rays created by an external target placed in the path of a clinical mega-voltage electron beam. This target is optimised to produce a higher proportion of useful imaging x-rays in the range of 50-200kV. It is thought that a high efficiency Varian aSi500 amorphous silicon EPID will be sufficient to compensate for the very low efficiency of x-ray production. The project was undertaken with concurrent theoretical and experimental components. The former involved Monte Carlo models of low Z target design while in the later, experimental data was gathered to validate the model and explore the practical issues associated with electron mode image acquisition. A 6 MeV electron beam model for a Varian Clinac 21EX was developed with EGS4/BEAMnrc User Code and compared to measured beam data. Phase space data scored at the secondary collimator then became the input for simulations of a target placed in the accessory tray. Target materials were predominately low atomic number (Z) because a) production of high energy x-rays is minimized and, b) fewer low energy x-rays produced will be absorbed within the target. Photon and electron energy spectrums of the modified beam were evaluated for a range of target geometries. Ultimately, several materials were used in combination to optimise an x-ray yield for energies <200kV while removing electrons and very low energy x-rays, that contribute to patient dose but not to image formation. Low energy images of a PIPs EPID QA

  10. USE OF ELECTRONIC EDUCATIONAL RESOURCES WHEN TRAINING IN WORK WITH SPREADSHEETS

    Directory of Open Access Journals (Sweden)

    Х А Гербеков

    2017-12-01

    Full Text Available Today the tools for maintaining training courses based on opportunities of information and communication technologies are developed. Practically in all directions of preparation and on all subject matters electronic textbook and self-instruction manuals are created. Nevertheless the industry of computer educational and methodical materials actively develops and gets more and more areas of development and introduction. In this regard more and more urgent is a problem of development of the electronic educational resources adequate to modern educational requirements. Creation and the organization of training courses with use of electronic educational resources in particular on the basis of Internet technologies remains a difficult methodical task.In article the questions connected with development of electronic educational resources for use when studying the substantial line “Information technologies” of a school course of informatics in particular for studying of spreadsheets are considered. Also the analysis of maintenance of a school course and the unified state examination from the point of view of representation of task in him corresponding to the substantial line of studying “Information technologies” on mastering technology of information processing in spreadsheets and the methods of visualization given by means of charts and schedules is carried out.

  11. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  12. Measurements of transient electron density distributions by femtosecond X-ray diffraction

    International Nuclear Information System (INIS)

    Freyer, Benjamin

    2013-01-01

    This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.

  13. A free-electron laser fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Moncton, D. E.

    1999-01-01

    The field of synchrotrons radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research those beams make possible. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the.optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission in free electron lasers. The use of a superconducting linac could produce a major, cost-effective facility that spans wavelengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotron facilities, immense new scientific opportunities from fourth-generation sources

  14. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    Energy Technology Data Exchange (ETDEWEB)

    Girardeau-Montaut, J.-P. E-mail: jean-pierre.girardeau@univ-lyonl.fr; Kiraly, Bela; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-21

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of {approx}11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of {approx}0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed.

  15. Note: Theoretical study on the gas pressure dependence of x-ray yield in TE111 cavity based electron cyclotron resonance x-ray source

    International Nuclear Information System (INIS)

    Selvakumaran, T. S.; Sen, Soubhadra; Baskaran, R.

    2014-01-01

    Adopting Langevin methodology, a pressure dependent frictional force term which represents the collisional effect is added to the Lorentz equation. The electrons are assumed to be starting from the uniformly distributed co-ordinates on the central plane. The trajectory of each electron is numerically simulated by solving the modified Lorentz equation for a given pressure. The Bremsstrahlung x-ray energy spectrum for each electron crossing the cavity wall boundary is obtained using the Duane-Hunt law. The total x-ray yield is estimated by adding the spectral contribution of each electron. The calculated yields are compared with the experimental results and a good agreement is found

  16. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  17. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    International Nuclear Information System (INIS)

    Arp, U.

    1996-01-01

    Argon L 2.3 -M 2.3 M 2.3 Auger-electron spectra were measured in coincidence with Kα fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons

  18. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    Science.gov (United States)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  19. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...

  20. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Kapilashrami, M.; Zegkinoglou, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Törndahl, T.; Fjällström, V. [Ångström Solar Center, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lischner, J. [Department of Physics, University of California, Berkeley, California 94720 (United States); Louie, Steven G. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Hamers, R. J.; Zhang, L. [Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Guo, J.-H. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Himpsel, F. J., E-mail: fhimpsel@wisc.edu [Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States)

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se₂ (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  1. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    Science.gov (United States)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  2. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  3. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    International Nuclear Information System (INIS)

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    The software suite SITENNO is developed for processing diffraction data collected in coherent X-ray diffraction imaging experiments of non-crystalline particles using an X-ray free-electron laser. Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles

  4. Progress towards a measurement of the UHE cosmic ray electron flux using the CREST Instrument

    Science.gov (United States)

    Musser, Jim; Wakely, Scott; Coutu, Stephane; Geske, Matthew; Nutter, Scott; Tarle, Gregory; Park, Nahee; Schubnell, Michael; Gennaro, Joseph; Muller, Dietrich

    2012-07-01

    Electrons of energy beyond about 3 TeV have never been detected in the flux of cosmic rays at Earth despite strong evidence of their presence in a number of supernova remnants (e.g., SN 1006). The detection of high energy electrons at Earth would be extremely significant, yielding information about the spatial distribution of nearby cosmic ray sources. With the Cosmic Ray Electron Synchrotron Telescope (CREST), our collaboration has adopted a novel approach to the detection of electrons of energies between 2 and 50 TeV which results in a substantial increase in the acceptance and sensitivity of the apparatus relative to its physics size. The first LDB flight of the CREST detector took place in January 2012, with a float duration of approximately 10 days. In this paper we describe the flight performance of the instrument, and progress in the analysis of the data obtained in this flight.

  5. Improved performances of CIBER-X: a new tabletop laser-driven electron and x-ray source

    Science.gov (United States)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bela; Girardeau-Montaut, Claire

    2000-11-01

    We present the most recent data concerning the performances of the table-top laser driven electron and x-ray source developed in our laboratory. X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulse at 213 nm. The e-gun is a standard pierce diode electrode type, in which electrons are accelerated by a cw electric fields of 12 MV/m. The photoinjector produced a train of 90 - 100 keV electron pulses of approximately 1 nC and 40 A peak current at a repetition rate of 10 Hz. The electrons, transported outside the diode, are focused onto a target of thulium by magnetic fields produced by two electromagnetic coils to produce x-rays. Applications to low dose imagery of inert and living materials are also presented.

  6. Analytical Study of Usage of Electronic Information Resources at Pharmacopoeial Libraries in India

    Directory of Open Access Journals (Sweden)

    Sunil Tyagi

    2014-02-01

    Full Text Available The objective of this study is to know the rate and purpose of the use of e-resource by the scientists at pharmacopoeial libraries in India. Among other things, this study examined the preferences of the scientists toward printed books and journals, electronic information resources, and pattern of using e-resources. Non-probability sampling specially accidental and purposive technique was applied in the collection of primary data through administration of user questionnaire. The sample respondents chosen for the study consists of principle scientific officer, senior scientific officer, scientific officer, and scientific assistant of different division of the laboratories, namely, research and development, pharmaceutical chemistry, pharmacovigilance, pharmacology, pharmacogonosy, and microbiology. The findings of the study reveal the personal experiences and perceptions they have had on practice and research activity using e-resource. The major findings indicate that of the total anticipated participants, 78% indicated that they perceived the ability to use computer for electronic information resources. The data analysis shows that all the scientists belonging to the pharmacopoeial libraries used electronic information resources to address issues relating to drug indexes and compendia, monographs, drugs obtained through online databases, e-journals, and the Internet sources—especially polices by regulatory agencies, contacts, drug promotional literature, and standards.

  7. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating various approaches to minimize the x-ray source size on the Flash X-Ray (FXR) linear induction accelerator in order to improve x-ray flux and increase resolution for hydrodynamic radiography experiments. In order to effectively gauge improvements to final x-ray source size, a fast, robust, and accurate system for measuring the spot size is required. Timely feedback on x-ray source size allows new and improved accelerator tunes to be deployed and optimized within the limited run-time constraints of a production facility with a busy experimental schedule; in addition, time-resolved measurement capability allows the investigation of not only the time-averaged source size, but also the evolution of the source size, centroid position, and x-ray dose throughout the 70 ns beam pulse. Combined with time-resolved measurements of electron beam parameters such as emittance, energy, and current, key limiting factors can be identified, modeled, and optimized for the best possible spot size. Roll-bar techniques are a widely used method for x-ray source size measurement, and have been the method of choice at FXR for many years. A thick bar of tungsten or other dense metal with a sharp edge is inserted into the path of the x-ray beam so as to heavily attenuate the lower half of the beam, resulting in a half-light, half-dark image as seen downstream of the roll-bar; by measuring the width of the transition from light to dark across the edge of the roll-bar, the source size can be deduced. For many years, film has been the imaging medium of choice for roll-bar measurements thanks to its high resolution, linear response, and excellent contrast ratio. Film measurements, however, are fairly cumbersome and require considerable setup and analysis time; moreover, with the continuing trend towards all-electronic measurement systems, film is becoming increasingly difficult and expensive to procure. Here, we shall

  8. Proof of Principle for Electronic Collimation of a Gamma Ray Detector

    Science.gov (United States)

    2016-01-01

    Approved for public release; distribution is unlimited. ERDC TN-EQT-16-1 January 2016 Proof of Principle for Electronic Collimation of a Gamma...in achieving the proof of principle of the technique, which is intended to be further developed. A gamma ray detector system utilizing electronic...waveforms from longitudinal (along the axis) waveforms yield proof of principle . TECHNOLOGY DESCRIPTION: The component detector technologies were

  9. Single-shot beam-position monitor for x-ray free electron laser

    Science.gov (United States)

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  10. Dose distribution at junctional area abutting X-ray and electron fields

    International Nuclear Information System (INIS)

    Yang, Kwang Mo

    2004-01-01

    For the head and neck radiotherapy, abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom according to depths(0 cm, 1.5 cm, 3 cm, 5 cm). 6 MV X-ray and 9 MeV electron(1 Gy) were exposes to 8 cm depth and surface(SSD 100 cm) of phantom. The dose distribution to the junction line between photon(10 x 10 cm field with block) and electron(15 cm x 15 cm field with block) fields was also measured according to depths(0 cm, 0.5 1.5 cm, 3 cm, 5 cm). At the junction line between photon and electron fields, the hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to 6% of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was 4.5-30% of reference dose in the electron field. When we make use of abutting photon field with electron field for the treatment of head and neck cancer we should consider the hot and cold dose area in the junction of photon and electron field according to location of tumor.

  11. Page 170 Use of Electronic Resources by Undergraduates in Two ...

    African Journals Online (AJOL)

    undergraduate students use electronic resources such as NUC virtual library, HINARI, ... web pages articles from magazines, encyclopedias, pamphlets and other .... of Nigerian university libraries have Internet connectivity, some of the system.

  12. Effect of electron contamination of a 6 MV x-ray beam on near surface diode dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C R; Mountford, P J; Moloney, A J [Medical Physics Directorate, University Hospital of North Staffordshire, Princes Road, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7LN (United Kingdom)

    2006-12-21

    In critical organ in vivo x-ray dosimetry, the relative contaminating electron contribution to the total dose and total detector response outside the field will be different to the corresponding contributions at the central axis detector calibration position, mainly due to the effects of shielding in the linear accelerator head on the electron and x-ray energy spectrum. To investigate these contributions, the electron energy response of a Scanditronix PFD diode was measured using electrons with mean energies from 0.45 to 14.6 MeV, and the Monte Carlo code MCNP-4C was used to calculate the electron energy spectra on the central axis, and at 1 and 10 cm outside the edge of a 4 x 4, 10 x 10 and a 15 x 15 cm{sup 2} 6 MV x-ray field. The electron contribution to the total dose varied from about 8% on the central axis of the smallest field to about 76% at 10 cm outside the edge of the largest field. The electron contribution to the total diode response varied from about 7-8% on the central axis of all three fields to about 58% at 10 cm outside the edge of the smallest field. The results indicated that a near surface x-ray dose measurement with a diode outside the treatment field has to be interpreted with caution and requires knowledge of the relative electron contribution specific to the measurement position and field size.

  13. Bremsstrahlung γ-ray generation by electrons from gas jets irradiated by laser pulses for radiographic testing

    International Nuclear Information System (INIS)

    Oishi, Yuji; Nayuki, Takuya; Zhidkov, Alexei; Fujii, Takashi; Nemoto, Koshichi

    2012-01-01

    Electron generation from a gas jet irradiated by low energy femtosecond laser pulses is studied experimentally as a promising source of radiation for radioisotope-free γ-ray imaging systems. The calculated yield of γ-rays in the 0.5-2 MeV range, produced by low-average-power lasers and gas targets, exceeds the yields from solid tape targets up to 60 times. In addition, an effect of quasi-mono energetic electrons on γ-ray imaging is also discussed.

  14. Multichord time-resolved electron temperature measurements by the x-ray absorber-foil method on TFTR

    International Nuclear Information System (INIS)

    Kiraly, J.; Bitter, M.; Efthimion, P.

    1985-09-01

    Absorber foils have been installed in the TFTR X-Ray Imaging System to permit measurement of the electron temperature along 10 to 30 chords spaced at 5-12.5 cm with a time resolution of less than 100 μs. The technique uses the ratio of x-ray fluxes transmitted through two different foils. The ratio depends mainly on electron temperature. Simulations show that strong impurity line radiation can distort this ratio. To correct for these effects, special beryllium-scandium filters are employed to select the line-free region between 2 and 4.5 keV. Other filter pairs allow corrections for Fe L and Ni L line radiation as well as Ti K and Ni K emission. Good accuracy is also obtained with simple beryllium filters, provided that impurity corrections are incorporated in the analysis, taking line intensities from the x-ray pulse-height analysis diagnostic. A description of modeling calculations and a comparison of temperature values from this diagnostic with data from the x-ray pulse height analysis, the electron cyclotron emission, and the Thomson scattering diagnostics are presented. Several applications of the absorber foil electron temperature diagnostic on TFTR are discussed

  15. Multichord time-resolved electron temperature measurements by the x-ray absorber-foil method on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Kiraly, J.; Bitter, M.; Efthimion, P.; von Goeler, S.; Grek, B.; Hill, K.W.; Johnson, D.; McGuire, K.; Sauthoff, N.; Sesnic, S.

    1985-09-01

    Absorber foils have been installed in the TFTR X-Ray Imaging System to permit measurement of the electron temperature along 10 to 30 chords spaced at 5-12.5 cm with a time resolution of less than 100 ..mu..s. The technique uses the ratio of x-ray fluxes transmitted through two different foils. The ratio depends mainly on electron temperature. Simulations show that strong impurity line radiation can distort this ratio. To correct for these effects, special beryllium-scandium filters are employed to select the line-free region between 2 and 4.5 keV. Other filter pairs allow corrections for Fe L and Ni L line radiation as well as Ti K and Ni K emission. Good accuracy is also obtained with simple beryllium filters, provided that impurity corrections are incorporated in the analysis, taking line intensities from the x-ray pulse-height analysis diagnostic. A description of modeling calculations and a comparison of temperature values from this diagnostic with data from the x-ray pulse height analysis, the electron cyclotron emission, and the Thomson scattering diagnostics are presented. Several applications of the absorber foil electron temperature diagnostic on TFTR are discussed.

  16. X-ray spectra from the Cornell Electron-Beam Ion Source (CEBIS I)

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Kostroun, V.O.; Ghanbari, E.; Janson, S.W.

    1985-01-01

    Radiation emitted from the Cornell electron beam ion source (CEBIS I) has been surveyed with a Si(Li) x-ray detector. These spectra can be used to estimate backgrounds from electron bremsstrahlung and to evaluate the feasibility of atomic physics experiments using the CEBIS I source in this configuration. 1 ref., 2 figs

  17. Diffuse galactic continuum emission measured by COMPTEL and the cosmic-ray electron spectrum

    Science.gov (United States)

    Strong, A. W.; Diehl, R.; Schoenfelder, V.; Varendorff, M.; Youssefi, G.; Bloemen, H.; Hermsen, W.; De Vries, C.; Morris, D.; Stacy, J. G.

    1994-01-01

    Diffuse galactic continuum gamma-ray emission in the 0.75-30 MeV range from the inner Galaxy has been studied using data from COMPTEL on the Compton Gamma-Ray Observatory. Observations of the inner Galaxy from the Sky Survey have been used. The imaging properties of COMPTEL enable spatial analysis of the gamma-ray distribution using model fitting. A model based on atomic and molecular gas distributions in the Galaxy has been used to derive the emissivity spectrum of the gamma-ray emission and this spectrum is compared with theoretical estimates of bremsstrahlung emission from cosmic-ray electrons.

  18. Electronic roentgenographic images in presurgical X-ray diagnostics

    International Nuclear Information System (INIS)

    Haendle, J.; Hohmann, D.; Maass, W.; Siemens A.G., Erlangen

    1981-01-01

    An essential part of radiation exposure in surgery is due to devices and results from the required radiation time interval for continuous X-ray play-back up to the point at which all diagnostically relevant information can be retrieved from the screening image. With single-image storage and short exposure times as well as instant image play-back, this superfluous i.e. redundant radiation can be avoided. The electronic X-ray image is realized by means of a laboratory prototype and evaluated in hospitals. There is a report on clinical results and new technical developments. Remarkable are: the high radiation reduction that could be obtained, the problem - free instant image technique, and especially the advantages of automated exposure in direct film settings. The positive results yield the basis for the product development. (orig./MG) [de

  19. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    International Nuclear Information System (INIS)

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-01-01

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se 2 (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO = VBM CIGS – VBM diamond  = 0.3 eV ± 0.1 eV at the CIGS/Diamond interface and 0.0 eV ± 0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  20. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    Science.gov (United States)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  1. Low-temperature system for simultaneous counting of conversion electrons and backscattered [gamma]-rays in Moessbauer effect experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruskov, Todor (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Passage, Guener (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Rastanawi, Abdallah (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Radev, Rumen (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria))

    1994-12-01

    A system for simultaneous detection of conversion electrons, emitted after resonant exciting of [sup 57]Fe, and resonant backscattered [gamma]-rays and X-rays, accompanying the conversion electrons, is described. The system includes a helium proportional counter, for detection of conversion electrons, and a toroidal ''Keisch-type'' proportional counter, connected to the vacuum part of a helium cryostat. ((orig.))

  2. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  3. A survey of the use of electronic scientific information resources among medical and dental students

    Directory of Open Access Journals (Sweden)

    Aarnio Matti

    2006-05-01

    Full Text Available Abstract Background To evaluate medical and dental students' utilization of electronic information resources. Methods A web survey sent to 837 students (49.9% responded. Results Twenty-four per cent of medical students and ninteen per cent of dental students searched MEDLINE 2+ times/month for study purposes, and thiry-two per cent and twenty-four per cent respectively for research. Full-text articles were used 2+ times/month by thirty-three per cent of medical and ten per cent of dental students. Twelve per cent of respondents never utilized either MEDLINE or full-text articles. In multivariate models, the information-searching skills among students were significantly associated with use of MEDLINE and full-text articles. Conclusion Use of electronic resources differs among students. Forty percent were non-users of full-text articles. Information-searching skills are correlated with the use of electronic resources, but the level of basic PC skills plays not a major role in using these resources. The student data shows that adequate training in information-searching skills will increase the use of electronic information resources.

  4. Calculation of x-ray spectra emerging from an x-ray tube. Part I. Electron penetration characteristics in x-ray targets

    International Nuclear Information System (INIS)

    Poludniowski, Gavin G.; Evans, Philip M.

    2007-01-01

    The penetration characteristics of electron beams into x-ray targets are investigated for incident electron kinetic energies in the range 50-150 keV. The frequency densities of electrons penetrating to a depth x in a target, with a fraction of initial kinetic energy, u, are calculated using Monte Carlo methods for beam energies of 50, 80, 100, 120 and 150 keV in a tungsten target. The frequency densities for 100 keV electrons in Al, Mo and Re targets are also calculated. A mixture of simple modeling with equations and interpolation from data is used to generalize the calculations in tungsten. Where possible, parameters derived from the Monte Carlo data are compared to experimental measurements. Previous electron transport approximations in the semiempirical models of other authors are discussed and related to this work. In particular, the crudity of the use of the Thomson-Whiddington law to describe electron penetration and energy loss is highlighted. The results presented here may be used towards calculating the target self-attenuation correction for bremsstrahlung photons emitted within a tungsten target

  5. X-ray free electron laser and its application to 3-dimensional imaging of non-crystalline nano-structure

    International Nuclear Information System (INIS)

    Ishikawa, Tetsuya

    2007-01-01

    The Laser in the X-ray region has been anticipated to be realized as a light source to probe the nano-world. Free electron lasers using high energy electron accelerators have been promising the candidates. The finding of the principle of Self-Amplified Spontaneous Emission (SASE) resolved the technological difficulties accompanying the X-ray free electron laser, and the construction of large scale SASE facilities started in western countries. In Japan the construction of an SASE facility started in 2006 to be completed in 2010 at the site of the large synchrotron radiation facility, SPring-8 positioned as a 'critical technology of national importance' by the Japanese government. The principle of the X-ray free electron laser is explained and the outline of the Japanese facility construction plan is presented. Also the application of the X-ray laser to the imaging of non-crystalline nano-structure is introduced. (K.Yoshida)

  6. Electron Acceleration by Stochastic Electric Fields in Thunderstorms: Terrestrial Gamma-Ray Flashes

    Science.gov (United States)

    Alnussirat, S.; Miller, J. A.; Christian, H. J., Jr.; Fishman, G. J.

    2016-12-01

    Terrestrial gamma-ray flashes (TGFs) are energetic pulses of photons, which are intense and short, originating in the atmosphere during thunderstorm activity. Despite the number of observations, the production mechanism(s) of TGFs and other energetic particles is not well understood. However, two mechanisms have been suggested as a source of TGFs: (1) the relativistic runaway electron avalanche mechanism (RREA), and (2) the lightning leader mechanism. The RREA can account for the TGF observations, but requires restrictive or unrealistic assumptions. The lightning leader channel is also expected to produce runaway electrons, but through inhomogeneous, small scale, strong electric fields. In this work we use the Boltzmann equation to model the electron acceleration by the lightning leader mechanism, and we derive the gamma-ray spectrum from the electron distribution function. The electric fields at the tip of the leaders are assumed to be stochastic in space and time. Since the physics involved in the lightening leader is not known, we test different cases of the stochastic acceleration agent. From this modeling we hope to investigate the possibility and efficiency of stochastic acceleration in thunderstorm.

  7. X-ray electron density distribution of GaAs

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    Using ten X-ray structure amplitudes of strong reflections and nine weak reflections both, the valence electron and the difference electron density distribution of GaAs, are calculated. The experimental data are corrected for anomalous dispersion using a bond charge model. The calculated plots are compared with up to now published band structure-based and semiempirically calculated density plots. Taking into account the experimental data of germanium, measured on the same absolute scale, the difference density between GaAs and Ge is calculated. This exhibits the charge transfer between both the f.c.c.-sublattices as well as both, the shift and the decrease of the bond charge, quite closely connected to the theoretical results published by Baur et al. (author)

  8. Access to electronic information resources by students of federal ...

    African Journals Online (AJOL)

    The paper discusses access to electronic information resources by students of Federal Colleges of Education in Eha-Amufu and Umunze. Descriptive survey design was used to investigate sample of 526 students. Sampling technique used was a Multi sampling technique. Data for the study were generated using ...

  9. Adoption and use of electronic information resources by medical ...

    African Journals Online (AJOL)

    This study investigated the adoption and use of electronic information resources by medical science students of the University of Benin. The descriptive survey research design was adopted for the study and 390 students provided the data. Data collected were analysed with descriptive Statistics(Simple percentage and ...

  10. Intravenous coronary angiography utilizing K-emission and bremsstrahlung X-rays produced by electron bombardment

    International Nuclear Information System (INIS)

    1992-01-01

    The screening of the general population for coronary artery disease would be practical if a method existed for visualizing the extent of occlusion after an intravenous injection of contrast agent. Measurements performed with synchrotron radiation at SSRL and NSLS have shown that such an intravenous angiography procedure would be possible with an intense source of monochromatic X-rays. Because of the high cost of an electron synchrotron, theoretical analysis and experiments using inanimate phantoms has been undertaken to demonstrate the feasibility of using the spectrum produced by two appropriately chosen anode materials when bombarded with electrons in the 100--500 keV energy range for angiography. By using the X-rays emitted at 120 degree to the incident electron direction, about 20--30% of the X-ray intensity would be due to K-emission lines. Calculations using the TIGERP Monte Carlo Code, have shown that high quality angiograms of human coronary arteries should be possible with a contrast agent containing ytterbium, if an electron beam pulses of 16 kJ were used for each anode target. The experimental program supported in part by the DOE has consisted of these theoretical calculations and experiments at the Dynamitron Electron Accelerator Facility at BNL

  11. Time integrated x-ray measurments of the very energetic electron end loss profile in TMX-U

    International Nuclear Information System (INIS)

    Osher, J.E.; Fabyan, J.

    1984-01-01

    The time-integrated 2-D profile of the thick-target bremsstrahlung produced by energetic end loss electrons has been measured during ECRH operation of TMX-U. Sheets of x-ray film and/or arrays of thermoluminescent dosimeters were placed on the outside of the end tank end wall to measure the relative spatial x-ray profile, with locally added filters of Pb to determine the effective mean x-ray energy. The purpose of this simple survey diagnostic was to allow deduction of the gross features of the ECRH region. The electron source functions needed to fit the x-ray data were modeled for various anchor cell radial distributions mapped along magnetic field lines to the elliptical plasma potential control plates or the Al end walls. The data are generally consistent with (1) major ECR heating in the central 25-cm-diam core, (2) a mean ECRH electron loss energy of 420 keV, and (3) an ECRH coupling efficiency to these hot electrons of greater than or equal to 10%

  12. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  13. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.D.

    1994-01-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  14. Electrons at low altitudes: a difficult background problem for soft x-ray astronomy

    International Nuclear Information System (INIS)

    Seward, F.D.; Grader, R.J.; Toor, A.; Buginyon, G.A.; Hill, R.W.

    1973-01-01

    Quasti-trapped and precipitating electrons have been observed with rocket-borne x-ray astronomy detectors in the altitude range 150 to 500 km. Because the flights occurred at low magnetic latitudes the electrons were unexpected. Data from many flights are combined to derive altitude dependence, an average electron spectrum, and variation with solar activity. Development of electron-rejecting collimators is discussed, and laboratory and flight data on these collimators are presented. (U.S.)

  15. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  16. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions

    Directory of Open Access Journals (Sweden)

    J. Ferri

    2016-10-01

    Full Text Available Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (“self-modulation” of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^{12} with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons >10^{9}. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B>10^{20}  photons/s/mm^{2}/mrad^{2}/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National

  17. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  18. A comparison of ionizing radiation damage in CMOS devices from 60Co gamma rays, electrons and protons

    International Nuclear Information System (INIS)

    He Baoping; Yao Zhibin; Zhang Fengqi

    2009-01-01

    Radiation hardened CC4007RH and non-radiation hardened CC4011 devices were irradiated using 60 Co gamma rays, 1 MeV electrons and 1-9 MeV protons to compare the ionizing radiation damage of the gamma rays with the charged particles. For all devices examined, with experimental uncertainty, the radiation induced threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays are equal to that of 1 MeV electron and 1-7 MeV proton radiation under 0 gate bias condition. Under 5 V gate bias condition, the distinction of threshold voltage shifts (ΔV th ) generated by 60 Co gamma rays and 1 MeV electrons irradiation are not large, and the radiation damage for protons below 9 MeV is always less than that of 60 Co gamma rays. The lower energy the proton has, the less serious the radiation damage becomes. (authors)

  19. Where Do Electronic Books Fit in the College Research Arsenal of Resources?

    Science.gov (United States)

    Barbier, Patricia

    2007-01-01

    Student use of electronic books has become an accepted supplement to traditional resources. Student use and satisfaction was monitored through an online course discussion board. Increased use of electronic books indicate this service is an accepted supplement to the print book collection.

  20. A simple methodology for obtaining X-ray color images in scanning electron microscopy

    International Nuclear Information System (INIS)

    Veiga, M.M. da; Pietroluongo, L.R.V.

    1985-01-01

    A simple methodology for obtaining at least 3 elements X-ray images in only one photography is described. The fluorescent X-ray image is obtained from scanning electron microscopy with energy dispersion analysis system. The change of detector analytic channels, color cellophane foils and color films are used sequentially. (M.C.K.) [pt

  1. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A.; Desbrée, A. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses (France); Carvalho, A. [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); Chaves, P.C. [C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal); Reis, M.A., E-mail: mareis@ctn.tecnico.ulisboa.pt [IEQUALTECS, Lda, Rua Dr. Francisco Sá Carneiro, 36, 2500-065 S. Gregório CLD (Portugal); C" 2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, EN10 km 139.7, 2685-066 Bobadela LRS (Portugal)

    2016-08-15

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 10{sup 3} barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing {sup 57}Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  2. Effect of gamma-ray and electron irradiation on the response of solid-state track detectors

    International Nuclear Information System (INIS)

    Fukuda, Kyue

    1980-01-01

    Specimens of muscovite mica were first exposed to fission fragments and then to various gamma-ray fields from a 60 Co source ranging from 1.9 x 10 3 to 1.6 x 10 4 Mrad dose. The results show that the average etched width of fission-fragment tracks decreases with increasing gamma-ray dose. Shallow pits were observed in etched specimens when the gamma-ray dose exceeded 5 x 10 3 Mrad. Numerous shallow etch pits caused by the gamma-ray irradiation interfered with the observation of fission tracks in the specimens. No shallow etch pits were observed in the specimen annealed for 100 min at 600 0 C before the gamma-ray irradiation. Pre-annealing extends the ''safety limits'' of gamma background below which muscovite mica can be used to observe fission tracks without any gamma-ray interference. Gamma-ray and electron irradiation caused significant increase of the resistance to thermal decomposition of muscovite mica. The resistance increased markedly in the dose range from 5 x 10 3 to 8 x 10 3 Mrad. These phenomena suggest the use of mica to assess radiation doses of gamma rays and electrons up to several thousand megarads. (author)

  3. Electron emission regulator for an x-ray tube filament

    International Nuclear Information System (INIS)

    Daniels, H.E.; Randall, H.G.

    1982-01-01

    An x-ray tube ma regulator has an scr phase shift voltage regulator supplying the primary winding of a transformer whose secondary is coupled to the x-ray tube filament. Prior to initiation of an x-ray exposure, the filament is preheated to a temperature corresponding substantially to the electron emissivity needed for obtaining the desired tube ma during an exposure. During the preexposure interval, the phase shift regulator is controlled by a signal corresponding to the sum of signals representative of the voltage applied to the filament transformer, the desired filament voltage and the space charge compensation needed for the selected x-ray tube anode to cathode voltage. When an exposure is initiated, control of the voltage regulator is switched to a circuit that responds to the tube current by controlling the amount of phase shift and, hence, the voltage supplied to the transformer. Transformer leakage current compensation is provided during the exposure interval with a circuit that includes an element whose impedance is varied in accordance with the anode-to-cathode voltage setting so the element drains off tube current as required to cancel the effect of leakage current variations

  4. Ultrafast Coherent Diffraction Imaging with X-ray Free-Electron Lasers

    International Nuclear Information System (INIS)

    Chapman, H N; Bajt, S; Barty, A; Benner, W; Bogan, M; Frank, M; Hau-Riege, S; London, R; Marchesini, S; Spiller, E; Szoke, A; Woods, B; Boutet, S; Hodgson, K; Hajdu, J; Bergh, M; Burmeister, F; Caleman, C; Huldt, G; Maia, F; Seibert, M M; der Spoel, D v

    2006-01-01

    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before carrying out such experiments at an XFEL, which we are doing so with experiments at FLASH, the soft-X-ray FEL at DESY

  5. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  6. Monte-Carlo simulation of primary electrons in the matter for the generation of x-rays

    International Nuclear Information System (INIS)

    Bendjama, H.; Laib, Y.; Allag, A.; Drai, R.

    2006-01-01

    The x-rays imagining chains components from the source to the detector, rest on the first part of simulation to the energy production of x-rays emission (source), which suggest us to identified the losses energies result from interaction between the fast electrons and the particles of metal : the energies losses due to 'collisional losses' (ionization, excitation) and radiative losses. For the medium and the primary electron energy which interests us, the electrons slowing down in the matter results primarily from the inelastic collisions; whose interest is to have to simulate the x-rays characteristic spectrum. We used a Monte-Carlo method to simulate the energy loss and the transport of primary electrons. This type of method requires only the knowledge of the cross sections attached to the description of all the elementary events. In this work, we adopted the differential cross section of Mott and the total cross section of inner-shell ionization according to the formulation of Gryzinski, to simulate the energy loss and the transport of primary electrons respectively. The simulation allows to follow the electrons until their energy reaches the atomic ionization potential of the irradiated matter. The differential cross section of Mott gives us a very good representation of the pace of the distribution of the energy losses. The transport of primary electron is approximately reproduced

  7. The relative biological effectiveness of 60Co γ-rays, 55 kVp X-rays, 250 kVp X-rays, and 11 MeV electrons at low doses

    International Nuclear Information System (INIS)

    Spadinger, I.; Palcic, B.

    1992-01-01

    The RBE of selected low-LET radiation modalities (55 kVp X- rays, 250 kVp X-rays, 60 Co γ-rays, and 11 MeV electrons) was investigated for survival of two cell lines (V79 and CHO). Detailed measurements were made in the 0 to 3 Gy dose range using an image cytometry device to accurately determine the number of cells assayed at each dose point. Data were also collected in the high dose range (0 to 10 Gy) using conventional counting and plating techniques. RBE values (#+- #1 SE) varied from 1.0±0.07 (V79 cells) and 1.2± 0.05 (CHO cells) at high doses to 1.3±0.07 (V79) and 1.4±0.1 (CHO) at low doses for 55 kVp X-rays, from 1.1±0.05 (V79) and 1.1±0.04 (CHO) at high doses to 1.1±0.06 (V79) and 1.2±0.2 (CHO) at low doses for 250 kVp X-rays, and from 1.1±0.08 (V79) and 1.0±0.04 (CHO) at high doses to 1.0±0.06 (V79) and 0.9±0.1 (CHO) at low doses for 11 MeV electrons. Only the low and high dose RBEs for 55 kVp X-rays relative to 60 Co γ-rays were significantly different. (author)

  8. AN OSCILLATOR CONFIGURATION FOR FULL REALIZATION OF HARD X-RAY FREE ELECTRON LASER*

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.-J.; Kolodziej, T.; Lindberg, R. R.; Shu, D.; Shvyd' ko, Y.; Stoupin, S.; Maxwell, T.J.; Ding, Y.; Fawley, W. M.; Hastings, J.; Huang, Z; Krzywinski, J.; Marcus, G.; Qin, Weilun; Medvedev, N.; Zemella, J.; Blank, V.; Terentyev, S.

    2017-06-01

    An x-ray free electron laser oscillator (XFELO) is feasible by employing an X-ray cavity with Bragg mirrors such as diamond crystals. An XFELO at the 5th harmonic frequency may be implemented at the LCLS II using its 4 GeV superconducting linac, producing stable, fully coherent, high-spectral-purity hard x-rays. In addition, its output can be a coherent seed to the LCLS amplifier for stable, high-power, femto-second x-ray pulses. We summarize the recent progress in various R&D efforts addressing critical issues for realizing an XFELO at LCLS II.

  9. X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy

    International Nuclear Information System (INIS)

    Fraile Rodriguez, A.; Nolting, F.; Bansmann, J.; Kleibert, A.; Heyderman, L.J.

    2007-01-01

    Photoemission electron microscopy (PEEM) was employed for X-ray imaging and absorption spectroscopy of individual cobalt nanoparticles as small as 8 nm grown using an arc ion cluster source. Using lithographic markers on the samples we were able to identify the same particles with PEEM and scanning electron microscopy. Significant variations in the shape of the X-ray absorption spectra between different cobalt particles were detected. Furthermore, our data suggest that distinctive spectral information about the individual particles, such as the quenching of oxide-related features and changes in the cobalt L 3 -edge intensity, cancel out and cannot be detected in the measurement over an ensemble of particles

  10. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  11. Strategic Planning for Electronic Resources Management: A Case Study at Gustavus Adolphus College

    Science.gov (United States)

    Hulseberg, Anna; Monson, Sarah

    2009-01-01

    Electronic resources, the tools we use to manage them, and the needs and expectations of our users are constantly evolving; at the same time, the roles, responsibilities, and workflow of the library staff who manage e-resources are also in flux. Recognizing a need to be more intentional and proactive about how we manage e-resources, the…

  12. Implementing displacement damage calculations for electrons and gamma rays in the Particle and Heavy-Ion Transport code System

    Science.gov (United States)

    Iwamoto, Yosuke

    2018-03-01

    In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.

  13. REVIEW OF MOODLE PLUGINS FOR DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES FROM LANGUAGE DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2015-09-01

    Full Text Available Today the problem of designing multimedia electronic educational resources from language disciplines in Moodle is very important. This system has a lot of different, powerful resources, plugins to facilitate the learning of students with language disciplines. This article presents an overview and comparative analysis of the five Moodle plugins for designing multimedia electronic educational resources from language disciplines. There have been considered their key features and functionality in order to choose the best for studying language disciplines in the Moodle. Plugins are compared by a group of experts according to the criteria: efficiency, functionality and easy use. For a comparative analysis of the plugins it is used the analytic hierarchy process.

  14. Optimization of an analytical electron microscope for x-ray microanalysis: instrumental problems

    International Nuclear Information System (INIS)

    Bentley, J.; Zaluzec, N.J.; Kenik, E.A.; Carpenter, R.W.

    1979-01-01

    The addition of an energy dispersive x-ray spectrometer to a modern transmission or scanning transmission electron microscope can provide a powerful tool in the characterization of the materials. Unfortunately this seemingly simple modification can lead to a host of instrumental problems with respect to the accuracy, validity, and quality of the recorded information. This tutorial reviews the complications which can arise in performing x-ray microanalysis in current analytical electron microscopes. The first topic treated in depth is fluorescence by uncollimated radiation. The source, distinguishing characteristics, effects on quantitative analysis and schemes for elimination or minimization as applicable to TEM/STEMs, D-STEMs and HVEMs are discussed. The local specimen environment is considered in the second major section where again detrimental effects on quantitative analysis and remedial procedures, particularly the use of low-background specimen holers, are highlighted. Finally, the detrimental aspects of specimen contamination, insofar as they affect x-ray microanalysis, are discussed. It is concluded that if the described preventive measures are implemented, reliable quantitative analysis is possible

  15. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Directory of Open Access Journals (Sweden)

    K.B. Korotchenko

    2017-11-01

    Full Text Available In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110 with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110 within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z2−b(Z,z/z with the function b(Z,z depending on the screening parameter and the ion charge number z=Z−Ze.

  16. Modern ICT Tools: Online Electronic Resources Sharing Using Web ...

    African Journals Online (AJOL)

    Modern ICT Tools: Online Electronic Resources Sharing Using Web 2.0 and Its Implications For Library And Information Practice In Nigeria. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  17. Compact X-ray sources. Simulating the electron/strong laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Anthony [DESY, CFEL, Hamburg (Germany)

    2016-07-01

    The collision of an intense laser with an electron bunch can be used to produce X-rays via the inverse Compton scattering (ICS) mechanism. The ICS can be simulated via either a classical theory in which electrons and photons are treated in terms of classical electromagnetic waves - or a quantum theory in which charged particles interact with strong electromagnetic fields. The laser intensity used in a practical ICS collision is likely to be at such a level that quantum effects may be significant and the use of quantum theory may become a necessity. A simulation study is presented here comparing the classical and quantum approaches to the ICS. A custom particle-in-cell (PIC) software code, with photon generation by monte carlo of the exact quantum transition probability is used to simulate the quantum treatment. Peak resonant energies and the angular distribution of the X-rays are obtained and compared with those predicted by the classical theory. The conditions under which significant differences between the two theories emerges is obtained.

  18. Calibration of screen-type X-ray films for electron beams

    International Nuclear Information System (INIS)

    Kobayashi, T.; Sato, Y.; Yoshida, K.; Tateyama, N.; Komori, Y.; Nakabayashi, T.; Oyamada, M.; Nishimura, J.

    2002-01-01

    In order to extract the maximum performance of the screen-type X-ray film for the detection of cascade showers in emulsion chambers, we examined the effect of the thickness of the phosphor screen by irradiation with 200 MeV electron beams. The observed data is in agreement with our analytical prediction of the radiative transfer of photons in a phosphor screen. If we use a combination of the specially prepared screen, HR16B, with a phosphor layer of 400 μm and a green-sensitive X-ray film, HA30, the detection threshold energy of cascade showers can be considerably lowered down to 140 GeV. (author)

  19. Calibration of screen-type X-ray films for electron beams

    CERN Document Server

    Kobayashi, T; Yoshida, K; Tateyama, N; Komori, Y; Nakabayashi, T; Oyamada, M; Nishimura, J

    2002-01-01

    In order to extract the maximum performance of the screen-type X-ray film for the detection of cascade showers in emulsion chambers, we examined the effect of the thickness of the phosphor screen by irradiation with 200 MeV electron beams. The observed data is in agreement with our analytical prediction of the radiative transfer of photons in a phosphor screen. If we use a combination of the specially prepared screen, HR16B, with a phosphor layer of 400 mu m and a green-sensitive X-ray film, HA30, the detection threshold energy of cascade showers can be considerably lowered down to 140 GeV. (author)

  20. X-ray spectroscopic technique for energetic electron transport studies in short-pulse laser/plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tutt, T.E.

    1994-12-01

    When a solid target is irradiated by a laser beam, the material is locally heated to a high temperature and a plasma forms. The interaction of the laser with plasma can produce energetic electrons. By observing the behavior of these {open_quotes}hot{close_quotes} electrons, we hope to obtain a better understanding of Laser/Plasma Interactions. In this work we employ a layered-fluorescer technique to study the transport, and therefore the energetics, of the electrons. The plasma forms on a thin foil of metallic Pd which is bonded to thin layer of metallic Sn. Electrons formed from the plasma penetrate first the Pd and then the Sn. In both layers the energetic electrons promote inner (K) shell ionization of the metallic atoms which leads to the emission of characteristic K{sub {alpha}} x-rays of the fluorescers. By recording the x-ray spectrum emitted by the two foils, we can estimate the energy-dependent range of the electrons and their numbers.

  1. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y., E-mail: ding@slac.stanford.edu; Coffee, R.; Decker, F.-J.; Emma, P.; Field, C.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Behrens, C. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany); Helml, W. [Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-09

    Generation of femtosecond to sub-femtosecond pulses is attracting much attention in X-ray free-electron laser user community. One method is to use a slotted, emittance-spoiling foil which was proposed before (P. Emma et al., Phys. Rev. Lett. 92, 074801 (2004)) and has been widely used at the Linac Coherent Light Source. Direct experimental characterization of the slotted-foil performance was previously unfeasible due to a lack of appropriate diagnostics. With a recently installed X-band radio-frequency transverse deflector, we are able to characterize the electron bunch spoiling effect and X-ray pulse when using the slotted foil. We show that few-femtosecond X-ray pulses are generated with flexible control of the single-pulse duration or double-pulse separation with comparison to the theoretical model.

  2. Pixel array detector for X-ray free electron laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Hromalik, Marianne [Electrical and Computer Engineering, SUNY Oswego, Oswego, NY 13126 (United States); Tate, Mark; Koerner, Lucas [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Department of Physics, Laboratory of Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Wilson Laboratory, Cornell University, CHESS, Ithaca, NY 14853 (United States)

    2011-09-01

    X-ray free electron lasers (XFELs) promise to revolutionize X-ray science with extremely high peak brilliances and femtosecond X-ray pulses. This will require novel detectors to fully realize the potential of these new sources. There are many current detector development projects aimed at the many challenges of meeting the XFEL requirements . This paper describes a pixel array detector (PAD) that has been developed for the Coherent X-ray Imaging experiment at the Linac Coherent Light Source (LCLS) at the SLAC National Laboratory . The detector features 14-bit in-pixel digitization; a 2-level in-pixel gain setting that can be used to make an arbitrary 2-D gain pattern that is adaptable to a particular experiment; the ability to handle instantaneous X-ray flux rates of 10{sup 17} photons per second; and continuous frames rates in excess of 120 Hz. The detector uses direct detection of X-rays in a silicon diode. The charge produced by the diode is integrated in a pixilated application specific integrated circuit (ASIC) which digitizes collected holes with single X-ray photon capability. Each ASIC is 194x185 pixels, each pixel is 110{mu}mx110{mu}m on a side. Each pixel can detect up to 2500 X-rays per frame in low-gain mode, yet easily detects single photons at high-gain. Cooled, single-chip detectors have been built and meet all the required specifications. SLAC National Laboratory is engaged in constructing a tiled, multi-chip 1516x1516 pixel detector.

  3. Observation of dislocations in crystals using X-ray and electron transmission

    International Nuclear Information System (INIS)

    Morlevat, J.P.

    1965-10-01

    Two approaches of the dynamical theory of diffraction (EWALD's and AUTHIER's) are recalled briefly. In the light of these theories, one then considers what information concerning the dislocations existing in a crystal can be obtained by X-Ray as well as electron diffraction. (author) [fr

  4. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    International Nuclear Information System (INIS)

    Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D.K.; Skinner, J.M.; Skinner, M.J.; Stoner-Ma, D.; Sweet, R.M.

    2011-01-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  5. Monte-Carlo simulations of secondary electron emission from CsI, induced by 1-10 keV X-rays and electrons

    International Nuclear Information System (INIS)

    Akkerman, A.; Gibrekhterman, A.; Breskin, A.; Chechik, R.

    1992-05-01

    A model for electron transport and emission in CsI is proposed. It is based on theoretically calculated microscopic cross-sections for electron interaction with the nuclear and the electronic components of the solid. A Monte Carlo program based on this model was developed to simulate secondary electron emission induced by X-rays and electrons in the energy range of 1 to 10 keV. The calculated secondary emission yields agree with existing experimental data. The model provides all necessary characteristics for the design of radiation detectors based on secondary electron emission. It can be expanded to higher incident energies and other alkali halides. (author)

  6. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    International Nuclear Information System (INIS)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.

    2017-01-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μm. In conclusion, our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  7. Electron shell contributions to gamma-ray spectra of positron annihilation in noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng; Selvam, Lalitha [Centre for Molecular Simulation, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122 (Australia); Gribakin, Gleb F [Department of Applied Mathematics and Theoretical Physics, Queen' s University Belfast BT7 1NN (United Kingdom); Surko, Clifford M, E-mail: fwang@swin.edu.a [Physics Department, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2010-08-28

    Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, {Delta}{epsilon}, of the {gamma}-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.

  8. Ultraviolet laser transverse profile shaping for improving x-ray free electron laser performance

    Science.gov (United States)

    Li, S.; Alverson, S.; Bohler, D.; Egger, A.; Fry, A.; Gilevich, S.; Huang, Z.; Miahnahri, A.; Ratner, D.; Robinson, J.; Zhou, F.

    2017-08-01

    The photocathode rf gun is one of the most critical components in x-ray free electron lasers. The drive laser strikes the photocathode surface, which emits electrons with properties that depend on the shape of the drive laser. Most free electron lasers use photocathodes with work function in the ultraviolet, a wavelength where direct laser manipulation becomes challenging. In this paper, we present a novel application of a digital micromirror device (DMD) for the 253 nm drive laser at the Linear Coherent Light Source. Laser profile shaping is accomplished through an iterative algorithm that takes into account shaping error and efficiency. Next, we use laser shaping to control the X-ray laser output via an online optimizer, which shows improvement in FEL pulse energy. Lastly, as a preparation for electron beam shaping, we use the DMD to measure the photocathode quantum efficiency across cathode surface with an averaged laser rms spot size of 59 μ m . Our experiments demonstrate promising outlook of using DMD to shape ultraviolet lasers for photocathode rf guns with various applications.

  9. Multicascade X-Ray Free-Electron Laser with Harmonic Multiplier and Two-Frequency Undulator

    Science.gov (United States)

    Zhukovsky, K. V.

    2018-06-01

    The feasibility of generation of powerful x-ray radiation by a cascade free-electron laser (FEL) with amplification of higher harmonics using a two-frequency undulator is studied. To analyze the FEL operation, a complex phenomenological single-pass FEL model is developed and used. It describes linear and nonlinear generation of harmonics in the FEL with seed laser that takes into account initial electron beam noise and describes all main losses of each harmonic in each FEL cascade. The model is also calibrated against and approved by the experimental FEL data and available results of three-dimensional numerical simulation. The electron beam in the undulator is assumed to be matched and focused, and the dynamics of power in the singlepass FEL with cascade harmonic multipliers is investigated to obtain x-ray laser radiation in the FEL having the shortest length, beam energy, and frequency of the seed laser as low as possible. In this context, the advantages of the two-frequency undulator used for generation of harmonics are demonstrated. The evolution of harmonics in a multicascade FEL with multiplication of harmonics is investigated. The operation of the cascade FEL at the wavelength λ = 1.14 nm, generating 30 MW already on 38 m with the seed laser operating at a wavelength of 11.43 nm corresponding to the maximal reflectivity of the multilayered mirror MoRu/Be coating is investigated. In addition, the operation of the multicascade FEL with accessible seed UVlaser operating at a wavelength of 157 nm (F2 excimer UV-laser) and electron beam with energy of 0.5 GeV is investigated. X-ray radiation simulated in it at the wavelength λ 3.9 nm reaches power of 50 MW already at 27 m, which is by two orders of magnitude shorter than 3.4 km of the x-ray FEL recently put into operation in Europe.

  10. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2017-10-01

    Full Text Available The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system should be assessed. Developed a model for the development of the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system, which is based on the main scientific approaches, used in adult education, and consists of five blocks: target, informative, technological, diagnostic and effective.

  11. The development of a new edition of the gamma-ray spectrum catalogues designed for presentation in electronic format

    Energy Technology Data Exchange (ETDEWEB)

    Heath, R.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    New editions of the original Gamma-ray Spectrum Catalogues are being prepared for publication in electronic format. The objective of this program is to produce versions of the Catalogues in CD-ROM format and as an Internet resource. Additions to the original content of the Catalogues will include integrated decay scheme drawings, tables of related decay data, and updated text on the techniques of gamma-ray spectrometry. Related decay data from the Evaluated Nuclear Structure Data File (ENSDF) are then added, and all data converted to the Adobe Acrobat (PDF) format for CD-ROM production and availability on the large-volume Ge detectors, alpha-particle spectra, prompt neutron capture and inelastic scattering gamma-ray spectra, and gross fission product spectra characteristic of fuel cycle waste materials. Characterization of radioactivity in materials is a requirement in many phases of radioactive waste management. Movement, shipping, treatment, all activities which involve handling of mixed waste or TRU categories of waste at all DOE sites will require that measurements and assessment documentation utilize basic nuclear data which are tracable to internationally accepted standard values. This program will involve the identification of data needs unique to the development and application of specialized detector systems for radioactive waste characterization. 8 refs., 8 figs.

  12. The development of a new edition of the gamma-ray spectrum catalogues designed for presentation in electronic format

    International Nuclear Information System (INIS)

    Heath, R.L.

    1997-01-01

    New editions of the original Gamma-ray Spectrum Catalogues are being prepared for publication in electronic format. The objective of this program is to produce versions of the Catalogues in CD-ROM format and as an Internet resource. Additions to the original content of the Catalogues will include integrated decay scheme drawings, tables of related decay data, and updated text on the techniques of gamma-ray spectrometry. Related decay data from the Evaluated Nuclear Structure Data File (ENSDF) are then added, and all data converted to the Adobe Acrobat (PDF) format for CD-ROM production and availability on the large-volume Ge detectors, alpha-particle spectra, prompt neutron capture and inelastic scattering gamma-ray spectra, and gross fission product spectra characteristic of fuel cycle waste materials. Characterization of radioactivity in materials is a requirement in many phases of radioactive waste management. Movement, shipping, treatment, all activities which involve handling of mixed waste or TRU categories of waste at all DOE sites will require that measurements and assessment documentation utilize basic nuclear data which are tracable to internationally accepted standard values. This program will involve the identification of data needs unique to the development and application of specialized detector systems for radioactive waste characterization. 8 refs., 8 figs

  13. Developing Humanities Collections in the Digital Age: Exploring Humanities Faculty Engagement with Electronic and Print Resources

    Science.gov (United States)

    Kachaluba, Sarah Buck; Brady, Jessica Evans; Critten, Jessica

    2014-01-01

    This article is based on quantitative and qualitative research examining humanities scholars' understandings of the advantages and disadvantages of print versus electronic information resources. It explores how humanities' faculty members at Florida State University (FSU) use print and electronic resources, as well as how they perceive these…

  14. Hybridized electronic states in potassium-doped picene probed by soft x-ray spectroscopies

    Directory of Open Access Journals (Sweden)

    Hiroyuki Yamane

    2012-12-01

    Full Text Available The electronic structure of the unoccupied and occupied states of potassium (K-doped and undoped picene crystalline films has been investigated by using the element-selective and bulk-sensitive photon-detection methods of X-ray absorption and emission spectroscopies. We observed the formation of the doping-induced unoccupied and occupied electronic states in K-doped picene. By applying the inner-shell resonant-excitation experiments, we observed the evidence for the orbital hybridization between K and picene near the Fermi energy. Furthermore, the resonant X-ray emission experiment suggests the presence of the Raman-active vibronic interaction in K-doped picene. These experimental evidences play a crucial role in the superconductivity of K-doped picene.

  15. Experimental and theoretical studies on X-ray induced secondary electron yields in Ti and TiO2

    International Nuclear Information System (INIS)

    Iyasu, Takeshi; Tamura, Keiji; Shimizu, Ryuichi; Vlaicu, Mihai Aurel; Yoshikawa, Hideki

    2006-01-01

    Generation of X-ray induced secondary electrons in Ti and TiO 2 was studied from both experimental and theoretical approaches, using X-ray photoelectron spectroscopy (XPS) attached to a synchrotron radiation facility and Monte Carlo simulation, respectively. The experiment revealed that the yields of secondary electrons induced by X-rays (electrons/photon) at photon energies to 4950 and 5000eV for Ti and TiO 2 are δ Ti (4950eV)=0.002 and δ Ti (5000eV)=0.014 while those for TiO 2 are δ TiO 2 (4950eV)=0.003 and δ TiO 2 (5000eV)=0.018. A novel approach to obtain the escape depth of secondary electrons has been proposed and applied to Ti and TiO 2 . The approach agreed very well with the experimental data reported so far. The Monte Carlo simulation predicted; δ Ti * (4950eV)=0.002 and δ Ti * (5000eV)=0.011 while δ TiO 2 * (4950eV)=0.003 and δ TiO 2 * (5000eV)=0.015. An experimental examination on the contribution of X-ray induced secondary electrons to photocatalysis in TiO 2 has also been proposed

  16. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    Science.gov (United States)

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Measurements of L shell X-ray yields of thick Ag target by 6–29 keV electron impact

    International Nuclear Information System (INIS)

    Zhao, J.L.; Tian, L.X.; Li, X.L.; An, Z.; Zhu, J.J.; Liu, M.T.

    2015-01-01

    In this paper, the L shell X-ray yields for a thick Ag target have been measured at incident electron energies of 6–29 keV. The experimental values are compared with the Monte Carlo simulation results that are obtained by using the PENELOPE code, in which the inner-shell ionization cross sections by electron impact calculated in the theoretical frame of distorted wave Born approximation are used. The experimental and simulation values are in agreement with ∼10% difference. Meanwhile, the L shell X-ray production cross sections are also obtained based on the measured L shell X-ray yields for a thick Ag target in this paper, and are compared with other experimental Ag L shell X-ray production cross section data by electron and positron impact measured previously and some theoretical models. Some factors that could affect these comparisons are also discussed in this paper. - Highlights: • We measured L shell X-ray yields of thick Ag target by 6–29 keV electrons. • Our measured X-ray yields are in good agreement with the MC results with ∼10%. • L shell production cross sections are obtained based on the measured X-ray yields. • L shell production cross sections obtained are in good agreement with theories

  18. Sterilizing effect of irradiation for Zuogui power with electron beam and γ-rays

    International Nuclear Information System (INIS)

    Yue Ling; Kong Qiulian; Qi Wenyuan; Bao Yingzi; Chen Zhijun; Yuan Zhongyi

    2011-01-01

    The sterilizing effect of irradiation for Zuogui powder with accelerator (electron beam) and a cobalt unit (γ-rays) was studied. The results indicated that the D 10 values of E-beam irradiation and γ-rays irradiation were 2.602 kGy and 2.597 kGy for aerobic bacterial count, while those were 3.112 kGy and 3.208 kGy for mould and yeasts. (authors)

  19. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

    DEFF Research Database (Denmark)

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia

    2014-01-01

    We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast glob...

  20. Electron heating, magnetic field amplification, and cosmic-ray precursor length at supernova remnant shocks

    Energy Technology Data Exchange (ETDEWEB)

    Laming, J. Martin [Space Science Division, Naval Research Laboratory, Code 7684, Washington, DC 20375 (United States); Hwang, Una [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Rakowski, Cara, E-mail: laming@nrl.navy.mil, E-mail: Una.Hwang-1@nasa.gov, E-mail: pghavamian@towson.edu

    2014-07-20

    We investigate the observability, by direct and indirect means, of a shock precursor arising from magnetic field amplification by cosmic rays. We estimate the depth of such a precursor under conditions of nonresonant amplification, which can provide magnetic field strengths comparable to those inferred for supernova remnants. Magnetic field generation occurs as the streaming cosmic rays induce a plasma return current, and it may be quenched by either nonresonant or resonant channels. In the case of nonresonant saturation, the cosmic rays become magnetized and amplification saturates at higher magnetic fields. The precursor can extend out to 10{sup 17}-10{sup 18} cm and is potentially detectable. If resonant saturation occurs, the cosmic rays are scattered by turbulence and the precursor length will likely be much smaller. The dependence of precursor length on shock velocity has implications for electron heating. In the case of resonant saturation, this dependence is similar to that in the more familiar resonantly generated shock precursor, which when expressed in terms of the cosmic-ray diffusion coefficient kappav and shock velocity v{sub s} is kappav/v{sub s} . In the nonresonantly saturated case, the precursor length declines less quickly with increasing v{sub s} . Where precursor length proportional to 1/v{sub s} gives constant electron heating, this increased precursor length could be expected to lead to higher electron temperatures for nonresonant amplification. This should be expected at faster supernova remnant shocks than studied by previous works. Existing results and new data analysis of SN 1006 and Cas A suggest some observational support for this idea.

  1. X-ray imaging studies of electron cyclotron microwave-heated plasmas in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Failor, B.H.

    1986-02-01

    An x-ray pinhole camera designed to efficiently detect photons with energies between 5 and 250 keV was built to image bremsstrahlung emission from a microwave-heated hot electron plasma. This plasma is formed at one of the thermal barrier locations in the Tandem Experiment-Upgrade at Lawrence Livermore National Laboratory. The instrument consists of a lead aperture, an x-ray converter in the form of a sodium-activated cesium iodide scintillator, light intensifier electronics, and a recording medium that may either be high speed film or a CCD array. The nominal spatial and temporal resolutions are one part in 40 and 17 msec, respectively. The component requirements for optimum performance were determined both analytically and by computer simulation, and were verified experimentally. The details of these results are presented. The instrument has been used to measure x-ray emission from the TMX-U west end cell. Data acquired with the x-ray camera has allowed us to infer the temporal evolution of the mirror-trapped electron radial profile

  2. Application of PIN photodiodes on the detection of X-rays generated in an electron accelerator

    International Nuclear Information System (INIS)

    Mondragon-Contreras, L.; Ramirez-Jimenez, F.J.; Garcia-Hernandez, J.M.; Torres-Bribiesca, M.A.; Lopez-Callejas, R.; Aguilera-Reyes, E.F.; Pena-Eguiluz, R.; Lopez-Valdivia, H.; Carrasco-Abrego, H.

    2009-01-01

    PIN photodiodes are used in a novel application for the determination, within the energy range from 90 to 485 keV, of the intensity of X-rays generated by an experimental electron accelerator. An easily assembled X-ray monitor has been built with a low-cost PIN photodiode and operational amplifiers. The output voltage signal obtained from this device can be related to the electron beam current and the accelerating voltage of the accelerator in order to estimate the dose rate delivered by bremsstrahlung.

  3. Columnar recombination for X-ray generated electron-holes in amorphous selenium and its significance in a-Se x-ray detectors

    International Nuclear Information System (INIS)

    Bubon, O.; Jandieri, K.; Baranovskii, S. D.; Kasap, S. O.; Reznik, A.

    2016-01-01

    Although amorphous selenium (a-Se) has a long and successful history of application in optical and X-ray imaging, some of its fundamental properties are still puzzling. In particularly, the mechanism of carrier recombination following x-ray excitation and electric field and temperature dependences of the electron-hole pair creation energy (W_e_h_p) remain unclear. Using the combination of X-ray photocurrent and pulse height spectroscopy measurements, we measure W_e_h_p in a wide range of temperatures (218–320 K) and electric fields (10–100 V/µm) and show that the conventional columnar recombination model which assumes Langevin recombination within a column (a primary electron track) fails to explain experimental results in a wide range of electric fields and temperatures. The reason for the failure of the conventional model is revealed in this work, and the theory of the columnar recombination is modified to include the saturation of the recombination rate at high electric field in order to account for the experimental results in the entire range of fields and temperatures.

  4. Reflection of femtosecond pulses from soft X-ray free-electron laser by periodical multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ksenzov, D.; Grigorian, S.; Pietsch, U. [Faculty of Physics, University of Siegen (Germany); Hendel, S.; Bienert, F.; Sacher, M.D.; Heinzmann, U. [Faculty of Physics, University of Bielefeld (Germany)

    2009-08-15

    Recent experiments on a soft X-ray free-electron laser (FEL) source (FLASH in Hamburg) have shown that multilayers (MLs) can be used as optical elements for highly intense X-ray irradiation. An effort to find most appropriate MLs has to consider the femtosecond time structure and the particular photon energy of the FEL. In this paper we have analysed the time response of 'low absorbing' MLs (e.g. such as La/B{sub 4}C) as a function of the number of periods. Interaction of a pulse train of Gaussian shaped sub-pulses using a realistic ML grown by electron-beam evaporation technique has been analysed in the soft-X-ray range. The structural parameters of the MLs were obtained by reflectivity measurements at BESSY II and subsequent profile fittings. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  6. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  7. Some aspects of detectors and electronics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Goulding, F.S.

    1976-08-01

    Some of the less recognized and potentially important parameters of the electronics and detectors used in X-ray fluorescence spectrometers are discussed. Detector factors include window (dead-layer) effects, time-dependent background and excess background. Noise parameters of field-effect transistors and time-variant pulse shaping are also discussed

  8. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  9. Soft X-ray generation in gases by means of a pulsed electron beam produced in a high-voltage barier discharge

    NARCIS (Netherlands)

    Azarov, A.V.; Peters, P.J.M.; Boller, Klaus J.

    2007-01-01

    A large area pulsed electron beam is produced by a high-voltage barrier discharge. We compare the properties of the x-rays generated by stopping this beam of electrons in a thin metal foil with those generated by stopping the electrons directly in various gases. The generation of x-rays was

  10. A multichannel magnetic β-ray spectrometer for rapid measurements of electron spectra

    International Nuclear Information System (INIS)

    Kariya, Komyo; Morikawa, Kaoru.

    1989-01-01

    In order to make the magnetic β-ray spectrometer suitable for rapid measurements of electron spectra with short-lived nuclides, twelve small GM counters have been arrayed along the focal plane of a 180deg focusing flat type design. All the signal pulses from each one of these detectors are mixed together onto a single cable. By means of multichannel PHA, each pulse can be traced back to the specific detector which sent it out. In order to avoid time consuming evacuation procedures, the sample source is placed outside a thin window of the preevacuated analyzer chamber. By the use of this multichannel spectrometer a β-ray spectrum with maximum energy up to about 10 MeV can be measured within 1 min or so. Electron spectra measured with 113m In, 119m In and 144 Pr source are shown. (author)

  11. Optically controlled laser-plasma electron accelerator for compact gamma-ray sources

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2018-02-01

    Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.

  12. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  13. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    International Nuclear Information System (INIS)

    Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Schultz, D.; Tosi, D.; BenZvi, S.; Jensen, K.; Peacock, J.; Ruggles, T.; Santander, M.; Simons, A.L.

    2016-01-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available

  14. Non-thermal electron populations in microwave heated plasmas investigated with X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belapure, Jaydeep Sanjay

    2013-04-15

    An investigation of the generation and dynamics of superthermal electrons in fusion plasma is carried out. A SDD+CsI(Tl) based X-ray diagnostic is constructed, characterized and installed at ASDEX Upgrade. In various plasma heating power and densities, the fraction and the energy distribution of the superthermal electrons is obtained by a bi-Maxwellian model and compared with Fokker-Planck simulations.

  15. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  16. The determination of electron momentum densities by inelastic scattering gamma-ray-electron coincidence measurements: The (γ,eγ)-experiment

    International Nuclear Information System (INIS)

    Rollason, A.J.; Bell, F.; Schneider, J.R.

    1989-09-01

    Measurements have been made of the recoiling electron in 320 keV gamma ray inelastic scattering collisions in thin aluminium targets. The angular correlation of these electrons detected in coincidence with the scattered photon is in agreement with the kinematic requirements of the Compton effect and is correctly predicted by Monte Carlo simulations based on the impulse approximation. Further simulations of ideal-geometry experiments indicate that information about the initial electron momenta is available from an examination of those electron-photon events originating in a surface layer of one electronic mean free path depth and that elastic scattering of the recoil electrons from greater depths produces a nearly flat background to this signal. The results clearly demonstrate the feasibility of the (γ,eγ) experiment for studying electron momentum densities with synchrotron radiation. (orig.) With 23 refs., 17 figs

  17. Electronic Resource Management System. Vernetzung von Lizenzinformationen

    Directory of Open Access Journals (Sweden)

    Michaela Selbach

    2014-12-01

    Full Text Available In den letzten zehn Jahren spielen elektronische Ressourcen im Bereich der Erwerbung eine zunehmend wichtige Rolle: Eindeutig lässt sich hier ein Wandel in den Bibliotheken (fort vom reinen Printbestand zu immer größeren E-Only-Beständen feststellen. Die stetig wachsende Menge an E-Ressourcen und deren Heterogenität stellt Bibliotheken vor die Herausforderung, die E-Ressourcen effizient zu verwalten. Nicht nur Bibliotheken, sondern auch verhandlungsführende Institutionen von Konsortial- und Allianzlizenzen benötigen ein geeignetes Instrument zur Verwaltung von Lizenzinformationen, welches den komplexen Anforderungen moderner E-Ressourcen gerecht wird. Die Deutsche Forschungsgemeinschaft (DFG unterstützt ein Projekt des Hochschulbibliothekszentrums des Landes Nordrhein-Westfalen (hbz, der Universitätsbibliothek Freiburg, der Verbundzentrale des Gemeinsamen Bibliotheksverbundes (GBV und der Universitätsbibliothek Frankfurt, in dem ein bundesweit verfügbares Electronic Ressource Managementsystem (ERMS aufgebaut werden soll. Ein solches ERMS soll auf Basis einer zentralen Knowledge Base eine einheitliche Nutzung von Daten zur Lizenzverwaltung elektronischer Ressourcen auf lokaler, regionaler und nationaler Ebene ermöglichen. Statistische Auswertungen, Rechteverwaltung für alle angeschlossenen Bibliotheken, kooperative Datenpflege sowie ein über standardisierte Schnittstellen geführter Datenaustausch stehen bei der Erarbeitung der Anforderungen ebenso im Fokus wie die Entwicklung eines Daten- und Funktionsmodells. In the last few years the importance of electronic resources in library acquisitions has increased significantly. There has been a shift from mere print holdings to both e- and print combinations and even e-only subscriptions. This shift poses a double challenge for libraries: On the one hand they have to provide their e-resource collections to library users in an appealing way, on the other hand they have to manage these

  18. Time-resolved electron beam phase space tomography at a soft x-ray free-electron laser

    Directory of Open Access Journals (Sweden)

    Michael Röhrs

    2009-05-01

    Full Text Available High-gain free-electron lasers (FELs in the ultraviolet and x-ray regime put stringent demands on the peak current, transverse emittance, and energy spread of the driving electron beam. At the soft x-ray FEL FLASH, a transverse deflecting microwave structure (TDS has been installed to determine these parameters for the longitudinally compressed bunches, which are characterized by a narrow leading peak of high charge density and a long tail. The rapidly varying electromagnetic field in the TDS deflects the electrons vertically and transforms the time profile into a streak on an observation screen. The bunch current profile was measured single shot with an unprecedented resolution of 27 fs under FEL operating conditions. A precise single-shot measurement of the energy distribution along a bunch was accomplished by using the TDS in combination with an energy spectrometer. Variation of quadrupole strengths allowed for a determination of the horizontal emittance as a function of the longitudinal position within a bunch, the so-called slice emittance. In the bunch tail, a normalized slice emittance of about 2  μm was found, in agreement with expectations. In the leading spike, however, surprisingly large emittance values were observed, in apparent contradiction with the low emittance deduced from the measured FEL gain. By applying three-dimensional phase space tomography, we were able to show that the bunch head contains a central core of low emittance and high local current density, which is presumably the lasing part of the bunch.

  19. X-ray absorption study of the electronic structure of Mn-doped amorphous Si

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Zeng, Li; Huegel, A.; Helgren, E.; Hellman, F.; Piamonteze, C.; Arenholz, E.

    2008-03-08

    The electronic structure of Mn in amorphous Si (a-Mn{sub x}Si{sub 1?x}) is studied by X-ray absorption spectroscopy at the Mn L{sub 3,2} edges for x = 0.005-0.18. Except the x = 0.005 sample, which shows a slight signature of Mn{sup 2+} atomic multiplets associated with a local Mn moment, all samples have broad and featureless L{sub 3,2} absorption peaks, corresponding to an itinerant state for all 3d electrons. The broad X-ray absorption spectra exclude the possibility of a localized 3d moment and explain the unexpectedly quenched Mn moment in this magnetically-doped amorphous semiconductor. Such a fully delocalized d state of Mn dopant in Si has not been previously suggested.

  20. Characterisation of archaeological glass mosaics by electron microscopy and X-ray microanalysis

    International Nuclear Information System (INIS)

    Roe, M; Plant, S; Henderson, J; Andreescu-Treadgold, I; Brown, P D

    2006-01-01

    The combined techniques of scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy (TEM) and selected area electron diffraction are used to characterise the microstructures of opaque coloured glass mosaics from a mediaeval church in Torcello, Italy. Comparison of MgO/K 2 O ratios allows distinction between mediaeval and modern glass artefacts to be made. TEM investigation of inclusions indicates that relict silica is responsible for the speckled appearance of an impure mediaeval glass artefact, whilst a fine scale dispersion of elemental Cu nanoparticles is considered responsible for the orange-red colouration of a modern glass artefact

  1. The Electron Microscopy Outreach Program: A Web-based resource for research and education.

    Science.gov (United States)

    Sosinsky, G E; Baker, T S; Hand, G; Ellisman, M H

    1999-01-01

    We have developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools and expertise for biological electron microscopy. A major focus is molecular electron microscopy, but the site also includes information and links on structural biology at all levels of resolution. This site serves to help integrate or link structural biology techniques in accordance with user needs. The WWW site, called the Electron Microscopy (EM) Outreach Program (URL: http://emoutreach.sdsc.edu), provides scientists with computational and educational tools for their research and edification. In particular, we have set up a centralized resource containing course notes, references, and links to image analysis and three-dimensional reconstruction software for investigators wanting to learn about EM techniques either within or outside of their fields of expertise. Copyright 1999 Academic Press.

  2. A comparison of chemical and ionization dosimetry for high-energy x-ray and electron beams

    International Nuclear Information System (INIS)

    Durocher, J.J.; Boese, H.; Cormack, D.V.; Holloway, A.F.

    1981-01-01

    A comparison was made of ferrous sulfate (Fricke) and ionometric methods for determining the absorbed dose in a phantom irradiated with 4-MV x-rays, 25-MV x-rays, or electron beams having various incident energies between 10 and 32 MeV. Both chemical and ionization instruments were calibrated in a 60 Co beam at a point in water where the absorbed dose had been previously determined. The chemical yield measurements were corrected for spatial variations in dose within the volume of the solution and used to obtain a value of the absorbed dose for each of the x-ray and electron beams. The ratios of G-values required for these determinations were taken from ICRU reports 14 and 21. Ionization instrument readings from three types of commercial ionization chambers were used to obtain alternate values of the absorbed dose for each radiation. C lambda and CE values used in determining these ionization values of dose were also taken from the above ICRU reports. For 4-MV x-rays the values of absorbed dose obtained from chemical measurements agreed to within 0.5% with values obtained from ionization measurements; for 25-MV x-rays the chemical values were about 1% higher than the ionization values; for the electron beams the chemical values were 1%-4% below the ionization values. These discrepancies suggest an inconsistency among the recommended G, C lambda, and CE values similar to that which has been noted by other workers

  3. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

    Science.gov (United States)

    Harmand, M.; Coffee, R.; Bionta, M. R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D. M.; Lemke, H. T.; Medvedev, N.; Ziaja, B.; Toleikis, S.; Cammarata, M.

    2013-03-01

    Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a `measure-and-sort' approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100-200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of ~6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution.

  4. X-ray photoelectron spectra structure of actinide compounds stipulated by electrons of the inner valence molecular orbitals (IVMO)

    International Nuclear Information System (INIS)

    Teterin, Yu. A.; Ivanov, K. E.

    1997-01-01

    Development of precise X-ray photoelectron spectroscopy using X-ray radiation hν< 1.5 KeV allowed to carry out immediate investigations of fine spectra structure of both weakly bond and deep electrons. Based on the experiments and the obtained results it may be concluded: 1. Under favourable conditions the inner valence molecular orbitals (IVMO) may form in all actinide compounds. 2. The XPS spectra fine structure stipulated by IVMO electrons allows to judge upon the degree of participation of the filled AO electrons in the chemical bond, on the structure o considered atom close environment and the bond lengths in compounds. For amorphous compounds the obtaining of such data based on X-ray structure analysis is restricted. 3. The summary contribution of IVMO electrons to the absolute value of the chemical bonding is comparable with the corresponding value of OMO electrons contribution to the atomic bonding. This fact is very important and new in chemistry. (author)

  5. Radiological protection problems associated with parasitic X-ray emission from electronic products

    International Nuclear Information System (INIS)

    Amlinger, G.; Anger, K.; Billaudelle, H.; Ehlers, J.; Fendt, H.W.; Festag, J.G.; Haug, R.; Herrmann, K.H.; Klein, H.; Kossel, F.; Krebs, A.; Lauterbach, U.; Leibssle, H. Fa.; Lustig, H.; Maushart, R.; Milde, K.G.; Peter, F.; Ritter, J.; Riecke, W.D.; Rosenbaum, O.; Schiekel, M. Fa.; Schleich, F.; Schmidt, Th.; Speyer, K.; Teschke, L.; Tzschaschel, R.; Wagner, H.; Wehner, G.; Wendel, W.; Zehender, E.; Aiginoer, H.; Zakovsky, J.; Blom, G.; De backer, J.; Delhove, J.; Hublet, P.; Lejeune, P.; Misslin, A.; Nuyts, R.; Popovitch, I.; Hjardemaal, O.; Oehlenschlaeger, N.; Gonzalez Del Campo, R.; Becker, S.; Elder, R.L.; Matthews, J.D.; Sheldon, J.L.; Viitaniemi, T.J.; Aouizerate, H.; Aymeric, H.; Barthe, J.; Bermann, F.; Berthaud, Madeleine; Blanc, D.; Bory, P.; Bourrieau, J.; Bouville, A.; Bovagne, H.; Bresson, G.; Casanovas, J.; Cassanhiol, E.; Cassanhiol, E.; Chambragne, J.; Chanteur, J.; Choquet, R.; Cluchet, J.; Commanay, L.; Commanay, P.; Cros, J.L.; Dana, M.; Danna, J.; Decossas, J.L.; Delpla, M.; Destame, D.; Dieval, M.; Drouet, J.; Dubec, A.; Galy, J.; Garnier, A.; Gouerne, R.; Gras, M.; Grob, R.; Guelfucci, J.P.; Guevenoux, J.; Guichardiere, R.; Hamard, J.; Hardy, J.; Haym, J.P.; Hionette, J.; Jacob, G.; Lavie, J.M.; Levy, L.; Logre, P.; Manquene, J.; Martin, H.; Mathieu, J.; Odievre, Monique; Oustrin, J.; Palluel, P.; Patau, J.P.; Penotet, H.; Perrot, A.; Petel, M.; Peyrelavigne, A.; Peyrelavigne, Monique; Provincial, M.; Raedersdorff, J.; Renard, Cl.; Roche, L.; Roche, R.; Schaeffer, R.; Soubiran, J.; Soudain, G.; Stern, J.C.; Terrissol, M.; Tixier, M.; Vialettes, H.; Wauquier, J.M.; Casbolt, P.N.; Ciuciura, A.; Goodhew, E.G.; Jones, I.S.; O'riordan, M.C.; Speight, D.L.; Ward, P.R.; Williams, K.F.; Biro, T.; Vago, G.; Rosental, N.; Argiero, L.; Belli, M.; Boggio, M.; Carfi, N.; Garretti, S.; Loppa, A.; Parisi, A.; Susanna, A.; Ogawa, I.; Koren, K.; Aten, J.B.Th.; Barendsen, G.W.; Den Boer, A.M.; De Pijper, M.A.; Hekman, H.; Julius, H.W.; Strackee, L.; Van daatselaar, G.; Lorentzon, L.; Hadzi-Pealo, M.; Jeremio, M.; Stevanovio, Marija; Oosterkamp, W.J.; Shalmon, E.; Doyen, Diana; Goetschalkx, J.; Puel, R.

    1971-03-01

    During the past few decades there has been an increase in the production of many types of electronic devices such as rectifying tubes, thyratrons, klystrons, magnetrons, etc., containing elements capable of emitting undesirable X-radiation. These components are not only found in equipment used in industry and research laboratories, but also in devices of a more domestic nature, such as colour television sets, usually low in energy, this radiation may nevertheless constitute a health hazard for many users of such devices and may affect not only workers but even the population as a whole. The Commission of the European Communities (Euratom) felt it was desirable to review the state of the art with regard to problems of radiological protection arising in the manufacture, repair and use of such electronic equipment and to seek suitable technical and administrative solutions. In conjunction with the Centre Physique Atomique et Nucleaire of the Paul Sabatier University, the Commission held an International Symposium in Toulouse on 3-6 November 1970, which was attended by manufacturers of electronic equipment, officials of technical inspection bodies and representatives of public health and occupational safety authorities. The following items were discussed: classification and identification of sources of parasitic X-rays, methods of measuring soft X-rays, biological aspects of exposure to soft X-rays, performance standards and methods for testing and inspecting electronic equipment. The Symposium was followed attentively by 180 delegates from 21 countries and international organizations, and was concluded by a round table discussion at which the chairmen of the different sessions, assisted by experts, drew conclusions from their sessions and from the discussions, pointing up the problems which needed most urgently to be studied. This document contains the texts, in their original versions, of the papers presented at the meetings, together with the minutes of the

  6. Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies

    Energy Technology Data Exchange (ETDEWEB)

    Glatzel, Pieter, E-mail: glatzel@esrf.fr [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Weng, Tsu-Chien; Kvashnina, Kristina; Swarbrick, Janine; Sikora, Marcin [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Gallo, Erik [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Department of Inorganic, Physical and Materials Chemistry, INSTM Reference Center and NIS Centre of Excellence, Università di Torino, Via P. Giuria 7, I-10125 Torino (Italy); Smolentsev, Nikolay [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France); Research Center for Nanoscale Structure of Matter, Southern Federal University, str. Zorge 5, 344090 Rostov-on-Don (Russian Federation); Mori, Roberto Alonso [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38043 Grenoble (France)

    2013-06-15

    Highlights: ► Overview of some recent developments in hard X-ray RXES/RIXS. ► Evaluation of spectral line broadening in RXES/RIXS. ► Modelling of RXES/RIXS by ground state DFT calculations. ► Discussion on when HERFD provides a good approximation to XAS. -- Abstract: An increasing community of researchers in various fields of natural sciences is combining X-ray absorption with X-ray emission spectroscopy (XAS–XES) to study electronic structure. With the applications becoming more diverse, the objectives and the requirements in photon-in/photon-out spectroscopy are becoming broader. It is desirable to find simple experimental protocols, robust data reduction and theoretical tools that help the experimentalist to understand their data and learn about the electronic structure. This article presents a collection of considerations on non-resonant and resonant XES with the aim to guide the experimentalist to make good use of this technique.

  7. Technical Communicator: A New Model for the Electronic Resources Librarian?

    Science.gov (United States)

    Hulseberg, Anna

    2016-01-01

    This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…

  8. Supershort avalanche electron beams and x-ray in high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Tarasenko, V F; Baksht, E H; Kostyrya, I D; Lomaev, M I; Rybka, D V

    2008-01-01

    The properties of a supershort avalanche electron beam (S AEB) and X-ray radiation produced using a nanosecond volume discharge are examined. An electron beam of the runaway electrons with amplitude of ∼ 50 A has been obtained in air atmospheric pressure. It is reported that S AEB is formed in the angle above 2π sr. Three groups of the runaway electrons are formed in a gas diode under atmospheric air pressure, when nanosecond voltage pulses with amplitude of hundreds of kilovolts are applied. The electron beam has been generated behind a 45 μm thick AlBe foil in SF 6 and Xe under the pressure of 2 arm, and in He under the pressure of about 12 atm. The paper gives the analysis of a generation mechanism of SAEB.

  9. Electron-density distribution in cubic SrTiO3: a comparative γ-ray diffraction study

    International Nuclear Information System (INIS)

    Jauch, W.; Reehuis, M.

    2005-01-01

    The electron density and atomic displacements in the perovskite SrTiO 3 have been studied using extensive and accurate γ-ray diffraction data (λ=0.0392 Aa) at room temperature. The six strongest low-order structure factors have been determined under extinction-free conditions. Gram-Charlier series expansion of the thermal parameters have revealed no evidence for anharmonicity. The population of the 3d subshell on Ti is found to be close to zero, in agreement with the observed magnetic behaviour. The electronic properties at the bond critical points indicate ionic Ti-O and Sr-O interactions of different strengths, which is corroborated by the net charges of the atomic basins [q(Sr)=1.18 vertical stroke e vertical stroke, q(Ti)=3.10 vertical stroke e vertical stroke, q(O)=1.42 vertical stroke e vertical stroke ]. A critical comparison is made with earlier experimental results from laboratory X-ray, synchrotron X-ray, electron and neutron diffraction studies. Agreement and discrepancies are identified and resolved. (orig.)

  10. Measurements of the cosmic-ray electron and positron spectrum and anisotropies with the Fermi LAT

    Science.gov (United States)

    Loparco, F.; Fermi LAT Collaboration

    2017-12-01

    The Large Area Telescope (LAT) onboard the Fermi satellite is a pair-conversion telescope for high-energy gamma rays of astrophysical origin. Although it was designed to be a high-sensitivity gamma-ray telescope, the LAT has proved to be an excellent electron/positron detector. It has been operating in low Earth orbit since June 2008 and has collected more than 16 million cosmic-ray electron and positron (CRE) events in its first seven years of operation. The huge data sample collected by the LAT enables a precise measurement of the CRE energy spectrum up to the TeV region. A search for anisotropies in the arrival directions of CREs was also performed. The upper limits on the dipole anisotropy probe the presence of nearby young and middle-aged CRE sources.

  11. Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks

    International Nuclear Information System (INIS)

    Sesnic, S.; Diesso, M.; Hill, K.; Holland, A.; Pohl, F.

    1988-01-01

    Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron temperature, the Be filter thickness, and the electronic parameters of the acquisition system are known. PG 1810,1812 ID 131801CON N X-ray diagnostics TT Profile correction to electron temperature and enhancement factor in soft-x-ray pulse-height-analysis measurements in tokamaks AU S. Sesnic, M. Diesso, K. Hill, and A. Holland LO Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 AU F. Pohl LO Max-Planck Institut fuer Plasmaphysik, 8046-Garching, Federal Republic of Germany SD (Presented on 16 March 1988) AB Because soft-x-ray pulse-height-analysis spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. The correction factors for the electron temperature and the enhancement factor as a function of the temperature and density profile parameters and the energy are obtained. The spectrum distortion due to pulse pileup effects is also evaluated. A set of curves is given from which the distortion of the spectrum can be obtained if the electron tempe

  12. Strongly correlated electrons at high pressure: an approach by inelastic X-Ray scattering

    International Nuclear Information System (INIS)

    Rueff, J.P.

    2007-06-01

    Inelastic X-ray scattering (IXS) and associated methods has turn out to be a powerful alternative for high-pressure physics. It is an all-photon technique fully compatible with high-pressure environments and applicable to a vast range of materials. Standard focalization of X-ray in the range of 100 microns is typical of the sample size in the pressure cell. Our main aim is to provide an overview of experimental results obtained by IXS under high pressure in 2 classes of materials which have been at the origin of the renewal of condensed matter physics: strongly correlated transition metal oxides and rare-earth compounds. Under pressure, d and f-electron materials show behaviors far more complex that what would be expected from a simplistic band picture of electron delocalization. These spectroscopic studies have revealed unusual phenomena in the electronic degrees of freedom, brought up by the increased density, the changes in the charge-carrier concentration, the over-lapping between orbitals, and hybridization under high pressure conditions. Particularly we discuss about pressure induced magnetic collapse and metal-insulator transitions in 3d compounds and valence fluctuations phenomena in 4f and 5f compounds. Thanks to its superior penetration depth, chemical selectivity and resonant enhancement, resonant inelastic X-ray scattering has appeared extremely well suited to high pressure physics in strongly correlated materials. (A.C.)

  13. Femtosecond and Subfemtosecond X-Ray Pulses from a SASE Based Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Emma, P

    2004-03-10

    We propose a novel method to generate femtosecond and sub-femtosecond photon pulses in a free electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 femtosecond in duration containing about 1010 transversely coherent photons.

  14. Target size analysis of bioactive substances by radiation inactivation. Comparison with electron beam and. gamma. -ray

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Watanabe, Yuhei; Ishigaki, Isao; Hirose, Shigehisa

    1988-11-01

    The molecular sizes of various bioactive substances can be measured by the radiation inactivation method. The high energy electron beam (10 MeV) and /sup 60/Co-..gamma.. ray are mainly used for radiation inactivation method. When the practical electron accelerator (/similar to/ 3 MeV) is used for the method, the problems such as penetration and increase of temperature will arise. In this paper the radiation inactivation using 3MeV electron beam is investigated by comparison with ..gamma..-ray. When the plate type glass ampules (glass thickness 1 +- 0.1 mm) were used as the irradiation vessels, relatively uniform dose distribution was obtained. The temperature increased only from 21 degC to 35 degC by irradiation (0.77 mA, 100 passes, 100 kGy). Under the irradiation condition mentioned above, the molecular size of three enzymes were calculated from D/sub 37/ doses. The molecular sizes obtained by electron beam and ..gamma..-ray were 14,000 and 17,000 respectively for lysozyme, 33,000 for pepsin, and 191,000 and 164,000 for yeast alcohol dehydrogenase. These values agreed closely with the reported molecular weight, suggesting that the 3 MeV electron beam can also be used for the radiation inactivation under limited conditions.

  15. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    Science.gov (United States)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  16. Undulator commissioning by characterization of radiation in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2012-11-01

    Full Text Available In x-ray free electron lasers (XFELs where a long undulator composed of many segments is installed, there exist a number of error sources to reduce the FEL gain such as the trajectory error, K value discrepancy, and phase mismatch, which are related to the segmented-undulator structure. Undulator commissioning, which refers to the tuning and alignment processes to eliminate the possible error sources, is thus an important step toward realization of lasing. In the SPring-8 angstrom compact free electron laser (SACLA facility, the undulator commissioning has been carried out by means of characterization of x-ray radiation, i.e., measurements of the spatial and spectral profiles of monochromatized spontaneous undulator radiation as well as by probing the FEL intensity. The achieved tuning and alignment accuracies estimated from the statistics of actual measurements in SACLA show the effectiveness of this commissioning scheme.

  17. Simulation Studies of the X-Ray Free-Electron Laser Oscillator

    International Nuclear Information System (INIS)

    Lindberg, R.R.; Shyd'ko, Y.; Kim, K.-J; Fawley, W.M.

    2009-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include transverse effects and realistic Bragg crystal properties with the two-dimensional code GINGER. In the present cases considered the radiation divergence is much narrower than the crystal acceptance, and the numerical algorithm can be simplified by ignoring the finite angular bandwidth of the crystal. In this regime GINGER shows that the saturated x-ray pulses have 109 photons and are nearly Fourier-limited with peak powers in excess of 1 MW. Wealso include preliminary results for a four-mirror cavity that can be tuned in wavelength over a few percent, with future plans to incorporate the full transverse response of the Bragg crystals into GINGER to more accurately model this tunable source.

  18. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tiffany R.; Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Avenue SW, Washington, DC 20375-5352 (United States)

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  19. A novel probe of intrinsic electronic structure: hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Takata, Y.; Tamasaku, K.; Nishino, Y.; Miwa, D.; Yabashi, M.; Ikenaga, E.; Horiba, K.; Arita, M.; Shimada, K.; Namatame, H.; Nohira, H.; Hattori, T.; Soedergren, S.; Wannberg, B.; Taniguchi, M.; Shin, S.; Ishikawa, T.; Kobayashi, K.

    2005-01-01

    We have realized hard X-ray (HX) photoemission spectroscopy (PES) with high throughput and high-energy resolution for core level and valence band studies using high-energy and high-brilliance synchrotron radiation at SPring-8. This is a brand new method because large escape depth of high-energy photoelectrons enables us to probe intrinsic bulk states free from surface condition. By use of a newly developed electron energy analyzer and well-focused X-rays, high-energy resolution of 75 meV (E/ΔE 79,000) was realized for 5.95 keV photoelectrons

  20. The X-ray electronic spectra of TiC-NbC solid solution

    International Nuclear Information System (INIS)

    Cherkashenko, V.M.; Ezhov, A.V.; Nazarova, S.Z.; Kurmaev, Eh.Z.; Nojmann, M.

    2001-01-01

    X-ray photoelectronic spectra of inner levels and valency lands in TiC-NbC solid solutions were studied. Results of combining TiL α -, NbL β2.15 -, CK α - X-ray emission spectra and photoelectronic spectra of valency bands in one energy scale in reference to the Fermi level were analyzed. It is shown that a change in crystal lattice parameters, as well as charge redistribution between titanium and niobium atoms, produce a strong effect on electronic structure formation in the mixed carbides mentioned [ru

  1. Gamma rays from relativistic electrons undergoing Compton losses in isotropic photon fields

    International Nuclear Information System (INIS)

    Zdziarski, A.A.

    1989-01-01

    The kinetic equation describing Compton losses of relativistic electrons in an isotropic field of soft background photons is solved exactly including both continuous energy losses in the classical Thomson regime and catastrophic losses in the quantum Klein-Nishina regime. This extends the previous treatments of this problem, which assumed the validity of either one of these regimes alone. The problem is relevant to astrophysical sources containing relativistic electrons. Analytical solutions for the steady state electron and gamma-ray spectra in the case of power-law soft photons and monoenergetic and power-law electron injections are obtained. Numerical solutions are presented for monoenergetic, blackbody, and power-law soft photons. A comparison between the numerical and the available analytic solutions is made. 15 refs

  2. Search for Cosmic-Ray Electron and Positron Anisotropies with Seven Years of Fermi Large Area Telescope Data

    International Nuclear Information System (INIS)

    Abdollahi, S.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.

    2017-01-01

    We present the Large Area Telescope on board the Fermi Gamma-ray Space Telescope that has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10"-"3. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. Lastly, the present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.

  3. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, Kimberly Sue [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  4. The development of a new edition of the gamma-ray spectrum catalogues designed for presentation in electronic format

    International Nuclear Information System (INIS)

    Heath, R.L.

    1997-01-01

    New editions of the original Gamma-ray Spectrum Catalogues are being prepared for publication in electronic format. The objective of this program is to produce versions of the Catalogues in CD-ROM format and as an Internet resource. Additions to the original content of the Catalogues will include integrated decay scheme drawings, tables of related decay data, and updated text on the techniques of gamma-ray spectrometry. Related decay data from the Evaluated Nuclear Structure Data File (ENSDF) are then added, and all data converted to the Adobe Acrobat (PDF) format for CD-ROM production and availability on the Internet. At a later date the catalogues will be expanded to include spectra representing the response of large-volume Ge detectors, alpha-particle spectra, prompt neutron capture and inelastic scattering gamma-ray spectra, and gross fission product spectra characteristic of fuel cycle waste materials. Characterization of radioactivity in materials is a requirement in many phases of radioactive waste management. Movement, shipping, treatment, all activities which involve handling of mixed waste or TRU categories of waste at all DOE sites will require that measurements and assessment documentation utilize basic nuclear data which are tracable to internationally accepted standard values. This program will involve the identification of data needs unique to the development and application of specialized detector systems for radioactive waste characterization

  5. MODEL OF AN ELECTRONIC EDUCATIONAL RESOURCE OF NEW GENERATION

    Directory of Open Access Journals (Sweden)

    Anatoliy V. Loban

    2016-01-01

    Full Text Available The mathematical structure of the modular architecture of an electronic educational resource (EER of new generation, which allows to decompose the process of studying the subjects of the course at a hierarchically ordered set of data (knowledge and procedures for manipulating them, to determine the roles of participants of process of training of and technology the development and use of EOR in the study procrate.

  6. Conceptual design of the Radial Gamma Ray Spectrometers system for α particle and runaway electron measurements at ITER

    DEFF Research Database (Denmark)

    Nocente, Massimo; Tardocchi, Marco; Barnsley, Robin

    2017-01-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines...... the measurements sensitive to α particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration...... of 100ms, a time resolution of at least 10ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space...

  7. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures

    International Nuclear Information System (INIS)

    Scholl, Andreas; Ohldag, Hendrik; Nolting, Frithjof; Stohr, Joachim; Padmore, Howard A.

    2001-01-01

    X-ray Photoemission Electron Microscopy unites the chemical specificity and magnetic sensitivity of soft x-ray absorption techniques with the high spatial resolution of electron microscopy. The discussed instrument possesses a spatial resolution of better than 50 nm and is located at a bending magnet beamline at the Advanced Light Source, providing linearly and circularly polarized radiation between 250 and 1300 eV. We will present examples which demonstrate the power of this technique applied to problems in the field of thin film magnetism. The chemical and elemental specificity is of particular importance for the study of magnetic exchange coupling because it allows separating the signal of the different layers and interfaces in complex multi-layered structures

  8. Katherine E. Weimer Award: X-ray light sources from laser-plasma and laser-electron interaction: development and applications

    Science.gov (United States)

    Albert, Felicie

    2017-10-01

    Bright sources of x-rays, such as synchrotrons and x-ray free electron lasers (XFEL) are transformational tools for many fields of science. They are used for biology, material science, medicine, or industry. Such sources rely on conventional particle accelerators, where electrons are accelerated to gigaelectronvolts (GeV) energies. The accelerated particles are wiggled in magnetic structures to emit x-ray radiation that is commonly used for molecular crystallography, fluorescence studies, chemical analysis, medical imaging, and many other applications. One of the drawbacks of these machines is their size and cost, because electric field gradients are limited to about 100 V/M in conventional accelerators. Particle acceleration in laser-driven plasmas is an alternative to generate x-rays via betatron emission, Compton scattering, or bremsstrahlung. A plasma can sustain electrical fields many orders of magnitude higher than that in conventional radiofrequency accelerator structures. When short, intense laser pulses are focused into a gas, it produces electron plasma waves in which electrons can be trapped and accelerated to GeV energies. X-ray sources, driven by electrons from laser-wakefield acceleration, have unique properties that are analogous to synchrotron radiation, with a 1000-fold shorter pulse. An important use of x-rays from laser plasma accelerators is in High Energy Density (HED) science, which requires laser and XFEL facilities to create in the laboratory extreme conditions of temperatures and pressures that are usually found in the interiors of stars and planets. To diagnose such extreme states of matter, the development of efficient, versatile and fast (sub-picosecond scale) x-ray probes has become essential. In these experiments, x-ray photons can pass through dense material, and absorption of the x-rays can be directly measured, via spectroscopy or imaging, to inform scientists about the temperature and density of the targets being studied. Performed

  9. Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope

    International Nuclear Information System (INIS)

    Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

    1981-01-01

    The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected

  10. Detection efficiency for radionuclides decaying by electron capture and gamma-Ray

    International Nuclear Information System (INIS)

    Grau, A.; Fernandez, A.

    1985-01-01

    In this paper, the electron capture partial counting efficiency vs the figure of merit for electron-capture and gamma-ray emitters has been computed. The radionuclides tabulated are 48 c r, 54 M n, 57 C o 56 N i, 72 S e, 73 A s, 85 S r, 88 Z r, 92 N b, 103 P d, 111 l n, 119 S b, 125 I , 139 C e and 152 D y. It has been assumed that the liquid is a toluene based scintillator solution in standard glass vials containing 15 cm 3 . (Author) 17 refs

  11. Three-dimensional structure determination protocol for noncrystalline biomolecules using x-ray free-electron laser diffraction imaging.

    Science.gov (United States)

    Oroguchi, Tomotaka; Nakasako, Masayoshi

    2013-02-01

    Coherent and intense x-ray pulses generated by x-ray free-electron laser (XFEL) sources are paving the way for structural determination of noncrystalline biomolecules. However, due to the small scattering cross section of electrons for x rays, the available incident x-ray intensity of XFEL sources, which is currently in the range of 10(12)-10(13) photons/μm(2)/pulse, is lower than that necessary to perform single-molecule diffraction experiments for noncrystalline biomolecules even with the molecular masses of megadalton and submicrometer dimensions. Here, we propose an experimental protocol and analysis method for visualizing the structure of those biomolecules by the combined application of coherent x-ray diffraction imaging and three-dimensional reconstruction methods. To compensate the small scattering cross section of biomolecules, in our protocol, a thin vitreous ice plate containing several hundred biomolecules/μm(2) is used as sample, a setup similar to that utilized by single-molecule cryoelectron microscopy. The scattering cross section of such an ice plate is far larger than that of a single particle. The images of biomolecules contained within irradiated areas are then retrieved from each diffraction pattern, and finally provide the three-dimensional electron density model. A realistic atomic simulation using large-scale computations proposed that the three-dimensional structure determination of the 50S ribosomal subunit embedded in a vitreous ice plate is possible at a resolution of 0.8 nm when an x-ray beam of 10(16) photons/500×500 nm(2)/pulse is available.

  12. Recurrent modulation of galactic cosmic ray electrons and protons: Ulysses COSPIN/KET observations

    International Nuclear Information System (INIS)

    Heber, B.; Blake, J.B.; Paizis, C.; Bothmer, V.; Kunow, H.; Wibberenz, G.; Burger, R.A.; Potgieter, M.S.

    2000-01-01

    Since measurements of space probes in the interplanetary space became available it has been known that associated with the occurrence of recurrent fast and slow solar wind streams, forming Corotating Interaction Regions, recurrent variations in the cosmic ray nuclei flux are observed. As pointed out recently by Jokipii and Kota (2) recurrent modulation for positively and negatively charged particles may be different. In the time interval extending from July 1992 to July 1994, Ulysses on its journey to high heliographic latitudes registered ∼20 stable and long-lasting Corotating Interaction Regions (CIRs). In this work we use data from the Cosmic Ray and Solar Particle Investigation Kiel Electron Telescope (COSPIN/KET) instrument on board Ulysses to study the recurrent variation of 2.5 GV electrons and protons. We find that 1) electrons are indeed periodically modulated, but that 2) the periodicity of ∼29 days is longer than the period of ∼26 days for protons, and that 3) the amplitude is larger than the one observed for protons

  13. A Compact 5 MeV S-Band Electron Linac Based X-Ray Source for Industrial Radiography

    CERN Document Server

    Auditore, Lucrezia; De Pasquale, Domenico; Emanuele, Umberto; Italiano, Antonio; Trifirò, Antonio; Trimarchi, Marina

    2005-01-01

    A compact and reliable X-ray source, based on a 5 MeV, 1 kW, S-band electron linac, has been set up at the Dipartimento di Fisica, Universit\\'a di Messina. This source, coupled with a GOS scintillator screen and a CCD camera, represents an innovative transportable system for industrial radiography and X-ray tomography. Optimization of the parameters influencing the e-gamma conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 code. The converter choice is the result of the study of the e-gamma conversion performances for different materials and materials thicknesses. Also the converter position with respect to the linac exit window was studied. The chosen converter consists in a Ta-Cu target inserted close to the linac window. The Cu layer acts as a filter both on the electrons from the source and on the low energy X-rays. The X-ray beam angular profile was studied by means of GafChromic films with and without collimation. In the final source project, a collimation system pr...

  14. OBSERVATIONS OF HIGH-ENERGY COSMIC-RAY ELECTRONS FROM 30 GeV TO 3 TeV WITH EMULSION CHAMBERS

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T. [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara 252-5258 (Japan); Komori, Y. [Faculty of Health and Social Services, Kanagawa University of Human Services, Yokosuka 238-0013 (Japan); Yoshida, K.; Yanagisawa, K. [College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570 (Japan); Nishimura, J.; Yamagami, T.; Saito, Y. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 229-8510 (Japan); Tateyama, N. [Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Yuda, T. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Wilkes, R. J., E-mail: tadasik-112850@jasper.dti.ne.jp, E-mail: komori-y@kuhs.ac.jp, E-mail: yoshida@shibaura-it.ac.jp, E-mail: nisimura@icrr.u-tokyo.ac.jp, E-mail: tateyama@n.kanagawa-u.ac.jp, E-mail: yuda@icrr.u-tokyo.ac.jp, E-mail: wilkes@u.washington.edu [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States)

    2012-12-01

    We have performed a series of cosmic-ray electron observations using balloon-borne emulsion chambers since 1968. While we previously reported the results from subsets of the exposures, the final results of the total exposures up to 2001 are presented here. Our successive experiments have yielded a total exposure of 8.19 m{sup 2} sr day at altitudes of 4.0-9.4 g cm{sup -2}. The performance of the emulsion chambers was examined by accelerator beam tests and Monte Carlo simulations, and the on-board calibrations were carried out by using the flight data. In this work, we present the cosmic-ray electron spectrum in the energy range from 30 GeV to 3 TeV at the top of the atmosphere, which is well represented by a power-law function with an index of -3.28 {+-} 0.10. The observed data can also be interpreted in terms of diffusive propagation models. The evidence of cosmic-ray electrons up to 3 TeV suggests the existence of cosmic-ray electron sources at distances within {approx}1 kpc and times within {approx}1 Multiplication-Sign 10{sup 5} yr ago.

  15. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    International Nuclear Information System (INIS)

    Yan, W.; Chen, Z.Y.; Jin, W.; Huang, D.W.; Lee, S.G.; Shi, Y.J.; Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G.

    2016-01-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K_α spectra of helium-like argon and its satellite lines. The wavelength range of K_α spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  16. Phenomena of non-thermal electrons from the X-ray imaging crystal spectrometer on J-TEXT tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Yan, W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Chen, Z.Y., E-mail: zychen@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Jin, W. [Center of Interface Dynamics for Sustainability, China Academy of Engineering Physics, Chengdu 610200, Sichuan (China); Huang, D.W. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China); Lee, S.G.; Shi, Y.J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Tong, R.H.; Wang, S.Y.; Wei, Y.N.; Ma, T.K.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2016-11-01

    Highlights: • Some lines from X-ray imaging crystal spectrometer (XICS) can be enhanced by non-thermal electrons, such as q, r satellite lines and z lines. • Analyze the non-thermal phenomena can reduce the error of electron temperature deduced from the intensity ratio of different lines of the He-like argon spectra from XICS. • XICS can be a tool to measure the non-thermal phenomena from these enhanced lines. - Abstract: A high spectra resolution X-ray imaging crystal spectrometer has been implemented on J-TEXT Tokamak for the measurements of K{sub α} spectra of helium-like argon and its satellite lines. The wavelength range of K{sub α} spectra of helium-like argon is from 3.9494 Å to 3.9944 Å that includes the resonance line w, intercombination lines x and y, forbidden line z and numerous satellite lines, referenced using standard Gabriel notation. In low-density discharge, the intensity of q, r satellite lines and z lines can be significantly enhanced by non-thermal electrons. Non-thermal electrons are produced due to the low plasma density. The high hard X-ray flux from NaI detector and significant downshift electron cyclotron emissions from energetic runaway electrons also indicated that there is a large population of runaway electrons in the low-density discharge. The non-thermal part of electrons can affect the excitation/transition equilibrium or ionization/recombination equilibrium. The q line is mainly produced by inner-shell excitation of lithium-like argon, and the r line is partially produced by inner-shell excitation of lithium-like argon and dielectronic recombination of helium-like argon.

  17. ELECTRON ACCELERATION IN PULSAR-WIND TERMINATION SHOCKS: AN APPLICATION TO THE CRAB NEBULA GAMMA-RAY FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A.; Dermer, Charles D. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Finke, Justin D., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu, E-mail: charlesdermer@outlook.com, E-mail: justin.finke@nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-12-20

    The γ -ray flares from the Crab Nebula observed by AGILE and Fermi -LAT reaching GeV energies and lasting several days challenge the standard models for particle acceleration in pulsar-wind nebulae because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. Previous modeling has suggested that the synchrotron limit can be exceeded if the electrons experience electrostatic acceleration, but the resulting spectra do not agree very well with the data. As a result, there are still some important unanswered questions about the detailed particle acceleration and emission processes occurring during the flares. We revisit the problem using a new analytical approach based on an electron transport equation that includes terms describing electrostatic acceleration, stochastic wave-particle acceleration, shock acceleration, synchrotron losses, and particle escape. An exact solution is obtained for the electron distribution, which is used to compute the associated γ -ray synchrotron spectrum. We find that in our model the γ -ray flares are mainly powered by electrostatic acceleration, but the contributions from stochastic and shock acceleration play an important role in producing the observed spectral shapes. Our model can reproduce the spectra of all the Fermi -LAT and AGILE flares from the Crab Nebula, using magnetic field strengths in agreement with the multi-wavelength observational constraints. We also compute the spectrum and duration of the synchrotron afterglow created by the accelerated electrons, after they escape into the region on the downstream side of the pulsar-wind termination shock. The afterglow is expected to fade over a maximum period of about three weeks after the γ -ray flare.

  18. A ray-tracing study of electron cyclotron resonance heating in Tokamak plasmas with a superthermal electron tail

    International Nuclear Information System (INIS)

    Montes, A.; Dendy, R.O.

    1987-09-01

    We consider a Tokamak plasma in which the distribution of electron velocities in the direction parallel to the magnetic field has a monotonically decreasing superthermal tail. A fully three-dimensional ray-tracing code, which includes a realistic antenna pattern, toroidal effects, and refaction, is used to calculate the absorption of the extraordinary mode in the nonrelativistic limit away from perpendicular incidence. The ray-tracing approach extends results previously obtained in slab geometry (3-8) to a more realistic configuration; it is also essential in dealing with strong refraction in high-density plasmas. Our analytical model for the tail makes available a wide range of tail shapes and parameters. At low densities small tails (tail fraction [pt

  19. Monte Carlo Simulation of Complete X-Ray Spectra for Use in Scanning Electron Microscopy Analysis

    International Nuclear Information System (INIS)

    Roet, David; Van Espen, Piet

    2003-01-01

    Full Text: The interactions of keV electrons and photons with matter can be simulated accurately with the aid of the Monte Carlo (MC) technique. In scanning electron microscopy x-ray analysis (SEM-EDX) such simulations can be used to perform quantitative analysis using a Reverse Monte Carlo method even if the samples have irregular geometry. Alternatively the MC technique can generate spectra of standards for use in quantization with partial least squares regression. The feasibility of these alternatives to the more classical ZAF or phi-rho-Z quantification methods has been proven already. In order to be applicable for these purposes the MC-code needs to generate accurately only the characteristic K and L x-ray lines, but also the Bremsstrahlung continuum, i.e. the complete x-ray spectrum need to be simulated. Currently two types of MC simulation codes are available. Programs like Electron Flight Simulator and CASINO simulate characteristic x-rays due to electron interaction in a fast and efficient way but lack provision for the simulation of the continuum. On the other hand, programs like EGS4, MCNP4 and PENELOPE, originally developed for high energy (MeV- GeV) applications, are more complete but difficult to use and still slow, even on todays fastest computers. We therefore started the development of a dedicated MC simulation code for use in quantitative SEM-EDX work. The selection of the most appropriate cross section for the different interactions will be discussed and the results obtained will be compared with those obtained with existing MC programs. Examples of the application of MC simulations for quantitative analysis of samples with various composition will be given

  20. Many-body effects in X-ray photoemission spectroscopy and electronic properties of solids

    International Nuclear Information System (INIS)

    Kohiki, S.

    1999-01-01

    Photoemission from a solid is evidently a many-body process since the motion of each electron cannot be independent of the motions of other electrons. In this article we review the reported many-body effects in X-ray photoemission such as extra-atomic relaxation energy, charge transfer satellite and energy loss structure which are informative in relation to the characteristics of solids. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. FreeDam - A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography

    Science.gov (United States)

    Jönsson, H. Olof; Östlin, Christofer; Scott, Howard A.; Chapman, Henry N.; Aplin, Steve J.; Tîmneanu, Nicuşor; Caleman, Carl

    2018-03-01

    Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.

  2. Electron and X-ray emission in collisions of multiply charged ions and atoms

    International Nuclear Information System (INIS)

    Woerlee, P.H.

    1979-01-01

    The author presents experimental results of electron and X-ray emission following slow collisions of multiply charged ions and atoms. The aim of the investigation was to study the mechanisms which are responsible for the emission. (G.T.H.)

  3. Analysis of borophosphosilicate glass layers on silicon wafers by X-ray emission from photon and electron excitation

    International Nuclear Information System (INIS)

    Elgersma, O.; Borstrok, J.J.M.

    1989-01-01

    Phosphorus and oxygen concentrations in the homogeneous layer of borosilicate glass (BPSG) deposited on Si-integrated circuits are determined by X-ray fluorescence from photon excitation. The X-ray emission from electron excitation in an open X-ray tube instrument yields a sufficiently precise determination of the boron content. The thickness of the layer can be derived from silicon Kα-fluorescence. A calibration model is proposed for photon as well as for electron excitation. The experimentally determined parameters in this model well agree with those derived from fundamental parameters for X-ray absorption and emission. The chemical surrounding of silicon affects strongly the peak profile of the silicon Kβ-emission. This enables to distinguish emission from the silicon atoms in the wafer and from the silicon atoms in the silicon oxide complexes of the BPSG-layer. (author)

  4. The charged particle veto system of the cosmic ray electron synchrotron telescope

    Science.gov (United States)

    Geske, Matthew T.

    The Cosmic Ray Electron Synchrotron Telescope is a balloon-borne detector designed to measure cosmic electrons at energies from 2 to 50 TeV. CREST completed a successful 10-day Antarctic flight which launched on December 25, 2011. CREST utilizes a novel detection method, searching for the synchrotron radiation emitted by the interaction of TeV-energy electrons with the geomagnetic field. The main detector component for CREST is a 32 x 32 square array of BaF 2 crystal detectors coupled to photomultiplier tubes, with an inter-crystal spacing of 7.5 cm. This document describes the design, construction and flight of the CREST experiment. A special focus is put upon the charged particle veto system, and its use in the analysis of the CREST results. The veto system, consisting of a series of 27 large slabs of organic plastic scintillator read out through photomultiplier tubes, is designed as a passive mechanism for rejecting charged particle events that could contaminate the X-ray signal from synchrotron radiation. The CREST veto system has 99.15% geometric coverage, with individual detector components exhibiting a mean detection efficiency of 99.7%. In whole, the veto system provides a charged particle rejection factor of better than 7 x 103.

  5. Energetic electron precipitation in the aurora as determined by x-ray imaging

    International Nuclear Information System (INIS)

    Werden, S.C.

    1988-01-01

    This work examines two aspects of energetic-particle dynamics in the Earth's magnetosphere through the use of an x-ray imager flown from a stratospheric balloon in the auroral zone. The design and theory of this instrument is completely described, including the technique of image formation using an on-board microprocessor and a statistical analysis of the imaging process. Day-side energetic-electron precipitation is examined in the context of global energy dissipation during the substorm process. It is found that the relationship between events on the night side and the day side are considerably more complex that can be modeled with just a simple picture of drifting particles that induced instabilities, wave growth, and pitch-angle diffusion into the loss cone. The driving force for precipitation is probably not the presence of the energetic electrons (>30 keV) alone, but is influenced either by local effects or the less energetic component. The presence of small-scale structure, including gradients and complex motions in the precipitation region in the morning sector, suggests a local process influencing the rate of electron precipitation. The spatial and temporal evolution of a classic 5-15 second pulsating aurora during the post-breakup phase is also examined with the x-ray imager

  6. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G.; Barnett, A.M.

    2016-11-11

    Results characterizing GaAs p{sup +}-i-n{sup +} mesa photodiodes with a 10 µm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 µm and 400 µm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm{sup 2} to 67 nA/cm{sup 2} at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. {sup 55}Fe X-ray spectra were obtained using one 200 µm diameter device and one 400 µm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 µm and 740 eV using the 400 µm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. {sup 63}Ni beta particle spectra obtained using the 200 µm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  7. Use of an electron penetration cathode ray tube in a colour display console

    International Nuclear Information System (INIS)

    Nickles, Pierre

    1972-01-01

    The objective of this research thesis is to study the possibility to obtain a colour image which can be used in cathode ray tube display console. The author describes a cathode ray tube, presents different methods to obtain a colour image (mask tube, electron penetration tube, and intensity change tube), discusses the choice of a cathode ray tube type, and describes its use in a display console. In the next part, the author addresses some theoretical aspects of corrections to be made for spot deflection, spot focussing, and spot brightness. A first version of a mock-up is presented, and experimental results are presented and discussed. A second version is then presented

  8. Electron-density distribution in cubic SrTiO{sub 3}: a comparative {gamma}-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, W. [Hahn-Meitner-Inst., Berlin (Germany); Reehuis, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2005-07-01

    The electron density and atomic displacements in the perovskite SrTiO{sub 3} have been studied using extensive and accurate {gamma}-ray diffraction data ({lambda}=0.0392 Aa) at room temperature. The six strongest low-order structure factors have been determined under extinction-free conditions. Gram-Charlier series expansion of the thermal parameters have revealed no evidence for anharmonicity. The population of the 3d subshell on Ti is found to be close to zero, in agreement with the observed magnetic behaviour. The electronic properties at the bond critical points indicate ionic Ti-O and Sr-O interactions of different strengths, which is corroborated by the net charges of the atomic basins [q(Sr)=1.18 vertical stroke e vertical stroke, q(Ti)=3.10 vertical stroke e vertical stroke, q(O)=1.42 vertical stroke e vertical stroke ]. A critical comparison is made with earlier experimental results from laboratory X-ray, synchrotron X-ray, electron and neutron diffraction studies. Agreement and discrepancies are identified and resolved. (orig.)

  9. Effect of interface of electronics devices constructed with different materials to X-ray

    International Nuclear Information System (INIS)

    Mu Weibing; Chen Panxun

    2003-01-01

    The behavior of X-ray nearby interface which is constructed with different materials is introduced in this paper. And the affect to electronics devices of this behavior is analyzed, the affect factors of four interfaces are calculated by Monte-Carlo method

  10. Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Nogly, Przemyslaw; Rheinberger, Jan; Kick, Leonhard M.; Gati, Cornelius; Nelson, Garrett; Deupi, Xavier; Standfuss, Jörg; Schertler, Gebhard; Panneels, Valérie, E-mail: valerie.panneels@psi.ch [Paul Scherrer Institute, OFLC/103, 5232 Villigen-PSI (Switzerland)

    2015-06-27

    A new batch preparation method is presented for high-density micrometre-sized crystals of the G protein-coupled receptor rhodopsin for use in time-resolved serial femtosecond crystallography at an X-ray free-electron laser using a liquid jet. Rhodopsin is a membrane protein from the G protein-coupled receptor family. Together with its ligand retinal, it forms the visual pigment responsible for night vision. In order to perform ultrafast dynamics studies, a time-resolved serial femtosecond crystallography method is required owing to the nonreversible activation of rhodopsin. In such an approach, microcrystals in suspension are delivered into the X-ray pulses of an X-ray free-electron laser (XFEL) after a precise photoactivation delay. Here, a millilitre batch production of high-density microcrystals was developed by four methodical conversion steps starting from known vapour-diffusion crystallization protocols: (i) screening the low-salt crystallization conditions preferred for serial crystallography by vapour diffusion, (ii) optimization of batch crystallization, (iii) testing the crystal size and quality using second-harmonic generation (SHG) imaging and X-ray powder diffraction and (iv) production of millilitres of rhodopsin crystal suspension in batches for serial crystallography tests; these crystals diffracted at an XFEL at the Linac Coherent Light Source using a liquid-jet setup.

  11. Analytical electron microscope based on scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy to realize highly sensitive elemental imaging especially for light elements

    International Nuclear Information System (INIS)

    Koguchi, Masanari; Tsuneta, Ruriko; Anan, Yoshihiro; Nakamae, Koji

    2017-01-01

    An analytical electron microscope based on the scanning transmission electron microscope with wavelength dispersive x-ray spectroscopy (STEM-WDX) to realize highly sensitive elemental imaging especially for light elements has been developed. In this study, a large-solid-angle multi-capillary x-rays lens with a focal length of 5 mm, long-time data acquisition (e.g. longer than 26 h), and a drift-free system made it possible to visualize boron-dopant images in a Si substrate at a detection limit of 0.2 atomic percent. (paper)

  12. Study on radiation damage of electron and γ-rays and mechanism of nuclear hardening

    International Nuclear Information System (INIS)

    Jing Tao

    2001-01-01

    Radiation damage effects of electrons and γ-rays are presented. The damage defects are studied by experimental methods. On the basis of these studies the damage mechanism and nuclear hardening techniques are studied

  13. On the response of electronic personal dosimeters in constant potential and pulsed X-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Margarete C.; Silva, Teogenes; Silva, Claudete R.E., E-mail: margaretecristinag@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Paulo Marcio C. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem

    2015-07-01

    Electronic personal dosimeters (EPDs) based on solid state detectors have widely been used but some deficiencies in their response in pulsed radiation beams have been reported. Nowadays, there is not an international standard for pulsed X-ray beams for calibration or type testing of dosimeters. Irradiation conditions for testing the response of EPDs in both the constant potential and pulsed X-ray beams were established in CDTN. Three different types of EPDs were tested in different conditions in similar ISO and IEC X-ray qualities. Results stressed the need of performing additional checks before using EPDs in constant potential or pulsed X-rays. (author)

  14. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  15. LINAC DESIGN FOR AN ARRAY OF SOFT X-RAY FREE ELECTRON LASERS

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Kur, E.; Penn, G.; Qiang, Ji; Venturini, M.; Wells, R. P.

    2008-01-01

    The design of the linac delivering electron bunches into ten independent soft x-ray free electron lasers (FELs) producing light at 1 nm and longer wavelengths is presented. The bunch repetition rate in the linac is 1 MHz and 100 kHz in each of ten FEL beam lines. Various issues regarding machine layout and lattice, bunch compression, collimation, and the beam switch yard are discussed. Particular attention is given to collective effects. A demanding goal is to preserve both a low beam slice emittance and low slice energy spread during acceleration, bunch compression and distribution of the electron bunches into the array of FEL beamlines. Detailed studies of the effect of the electron beam microbunching caused by longitudinal space-charge forces and coherent synchrotron radiation (CSR) have been carried out and their results are presented

  16. Self-powered detector probes for electron and gamma-ray beam monitoring in high-power industrial accelerators

    International Nuclear Information System (INIS)

    Lone, M.A.

    1992-08-01

    A self-powered detector (SPD) is a simple passive device that consists of a coaxial probe with a metallic outer sleeve, a mineral oxide insulating layer, and a metallic inner core. SPDs are used in nuclear reactors for monitoring neutron and gamma ray fields. Responses of various SPDs to electron and gamma ray beams from industrial accelerators were investigated with Monte Carlo simulations. By judicious choice of transmission filters, threshold SPD probes were investigated for on-line monitoring of the beam energy spectrum of the high-power IMPELA industrial electron accelerator. (Author) (14 figs, 16 refs.)

  17. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Stern, Stephan

    2013-12-01

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  18. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan

    2013-12-15

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  19. Electron microscopic studies on experimental skin cancer after combination treatment with X-ray, hematoporphyrin oligomer and caffeine

    International Nuclear Information System (INIS)

    Ueda, Keiichi; Ishiguro, Kazumori; Takaishi, Kimiko; Hatcho, Masahiro; Nakagawa, Shigemori

    1992-01-01

    The effect of combination treatment with X-ray, hematoporphyrin oligomer (HpO) and caffeine (Caf) was compared electron microscopically with that of a single use of these treatments. In experimental skin cancer, ultrastructural changes of nuclei and cytoplasm of tumor cells after combination treatment with HpO, X-ray and Caf showed more remarkable changes than in single X-ray irradiation and in HpO and X-ray irradiation. It is concluded that the combination treatment of HpO, X-ray and Caf is useful to the skin cancers in clinical practice. (author)

  20. Electron microscopic studies on experimental skin cancer after combination treatment with X-ray, hematoporphyrin oligomer and caffeine

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Keiichi; Ishiguro, Kazumori; Takaishi, Kimiko; Hatcho, Masahiro; Nakagawa, Shigemori (Fukui Medical School, Matsuoka (Japan))

    1992-05-01

    The effect of combination treatment with X-ray, hematoporphyrin oligomer (HpO) and caffeine (Caf) was compared electron microscopically with that of a single use of these treatments. In experimental skin cancer, ultrastructural changes of nuclei and cytoplasm of tumor cells after combination treatment with HpO, X-ray and Caf showed more remarkable changes than in single X-ray irradiation and in HpO and X-ray irradiation. It is concluded that the combination treatment of HpO, X-ray and Caf is useful to the skin cancers in clinical practice. (author).

  1. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    International Nuclear Information System (INIS)

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-01-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse

  2. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Maxime Deutsch

    2014-05-01

    Full Text Available Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  3. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments.

    Science.gov (United States)

    Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed

    2014-05-01

    Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  4. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo; Hayashi, Toru; Yasumoto, Kyoden.

    1990-01-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  5. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo [Hokkaido Univ., Hakodate (Japan). Faculty of Fisheries; Hayashi, Toru; Yasumoto, Kyoden

    1990-10-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author).

  6. GUIDELINES FOR EVALUATION OF PSYCHOLOGICAL AND PEDAGOGICAL QUALITY CHARACTERISTICS OF ELECTRONIC EDUCATIONAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Galina P. Lavrentieva

    2014-05-01

    Full Text Available The article highlights the causes of insufficient effective use of electronic learning resources and sets out the guidelines on ways to solve the aforementioned problems. The set of didactic, methodical, psychological, pedagogical, design and ergonomic quality requirements is considered for evaluation, selection and application of information and communication technologies in the educational process. The most appropriate mechanisms for the ICT introduction into the learning process are disclosed as it should meet the specific learning needs of the student and the objectives of the educational process. The guidance for psycho-educational assessment of quality of electronic educational resources is provided. It is argued that the effectiveness of the ICT use is to be improved by means of quality evaluation mechanisms involved into the educational process.

  7. Investigation of electronic order using resonant soft X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Schlappa, J.

    2006-12-01

    The aim of this PhD work was the application of resonant soft X-ray diffraction technique for the investigation of electronic order in transition metal oxides at the TM L{sub 2,3}-edge, trying to obtain a quantitative understanding of the data. The method was first systematically explored through application to a model system in order to test the feasibility of the technique and to understand of how X-ray optical effects have to be taken into account. Two more complex systems were investigated; stripe order in La{sub 1.8}Sr{sub 0.2}NiO{sub 4} and charge and orbital order in Fe{sub 3}O{sub 4}. The main focus of the work was on the spectroscopic potential of the technique, trying to obtain a level of quantitative description of the data. For X-ray absorption spectroscopy (XAS) from transition metal oxides, cluster configuration interaction calculation provides a powerful and realistic microscopic theory. In the frame work of this thesis cluster theory, considering explicit hybridization effects between the TM-ion and the surrounding oxygen ligands, has been applied for the first time to describe resonant diffraction data. (orig.)

  8. Investigation of electronic order using resonant soft X-ray diffraction

    International Nuclear Information System (INIS)

    Schlappa, J.

    2006-01-01

    The aim of this PhD work was the application of resonant soft X-ray diffraction technique for the investigation of electronic order in transition metal oxides at the TM L 2,3 -edge, trying to obtain a quantitative understanding of the data. The method was first systematically explored through application to a model system in order to test the feasibility of the technique and to understand of how X-ray optical effects have to be taken into account. Two more complex systems were investigated; stripe order in La 1.8 Sr 0.2 NiO 4 and charge and orbital order in Fe 3 O 4 . The main focus of the work was on the spectroscopic potential of the technique, trying to obtain a level of quantitative description of the data. For X-ray absorption spectroscopy (XAS) from transition metal oxides, cluster configuration interaction calculation provides a powerful and realistic microscopic theory. In the frame work of this thesis cluster theory, considering explicit hybridization effects between the TM-ion and the surrounding oxygen ligands, has been applied for the first time to describe resonant diffraction data. (orig.)

  9. Availability, Use and Constraints to Use of Electronic Information Resources by Postgraduates Students at the University of Ibadan

    Directory of Open Access Journals (Sweden)

    Dare Samuel Adeleke

    2017-12-01

    Full Text Available Availability, awareness and use of electronic resources provide access to authoritative, reliable, accurate and timely access to information. The use of electronic information resources (EIRs can enable innovation in teaching and increase timeliness in research of postgraduate students which will eventual result into encouragement of the expected research-led enquiry in this digital age. The study adopted a descriptive survey design. Samples of 300 of postgraduate students within seven out 13 Faculties were randomly selected. Data were collected using questionnaire designed to elicit response from respondents and data were analyzed using descriptive statistics methods percentages, mean, and standard deviation. Results indicated that internet was ranked most available and used in the university. Low level of usage of electronic resources, in particular, full texts data bases is linked to a number of constraints: Interrupted power supply was ranked highest among other factors as speed and capacity of computers, retrieval of records with high recall and low precision, retrieving records relevant to information need, lack of knowledge of search techniques to retrieve information effectively, non possession of requisite IT skills and problems accessing the internet. The study recommended that usage of electronic resources be made compulsory, intensifying awareness campaigns concerning the availability, training on use of electronic resources and the problem of power outage be addressed.

  10. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    Aquilanti, G.; Trapananti, A.; Pascarelli, S.; Minicucci, M.; Principi, E.; Liscio, F.; Twarog, A.

    2007-01-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used

  11. Generation of coherent soft x-rays using a single-pass free-electron laser amplifier

    International Nuclear Information System (INIS)

    Wang, T.F.; Goldstein, J.C.; Newnam, B.E.; McVey, B.D.

    1988-01-01

    We consider a single-pass free-electron laser (FEL) amplifier, driven by an rf-linac followed by a damping ring for reduced emittance, for use in generating coherent light in the soft x-ray region. The dependence of the optical gain on electron-beam quality, studied with the three-dimensional FEL simulation code FELEX, is given and related to the expected power of self-amplified spontaneous emission. We discuss issues for the damping ring designed to achieve the required electron beam quality. The idea of a multipass regenerative amplifier is also presented

  12. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Science.gov (United States)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  13. Installation And Test Of Electron Beam Generation System To Produce Far-Infrared Radiation And X-Ray Pulses

    International Nuclear Information System (INIS)

    Wichaisirimongkol, Pathom; Jinamoon, Witoon; Khangrang, Nopadon; Kusoljariyakul, Keerati; Rhodes, Michael W.; Rimjaem, Sakhorn; Saisut, Jatuporn; Chitrlada, Thongbai; Vilaithong, Thiraphat; Wiedemann, Helmut

    2005-10-01

    SURIYA project at the Fast Neutron Research Facility, Chiang Mai University, aims to establish a facility to generate femtosecond electron beams. This electron beam can be used to generate high intensity far-infrared radiation and ultra-short X-ray pulses. The main components of the system are a 3 MeV RF electron gun with a thermionic cathode, an a-magnet as a bunch compressor, and post acceleration 15-20 MeV by a linear accelerator (linac). Between the main components, there are focusing quadrupole magnets and steering magnets to maintain the electron beam within a high vacuum tube. At the end of the beam transport line, a dipole magnet has been installed to function as a beam dump and an energy spectrometer. After the installation and testing of individual major components were completed, we have been investigating the generation of the electron beam, intense far- infrared radiation and ultra short X-ray pulses

  14. Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy

    Science.gov (United States)

    Lioliou, G.; Barnett, A. M.

    2016-11-01

    Results characterizing GaAs p+-i-n+ mesa photodiodes with a 10 μm i layer for their spectral response under illumination of X-rays and beta particles are presented. A total of 22 devices, having diameters of 200 μm and 400 μm, were electrically characterized at room temperature. All devices showed comparable characteristics with a measured leakage current ranging from 4 nA/cm2 to 67 nA/cm2 at an internal electric field of 50 kV/cm. Their unintentionally doped i layers were found to be almost fully depleted at 0 V due to their low doping density. 55Fe X-ray spectra were obtained using one 200 μm diameter device and one 400 μm diameter device. The best energy resolution (FWHM at 5.9 keV) achieved was 625 eV using the 200 μm and 740 eV using the 400 μm diameter device, respectively. Noise analysis showed that the limiting factor for the energy resolution of the system was the dielectric noise; if this noise was eliminated by better design of the front end of the readout electronics, the achievable resolution would be 250 eV. 63Ni beta particle spectra obtained using the 200 μm diameter device showed the potential utility of these detectors for electron and beta particle detection. The development of semiconductor electron spectrometers is important particularly for space plasma physics; such devices may find use in future space missions to study the plasma environment of Jupiter and Europa and the predicted electron impact excitation of water vapor plumes from Europa hypothesized as a result of recent Hubble Space Telescope (HST) UV observations.

  15. Estimation of electron temperature of micropinch discharge plasma according to attenuation of X-ray flux in photoemulsion

    International Nuclear Information System (INIS)

    Averin, M.S.; Bajkov, A.Yu.; Bashutin, O.A.; Vovchenko, E.D.; Dmitrusenko, A.S.; Savelov, A.S.; Li San-wei

    2006-01-01

    The X-ray flux generated by the micropinch discharge on the heavy-current pulsed micropinch device Zona-2 is investigated. The study of the spatial structure and the spectral composition of X radiation of the micropinch plasma is carried out by means of the experimental installation which consists of the three-channel camera-obscure, the set of absorbing filters (Ti-Fe, Fe-Cu, Zn-Se filters) , two focusing spherical spectrographs and the plastic scintillation detector NE111. The spatial distribution of the electron temperature is determined on plasma images in X-rays behind different filters. The form of attenuation curves gives the evidence of the presence of two groups of electrons with different energies in the micropinch range: the thermal electron temperature ∼ 1.9 ± 0.7 keV and the epithermal electron temperature ∼ 20 ± 8 keV [ru

  16. A Study on Developing Evaluation Criteria for Electronic Resources in Evaluation Indicators of Libraries

    Science.gov (United States)

    Noh, Younghee

    2010-01-01

    This study aimed to improve the current state of electronic resource evaluation in libraries. While the use of Web DB, e-book, e-journal, and other e-resources such as CD-ROM, DVD, and micro materials is increasing in libraries, their use is not comprehensively factored into the general evaluation of libraries and may diminish the reliability of…

  17. X-ray spectrometry induced by electron and proton bombardment: Two complementary techniques for the micro-characterization of mineral materials

    International Nuclear Information System (INIS)

    Remond, G.; Gilles, C.; Isabelle, D.; Choi, C.G.; Rouer, O.; Cesbron, F.; Yang, C.

    1994-01-01

    Spatially resolved quantitative analysis by means of the Electron Probe Micro Analyser (EPMA) is now well established as a routine analytical method for point chemical analysis of a variety of mineral materials. Modern computer controlled EPMA are most often equipped with wavelength dispersive spectro- meters (WDS). Quantitative analyses are generally carried out according to a standard based approach, i. e, the x-ray intensities measured at the surface of the unknowns are normalized to those measured at the surface of reference specimens. By the use of energy dispersive spectrometry (EDS) a standardless quantitative based method is preferred when the incident beam current is not accurately known as for the case of EDS analysis coupled to Scanning Electron Microscopy (SEM). The accuracy of point analysis by means of electron beam induced x-ray spectrometry is discussed emphasizing the x-ray photon interactions respectively.The continuous x-ray emission is the physical limit of detection. The excitation conditions must be optimised in order to obtain the higher peak to continuous emission intensity ratios for each element within the matrix. Proton Induced X-ray Emission (PIXE) complements this electron induced x-ray emission for the localization of elements present at trace levels. The experimental procedure used for quantitative analysis by means of PIXE is illustrated emphasizing the use of a limited number of reference materials for deriving quantitative data from the raw PIXE spectra. The complementarity of EMPA/SEM and PIXE techniques is illustrated for the case of rare-earth elements (REE) bearing natural and synthetic doped zircon crystals (Si Zr O sub 4). For such compounds x-ray spectra are very complex because of the existence of severe peak overlaps between the L x-ray emission spectra of the REE. It is shown that cathodoluminescence (EPLA:SEM) and ionoluminescence (PIXE) may be an original alternative approach to x-ray spectrometry for studying REE

  18. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  19. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Azzoni, C.B.; Paleari, A.

    1989-01-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y 2 O 3 ) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the left-angle 111 right-angle direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects

  20. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B.; Paleari, A. (Dipartimento di Fisica, Alessandro Volta dell' Universita di Pavia, via Bassi 6, 27100 Pavia, Italy (IT))

    1989-10-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y{sub 2}O{sub 3}) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the {l angle}111{r angle} direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects.

  1. Combined in-beam electron and γ-ray spectroscopy of 184,186Hg

    International Nuclear Information System (INIS)

    Scheck, M.; Butler, P. A.; Gaffney, L. P.; Carrol, R. J.; Cox, D.; Joss, D. T.; Herzberg, R.-D.; Page, R. D.; Papadakis, P.; Watkins, H. V.; Bree, N.; Huyse, M.; Van Duppen, P.; Grahn, T.; Greenlees, P. T.; Herzan, A.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.

    2011-01-01

    By exploiting the SAGE spectrometer a simultaneous measurement of conversion electrons and γ rays emitted in the de-excitation of excited levels in the neutron-deficient nuclei 184,186 Hg was performed. The light Hg isotopes under investigation were produced using the 4n channels of the fusion-evaporation reactions of 40 Ar and 148,150 Sm. The measured K- and L-conversion electron ratios confirmed the stretched E2 nature of several transitions of the yrast bands in 184,186 Hg. Additional information on the E0 component of the 2 2 + →2 1 + transition in 186 Hg was obtained.

  2. Combined in-beam electron and gamma-ray spectroscopy of (184,186)Hg

    CERN Document Server

    Scheck, M; Rahkila, P; Butler, P A; Larsen, A C; Sandzelius, M; Scholey, C; Carrol, R J; Papadakis, P; Jakobsson, U; Grahn, T; Joss, D T; Watkins, H V; Juutinen, S; Bree, N; Cox, D; Huyse, M; Uusitalo, J; Leino, M; Ruotsalainen, P; Nieminen, P; Srebrny, J; Van Duppen, P; Herzan, A; Greenlees, P T; Julin, R; Herzberg, R D; Hauschild, K; Pakarinen, J; Page, R D; Peura, P; Gaffney, L P; Kowalczyk, M; Rinta-Antila, S; Saren, J; Lopez-Martens, A; Sorri, J; Ketelhut, S

    2011-01-01

    By exploiting the SAGE spectrometer a simultaneous measurement of conversion electrons and gamma rays emitted in the de-excitation of excited levels in the neutron-deficient nuclei (184,186)Hg was performed. The light Hg isotopes under investigation were produced using the 4n channels of the fusion-evaporation reactions of (40)Ar and (148,150)Sm. The measured K- and L-conversion electron ratios confirmed the stretched E2 nature of several transitions of the yrast bands in (184,186)Hg. Additional information on the E0 component of the 2(2)(+) -> 2(1)(+) transition in (186)Hg was obtained.

  3. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  4. Determination of electronic and atomic properties of surface, bulk and buried interfaces: Simultaneous combination of hard X-ray photoelectron spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Zuazo, J., E-mail: rubio@esrf.fr [SpLine, Spanish CRG BM25 Beamline at the ESRF, ESRF, B.P. 220, F-38043 Grenoble (France); Instituto de Ciencia de Materiales de Madrid, ICMM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Castro, G.R. [SpLine, Spanish CRG BM25 Beamline at the ESRF, ESRF, B.P. 220, F-38043 Grenoble (France); Instituto de Ciencia de Materiales de Madrid, ICMM, CSIC, Cantoblanco, E-28049 Madrid (Spain)

    2013-10-15

    Highlights: •We have developed a novel and exceptional tool for non-destructive characterization of bulk and buried interfaces that combine XRD and HAXPES. •We studied the correlation between the atomic, electronic and transport properties of oxygen deficient manganite thin films. •The diffraction data showed a cooperative tilt of the MnO{sub 6} block along the out-of-plane direction. •We shown the absence of the conventional basal plane rotation for the oxygen deficient samples. -- Abstract: Hard X-ray photoelectron spectroscopy (HAXPES) is a powerful novel emerging technique for bulk compositional, chemical and electronic properties determination in a non-destructive way. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons enabling the study of bulk and buried interfaces up to several tens of nanometres depth. Its advantage over conventional XPS is based on the long mean free path of high kinetic energetic photoelectrons. Using the advantage of tuneable X-ray radiation provided by synchrotron sources the photoelectron kinetic energy, i.e. the information depth can be changed and consequently electronic and compositional depth profiles can be obtained. The combination of HAXPES with an atomic structure sensitive technique, as X-ray diffraction, opens a new research field with great potential for many systems in which their electronic properties are intimately linked to their crystallographic structure. At SpLine, the Spanish CRG Beamline at the European Synchrotron Radiation Facility (ESRF) we have developed a novel and exceptional set-up that combine grazing incidence X-ray diffraction (GIXRD) and HAXPES. Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a heavy 2S+3D diffractometer and UHV chamber equipped with an electrostatic analyzer. The UHV chamber has also MBE evaporation sources, an ion gun, a LEED optic, a sample heating and cooling

  5. Reflection of attosecond x-ray free electron laser pulses

    International Nuclear Information System (INIS)

    Hau-Riege, Stefan P.; Chapman, Henry N.

    2007-01-01

    In order to utilize hard x-ray free electron lasers (XFEL's) when they are extended to attosecond pulse lengths, it is necessary to choose optical elements with minimal response time. Specular grazing-incidence optics made of low-Z materials are popular candidates for reflectors since they are likely to withstand x-ray damage and provide sufficiently large reflectivities. Using linear-optics reflection theory, we calculated the transient reflectivity of a delta-function electric pulse from a homogenous semi-infinite medium as a function of angle of incidence for s- and p-polarized light. We specifically considered the pulse response of beryllium, diamond, silicon carbide, and silicon, all of which are of relevance to the XFEL's that are currently being built. We found that the media emit energy in a damped oscillatory way, and that the impulse-response times are shorter than 0.3 fs for normal incidence. For grazing incidence, the impulse-response time is substantially shorter, making grazing-incidence mirrors a good choice for deep subfemtosecond reflective optics

  6. Electronic structure of titania aerogels: Soft x-ray absorption study

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Van Buuren, T.V.; Baumann, T.F.; Satcher, J.H.; Willey, T.M.; Muelenberg, R.W.; Felter, T.E.; Poco, J.E.; Gammon, S.A.; Terminello, L.J.

    2004-01-01

    Full text: Titania aerogels - a somewhat extreme form of nanoporous TiO 2 - are open-cell solid foams derived from highly crosslinked gels by drying them under supercritical conditions. In this presentation, the unoccupied electronic states of TiO 2 aerogels are studied by soft x-ray absorption near-edge structure (XANES) spectroscopy. High-resolution O K-edge and Ti L 2,3 -edge XANES spectra of aerogels are compared with those of rutile, anatase, and unrelaxed amorphous phases of full- density TiO 2 . Results show that all the main spectroscopic features of aerogels, reflecting the element-specific partial density of empty electronic states and correlation effects, can be attributed to the absence of long-range order in stoichiometric amorphous TiO 2 . Based on these results, we discuss the effects of short- and long-range order on the electronic structure of TiO 2 . This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48

  7. Direct electron acceleration in plasma waveguides for compact high-repetition-rate x-ray sources

    International Nuclear Information System (INIS)

    Lin, M-W; Jovanovic, I

    2014-01-01

    Numerous applications in fundamental and applied research, security, and industry require robust, compact sources of x-rays, with a particular recent interest in monochromatic, spatially coherent, and ultrafast x-ray pulses in well-collimated beams. Such x-ray sources usually require production of high-quality electron beams from compact accelerators. Guiding a radially polarized laser pulse in a plasma waveguide has been proposed for realizing direct laser acceleration (DLA), where the electrons are accelerated by the axial electric field of a co-propagating laser pulse (Serafim et al 2000 IEEE Trans. Plasma Sci. 28 1190). A moderate laser peak power is required for DLA when compared to laser wakefield acceleration, thus offering the prospect for high repetition rate operation. By using a density-modulated plasma waveguide for DLA, the acceleration distance can be extended with pulse guiding, while the density-modulation with proper axial structure can realize the quasi-phase matching between the laser pulses and electrons for a net gain accumulation (York et al 2008 Phys. Rev. Lett. 100 195001; York et al 2008 J. Opt. Soc. Am. B 25 B137; Palastro et al 2008 Phys. Rev. E 77 036405). We describe the development and application of a test particle model and particle-in-cell model for DLA. Experimental setups designed for fabrication of optically tailored plasma waveguides via the ignitor-heater scheme, and for generation and characterization of radially polarized short pulses used to drive DLA, are presented. (paper)

  8. THE MODEL OF LINGUISTIC TEACHERS’ COMPETENCY DEVELOPMENT ON DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES IN THE MOODLE SYSTEM

    OpenAIRE

    Anton M. Avramchuk

    2017-01-01

    The article is devoted to the problem of developing the competency of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system. The concept of "the competence of teachers of language disciplines on designing multimedia electronic educational resources in the Moodle system" is justified and defined. Identified and characterized the components by which the levels of the competency development of teachers of language disciplines on designing ...

  9. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  10. Electronic structure and x-ray spectroscopy of Cu2MnAl1-xGax

    Science.gov (United States)

    Rai, D. P.; Ekuma, C. E.; Boochani, A.; Solaymani, S.; Thapa, R. K.

    2018-04-01

    We explore the electronic and related properties of Cu2MnAl1-xGax with a first-principles, relativistic multiscattering Green function approach. We discuss our results in relation to existing experimental data and show that the electron-core hole interaction is essential for the description of the optical spectra especially in describing the X-ray absorption and magnetic circular dichroism spectra at the L2,3 edges of Cu and Mn.

  11. Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Ferri, Julien

    2016-01-01

    An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilo-joule and pico-second laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment. Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X-ray

  12. Study of electron anti-neutrinos associated with gamma-ray bursts using KamLAND

    NARCIS (Netherlands)

    Asakura, A.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oki, Y.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Tachibana, H.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Piepke, A.; Banks, T.I.; Berger, B.E.; Fujikawa, B.K.; O'Donnell, T.; Learned, J.G.; Maricic, J.; Sakai, M.; Winslow, L.A.; Efremenko, Y.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Detwiler, J.A.; Enomoto, S.; Decowski, M.P.

    2015-01-01

    We search for electron anti-neutrinos (-Ve) from long- and short-duration gamma-ray bursts (GRBs) using data taken by the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) from 2002 August to 2013 June. No statistically significant excess over the background level is found. We place the

  13. New light for science: European X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Sobierajski, R.; Lawniczak-Jablonska, K.

    2006-01-01

    The execution of the X-Ray Free Electron Laser (XFEL) project begins January 2007. The unique combination of the radiation wavelength, pulse duration and peak brightness provided by XFEL will enable to study processes which occur in both atomic scales - time and space. It will create new scientific opportunities in physics, chemistry, biology and material sciences. In the paper the principles of the XFEL radiation generation, technical design and main radiation parameters are described. They are followed by short description of the project organization. (author) [pl

  14. Electron track reconstruction and improved modulation for photoelectric X-ray polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tenglin [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Zeng, Ming, E-mail: zengming@tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Feng, Hua [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Cang, Jirong [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Li, Hong; Zhang, Heng [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Center for Astrophysics, Tsinghua University, Beijing 100084 (China); Zeng, Zhi; Cheng, Jianping; Ma, Hao; Liu, Yinong [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China)

    2017-06-21

    The key to photoelectric X-ray polarimetry is the determination of the emission direction of photoelectrons. Because of the low mass of an electron, the ionisation trajectory is not straight and the useful information needed for polarimetry is stored mostly in the initial part of the track where less energy is deposited. We present a new algorithm, based on the shortest path problem in graph theory, to reconstruct the 2D electron track from the measured image that is blurred due to transversal diffusion along drift and multiplication in the gas chamber. Compared with previous methods based on moment analysis, this algorithm allows us to identify the photoelectric interaction point more accurately and precisely for complicated tracks resulting from high energy photons or low pressure chambers. This leads to a better position resolution and a higher degree of modulation toward high energy X-rays. The new algorithm is justified using simulations and measurements with the gas pixel detector (GPD), and it should also work for other polarimetric techniques such as a time projection chamber (TPC). As the improvement is restricted in the high energy band, this new algorithm shows limited improvement for the sensitivity of GPD polarimeters, but it may have a larger potential for low-pressure TPC polarimeters.

  15. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    Science.gov (United States)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  16. Use of an axisymmetric microscope with electronic readout for collecting soft X-ray images

    International Nuclear Information System (INIS)

    Cavailler, C.; Henry, P.; Launspach, J.; De Mascureau, J.; Millerioux, M.; Rostaing, M.; Sauneuf, R.

    1984-08-01

    The axisymmetric microscope, first discussed by Wolter, provides high resolution and sensitivity for investigating the soft X-ray emission of laser-driven plasmas. Such a device having a 10 X magnification has been constructed. We present a comparison between the images of laser-driven plasmas given by this microscope and by a 10 X pinhole camera. Until now these images were recorded on X-ray film. We have shown that film could be replaced by C.C.D. in a pinhole camera when the photon energy lies within the 1-10 keV range. Below 1 keV the quantum yield is too low so we have used an image converter tube made by RTC. It is a diode-inverter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a C.C.D. working in the visible spectral fields. An electronic image readout chain, which is identical to those associated with streak cameras, then processes automatically and immediately the images given by the microscope [fr

  17. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    Science.gov (United States)

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  18. Determining the level of awareness of the physicians in using the variety of electronic information resources and the effecting factors.

    Science.gov (United States)

    Papi, Ahmad; Ghazavi, Roghayeh; Moradi, Salimeh

    2015-01-01

    Understanding of the medical society's from the types of information resources for quick and easy access to information is an imperative task in medical researches and management of the treatment. The present study was aimed to determine the level of awareness of the physicians in using various electronic information resources and the factors affecting it. This study was a descriptive survey. The data collection tool was a researcher-made questionnaire. The study population included all the physicians and specialty physicians of the teaching hospitals affiliated to Isfahan University of Medical Sciences and numbered 350. The sample size based on Morgan's formula was set at 180. The content validity of the tool was confirmed by the library and information professionals and the reliability was 95%. Descriptive statistics were used including the SPSS software version 19. On reviewing the need of the physicians to obtain the information on several occasions, the need for information in conducting the researches was reported by the maximum number of physicians (91.9%) and the usage of information resources, especially the electronic resources, formed 65.4% as the highest rate with regard to meeting the information needs of the physicians. Among the electronic information databases, the maximum awareness was related to Medline with 86.5%. Among the various electronic information resources, the highest awareness (43.3%) was related to the E-journals. The highest usage (36%) was also from the same source. The studied physicians considered the most effective deterrent in the use of electronic information resources as being too busy and lack of time. Despite the importance of electronic information resources for the physician's community, there was no comprehensive knowledge of these resources. This can lead to less usage of these resources. Therefore, careful planning is necessary in the hospital libraries in order to introduce the facilities and full capabilities of the

  19. Feasibility analysis for attosecond X-ray pulses at FERMI@ELETTRA free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, Alexander

    2004-09-01

    We present preliminary analysis for the feasibility of the attosecond x-ray pulses at a proposed FERMI@ELETTRA free electron laser (FEL) [1]. In part 1 we restrict ourselves to minimal modifications to the proposed FEL and consider a scheme for attosecond x-ray production which can be qualified as a small add-on to a primary facility. We demonstrate that at 5-nm wavelength our scheme is capable for production of pulses with an approximate duration of 100 attoseconds at approximately 2 MW peak power and with an absolute temporal synchronization to a pump laser pulse. In part 2 we propose to use an FEL amplifier seeded by a VUV signal and to follow it by the scheme for attosecond x-ray production described in part 1.

  20. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Science.gov (United States)

    Aguilar, M.; Aisa, D.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chikanian, A.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Cui, Z.; Dai, M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; Kunz, S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lomtadze, T.; Lu, M. J.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Malinin, A.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; Schuckardt, D.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Wang, L. Q.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration

    2014-09-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ˜30 GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  1. Managing Selection for Electronic Resources: Kent State University Develops a New System to Automate Selection

    Science.gov (United States)

    Downey, Kay

    2012-01-01

    Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…

  2. Study of a high finesse four mirrors Fabry Perot cavity for X-rays and Gamma rays production by laser-electron Compton scattering

    International Nuclear Information System (INIS)

    Fedala, Y.

    2008-10-01

    The main goal of this thesis is the study and design of a high finesse Fabry Perot cavity to amplify a laser beam in order to achieve power gains ranging from 10 4 to 10 5 . This cavity is dedicated to the production of intense and monochromatic X-ray for medical applications (medical RADIOTHOMX ring) and gamma rays for a Compton based polarized positron source by Compton scattering of a high power laser beam and electron beam. To increase the brightness of the Compton interaction at the collision points, it is essential to have not only a high power laser beam but also very small laser beam radii at the interaction points. To achieve such performances, 2 scenarios are possible: a concentric 2 mirrors cavity which is mechanically unstable or a 4 mirrors cavity more complex but more stable. We tested numerically mechanical stability and stability of Eigen modes polarization of various planar and non-planar geometries of 4 mirrors cavities. Experimentally, we have developed a four mirrors tetrahedral 'bow-tie' cavity; radii of the order of 20 microns were made. The Eigen modes of such a cavity, in both planar and non planar geometries, were measured and compared with the numerical results. A good agreement was observed. In a second time, the impact of Compton interaction on the transverse dynamics, in the case of the polarized positrons source, and the longitudinal dynamic, in the case of the medical ring of the electron beam was studied. Compton scattering causes energy loss and induces an additional dispersion of energy in electron beam. For the polarized positrons source, 10 collision points are planned. The transport line has been determined and the modelling of the Compton interaction effect with a simple matrix calculation was made. For the medical ring, Compton scattering causes bunch lengthening and the increase of energy dispersion which are to influence the produced X-ray flux. A study of the longitudinal dynamics of the electron beam in the ring was

  3. The irradiation action on human dental tissue by X-rays and electrons. A nanoindenter study

    Energy Technology Data Exchange (ETDEWEB)

    Fraenzel, Wolfgang [Halle-Wittenberg Univ., Halle (Germany). Dept. of Physics; Gerlach, Reinhard [Halle-Wittenberg Univ., Halle (Germany). Clinic of Radiation Therapy

    2009-07-01

    It is known that ionizing radiation is used in medicine for Roentgen diagnostics and for radiation therapy. The radiation interacts with matter, in particular with biological one, essentially by scattering, photoelectric effect, Compton effect and pair production. To what extent the biological material is changed thereby, depends on the type and the amount of radiation energy, on the dose and on the tissue constitution. In modern radiation therapy two different kinds of radiation are used: high energy X-rays and electron radiation. In the case of head-neck tumors the general practice is an irradiation with high energy X-rays with absorbed dose to water up to 70 Gy. Teeth destruction has been identified as a side effect during irradiation. In addition, damage to the salivary glands is often observed which leads to a decrease or even the complete loss of the salivary secretion (xerostomia). This study shows how the different energy and radiation types damage the tooth tissue. The effects of both, high X-ray energy and high energy electrons, on the mechanical properties hardness and elasticity of the human dental tissue are measured by the nanoindentation technique. We compare these results with the effect of the irradiation of low X-ray energy on the dental tissue. (orig.)

  4. The irradiation action on human dental tissue by X-rays and electrons. A nanoindenter study

    International Nuclear Information System (INIS)

    Fraenzel, Wolfgang; Gerlach, Reinhard

    2009-01-01

    It is known that ionizing radiation is used in medicine for Roentgen diagnostics and for radiation therapy. The radiation interacts with matter, in particular with biological one, essentially by scattering, photoelectric effect, Compton effect and pair production. To what extent the biological material is changed thereby, depends on the type and the amount of radiation energy, on the dose and on the tissue constitution. In modern radiation therapy two different kinds of radiation are used: high energy X-rays and electron radiation. In the case of head-neck tumors the general practice is an irradiation with high energy X-rays with absorbed dose to water up to 70 Gy. Teeth destruction has been identified as a side effect during irradiation. In addition, damage to the salivary glands is often observed which leads to a decrease or even the complete loss of the salivary secretion (xerostomia). This study shows how the different energy and radiation types damage the tooth tissue. The effects of both, high X-ray energy and high energy electrons, on the mechanical properties hardness and elasticity of the human dental tissue are measured by the nanoindentation technique. We compare these results with the effect of the irradiation of low X-ray energy on the dental tissue. (orig.)

  5. Flash of the Cathode Rays: A History of J J Thomson's Electron

    International Nuclear Information System (INIS)

    Rechenberg, Helmut

    1997-01-01

    The author, a senior physicist from Berkeley having some experience in historical accounts, covers well the standard story of J J Thomson's discovery of the electron, one hundred years ago. Starting from the investigations of cathode rays in Germany, France and mainly England, the successful path of J J is covered in some detail using available information (letters, notebooks, diaries, publications), as well as his later work on positive rays and the atomic model. Lesser emphasis is given to the parallel developments connected with the Zeeman effect. However, a synopsis of the story of β-rays, the measurement of the elementary charge and the rise of the Rutherford - Bohr nuclear model of the atom is included. Dahl presents the physical contents from the standard literature in a clear and convincing way. He illustrates the narrative with (well-chosen and well-reproduced) portraits of the people involved and sketches of their original apparatus. Hence the book can be recommended highly to physicists, who will be reminded of one of the most important events in the earlier history of their field. A broader public, including other scientists, and perhaps attentive high school graduates, might also benefit from the book, not to mention professional science historians (who may appreciate the detailed, reliable description of subtle experiments and their tricky interpretation). The author succeeds far less well in providing the general background (in the history of physics and beyond) of the Thomson story. The electron as a fundamental concept existed and was applied long before J Pluecker's discovery of cathodes rays (for example, by A-M Ampere and his successors), and the importance of the work by W Weber, F Neumann and R Clausius (to mention just a few scientists in the 19th century) is mainly suppressed. Dahl's treatment of P Lenard's work around 1900, for which Lenard won the Nobel prize before Thomson, is quite unfair. Further, Chapter 14 on the French N-rays and

  6. Top layer's thickness dependence on total electron-yield X-ray standing-wave

    International Nuclear Information System (INIS)

    Ejima, Takeo; Yamazaki, Atsushi; Banse, Takanori; Hatano, Tadashi

    2005-01-01

    A Mo single-layer film with a stepwise thickness distribution was fabricated on the same Mo/Si reflection multilayer film. Total electron-yield X-ray standing-wave (TEY-XSW) spectra of the aperiodic multilayer were measured with reflection spectra. The peak positions of the standing waves in the TEY-XSW spectra changed as the film thickness of the top Mo-layer increased

  7. End-of-life resource recovery from emerging electronic products

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Habib, Komal; Cimpan, Ciprian

    2016-01-01

    Integrating product design with appropriate end-of-life (EoL) processing is widely recognized to have huge potentials in improving resource recovery from electronic products. In this study, we investigate both the product characteristics and EoL processing of robotic vacuum cleaner (RVC), as a case...... of emerging electronic product, in order to understand the recovery fate of different materials and its linkage to product design. Ten different brands of RVC were dismantled and their material composition and design profiles were studied. Another 125 RVCs (349 kg) were used for an experimental trial...... at a conventional ‘shred-and-separate’ type preprocessing plant in Denmark. A detailed material flow analysis was performed throughout the recycling chain. The results show a mismatch between product design and EoL processing, and the lack of practical implementation of ‘Design for EoL’ thinking. In the best...

  8. Proposal for electron beam induced remote sensing x-ray fluorescence investigation of minor bodies in the solar system

    International Nuclear Information System (INIS)

    Hrehuss, G.; Gombosi, T.I.; Naday, I.; Pogany, L.; Szegoe, K.

    1983-11-01

    The composition of the surface material of minor bodies in the solar system can be measured using a semiconductor soft x-ray spectrometer mounted on the space probe. The characteristic x-rays are excited by a 20 kV low current electron beam of a space-born electron gun. After the description of the main features of the technique, estimations on its sensitivity, supported by a model experiment, are given. The minimum fly-by distance to apply this method can be estimated as a few kilometers. (author)

  9. Measurements of L-shell x-ray production cross-sections of Au and Ag by low energy electron impact

    International Nuclear Information System (INIS)

    Wu, Y; An, Z; Liu, M T; Duan, Y M; Tang, C H; Luo, Z M

    2004-01-01

    Au L α and L β and Ag L-shell x-ray production cross-sections by electron impact have been measured in the incident energy region from near threshold to about 25 keV. Thin films with thick aluminium substrates were used as targets in the experiments. The effect of directional and energy spreading of the electron beam within the active films and x-ray enhancement due to backscattering electrons and bremsstrahlung photons from the substrates are corrected by means of Monte Carlo simulations. The corrected experimental data provided by this method are compared with calculated cross-sections from a PWBA theory with Coulomb, relativistic and exchange corrections and with other experimental data available in the literature

  10. Measurement and Instrumentation Challenges at X-ray Free Electron Lasers

    Science.gov (United States)

    Feng, Yiping

    2015-03-01

    X-ray Free Electron Laser sources based on the Self Amplified Spontaneous Emission process are intrinsically chaotic, giving rise to pulse-to-pulse fluctuations in all physical properties, including intensity, position and pointing, spatial and temporal profiles, spectral content, timing, and coherence. These fluctuations represents special challenges to users whose experiments are designed to reveal small changes in the underlying physical quantities, which would otherwise be completely washed out without using the proper diagnostics tools. Due to the X-ray FEL's unique characteristics such as the unprecedented peak power and nearly full spatial coherence, there are many technical challenges in conceiving and implementing these devices that are highly transmissive, provide sufficient signal-to-noise ratio, and most importantly work in the single-shot mode. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford Univ.

  11. Use of electronic sales data to tailor nutrition education resources for an ethnically diverse population.

    Science.gov (United States)

    Eyles, H; Rodgers, A; Ni Mhurchu, C

    2010-02-01

    Nutrition education may be most effective when personally tailored. Individualised electronic supermarket sales data offer opportunities to tailor nutrition education using shopper's usual food purchases. The present study aimed to use individualised electronic supermarket sales data to tailor nutrition resources for an ethnically diverse population in a large supermarket intervention trial in New Zealand. Culturally appropriate nutrition education resources (i.e. messages and shopping lists) were developed with the target population (through two sets of focus groups) and ethnic researchers. A nutrient database of supermarket products was developed using retrospective sales data and linked to participant sales to allow tailoring by usual food purchases. Modified Heart Foundation Tick criteria were used to identify 'healthier' products in the database suitable for promotion in the resources. Rules were developed to create a monthly report listing the tailored and culturally targeted messages to be sent to each participant, and to produce automated, tailored shopping lists. Culturally targeted nutrition messages (n = 864) and shopping lists (n = 3 formats) were developed. The food and nutrient database (n = 3000 top-selling products) was created using 12 months of retrospective sales data, and comprised 60%'healthier' products. Three months of baseline sales data were used to determine usual food purchases. Tailored resources were successfully mailed to 123 Māori, 52 Pacific and 346 non-Māori non-Pacific participants over the 6-month trial intervention period. Electronic supermarket sales data can be used to tailor nutrition education resources for a large number of ethnically diverse supermarket shoppers.

  12. Calculation of electron contamination doses produced using blocking trays for 6 MV X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M.J. E-mail: mbutson@guessmail.com; Cheung Tsang; Yu, P.K.N

    2002-04-01

    Calculation of electron contamination doses whilst using blocking trays in radiotherapy is achieved by comparison of measured absorbed dose within the first few centimeters of a water phantom. Electron contamination of up to 28% of maximum dose is produced at the central axis of the beam whilst using a 6 mm Perspex blocking tray for a 30 cmx30 cm field. The electron contamination is spread over the entire field reducing slightly towards the edge of the beam. Electron contamination from block trays is also present outside the primary collimated X-ray beam with more than 20% of the maximum dose deposited at the surface, 5 cm outside the primary collimated beam at a field size of 40 cmx40 cm. The electron contamination spectrum has been calculated from measured results.

  13. Electron Attenuation Measurement using Cosmic Ray Muons at the MicroBooNE LArTPC

    Energy Technology Data Exchange (ETDEWEB)

    Meddage, Varuna [Kansas State U., Manhattan

    2017-10-01

    The MicroBooNE experiment at Fermilab uses liquid argon time projection chamber (LArTPC) technology to study neutrino interactions in argon. A fundamental requirement for LArTPCs is to achieve and maintain a low level of electronegative contaminants in the liquid to minimize the capture of drifting ionization electrons. The attenuation time for the drifting electrons should be long compared to the maximum drift time, so that the signals from particle tracks that generate ionization electrons with long drift paths can be detected efficiently. In this talk we present MicroBooNE measurement of electron attenuation using cosmic ray muons. The result yields a minimum electron 1/e lifetime of 18 ms under typical operating conditions, which is long compared to the maximum drift time of 2.3 ms.

  14. Coherent x-rays and vacuum-ultraviolet radiation from storage-ring-based undulators and free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1984-12-01

    High-brightness electron storage rings and permanent-magnet technology provide a basis for the development of coherent radiation in the 10- to 1000-A (xuv) spectral range. The most assured route to the production of coherent x-rays and vuv is the simple interaction between properly constrained relativistic electrons and permanent-magnet undulators, a subject that is already well understood and where technology is well advanced. Other techniques are less well developed, but with increasing degrees of technical challenge they will provide additional coherence properties. Transverse optical klystrons (TOKs) provide an opportunity for additional coherence at certain harmonics of longer-wavelength lasers. Free electron lasers (FELs) extend coherence capabilities substantially through two possible routes: one is the development of suitable mirror coatings. Both FEL techniques would provide vuv radiation and soft x rays with extremely narrow spectral content. Research on all of these techniques (undulators, TOKs, and FELs) is possible in a single facility based on a high-brightness electron storage ring, referred to herein as a Coherent xuv Facility (CXF). Individual items from the report were prepared separately for the data base

  15. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea

    2011-03-09

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  16. Single-Molecule Imaging with X-Ray Free-Electron Lasers: Dream or Reality?

    KAUST Repository

    Fratalocchi, Andrea; Ruocco, G.

    2011-01-01

    X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.

  17. Single-Shot Spectrometry for X-Ray Free-Electron Lasers

    International Nuclear Information System (INIS)

    Yabashi, Makina; Ishikawa, Tetsuya; Hastings, Jerome B.; Zolotorev, Max S.; Mimura, Hidekazu; Yumoto, Hirokatsu; Matsuyama, Satoshi; Yamauchi, Kazuto

    2006-01-01

    An experimental scheme to realize single-shot spectrometry for the diagnostics of x-ray free-electron lasers (XFELs) is presented. The combination of an ultraprecisely figured mirror and a perfect crystal form a simple, high-precision spectrometer that can cover an energy range from a few eV to a hundred eV with high resolution. The application of the spectrometer to determine XFEL pulse widths was investigated theoretically and experimentally. It has been shown that the present system can determine pulse widths from sub-fs to ps in a single shot even for spontaneous radiation. The system can be easily extended to even shorter pulses

  18. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  19. Availability, Level of Use and Constraints to Use of Electronic Resources by Law Lecturers in Public Universities in Nigeria

    Science.gov (United States)

    Amusa, Oyintola Isiaka; Atinmo, Morayo

    2016-01-01

    (Purpose) This study surveyed the level of availability, use and constraints to use of electronic resources among law lecturers in Nigeria. (Methodology) Five hundred and fifty-two law lecturers were surveyed and four hundred and forty-two responded. (Results) Data analysis revealed that the level of availability of electronic resources for the…

  20. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    CERN Document Server

    Aguilar, M; Alvino, A; Ambrosi, G; Andeen, K; Arruda, L; Attig, N; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bigongiari, G; Bindi, V; Bizzaglia, S; Bizzarri, M; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Borsini, S; Boschini, M J; Bourquin, M; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Cascioli, V; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, H; Cheng, G M; Chen, H S; Cheng, L; Chikanian, A; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Cui, Z; Dai, M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Di Masso, L; Dimiccoli, F; Díaz, C; von Doetinchem, P; Du, W J; Duranti, M; D’Urso, D; Eline, A; Eppling, F J; Eronen, T; Fan, Y Y; Farnesini, L; Feng, J; Fiandrini, E; Fiasson, A; Finch, E; Fisher, P; Galaktionov, Y; Gallucci, G; García, B; García-López, R; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Gillard, W; Giovacchini, F; Goglov, P; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guandalini, C; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Kossakowski, R; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; Kunz, S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H L; Li, J Q; Li, Q; Li, Q; Li, T X; Li, W; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, H; Lomtadze, T; Lu, M J; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Malinin, A; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Müller, M; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Obermeier, A; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Papi, A; Pedreschi, E; Pensotti, S; Pereira, R; Pilo, F; Piluso, A; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Postaci, E; Putze, A; Quadrani, L; Qi, X M; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Sbarra, C; Schael, S; Schmidt, S M; Schuckardt, D; Schulz von Dratzig, A; Schwering, G; Scolieri, G; Seo, E S; Shan, B S; Shan, Y H; Shi, J Y; Shi, X Y; Shi, Y M; Siedenburg, T; Son, D; Spada, F; Spinella, F; Sun, W; Sun, W H; Tacconi, M; Tang, C P; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vaurynovich, S; Vecchi, M; Velasco, M; Vialle, J P; Wang, L Q; Wang, Q L; Wang, R S; Wang, X; Wang, Z X; Weng, Z L; Whitman, K; Wienkenhöver, J; Wu, H; Xia, X; Xie, M; Xie, S; Xiong, R Q; Xin, G M; Xu, N S; Xu, W; Yan, Q; Yang, J; Yang, M; Ye, Q H; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, J H; Zhang, M T; Zhang, X B; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P; Zurbach, C

    2014-01-01

    Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30  GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.

  1. Cosmic ray antiproton/electron discrimination capability of the CAPRICE silicon-tungsten calorimeter using neural networks

    International Nuclear Information System (INIS)

    Bellotti, R.; Boezio, M.; Castellano, M.; De Marzo, C.; Picozza, P.; Prigiobbe, V.; Sparvoli, R.; Tirocchi, M.

    1996-01-01

    A data analysis based on an artificial neural network classifier is proposed to identify cosmic ray antiprotons detected with the CAPRICE silicon-tungsten imaging calorimeter against electron background in the energy range 1.2-4.0 GeV. A set of new physical variables, describing the events inside the calorimeter on the base of their different patterns, are introduced in order to discriminate between hadronic and electromagnetic showers. The ability of the artificial neural network classifier to perform a careful multidimensional analysis gives the possibility to identify antiprotons with an electron rejection 408±85 (stat) at 95.0±0.2 (stat)% of signal detection efficiency. The high accuracy achieved by this method improves substantially the efficiency in the evaluation of the cosmic ray antiproton spectrum. (orig.)

  2. Electronic structure of multiferroic BiFeO3 by resonant soft-x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Tohru; Higuchi, T.; Liu, Y.-S.; Yao, P.; Glans, P.-A.; Guo, Jinghua; Chang, C.; Wu, Z.; Sakamoto, W.; Itoh, N.; Shimura, T.; Yogo, T.; Hattori, T.

    2008-07-11

    The electronic structure of multiferroic BiFeO{sub 3} has been studied using soft-X-ray emission spectroscopy. The fluorescence spectra exhibit that the valence band is mainly composed of O 2p state hybridized with Fe 3d state. The band gap corresponding to the energy separation between the top of the O 2p valence band and the bottom of the Fe 3d conduction band is 1.3 eV. The soft-X-ray Raman scattering reflects the features due to charge transfer transition from O 2p valence band to Fe 3d conduction band. These findings are similar to the result of electronic structure calculation by density functional theory within the local spin-density approximation that included the effect of Coulomb repulsion between localized d states.

  3. Study of non stoichiometric pure and Zr-Doped yttria surfaces by X-Ray photoelectron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gautier, M.; Duraud, J.P.; Jollet, F.; Thromat, N.; Maire, P.; Le Gressus, C.

    1988-01-01

    Surfaces of oxygen-deficient yttrium oxide, pure or Zr-doped, have been studied by means of X-ray photoelectron spectroscopy and scanning electron microscopy. The bulk local geometric structure of these non-stoichiometric compounds was previously determined around the Y atom by an EXAFS (Extended X-ray absorption fine structure) study. The local electronic structure around both Y and O, at the surface, was investigated by X-ray photoelectron spectroscopy. The partial transfer of the electronic distribution between the anion and the cation was probed using the Auger parameter. Coupling of these experiments with microscopic observations show that: - In the pure oxygen-deficient sample, the concentration of oxygen vacancies appears to be increased at the grain boundaries. - The Auger parameter shows upon reduction an evolution of the Y-O bond towards a more covalent one, this evolution being modulated with the presence of Zr0 2

  4. A systematic review of portable electronic technology for health education in resource-limited settings.

    Science.gov (United States)

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent

  5. CREME96: A revision of the Cosmic Ray Effects on Micro-Electronics code

    International Nuclear Information System (INIS)

    Tylka, A.J.; Adams, J.H. Jr.; Boberg, P.R.

    1997-01-01

    CREME96 is an update of the Cosmic Ray Effects on Micro-Electronics code, a widely-used suite of programs for creating numerical models of the ionizing-radiation environment in near-Earth orbits and for evaluating radiation effects in spacecraft. CREME96, which is now available over the World-Wide Web (WWW) at http://crsp3.nrl.navy.mil/creme96/, has many significant features, including (1) improved models of the galactic cosmic ray, anomalous cosmic ray, and solar energetic particle (flare) components of the near-Earth environment; (2) improved geomagnetic transmission calculations; (3) improved nuclear transport routines; (4) improved single-event upset (SEU) calculation techniques, for both proton-induced and direct-ionization-induced SEUs; and (5) an easy-to-use graphical interface, with extensive on-line tutorial information. In this paper the authors document some of these improvements

  6. Soft x-ray free-electron laser induced damage to inorganic scintillators

    Czech Academy of Sciences Publication Activity Database

    Burian, Tomáš; Hájková, Věra; Chalupský, Jaromír; Vyšín, Luděk; Boháček, Pavel; Přeček, Martin; Wild, J.; Özkan, C.; Coppola, N.; Farahani, S.D.; Schulz, J.; Sinn, H.; Tschentscher, T.; Gaudin, J.; Bajt, S.; Tiedtke, K.; Toleikis, S.; Chapman, H.N.; Loch, R.A.; Jurek, M.; Sobierajski, R.; Krzywinski, J.; Moeller, S.; Harmand, M.; Galasso, G.; Nagasono, M.; Saskl, K.; Sovák, P.; Juha, Libor

    2015-01-01

    Roč. 5, č. 2 (2015), 254-264 ISSN 2159-3930 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : fluorescent and luminescent materials * laser damage * free-electron lasers * soft x-rays * laser materials processing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.657, year: 2015

  7. Aerosol Imaging with a Soft X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Bogan, Michael J.; Boutet, Sebastien; Chapman, Henry N.; Marchesini, Stefano; Barty, Anton; Benner, W. Henry; Rohner, Urs; Frank, Matthias; Hau-Riege, Stefan P.; Bajt, Sasa; Woods, Bruce; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; Schulz, Joachim

    2010-01-01

    Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10 12 photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

  8. Digital and Analog Electronics for an autonomous, deep-sea, Gamma Ray Burst Neutrino prototype detector

    Directory of Open Access Journals (Sweden)

    Manolopoulos K.

    2016-01-01

    Full Text Available GRBNeT is a Gamma Ray Burst Neutrino Telescope made of autonomously operated arrays of deep-sea light detectors, anchored to the sea-bed without any cabled connection to the shore. This paper presents the digital and analog electronics that we have designed and developed for the GRBNeT prototype. We describe the requirements for these electronics and present their design and functionality. We present low-power analog electronics for the PMTs utilized in the GRBNeT prototype and the FPGA based digital system for data selection and storage. We conclude with preliminary performance measurements of the electronics systems for the GRBNeT prototype.

  9. Electron-capture Isotopes Could Constrain Cosmic-Ray Propagation Models

    Science.gov (United States)

    Benyamin, David; Shaviv, Nir J.; Piran, Tsvi

    2017-12-01

    Electron capture (EC) isotopes are known to provide constraints on the low-energy behavior of cosmic rays (CRs), such as reacceleration. Here, we study the EC isotopes within the framework of the dynamic spiral-arms CR propagation model in which most of the CR sources reside in the galactic spiral arms. The model was previously used to explain the B/C and sub-Fe/Fe ratios. We show that the known inconsistency between the 49Ti/49V and 51V/51Cr ratios remains also in the spiral-arms model. On the other hand, unlike the general wisdom that says the isotope ratios depend primarily on reacceleration, we find here that the ratio also depends on the halo size (Z h) and, in spiral-arms models, also on the time since the last spiral-arm passage ({τ }{arm}). Namely, EC isotopes can, in principle, provide interesting constraints on the diffusion geometry. However, with the present uncertainties in the lab measurements of both the electron attachment rate and the fragmentation cross sections, no meaningful constraint can be placed.

  10. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    Science.gov (United States)

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  11. Electron Paramagnetic Resonance and X-ray Diffraction of Boron- and Phosphorus-Doped Nanodiamonds

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.; Shymanski, V. I.

    2017-11-01

    Powders of boron- and phosphorus-doped detonation nanodiamonds and sintered pellets of non-doped nanodiamond powders were studied using electron paramagnetic resonance and x-ray diffraction. Doping of detonation nanodiamond crystals with boron and phosphorus was demonstrated to be possible. These methods could be used to diagnose diamond nanocrystals doped during shock-wave synthesis.

  12. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Reusch, L. M., E-mail: lmmcguire@wisc.edu; Den Hartog, D. J.; Goetz, J.; McGarry, M. B. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Franz, P. [Consorzio RFX, Padova (Italy); Stephens, H. D. [University of Wisconsin - Madison, Madison, Wisconsin 53703 (United States); Pierce College Fort Steilacoom, Lakewood, Washington 98498 (United States)

    2016-11-15

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXR{sub DF}) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXR{sub DF} measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXR{sub DF} discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXR{sub DF} analysis rather than instrumentation effects.

  13. Physics Of, and Science With, the X-Ray Free-Electron Laser: 19th Advanced ICFA Beam Dynamics Workshop

    International Nuclear Information System (INIS)

    Sutton, M.

    2003-01-01

    The workshop brought together scientists working on the development of x-ray free-electron lasers, and its applications. X-ray free-electron lasers produce high intensity, subpicosecond long, coherent, X-ray pulses, and will open a new frontier to study the structure of matter at the molecular and atomic levels. Some fields of interest are structural changes in chemical reactions, single biological molecule, warm plasmas, nanosystems. Summary of discussions and conclusions of Group 1: Physics and Technology of the XFEL - The main issues that were discussed by the 50 participants in this group were the photo-injector, the production of ultra-short pulses, the effects of wake-fields induced by the electron bunch, the operation at lower charge and emittance, the possibility of harmonic generation and the diagnostics in the undulator. The following is a short summary of the discussions and their conclusions. Summary of discussions and conclusions of Group 2: Science with the XFEL - About 25 people attended sessions to discuss the possible scientific applications of a x-ray FEL. Because of the recent focus on the first experiments with the proposed Linac Coherent Light Source at Stanford, the discussions were mainly focussed on these proposals. The extension of the characteristics beyond the initial stage and the further developments of the source were also part of the program. Six scientific areas were discussed: Atomic Physics, Warm Dense Matter, Femtosecond Chemistry, Imaging/Holography, Bio-molecular Structures and X-Ray Fluctuations Spectroscopy.

  14. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    Science.gov (United States)

    Bogan, Michael J.; Starodub, Dmitri; Hampton, Christina Y.; Sierra, Raymond G.

    2010-10-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 1012 photons per pulse, 20 µm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will

  15. Single-particle coherent diffractive imaging with a soft x-ray free electron laser: towards soot aerosol morphology

    International Nuclear Information System (INIS)

    Bogan, Michael J; Starodub, Dmitri; Hampton, Christina Y; Sierra, Raymond G

    2010-01-01

    The first of its kind, the Free electron LASer facility in Hamburg, FLASH, produces soft x-ray pulses with unprecedented properties (10 fs, 6.8-47 nm, 10 12 photons per pulse, 20 μm diameter). One of the seminal FLASH experiments is single-pulse coherent x-ray diffractive imaging (CXDI). CXDI utilizes the ultrafast and ultrabright pulses to overcome resolution limitations in x-ray microscopy imposed by x-ray-induced damage to the sample by 'diffracting before destroying' the sample on sub-picosecond timescales. For many lensless imaging algorithms used for CXDI it is convenient when the data satisfy an oversampling constraint that requires the sample to be an isolated object, i.e. an individual 'free-standing' portion of disordered matter delivered to the centre of the x-ray focus. By definition, this type of matter is an aerosol. This paper will describe the role of aerosol science methodologies used for the validation of the 'diffract before destroy' hypothesis and the execution of the first single-particle CXDI experiments being developed for biological imaging. FLASH CXDI now enables the highest resolution imaging of single micron-sized or smaller airborne particulate matter to date while preserving the native substrate-free state of the aerosol. Electron microscopy offers higher resolution for single-particle analysis but the aerosol must be captured on a substrate, potentially modifying the particle morphology. Thus, FLASH is poised to contribute significant advancements in our knowledge of aerosol morphology and dynamics. As an example, we simulate CXDI of combustion particle (soot) morphology and introduce the concept of extracting radius of gyration of fractal aggregates from single-pulse x-ray diffraction data. Future upgrades to FLASH will enable higher spatially and temporally resolved single-particle aerosol dynamics studies, filling a critical technological need in aerosol science and nanotechnology. Many of the methodologies described for FLASH will

  16. SAGES: a suite of freely-available software tools for electronic disease surveillance in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Sheri L Lewis

    Full Text Available Public health surveillance is undergoing a revolution driven by advances in the field of information technology. Many countries have experienced vast improvements in the collection, ingestion, analysis, visualization, and dissemination of public health data. Resource-limited countries have lagged behind due to challenges in information technology infrastructure, public health resources, and the costs of proprietary software. The Suite for Automated Global Electronic bioSurveillance (SAGES is a collection of modular, flexible, freely-available software tools for electronic disease surveillance in resource-limited settings. One or more SAGES tools may be used in concert with existing surveillance applications or the SAGES tools may be used en masse for an end-to-end biosurveillance capability. This flexibility allows for the development of an inexpensive, customized, and sustainable disease surveillance system. The ability to rapidly assess anomalous disease activity may lead to more efficient use of limited resources and better compliance with World Health Organization International Health Regulations.

  17. Use and Cost of Electronic Resources in Central Library of Ferdowsi University Based on E-metrics

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Davarpanah

    2012-07-01

    Full Text Available The purpose of this study was to investigate the usage of electronic journals in Ferdowsi University, Iran based on e-metrics. The paper also aimed to emphasize the analysis of cost-benefit and the correlation between the journal impact factors and the usage data. In this study experiences of Ferdowsi University library on licensing and usage of electronic resources was evaluated by providing a cost-benefit analysis based on the cost and usage statistics of electronic resources. Vendor-provided data were also compared with local usage data. The usage data were collected by tracking web-based access locally, and by collecting vender-provided usage data. The data sources were one-year of vendor-supplied e-resource usage data such as Ebsco, Elsevier, Proquest, Emerald, Oxford and Springer and local usage data collected from the Ferdowsi university web server. The study found that actual usage values differ for vendor-provided data and local usage data. Elsevier has got the highest usage degree in searches, sessions and downloads. Statistics also showed that a small number of journals satisfy significant amount of use while the majority of journals were used less frequent and some were never used at all. The users preferred the PDF rather than HTML format. The data in subject profile suggested that the provided e-resources were best suited to certain subjects. There was no correlation between IF and electronic journal use. Monitoring the usage of e-resources gained increasing importance for acquisition policy and budget decisions. The article provided information about local metrics for the six surveyed vendors/publishers, e.g. usage trends, requests per package, cost per use as related to the scientific specialty of the university.

  18. Propagation of modulated electron and X-ray beams through matter and interactions with radio-frequency structures

    Science.gov (United States)

    Harris, J. R.; Miller, R. B.

    2018-02-01

    The generation and evolution of modulated particle beams and their interactions with resonant radiofrequency (RF) structures are of fundamental interest for both particle accelerator and vacuum electronic systems. When the constraint of propagation in a vacuum is removed, the evolution of such beams can be greatly affected by interactions with matter including scattering, absorption, generation of atmospheric plasma, and the production of multiple generations of secondary particles. Here, we study the propagation of 21 MeV and 25 MeV electron beams produced in S-band and L-band linear accelerators, and their interaction with resonant RF structures, under a number of combinations of geometry, including transmission through both air and metal. Both resonant and nonresonant interactions were observed, with the resonant interactions indicating that the RF modulation on the electron beam is at least partially preserved as the beam propagates through air and metal. When significant thicknesses of metal are placed upstream of a resonant structure, preventing any primary beam electrons from reaching the structure, RF signals could still be induced in the structures. This indicated that the RF modulation present on the electron beam was also impressed onto the x-rays generated when the primary electrons were stopped in the metal, and that this RF modulation was also present on the secondary electrons generated when the x-rays struck the resonant structures. The nature of these interactions and their sensitivities to changes in system configurations will be discussed.

  19. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    International Nuclear Information System (INIS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied

  20. Study on detection of electron beam irradiated food by ESR spectroscopy and comparison of the ESR spectrum of electron beams and γ-rays

    International Nuclear Information System (INIS)

    Li Weiming; Ha Yiming; Wang Feng

    2012-01-01

    The study was conducted to detect electron beam irradiated food by ESR spectroscopy. The white pepper powder, paprika powder, cumin powder and pistachios were used as test materials to study the feature changes of ESR spectrum and the relationship between ESR intensity and irradiation dose in different doses, the shape variation of ESR spectrum in γ-rays and electron beams in the same sample was also compared. The results showed that the ESR spectrum of 4 kinds of irradiated samples was obviously different before and after irradiation, the intensity of ESR signal increased with the increasing of the absorbed dose. The dose above 432 Gy could be detected in white pepper powder and pistachios, the dose above 875 Gy could be detected in paprika powder and cumin powder. The ESR intensity of all samples decreased during the storage time (200 d), even after 200 days the ESR method could also be used to detect whether or not the samples have been irradiated. The same dosage of y-rays and electron beams has no significant influence on the shape of ESR spectrum, however, the difference of irradiation mechanism caused slight impact on ESR intensity. The results could provide the technical basis for the application of ESR method in detecting electron beam irradiated food. (authors)

  1. Study on detection of electron beam irradiated food by ESR spectroscopy and comparison of the ESR spectrum of electron beams and γ-rays

    International Nuclear Information System (INIS)

    Li Weiming; Ha Yiming; Wang Feng

    2011-01-01

    The study was conducted to detect electron beam irradiated food by ESR spectroscopy. The white pepper powder, paprika powder, cumin powder and pistachios were used as test materials to study the feature changes of ESR spectrum and the relationship between ESR intensity and irradiation dose in different doses, the shape variation of ESR spectrum in γ-rays and electron beams in the same sample was also compared. The results showed that the ESR spectrum of 4 kinds of irradiated samples was obviously different before and after irradiation, the intensity of ESR signal increased with the increasing of the absorbed dose. The dose above 432 Gy could be detected in white pepper powder and pistachios, the dose above 875 Gy could be detected in paprika powder and cumin powder. The ESR intensity of all samples decreased during the storage time (200 d), even after 200 days the ESR method could also be used to detect whether or not the samples have been irradiated. The same dosage of γ-rays and electron beams has no significant influence on the shape of ESR spectrum, however, the difference of irradiation mechanism caused slight impact on ESR intensity. The results could provide the technical basis for the application of ESR method in detecting electron beam irradiated food. (authors)

  2. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    International Nuclear Information System (INIS)

    Forslind, B.

    1988-01-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references

  3. Electric field of thunderclouds and cosmic rays: evidence for acceleration of particles (runaway electrons)

    CERN Document Server

    Khaerdinov, N S; Petkov, V B; 12th International Conference on Atmospheric Electricity

    2004-01-01

    We present the data on correlations of the intensity of the soft component of cosmic rays with the local electric field of the near-earth atmosphere during thunderstorm periods at the Baksan Valley (North Caucasus, 1700 m a. s. l.). The large-area array for studying the extensive air showers of cosmic rays is used as a particle detector. An electric field meter of the "electric mill" type (rain-protected) is mounted on the roof of the building in the center of this array. The data were obtained in the summer seasons of 2000-2002. We observe strong enhancements of the soft component intensity before some lightning strokes. At the same time, the analysis of the regression curve "intensity versus field" discovers a bump at the field sign that is opposite to the field sign corresponding to acceleration of electrons. It is interpreted as a signature of runaway electrons from the region of the strong field (with opposite sign) overhead.

  4. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  5. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Forslind, B.

    1984-01-01

    Scanning electron microscopy is frequently applied to dermatological problems, as is evident from a review of the recent literature. In this paper, preparation methods and new techniques allowing experimental studies on the integumentary system are emphasized. Quantitative analysis in the electron microscope by use of energy-dispersive X-ray microanalysis (EDX) has become an important accessory technique. EDX can, for instance, be used to study problems involving physiological changes induced in skin by agents causing contact reactions. Recently, it has been shown that treatment with DNCB, chromate and nickel causes changes in elemental distribution in guinea-pig skin. In addition, elemental uptake in the integumentary system and in pathological inclusions in skin can be analyzed.

  6. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology

    International Nuclear Information System (INIS)

    Forslind, B.

    1984-01-01

    Scanning electron microscopy is frequently applied to dermatological problems, as is evident from a review of the recent literature. In this paper, preparation methods and new techniques allowing experimental studies on the integumentary system are emphasized. Quantitative analysis in the electron microscope by use of energy-dispersive X-ray microanalysis (EDX) has become an important accessory technique. EDX can, for instance, be used to study problems involving physiological changes induced in skin by agents causing contact reactions. Recently, it has been shown that treatment with DNCB, chromate and nickel causes changes in elemental distribution in guinea-pig skin. In addition, elemental uptake in the integumentary system and in pathological inclusions in skin can be analyzed

  7. Building and Managing Electronic Resources in Digital Era in India with Special Reference to IUCAA and NIV, Pune: A Comparative Case Study

    Science.gov (United States)

    Sahu, H. K.; Singh, S. N.

    2015-04-01

    This paper discusses and presents a comparative case study of two libraries in Pune, India, Inter-University Centre for Astronomy and Astrophysics and Information Centre and Library of National Institute of Virology (Indian Council of Medical Research). It compares how both libraries have managed their e-resource collections, including acquisitions, subscriptions, and consortia arrangements, while also developing a collection of their own resources, including pre-prints and publications, video lectures, and other materials in an institutional repository. This study illustrates how difficult it is to manage electronic resources in a developing country like India, even though electronic resources are used more than print resources. Electronic resource management can be daunting, but with a systematic approach, various problems can be solved, and use of the materials will be enhanced.

  8. Theoretical progress in studying the characteristic x-ray emission from heavy few-electron ions

    International Nuclear Information System (INIS)

    Surzhykov, Andrey; Stohlker, Thomas; Fritzsche, Stephan; Kabachnik, Nikolai M

    2009-01-01

    Recent theoretical progress in the study of the x-ray characteristic emission from highly-charged, few-electron ions is reviewed. These investigations show that the bound-state radiative transitions in high-Z ions provide a unique tool for better understanding the interplay between the structural and dynamical properties of heavy ions. In order to illustrate such an interplay, detailed calculations are presented for the K α1 decay of the helium-like uranium ions U 90+ following radiative electron capture, Coulomb excitation and dielectronic recombination processes.

  9. Reconstruction of energetic electron spectra in the upper atmosphere: balloon observations of auroral X-rays coordinated with measurements from the Eiscat radar

    International Nuclear Information System (INIS)

    Olafsson, K.J.

    1990-01-01

    Energetic electron precipitation in the auroral zone has been studied using coordinated auroral X-ray measurements from balloons, altitude profiles of the ionospheric electron density measured by the EISCAT radar above the balloons, and cosmic noise absorption data from the Scandinavian riometer network. The data were obtained during the coordinated EISCAT and balloon observation campaign in August 1984. A method by which an estimate of the energy spectrum of precipitating energetic electrons can be obtained from balloon measurements of bremsstrahlung X-rays is described. The energy spectral variation of both the X-ray fluxes and the primary precipitating electrons were examined for two precipitation events in the morning sector. As far as reasonably can be concluded from observations of magnetic activity in the auroral zone, and from the temporal development of the energy spectra, the two precipitation events can be interpreted in the frame of present models of energetic electron precipitation on the morning side of the auroral zone. 96 refs

  10. Electronic waste: chemical characterization glasses of tubes cathode rays with viability for recycling

    International Nuclear Information System (INIS)

    Lima, Norma Maria O.; Morais, Crislene R. Silva; Lima, Lenilde Mergia Ribeiro

    2011-01-01

    Electronic waste, or e-waste, often makes incorrect destinations, which causes serious environmental problems. The aim of this study was to analyze the X-ray fluorescence to study the recycling technology for the glass of Cathode Ray Tubes or, popularly, 'picture tubes', identified by the acronym CRT (Cathode Ray Tubes), which integrate computer monitors. It was observed that the glass screen and funnel analyzed have different chemical compositions. As the silicon oxide (SiO2), the largest component of these glasses percentage 59.89% and 48.63% respectively for the screen and funnel this oxide is responsible for forming the vitreous network. The study of recycling of computer monitors it is important, since about 45% of existing materials on a monitor are made of glass, since it is 100% recyclable and can be reused, thus reducing the amount of waste deposited in the environment. (author)

  11. Controlled generation of comb-like electron beams in plasma channels for polychromatic inverse Thomson γ-ray sources

    International Nuclear Information System (INIS)

    Kalmykov, S Y; Shadwick, B A; Davoine, X; Ghebregziabher, I; Lehe, R; Lifschitz, A F

    2016-01-01

    Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth  >150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams—sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy spacing dependent on the channel radius and pulse length. These customizable electron beams enable the design of a tunable, all-optical source of pulsed, polychromatic γ-rays using the mechanism of inverse Thomson scattering, with up to  ∼10 −5 conversion efficiency from the drive pulse in the electron accelerator to the γ-ray beam. Such a source may radiate  ∼10 7 quasi-monochromatic photons per shot into a microsteradian-scale cone. The photon energy is distributed among several distinct bands, each having sub-30% energy spread, with a highest energy of 12.5 MeV. (paper)

  12. Electronic structure analysis of UO2 by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ozkendir, O.M.

    2009-01-01

    Full text: Due to the essential role of Actinides in nuclear science and technology, electronic and structural investigations of actinide compounds attract major interest in science. Electronic structure of actinide compounds have important properties due to narrow 5f states which play key role in bonding with anions. The properties of Uranium has been a subject of enduring interest due to its being a major importance as a nuclear fuel and is the highest numbered element which can be found naturally on earth. UO 2 forms as a secondary uranyl group occurred during metamictization of uranium oxide compounds [1].Uranium oxide thin films have been investigated by X-ray Absorption Fine Structure spectroscopy (XAFS) [2]. The full multiple scattering approach has been applied to the calculation of U L3 edge spectra of UO 2 . The calculations are based on different choices of one electron potentials according to Uranium coordinations by using the real space multiple scattering method FEFF 8.2 code [3,4]. U L3-edge absorption spectrum in UO 2 is compared with U L3-edges in USiO 4 and UTe which are chosen due to their different electronic and chemical structures.We have found prominent changes in the XANES spectra of Uranium oxide thin films due to valency properties. Such observed changes are explained by considering the structural, electronic and spectroscopic properties. (author)

  13. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 gamma-ray beams. Either the Klein-Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source-surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  14. Calculational methods for estimating skin dose from electrons in Co-60 gamma-ray beams

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, C.H.; Attix, F.H.; Paliwal, B.R.

    1983-01-01

    Several methods have been employed to calculate the relative contribution to skin dose due to scattered electrons in Co-60 γ-ray beams. Either the Klein--Nishina differential scattering probability is employed to determine the number and initial energy of electrons scattered into the direction of a detector, or a Gaussian approximation is used to specify the surface distribution of initial pencil electron beams created by parallel or diverging photon fields. Results of these calculations are compared with experimental data. In addition, that fraction of relative surface dose resulting from photon interactions in air alone is estimated and compared with data extrapolated from measurements at large source--surface distance (SSD). The contribution to surface dose from electrons generated in air is 50% or more of the total skin dose for SSDs greater than 80 cm

  15. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    Science.gov (United States)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  17. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  18. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  19. X-ray spectral study of the Th6p,5f electron states in ThO2 and ThF4

    International Nuclear Information System (INIS)

    Teterin, Y.A.; Nikitin, A.S.; Teterin, A.Y.; Ivanov, K.E.; Utkin, I.O.; Nerehov, V.A.; Ryzhkov, M.V.; Vukchevich, I.J.

    2002-01-01

    The study of the Th6p,5f electron states in Th, ThO 2 and ThF was carried out on the basis of the X-ray photoelectron fine spectral structure parameters in the binding energy range of 0-∼ 1000 eV, X-ray O 4,5 (Th) emission spectra of the shallow (0-∼50 eV) electrons and results of theoretical calculations. As a result, despite the absence of the Th5f electrons in thorium atoms, the Th5f atomic orbitals were established to participate in the formation of molecular orbitals in thorium dioxide and tetrafluoride. In the MO LCAO approximation this allowed to suggest the possible existence of filled Th5f electronic states in thorium compounds. On the basis of the X-ray O 4,5 (Th) emission spectral structure parameters the effective formation of the inner valence molecular orbitals in the studied compounds was confirmed. (authors)

  20. Conceptual design of the radial gamma ray spectrometers system for α particle and runaway electron measurements at ITER

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.

    2017-07-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.

  1. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvyd' ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey [Advanced Photon Source, Argonne National Laboratory, Illinois 60439 (United States)

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  2. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    Energy Technology Data Exchange (ETDEWEB)

    Vaverka, April Susan Montoya [Univ.of California, Davis, CA (United States)

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  3. Characterization of electron bunches from field emitter array cathodes for use in next-generation x-ray free electron lasers

    International Nuclear Information System (INIS)

    Leemann, S. C.

    2007-01-01

    PSI is interested in developing an x-ray free electron laser (X-FEL) as a companion radiation source to the existing Swiss Light Source. In order to achieve radiation wavelengths as low as 1 Α, the X-FEL requires excellent electron beam quality and high beam energy. The energy requirements and thus the size and cost of the project can be reduced considerably if an ultra-low emittance electron source is developed. Therefore PSI has started the Low Emittance Gun Project with the aim to design a novel type of electron source that will deliver an electron beam with unprecedented emittance at high peak currents to the linear accelerator of the proposed X-FEL. A source candidate for such a gun is field emission from cold cathodes. In order to gain first experience with field emission guns, investigate the dynamics of space charge dominated electron beams and to develop diagnostics capable of resolving ultra-low emittances, it was decided to build a 100 keV DC gun test stand. In the scope of this thesis, the test stand has been designed, assembled and commissioned. For the first time, transverse phase space measurements of bunches emitted by field emitter arrays in pulsed DC accelerating fields have been performed. (author)

  4. Optical afterburner for an x-ray free electron laser as a tool for pump-probe experiments

    Directory of Open Access Journals (Sweden)

    E. L. Saldin

    2010-03-01

    Full Text Available We propose a new scheme for two-color operation of an x-ray self-amplified spontaneous emission free electron laser (SASE FEL. The scheme is based on an intrinsic feature of such a device: chaotic modulations of electron beam energy and energy spread on the scale of FEL coherence length are converted into large density modulations on the same scale with the help of a dispersion section, installed behind the x-ray undulator. Powerful radiation is then generated with the help of a dedicated radiator (like an undulator that selects a narrow spectral line, or one can simply use, for instance, broadband edge radiation. A typical radiation wavelength can be as short as a FEL coherence length, and can be redshifted by increasing the dispersion section strength. In practice it means the wavelength ranges from vacuum ultraviolet to infrared. The long-wavelength radiation pulse is naturally synchronized with the x-ray pulse and can be either directly used in pump-probe experiments or cross correlated with a high-power pulse from a conventional laser system. In this way experimenters overcome jitter problems and can perform pump-probe experiments with femtosecond resolution. Additional possibilities like on-line monitoring of x-ray pulse duration (making “optical replica” of an x-ray pulse are also discussed in the paper. The proposed scheme is very simple, cheap, and robust, and therefore can be easily realized in facilities like FLASH, European XFEL, LCLS, and SCSS.

  5. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    International Nuclear Information System (INIS)

    Borgatti, F.; Torelli, P.; Panaccione, G.

    2016-01-01

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  6. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  7. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  8. Excitation-energy-dependent resonances in x-ray emissions under near-threshold electron excitation of the Ce 3d and 4d levels

    International Nuclear Information System (INIS)

    Chamberlain, M.B.; Baun, W.L.

    1975-01-01

    Soft x-ray appearance potential spectra of the 3d and 4d levels of polycrystalline cerium metal are reported in this paper. Resonant x-ray emissions are observed when the electron-excitation energy sweeps through the ionization energies of the 3d and 4d levels. The resonant x rays excited at the 3d-level onsets are considerably more intense, and are excited at a lower electron-excitation energy than the 3d-series characteristic x rays. In the neighborhood of the 4d-electron thresholds, four line-like structures extend to approx.8 eV below the 4d-electron binding energies, while two broad and more intense structures occur above the 4d onsets, with the largest one reaching a peak intensity at 12 eV above the 4d thresholds. The resonant emissions apparently arise from the decay of threshold-excited states which are bound to the inner vacancy and have core configurations nd 9 4f 3 , (n=3,4). The exchange interaction between the three 4f electrons and the respective d-orbital vacancy spreads the 4d-threshold structures over a 20 eV range of excitation energies and the 3d-threshold structures over a much smaller range

  9. Laboratory X-ray Studies with Trapped Highly Charged Ions Using Synchrotrons and Free-electron Lasers

    Science.gov (United States)

    Crespo López-Urrutia, José R.

    2018-06-01

    Laboratory studies on highly charged ions (HCI) using electron beam ion traps (EBITs) can cover all charge states and chemical elements found in astrophysical sources. Since their introduction in 1986, a wealth of emission measurements from the optical to the x-ray range has been carried out by different groups. In most of the work, electron-impact excitation was the driving mechanism, and high resolution spectrometers were used for the diagnostic of the emitted radiation. Other recent studies included x-ray emission following charge exchange, a mechanism which is present in many astrophysical environments and can help explain some of the unknown spectral features at 3.55 keV.In the last decade, excitation and photoionization have also been investigated by exposing HCI trapped in an EBIT to intense, monochromatic radiation from free-electron lasers and synchrotron sources. Here, advanced monochromators in powerful undulator beamlines allowed us to work at photon energies from 50 eV to 15 keV while resolving the natural linewidths of x-ray transitions like the Kα complex of Fe up to the highest charge states, and to measure the oscillator strengths of, e. g., the neonlike Fe16+ spectrum. Photoionization studies have been performed for those species as well. Very recently, our novel compact EBIT with an off-axis electron gun allows for simultaneously using the photon beam downstream, enabling exact wavelength determinations referenced to HCI with accurately calculable transitions. We have performed a recalibration of the molecular and atomic oxygen soft x-ray absorption lines in the 500 eV range with an uncertainty estimate of 30 meV. This revealed a 600 meV calibration error that propagated through the literature for decades with the consequence of a 200 km/s misfit of the velocity in interstellar oxygen absorbers. Other possibilities for the compact EBIT are investigations of resonant photorecombination processes with excellent energy resolution. With the

  10. On the wide-energy-range tuning of x-ray photoemission electron microscope optics for the observation of the photoelectrons excited by several keV x-rays

    International Nuclear Information System (INIS)

    Yasufuku, H.; Yoshikawa, H.; Kimura, M.; Vlaicu, A.M.; Kato, M.; Kudo, M.; Fujikata, J.; Fukushima, S.

    2006-01-01

    We have newly developed an x-ray photoemission electron microscope (XPEEM) which uses both soft x-rays and hard x-rays at the undulator beam line BL15XU in the synchrotron radiation (SR) facility SPring-8 to observe various practical materials. In combination with an energy analyzer and high brilliant x-ray source, the detection of high kinetic energy inner-shell photoelectrons is essential for revealing the chemical properties of specimen subsurfaces or buried interfaces, owing to long inelastic mean free path of the high kinetic energy photoelectrons. The most significant result in our design is the new combined electric and magnetic field objective lens in which the magnetic field penetrates up to the sample surface. This allows the measurement with high spatial resolution of both low intensity images of inner-shell photoelectrons with high kinetic energy and high intensity images of secondary electrons. By using the sample bias scan method, we can easily change the focus condition of the objective lens in order to allow the energy filtered imaging with photoelectrons having the kinetic energy in a wide range (1-10 000 eV). By the combination of high brilliant SR x-rays, the new objective lens, and sample bias method, our XPEEM can successfully obtain the microarea x-ray photoelectron spectra and energy filtered XPEEM images of inner-shell photoelectrons, such as Si 1s, without any surface cleaning procedure. The energy filtered XPEEM image using photoelectrons from deep inner shells, Si 1s, was obtained for the first time

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  12. X-rays diagnostics of the hot electron energy distribution in the intense laser interaction with metal targets

    Science.gov (United States)

    Kostenko, O. F.; Andreev, N. E.; Rosmej, O. N.

    2018-03-01

    A two-temperature hot electron energy distribution has been revealed by modeling of bremsstrahlung emission, measured by the radiation attenuation and half-shade methods, and Kα emission from a massive silver cylinder irradiated by a subpicosecond s-polarized laser pulse with a peak intensity of about 2 × 1019 W/cm2. To deduce parameters of the hot electron spectrum, we have developed semi-analytical models of generation and measurements of the x-rays. The models are based on analytical expressions and tabulated data on electron stopping power as well as cross-sections of generation and absorption of the x-rays. The Kα emission from thin silver foils deposited on low-Z substrates, both conducting and nonconducting, has been used to verify the developed models and obtained hot electron spectrum. The obtained temperatures of the colder and hotter electron components are in agreement with the values predicted by kinetic simulations of the cone-guided approach to fast ignition [Chrisman et al., Phys. Plasmas 15, 056309 (2008)]. The temperature of the low-energy component of the accelerated electron spectrum is well below the ponderomotive scaling and Beg's law. We have obtained relatively low conversion efficiency of laser energy into the energy of hot electrons propagating through the solid target of about 2%. It is demonstrated that the assumption about a single-temperature hot electron energy distribution with the slope temperature described by the ponderomotive scaling relationship, without detailed analysis of the hot electron spectrum, can lead to strong overestimation of the laser-to-electron energy-conversion efficiency, in particular, the conversion efficiency of laser energy into the high-temperature component of the hot electron distribution.

  13. Influence of multiple scattering of a relativistic electron in a periodic layered medium on coherent X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V.; Kos’kova, T. V.; Noskov, A. V., E-mail: noskovbupk@mail.ru [Belgorod State National Research University (Russian Federation)

    2016-01-15

    A dynamic theory of coherent X-ray radiation generated in a periodic layered medium by a relativistic electron multiply scattered by target atoms has been developed. The expressions describing the spectral–angular characteristics of parametric X-ray radiation and diffracted transition radiation are derived. Numerical calculations based on the derived expressions have been performed.

  14. Development of an X-ray installation for the study of secondary electrons: preliminary measurements and calculations

    International Nuclear Information System (INIS)

    Baguena, A.; Shaw, M.; Williart, A.; Baguena, A.; Garcia, G.

    2006-01-01

    We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)

  15. Development of an X-ray installation for the study of secondary electrons: preliminary measurements and calculations

    Energy Technology Data Exchange (ETDEWEB)

    Baguena, A.; Shaw, M.; Williart, A. [Universidad Nacional de Educacion a Distancia, Dpto. Fisica de los Materiales, Madrid (Spain); Baguena, A. [Consejo de Seguridad Nuclear, Madrid (Spain); Garcia, G. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2006-07-01

    We describe the calculations and preliminary measures made for the installation of a X-ray generator tube. This device is going to be used for the secondary electron production from photonic primary radiation of up to 125 keV. With this experimental system, we will study the energetic and space distribution of produced secondary electrons by obtaining its spectrum of energies and its angular distribution. This method of measurement is going to be applied in different targets of radiological, environmental and biological interest. Calculations in the present article include: theoretical yield of X-rays production of the designed equipment, necessary shielding for the radiological safety of the installation staff, and an estimated dose due to their use. Characteristics of the installation and the equipment are described with this purpose. (author)

  16. Correlated microradiography, X-ray microbeam diffraction and electron probe microanalysis of calcifications in an odontoma

    International Nuclear Information System (INIS)

    Aoba, T.; Yoshioka, C.; Yagi, T.

    1980-01-01

    Using microradiography, X-ray microbeam diffraction and electron probe microanalysis, a correlated morphologic and crystallographic study was performed on dysplastic enamel in a compound odontoma. The tumor was found in the lateral incisor-canine region of the left mandible of a 36-year-old woman. A conspicuous feature was the presence of hypomineralized areas, which were situated in the proximity of enamel surface and distinctly demarcated from the adjacent enamel. X-ray microbeam diffraction and electron microanalysis showed that these lesions have a lower crystallinity and a higher concentration of magnesium as compared with the adjacent enamel. In addition, the present study revealed the presence of two other types of calcifications: 1) calcified structures within the fissure or on the enamel surface, which include lacunae of varying size and which resemble a form of coronal cementum, and 2) spherical calcifications which may be an epithelial product. (author)

  17. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    Science.gov (United States)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  18. Electron bunch diagnostics for laser-plasma accelerators, from THz to X-rays

    International Nuclear Information System (INIS)

    Plateau, G.

    2011-10-01

    This thesis presents a series of single-shot non-intrusive diagnostics of key attributes of electron bunches produced by a laser-plasma accelerator (LPA). Three injection mechanisms of the LPA are characterized: channeled and self-guided self-injection, plasma down-ramp injection, and two-beam colliding pulse injection. New diagnostic techniques are successfully demonstrated: up to 8 times higher sensitivity wavefront sensor-based plasma density measurements, strong spatio-temporal coupling of the focused THz pulse is demonstrated using the temporal electric-field cross-correlation (TEX) of a long chirped probe with a short probe and confirms the two-component structure of the bunch observed by electron spectrometry, and normalized transverse emittances as low as 0.1 mm mrad are demonstrated for 0.5 GeV-class beams produced in a capillary-guided LPA by characterizing the betatron radiation emitted by the electrons inside the plasma using a new single-shot X-ray spectroscopy technique. (author)

  19. [Use of internet and electronic resources among Spanish intensivist physicians. First national survey].

    Science.gov (United States)

    Gómez-Tello, V; Latour-Pérez, J; Añón Elizalde, J M; Palencia-Herrejón, E; Díaz-Alersi, R; De Lucas-García, N

    2006-01-01

    Estimate knowledge and use habits of different electronic resources in a sample of Spanish intensivists: Internet, E-mail, distribution lists, and use of portable electronic devices. Self-applied questionnaire. A 50-question questionnaire was distributed among Spanish intensivists through the hospital marketing delegates of a pharmaceutical company and of electronic forums. A total of 682 questionnaires were analyzed (participation: 74%). Ninety six percent of those surveyed used Internet individually: 67% admitted training gap. Internet was the second source of clinical consultations most used (61%), slightly behind consultation to colleagues (65%). The pages consulted most were bibliographic databases (65%) and electronic professional journals (63%), with limited use of Evidence Based Medicine pages (19%). Ninety percent of those surveyed used e-mail regularly in the practice of their profession, although 25% admitted that were not aware of its possibilities. The use of E-mail decreased significantly with increase in age. A total of 62% of the intensivists used distribution lists. Of the rest, 42% were not aware of its existence and 32% admitted they had insufficient training to handle them. Twenty percent of those surveyed had portable electronic devices and 64% considered it useful, basically due to its rapid consultation at bedside. Female gender was a negative predictive factor of its use (OR 0.35; 95% CI 0.2-0.63; p=0.0002). A large majority of the Spanish intensivists use Internet and E-mail. E-mail lists and use of portable devices are still underused resources. There are important gaps in training and infrequent use of essential pages. There are specific groups that require directed educational policies.

  20. Model of e-learning with electronic educational resources of new generation

    OpenAIRE

    A. V. Loban; D. A. Lovtsov

    2017-01-01

    Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with elec...

  1. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Noritake, E-mail: isomura@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Soejima, Narumasa; Iwasaki, Shiro [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Nomoto, Toyokazu; Murai, Takaaki [Aichi Synchrotron Radiation Center (AichiSR), 250-3 Minamiyamaguchi-cho, Seto, Aichi 489-0965 (Japan); Kimoto, Yasuji [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si{sub 3}N{sub 4}/SiO{sub 2}/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si{sub 3}N{sub 4}/SiO{sub 2}/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  2. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    International Nuclear Information System (INIS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-01-01

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si_3N_4/SiO_2/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si_3N_4/SiO_2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  3. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers

    Directory of Open Access Journals (Sweden)

    R. A. Kirian

    2015-07-01

    Full Text Available A major challenge in high-resolution x-ray free-electron laser-based coherent diffractive imaging is the development of aerosol injectors that can efficiently deliver particles to the peak intensity of the focused X-ray beam. Here, we consider the use of a simple convergent-orifice nozzle for producing tightly focused beams of particles. Through optical imaging we show that 0.5 μm particles can be focused to a full-width at half maximum diameter of 4.2 μm, and we demonstrate the use of such a nozzle for injecting viruses into a micro-focused soft-X-ray FEL beam.

  4. Influence of changes in the valence electronic configuration on the structure of L-X-ray spectra of molybdenum

    International Nuclear Information System (INIS)

    Polasik, M; Koziol, K; Slabkowska, K; Czarnota, M; Pajek, M

    2009-01-01

    Extensive multiconfiguration Dirac-Fock (MCDF) calculations with the inclusion of the transverse (Breit) interaction and QED corrections have been carried out on molybdenum to explain the dependence of the structure of Lα 1,2 and Lβ 1 lines on the changes in configurations of the valence electrons belonging to two different configuration types: three open-shell 4d 6-r 5s r (r = 2,1,0) configurations and one closed-shell 4d 4 3/2 5s 2 configuration. It has been found that the MCDF predictions for open-shell valence configurations (4d 4 5s 2 , 4d 5 5s 1 , 4d 6 5s 0 ) much better reproduce observed structure of Lα 1,2 lines in X-ray spectra of molybdenum than closed-shell 4d 4 3/2 5s 2 valence configuration. The influence of changes in the valence electronic configuration on the structure of L-X-ray spectra of molybdenum is noticeable. Moreover, the observation of the shapes of L-X-ray spectra seems to be very good method to investigate the changes of the valence electronic configuration caused by the chemical environment.

  5. From electron microscopy to X-ray crystallography: molecular-replacement case studies

    International Nuclear Information System (INIS)

    Xiong, Yong

    2008-01-01

    Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement using various standard MR packages such as AMoRe, MOLREP and Phaser. Multi-component molecular complexes are increasingly being tackled by structural biology, bringing X-ray crystallography into the purview of electron-microscopy (EM) studies. X-ray crystallography can utilize a low-resolution EM map for structure determination followed by phase extension to high resolution. Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement (MR) using various standard MR packages such as AMoRe, MOLREP and Phaser. The results demonstrate that EM maps are viable models for molecular replacement. Possible difficulties in data analysis, such as the effects of the EM magnification error, and the effect of MR positional/rotational errors on phase extension are discussed

  6. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser.

    Science.gov (United States)

    Ekeberg, Tomas; Svenda, Martin; Abergel, Chantal; Maia, Filipe R N C; Seltzer, Virginie; Claverie, Jean-Michel; Hantke, Max; Jönsson, Olof; Nettelblad, Carl; van der Schot, Gijs; Liang, Mengning; DePonte, Daniel P; Barty, Anton; Seibert, M Marvin; Iwan, Bianca; Andersson, Inger; Loh, N Duane; Martin, Andrew V; Chapman, Henry; Bostedt, Christoph; Bozek, John D; Ferguson, Ken R; Krzywinski, Jacek; Epp, Sascha W; Rolles, Daniel; Rudenko, Artem; Hartmann, Robert; Kimmel, Nils; Hajdu, Janos

    2015-03-06

    We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.

  7. Atomic imaging by x-ray-fluorescence holography and electron-emission holography: A comparative theoretical study

    International Nuclear Information System (INIS)

    Len, P.M.; Thevuthasan, S.; Fadley, C.S.; Kaduwela, A.P.; Van Hove, M.A.

    1994-01-01

    We consider from a theoretical viewpoint the direct imaging of atoms at and near the surfaces of solids by both x-ray-fluorescence holography (XFH) and electron-emission holography (EEH). The more ideal nature of x-ray scattering makes XFH images superior to those in single-energy EEH. The overlap of real and twin features for pairs of atoms at ±a can cause their XFH or EEH atomic images to cancel for certain combinations of wave vector and |a|. The relative merits of XFH and EEH for structure studies are considered

  8. Impact of Knowledge Resources Linked to an Electronic Health Record on Frequency of Unnecessary Tests and Treatments

    Science.gov (United States)

    Goodman, Kenneth; Grad, Roland; Pluye, Pierre; Nowacki, Amy; Hickner, John

    2012-01-01

    Introduction: Electronic knowledge resources have the potential to rapidly provide answers to clinicians' questions. We sought to determine clinicians' reasons for searching these resources, the rate of finding relevant information, and the perceived clinical impact of the information they retrieved. Methods: We asked general internists, family…

  9. Correlation of electron beams and hard x-ray emissions in ISTTOK Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L.; Malinowski, K.; Sadowski, M.J.; Zebrowski, J.; Rabinski, M.; Jakubowski, M.J. [National Centre for Nuclear Research (NCBJ), Otwock (Poland); Plyusnin, V.V.; Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Lisboa (Portugal)

    2013-11-15

    The paper reports on experimental studies of electron beams in the ISTTOK tokamak, those were performed by means of an improved four-channel detector. The Cherenkov-type detector measuring head was equipped with four radiators made of two types of alumina-nitrate (AlN) poly-crystals: machinable and translucent ones, both of 10 mm in diameter and 2.5 mm in thickness. The movable support that enabled the whole detectors to be placed inside the tokamak vacuum chamber, at chosen positions along the ISTTOK minor radius. Since the electron energy distribution is one of the most important characteristics of tokamak plasmas, the main aim of the study was to perform estimations of an energy spectrum of the recorded electrons. For this purpose the radiators were coated with molybdenum (Mo) layers of different thickness. The technique based on the use of Cherenkov-type detectors enabled the detection of fast electrons (of energy above 66 keV) and determination of their spatial and temporal characteristics in the ISTTOK experiment. Measurements of hard X-rays (HXR), which were emitted during ISTTOK discharges, have also been performed. Particular attention was paid to the correlation measurements of HXR pulses with run-away electron beams. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Electronic Document Management: A Human Resource Management Case Study

    Directory of Open Access Journals (Sweden)

    Thomas Groenewald

    2004-11-01

    Full Text Available This case study serve as exemplar regarding what can go wrong with the implementation of an electronic document management system. Knowledge agility and knowledge as capital, is outlined against the backdrop of the information society and knowledge economy. The importance of electronic document management and control is sketched thereafter. The literature review is concluded with the impact of human resource management on knowledge agility, which includes references to the learning organisation and complexity theory. The intervention methodology, comprising three phases, follows next. The results of the three phases are presented thereafter. Partial success has been achieved with improving the human efficacy of electronic document management, however the client opted to discontinue the system in use. Opsomming Die gevalle studie dien as voorbeeld van wat kan verkeerd loop met die implementering van ’n elektroniese dokumentbestuur sisteem. Teen die agtergrond van die inligtingsgemeenskap en kennishuishouding word kennissoepelheid en kennis as kapitaal bespreek. Die literatuurstudie word afgesluit met die inpak van menslikehulpbronbestuur op kennissoepelheid, wat ook die verwysings na die leerorganisasie en kompleksietydsteorie insluit. Die metodologie van die intervensie, wat uit drie fases bestaan, volg daarna. Die resultate van die drie fases word vervolgens aangebied. Slegs gedeelte welslae is behaal met die verbetering van die menslike doeltreffendheid ten opsigte van elektroniese dokumentbestuur. Die klient besluit egter om nie voort te gaan om die huidige sisteem te gebruik nie.

  11. Measurements of transient electron density distributions by femtosecond X-ray diffraction; Messungen transienter Elektronendichteverteilungen durch Femtosekunden-Roentgenbeugung

    Energy Technology Data Exchange (ETDEWEB)

    Freyer, Benjamin

    2013-05-02

    This thesis concerns measurements of transient charge density maps by femtosecond X-ray diffraction. Different X-ray diffraction methods will be considered, particularly with regard to their application in femtosecond X-ray diffraction. The rotation method is commonly used in stationary X-ray diffraction. In the work in hand an X-ray diffraction experiment is demonstrated, which combines the method with ultrafast X-ray pulses. This experiment is the first implementation which makes use of the rotation method to map transient intensities of a multitude of Bragg reflections. As a prototype material Bismuth is used, which previously was studied frequently by femtosecond X-ray diffraction by measuring Bragg reflections successively. The experimental results of the present work are compared with the literature data. In the second part a powder-diffraction experiment will be presented, which is used to study the dynamics of the electron-density distribution on ultrafast time scales. The experiment investigates a transition metal complex after photoexcitation of the metal to ligand charge transfer state. Besides expected results, i. e. the change of the bond length between the metal and the ligand and the transfer of electronic charge from the metal to the ligand, a strong contribution of the anion to the charge transfer was found. Furthermore, the charge transfer has predominantly a cooperative character. That is, the excitation of a single complex causes an alteration of the charge density of several neighboring units. The results show that more than 30 transition-metal complexes and 60 anions contribute to the charge transfer. This collective response is a consequence of the strong coulomb interactions of the densely packed ions.

  12. The detection of hard x-rays (10-140 KeV) by channel plate electron multipliers

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1976-12-01

    Results are presented indicating that hard X-rays in the energy range 10 to 50 keV can be detected with good efficiency (5 to 10%) in channel plate electron multipliers (CPEM). From 50 keV to 140 keV the detection efficiency lies in the range 1 to 2%. A simple physical model is developed which indicates that not only can good detection efficiency be obtained but that very good X-ray imaging is possible. The model predicts that with further development, a wideband, hard X-ray detector can be realised with a detection efficiency in the range 5 to 20% and spatial response better than 10 lp/mm in the energy range 10 to 140 keV. (author)

  13. X-ray electron density investigation of chemical bonding in van der Waals materials

    Science.gov (United States)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  14. Radiative electron rearrangement and polarization in target K x-ray spectra

    International Nuclear Information System (INIS)

    Jamison, K.A.

    1978-01-01

    Two topics in the atomic physics of ion-atom collisions are studied. The first is an investigation of a free-atom decay process that is shown to be a two-electron one-photon decay. This two-electron decay requires an initial state with multiple inner-shell vacancies that has a high probability of creation in ion-atom collisions. Because this decay promotes one electron to a higher shell while allowing the other to fall to a lower shell, it is referred to as radiative electron rearrangement (RER). The investigation of this process includes the experimental study of the x-ray spectra region approx. 150 eV below the characteristic Kα 1 2 target radiation in third period elements when bombarded by various ion beams in the energy range 1 to 2 MeV/amu. Theoretical calculations of the transition energies, line strengths, and line widths are performed to verify the origin of the RER lines. The second topic of consideration is the study of the polarization of Kα satellite radiation from targets of Al and Si. It is shown that the polarization, which is observed experimentally with a curved-crystal polarimeter, is due to the nonstatistical population of the magnetic substates created in specific ion-atom collisions. Further, the polarization of the RER lines is studied. The connection between the polarization of the normal Kα satellite radiation and the polarization of the RER lines adds final proof to their origin as two-electron one-photon transitions

  15. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  16. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu, E-mail: aykutlu@unam.bilkent.edu.tr [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  17. Challenges in the implementation of an electronic surveillance system in a resource-limited setting: Alerta, in Peru

    Directory of Open Access Journals (Sweden)

    Soto Giselle

    2008-11-01

    Full Text Available Abstract Background Infectious disease surveillance is a primary public health function in resource-limited settings. In 2003, an electronic disease surveillance system (Alerta was established in the Peruvian Navy with support from the U.S. Naval Medical Research Center Detachment (NMRCD. Many challenges arose during the implementation process, and a variety of solutions were applied. The purpose of this paper is to identify and discuss these issues. Methods This is a retrospective description of the Alerta implementation. After a thoughtful evaluation according to the Centers for Disease Control and Prevention (CDC guidelines, the main challenges to implementation were identified and solutions were devised in the context of a resource-limited setting, Peru. Results After four years of operation, we have identified a number of challenges in implementing and operating this electronic disease surveillance system. These can be divided into the following categories: (1 issues with personnel and stakeholders; (2 issues with resources in a developing setting; (3 issues with processes involved in the collection of data and operation of the system; and (4 issues with organization at the central hub. Some of the challenges are unique to resource-limited settings, but many are applicable for any surveillance system. For each of these challenges, we developed feasible solutions that are discussed. Conclusion There are many challenges to overcome when implementing an electronic disease surveillance system, not only related to technology issues. A comprehensive approach is required for success, including: technical support, personnel management, effective training, and cultural sensitivity in order to assure the effective deployment of an electronic disease surveillance system.

  18. Gamma-ray and electron spectroscopy in nuclear physics

    International Nuclear Information System (INIS)

    Ejiri, H.

    1989-01-01

    This book is devoted to the role of gamma-ray and conversion-electron (γ-e) spectroscopy in developing our understanding of nuclear structure and nuclear reaction-mechanisms. The book was written because of the spectacular development in the last decade of new γ-e spectroscopic methods, and their application to various kinds of nuclear reactions and the need to present γ-e spectroscopy from the point of view of nuclear structure as well as of reaction mechanism. The importance of γ-e spectroscopy is due to the simplicity and familiarity of the electromagnetic interaction, which gives accurate values for many nuclear quantities and reveals special nuclear properties. γ-e spectroscopy is applied to investigate static as well as dynamic nuclear properties over a wide range of excitation energies from the ground state to states of extreme temperatures and angular momentum, including some new degrees of freedom. (author)

  19. Electronic structure and X-ray spectroscopic properties of YbNi_2P_2

    International Nuclear Information System (INIS)

    Shcherba, I.D.; Bekenov, L.V.; Antonov, V.N.; Noga, H.; Uskokovic, D.; Zhak, O.; Kovalska, M.V.

    2016-01-01

    Highlights: • We present new experimental and theoretical data for YbNi_2P_2. • The presence of divalent and trivalent Yb ion found in YbNi_2P_2. • The calculation show good agreement with the experimental measurements. - Abstract: X-ray absorption spectrum at the Yb L_3 edge and X-ray emission spectra of Ni and P at the K and L_2_,_3 edges have been studied experimentally and theoretically in the mixed valent compound YbNi_2P_2 with ThCr_2Si_2 type crystal structure. The electronic structure of YbNi_2P_2 is investigated using the fully relativistic Dirac linear muffin-tin orbital (LMTO) band-structure method. The effect of the spin–orbit (SO) interaction and Coulomb repulsion U on the electronic structure of YbNi_2P_2 is examined in the frame of the LSDA + SO + U method. The core-hole effect in the final states as well as the effect of the electric quadrupole E_2 transitions have been investigated. A good agreement between the theory and the experiment was found. Both the trivalent and the divalent Yb ions in YbNi_2P_2 are reflected in the experimentally measured Yb L_3 X-ray absorption spectrum simultaneously. We found that the best agreement between the experimental spectrum and sum of the theoretically calculated Yb"2"+ and Yb"3"+ spectra is achieved with 73% ytterbium ions in 2+ state and 27% ions in 3+ state.

  20. National Uranium Resource Evaluation. General procedure for calibration and reduction of aerial gamma-ray measurements: specification BFEC 1250-B

    International Nuclear Information System (INIS)

    Purvance, D.; Novak, E.

    1983-12-01

    The information contained in this specification was acquired over the course of the US Department of Energy (DOE) National Uranium Resource Evaluation (NURE) program during the period 1974 through 1982. NURE was a program of the DOE Grand Junction Area Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Bendix Field Engineering Corporation (BFEC) has been the operating contractor for the DOE Grand Junction facility. The requirements stipulated herein had been incorporated as contractual specifications for the various subcontractors engaged in the aerial gamma-ray surveys, which were a major aspect of the NURE program. Although this phase of NURE activities has been completed, there exists valuable knowledge gained from these years of experience in the calibration of gamma-ray spectrometer systems and in the reduction of calibration data. Specification BFEC 1250-B is being open-filed by the US Department of Energy at this time to make this knowledge available to those desiring to apply gamma-ray spectrometry to other geophysical problems