WorldWideScience

Sample records for rayleigh-schroedinger perturbation theory

  1. Gauge invariance of the Rayleigh--Schroedinger time-independent perturbation theory

    International Nuclear Information System (INIS)

    Yang, K.H.

    1977-08-01

    It is shown that the Rayleigh-Schroedinger time-independent perturbation theory is gauge invariant when the operator concerned is the particle's instantaneous energy operator H/sub B/ = (1/2m)[vector p - (e/c) vector A] 2 + eV 0 . More explicitly, it is shown that the energy perturbation corrections of each individual order of every state is gauge invariant. When the vector potential is curlless, the energy corrections of all orders are shown to vanish identically regardless of the explicit form of the vector potential. The relation between causality and gauge invariance is investigated. It is shown that gauge invariance guarantees conformity with causality and violation of gauge invariance implies violation of causality

  2. The Schroedinger equation and canonical perturbation theory

    International Nuclear Information System (INIS)

    Graffi, S.; Paul, T.

    1987-01-01

    Let T 0 (ℎ,ω)+εV be the Schroedinger operator corresponding to the classical Hamiltonian H 0 (ω)+εV, where H 0 (ω) is the d-dimensional harmonic oscillator with non-resonant frequencies ω=(ω 1 ..., ω d ) and the potential V(q 1 , ..., q d ) is an entire function of order (d+l) -1 . We prove that the algorithm of classical, canonical perturbation theory can be applied to the Schroedinger equation in the Bargmann representation. As a consequence, each term of the Rayleigh-Schroedinger series near any eigenvalue of T 0 (ℎ,ω) admits a convergent expansion in powers of ℎ of initial point the corresponding term of the classical Birkhoff expansion. Moreover if V is an even polynomial, the above result and the KAM theorem show that all eigenvalues λ n (ℎ,ε) of T 0 +εV such that nℎ coincides with a KAM torus are given, up to order ε ∞ , by a quantization formula which reduces to the Bohr-Sommerfeld one up to first order terms in ℎ. (orig.)

  3. Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions

    Science.gov (United States)

    Hirschfelder, J. O.; Certain, P. R.

    1974-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.

  4. Symbolic derivation of high-order Rayleigh-Schroedinger perturbation energies using computer algebra: Application to vibrational-rotational analysis of diatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, John M. [Kansas State Univ., Manhattan, KS (United States). Dept. of Chemistry

    1997-01-01

    Rayleigh-Schroedinger perturbation theory is an effective and popular tool for describing low-lying vibrational and rotational states of molecules. This method, in conjunction with ab initio techniques for computation of electronic potential energy surfaces, can be used to calculate first-principles molecular vibrational-rotational energies to successive orders of approximation. Because of mathematical complexities, however, such perturbation calculations are rarely extended beyond the second order of approximation, although recent work by Herbert has provided a formula for the nth-order energy correction. This report extends that work and furnishes the remaining theoretical details (including a general formula for the Rayleigh-Schroedinger expansion coefficients) necessary for calculation of energy corrections to arbitrary order. The commercial computer algebra software Mathematica is employed to perform the prohibitively tedious symbolic manipulations necessary for derivation of generalized energy formulae in terms of universal constants, molecular constants, and quantum numbers. As a pedagogical example, a Hamiltonian operator tailored specifically to diatomic molecules is derived, and the perturbation formulae obtained from this Hamiltonian are evaluated for a number of such molecules. This work provides a foundation for future analyses of polyatomic molecules, since it demonstrates that arbitrary-order perturbation theory can successfully be applied with the aid of commercially available computer algebra software.

  5. Numerical stochastic perturbation theory in the Schroedinger functional

    International Nuclear Information System (INIS)

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk; Dalla Brida, Mattia; Sint, Stefan; Deutsches Elektronen-Synchrotron

    2013-11-01

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  6. Numerical stochastic perturbation theory in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-11-15

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  7. A global numerical solution of the radial Schroedinger equation by second-order perturbation theory

    International Nuclear Information System (INIS)

    Adam, G.

    1979-01-01

    A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)

  8. Photoionization cross sections and Auger rates calculated by many-body perturbation theory

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1976-01-01

    Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates

  9. Generalized Euler transformation for summing strongly divergent Rayleigh-Schroedinger perturbation series: the Zeeman effect

    International Nuclear Information System (INIS)

    Silverman, J.N.

    1983-01-01

    A generalized Euler transformation (GET) is introduced which provides a powerful alternative method of accurately summing strongly divergent Rayleigh-Schroedinger (RS) perturbation series when other summability methods fail or are difficult to apply. The GET is simple to implement and, unlike a number of other summation procedures, requires no a priori knowledge of the analytic properties of the function underlying the RS series. Application of the GET to the difficult problem of the RS weak-field ground-state eigenvalue series of the hydrogen atom in a magnetic field (quadratic Zeeman effect) yields sums of good accuracy over a very wide range of field strengths up to the most intense fields of 10 14 G. The GET results are compared with those obtained by other summing methods

  10. Inverting the Rayleigh-Schroedinger perturbation series: Application to atomic stabilization by intense light

    International Nuclear Information System (INIS)

    Baik, M.; Pont, M.; Shakeshaft, R.

    1995-01-01

    We develop a method for calculating the (quasi)energy eigenvalue E(F) of a hydrogen atom in a nonperturbative ac field of strength F starting from a knowledge of the coefficients E (2m) of the Rayleigh-Schroedinger perturbation series E(F)=tsum m=0 M E (2m) F 2m . We first use the coefficients E (2m) (the unperturbed energy is E (0) ) to construct the inverse series F 2 (E)=tsum m=1 M F (m) (E-E (0) ) m . We resum the latter series using the Pade method, and solve the implicit equation F 2 (E)=bar F 2 for E(bar F). The reconstructed function E(F) has the singularity structure appropriate to the true E(F). We are able to obtain good results for the lifetime of a hydrogen atom in a high-frequency field up to very high intensities, well into the (highly nonperturbative) stabilization regime

  11. Some applications of perturbation theory to numerical integration methods for the Schroedinger equation

    International Nuclear Information System (INIS)

    Killingbeck, J.

    1979-01-01

    By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)

  12. Exact perturbation theory of multiphoton processes at high intensities. [Schroedinger equation, perturbation theory, matrix

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik

    1976-06-11

    In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.

  13. Automated lattice perturbation theory in the Schroedinger functional. Implementation and applications in HQET

    International Nuclear Information System (INIS)

    Hesse, Dirk

    2012-01-01

    The author developed the pastor software package for automated lattice perturbation theory calculations in the Schroedinger functional scheme. The pastor code consists of two building blocks, dealing with the generation of Feynman rules and Feynman diagrams respectively. Accepting a rather generic class of lattice gauge and fermion actions, passed to the code in a symbolic form as input, a low level part of pastor will generate Feynman rules to an arbitrary order in the bare coupling with a trivial or an Abelian background field. The second, high level part of pastor is a code generator whose output relies on the vertex generator. It writes programs that evaluate Feynman diagrams for a class of Schroedinger functional observables up to one loop order automatically, the relevant O(a) improvement terms are taken into account. We will describe the algorithms used for implementation of both parts of the code in detail, and provide cross checks with perturbative and non-perturbative data to demonstrate the correctness of our code. We demonstrate the usefulness of the pastor package through various applications taken from the matching process of heavy quark effective theory with quantum chromodynamics. We have e.g. completed a one loop analysis for new candidates for matching observables timely and with rather small effort, highlighting two advantages of an automated software setup. The results that were obtained so far will be useful as a guideline for further non-perturbative studies.

  14. Automated lattice perturbation theory in the Schroedinger functional. Implementation and applications in HQET

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Dirk

    2012-07-13

    The author developed the pastor software package for automated lattice perturbation theory calculations in the Schroedinger functional scheme. The pastor code consists of two building blocks, dealing with the generation of Feynman rules and Feynman diagrams respectively. Accepting a rather generic class of lattice gauge and fermion actions, passed to the code in a symbolic form as input, a low level part of pastor will generate Feynman rules to an arbitrary order in the bare coupling with a trivial or an Abelian background field. The second, high level part of pastor is a code generator whose output relies on the vertex generator. It writes programs that evaluate Feynman diagrams for a class of Schroedinger functional observables up to one loop order automatically, the relevant O(a) improvement terms are taken into account. We will describe the algorithms used for implementation of both parts of the code in detail, and provide cross checks with perturbative and non-perturbative data to demonstrate the correctness of our code. We demonstrate the usefulness of the pastor package through various applications taken from the matching process of heavy quark effective theory with quantum chromodynamics. We have e.g. completed a one loop analysis for new candidates for matching observables timely and with rather small effort, highlighting two advantages of an automated software setup. The results that were obtained so far will be useful as a guideline for further non-perturbative studies.

  15. The Schroedinger equation as a singular perturbation problem

    International Nuclear Information System (INIS)

    Jager, E.M. de; Kuepper, T.

    1978-01-01

    Comparisons are made of the eigenvalues and the corresponding eigenfunctions of the eigenvalue problem connected with the one dimensional Schroedinger equation in Hilbert space. The difference of the eigenvalues is estimated by applying Weyl's monotonicity principle and the minimum maximum principle. The difference of the eigenfunctions is estimated in L 2 norm and in maximum norm obtained by using simple tools from operator theory in Hilbert spaces. An application concerning perturbations of the Planck ideal linear oscillator is given. (author)

  16. Level density approach to perturbation theory and inverse-energy-weighted sum-rules

    International Nuclear Information System (INIS)

    Halemane, T.R.

    1983-01-01

    The terms in the familiar Rayleigh-Schroedinger perturbation series involve eigenvalues and eigenfunctions of the unperturbed operator. A level density formalism, that does not involve computation of eigenvalues and eigenfunctions, is given here for the perturbation series. In the CLT (central limit theorem) limit the expressions take very simple linear forms. The evaluation is in terms of moments and traces of operators and operator products. 3 references

  17. The Hill-determinant perturbation theory with triangular propagators

    International Nuclear Information System (INIS)

    Znojil, M.

    1996-01-01

    A new version of the Rayleigh-Schroedinger perturbation prescription is proposed. Its main formal feature lies in an unusual choice of the model space and unperturbed H 0 and in a resulting lower-triangular matrix structure of its propagators. Within the framework of the so-called Hill-determinant method, an admissibility of any incompletely solvable zero-order Hamiltonian is achieved in this way. As a consequence, the range of practical applicability of our new perturbative formalism may be expected to incorporate many new phenomenological interactions with a strongly anharmonic character. 18 refs

  18. The relationship between the Johnson-Baranger time-dependent folded diagram expansion and the time-independent methods of perturbation theory

    International Nuclear Information System (INIS)

    Passos, E.M.J. de

    1976-01-01

    The relationship between the Johnson-Baranger time-dependent folded diagram (JBFD) expansion, and the time independent methods of perturbation theory, are investigated. In the nondegenerate case, the JBFD expansion and the Rayleigh-Schroedinger perturbation expansion, for the ground state energy, are identical. On the other hand, in the degenerate case, for the nonhermitian effective interaction considered, the JBFD expansion, of the effective interaction, is equal to the perturbative expansion of the effective interaction of the nonhermitian eigenvalue problem of Bloch and Brandow-Des Cloizeaux. For the two hermitian effective interactions, the JBFD expansion of the effective interaction differs from the perturbation expansion of the effective interaction of the hermitian eigenvalue problem of Des Cloizeaux [pt

  19. Perturbation theory of intermolecular interactions: What is the problem, are there solutions?

    International Nuclear Information System (INIS)

    Adams, W.H.

    1990-01-01

    We review the nature of the problem in the framework of Rayleigh-Schroedinger perturbation theory (the polarization approximation) considering explicitly two examples: the interaction of two hydrogen atoms and the interaction of Li with H. We show, in agreement with the work of Claverie and of Morgan and Simon, that the LiH problem is dramatically different from the H 2 problem. In particular, the physical states of LiH are higher in energy than an infinite number of discrete, unphysical states and they are buried in a continuum of unbound, unphysical states, which starts well below the lowest physical state. Clavrie has shown that the perturbation expansion, under these circumstances, is likely to converge to an unphysical state of lower energy than the physical ground state, if it converges at all. We review, also, the application of two classes of exchange perturbation theory to LiH and larger systems. We show that the spectra of three Eisenschitz-London (EL) class, exchange perturbation theories have no continuum of unphysical states overlaying the physical states and no discrete, unphysical states below the lowest physical state. In contrast, the spectra of two Hirschfelder-Silbey class theories differ hardly at all from that found with the polarization approximation. Not one of the EL class of perturbation theories, however, eliminates all of the discrete unphysical states

  20. The chirally rotated Schroedinger functional. Theoretical expectations and perturbative tests

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia

    2016-03-01

    The chirally rotated Schroedinger functional (χSF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schroedinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O(a) improvement to be operational in the χSF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the χSF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to their standard SF counterparts. We discuss renormalization and O(a) improvement and then use this set-up to formulate the theoretical expectations which follow from universality. Expanding the correlation functions to one-loop order of perturbation theory we then perform a number of non-trivial checks. In the process we obtain the action counterterm coefficients to one-loop order and reproduce some known perturbative results for renormalization constants of fermion bilinears. By confirming the theoretical expectations, this perturbative study lends further support to the soundness of the χSF framework and prepares the ground for non-perturbative applications.

  1. Schroedinger operators with singular perturbation potentials

    International Nuclear Information System (INIS)

    Harrell, E.M. II.

    1976-01-01

    This is a perturbative analysis of the eigenvalues and eigenfunctions of Schroedinger operators of the form -Δ + A + lambda V, defined on the Hilbert space L 2 (R/sup n/). A is a potential function (a smooth, real multiplication operator), and V is a ''spikelike'' perturbation, i.e., a perturbative potential function which diverges at some finite point. Lambda is a small real or complex parameter. The emphasis is on one-dimensional problems, and in particular the typical example is the ''spiked harmonic oscillator'' Hamiltonian, -d 2 /dx 2 + x 2 + lambda x/sup -α/, where α is a positive constant. An earlier study by L. Detwiler and J. R. Klauder [Phys. Rev. D 11 (1975) 1436] indicated that the lowest-order corrections to the ground-state eigenvalue of the spiked harmonic oscillator with lambda greater than 0 were proportional to lambda ln lambda when α = 3, and to lambda/sup 1/(α-2) when α is greater than 3. These and analogous results for a large class of operators and arbitrary eigenvalues are proved. Explicit constants in a modified perturbation series with a complicated dependence on lambda are determined and exhibited. Higher-order corrections for real lambda and lowest-order corrections for complex lambda are also discussed. While the substance of the dissertation is mathematical, its main applications are to quantum physics. The immediate cause of interest in such problems was the use of their peculiar convergence properties by J. R. Klauder as models for the behavior of nonrenormalizable quantum field theories. However, the results of this study are likely to be of greater importance in chemical or nuclear physics, as positive spikelike perturbations represent repulsive core interactions for quantum mechanical particles. The modified perturbation series are a new calculation technique for this situation

  2. Perturbation expansions generated by an approximate propagator

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    Starting from a knowledge of an approximate propagator R at some trial energy guess E 0 , a new perturbative prescription for p-plet of bound states and of their energies is proposed. It generalizes the Rayleigh-Schroedinger (RS) degenerate perturbation theory to the nondiagonal operators R (eliminates a RS need of their diagnolisation) and defines an approximate Hamiltonian T by mere inversion. The deviation V of T from the exact Hamiltonian H is assumed small only after a substraction of a further auxiliary Hartree-Fock-like separable ''selfconsistent'' potential U of rank p. The convergence is illustrated numerically on the anharmonic oscillator example

  3. Analytic-continuation approach to the resummation of divergent series in Rayleigh-Schrödinger perturbation theory

    Science.gov (United States)

    Mihálka, Zsuzsanna É.; Surján, Péter R.

    2017-12-01

    The method of analytic continuation is applied to estimate eigenvalues of linear operators from finite order results of perturbation theory even in cases when the latter is divergent. Given a finite number of terms E(k ),k =1 ,2 ,⋯M resulting from a Rayleigh-Schrödinger perturbation calculation, scaling these numbers by μk (μ being the perturbation parameter) we form the sum E (μ ) =∑kμkE(k ) for small μ values for which the finite series is convergent to a certain numerical accuracy. Extrapolating the function E (μ ) to μ =1 yields an estimation of the exact solution of the problem. For divergent series, this procedure may serve as resummation tool provided the perturbation problem has a nonzero radius of convergence. As illustrations, we treat the anharmonic (quartic) oscillator and an example from the many-electron correlation problem.

  4. Perturbative approach to non-Markovian stochastic Schroedinger equations

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian stochastic Schroedinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two-level atom immersed in an environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensemble average state ρ red (t) approach the exact reduced state found via Imamog-barlu ' s enlarged system method [Phys. Rev. A 50, 3650 (1994)

  5. Schroedinger representation in quantum field theory

    International Nuclear Information System (INIS)

    Luescher, M.

    1985-01-01

    Until recently, the Schroedinger representation in quantum field theory had not received much attention, even more so because there were reasons to believe that in the presence of interactions it did not exist in a mathematically well-defined sense. When Symanzik set out to solve this problem, he was motivated by a special 2-dimensional case, the relativistic string model, in which the Schroedinger wave functionals are the primary objects of physical interest. Also, he knew that if it were possible to demonstrate the existence of the Schroedinger representation, the (then unproven) ultraviolet finiteness of the Casimir force in renormalizable quantum field theories would probably follow. (orig./HSI)

  6. Rational fraction representations of the energy: a generalised Rayleigh-Schroedinger perturbation theory

    International Nuclear Information System (INIS)

    Cohen, M.; Feldmann, T.

    1981-01-01

    The energy function of a perturbed quantum system is derived directly as a quotient of the form N(lambda)/D(lambda). The Taylor series coefficients of N(lambda) and D(lambda) are found to satisfy certain relations, but there remain many unspecified degrees of freedom which may be freely exploited. Certain choices of coefficients lead to well known Pade and lesser known Levin approximants, but the general formalism includes many other rational function forms. In particular, the present procedure allows information other than the Taylor series coefficients to be included naturally, and is shown to lead to low-order approximants of high accuracy. (author)

  7. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  8. On the Schroedinger representation of the Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Semmler, U.

    1987-04-01

    The theme of the present thesis is the Schroedinger representation of the Euclidean quantum field theory: We define the time development of the quantum field states as functional integral in a novel, mathematically precise way. In the following we discuss the consequences which result from this approach to the Euclidean quantum field theory. Chapter 1 introduces the theory of abstract Wiener spaces which is here proved as suitable mathematical tool for the treatment of the physical problems. In chapter 2 the diffusion theory is formulated in the framework of abstract Wiener spaces. In chapter 3 we define the field functional ψ 5 u, t 7 as functional integral, determine the functional differential equation which ψ satisfies (Schroedinger equation), and summarize the consequences resulting from this. Chapter 4 is dedicated to the attempt to determine the kernel of the time-development operator, by the knowledge of which the time development of each initial state is fixed. In chapter 5 the consequences of the theory presented in chapter 3 and 4 are discussed by means of simple examples. In chapter 6 the renormalization which results for the φ 4 potential from the definition of the functional integral in chapter 3 is calculated up to the first-order perturbation theory, and it is shown that the problems in the Symanzik renormalization procedure can be removed. (orig./HSI) [de

  9. Z-1 perturbation theory applied to the correlation energy problem of atoms

    International Nuclear Information System (INIS)

    Robinson, B.H.

    1975-01-01

    Rayleigh--Schroedinger Perturbation Theory is applied to obtain directly exact and explicit analytic formulas for the electron correlation energies of N electron systems in terms of their pairwise interactions through second order in Z -1 , where Z is the nucleus of the atom. It is demonstrated that the second order correlation energy may be expressed as exactly the sum of pairwise correlation energies. In the case of no zeroth order degeneracy, the zeroth and first order terms vanish. The expression for the pairwise energies is an infinite sum, all terms of which are of the same sign. There is no numerical differencing. In the case of zeroth order degeneracy it is shown that the above statement concerning the second order energy still holds, but the expressions are a bit more complicated. It is shown that they ''almost'' reduce to a much simpler form. Also, the computation of the first order correlation energy is considered

  10. Properties of some nonlinear Schroedinger equations motivated through information theory

    International Nuclear Information System (INIS)

    Yuan, Liew Ding; Parwani, Rajesh R

    2009-01-01

    We update our understanding of nonlinear Schroedinger equations motivated through information theory. In particular we show that a q-deformation of the basic nonlinear equation leads to a perturbative increase in the energy of a system, thus favouring the simplest q = 1 case. Furthermore the energy minimisation criterion is shown to be equivalent, at leading order, to an uncertainty maximisation argument. The special value η = 1/4 for the interpolation parameter, where leading order energy shifts vanish, implies the preservation of existing supersymmetry in nonlinearised supersymmetric quantum mechanics. Physically, η might be encoding relativistic effects.

  11. Contribution of higher order terms in the reductive perturbation theory, 2

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Mitsuhashi, Teruo; Konno, Kimiaki.

    1977-01-01

    Contribution of higher order terms in the reductive perturbation theory has been investigated for nonlinear propagation of strongly dispersive ion plasma wave. The basic set of fluid equation is reduced to a coupled set of the nonlinear Schroedinger equation for the first order perturbed potential and a linear inhomogeneous equation for the second order perturbed potential. A steady state solution of the coupled set of equations has been solved analytically in the asymptotic limit of small wave number. (auth.)

  12. Investigation of solutions of boundary-value singular perturbated problem for Schroedinger equation of 4th order

    International Nuclear Information System (INIS)

    Amirkhanov, I.V.; Zhidkov, E.P.; Konnova, S.V.

    2000-01-01

    For the case of spherical-symmetrical potential we have considered the convergence of the solution of singular-perturbated Schroedinger equation of the 4th order to the solution of the corresponding standard nonrelativistic Schroedinger equation by numerical and analytical methods. The questions of existence of the solutions are explored. Numerical results are given. (author)

  13. Perturbation theory with non-diagonal propagators and its use in the intermediate-coupling regime

    International Nuclear Information System (INIS)

    Znojil, M.

    1998-01-01

    An innovated method of construction of the Rayleigh-Schroedinger perturbation series in a seemingly nonperturbative regime is offered. Designed for the needs of condensed matter physics, nuclear physics and quantum chemistry, the flexibility of our new formalism is based on a nonstandard Lanczosean construction of unperturbed basis. With an asymmetric choice of the model space the recipe becomes recurrent not only order-by- order in a small parameter (as usual) but also projection-by-projection in the Hilbert space. Its idea and efficiency are illustrated on a few schematic examples. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  14. Nonrelativistic Schroedinger equation in quasi-classical theory

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1987-01-01

    The author has recently proposed a quasi-classical theory of particles and interactions in which particles are pictured as extended periodic disturbances in a universal field chi(x,t), interacting with each other via nonlinearity in the equation of motion for chi. The present paper explores the relationship of this theory to nonrelativistic quantum mechanics; as a first step, it is shown how it is possible to construct from chi a configuration-space wave function Psi(x 1 , X 2 , t), and that the theory requires that Psi satisfy the two-particle Schroedinger equation in the case where the two particles are well separated from each other. This suggests that the multiparticle Schroedinger equation can be obtained as a direct consequence of the quasi-classical theory without any use of the usual formalism (Hilbert space, quantization rules, etc.) of conventional quantum theory and in particular without using the classical canonical treatment of a system as a crutch theory which has subsequently to be quantized. The quasi-classical theory also suggests the existence of a preferred absolute gauge for the electromagnetic potentials

  15. SMD-based numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca (Italy); Luescher, Martin [CERN, Theoretical Physics Department, Geneva (Switzerland); AEC, Institute for Theoretical Physics, University of Bern (Switzerland)

    2017-05-15

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)

  16. SMD-based numerical stochastic perturbation theory

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia; Luescher, Martin

    2017-01-01

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)

  17. Unifying quanta and relativity. Schroedinger`s attitude to relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, H. [Roskilde Universitetscenter (Denmark)

    1992-12-31

    A considerable part of Schroedinger`s scientific work focused on the relationship between quantum theory and the theory of relativity. This paper provides a historical analysis of his occupation on this subject in the period 1925-1934. The first section surveys the role played by relativity in Schroedinger`s formation of wave mechanics in 1925-1926; the second section analyzes his attempt to make sense of Dirac`s theory of the electron by proposing a relativistic wave equation with positive energies only. In this work, which took place in 1930-1931, Schroedinger discovered the Zitterbewegung that Dirac electrons will exhibit even in a field-free case. Schroedinger`s failed attempt to introduce an alternative to the Dirac theory was part of his general dissatisfaction with the current state of quantum mechanics. It is argued that, to a large extent, his work on the Dirac theory was philosophically motivated and that it contributed to his alienation from mainstream quantum physics in the 1930s. (author). 54 refs.

  18. Exchange effects in Relativistic Schroedinger Theory

    International Nuclear Information System (INIS)

    Sigg, T.; Sorg, M.

    1998-01-01

    The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory

  19. Quantum field theory in flat Robertson-Walker space-time functional Schroedinger picture

    International Nuclear Information System (INIS)

    Pi, S.Y.

    1989-01-01

    Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schroedinger picture provides a useful description. We discuss free and self-interacting bosonic quantum field theories: Schroedinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schroedinger picture. The techniques introduced can be used to study various dynamical questions in early universe processes. (author)

  20. Hydrogen atom with a Yukawa potential: Perturbation theory and continued-fractions--Pade approximants at large order

    International Nuclear Information System (INIS)

    Vrscay, E.R.

    1986-01-01

    A simple power-series method is developed to calculate to large order the Rayleigh-Schroedinger perturbation expansions for energy levels of a hydrogen atom with a Yukawa-type screened Coulomb potential. Perturbation series for the 1s, 2s, and 2p levels, shown not to be of the Stieltjes type, are calculated to 100th order. Nevertheless, the poles of the Pade approximants to these series generally avoid the region of the positive real axis 0 < lambda < lambda(, where lambda( represents the coupling constant threshold. As a result, the Pade sums afford accurate approximations to E(lambda) in this domain. The continued-fraction representations to these perturbation series have been accurately calculated to large (100th) order and demonstrate a curious ''quasioscillatory,'' but non-Stieltjes, behavior. Accurate values of E(lambda) as well as lambda( for the 1s, 2s, and 2p levels are reported

  1. A perturbation expansion for the nonlinear Schroedinger equation with application to the influence of nonlinear Landau damping

    International Nuclear Information System (INIS)

    Weiland, J.; Ichikawa, Y.H.; Wilhelmsson, H.

    1977-12-01

    The Bogoliubov-Mitropolsky perturbation method has been applied to the study of a perturbation on soliton solutions to the nonlinear Schroedinger equation. The results are compared to those of Karpman and Maslov using the inverse scattering method and to those by Ott and Sudan on the KdV equation. (auth.)

  2. Erwin Schroedinger

    International Nuclear Information System (INIS)

    Hoffmann, D.

    1984-01-01

    Erwin Schroedinger (1887-1961) belongs without doubt to the most outstanding physicists of our century. His name is inseparably connected with the development of quantum theory with the formulation of his famous wave equation being his greatest achievement. This relation became generally known as the Schroedinger equation and its understanding was fundamental to the progress of modern quantum theory. In 1933 Schroedinger's work was honoured by the award of the Nobel Prize in physics. In the booklet Schroedinger's life, work and philosophical views are outlined against the social and physico-historical background of his time

  3. Excitation energies from Görling-Levy perturbation theory along the range-separated adiabatic connection

    Science.gov (United States)

    Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien

    2018-06-01

    A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.

  4. On the partitioning method and the perturbation quantum theory - discrete spectra

    International Nuclear Information System (INIS)

    Logrado, P.G.

    1982-05-01

    Lower and upper bounds to eigenvalues of the Schroedinger equation H Ψ = E Ψ (H = H 0 + V) and the convergence condition, in Schonberg's perturbation theory, are presented. These results are obtained using the partitioning technique. It is presented for the first time a perturbation treatment obtained when the reference function in the partitioning technique is chosen to be a true eigenfunction Ψ. The convergence condition and upper and lower bounds for the true eigenvalues E are derived in this formulation. The concept of the reaction and wave operators is also discussed. (author)

  5. Chern--Simons theory in the Schroedinger representation

    International Nuclear Information System (INIS)

    Dunne, G.V.; Jackiw, R.; Trugenberger, C.A.

    1989-01-01

    We quantize the (2+1)-dimensional Chern--Simons theory in the functional Schroedinger representation. The realization of gauge transformations on states involves a 1-cocycle. We determine this cocycle; we show how solving the Gauss law constraint in the non-Abelian theory requires quantizing the parameter that normalizes the action; we trivialize the 1-cocycle with a spatially non-local cochain related to a 2-dimensional fermion determinant and we find the physical states that satisfy the Gauss law constraint. The quantum holonomy of physical states involves a contribution that is missed when the constraint is solved before quantization. We compute this quantity for the Abelian theory in Minkowski space, where it exhibits an interesting group theoretic structure. (In a note added in proof the corresponding non-Abelian computation is presented.) Also we consider coupling to external sources and offer yet another derivation of the anomalous statistics and spin of the charge and flux carrying particles---a calculation which is especially simple in the functional Schroedinger representation. copyright 1989 Academic Press, Inc

  6. Canonical quantization of non-abelian gauge theory in the Schroedinger picture: applications to monopoles and instantons

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1979-01-01

    A detailed formulation of the quantum theory of non-abelian gauge fields is presented in the Schroedinger picture. It is applied to the semiclassical quantization of the t'Hoft-Polyakov monopole, with special attention paid to the treatment of boundary conditions and local and global gauge symmetry. The perturbation expansion is then discussed with the aid of standard collective co-ordinates. In the Prasad-Sommerfield limit, all the eigenfunctions of the fluctuation equation are presented, the ground-state wave function is constructed in terms of gauge and translation invariant co-ordinates, and its total angular momentum is computed to be zero. Aspects of instanton phenomena are then examined in the Schroedinger picture; the role of euclidean time is elucidated. The precise relation between boundary conditions, choice of gauge, and the corresponding picture of the semiclassical vacuum is demonstrated

  7. Three caveats for linear stability theory: Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Greenside, H.S.

    1984-06-01

    Recent theories and experiments challenge the applicability of linear stability theory near the onset of buoyancy-driven (Rayleigh-Benard) convection. This stability theory, based on small perturbations of infinite parallel rolls, is found to miss several important features of the convective flow. The reason is that the lateral boundaries have a profound influence on the possible wave numbers and flow patterns even for the largest cells studied. Also, the nonlinear growth of incoherent unstable modes distorts the rolls, leading to a spatially disordered and sometimes temporally nonperiodic flow. Finally, the relation of the skewed varicose instability to the onset of turbulence (nonperiodic time dependence) is examined. Linear stability theory may not suffice to predict the onset of time dependence in large cells close to threshold

  8. Operator continued fraction and bound states

    International Nuclear Information System (INIS)

    Pindor, M.

    1984-01-01

    The effective Hamiltonian of the model space perturbation theory (multilevel Rayleigh-Schroedinger theory) is expressed as an operator continued fraction. In the case of a nondegenerate model space the expression becomes an operator branched continued fraction. The method is applied to the harmonic oscillator with the kinetic energy treated as the perturbation and to the anharmonic oscillator

  9. Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schroedinger's equation with Kerr law nonlinearity

    International Nuclear Information System (INIS)

    Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong

    2011-01-01

    In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.

  10. The gradient flow coupling in the Schroedinger functional

    International Nuclear Information System (INIS)

    Fritzsch, Patrick; Ramos, Alberto

    2013-01-01

    We study the perturbative behavior of the Yang-Mills gradient flow in the Schroedinger Functional, both in the continuum and on the lattice. The energy density of the flow field is used to define a running coupling at a scale given by the size of the finite volume box. From our perturbative computation we estimate the size of cutoff effects of this coupling to leading order in perturbation theory. On a set of N f =2 gauge field ensembles in a physical volume of L∝0.4 fm we finally demonstrate the suitability of the coupling for a precise continuum limit due to modest cutoff effects and high statistical precision.

  11. A collective variable approach and stabilization for dispersion-managed optical solitons in the quintic complex Ginzburg-Landau equation as perturbations of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Fewo, S I; Kenfack-Jiotsa, A; Kofane, T C

    2006-01-01

    With the help of the one-dimensional quintic complex Ginzburg-Landau equation (CGLE) as perturbations of the nonlinear Schroedinger equation (NLSE), we derive the equations of motion of pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fibre optic links. The equations obtained are investigated numerically in order to view the evolution of pulse parameters along the propagation distance, and also to analyse effects of initial amplitude and width on the propagating pulse. Nonlinear gain is shown to be beneficial in stabilizing DM solitons. A fully numerical simulation of the one-dimensional quintic CGLE as perturbations of NLSE finally tests the results of the CV theory. A good agreement is observed between both methods

  12. The gradient flow coupling in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ramos, Alberto [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-01-15

    We study the perturbative behavior of the Yang-Mills gradient flow in the Schroedinger Functional, both in the continuum and on the lattice. The energy density of the flow field is used to define a running coupling at a scale given by the size of the finite volume box. From our perturbative computation we estimate the size of cutoff effects of this coupling to leading order in perturbation theory. On a set of N{sub f}=2 gauge field ensembles in a physical volume of L{proportional_to}0.4 fm we finally demonstrate the suitability of the coupling for a precise continuum limit due to modest cutoff effects and high statistical precision.

  13. Complex energies from real perturbation series for the LoSurdo-Stark effect in hydrogen by Borel-Pade approximants

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, V.; Grecchi, V.; Silverstone, H.J.

    1985-09-01

    The resonance energies for the hydrogen atom in an electric field, both the real and imaginary parts, have been calculated together from the real Rayleigh-Schroedinger perturbation series by Borel summation. Pade approximants were used to evaluate the Borel transform. The numerical results compare well with values obtained by the complex-coordinate variational method and by sequential use of Pade approximants.

  14. Some threshold spectral problems of Schroedinger operators

    International Nuclear Information System (INIS)

    Jia, X.

    2009-01-01

    This Ph.D. thesis deals with some spectral problems of the Schroedinger operators. We first consider the semi-classical limit of the number of bound states of unique two-cluster N-body Schroedinger operator. Then we use Dirichlet-Neumann bracket to get semi-classical limit of Riesz means of the discrete eigenvalues of N-body Schroedinger operator. The effective potential of N-body Schroedinger operator with Coulomb potential is also considered and we find that the effective potential has critical decay at infinity. Thus, the Schroedinger operator with critical potential is studied in this thesis. We study the coupling constant threshold of Schroedinger operator with critical potential and the asymptotic expansion of resolvent of Schroedinger operator with critical potential. We use that expansion to study low-energy asymptotics of derivative of spectral shift function for perturbation with critical decay. After that, we use this result and the known result for high-energy asymptotic expansion of spectral shift function to obtain the Levinson theorem. (author)

  15. A simplified fixed-point perturbation theory and its application to the coulomb + short-range potential

    International Nuclear Information System (INIS)

    Znojil, M.

    1986-01-01

    The radial Schroedinger equation and its bound-state solutions for the interaction V(r)=Vsub(coulomb)+Vsub(Pade), where Vsub(Pade)(r)=(b+cr)/(1+drsup(2)) are considered. In order to construct exactly the Feshbach effective Hamiltonian Hsup(eff), the fixed-point-substraction technique is employed and its simplification is proposed. The first two terms in the resulting asymptotic expansions of PSIsub(n) and Hsup(eff) are calculated and interpreted as a new type of perturbation theory

  16. Measurement of the stimulated thermal Rayleigh scattering instability

    International Nuclear Information System (INIS)

    Karr, T.J.; Rushford, M.C.; Murray, J.R.; Morris, J.R.

    1989-04-01

    Growth of perturbations due to stimulated thermal Rayleigh scattering was observed on a laser beam propagating in a 1 meter cell of CC14. Initial sinusoidal irradiance perturbations were seeded onto the laser leam, and their amplification in the cell was recorded by a near field camera. The perturbation growth rate is in agreement with analytical predictions of linearized propagation theory

  17. Correspondence passed between Einstein and Schroedinger; La correspondance entre Einstein et Schroedinger

    Energy Technology Data Exchange (ETDEWEB)

    Balibar, F. [Paris-7 Univ., 75 (France)

    1992-12-31

    The main points of the 26 year long correspondence between Einstein and Schroedinger are reviewed: from the de Broglie thesis and the Bose-Einstein statistics to the Schroedinger equation (1925-1926); from the EPR paradox to the cat parable (1935); a complete collaboration on unitary theories.

  18. Rayleigh-Schrödinger series and Birkhoff decomposition

    Science.gov (United States)

    Novelli, Jean-Christophe; Paul, Thierry; Sauzin, David; Thibon, Jean-Yves

    2018-01-01

    We derive new expressions for the Rayleigh-Schrödinger series describing the perturbation of eigenvalues of quantum Hamiltonians. The method, somehow close to the so-called dimensional renormalization in quantum field theory, involves the Birkhoff decomposition of some Laurent series built up out of explicit fully non-resonant terms present in the usual expression of the Rayleigh-Schrödinger series. Our results provide new combinatorial formulae and a new way of deriving perturbation series in quantum mechanics. More generally we prove that such a decomposition provides solutions of general normal form problems in Lie algebras.

  19. The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form

    International Nuclear Information System (INIS)

    Mourad, J.; Sazdjian, H.

    1994-01-01

    The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs

  20. A life of Erwin Schroedinger; Erwin Schroedinger. Eine Biographie

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Walter J.

    2012-07-01

    Erwin Schroedinger (1887-1961) was a pioneer of quantum physics, one of the most important scientists of the 20th century at all and - a charming Austrian. He was a man with a passionate interest in people and ideas. Mostly known he became by his representation of quantum theory in the form of wave mechanics, for which he got the Nobel prize for physics and naturally by the famous thought experiment ''Schroedinger's cat''. Walter Moore's biography is very close to the person of Schroedinger and presents his scientific work in the context of his private friendships, his interest in mysticism, and in front of the moving background of the political events in Germany and Austria.

  1. A variable-coefficient unstable nonlinear Schroedinger model for the electron beam plasmas and Rayleigh-Taylor instability in nonuniform plasmas: Solutions and observable effects

    International Nuclear Information System (INIS)

    Gao Yitian; Tian Bo

    2003-01-01

    A variable-coefficient unstable nonlinear Schroedinger model is hereby investigated, which arises in such applications as the electron-beam plasma waves and Rayleigh-Taylor instability in nonuniform plasmas. With computerized symbolic computation, families of exact analytic dark- and bright-soliton-like solutions are found, of which some previously published solutions turn out to be the special cases. Similarity solutions also come out, which are expressible in terms of the elliptic functions and the second Painleve transcendent. Some observable effects caused by the variable coefficient are predicted, which may be detected in the future with the relevant space or laboratory plasma experiments with nonuniform background existing

  2. Irreducible Brillouin conditions and contracted Schroedinger equations for n-electron systems. IV. Perturbative analysis

    International Nuclear Information System (INIS)

    Kutzelnigg, Werner; Mukherjee, Debashis

    2004-01-01

    The k-particle irreducible Brillouin conditions IBC k and the k-particle irreducible contracted Schroedinger equations ICSE k for a closed-shell state are analyzed in terms of a Moeller-Plesset-type perturbation expansion. The zeroth order is Hartree-Fock. From the IBC 2 (1) , i.e., from the two-particle IBC to first order in the perturbation parameter μ, one gets the leading correction λ 2 (1) to the two-particle cumulant λ 2 correctly. However, in order to construct the second-order energy E 2 , one also needs the second-order diagonal correction γ D (2) to the one-particle density matrix γ. This can be obtained: (i) from the idempotency of the n-particle density matrix, i.e., essentially from the requirement of n-representability; (ii) from the ICSE 1 (2) ; or (iii) by means of perturbation theory via a unitary transformation in Fock space. Method (ii) is very unsatisfactory, because one must first solve the ICSE 3 (2) to get λ 3 (2) , which is needed in the ICSE 2 (2) to get λ 2 (2) , which, in turn, is needed in the ICSE 1 (2) to get γ (2) . Generally the (k+1)-particle approximation is needed to obtain E k correctly. One gains something, if one replaces the standard hierarchy, in which one solves the ICSE k , ignoring λ k+1 and λ k+2 , by a renormalized hierarchy, in which only λ k+2 is ignored, and λ k+1 is expressed in terms of the λ p of lower particle rank via the partial trace relation for λ k+2 . Then the k-particle approximation is needed to obtain E k correctly. This is still poorer than coupled-cluster theory, where the k-particle approximation yields E k+1 . We also study the possibility to use some simple necessary n-representability conditions, based on the non-negativity of γ (2) and two related matrices, in order to get estimates for γ D (2) in terms of λ 2 (1) . In general these estimates are rather weak, but they can become close to the best possible bounds in special situations characterized by a very sparse structure of λ 2

  3. Equivalence of two alternative approaches to Schroedinger equations

    International Nuclear Information System (INIS)

    Goenuel, B; Koeksal, K

    2006-01-01

    A recently developed simple approach for the exact/approximate solution of Schroedinger equations with constant/position-dependent mass, in which the potential is considered as in the perturbation theory, is shown to be equivalent to the one leading to the construction of exactly solvable potentials via the solution of second-order differential equations in terms of known special functions. The formalism in the former solves difficulties encountered in the latter in revealing the corrections explicitly to the unperturbed piece of the solutions whereas the other obviates cumbersome procedures used in the calculations of the former

  4. Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation

    International Nuclear Information System (INIS)

    Duval, C.; Kuenzle, H.P.

    1983-02-01

    The role of the Bargmann group (11-dimensional extended Galilei group) in non relativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as General Relativity and couples minimally to a complex scalar field leading to a fourdimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory

  5. Minimal gravitational coupling in the Newtonian theory and the covariant Schroedinger equation

    International Nuclear Information System (INIS)

    Duval, C.; Kuenzle, H.P.

    1984-01-01

    The role of the Bargmann group (11-dimensional extended Galilei group) in nonrelativistic gravitation theory is investigated. The generalized Newtonian gravitation theory (Newton-Cartan theory) achieves the status of a gauge theory about as much as general relativity and couples minimally to a complex scalar field leading to a four-dimensionally covariant Schroedinger equation. Matter current and stress-energy tensor follow correctly from the Lagrangian. This theory on curved Newtonian space-time is also shown to be a limit of the Einstein-Klein-Gordon theory. (author)

  6. Dynamical theory of neutron diffraction. [One-body Schroedinger equation, review

    Energy Technology Data Exchange (ETDEWEB)

    Sears, V F [Atomic Energy of Canada Ltd., Chalk River, Ontario. Chalk River Nuclear Labs.

    1978-10-01

    We present a review of the dynamical theory of neutron diffraction by macroscopic bodies which provides the theoretical basis for the study of neutron optics. We consider both the theory of dispersion, in which it is shown that the coherent wave in the medium satisfies a macroscopic one-body Schroedinger equation, and the theory of reflection, refraction, and diffraction in which the above equation is solved for a number of special cases of interest. The theory is illustrated with the help of experimental results obtained over the past 10 years by a number of new techniques such as neutron gravity refractometry. Pendelloesung interference, and neutron interferometry.

  7. A perturbative analysis of modulated amplitude waves in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Porter, Mason A.; Cvitanovic, Predrag

    2004-01-01

    We apply Lindstedt's method and multiple scale perturbation theory to analyze spatio-temporal structures in nonlinear Schroedinger equations and thereby study the dynamics of quasi-one-dimensional Bose-Einstein condensates with mean-field interactions. We determine the dependence of the amplitude of modulated amplitude waves on their wave number. We also explore the band structure of Bose-Einstein condensates in detail using Hamiltonian perturbation theory and supporting numerical simulations

  8. Non-Markovian stochastic Schroedinger equations: Generalization to real-valued noise using quantum-measurement theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2002-01-01

    Do stochastic Schroedinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schroedinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schroedinger equation introduced by Strunz, Diosi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction

  9. Perturbation theory

    International Nuclear Information System (INIS)

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  10. O(a) improvement of the HYP static axial and vector currents at one-loop order of perturbation theory

    CERN Document Server

    Grimbach, A; Knechtli, F; Palombi, Filippo

    2008-01-01

    We calculate analytically the improvement coefficients of the static axial and vector currents in O(a) improved lattice QCD at one-loop order of perturbation theory. The static quark is described by the hypercubic action, previously introduced in the literature in order to improve the signal-to-noise ratio of static observables. Within a Schroedinger Functional setup, we derive the Feynman rules of the hypercubic link in time-momentum representation. The improvement coefficients are obtained from on-shell correlators of the static axial and vector currents. As a by-product, we localise the minimum of the static self-energy as a function of the smearing parameters of the action at one-loop order and show that the perturbative minimum is close to its non-perturbative counterpart.

  11. Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.

  12. Non-perturbative renormalization of the chromo-magnetic operator in heavy quark effective theory and the B{sup *} - B mass splitting

    Energy Technology Data Exchange (ETDEWEB)

    Guazzini, D.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Meyer, H. [Massachusetts Institute of Technology, Cambridge, MA (United States). Center for Theoretical Physics

    2007-05-15

    We carry out the non-perturbative renormalization of the chromo-magnetic operator in Heavy Quark Effective Theory. At order 1/m of the expansion, the operator is responsible for the mass splitting between the pseudoscalar and vector B mesons. We obtain its two-loop anomalous dimension in a Schroedinger functional scheme by successive oneloop conversions to the lattice MS scheme and the MS scheme. We then compute the scale evolution of the operator non-perturbatively in the N{sub f}=0 theory between {mu} {approx}0.3 GeV and {mu} {approx}100 GeV, where contact is made with perturbation theory. The overall renormalization factor that converts the bare lattice operator to its renormalization group invariant form is given for the Wilson gauge action and two standard discretizations of the heavy-quark action. As an application, we find that this factor brings the previous quenched predictions of the B{sup *}-B mass splitting closer to the experimental value than found with a perturbative renormalization. The same renormalization factor is applicable to the spin-dependent potentials of Eichten and Feinberg. (orig.)

  13. The Schroedinger functional for Gross-Neveu models

    International Nuclear Information System (INIS)

    Leder, B.

    2007-01-01

    Gross-Neveu type models with a finite number of fermion flavours are studied on a two-dimensional Euclidean space-time lattice. The models are asymptotically free and are invariant under a chiral symmetry. These similarities to QCD make them perfect benchmark systems for fermion actions used in large scale lattice QCD computations. The Schroedinger functional for the Gross-Neveu models is defined for both, Wilson and Ginsparg-Wilson fermions, and shown to be renormalisable in 1-loop lattice perturbation theory. In two dimensions four fermion interactions of the Gross-Neveu models have dimensionless coupling constants. The symmetry properties of the four fermion interaction terms and the relations among them are discussed. For Wilson fermions chiral symmetry is explicitly broken and additional terms must be included in the action. Chiral symmetry is restored up to cut-off effects by tuning the bare mass and one of the couplings. The critical mass and the symmetry restoring coupling are computed to second order in lattice perturbation theory. This result is used in the 1-loop computation of the renormalised couplings and the associated beta-functions. The renormalised couplings are defined in terms of suitable boundary-to-boundary correlation functions. In the computation the known first order coefficients of the beta-functions are reproduced. One of the couplings is found to have a vanishing betafunction. The calculation is repeated for the recently proposed Schroedinger functional with exact chiral symmetry, i.e. Ginsparg-Wilson fermions. The renormalisation pattern is found to be the same as in the Wilson case. Using the regularisation dependent finite part of the renormalised couplings, the ratio of the Lambda-parameters is computed. (orig.)

  14. A life of Erwin Schroedinger. 2. ed.; Erwin Schroedinger. Eine Biographie

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Walter J.

    2015-07-01

    Erwin Schroedinger (1887-1961) was a pioneer of quantum physics, one of the most important scientist of the 20th century at all and a charming Austrian. He was a man with a passionate interest for men and ideas. Mostly known he became by his representation of quantum theory in the form of wave mechanics, for which he obtained the Nobel prize for physics and naturally by the famous thought experiment ''Schroedingers cat''. Walter Moore's biography is quite near to the person of Schroedinger and presents his scientific work in the context of his friendships, his interset for mysticism, and in front of the moving background of the political events in Germany and Austria.

  15. On the spectral theory and dispersive estimates for a discrete Schroedinger equation in one dimension

    International Nuclear Information System (INIS)

    Pelinovsky, D. E.; Stefanov, A.

    2008-01-01

    Based on the recent work [Komech et al., 'Dispersive estimates for 1D discrete Schroedinger and Klein-Gordon equations', Appl. Anal. 85, 1487 (2006)] for compact potentials, we develop the spectral theory for the one-dimensional discrete Schroedinger operator, Hφ=(-Δ+V)φ=-(φ n+1 +φ n-1 -2φ n )+V n φ n . We show that under appropriate decay conditions on the general potential (and a nonresonance condition at the spectral edges), the spectrum of H consists of finitely many eigenvalues of finite multiplicities and the essential (absolutely continuous) spectrum, while the resolvent satisfies the limiting absorption principle and the Puiseux expansions near the edges. These properties imply the dispersive estimates parallel e itH P a.c. (H) parallel l σ 2 →l -σ 2 -3/2 for any fixed σ>(5/2) and any t>0, where P a.c. (H) denotes the spectral projection to the absolutely continuous spectrum of H. In addition, based on the scattering theory for the discrete Jost solutions and the previous results by Stefanov and Kevrekidis [''Asymptotic behaviour of small solutions for the discrete nonlinear Schroedinger and Klein-Gordon equations,'' Nonlinearity 18, 1841 (2005)], we find new dispersive estimates parallel e itH P a.c. (H) parallel l 1 →l ∞ -1/3 , which are sharp for the discrete Schroedinger operators even for V=0

  16. Stochastic effects on the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Flessas, G P; Leach, P G L; Yannacopoulos, A N

    2004-01-01

    The aim of this article is to provide a brief review of recent advances in the field of stochastic effects on the nonlinear Schroedinger equation. The article reviews rigorous and perturbative results. (review article)

  17. Dynamic evolution of Rayleigh-Taylor bubbles from sinusoidal, W-shaped, and random perturbations

    Science.gov (United States)

    Zhou, Zhi-Rui; Zhang, You-Sheng; Tian, Bao-Lin

    2018-03-01

    Implicit large eddy simulations of two-dimensional Rayleigh-Taylor instability at different density ratios (i.e., Atwood number A =0.05 , 0.5, and 0.9) are conducted to investigate the late-time dynamics of bubbles. To produce a flow field full of bounded, semibounded, and chaotic bubbles, three problems with distinct perturbations are simulated: (I) periodic sinusoidal perturbation, (II) isolated W-shaped perturbation, and (III) random short-wave perturbations. The evolution of height h , velocity v , and diameter D of the (dominant) bubble with time t are formulated and analyzed. In problem I, during the quasisteady stage, the simulations confirm Goncharov's prediction of the terminal speed v∞=Fr√{A g λ /(1 +A ) } , where Fr=1 /√{3 π } . Moreover, the diameter D at this stage is found to be proportional to the initial perturbation wavelength λ as D ≈λ . This differed from Daly's simulation result of D =λ (1 +A )/2 . In problem II, a W-shaped perturbation is designed to produce a bubble environment similar to that of chaotic bubbles in problem III. We obtain a similar terminal speed relationship as above, but Fr is replaced by Frw≈0.63 . In problem III, the simulations show that h grows quadratically with the bubble acceleration constant α ≡h /(A g t2)≈0.05 , and D expands self-similarly with a steady aspect ratio β ≡D /h ≈(1 +A )/2 , which differs from existing theories. Therefore, following the mechanism of self-similar growth, we derive a relationship of β =4 α (1 +A ) /Frw2 to relate the evolution of chaotic bubbles in problem III to that of semibounded bubbles in problem II. The validity of this relationship highlights the fact that the dynamics of chaotic bubbles in problem III are similar to the semibounded isolated bubbles in problem II, but not to that of bounded periodic bubbles in problem I.

  18. Stationarity of resonant pole trajectories in complex scaling

    International Nuclear Information System (INIS)

    Canuto, S.; Goscinski, O.

    1978-01-01

    A reciprocity theorem relating the real parameters eta and α that define the complex scaling transformation r → eta r e/sup iα/ in the theory of complex scaling for resonant states is demonstrated. The virial theorem is used in connection with the stationarity of the pole trajectory. The Stark broadening in the hydrogen atom using a basis set generated by Rayleigh--Schroedinger perturbation theory is treated as an example. 18 references

  19. Correspondence passed between Einstein and Schroedinger

    International Nuclear Information System (INIS)

    Balibar, F.

    1992-01-01

    The main points of the 26 year long correspondence between Einstein and Schroedinger are reviewed: from the de Broglie thesis and the Bose-Einstein statistics to the Schroedinger equation (1925-1926); from the EPR paradox to the cat parable (1935); a complete collaboration on unitary theories

  20. Developments in perturbation theory

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators

  1. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R.

    2006-11-15

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  2. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2006-11-01

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  3. Fundamental parameters of QCD from non-perturbative methods for two and four flavors

    International Nuclear Information System (INIS)

    Marinkovic, Marina

    2013-01-01

    The non-perturbative formulation of Quantumchromodynamics (QCD) on a four dimensional space-time Euclidean lattice together with the finite size techniques enable us to perform the renormalization of the QCD parameters non-perturbatively. In order to obtain precise predictions from lattice QCD, one needs to include the dynamical fermions into lattice QCD simulations. We consider QCD with two and four mass degenerate flavors of O(a) improved Wilson quarks. In this thesis, we improve the existing determinations of the fundamental parameters of two and four flavor QCD. In four flavor theory, we compute the precise value of the Λ parameter in the units of the scale L max defined in the hadronic regime. We also give the precise determination of the Schroedinger functional running coupling in four flavour theory and compare it to the perturbative results. The Monte Carlo simulations of lattice QCD within the Schroedinger Functional framework were performed with a platform independent program package Schroedinger Funktional Mass Preconditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this project. Finally, we compute the strange quark mass and the Λ parameter in two flavour theory, performing a well-controlled continuum limit and chiral extrapolation. To achieve this, we developed a universal program package for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid Monte Carlo (MP-HMC), which we used to run large scale simulations on small lattice spacings and on pion masses close to the physical value.

  4. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  5. Rayleigh scattering in coupled microcavities: theory.

    Science.gov (United States)

    Vörös, Zoltán; Weihs, Gregor

    2014-12-03

    In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.

  6. Nonperturbative perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.

    1989-01-01

    In this talk we describe a recently proposed graphical perturbative calculational scheme for quantum field theory. The basic idea is to expand in the power of the interaction term. For example, to solve a λφ 4 theory in d-dimensional space-time, we introduce a small parameter δ and consider a λ(φ 2 ) 1+δ field theory. We show how to expand such a theory as a series in powers of δ. The resulting perturbation series appears to have a finite radius of convergence and numerical results for low-dimensional models are good. We have computed the two-point and four-point Green's functions to second order in powers of δ and the 2n-point Green's functions (n>2) to order δ. We explain how to renormalize the theory and show that, to first order in powers of δ, when δ>0 and d≥4 the theory is free. This conclusion remains valid to second order in powers of δ, and we believe that it remains valid to all orders in powers of δ. The new perturbative scheme is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not know of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  7. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  8. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  9. Schroedinger fluid

    International Nuclear Information System (INIS)

    Kan, K.K.

    1983-01-01

    The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)

  10. Simple Perturbation Example for Quantum Chemistry.

    Science.gov (United States)

    Goodfriend, P. L.

    1985-01-01

    Presents a simple example that illustrates various aspects of the Rayleigh-Schrodinger perturbation theory. The example is a particularly good one because it is straightforward and can be compared with both the exact solution and with experimental data. (JN)

  11. A life of Erwin Schroedinger

    International Nuclear Information System (INIS)

    Moore, Walter J.

    2012-01-01

    Erwin Schroedinger (1887-1961) was a pioneer of quantum physics, one of the most important scientists of the 20th century at all and - a charming Austrian. He was a man with a passionate interest in people and ideas. Mostly known he became by his representation of quantum theory in the form of wave mechanics, for which he got the Nobel prize for physics and naturally by the famous thought experiment ''Schroedinger's cat''. Walter Moore's biography is very close to the person of Schroedinger and presents his scientific work in the context of his private friendships, his interest in mysticism, and in front of the moving background of the political events in Germany and Austria.

  12. Reparametrization invariance and the Schroedinger equation

    International Nuclear Information System (INIS)

    Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.

    1999-01-01

    A time-dependent Schroedinger equation for systems invariant under the reparametrization of time is considered. We develop the two-stage procedure of construction such systems from a given initial ones, which are not invariant under the time reparametrization. One of the first-class constraints of the systems in such description becomes the time-dependent Schroedinger equation. The procedure is applicable in the supersymmetric theories as well. The n = 2 supersymmetric quantum mechanics is coupled to world-line supergravity, and the local supersymmetric action is constructed leading to the square root representation of the time-dependent Schroedinger equation

  13. Large-order perturbation theory

    International Nuclear Information System (INIS)

    Wu, T.T.

    1982-01-01

    The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams

  14. Lattice field theories: non-perturbative methods of analysis

    International Nuclear Information System (INIS)

    Weinstein, M.

    1978-01-01

    A lecture is given on the possible extraction of interesting physical information from quantum field theories by studying their semiclassical versions. From the beginning the problem of solving for the spectrum states of any given continuum quantum field theory is considered as a giant Schroedinger problem, and then some nonperturbative methods for diagonalizing the Hamiltonian of the theory are explained without recourse to semiclassical approximations. The notion of a lattice appears as an artifice to handle the problems associated with the familiar infrared and ultraviolet divergences of continuum quantum field theory and in fact for all but gauge theories. 18 references

  15. On the reduction of the multidimensional stationary Schroedinger equation to a first-order equation and its relation to the pseudoanalytic function theory

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, Vladislav V [Departmento de Telecomunicaciones, SEPI, Escuela Superior de IngenierIa Mecanica y Electrica, Instituto Politecnico Nacional, CP 07738 Mexico DF (Mexico)

    2005-01-28

    Given a particular solution of a one-dimensional stationary Schroedinger equation this equation of second order can be reduced to a first-order linear ordinary differential equation. This is done with the aid of an auxiliary Riccati differential equation. In the present work we show that the same fact is true in a multidimensional situation also. For simplicity we consider the case of two or three independent variables. One particular solution of the stationary Schroedinger equation allows us to reduce this second-order equation to a linear first-order quaternionic differential equation. As in the one-dimensional case this is done with the aid of an auxiliary quaternionic Riccati equation. The resulting first-order quaternionic equation is equivalent to the static Maxwell system and is closely related to the Dirac equation. In the case of two independent variables it is the well-known Vekua equation from theory of pseudoanalytic (or generalized analytic) functions. Nevertheless, we show that even in this case it is very useful to consider not only complex valued functions, solutions of the Vekua equation, but complete quaternionic functions. In this way the first-order quaternionic equation represents two separate Vekua equations, one of which gives us solutions of the Schroedinger equation and the other one can be considered as an auxiliary equation of a simpler structure. Moreover for the auxiliary equation we always have the corresponding Bers generating pair (F, G), the base of the Bers theory of pseudoanalytic functions, and what is very important, the Bers derivatives of solutions of the auxiliary equation give us solutions of the main Vekua equation and as a consequence of the Schroedinger equation. Based on this fact we obtain an analogue of the Cauchy integral theorem for solutions of the stationary Schroedinger equation. Other results from theory of pseudoanalytic functions can be written for solutions of the Schroedinger equation. Moreover, for an ample

  16. Almost periodic Schroedinger operators

    International Nuclear Information System (INIS)

    Bellissard, J.; Lima, R.

    1984-01-01

    These lectures are devoted to recent developments in the theory of almost-periodic Schroedinger Operators. We specially describe the algebraic point of view, with applications to gap-labelling theorems. Particular models are also presented which exhibit various spectral properties. (orig.)

  17. Perturbation theory in large order

    International Nuclear Information System (INIS)

    Bender, C.M.

    1978-01-01

    For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures

  18. Perturbation theory in light-cone gauge

    International Nuclear Information System (INIS)

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  19. Perturbation theory and coupling constant analyticity in two-dimensional field theories

    International Nuclear Information System (INIS)

    Simon, B.

    1973-01-01

    Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)

  20. Extended multi-configuration quasi-degenerate perturbation theory: the new approach to multi-state multi-reference perturbation theory.

    Science.gov (United States)

    Granovsky, Alexander A

    2011-06-07

    The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics

  1. Scattering theory for Stark Hamiltonians

    International Nuclear Information System (INIS)

    Jensen, Arne

    1994-01-01

    An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs

  2. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Papinutto, M. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Pena, C. [European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2006-04-15

    We discuss the renormalisation properties of the complete set of {delta}B=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  3. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    International Nuclear Information System (INIS)

    Palombi, F.; Pena, C.; Wittig, H.

    2006-04-01

    We discuss the renormalisation properties of the complete set of ΔB=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  4. The use of perturbation theory in density-functional theory

    International Nuclear Information System (INIS)

    Goerling, A.

    1996-01-01

    Perturbation theory with respect to the electron-electron interaction leads to expressions for the exchange and correlation energies and potentials in terms of Kohn-Sham orbitals and Kohn-Sham eigenvalues. An exact open-quote exchange-only close-quote procedure for solids is introduced. Results for several semiconductors are presented. Perturbation theory expansions for the hardness of molecules and the bad gap of solids are given. Density-functional exchange and correlation energies for excited states are defined and a perturbation theory based Kohn-Sham formalism to treat excited states within density-functional theory is introduced

  5. The Schroedinger operator as a generalized Laplacian

    International Nuclear Information System (INIS)

    Grabowska, Katarzyna; Urbanski, Pawel; Grabowski, Janusz

    2008-01-01

    The Schroedinger operators on the Newtonian spacetime are defined in a way which make them independent of the class of inertial observers. In this picture the Schroedinger operators act not on functions on the spacetime but on sections of a certain one-dimensional complex vector bundle-the Schroedinger line bundle. This line bundle has trivializations indexed by inertial observers and is associated with an U(1)-principal bundle with an analogous list of trivializations-the Schroedinger principal bundle. If an inertial frame is fixed, the Schroedinger bundle can be identified with the trivial bundle over spacetime, but as there is no canonical trivialization (inertial frame), these sections interpreted as 'wavefunctions' cannot be viewed as actual functions on the spacetime. In this approach, the change of an observer results not only in the change of actual coordinates in the spacetime but also in a change of the phase of wavefunctions. For the Schroedinger principal bundle, a natural differential calculus for 'wave forms' is developed that leads to a natural generalization of the concept of the Laplace-Beltrami operator associated with a pseudo-Riemannian metric. The free Schroedinger operator turns out to be the Laplace-Beltrami operator associated with a naturally distinguished invariant pseudo-Riemannian metric on the Schroedinger principal bundle. The presented framework does not involve any ad hoc or axiomatically introduced geometrical structures. It is based on the traditional understanding of the Schroedinger operator in a given reference frame-which is supported by producing right physics predictions-and it is proven to be strictly related to the frame-independent formulation of analytical Newtonian mechanics and Hamilton-Jacobi equations that makes a bridge between the classical and quantum theory

  6. Non-perturbative improvement of stout-smeared three flavour clover fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, N.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)

    2009-01-15

    We discuss a 3-flavour lattice QCD action with clover improvement in which the fermion matrix has single level stout smearing for the hopping terms together with unsmeared links for the clover term. With the (tree-level) Symanzik improved gluon action this constitutes the Stout Link Non-perturbative Clover or SLiNC action. To cancel O(a) terms the clover term coefficient has to be tuned. We present here results of a non-perturbative determination of this coefficient using the Schroedinger functional and as a by-product a determination of the critical hopping parameter. Comparisons of the results are made with lowest order perturbation theory. (orig.)

  7. Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method

    International Nuclear Information System (INIS)

    Zhang Xu; Tan Duowang

    2009-01-01

    A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)

  8. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  9. Continuity and completeness in physical theory: Schroedinger`s return to the wave interpretation of quantum mechanics in the 1950`s

    Energy Technology Data Exchange (ETDEWEB)

    D`Agostino, S. [Rome Univ. (Italy)

    1992-12-31

    In the 50s, Schroedinger proposed a new conception of a continuous theory of Quantum Mechanics, which remarkably modified his 1926 ideas on ondulatory mechanics. The lack of individuality of the atomic particles presented in the new statistics, and in Heisenberg`s Indeterminacy Relations, was by him considered as an aspect of a more general crisis in the anthology itself of classical atomism. Unlike his 1926 ideas, he proposed now to represent the wave equation in an n-dimensional space and he considered second-quantization technique as the proper mathematical tool for his new physical conception. Although he accepted that space-time discontinuities and casual gaps may appear here and there on the observational level (e.g. in the Indeterminacy Relations), he was convinced that they could be made compatible with a continuous pure theory, provided one accepted a suitable conception of the theory`s epistemiological status. For him, only a continuous theory satisfied the conditions for a complete theory. On these matters, he thought he was somehow orthodox to the ideas of Hertz and Boltzmann, which were also reflected in the teaching of Exner. (author). 69 refs.

  10. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  11. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  12. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.

    Science.gov (United States)

    Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G

    2017-12-07

    We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.

  13. Continual integral in perturbation theory

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1975-01-01

    It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)

  14. Solitonic Integrable Perturbations of Parafermionic Theories

    CERN Document Server

    Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L

    1997-01-01

    The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.

  15. A new perturbative treatment of pentadiagonal Hamiltonians

    International Nuclear Information System (INIS)

    Znojil, M.

    1987-01-01

    A new formulation of the Rayleich - Schroedinger perturbation theory is proposed. It is inspired by a recurent construction of propagators, and its main idea lies in a replacement of the auxiliary matrix elements (generalized continued fractions) by their non-numerical approximants. In a test of convergence (the anharmonic oscillator), the asymptotic fixed-point approximation scheme is used. The results indicate a good applicability of this fixed-point version of our formalism to systems with a band-matrix structure of the Hamiltonian

  16. Perturbation theory of effective Hamiltonians

    International Nuclear Information System (INIS)

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  17. Schroedinger and the wave mechanics

    International Nuclear Information System (INIS)

    Bassalo, J.M.F.

    1987-01-01

    In commemoration of the centennial of Schroedinger's birth, in 1987, we show in this paper some aspects of his academic life, and his philosophical and scientific work. Among Schroedinger's innumerable contributions to almost all areas of philosophy and science, we choose here the creation of quantum mechanics (1926), considered one of the pillars of Modern quantum theory, and the importance of his philosophical essay What is life (1944). This publication was responsible for a great in the studies of biology, culminating in the discovery of the DNA molecular structure, in 1953, by Crick and Watson, thanks to the X-rays diffraction technique of the DNA developed by Wilkens. (author) [pt

  18. Extensions of the auxiliary field method to solve Schroedinger equations

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2008-01-01

    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed

  19. Extensions of the auxiliary field method to solve Schroedinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2008-10-24

    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed.

  20. Measurement theory and the Schroedinger equation

    International Nuclear Information System (INIS)

    Schwarz, A.S.; Tyupkin, Yu.S.

    1987-01-01

    The paper is an analysis of the measuring process in quantum mechanics based on the Schroedinger equation. The arguments employed use an assumption reflecting, to some extent, the statistical properties of the vacuum. A description is given of the cases in which different incoherent superpositions of pure states in quantum mechanics are physically equivalent. The fundamental difference between quantum and classical mechanics as explained by the existence of unobservable variables is discussed. (U.K.)

  1. A life of Erwin Schroedinger. 2. ed.

    International Nuclear Information System (INIS)

    Moore, Walter J.

    2015-01-01

    Erwin Schroedinger (1887-1961) was a pioneer of quantum physics, one of the most important scientist of the 20th century at all and a charming Austrian. He was a man with a passionate interest for men and ideas. Mostly known he became by his representation of quantum theory in the form of wave mechanics, for which he obtained the Nobel prize for physics and naturally by the famous thought experiment ''Schroedingers cat''. Walter Moore's biography is quite near to the person of Schroedinger and presents his scientific work in the context of his friendships, his interset for mysticism, and in front of the moving background of the political events in Germany and Austria.

  2. Supersymmetry restoration in superstring perturbation theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2015-01-01

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  3. Supersymmetry restoration in superstring perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)

    2015-12-14

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  4. Force-balance and differential equation for the ground-state electron density in atoms and molecules

    International Nuclear Information System (INIS)

    Amovilli, C.; March, N.H.; Gal, T.; Nagy, A.

    2000-01-01

    Holas and March (1995) established a force-balance equation from the many-electron Schroedinger equation. Here, the authors propose this as a basis for the construction of a (usually approximate) differential equation for the ground-state electron density. By way of example they present the simple case of two-electron systems with different external potentials but with weak electron-electron Coulomb repulsion λe 2 /r 12 . In this case first-order Rayleigh-Schroedinger (RS) perturbation theory of the ground-state wave function is known to lead to a compact expression for the first-order density matrix γ(r,rprime) in terms of its diagonal density ρ(r) and the density corresponding to λ = 0. This result allows the force-balance equation to be written as a third-order linear, differential homogeneous equation for the ground-state electron density ρ(r). The example of the two-electron Hookean atom is treated: For this case one can also transcend the first-order RS perturbation theory and get exact results for discrete choices of force constants (external potential)

  5. Operator Decomposition Framework for Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalik, Hany S.; Wang, Congjian; Bang, Young Suk [North Carolina State University, Raleigh (United States)

    2012-05-15

    This summary describes a new framework for perturbation theory intended to improve its performance, in terms of the associated computational cost and the complexity of implementation, for routine reactor calculations in support of design, analysis, and regulation. Since its first introduction in reactor analysis by Winger, perturbation theory has assumed an aura of sophistication with regard to its implementation and its capabilities. Only few reactor physicists, typically mathematically proficient, have contributed to its development, with the general body of the nuclear engineering community remaining unaware of its current status, capabilities, and challenges. Given its perceived sophistication and the small body of community users, the application of perturbation theory has been limited to investigatory analyses only. It is safe to say that the nuclear community is split into two groups, a small one which understands the theory and, and a much bigger group with the perceived notion that perturbation theory is nothing but a fancy mathematical approach that has very little use in practice. Over the past three years, research has demonstrated two goals. First, reduce the computational cost of perturbation theory in order to enable its use for routine reactor calculations. Second, expose some of the myth about perturbation theory and present it in a form that is simple and relatable in order to stimulate the interest of nuclear practitioners, especially those who are currently working on the development of next generation reactor design and analysis tools. The operator decomposition approach has its roots in linear algebra and can be easily understood by code developers, especially those involved in the design of iterative numerical solution strategies

  6. On the perturbative renormalization of four-quark operators for new physics

    Energy Technology Data Exchange (ETDEWEB)

    Papinutto, M. [Roma Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Roma (Italy); Pena, C. [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM-CSIC; Preti, D. [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM-CSIC

    2017-06-15

    We discuss the renormalization properties of the full set of ΔF = 2 operators involved in BSM processes, including the definition of RGI versions of operators that exhibit mixing under RG transformations. As a first step for a fully non-perturbative determination of the scale-dependent renormalization factors and their runnings, we introduce a family of appropriate Schroedinger Functional schemes, and study them in perturbation theory. This allows, in particular, to determine the NLO anomalous dimensions of all ΔF = 1,2 operators in these schemes. Finally, we discuss the systematic uncertainties related to the use of NLO perturbation theory for the RG running of four-quark operators to scales in the GeV range, in both our SF schemes and standard MS and RI-MOM schemes. Large truncation effects are found for some of the operators considered. (orig.)

  7. 't Hooft loops and perturbation theory

    CERN Document Server

    De Forcrand, Philippe; Noth, D; Forcrand, Philippe de; Lucini, Biagio; Noth, David

    2005-01-01

    We show that high-temperature perturbation theory describes extremely well the area law of SU(N) spatial 't Hooft loops, or equivalently the tension of the interface between different Z_N vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and lattice perturbation theory for sigma(T)/T^2 is less than 2%, down to temperatures O(10) T_c. For SU(N), N>3, the ratios of interface tensions, (sigma_k/sigma_1)(T), agree with perturbation theory, which predicts tiny deviations from the ratio of Casimirs, down to nearly T_c. In contrast, individual tensions differ markedly from the perturbative expression. In all cases, the required precision Monte Carlo measurements are made possible by a simple but powerful modification of the 'snake' algorithm.

  8. Quasi-periodic Schroedinger operators in one dimension, absolutely continuous spectra, Bloch waves, and integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Chierchia, L.

    1986-01-01

    In the first chapter, the eigenvalue problem for a periodic Schroedinger operator, Lf = (-d 2 /dx 2 + v)f = Ef, is viewed as a two-dimensional Hamiltonian system which is integrable in the sense of Arnold and Liouville. With the aid of the Floquet-BLoch theory, it is shown that such a system is conjugate to two harmonic oscillators with frequencies α and omega, being the rotation number for L and 2π/omega the period of the potential v. This picture is generalized in the second chapter, to quasi periodic Schroedinger operators, L/sub epsilon/, with highly irrational frequencies (omega 1 , ..., omega/sub d/), which are a small perturbation of periodic operators. In the last chapter, the absolutely continuous spectrum σ/sub ac/ of a general quasi-periodic Schroedinger operators is considered. The Radon-Nikodym derivatives (with respect to Lebesgue measure) of the spectral measures are computed in terms of special independent eigensolutions existing for almost ever E in σ/sub ac/. Finally, it is shown that weak Bloch waves always exist for almost ever E in σ/sub ac/ and the question of the existence of genuine Bloch waves is turned into a regularity problem for a certain nonlinear partial differential equation on a d-dimensional torus

  9. Erwin Schroedinger: Collected papers V. 1. Contributions to statistical mechanics

    International Nuclear Information System (INIS)

    Schroedinger, E.

    1984-01-01

    38 publications reprinted in this volume show that the interest for statistical problems accompanied Schroedinger during his entire scientific career. Already in his second paper he worked on the magnetism of solid states. The classical considerations come close to the heart of diamagnetism and also to the origin of paramagnetism. In classical investigations of the specific heat Schroedinger helped through abstract theory but also by analysing a gigantic amount of experimental material. In 1926 he and F. Kohlrausch actually played the 'Urngame of Ehrenfest' as a model of the H-curve and published the results. Inclination towards experimenting, sequences of measurements and statistical evaluation of experimental data led to papers on the foundation of the theory of probability, where he tries to put the subjective probability concept on into a systematic framework. Two earlier papers on dynamics of the elastic chain remained particularly valuable. By solving the initial value problem with Bessel-functions this many-body-problem is led to an explicit discussion. These studies are likely to be the roots of another keynote in Schroedinger's thinking, namely, the irreversibility. 1945 a statistical theory of chain-reactions was published under the inconspicuous title of 'Probability Problems in Nuclear Chemistry'. In his last work Schroedinger turns off in a wrong direction: it is that energy should only be a statistical concept and should not be conserved in elementary processes, but somehow only in the mean. These short remarks only illuminate the diversity of the material in this volume, but testify Schroedinger's deep understanding in this field. (W.K.)

  10. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  11. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    International Nuclear Information System (INIS)

    Borges, L.H.C.; Barone, F.A.

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  12. Coupling-parameter expansion in thermodynamic perturbation theory.

    Science.gov (United States)

    Ramana, A Sai Venkata; Menon, S V G

    2013-02-01

    An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.

  13. High-order nonlinear susceptibilities of He

    International Nuclear Information System (INIS)

    Liu, W.C.; Clark, C.W.

    1996-01-01

    High-order nonlinear optical response of noble gases to intense laser radiation is of considerable experimental interest, but is difficult to measure or calculate accurately. The authors have begun a set of calculations of frequency-dependent nonlinear susceptibilities of He 1s, within the framework of Rayleigh=Schroedinger perturbation theory at lowest applicable order, with the goal of providing critically evaluated atomic data for modelling high harmonic generation processes. The atomic Hamiltonian is decomposed in term of Hylleraas coordinates and spherical harmonics using the formalism of Ponte and Shakeshaft, and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively. A combination of Hylleraas and Frankowski basis functions is used; the compact Hylleraas basis provides a highly accurate representation of the ground state wavefunction, whereas the diffuse Frankowski basis functions efficiently reproduce the correct asymptotic structure of the perturbed orbitals

  14. Perturbative spacetimes from Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-04-12

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  15. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    Science.gov (United States)

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-09

    of the KP theory is further examined in comparison with results from the traditional Rayleigh-Ritz variational approach and Rayleigh-Schrödinger perturbation theory in wave mechanics. The present method can be used for thermodynamic and quantum dynamic calculations, including to systematically determine the exact value of zero-point energy and to study kinetic isotope effects for chemical reactions in solution and in enzymes.

  16. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  17. The general Klein-Gordon-Schroedinger system: modulational instability and exact solutions

    International Nuclear Information System (INIS)

    Tang Xiaoyan; Ding Wei

    2008-01-01

    The general Klein-Gordon-Schroedinger (gKGS) system is studied where the cubic auto-interactions are introduced in both the nonlinear Schroedinger and the nonlinear Klein-Gordon fields. We first investigate the modulational instability (MI) of the system, and thus derive the general dispersion relation between the frequency and wavenumber of the modulating perturbations, which demonstrates many possibilities for the MI regions. Using the travelling wave reduction, the gKGS system is greatly simplified. Via a simple function expansion method, we obtain some exact travelling wave solutions. Under some special parameter values, some representative wave structures are graphically displayed including the kink, anti-kink, bright, dark, grey and periodic solitons

  18. Higher order perturbation theory - An example for discussion

    International Nuclear Information System (INIS)

    Lewins, J.D.; Parks, G.; Babb, A.L.

    1986-01-01

    Higher order perturbation theory is developed in the form of a Taylor series expansion to third order to calculate the thermal utilization of a nonuniform cell. The development takes advantage of the self-adjoint property of the diffusion operator to provide a simple development of this illustration of generalized perturbation theory employing scalar perturbation parameters. The results show how a designer might employ a second-order theory to quantify proposed design improvements, together with the limitations of second- and third-order theory. The chosen example has an exact optimization solution and thus provides a clear understanding of the role of perturbation theory at its various orders. Convergence and the computational advantages and disadvantages of the method are discussed

  19. Instantaneous stochastic perturbation theory

    International Nuclear Information System (INIS)

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  20. On perturbation theory for distance dependent statistics.

    Energy Technology Data Exchange (ETDEWEB)

    Mashkevich, S V

    1994-12-31

    It is known that perturbation theory for anyons has to be modified near Bose statistics in order to get correct finite results. For ``distance dependent statistics`` or anyons with smeared flux tubes, perturbation theory is in principle applicable directly but gives results which hold for too small values of the statistical parameter and, in particular, are not valid as the flux tube radius tends to zero. In this paper we discuss the way to modify perturbation theory for this situation, which allows to obtain the appropriate results. (author). 6 refs.

  1. The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability

    Science.gov (United States)

    Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen

    2017-10-01

    In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.

  2. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations

  3. Generalized perturbation theory using two-dimensional, discrete ordinates transport theory

    International Nuclear Information System (INIS)

    Childs, R.L.

    1979-01-01

    Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions

  4. Perturbation Theory of the Cosmological Log-Density Field

    DEFF Research Database (Denmark)

    Wang, Xin; Neyrinck, Mark; Szapudi, István

    2011-01-01

    , motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor...

  5. Erwin Schroedinger and the rise of wave mechanics. I. Schroedinger's scientific work before the creation of wave mechanics

    International Nuclear Information System (INIS)

    Mehra, J.

    1987-01-01

    This paper, the first part of a three-part article, gives an account of Erwin Schroedinger's growing up and studies in Vienna, his scientific work--first in Vienna from 1911 to 1920, then in Zurich from 1920 to 1925--on the dielectric properties of matter, atmospheric electricity and radioactivity, general relativity, color theory and physiological optics, and on kinetic theory and statistical mechanics

  6. Perturbation theory and collision probability formalism. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Perturbation theory is commonly used in evaluating the activity effects, particularly those resulting from small and localized perturbation in multiplying media., e.g. in small sample reactivity measurements. The Boltzmann integral transport equation is generally used for evaluating the direct and adjoint fluxes in the heterogenous lattice cells to be used in the perturbation equations. When applying perturbation theory in this formalism, a term involving the perturbation effects on the special transfer kernel arises. This term is difficult to evaluate correctly, since it involves an integration all over the entire system. The main advantage of the perturbation theory which is the limitation of the integration procedure on the perturbation region is found to be of no practical use in such cases. In the present work, the perturbation equation in the collision probability formalism is analyzed. A mathematical treatment of the term in question is performed. A new mathematical expression for this term is derived. The new expression which can be estimated easily is derived.

  7. String perturbation theory diverges

    International Nuclear Information System (INIS)

    Gross, D.J.; Periwal, V.

    1988-01-01

    We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence

  8. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  9. Single determinantal reaction theory as a Schroedinger analog: the time-dependent S-matrix Hartree-Fock method

    International Nuclear Information System (INIS)

    Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.; Kan, K.K.

    1979-01-01

    It is suggested that the TDHF method be viewed, not as an approximation to but as a model of the exact Schroedinger system; that is, as a gedanken many-body experiment whose analysis with digital computers provides data worthy in itself of theoretical study. From such a viewpoint attention is focused on the structural analogies of the TDHF system with the exact theory rather than upon its quantitative equivalence, and the TDHF many-body system is studied as a challenge of its own which, although much simpler than the realistic problem, may still offer complexity enough to educate theorists in the present state of knowledge. In this spirit, the TDHF description of continuum reactions can be restructured from an initial-value problem into a form analogous to the S-matrix version of the Schroedinger theory. The resulting TD-S-HF theory involves only self-consistent single determinantal solutions of the TDHF equations and invokes time averaging to obtain a consistent interpretation of the TDHF analogs of quantities which are constant in the exact theory, such as the S-matrix and the asymptotic reaction channel characteristics. Periodic solutions then play the role of stationary eigenstates in the construction of suitable asymptotic reaction channels. If these periodic channel states occur only at discrete energies, then the resulting channels are mutually orthogonal (on the time average) and the theory exhibits a structure fully analogous to the exact theory. In certain special cases where the periodic solutions are known to occur as an energy continuum, the requirement that the periodicity of the channel solutions be gauge invariant provides a natural requantization condition which (suggestively) turns out to be identical with the Bohr-Sommerfeld quantization rule. 11 references

  10. Numerical perturbative methods in the quantum theory of physical systems

    International Nuclear Information System (INIS)

    Adam, G.

    1980-01-01

    During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)

  11. Discrete state perturbation theory via Green's functions

    International Nuclear Information System (INIS)

    Rubinson, W.

    1975-01-01

    The exposition of stationary-state perturbation theory via the Green's function method in Goldberger and Watson's Collision Theory is reworked in a way that makes explicit its mathematical basis. It is stressed that the theory consists of the construction of, and manipulations on, a mathematical identity. The perturbation series fall out of the identity almost immediately. The logical status of the method is commented on

  12. Generalized perturbation series

    International Nuclear Information System (INIS)

    Baird, L.C.; Stinchcomb, G.

    1973-01-01

    An approximate solution of the Green's function equation may be used to generate an exact solution of the Schroedinger equation. This is accomplished through an iterative procedure. The procedure is equivalent to a perturbation expansion if the approximate Green's function is exact with respect to some reference potential

  13. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  14. Effective field theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Piazza, Federico; Vernizzi, Filippo

    2013-01-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)

  15. Effective field theory of cosmological perturbations

    Science.gov (United States)

    Piazza, Federico; Vernizzi, Filippo

    2013-11-01

    The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.

  16. Cosmological Perturbation Theory Using the Schrödinger Equation

    Science.gov (United States)

    Szapudi, István; Kaiser, Nick

    2003-01-01

    We introduce the theory of nonlinear cosmological perturbations using the correspondence limit of the Schrödinger equation. The resulting formalism is equivalent to using the collisionless Boltzmann (or Vlasov) equations, which remain valid during the whole evolution, even after shell crossing. Other formulations of perturbation theory explicitly break down at shell crossing, e.g., Eulerean perturbation theory, which describes gravitational collapse in the fluid limit. This Letter lays the groundwork by introducing the new formalism, calculating the perturbation theory kernels that form the basis of all subsequent calculations. We also establish the connection with conventional perturbation theories, by showing that third-order tree-level results, such as bispectrum, skewness, cumulant correlators, and three-point function, are exactly reproduced in the appropriate expansion of our results. We explicitly show that cumulants up to N=5 predicted by Eulerian perturbation theory for the dark matter field δ are exactly recovered in the corresponding limit. A logarithmic mapping of the field naturally arises in the Schrödinger context, which means that tree-level perturbation theory translates into (possibly incomplete) loop corrections for the conventional perturbation theory. We show that the first loop correction for the variance is σ2=σ2L+(-1.14- n)σ4L for a field with spectral index n. This yields 1.86 and 0.86 for n=-3 and -2, respectively, to be compared with the exact loop order corrections 1.82 and 0.88. Thus, our tree-level theory recovers the dominant part of first-order loop corrections of the conventional theory, while including (partial) loop corrections to infinite order in terms of δ.

  17. Noise-induced perturbations of dispersion-managed solitons

    International Nuclear Information System (INIS)

    Li, Jinglai; Spiller, Elaine; Biondini, Gino

    2007-01-01

    We study noise-induced perturbations of dispersion-managed solitons. We do so by first developing soliton perturbation theory for the dispersion-managed nonlinear Schroedinger (DMNLS) equation, which governs the long-term behavior of optical fiber transmission systems and certain kinds of femtosecond lasers. We show that the eigenmodes and generalized eigenmodes of the linearized DMNLS equation around traveling-wave solutions can be generated from the invariances of the DMNLS equations, we quantify the perturbation-induced parameter changes of the solution in terms of the eigenmodes and the adjoint eigenmodes, and we obtain evolution equations for the solution parameters. We then apply these results to guide importance-sampled Monte Carlo (MC) simulations and reconstruct the probability density functions of the solution parameters under the effect of noise, and we compare with standard MC simulations of the unaveraged system. The comparison further validates the use of the DMNLS equation as a model for dispersion-managed systems

  18. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  19. Measurements of laser-imprinted perturbations and Rayleigh--Taylor growth with the Nike KrF laser

    International Nuclear Information System (INIS)

    Pawley, C.J.; Gerber, K.; Lehmberg, R.H.; McLean, E.A.; Mostovych, A.N.; Obenschain, S.P.; Sethian, J.D.; Serlin, V.; Stamper, J.A.; Sullivan, C.A.; Bodner, S.E.; Colombant, D.; Dahlburg, J.P.; Schmitt, A.J.; Gardner, J.H.; Brown, C.; Seely, J.F.; Lehecka, T.; Aglitskiy, Y.; Deniz, A.V.; Chan, Y.; Metzler, N.; Klapisch, M.

    1997-01-01

    Nike is a 56 beam Krypton Fluoride (KrF) laser system using Induced Spatial Incoherence (ISI) beam smoothing with a measured focal nonuniformity left-angle ΔI/I right-angle of 1% rms in a single beam [S. Obenschain et al., Phys. Plasmas 3, 1996 (2098)]. When 37 of these beams are overlapped on the target, we estimate that the beam nonuniformity is reduced by √(37), to (ΔI/I)congruent 0.15% (excluding short-wavelength beam-to-beam interference). The extraordinary uniformity of the laser drive, along with a newly developed x-ray framing diagnostic, has provided a unique facility for the accurate measurements of Rayleigh--Taylor amplified laser-imprinted mass perturbations under conditions relevant to direct-drive laser fusion. Data from targets with smooth surfaces as well as those with impressed sine wave perturbations agree with our two-dimensional (2-D) radiation hydrodynamics code that includes the time-dependent ISI beam modulations. A 2-D simulation of a target with a 100 Angstrom rms randomly rough surface finish driven by a completely uniform beam gives final perturbation amplitudes similar to the experimental data for the smoothest laser profile. These results are promising for direct-drive laser fusion

  20. Development of surface perturbation target and thin silicon foil target used to research Rayleigh-Taylor instability in inertial confinement fusion experiment

    International Nuclear Information System (INIS)

    Zhou Bin; Sun Qi; Huang Yaodong; Shen Jun; Wu Guangming; Wang Jue

    2004-01-01

    The developments of the surface perturbation target and the thin silicon foil target used to research Rayleigh-Taylor instability in the resolved experiments of Inertial Confinement Fusion (ICF) are carried out. Based on the laser interference process combined with the figure-transfer process, the surface perturbation target with sine modulated perturbation is gotten, the wavelength is in the range of 20-100 μm and the amplitude is several micrometers. The thin silicon foil within the thickness about 3-4 μm is prepared by semiconductor process together with heavy-doped self-stop etching. Combined with ion beam etching, the check or the stripe patterns are transferred to the surface of thin silicon foils, and then the silicon grating foil is obtained

  1. Exact Controllability and Perturbation Analysis for Elastic Beams

    International Nuclear Information System (INIS)

    Moreles, Miguel Angel

    2004-01-01

    The Rayleigh beam is a perturbation of the Bernoulli-Euler beam. We establish convergence of the solution of the Exact Controllability Problem for the Rayleigh beam to the corresponding solution of the Bernoulli-Euler beam. Convergence is related to a Singular Perturbation Problem. The main tool in solving this perturbation problem is a weak version of a lower bound for hyperbolic polynomials

  2. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  3. Stationary scattering theory

    International Nuclear Information System (INIS)

    Combes, J.M.

    1980-10-01

    A complementary approach to the time dependent scattering theory for one-body Schroedinger operators is presented. The stationary theory is concerned with objects of quantum theory like scattering waves and amplitudes. In the more recent abstract stationary theory some generalized form of the Lippman-Schwinger equation plays the basic role. Solving this equation leads to a linear map between generalized eigenfunctions of the perturbed and unperturbed operators. This map is the section at fixed energy of the wave-operator from the time dependent theory. Although the radiation condition does not appears explicitely in this formulation it can be shown to hold a posteriori in a variety of situations thus restoring the link with physical theories

  4. Application of linear and higher perturbation theory in reactor physics

    International Nuclear Information System (INIS)

    Woerner, D.

    1978-01-01

    For small perturbations in the material composition of a reactor according to the first approximation of perturbation theory the eigenvalue perturbation is proportional to the perturbation of the system. This assumption is true for the neutron flux not influenced by the perturbance. The two-dimensional code LINESTO developed for such problems in this paper on the basis of diffusion theory determines the relative change of the multiplication constant. For perturbations varying the neutron flux in the space of energy and position the eigenvalue perturbation is also influenced by this changed neutron flux. In such cases linear perturbation theory yields larger errors. Starting from the methods of calculus of variations there is additionally developed in this paper a perturbation method of calculation permitting in a quick and simple manner to assess the influence of flux perturbation on the eigenvalue perturbation. While the source of perturbations is evaluated in isotropic approximation of diffusion theory the associated inhomogeneous equation may be used to determine the flux perturbation by means of diffusion or transport theory. Possibilities of application and limitations of this method are studied in further systematic investigations on local perturbations. It is shown that with the integrated code system developed in this paper a number of local perturbations may be checked requiring little computing time. With it flux perturbations in first approximation and perturbations of the multiplication constant in second approximation can be evaluated. (orig./RW) [de

  5. Superfield perturbation theory and renormalization

    International Nuclear Information System (INIS)

    Delbourgo, R.

    1975-01-01

    The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond

  6. Massive states in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-08-01

    It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)

  7. Numerical solution of the Schroedinger equation with a polynomial potential

    International Nuclear Information System (INIS)

    Campoy, G.; Palma, A.

    1986-01-01

    A numerical method for solving the Schroedinger equation for a potential expressed as a polynomial is proposed. The basic assumption relies on the asymptotic properties of the solution of this equation. It is possible to obtain the energies and the stationary state functions simultaneously. They analyze, in particular, the cases of the quartic anharmonic oscillator and a hydrogen atom perturbed by a quadratic term, obtaining its energy eigenvalues for some values of the perturbation parameter. Together with the Hellmann-Feynman theorem, they use their algorithm to calculate expectation values of x'' for arbitrary positive values of n. 4 tables

  8. The paradox of Schroedinger's waves

    International Nuclear Information System (INIS)

    Gribben, John.

    1987-01-01

    The paper examines the contribution of the work of Erwin Schroedinger in quantum physics. The Schroedinger equation was developed to explain the behavior of electrons within an atom in terms of waves, and it has proved one of the most useful tools in quantum physics. The Schroedinger 'Cat' experiment is also described and discussed. Finally Schroedinger's ideas on chromosomes in molecular biology are briefly outlined. (U.K.)

  9. Dispersive estimates for the Schroedinger and Klein-Gordon equations

    Energy Technology Data Exchange (ETDEWEB)

    Kopylova, Elena A [Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-01-01

    This is a survey of results on the long-time asymptotic behaviour of solutions of the Schroedinger and Klein-Gordon equations in weighted energy norms. Results obtained from 1975 to 2001 in the spectral scattering theory of Agmon, Jensen-Kato, Jensen-Nenciu, and Murata are described for the Schroedinger equation, along with the author's recent results obtained jointly with A.I. Komech for the Klein-Gordon equation. The methods used develop the spectral approach as applied to relativistic equations. Bibliography: 40 titles.

  10. Non-hard sphere thermodynamic perturbation theory.

    Science.gov (United States)

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  11. Very high order lattice perturbation theory for Wilson loops

    International Nuclear Information System (INIS)

    Horsley, R.

    2010-10-01

    We calculate perturbativeWilson loops of various sizes up to loop order n=20 at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to n=20 we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate. (orig.)

  12. Divergence of perturbation theory in large scale structures

    Science.gov (United States)

    Pajer, Enrico; van der Woude, Drian

    2018-05-01

    We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.

  13. Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-06-15

    We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)

  14. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  15. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism

  16. New Approaches and Applications for Monte Carlo Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano

    2017-02-01

    This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.

  17. Holographic stress tensor for non-relativistic theories

    International Nuclear Information System (INIS)

    Ross, Simon F.; Saremi, Omid

    2009-01-01

    We discuss the calculation of the field theory stress tensor from the dual geometry for two recent proposals for gravity duals of non-relativistic conformal field theories. The first of these has a Schroedinger symmetry including Galilean boosts, while the second has just an anisotropic scale invariance (the Lifshitz case). For the Lifshitz case, we construct an appropriate action principle. We propose a definition of the non-relativistic stress tensor complex for the field theory as an appropriate variation of the action in both cases. In the Schroedinger case, we show that this gives physically reasonable results for a simple black hole solution and agrees with an earlier proposal to determine the stress tensor from the familiar AdS prescription. In the Lifshitz case, we solve the linearised equations of motion for a general perturbation around the background, showing that our stress tensor is finite on-shell.

  18. Evolution of curvature perturbation in generalized gravity theories

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.

  19. Perturbation theory from stochastic quantization

    International Nuclear Information System (INIS)

    Hueffel, H.

    1984-01-01

    By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)

  20. Perturbation theory for continuous stochastic equations

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lutovinov, V.S.

    1987-01-01

    The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)

  1. Schroedinger and the interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    Rohrlich, F.

    1987-01-01

    On the occasion of the centennial of his birth, Schroedinger's life and views are sketched and his critique of the interpretation of quantum mechanics accepted at his time is examined. His own interpretation, which he had to abandon after a short time, provides a prime example of the way in which the tentative meaning of central theoretical terms in a new and revolutionary theory often fails. Schroedinger's strong philosophical convictions have played a key role in his refusal to break with many of the notions of classical physics. At the same time, they made him into a keen and incisive critic of the Copenhagen interpretation. His criticism is compared with present views on quantum mechanics

  2. Born approximation to a perturbative numerical method for the solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-01-01

    A step function perturbative numerical method (SF-PN method) is developed for the solution of the Cauchy problem for the second order liniar differential equation in normal form. An important point stressed in the present paper, which seems to have been previously ignored in the literature devoted to the PN methods, is the close connection between the first order perturbation theory of the PN approach and the wellknown Born approximation, and, in general, the connection between the varjous orders of the PN corrections and the Neumann series. (author)

  3. The power of perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Serone, Marco [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Spada, Gabriele [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)

    2017-05-10

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the Picard-Lefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  4. Quasi-degenerate perturbation theory using matrix product states

    International Nuclear Information System (INIS)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost

  5. Quasi-degenerate perturbation theory using matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sandeep, E-mail: sanshar@gmail.com; Jeanmairet, Guillaume [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Alavi, Ali, E-mail: a.alavi@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2016-01-21

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  6. Quasi-degenerate perturbation theory using matrix product states

    Science.gov (United States)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-01

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  7. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  8. State-specific Multi-reference Perturbation Theories with Relaxed Coefficients: Molecular Applications

    Directory of Open Access Journals (Sweden)

    Debashis Mukherjee

    2002-06-01

    Full Text Available Abstract: We present in this paper two new versions of Rayleigh-Schr¨odinger (RS and the Brillouin-Wigner (BW state-specific multi-reference perturbative theories (SSMRPT which stem from our state-specific multi-reference coupled-cluster formalism (SS-MRCC, developed with a complete active space (CAS. They are manifestly sizeextensive and are designed to avoid intruders. The combining coefficients cμ for the model functions φμ are completely relaxed and are obtained by diagonalizing an effective operator in the model space, one root of which is the target eigenvalue of interest. By invoking suitable partitioning of the hamiltonian, very convenient perturbative versions of the formalism in both the RS and the BW forms are developed for the second order energy. The unperturbed hamiltonians for these theories can be chosen to be of both Mφller-Plesset (MP and Epstein-Nesbet (EN type. However, we choose the corresponding Fock operator fμ for each model function φμ, whose diagonal elements are used to define the unperturbed hamiltonian in the MP partition. In the EN partition, we additionally include all the diagonal direct and exchange ladders. Our SS-MRPT thus utilizes a multi-partitioning strategy. Illustrative numerical applications are presented for potential energy surfaces (PES of the ground (1Σ+ and the first delta (1Δ states of CH+ which possess pronounced multi-reference character. Comparison of the results with the corresponding full CI values indicates the efficacy of our formalisms.

  9. Infrared problems in field perturbation theory

    International Nuclear Information System (INIS)

    David, Francois.

    1982-12-01

    The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr

  10. Born approximation to a perturbative numerical method for the solution of the Schrodinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-05-01

    A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)

  11. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  12. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Lindner, Falk

    2013-08-01

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  13. Degenerate R-S perturbation theory

    Science.gov (United States)

    Hirschfelder, J. O.; Certain, P. R.

    1973-01-01

    A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.

  14. Inverse Schroedinger equation and the exact wave function

    International Nuclear Information System (INIS)

    Nakatsuji, Hiroshi

    2002-01-01

    Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem

  15. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  16. Basics of QCD perturbation theory

    International Nuclear Information System (INIS)

    Soper, D.E.

    1997-01-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs

  17. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  18. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  19. Chronoprojective invariance of the five-dimensional Schroedinger formalism

    International Nuclear Information System (INIS)

    Perrin, M.; Burdet, G.; Duval, C.

    1984-10-01

    Invariance properties of the five-dimensional Schroedinger formalism describing a quantum test particle in the Newton-Cartan theory of gravitation are studied. The geometry which underlies these invariance properties is presented as a reduction of the 0(5,2) conformal geometry various applications are given

  20. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  1. A primer for Chiral Perturbative Theory

    International Nuclear Information System (INIS)

    Scherer, Stefan; Schindler, Matthias R.; George Washington Univ., Washington, DC

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  2. Convergent perturbation expansions for Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Mack, G.; Pordt, A.

    1984-09-01

    Mayer perturbation theory is designed to provide computable convergent expansions which permit calculation of Greens functions in Euclidean Quantum Field Theory to arbitrary accuracy, including 'nonperturbative' contributions from large field fluctuations. Here we describe the expansions at the example of 3-dimensional lambdaphi 4 -theory (in continuous space). They are not essentially more complicated than standard perturbation theory. The n-th order term is expressed in terms of 0(n)-dimensional integrals, and is of order lambda 4 if 4k-3<=n<=4k. (orig.)

  3. Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations

    International Nuclear Information System (INIS)

    Orlenko, E. V.; Evstafev, A. V.; Orlenko, F. E.

    2015-01-01

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated

  4. Electron confinement in quantum nanostructures: Self-consistent Poisson-Schroedinger theory

    International Nuclear Information System (INIS)

    Luscombe, J.H.; Bouchard, A.M.; Luban, M.

    1992-01-01

    We compute the self-consistent electron states and confining potential, V(r,T), for laterally confined cylindrical quantum wires at a temperature T from a numerical solution of the coupled Poisson and Schroedinger (PS) equations. Finite-temperature effects are included in the electron density function, n(r,T), via the single-particle density matrix in the grand-canonical ensemble using the self-consistent bound states. We compare our results for a GaAs quantum wire with those obtained previously [J. H. Luscombe and M. Luban, Appl. Phys. Lett. 57, 61 (1990)] from a finite-temperature Thomas-Fermi (TF) approximation. We find that the TF results agree well with those of the more realistic, but also more computationally intensive PS theory, except for low temperatures or for cases where the quantum wire is almost, but not totally, depleted due to a combination of either small geometry, surface boundary conditions, or low doping concentrations. In the latter situations, the number of subbands that are populated is relatively small, and both n(r,T) and V(r,T) exhibit Friedel-type oscillations. Otherwise the TF theory, which is based on free-particle states, is remarkably accurate. We also present results for the partial electron density functions associated with the angular momentum quantum numbers, and discuss their role in populating the quantum wire

  5. Methods and applications of analytical perturbation theory

    International Nuclear Information System (INIS)

    Kirchgraber, U.; Stiefel, E.

    1978-01-01

    This monograph on perturbation theory is based on various courses and lectures held by the authors at the ETH, Zurich and at the University of Texas, Austin. Its principal intention is to inform application-minded mathematicians, physicists and engineers about recent developments in this field. The reader is not assumed to have mathematical knowledge beyond what is presented in standard courses on analysis and linear algebra. Chapter I treats the transformations of systems of differential equations and the integration of perturbed systems in a formal way. These tools are applied in Chapter II to celestial mechanics and to the theory of tops and gyroscopic motion. Chapter III is devoted to the discussion of Hamiltonian systems of differential equations and exposes the algebraic aspects of perturbation theory showing also the necessary modifications of the theory in case of singularities. The last chapter gives the mathematical justification for the methods developed in the previous chapters and investigates important questions such as error estimations for the solutions and asymptotic stability. Each chapter ends with useful comments and an extensive reference to the original literature. (HJ) [de

  6. Perturbation theory and importance functions in integral transport formulations

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory

  7. Where does cosmological perturbation theory break down?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Fontanini, Michele; Penco, Riccardo; Trodden, Mark

    2009-01-01

    It is often assumed that initial conditions for the evolution of a cosmological mode should be set at the time its physical wavelength reaches a cut-off of the order of the Planck length. Beyond that scale, trans-Planckian corrections to the dispersion relation are supposed to become dominant, leading to the breakdown of cosmological perturbation theory. In this paper, we apply the effective field theory approach to the coupled metric-inflaton system in order to calculate the corrections to the power spectrum of scalar and tensor perturbations induced by higher-dimension operators at short wavelengths. These corrections can be interpreted as modifications of the dispersion relation, and thus open a window to probe the validity of cosmological perturbation theory. Both for scalars and tensors, the modifications become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length at which such a breakdown occurs is finite, but much smaller than the Planck length.

  8. A new method for the solution of the Schroedinger equation

    International Nuclear Information System (INIS)

    Amore, Paolo; Aranda, Alfredo; De Pace, Arturo

    2004-01-01

    We present a new method for the solution of the Schroedinger equation applicable to problems of a non-perturbative nature. The method works by identifying three different scales in the problem, which then are treated independently: an asymptotic scale, which depends uniquely on the form of the potential at large distances; an intermediate scale, still characterized by an exponential decay of the wavefunction; and, finally, a short distance scale, in which the wavefunction is sizable. The notion of optimized perturbation is then used in the last two regimes. We apply the method to the quantum anharmonic oscillator and find it suitable to treat both energy eigenvalues and wavefunctions, even for strong couplings

  9. Second-order generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Greenspan, E.; Gilai, D.; Oblow, E.M.

    1978-01-01

    A second-order generalized perturbation theory (GPT) for the effect of multiple system variations on a general flux functional in source-driven systems is derived. The derivation is based on a functional Taylor series in which second-order derivatives are retained. The resulting formulation accounts for the nonlinear effect of a given variation accurate to third order in the flux and adjoint perturbations. It also accounts for the effect of interaction between any number of variations. The new formulation is compared with exact perturbation theory as well as with perturbation theory for altered systems. The usefulnes of the second-order GPT formulation is illustrated by applying it to optimization problems. Its applicability to areas of cross-section sensitivity analysis and system design and evaluation is also discussed

  10. The tension as perturbative parameter in string theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1990-01-01

    We propose an approach to string theory where the zero theory is the null string. We find an explicit form of the propagator for the null string in the momentum space. We show that considering the tension as perturbative parameter, the perturbative series is completely summable and we find the propagator of the bosonic open string with tension T. (author) [pt

  11. Erwin Schroedinger: Collected papers V. 4. General scientific and popular papers

    International Nuclear Information System (INIS)

    Schroedinger, E.

    1984-01-01

    The present volume contains all of Schroedinger's papers, which did not fit naturally into his earlier volumes. It certainly does not contain only popular writings and is perhaps more so than the other volumes a testimony of the spiritual breadth of its author. Schroedinger occupied himself very extensively with the physiological optics. His papers reach from survey articles, where an enormous experimental material is being sifted, to theoretical explorations. A leitmotiv in Schroedinger's thinking, which never left him in peace, was the duality of particle and wave. He looked upon the wave-picture as the one more to the point and in this connection expressed various fruitful thoughts as e.g. that the state of macroscopic bodies would not be eigenstates of the number of particles. He objected against provisional formulations and thus controverted against quantum jumps, which suggest a discontinuous time-development. Schroedinger rejected the radical positivism, which tolerates only directly observable quantities in a theory and he did not look upon the Copenhagen interpretation as the complete solution to the problem. The collection of 59 papers is a goldmine for all pedagogues. Numerous popularizations of Schroedinger's spheres of interest, which go widely beyond his field of exploration prove how simple and clear a topic can be presented. Let it be astronomy or biology, theory of knowledge or Greek mythology, he always discovered the heart of the questions and illustrated it with simple means. He never pretends learning and deepness of thoughts by cryptical remarks and by vague or contradictory formulations. All writings show his way of thinking, which cannot be restricted by authority and objects to any claim of eternal validity. For instance, he analyses various epoche-making arguements of Galileo and finds that his plausible explanation of the tides is wrong. His conceptions on consciousness, free will and human soul are documented in some essays too

  12. Local and accumulated truncation errors in a class of perturbative numerical methods

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.; Corciovei, A.

    1980-01-01

    The approach to the solution of the radial Schroedinger equation using piecewise perturbative theory with a step function reference potential leads to a class of powerful numerical methods, conveniently abridged as SF-PNM(K), where K denotes the order at which the perturbation series was truncated. In the present paper rigorous results are given for the local truncation errors and bounds are derived for the accumulated truncated errors associated to SF-PNM(K), K = 0, 1, 2. They allow us to establish the smoothness conditions which have to be fulfilled by the potential in order to ensure a safe use of SF-PNM(K), and to understand the experimentally observed behaviour of the numerical results with the step size h. (author)

  13. Transport perturbation theory in nuclear reactor analysis

    International Nuclear Information System (INIS)

    Nishigori, Takeo; Takeda, Toshikazu; Selvi, S.

    1985-01-01

    Perturbation theory is formulated on the basis of transport theory to obtain a formula for the reactivity changes due to possible variations of cross sections. Useful applications to cell homogenization are presented for the whole core calculation in transport and in diffusion theories. (author)

  14. Nonlinear theory of the collisional Rayleigh-Taylor instability in equatorial spread F

    International Nuclear Information System (INIS)

    Chaturvedi, P.K.; Ossakow, S.L.

    1977-01-01

    The nonlinear behavior of the collisional Rayleigh-Taylor instability is studied in equatorial Spread F by including a dominant two-dimensional nonlinearity. It is found that on account of this nonlinearity the instability saturates by generating damped higher spatial harmonics. The saturated power spectrum for the density fluctuations is discussed. A comparison between experimental observations and theory is presented

  15. Wilson loops in very high order lattice perturbation theory

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Nakamura, Y.; Perlt, H.; Schiller, A.; Rakow, P.E.L.; Schierholz, G.; Regensburg Univ.

    2009-10-01

    We calculate Wilson loops of various sizes up to loop order n=20 for lattice sizes of L 4 (L=4,6,8,12) using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbative series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate n. A factorial growth of the coefficients could not be confirmed up to n=20. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate left angle (α)/(π)GG right angle. (orig.)

  16. Perturbative Quantum Gravity and its Relation to Gauge Theory

    Directory of Open Access Journals (Sweden)

    Bern Zvi

    2002-01-01

    Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.

  17. Canonical perturbation theory in linearized general relativity theory

    International Nuclear Information System (INIS)

    Gonzales, R.; Pavlenko, Yu.G.

    1986-01-01

    Canonical perturbation theory in linearized general relativity theory is developed. It is shown that the evolution of arbitrary dynamic value, conditioned by the interaction of particles, gravitation and electromagnetic fields, can be presented in the form of a series, each member of it corresponding to the contribution of certain spontaneous or induced process. The main concepts of the approach are presented in the approximation of a weak gravitational field

  18. Perturbative quantum field theory via vertex algebras

    International Nuclear Information System (INIS)

    Hollands, Stefan; Olbermann, Heiner

    2009-01-01

    In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.

  19. Scalar Quantum Electrodynamics: Perturbation Theory and Beyond

    International Nuclear Information System (INIS)

    Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.

    2006-01-01

    In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory

  20. Introduction to non-perturbative heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2010-08-01

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti Λ and λ 1 lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m) n+1 if the theory was treated including (1/m) n terms. Clearly, the weakest point of HQET is that it intrinsically is an expansion. In practise, carrying it

  1. Status of chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-10-01

    A survey is made of semileptonic and nonleptonic kaon decays in the framework of chiral perturbation theory. The emphasis is on what has been done rather than how it was done. The theoretical predictions are compared with available experimental results. (author)

  2. Philosophy of Erwin Schroedinger: a diachronic view of Schroedinger's thoughts

    International Nuclear Information System (INIS)

    Melgar, M.F.

    1988-01-01

    There is no agreement within the scientific community about the philosophy of Schroedinger. Some people think that he was a realist, while others defend him as an idealist. In this paper we study a number of Schroedinger's works and we show that the epithets of realist and idealist do not do him justice. Toward the end we conclude that it would be more adequate to place him in the trend known as the philosophy of immanence

  3. Theory of deep inelastic neutron scattering: Hard-core perturbation theory

    International Nuclear Information System (INIS)

    Silver, R.N.

    1988-01-01

    Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He

  4. Solving the Schroedinger equation using the finite difference time domain method

    International Nuclear Information System (INIS)

    Sudiarta, I Wayan; Geldart, D J Wallace

    2007-01-01

    In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems

  5. Analysis of observables in Chern-Simons perturbation theory

    International Nuclear Information System (INIS)

    Alvarez, M.; Labastida, J.M.F.

    1993-01-01

    Chern-Simons theory with gauge group SU(N) is analyzed from a perturbation theory point of view. Computations up to order g 6 of the vacuum expectation value of the unknot are carried out and it is shown that agreement with the exact result by Witten implies no quantum correction at two loops for the two-point function. In addition, it is shown from a perturbation theory point of view that the framing dependence of the vacuum expectation value of an arbitrary knot factorizes in the form predicted by Witten. (orig.)

  6. A finite element formulation for perturbation theory calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Kaluc, S.

    2004-01-01

    Full text: When the introduced change in the configuration of a nuclear system is neutronically not too significant, the use of the perturbation theory approximation ('the perturbation theory method' or PTM) is usually considered as an alternative to the recalculation of the effective multiplication factor (K eff ) of the modified system ('the diffusion theory method' or DTM) for the determination of the ensuing change in reactivity. In the DTM, the change in reactivity due to the introduced change can be calculated by the multigroup diffusion theory by performing two K eff determinations, one for the original and one for the modified system. The accuracy of this method is only limited by the approximations inherent in the multigroup diffusion theory and the numerical method employed for its solution. The error stemming from the numerical approximation can be nearly eliminated by utilizing a fine enough spatial mesh ad an 'exact' solution is nearly possible. Its basic disadvantage relative to the PTM is the necessity of a new K eff calculation for every change in the configuration no matter how small. On the other hand, if we use PTM, with an only one-time calculation of the flux and the adjoint flux of the original system, the change in reactivity due to any kind of perturbation can be approximately calculated using the changes in the cross section data in the perturbation theory reactivity formula. The accuracy of the PTM is restricted by the size and location of the induced change. In this work, our aim is to assess the accuracy of PTM relative to the DTM and determine criteria for the justification of its use. For all required solutions of the normal and adjoint multigroup diffusion equations, we choose the finite element method (FEM) as our numerical method and a 1-D cylindrical geometry model. The underlying theory is implemented in our FORTRAN program PERTURB. The validation of PERTURB is carried out via comparisons with analytical solutions for bare and

  7. In what sense the canonical perturbation theory is gauge-invariant

    International Nuclear Information System (INIS)

    Chen, C.Y.

    1992-07-01

    It is shown that the time-dependent canonical perturbation theory in classical mechanics has unsatisfactory features when dealing with electromagnetic perturbed fields (the perturbed vector potential A-tilde ≠ 0). As a numerical apparatus, the theory relates to gauge-dependent vectors larger than expected. As an analytic apparatus, the theory is involved in unphysical concepts and yields inherently non-gauge-invariant formalisms. By defining the root cause of the problem, an alternative approach is accordingly introduced. (author). 8 refs, 2 figs

  8. On the domain of string perturbation theory

    International Nuclear Information System (INIS)

    Davis, S.

    1989-06-01

    For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs

  9. Experimental test of Neel's theory of the Rayleigh rule using gradually devitrified Co-based glass

    International Nuclear Information System (INIS)

    Lachowicz, H.K.

    2000-01-01

    It is shown that gradually devitrified Co-based nonmagnetostrictive metallic glass is an excellent model material to verify Louis Neel's theory of the Rayleigh rule. In the course of the calculations, Neel showed that the parameter p=bH c /a (where H c is the coercivity, a and b are the coefficients of a quadratic polynomial expressing the Rayleigh rule) is expected to range between 0.6 (hard magnets) and 1.6 (soft). However, the experimental values of this parameter, reported in the literature for a number of mono- and poly-crystalline magnets, are much greater than those expected from the theory presented by Neel (in some cases even by two orders of magnitude). The measurements, performed for a series of Co-based metallic glass samples annealed at gradually increasing temperature to produce nanocrystalline structures with differentiated density and size of the crystallites, have shown that the calculated values of the parameter p fall within the range expected from Neel's theory

  10. Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium

    Science.gov (United States)

    Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei

    2017-11-01

    Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.

  11. Perturbation theory for water with an associating reference fluid

    Science.gov (United States)

    Marshall, Bennett D.

    2017-11-01

    The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.

  12. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  13. Generalized perturbation theory (GPT) methods. A heuristic approach

    International Nuclear Information System (INIS)

    Gandini, A.

    1987-01-01

    Wigner first proposed a perturbation theory as early as 1945 to study fundamental quantities such as the reactivity worths of different materials. The first formulation, CPT, for conventional perturbation theory is based on universal quantum mechanics concepts. Since that early conception, significant contributions have been made to CPT, in particular, Soodak, who rendered a heuristic interpretation of the adjoint function, (referred to as the GPT method for generalized perturbation theory). The author illustrates the GPT methodology in a variety of linear and nonlinear domains encountered in nuclear reactor analysis. The author begins with the familiar linear neutron field and then generalizes the methodology to other linear and nonlinear fields, using heuristic arguments. The author believes that the inherent simplicity and elegance of the heuristic derivation, although intended here for reactor physics problems might be usefully adopted in collateral fields and includes such examples

  14. Experimental demonstration of the Rayleigh acoustic viscous boundary layer theory.

    Science.gov (United States)

    Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; Tovar, R

    2006-03-01

    Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.

  15. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it

  16. Exact Solutions to Nonlinear Schroedinger Equation and Higher-Order Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Ren Ji; Ruan Hangyu

    2008-01-01

    We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Schroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (GLGRM), the abundant solutions of NLSE and HONLSE are obtained

  17. Asymptotic Value Distribution for Solutions of the Schroedinger Equation

    International Nuclear Information System (INIS)

    Breimesser, S. V.; Pearson, D. B.

    2000-01-01

    We consider the Dirichlet Schroedinger operator T=-(d 2 /d x 2 )+V, acting in L 2 (0,∞), where Vis an arbitrary locally integrable potential which gives rise to absolutely continuous spectrum. Without any other restrictive assumptions on the potential V, the description of asymptotics for solutions of the Schroedinger equation is carried out within the context of the theory of value distribution for boundary values of analytic functions. The large x asymptotic behaviour of the solution v(x,λ) of the equation Tf(x,λ)=λf(x,λ), for λ in the support of the absolutely continuous part μ a.c. of the spectral measure μ, is linked to the spectral properties of this measure which are determined by the boundary value of the Weyl-Titchmarsh m-function. Our main result (Theorem 1) shows that the value distribution for v'(N,λ)/v(N,λ) approaches the associated value distribution of the Herglotz function m N (z) in the limit N → ∞, where m N (z) is the Weyl-Titchmarsh m-function for the Schroedinger operator -(d 2 /d x 2 )+Vacting in L 2 (N,∞), with Dirichlet boundary condition at x=N. We will relate the analysis of spectral asymptotics for the absolutely continuous component of Schroedinger operators to geometrical properties of the upper half-plane, viewed as a hyperbolic space

  18. The essential spectrum of Schroedinger operators with asymptotically constant magnetic fields on the Poincare upper-half plane

    International Nuclear Information System (INIS)

    Inahama, Yuzuru; Shirai, Shin-ichi

    2003-01-01

    We study the essential spectrum of the magnetic Schroedinger operators on the Poincare upper-half plane and establish a hyperbolic analog of Iwatsuka's result [J. Math. Kyoto Univ. 23(3), 475-480 (1983)] on the stability of the essential spectrum under perturbations from constant magnetic fields

  19. de Sitter limit of inflation and nonlinear perturbation theory

    DEFF Research Database (Denmark)

    R. Jarnhus, Philip; Sloth, Martin Snoager

    2007-01-01

    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...

  20. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  1. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  2. Perturbation theory instead of large scale shell model calculations

    International Nuclear Information System (INIS)

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  3. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  4. Thermal gluons beyond pure perturbation theory

    International Nuclear Information System (INIS)

    Reinbach, J.

    2000-01-01

    The perturbative treatment of non-abelian gauge theory at high temperature leads to a threshold in calculation because of chromomagnetic effects. Infinitely many terms of the same order of magnitude arise. The numerical series to be summed is contained in the part of the theory reduced on 3D, which was recently treated non-perturbative as 2+1D Yang-Mills theory at T=0 by Karabali, Kim and Nair. In the thesis in question the exact 3D results are combined with the thermal 4D diagrammatic. In particular the splitting of the space-part of the transverse self-energy in the static limit is treated. As expected, the 3D subsystem can separate as regularized 3D Yang-Mills theory from the 4D structure. In 1-loop order the regulators are received explicit. For 2-loop order it can be shown amongst other things, that the generic contribution with hard inner momenta vanishes. It is examined, how the magnetic mass could follow. Under pressure it is possible to separate the 3D part in 1- and 2-loop order and to receive regulators [de

  5. Quantum theory of single events: Localized de Broglie-wavelets, Schroedinger waves and classical trajectories

    International Nuclear Information System (INIS)

    Barut, A.O.

    1990-06-01

    For an arbitrary potential V with classical trajectories x-vector=g-vector(t) we construct localized oscillating three-dimensional wave lumps ψ(x-vector,t,g-vector) representing a single quantum particle. The crest of the envelope of the ripple follows the classical orbit g-vector(t) slightly modified due to potential V and ψ(x-vector,t;g-vector) satisfies the Schroedinger equation. The field energy, momentum and angular momentum calculated as integrals over all space are equal to particle energy, momentum and angular momentum. The relation to coherent states and to Schroedinger waves are also discussed. (author). 6 refs

  6. On the chirally rotated Schroedinger functional with Wilson fermions

    International Nuclear Information System (INIS)

    Gonzalez Lopez, Jenifer

    2011-01-01

    There are many phenomena in nature, which are closely linked to the low energy regime of QCD. From a theoretical point of view, these low energy phenomena can be dealt with only by means of non-perturbative methods. It is the central goal of this thesis to provide a framework for such a nonperturbative renormalization. For that purpose, we employ a 4-dimensional lattice as a regulator of QCD. As a renormalization scheme, we propose a finite volume Schroedinger functional scheme and here in particular, the chirally rotated Schroedinger functional (χSF). We first perform analytical studies of the χSF at tree-level of perturbation theory, in the continuum and on the lattice. We study the eigenvalue spectrum of the continuum Dirac operator, equipped with chirally rotated SF boundary conditions, and derive the corresponding quark propagator. We then determine the tree-level quark propagator on the lattice, employing massless Wilson fermions as a regulator of the theory. Beyond tree-level, all studies are performed in the quenched approximation of QCD, as a first, computationally much simpler step to understand the properties of the newly proposed χSF scheme. One of the main targets of the present work, has been to perform the non-perturbative tuning of the two required coefficients of the χSF scheme, such that a well defined continuum limit can be reached. We demonstrate, as the first main result of this thesis, that the tuning is feasible and that, moreover, physical quantities are insensitive to the particular tuning condition. As in any lattice regularization with SF-like boundary conditions, there are also in the χSF a couple of counterterms at the boundaries, whose coefficients need to be tuned in order to remove the O(a) discretization effects originated at the boundaries. However, besides these boundary O(a) effects, the χSF is expected to be compatible with bulk automatic O(a)-improvement. We show here that, indeed, the scaling behavior of physical

  7. On the chirally rotated Schroedinger functional with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, Jenifer

    2011-05-25

    There are many phenomena in nature, which are closely linked to the low energy regime of QCD. From a theoretical point of view, these low energy phenomena can be dealt with only by means of non-perturbative methods. It is the central goal of this thesis to provide a framework for such a nonperturbative renormalization. For that purpose, we employ a 4-dimensional lattice as a regulator of QCD. As a renormalization scheme, we propose a finite volume Schroedinger functional scheme and here in particular, the chirally rotated Schroedinger functional ({chi}SF). We first perform analytical studies of the {chi}SF at tree-level of perturbation theory, in the continuum and on the lattice. We study the eigenvalue spectrum of the continuum Dirac operator, equipped with chirally rotated SF boundary conditions, and derive the corresponding quark propagator. We then determine the tree-level quark propagator on the lattice, employing massless Wilson fermions as a regulator of the theory. Beyond tree-level, all studies are performed in the quenched approximation of QCD, as a first, computationally much simpler step to understand the properties of the newly proposed {chi}SF scheme. One of the main targets of the present work, has been to perform the non-perturbative tuning of the two required coefficients of the {chi}SF scheme, such that a well defined continuum limit can be reached. We demonstrate, as the first main result of this thesis, that the tuning is feasible and that, moreover, physical quantities are insensitive to the particular tuning condition. As in any lattice regularization with SF-like boundary conditions, there are also in the {chi}SF a couple of counterterms at the boundaries, whose coefficients need to be tuned in order to remove the O(a) discretization effects originated at the boundaries. However, besides these boundary O(a) effects, the {chi}SF is expected to be compatible with bulk automatic O(a)-improvement. We show here that, indeed, the scaling behavior

  8. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  9. Singular perturbation theory for interacting fermions in two dimensions

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.

    2004-11-01

    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T 2 . It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)

  10. Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory

    Science.gov (United States)

    Matsubara, Takahiko

    2003-02-01

    We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.

  11. Stability of plane wave solutions of the two-space-dimensional nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Martin, D.U.; Yuen, H.C.; Saffman, P.G.

    1980-01-01

    The stability of plane, periodic solutions of the two-dimensional nonlinear Schroedinger equation to infinitesimal, two-dimensional perturbation has been calculated and verified numerically. For standing wave disturbances, instability is found for both odd and even modes; as the period of the unperturbed solution increases, the instability associated with the odd modes remains but that associated with the even mode disappears, which is consistent with the results of Zakharov and Rubenchik, Saffman and Yuen and Ablowitz and Segur on the stability of solitons. In addition, we have identified travelling wave instabilities for the even mode perturbations which are absent in the long-wave limit. Extrapolation to the case of an unperturbed solution with infinite period suggests that these instabilities may also be present for the soliton. In other words, the soliton is unstable to odd, standing-wave perturbations, and very likely also to even, travelling-wave perturbations. (orig.)

  12. On the meaning of perturbation expansions in quantum field theory

    International Nuclear Information System (INIS)

    Burdik, C.; Chyla, J.

    1987-01-01

    We reformulate perturbation expansions in renormalized quantum field theories in a way that allows straightforward handling of situations when in the conventional approach (i.e. in fixed renormalization scheme) these expansions are divergent. In our approach the results of perturbation calculations of physical quantities appear in the form of (under certain circumstances) convergent expansions in powers of a free parameter χ, characterising the procedure involved. This inherent ambiguity of perturbative calculations is conjectures to be an expression of the underlaying ambiguity in the separation of the full theory into its perturbative and nonperturbative parts. The close connection of our results with the Borel summation technique is demonstrated and their relation to conventional perturbation expansions in fixed renormalization scheme is clarified

  13. Perturbation Theory of Massive Yang-Mills Fields

    Science.gov (United States)

    Veltman, M.

    1968-08-01

    Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.

  14. Domain walls and perturbation theory in high-temperature gauge theory: SU(2) in 2+1 dimensions

    International Nuclear Information System (INIS)

    Korthals Altes, C.; Michels, A.; Teper, M.; Stephanov, M.

    1997-01-01

    We study the detailed properties of Z 2 domain walls in the deconfined high-temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter g 2 /T is close to unity. The quantities studied include the surface tension, the action density profiles, roughening, and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool. copyright 1997 The American Physical Society

  15. Non-perturbative aspects of string theory from elliptic curves

    International Nuclear Information System (INIS)

    Reuter, Jonas

    2015-08-01

    We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 , U(1) and Z 3 . The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 and U(1) we discuss the construction of vertical G 4 fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F 1 , local F 2 and the resolution of C 3 /Z 5 . The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F 2 against numerical calculations.

  16. Perturbative Gravity and Gauge Theory Relations: A Review

    Directory of Open Access Journals (Sweden)

    Thomas Søndergaard

    2012-01-01

    Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.

  17. Rayleigh-Taylor analysis in a laser-induced plasma

    International Nuclear Information System (INIS)

    Marin, R A; Gonzales, C A; Riascos, H

    2012-01-01

    We report the conditions (plasma parameters) under which the Rayleigh-Taylor Instability (RTI) develops in an Al plasma produced by a Nd:Yag pulsed laser with a fluence range of 1 to 4 J/cm 2 , wavelength of 1064nm and 10Hz repetition rate. The used data correspond to different pressure values of the ambient N atmosphere. From previous works, we took the RTI growth rate form. From the perturbation theory the instability amplitude is proportional to e -ηt . Using the drag model, we calculated the plume dynamics equations integrating the instability term and plotted the instability growth profile with the delay time values to get critical numbers for it, in order to show under which conditions the RTI appears.

  18. Perturbing the ground ring of 2D string theory

    CERN Document Server

    Barbón, José L F

    1992-01-01

    We use free field techniques in D=2 string theory to calculate the perturbation of the special state algebras when the cosmologi- cal constant is turned on. In particular, we find that the "ground cone" preserved by the ring structure is promoted to a three dimen- sional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) a three dimensional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) current algebra of moduli deformations is computed completely, and no simple geometrical inter- pretation is found. We also quote some facts concerning the Liouville/matrix model dictio- nary in this class of theories.

  19. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-01-01

    these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing

  20. Principles of chiral perturbation theory

    International Nuclear Information System (INIS)

    Leutwyler, H.

    1995-01-01

    An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)

  1. Random Schroedinger operators and the theory of disordered systems: some rigorous results

    International Nuclear Information System (INIS)

    Kunz, H.; Souillard, B.

    1981-01-01

    The authors report results on a class of finite difference Schroedinger operators with stochastic potentials. The Hamiltonian is then H(V)=-Δ+V; where Δ is the discretized Laplacian and the potential V acts as a multiplication operator. The potential V is random. (Auth.)

  2. Two-dimensional simulation of the hydromagnetic Rayleigh-Taylor instability in an imploding foil plasma

    International Nuclear Information System (INIS)

    Roderick, N.F.; Hussey, T.W.; Faehl, R.J.; Boyd, R.W.

    1978-01-01

    Two-dimensional (r-z) magnetohydrodynamic simulations of the electromagnetic implosion of metallic foil plasmas show, for certain initial configurations, a tendency to develop large-amplitude perturbations characteristic of the hydromagnetic Rayleigh-Taylor instability. These perturbations develop at the plasma magnetic field interface for plasma configurations where the density gradient scale length, the characteristic dimension for the instability, is short. The effects on the plasma dynamics of the implosion will be discussed for several initial foil configurations. In general, the growth rates and linear mode structure are found to be influenced by the plasma shell thickness and density gradient scale length, in agreement with theory. The most destructive modes are found to be those with wavelengths of the order of the plasma shell thickness

  3. Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation

    International Nuclear Information System (INIS)

    Pletzer, A.; Zakharov, L.E.

    1999-01-01

    The theory of perturbed magnetohydrodynamic equilibria is presented for different formulations of the tokamak equilibrium problem. For numerical codes, it gives an explicit Newton scheme for solving the Grad-Shafranov equation subject to different constraints. The problem of stability of axisymmetric modes is shown to be a particular case of the equilibrium perturbation theory

  4. Energy momentum tensor in local causal perturbation theory

    International Nuclear Information System (INIS)

    Prange, D.

    2001-01-01

    We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)

  5. Cumulants in perturbation expansions for non-equilibrium field theory

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-11-01

    The formulation of perturbation expansions for a quantum field theory of strongly interacting systems in a general non-equilibrium state is discussed. Non-vanishing initial correlations are included in the formulation of the perturbation expansion in terms of cumulants. The cumulants are shown to be the suitable candidate for summing up the perturbation expansion. Also a linked-cluster theorem for the perturbation series with cumulants is presented. Finally a generating functional of the perturbation series with initial correlations is studied. We apply the methods to a simple model of a fermion-boson system. (orig.)

  6. Perturbative and global anomalies in supergravity theories

    International Nuclear Information System (INIS)

    Sezgin, E.

    1986-09-01

    Perturbative and global anomalies in supergravity theories are reviewed. The existence of a matter and gauge coupled supergravity theory in six dimensions with E 6 xE 7 xU(1) symmetry and highly nontrivial anomaly cancellations is emphasised. The possible string origin of this theory is posed as an open problem, study of which may lead to discovery of new ways to construct/compactify heterotic superstrings. (author)

  7. On the recovering of a coupled nonlinear Schroedinger potential

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana, Atzcapotzalco, DF (Mexico)]. E-mail: ccg@hp9000a1.uam.mx

    2000-04-28

    We establish a priori conditions for a Gel'fand-Levitan (GL) integral using some results of the Fredholm theory. As consequence, we obtain a recovering formula for the potential of the coupled nonlinear Schroedinger equations. The remarkable fact is that the recovering formula is given in terms of the solutions of a classical GL-integral equation. (author)

  8. Erwin Schroedinger, Philosophy and the birth of quantum mechanics

    International Nuclear Information System (INIS)

    Bitbol, M.; Darrigol, O.

    1992-01-01

    The purpose of this collection of articles is to highlight the relation between Schroedinger's less well known research and his thoughts on quantum mechanics: philosophy, statistical mechanics, general relativity, cosmology, unified field theories, etc. Some articles are devoted to contemporary extensions of his work, and in particular on current echoes of his interpretation of quantum mechanics

  9. Gravitational perturbation theory and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik

    1975-01-01

    This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.

  10. Gribov ambiguity, perturbation theory, and confinement

    International Nuclear Information System (INIS)

    Greensite, J.P.

    1978-01-01

    The generating functional proposed for gauge theories by Bender, Eguchi, and Pagels (BEP) is shown to be equivalent to a truncated form of the functional integral, in which only one field configuration from each gauge-equivalent Gribov set contributes to the functional integration. The standard perturbation technique provides a method of realizing this truncation condition. It is shown that any gauge-covariant quantity (such as the quark N-point functions), evaluated by perturbating around a field configuration gauge-equivalent to A = 0, is related by a gauge transformation to the same quantity evaluated perturbatively around the trivial vacuum. It follows that, contrary to the conclusion of BEP, the existence of degeneracies in the Coulomb gauge-fixing condition (the Gribov ambiguity) is not directly related to the physics of confinement

  11. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Non-preturbative tuning

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-08-23

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)

  12. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Non-preturbative tuning

    International Nuclear Information System (INIS)

    Lopez, J. Gonzalez; Jansen, K.; Renner, D.B.; Shindler, A.

    2012-01-01

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions up to O(a) boundary contributions. The elimination of bulk O(a) effects requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in a quenched setup for several values of the renormalized gauge coupling, from perturbative to nonperturbative regimes, and for a range of lattice spacings. We also check that the correct boundary conditions and symmetries are restored in the continuum limit. (orig.)

  13. Influence of gradual density transition and nonlinear saturation on Rayleigh-Taylor instability growth

    International Nuclear Information System (INIS)

    Jacobs, H.

    1984-08-01

    Linear theory of Rayleigh-Taylor instability growth at a density profile which varies exponentially between regions of constant density is discussed in detail. The exact theory provides an approximate but conservative simple formula for the growth constant and it shows that a hitherto widely used theory erroneously underestimates the growth constant. A simple but effective ''synthetical model'' of nonlinear bubble growth is obtained from a synthesis of linear theory and constant terminal bubble speed. It is applied to pusher shell break-up in an inertial confinement fusion pellet to determine the maximum allowable initial perturbations and the most dangerous wavelength. In a situation typical of heavy ion drivers it is found that the allowable initial perturbations are increased by a few orders of magnitude by the gradual density transition and another order of magnitude by nonlinear saturation of the bubble speed. The gradual density transition also shifts the most dangerous wavelength from about once to about four times the minimum pusher shell thickness. The following topics are treated briefly: Reasons conflicting with use of the synthetical model to decide whether the pusher shell in a certain simulation will be broken up; other nonlinear theories available in the literature; further realistic effects that might aggravate instability growth. (orig.) [de

  14. Schroedinger's variational method of quantization revisited

    International Nuclear Information System (INIS)

    Yasue, K.

    1980-01-01

    Schroedinger's original quantization procedure is revisited in the light of Nelson's stochastic framework of quantum mechanics. It is clarified why Schroedinger's proposal of a variational problem led us to a true description of quantum mechanics. (orig.)

  15. Integrability in the theory of Schroedinger operator and harmonic analysis

    International Nuclear Information System (INIS)

    Chalykh, O.A.; Veselov, A.P.

    1993-01-01

    The algebraic integrability for the Schroedinger equation in R n and the role of the quantum Calogero-Sutherland problem and root systems in this context are discussed. For the special values of the parameters in the potential the explicit formula for the eigenfunction of the corresponding Sutherland operator is found. As an application the explicit formula for the zonal spherical functions on the symmetric spaces SU 2 * n /Sp n (type A II in Cartan notations) is presented. (orig.)

  16. Multiparticle bound states in QED

    International Nuclear Information System (INIS)

    Buchmueller, W.; Dietz, K.

    1979-09-01

    The relation between multiparticle Schroedinger equations and the underlying field theory for weakly coupled systems is clarified. A systematic perturbation theory for the energy levels is presented the first term of which is the eigenvalue of a Schroedinger equation with relativistic kinematics. (orig.)

  17. Inflation and the theory of cosmological perturbations

    International Nuclear Information System (INIS)

    Riotto, A.

    2003-01-01

    These lectures provide a pedagogical introduction to inflation and the theory of cosmological perturbations generated during inflation which are thought to be the origin of structure in the universe. (author)

  18. P-adic Schroedinger type equation

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1988-12-01

    In p-adic quantum mechanics a Schroedinger type equation is considered. We discuss the appropriate notion of differential operators. A solution of the Schroedinger type equation is given. A new set of vacuum states for the p-adic quantum harmonic oscillator is presented. The correspondence principle with the standard quantum mechanics is discussed. (orig.)

  19. Wilson loops to 20th order numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Hotzel, G.; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Millo, R.; Rakow, P.E.L. [Liverpool Univ. (Germany). Theoretical Physics Div.; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to n=20 we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.

  20. M-momentum transfer between gravitons, membranes, and fivebranes as perturbative gauge theory processes

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Kraus, P.

    1998-01-01

    Polchinski and Pouliot have shown that M-momentum transfer between membranes in supergravity can be understood as a non-perturbative instanton effect in gauge theory. Here we consider a dual process: electric flux transmission between D-branes. We show that this process can be described in perturbation theory as virtual string pair creation, and is closely related to Schwinger's treatment of the pair creation of charged particles in a uniform electric field. Through the application of dualities, our perturbative calculation gives results for various non-perturbative amplitudes, including M-momentum transfer between gravitons, membranes and longitudinal fivebranes. Thus perturbation theory plus dualities are sufficient to demonstrate agreement between supergravity and gauge theory for a number of M-momentum transferring processes. A variety of other processes where branes are transmitted between branes, e.g. (p,q)-string transmission in IIB theory, can also be studied. We discuss the implications of our results for proving the eleven-dimensional Lorentz invariance of matrix theory. (orig.)

  1. Nonstationary quantum mechanics. 4. Nonadiabatic properties of the Schroedinger equation in adiabatic processes

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, N S [Low Temperature Department of the Institute of Solid State Physics of the Bulgarian Academy of Sciences, Sofia

    1981-04-01

    It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article rests essentially on the ideology of the preceding articles, in particular article I.

  2. Nonstationary quantum mechanics. IV. Nonadiabatic properties of the Schroedinger equation in adiabatic processes

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, N S

    1981-04-01

    It is shown that the nonstationary Schroedinger equation does not satisfy a well-known adiabatical principle in thermodynamics. A ''renormalization procedure'' based on the possible existence of a time-irreversible basic evolution equation is proposed with the help of which one comes to agreement in a variety of specific cases of an adiabatic inclusion of a perturbing potential. The ideology of the present article IV rests essentially on the ideology of the preceding articles, in particular article I.

  3. Factorization theorems in perturbative quantum field theory

    International Nuclear Information System (INIS)

    Date, G.D.

    1982-01-01

    This dissertation deals with factorization properties of Green functions and cross-sections in perturbation theory. It consists of two parts. Part I deals with the factorization theorem for the Drell-Yan cross-section. The new approach developed for this purpose is based upon a renormalization group equation with a generalized anomalous dimension. Using an alternate form of factorization for the Drell-Yan cross-section, derived in perturbation theory, a corresponding generalized anomalous dimension is defined, and explicit Feynman rules for its calculation are given. The resultant renormalization group equation is solved by a formal solution which is exhibited explicitly. Simple, explicit calculations are performed which verify Mueller's conjecture for the recovery of the usual parton model results for the Drell-Yan cross-section. The approach developed in this work offers a general framework to analyze the role played by the group factors in the cancellation of the soft divergences, and study their influence on the asymptotic behavior. Part II deals with factorization properties of the Green functions in position space. In this part, a Landau equation analysis is carried out for the singularities of the position space Green fucntions, in perturbation theory with the theta 4 interaction Lagrangian. A physical picture interpretation is given for the corresponding Landau equations. It is used to suggest a light-cone expansion. Using a power counting method, a formal derivation of the light-cone expansion for the two point function, the three point function and a product of two currents, is given without assuming a short distance expansion. Possible extensions to other theories is also considered

  4. An improved thermodynamic perturbation theory for Mercedes-Benz water.

    Science.gov (United States)

    Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A

    2007-11-07

    We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.

  5. An algebraic formulation of quantum electrodynamics. [Fermi method, Schroedinger representation, Weylalgebra

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J M

    1975-01-01

    A reappraisal of electromagnetic field theories is made and an account is given of the radiation gauge, Gupta-Bleuler and Fermi methods of quantitising the electromagnetic fields. The Weyl algebra of the vector potential is constructed and the Fermi method is then related to a certain representation of the algebra. The representation is specified by a generating functional for a state on the algebra. The Weyl algebra of the physical field is then constructed as a factor algebra. The Schroedinger representation of the algebra is then studied and it was found that the Fermi method is just a generalization of this representation to an infinite number of degrees of freedom. The Schroedinger representation of Fermi method is constructed.

  6. Perturbation theory via Feynman diagrams in classical mechanics

    OpenAIRE

    Penco, R.; Mauro, D.

    2006-01-01

    In this paper we show how Feynman diagrams, which are used as a tool to implement perturbation theory in quantum field theory, can be very useful also in classical mechanics, provided we introduce also at the classical level concepts like path integrals and generating functionals.

  7. S-matrices for perturbations of certain conformal field theories

    International Nuclear Information System (INIS)

    Freund, P.G.O.; Klassen, T.R.; Melzer, E.; Chicago Univ., IL

    1989-01-01

    We present a family of factorizable S-matrix theories in 1+1 dimensions with an arbitrary number N of particles of distinct masses, and find the conservation laws of these theories. An analysis of the conservation laws of the family of nonunitary CFTs with central charge c=c 2,2N+3 =-2N(6N+5)/(2N+3) perturbed by the φ (1,3) operator, leads us to conjecture the identification of these perturbed CFTs with the S-matrix theories we found. The case N=1 was treated by Cardy and Mussardo. We also present the S-matrix of an E 7 -related unitary model. (orig.)

  8. Perturbation theories for the dipolar fluids

    International Nuclear Information System (INIS)

    Lee, L.L.; Chung, T.H.

    1983-01-01

    We derive here four different perturbation equations for the calculation of the angular pair correlation functions of dipolar fluids; namely, the first order y-expansion, the modified Percus--Yevik (MPY) expansion, the modified hypernetted chain (MHNC) expansion, and the modified linearized hypernetted chain (MLHNC) equation. Both the method of the functional expansion and the method of the cluster integrals are utilized. Comparison with other perturbation theories (e.g., the Melnyk--Smith equation) is made. While none of the theories is exact, as shown by the cluster diagrams, the MLHNC and the MHNC contain more diagrams than, say, the MPY and y-expansion. The y-expansion equation can be improved by including the correction terms to the Kirkwood superposition approximation for the triplet correlation function. For example, the inclusion of the correction term rho∫d4h(14)h(24)h(34) in a formula given by Henderson, is shown to improve substantially the y-expansion equation. We examine the performance of two of the theories: the y-expansion and the MLHNC equation for a Stockmayer (dipolar) fluid with a reduced dipole moment μ/sup asterisk2/ [ = μ 2 /(epsilonsigma 3 )] = 1.0. Comparison with Monte Carlo simulation results of Adams et al. and with other theories (e.g., the QHNC equation) shows that our results are reasonable. Further improvements of the equations are also pointed out

  9. Quasiconfigurations and the theory of effective interactions

    International Nuclear Information System (INIS)

    Poves, A.; Zuker, A.

    1980-01-01

    Perturbation theory is reformulated. Schroedinger's equation is recast as a non linear integral equation which yields by Neumann expansion a linked cluster series for the degenerate, quasi degenerate or non degenerate problem. An effective interaction theory emerges that can be formulated in a biorthogonal basis leading to a non Hermitian secular problem. Hermiticity can be recovered in a clear and rigorous way. As the mathematical form of the theory is dictated by the request of physical clarity the latter is obtained naturally. When written in diagrammatic many body language, the integral equation produces a set of linked coupled equations for the degenerate case. The classic summations (Brueckner, Bethe-Faddeev and RPA) emerge naturally. Possible extensions of nuclear matter theory are suggested

  10. Scale calculus and the Schroedinger equation

    International Nuclear Information System (INIS)

    Cresson, Jacky

    2003-01-01

    This paper is twofold. In a first part, we extend the classical differential calculus to continuous nondifferentiable functions by developing the notion of scale calculus. The scale calculus is based on a new approach of continuous nondifferentiable functions by constructing a one parameter family of differentiable functions f(t,ε) such that f(t,ε)→f(t) when ε goes to zero. This led to several new notions as representations: fractal functions and ε-differentiability. The basic objects of the scale calculus are left and right quantum operators and the scale operator which generalizes the classical derivative. We then discuss some algebraic properties of these operators. We define a natural bialgebra, called quantum bialgebra, associated with them. Finally, we discuss a convenient geometric object associated with our study. In a second part, we define a first quantization procedure of classical mechanics following the scale relativity theory developed by Nottale. We obtain a nonlinear Schroedinger equation via the classical Newton's equation of dynamics using the scale operator. Under special assumptions we recover the classical Schroedinger equation and we discuss the relevance of these assumptions

  11. Lie transforms and their use in Hamiltonian perturbation theory

    International Nuclear Information System (INIS)

    Cary, J.R.

    1978-06-01

    A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here

  12. Screening of Coulomb interaction and many-body perturbation theory in atoms

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.

    1988-01-01

    Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example

  13. Manipulating Rayleigh-Taylor Growth Using Adjoints

    Science.gov (United States)

    Kord, Ali; Capecelatro, Jesse

    2017-11-01

    It has been observed that initial interfacial perturbations affect the growth of Rayleigh-Taylor (RT) instabilities. However, it remains to be seen to what extent the perturbations alter the RT growth rate. Direct numerical simulations (DNS) provide a powerful means for studying the effects of initial conditions (IC) on the growth rate. However, a brute-force approach for identifying optimal initial perturbations is not practical via DNS. In addition, identifying sensitivity of the RT growth to the large number of parameters used in defining the IC is computationally expensive. A discrete adjoint is formulated to measure sensitivities of multi-mode RT growth to ICs in a high-order finite difference framework. The sensitivity is used as a search direction for adjusting the initial perturbations to both maximize and suppress the RT growth rate during its non-linear regime. The modes that contribute the greatest sensitivity are identified, and optimized perturbation energy spectrum are reported. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.

  14. A new perturbative approximation applied to supersymmetric quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.

    1988-01-01

    We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  15. Implementation of static generalized perturbation theory for LWR design applications

    International Nuclear Information System (INIS)

    Byron, R.F.; White, J.R.

    1987-01-01

    A generalized perturbation theory (GPT) formulation is developed for application to light water reactor (LWR) design. The extensions made to standard generalized perturbation theory are the treatment of thermal-hydraulic and fission product poisoning feedbacks, and criticality reset. This formulation has been implemented into a standard LWR design code. The method is verified by comparing direct calculations with GPT calculations. Data are presented showing that feedback effects need to be considered when using GPT for LWR problems. Some specific potential applications of this theory to the field of LWR design are discussed

  16. Non-perturbative field theory/field theory on a lattice

    International Nuclear Information System (INIS)

    Ambjorn, J.

    1988-01-01

    The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas

  17. Perturbative algebraic quantum field theory an introduction for mathematicians

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...

  18. Properties of squeezed Schroedinger cats

    International Nuclear Information System (INIS)

    Obada, A.S.F.; Omar, Z.M.

    1995-09-01

    In this article we investigate some statistical properties of the even and odd squeezed (squeezed Schroedinger cat) states. The quasi-probability distribution functions especially W(α) and Q(α) are calculated and discussed for these states. The phase distribution function is discussed. A generation scheme is proposed for either the squeezed generalized Schroedinger cat, or the squeezed number state. (author). 35 refs, 5 figs

  19. The Schroedinger's paradox and the tranformation of quantum systems

    International Nuclear Information System (INIS)

    Bitsakis, E.I.

    1980-01-01

    The Schroedinger's paradox is analysed, as an illustration of certain weaknesses of the Copenhagen's interpretation of quantum mechanics and of the limits of the quantum-mechanical description of phenomena. A realistic approach of the paradox indicates the necessity of a theory that would permit not only the calculation of probabilities, but also the description of physical processes, as taking place in space and time

  20. Perturbation theory with instantons

    International Nuclear Information System (INIS)

    Carruthers, P.; Pinsky, S.S.; Zachariasen, F.

    1977-05-01

    ''Perturbation theory'' rules are developed for calculating the effect of instantons in a pure Yang-Mills theory with no fermions, in the ''dilute gas'' approximation in which the N-instanton solution is assumed to be the sum of N widely separated one-instanton solutions. These rules are then used to compute the gluon propagator and proper vertex function including all orders of the instanton interaction but only to lowest order in the gluon coupling. It is to be expected that such an approximation is valid only for momenta q larger than the physical mass μ. The result is that in this regime instantons cause variations in the propagator and vertex of the form (μ 2 /q 2 )/sup -8π 2 b/ where b is the coefficient in the expansion of the β function: β = bg 3 +...

  1. Nonstandard approximation schemes for lower dimensional quantum field theories

    International Nuclear Information System (INIS)

    Fitzpatrick, D.A.

    1981-01-01

    The purpose of this thesis has been to apply two different nonstandard approximation schemes to a variety of lower-dimensional schemes. In doing this, we show their applicability where (e.g., Feynman or Rayleigh-Schroedinger) approximation schemes are inapplicable. We have applied the well-known mean-field approximation scheme by Guralnik et al. to general lower dimensional theories - the phi 4 field theory in one dimension, and the massive and massless Thirring models in two dimensions. In each case, we derive a bound-state propagator and then expand the theory in terms of the original and bound-state propagators. The results obtained can be compared with previously known results thereby show, in general, reasonably good convergence. In the second half of the thesis, we develop a self-consistent quantum mechanical approximation scheme. This can be applied to any monotonic polynomial potential. It has been applied in detail to the anharmonic oscillator, and the results in several analytical domains are very good, including extensive tables of numerical results

  2. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  3. Perturbation theory for arbitrary coupling strength?

    Science.gov (United States)

    Mahapatra, Bimal P.; Pradhan, Noubihary

    2018-03-01

    We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.

  4. Regular perturbation theory for two-electron atoms

    International Nuclear Information System (INIS)

    Feranchuk, I.D.; Triguk, V.V.

    2011-01-01

    Regular perturbation theory (RPT) for the ground and excited states of two-electron atoms or ions is developed. It is shown for the first time that summation of the matrix elements from the electron-electron interaction operator over all intermediate states can be calculated in a closed form by means of the two-particle Coulomb Green's function constructed in the Letter. It is shown that the second order approximation of RPT includes the main part of the correlation energy both for the ground and excited states. This approach can be also useful for description of two-electron atoms in external fields. -- Highlights: → We develop regular perturbation theory for the two-electron atoms or ions. → We calculate the sum of the matrix elements over all intermediate states. → We construct the two-particle Coulomb Green's function.

  5. Perturbation theory around the Wess-Zumino-Witten model

    International Nuclear Information System (INIS)

    Hasseln, H. v.

    1991-05-01

    We consider a perturbation of the Wess-Zumino-Witten model in 2D by a current-current interaction. The β-function is computed to third order in the coupling constant and a nontrivial fixedpoint is found. By non-abelian bosonization, this perturbed WZW-model is shown to have the same β-function (at least to order g 2 ) as the fermionic theory with a four-fermion interaction. (orig.) [de

  6. Discrete coupled derivative nonlinear Schroedinger equations and their quasi-periodic solutions

    International Nuclear Information System (INIS)

    Geng Xianguo; Su Ting

    2007-01-01

    A hierarchy of nonlinear differential-difference equations associated with a discrete isospectral problem is proposed, in which a typical differential-difference equation is a discrete coupled derivative nonlinear Schroedinger equation. With the help of the nonlinearization of the Lax pairs, the hierarchy of nonlinear differential-difference equations is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems. Based on the theory of algebraic curve, the Abel-Jacobi coordinates are introduced to straighten out the corresponding flows, from which quasi-periodic solutions for these differential-difference equations are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-dimensional discrete coupled derivative nonlinear Schroedinger equation is proposed and its quasi-periodic solutions are derived

  7. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  8. Analysis of self-consistency effects in range-separated density-functional theory with Møller-Plesset perturbation theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2011-01-01

    Range-separated density-functional theory combines wave function theory for the long-range part of the two-electron interaction with density-functional theory for the short-range part. When describing the long-range interaction with non-variational methods, such as perturbation or coupled......-cluster theories, self-consistency effects are introduced in the density functional part, which for an exact solution requires iterations. They are generally assumed to be small but no detailed study has been performed so far. Here, the authors analyze self-consistency when using Møller-Plesset-type (MP......) perturbation theory for the long range interaction. The lowest-order self-consistency corrections to the wave function and the energy, that enter the perturbation expansions at the second and fourth order, respectively, are both expressed in terms of the one-electron reduced density matrix. The computational...

  9. The Schroedinger problem

    International Nuclear Information System (INIS)

    Da Costa, N.C.A.; Krause, D.; French, S.

    1992-01-01

    Schroedinger introduced discussions about the inconsistency between the classical conception of particles as individual entities and the way in which modern physics treats such particles. In particular, it is noted that quantal particles apparently appear to lack individuality, and that certain suppositions of quantum theory imply that permutations of 'identical' particles are not regarded as observable, hence implying that they must be taken as 'non-individuals' of some kind. An overview is presented in this paper of some results obtained by the authors in the field of non-reflexive logics, which have some bearings on these problems and which can perhaps provide an adequate mathematical tool for dealing with some of the fundamental features of elementary particles, such as for instance the fact that identity apparently lacks sense with respect to them, that particle permutations are not regarded as observable and that a collection of these entities cannot be considered as a set in the sense of the usual theories of sets. The main objective of the paper is to show that the nature of elementary particles can be described in terms of certain non-classical logics, despite the problems regarding their individuality. (authors). 28 refs

  10. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  11. Chiral perturbation theory for lattice QCD

    International Nuclear Information System (INIS)

    Baer, Oliver

    2010-01-01

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  12. Probing non-perturbative effects in M-theory

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Okuyama, Kazumi

    2014-07-01

    The AdS/CFT correspondence enables us to probe M-theory on various backgrounds from the corresponding dual gauge theories. Here we investigate in detail a three-dimensional U(N) N=4 super Yang-Mills theory coupled to one adjoint hypermultiplet and N f fundamental hypermultiplets, which is large N dual to M-theory on AdS 4 x S 7 /Z N f . Using the localization and the Fermi-gas formulation, we explore non-perturbative corrections to the partition function. As in the ABJM theory, we find that there exists a non-trivial pole cancellation mechanism, which guarantees the theory to be well-defined, between worldsheet instantons and membrane instantons for all rational (in particular, physical or integral) values of N f .

  13. Perturbing the ground ring of 2D string theory

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1992-01-01

    In this paper, the authors use free field techniques in D = 2 string theory t calculate the perturbation of the special state algebras when the cosmological constant is turned on. In particular, the authors find that the 'ground cone' preserved by the ring structure is promoted to a three-dimensional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) current algebra of moduli deformations is computed completely, and no simple geometrical interpretation is found. The authors also quote some facts concerning the Liouville matrix a model dictionary in this class of theories

  14. Modified potentials in many-body perturbation theory

    International Nuclear Information System (INIS)

    Silver, D.M.; Bartlett, R.J.

    1976-01-01

    Many-body perturbation-theory calculations of the pair-correlation energy within the regime of various finite expansions in two-center Slater-type basis sets are performed using a wide variety of modified potentials for the determination of unoccupied orbitals. To achieve meaningful convergence, it appears that the perturbation series must be carried through third order, using shifted denominators to include contributions from various higher-order diagrams. Moreover, certain denominator shifts are found necessary to ensure that a negative-definite resolvent accompanies the perturbation scheme when an arbitrary modified potential is employed. Through third order with denominator shifts, well-behaved modified potentials are found to give results that are equivalent, within 1 kcal/mole, to those obtained for pair-correlation energies with the standard self-consistent-field-V/sup N/ potential

  15. Nonperturbative Quantum Physics from Low-Order Perturbation Theory.

    Science.gov (United States)

    Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K

    2015-10-02

    The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.

  16. Parton dynamics in hadronic processes. Final report

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1984-07-01

    We have elucidated several aspects of the dual parton fragmentation model for low transverse momentum multiparticle production in hadronic collisions previously developed by the author and collaborators at Orsay, France. In particular, we have verified that the dual parton model correctly reproduces recently obtained two particle inclusive distributions and particle ratios in the central region of pp and anti pp collisions. This work sheds light on the dynamics of partons in a hadronic collision since it strongly indicates that a valence quark from each initial hadron is held back with a small momentum fraction. Also, we have extended the dual parton approach to include diffraction dissocation and studied the consequences on inclusive pion production in pp interactions. We have investigated the virtues and limitations of logarithmic perturbation theory, which is often a much simpler alternative to standard Rayleigh-Schroedinger perturbation theory. Finally, we have developed and studied the shifted 1/N expansion for the enrgy eigenstates in non-relativistic quantum mechanics. Our results provide an accurate, rapidly convergent, powerful new way of handling any spherically symmetric potential. 18 references

  17. Perturbation theory and nonperturbative effects: a happy marriage?

    International Nuclear Information System (INIS)

    Chyla, J.

    1992-01-01

    Perturbation expansions in renormalized quantum theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k (a,χ) of the couplant and the free parameter χ specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. A close connection of this procedure to the Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated. (author) 3 figs., 17 refs

  18. Algebraic quantum field theory, perturbation theory, and the loop expansion

    International Nuclear Information System (INIS)

    Duetsch, M.; Fredenhagen, K.

    2001-01-01

    The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)

  19. The Rise and Fall of the Cosmic String Theory for Cosmological Perturbations

    International Nuclear Information System (INIS)

    Perivolaropoulos, L.

    2005-01-01

    The cosmic string theory for cosmological fluctuations is a good example of healthy scientific progress in cosmology. It is a well defined physically motivated model that has been tested by cosmological observations and has been ruled out as a primary source of primordial fluctuations. Until about fifteen years ago, the cosmic string theory of cosmological perturbations provided one of the two physically motivated candidate theories for the generation of primordial perturbations. The cosmological data that appeared during the last decade have been compared with the well defined predictions of the theory and have ruled out cosmic strings as a primary source of primordial cosmological perturbations. Since cosmic strings are predicted to form after inflation in a wide range of microphysical theories (including supersymmetric and fundamental string theories) their observational bounds may serve a source of serious constraints for these theories. This is a pedagogical review of the historical development, the main predictions of the cosmic string theory and the constraints that have been imposed on it by cosmological observations. Recent lensing events that could be attributed to lighter cosmic strings are also discussed

  20. Ablative Rayleigh-Taylor instability in the limit of an infinitely large density ratio

    International Nuclear Information System (INIS)

    Clavin, P.; Almarcha, Ch.

    2005-01-01

    The instability of ablation fronts strongly accelerated toward the dense medium under the conditions of inertial confinement fusion (ICF) is addressed in the limit of an infinitely large density ratio. The analysis serves to demonstrate that the flow is irrotational to first order, reducing the nonlinear analysis to solve a two-potential flows problem. Vorticity appears at the following orders in the perturbation analysis. This result simplifies greatly the analysis. The possibility for using boundary integral methods opens new perspectives in the nonlinear theory of the ablative Rayleigh-Taylor instability in ICF. A few examples are given at the end of the paper. (authors)

  1. Continuity and completeness in physical theory: Schroedinger's return to the wave interpretation of quantum mechanics in the 1950's

    International Nuclear Information System (INIS)

    D'Agostino, S.

    1992-01-01

    In the 50s, Schroedinger proposed a new conception of a continuous theory of Quantum Mechanics, which remarkably modified his 1926 ideas on ondulatory mechanics. The lack of individuality of the atomic particles presented in the new statistics, and in Heisenberg's Indeterminacy Relations, was by him considered as an aspect of a more general crisis in the anthology itself of classical atomism. Unlike his 1926 ideas, he proposed now to represent the wave equation in an n-dimensional space and he considered second-quantization technique as the proper mathematical tool for his new physical conception. Although he accepted that space-time discontinuities and casual gaps may appear here and there on the observational level (e.g. in the Indeterminacy Relations), he was convinced that they could be made compatible with a continuous pure theory, provided one accepted a suitable conception of the theory's epistemiological status. For him, only a continuous theory satisfied the conditions for a complete theory. On these matters, he thought he was somehow orthodox to the ideas of Hertz and Boltzmann, which were also reflected in the teaching of Exner. (author). 69 refs

  2. New perturbative approach to renormalizable field theories

    International Nuclear Information System (INIS)

    Dhar, A.; Gupta, V.

    1984-01-01

    A new method for obtaining perturbative predictions in quantum field theory is developed. Our method gives finite predictions, which are free from scheme ambiguities, for any quantity of interest (like a cross section or a Green's function) starting directly from the bare regularized Lagrangian. The central idea in our approach is to incorporate directly the consequences of dimensional transmutation for the predictions of the theory. We thus completely bypass the conventional renormalization procedure and the ambiguities associated with it. The case of massless theories with a single dimensionless coupling constant is treated in detail to illustrate our approach

  3. Algebraic perturbation theory for dense liquids with discrete potentials

    Science.gov (United States)

    Adib, Artur B.

    2007-06-01

    A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.

  4. The calculation of isotopic partition function ratios by a perturbation theory technique

    International Nuclear Information System (INIS)

    Singh, G.; Wolfsberg, M.

    1975-01-01

    The vibrational Hamiltonian of a molecule in the harmonic approximation, H = (1/2) Σ (g/subi/jp/subi/p/subj/ + f/subi/jq/subi/q/subj/), has been divided into a diagonal part (terms with i=j) and an off-diagonal part (inot-equalj), which is regarded as the perturbation. The vibrational partition function of the molecule is then calculated by Schwinger perturbation theory as the partition function of the unperturbed problem, corresponding to a collection of oscillators with frequencies 2πν/subi/' = (f/subi/ig/subi/i)/sup 1 / 2 /, plus perturbation correction terms which are calculated to second order. With the usual assumptions of isotope effect calculations that the molecular translations and rotations are classical and separable from the vibrations, the perturbation formulation of the vibrational partition function is easily transformed into a perturbation theory formulation of (reduced) isotopic partition function ratios. If, for example, the molecular potential function is expressed in terms of the displacements of bond stretches and bond angle bends from their respective equilibrium values, the unperturbed partition function ratio corresponds to the isotope effect expected for noninteracting bond-stretch and bond-angle-bend oscillators. Detailed comparison is made for a number of molecular systems of perturbation theory calculations of partition functions and isotopic partition function ratios with exact calculations carried out by actually obtaining the normal mode vibrational frequencies of the vibrational Hamiltonian. Good agreement is found. The utility of the perturbation theory formulation resides in the fact that it permits one to look at isotope effects in a very simple manner; some demonstrations are given

  5. Driven similarity renormalization group: Third-order multireference perturbation theory.

    Science.gov (United States)

    Li, Chenyang; Evangelista, Francesco A

    2017-03-28

    A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.

  6. Application of depletion perturbation theory to fuel cycle burnup analysis

    International Nuclear Information System (INIS)

    White, J.R.

    1979-01-01

    Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems

  7. Global spacetime symmetries in the functional Schroedinger picture

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    1991-01-01

    In the conventional functional Schroedinger quantization of field theory, the background spacetime manifold is foliated into a set of three-surfaces and the quantum state of the field is represented by a wave functional of the field configurations on each three-surface. Although this procedure may be covariantly described, the wave functionals generally fail to carry a representation of the complete spacetime symmetry group of the background, such as the Poincare group in Minkowski spacetime, because spacetime symmetries generally involve distortions or motions of the three-surfaces themselves within that spacetime. In this paper, we show that global spacetime symmetries in the functional Schroedinger picture may be represented by parametrizing the field theory---raising to the status of dynamical variables the embedding variables describing the spacetime location of each three-surface. In particular, we show that the embedding variables provide a connection between the purely geometrical operation of an isometry group on the spacetime and the operation of the usual global symmetry generators (constructed from the energy-momentum tensor) on the wave functionals of the theory. We study the path-integral representation of the wave functionals of the parametrized field theory. We show how to construct, from the path integral, wave functionals that are annihilated by the global symmetry generators, i.e., that are invariant under global spacetime symmetry groups. The invariance of the class of histories summed over in the path integral is identified as the source of the invariance of the wave functionals. We apply this understanding to a study of vacuum states in the de Sitter spacetime. We make mathematically precise a previously given heuristic argument for the de Sitter invariance of the matter wave functionals defined by the no-boundary proposal of Hartle and Hawking

  8. Exact-to-precision generalized perturbation theory for source-driven systems

    International Nuclear Information System (INIS)

    Wang Congjian; Abdel-Khalik, Hany S.

    2011-01-01

    Highlights: ► We present a new development in higher order generalized perturbation theory. ► The method addresses the explosion in the flux phase space, input parameters, and responses. ► The method hybridizes first-order GPT and proper orthogonal decomposition snapshots method. ► A simplified 1D and realistic 2D assembly models demonstrate applicability of the method. ► The accuracy of the method is compared to exact direct perturbations and first-order GPT. - Abstract: Presented in this manuscript are new developments to perturbation theory which are intended to extend its applicability to estimate, with quantifiable accuracy, the exact variations in all responses calculated by the model with respect to all possible perturbations in the model's input parameters. The new developments place high premium on reducing the associated computational overhead in order to enable the use of perturbation theory in routine reactor design calculations. By way of examples, these developments could be employed in core simulation to accurately estimate the few-group cross-sections variations resulting from perturbations in neutronics and thermal-hydraulics core conditions. These variations are currently being described using a look-up table approach, where thousands of assembly calculations are performed to capture few-group cross-sections variations for the downstream core calculations. Other applications include the efficient evaluation of surrogates for applications that require repeated model runs such as design optimization, inverse studies, uncertainty quantification, and online core monitoring. The theoretical background of these developments applied to source-driven systems and supporting numerical experiments are presented in this manuscript. Extension to eigenvalue problems will be presented in a future article.

  9. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  10. Schroedinger's Wave Structure of Matter (WSM)

    Science.gov (United States)

    Wolff, Milo; Haselhurst, Geoff

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure was impossible since Nature does not allow the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM, the origin of all the Natural Laws, contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM also describe matter at molecular dimensions: alloys, catalysts, biology and medicine, molecular computers and memories. See ``Schroedinger's Universe'' - at Amazon.com

  11. Crystallized Schroedinger cat states

    International Nuclear Information System (INIS)

    Castanos, O.; Lopez-Pena, R.; Man'ko, V.I.

    1995-01-01

    Crystallized Schroedinger cat states (male and female) are introduced on the base of extension of group construction for the even and odd coherent states of the electromagnetic field oscillator. The Wigner and Q functions are calculated and some are plotted for C 2 , C 3 , C 4 , C 5 , C 3v Schroedinger cat states. Quadrature means and dispersions for these states are calculated and squeezing and correlation phenomena are studied. Photon distribution functions for these states are given explicitly and are plotted for several examples. A strong oscillatory behavior of the photon distribution function for some field amplitudes is found in the new type of states

  12. The phase space of the focused cubic Schroedinger equation: A numerical study

    Energy Technology Data Exchange (ETDEWEB)

    Burlakov, Yuri O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    In a paper of 1988 [41] on statistical mechanics of the nonlinear Schroedinger equation, it was observed that a Gibbs canonical ensemble associated with the nonlinear Schroedinger equation exhibits behavior reminiscent of a phase transition in classical statistical mechanics. The existence of a phase transition in the canonical ensemble of the nonlinear Schroedinger equation would be very interesting and would have important implications for the role of this equation in modeling physical phenomena; it would also have an important bearing on the theory of weak solutions of nonlinear wave equations. The cubic Schroedinger equation, as will be shown later, is equivalent to the self-induction approximation for vortices, which is a widely used equation of motion for a thin vortex filament in classical and superfluid mechanics. The existence of a phase transition in such a system would be very interesting and actually very surprising for the following reasons: in classical fluid mechanics it is believed that the turbulent regime is dominated by strong vortex stretching, while the vortex system described by the cubic Schroedinger equation does not allow for stretching. In superfluid mechanics the self-induction approximation and its modifications have been used to describe the motion of thin superfluid vortices, which exhibit a phase transition; however, more recently some authors concluded that these equations do not adequately describe superfluid turbulence, and the absence of a phase transition in the cubic Schroedinger equation would strengthen their argument. The self-induction approximation for vortices takes into account only very localized interactions, and the existence of a phase transition in such a simplified system would be very unexpected. In this thesis the authors present a numerical study of the phase transition type phenomena observed in [41]; in particular, they find that these phenomena are strongly related to the splitting of the phase space into

  13. Non-perturbative heavy quark effective theory. Introduction and status

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin

    2015-01-01

    We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.

  14. Schroedinger operators and evolutionary strategies; Schroedinger-Operatoren und Evolutionaere Strategien

    Energy Technology Data Exchange (ETDEWEB)

    Asselmeyer, T.

    1997-12-22

    First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution.

  15. Cosmological perturbation theory at three-loop order

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-09-15

    We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.

  16. Cosmological perturbation theory at three-loop order

    International Nuclear Information System (INIS)

    Blas, Diego; Garny, Mathias; Konstandin, Thomas

    2013-09-01

    We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.

  17. A general-model-space diagrammatic perturbation theory

    International Nuclear Information System (INIS)

    Hose, G.; Kaldor, U.

    1980-01-01

    A diagrammatic many-body perturbation theory applicable to arbitrary model spaces is presented. The necessity of having a complete model space (all possible occupancies of the partially-filled shells) is avoided. This requirement may be troublesome for systems with several well-spaced open shells, such as most atomic and molecular excited states, as a complete model space spans a very broad energy range and leaves out states within that range, leading to poor or no convergence of the perturbation series. The method presented here would be particularly useful for such states. The solution of a model problem (He 2 excited Σ + sub(g) states) is demonstrated. (Auth.)

  18. Single-particle Schroedinger fluid. I. Formulation

    International Nuclear Information System (INIS)

    Kan, K.K.; Griffin, J.J.

    1976-01-01

    The problem of a single quantal particle moving in a time-dependent external potential well is formulated specifically to emphasize and develop the fluid dynamical aspects of the matter flow. This idealized problem, the single-particle Schroedinger fluid, is shown to exhibit already a remarkably rich variety of fluid dynamical features, including compressible flow and line vortices. It provides also a sufficient framework to encompass simultaneously various simplified fluidic models for nuclei which have earlier been postulated on an ad hoc basis, and to illuminate their underlying restrictions. Explicit solutions of the single-particle Schroedinger fluid problem are studied in the adiabatic limit for their mathematical and physical implications (especially regarding the collective kinetic energy). The basic generalizations for extension of the treatment to the many-body Schroedinger fluid are set forth

  19. Interpretation of non-Markovian stochastic Schroedinger equations as a hidden-variable theory

    International Nuclear Information System (INIS)

    Gambetta, Jay; Wiseman, H.M.

    2003-01-01

    Do diffusive non-Markovian stochastic Schroedinger equations (SSEs) for open quantum systems have a physical interpretation? In a recent paper [Phys. Rev. A 66, 012108 (2002)] we investigated this question using the orthodox interpretation of quantum mechanics. We found that the solution of a non-Markovian SSE represents the state the system would be in at that time if a measurement was performed on the environment at that time, and yielded a particular result. However, the linking of solutions at different times to make a trajectory is, we concluded, a fiction. In this paper we investigate this question using the modal (hidden variable) interpretation of quantum mechanics. We find that the noise function z(t) appearing in the non-Markovian SSE can be interpreted as a hidden variable for the environment. That is, some chosen property (beable) of the environment has a definite value z(t) even in the absence of measurement on the environment. The non-Markovian SSE gives the evolution of the state of the system 'conditioned' on this environment hidden variable. We present the theory for diffusive non-Markovian SSEs that have as their Markovian limit SSEs corresponding to homodyne and heterodyne detection, as well as one which has no Markovian limit

  20. Erwin Schroedinger, Francis Crick and epigenetic stability

    Directory of Open Access Journals (Sweden)

    Ogryzko Vasily V

    2008-04-01

    Full Text Available Abstract Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  1. Erwin Schroedinger, Francis Crick and epigenetic stability.

    Science.gov (United States)

    Ogryzko, Vasily V

    2008-04-17

    Schroedinger's book 'What is Life?' is widely credited for having played a crucial role in development of molecular and cellular biology. My essay revisits the issues raised by this book from the modern perspective of epigenetics and systems biology. I contrast two classes of potential mechanisms of epigenetic stability: 'epigenetic templating' and 'systems biology' approaches, and consider them from the point of view expressed by Schroedinger. I also discuss how quantum entanglement, a nonclassical feature of quantum mechanics, can help to address the 'problem of small numbers' that led Schroedinger to promote the idea of a molecular code-script for explaining the stability of biological order.

  2. Strong phase correlations of solitons of nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Litvak, A.G.; Mironov, V.A.; Protogenov, A.P.

    1994-06-01

    We discuss the possibility to suppress the collapse in the nonlinear 2+1 D Schroedinger equation by using the gauge theory of strong phase correlations. It is shown that invariance relative to q-deformed Hopf algebra with deformation parameter q being the fourth root of unity makes the values of the Chern-Simons term coefficient, k=2, and of the coupling constant, g=1/2, fixed; no collapsing solutions are present at those values. (author). 21 refs

  3. An implicit spectral formula for generalized linear Schroedinger equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan

    2009-01-01

    We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)

  4. Analysis of weakly nonlinear three-dimensional Rayleigh--Taylor instability growth

    International Nuclear Information System (INIS)

    Dunning, M.J.; Haan, S.W.

    1995-01-01

    Understanding the Rayleigh--Taylor instability, which develops at an interface where a low density fluid pushes and accelerates a higher density fluid, is important to the design, analysis, and ultimate performance of inertial confinement fusion targets. Existing experimental results measuring the growth of two-dimensional (2-D) perturbations (perturbations translationally invariant in one transverse direction) are adequately modeled using the 2-D hydrodynamic code LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 11, 51 (1975)]. However, of ultimate interest is the growth of three-dimensional (3-D) perturbations such as those initiated by surface imperfections or illumination nonuniformities. Direct simulation of such 3-D experiments with all the significant physical processes included and with sufficient resolution is very difficult. This paper addresses how such experiments might be modeled. A model is considered that couples 2-D linear regime hydrodynamic code results with an analytic model to allow modeling of 3-D Rayleigh--Taylor growth through the linear regime and into the weakly nonlinear regime. The model is evaluated in 2-D by comparison with LASNEX results. Finally the model is applied to estimate the dynamics of a hypothetical 3-D foil

  5. Scheme (in?) dependence in perturbative Lagrangian quantum field theory

    International Nuclear Information System (INIS)

    Slavnov, D.A.

    1995-01-01

    A problem of renormalization - scheme ambiguity in perturbation quantum field theory is investigated. A procedure is described that makes it possible to express uniquely all observable quantities in terms of a set base observables. Renormalization group equations for the base observable are constructed. The case of mass theory is treated. 9 refs

  6. A spin-adapted size-extensive state-specific multi-reference perturbation theory. I. Formal developments

    Science.gov (United States)

    Mao, Shuneng; Cheng, Lan; Liu, Wenjian; Mukherjee, Debashis

    2012-01-01

    We present in this paper a comprehensive formulation of a spin-adapted size-extensive state-specific multi-reference second-order perturbation theory (SA-SSMRPT2) as a tool for applications to molecular states of arbitrary complexity and generality. The perturbative theory emerges in the development as a result of a physically appealing quasi-linearization of a rigorously size-extensive state-specific multi-reference coupled cluster (SSMRCC) formalism [U. S. Mahapatra, B. Datta, and D. Mukherjee, J. Chem. Phys. 110, 6171 (1999), 10.1063/1.478523]. The formulation is intruder-free as long as the state-energy is energetically well-separated from the virtual functions. SA-SSMRPT2 works with a complete active space (CAS), and treats each of the model space functions on the same footing. This thus has the twin advantages of being capable of handling varying degrees of quasi-degeneracy and of ensuring size-extensivity. This strategy is attractive in terms of the applicability to bigger systems. A very desirable property of the parent SSMRCC theory is the explicit maintenance of size-extensivity under a variety of approximations of the working equations. We show how to generate both the Rayleigh-Schrödinger (RS) and the Brillouin-Wigner (BW) versions of SA-SSMRPT2. Unlike the traditional naive formulations, both the RS and the BW variants are manifestly size-extensive and both share the avoidance of intruders in the same manner as the parent SSMRCC. We discuss the various features of the RS as well as the BW version using several partitioning strategies of the hamiltonian. Unlike the other CAS based MRPTs, the SA-SSMRPT2 is intrinsically flexible in the sense that it is constructed in a manner that it can relax the coefficients of the reference function, or keep the coefficients frozen if we so desire. We delineate the issues pertaining to the spin-adaptation of the working equations of the SA-SSMRPT2, starting from SSMRCC, which would allow us to incorporate essentially

  7. Dimensional perturbation theory for the two-electron atom

    International Nuclear Information System (INIS)

    Goodson, D.Z.

    1987-01-01

    Perturbation theory in δ = 1/D, where D is the dimensionality of space, is applied to the two-electron atom. In Chapter 1 an efficient procedure for calculating the coefficients of the perturbation series for the ground-state energy is developed using recursion relations between the moments of the coordinate operators. Results through tenth order are presented. The series is divergent, but Pade summation gives results comparable in accuracy to the best configuration-interaction calculations. The singularity structure of the Pade approximants confirms the hypothesis that the energy as a function of δ has an infinite sequence of poles on the negative real axis that approaches an essential singularity at δ = O. The essential singularity causes the divergence of the perturbation series. There are also two poles at δ = 1 that slow the asymptotic convergence of the low-order terms. In Chapter 2, various techniques are demonstrated for removing the effect of these poles, and accurate results are thereby obtained, even at very low order. In Chapter 3, the large D limit of the correlation energy (CE) is investigated. In the limit D → infinity it is only 35% smaller than at D = 3. It can be made to vanish in the limit by modifying the Hartree-Fock (HF) wavefunction. In Chapter 4, perturbation theory is applied to the Hooke's-law model of the atom. Prospects for treating more-complicated systems are briefly discussed

  8. Quasipotential in the fourth order of perturbation theory

    International Nuclear Information System (INIS)

    Bojkova, N.A.; Dvoeglazov, V.V.; Tyukhtyaev, Yu.N.; Faustov, R.N.

    1992-01-01

    The quasipotential in the fourth order of perturbation theory is calculated in the Coulomb gauge for the unequal mass particles. It could be used for the future calculations of energy spectra in two-body systems. 15 refs.; 1 fig

  9. On the connection between Schroedinger- and Dirichlet forms

    International Nuclear Information System (INIS)

    Albeverio, S.; Bochum Univ.; Gesztesy, F.; Karwowski, W.; Streit, L.; Bielefeld Univ.

    Relations between Schroedinger forms associated with Schroedinger operators in L 2 (Ω;dsup(n)x), Ω is contained in Rsup(n) open, n >= 1 and the corresponding Dirichlet forms are investigated. Various concrete examples are presented. (orig.)

  10. Quantum theory. 3. ed.

    International Nuclear Information System (INIS)

    Kiefer, C.

    2004-01-01

    The following topics are dealt with: Particles and waves, the superposition principle and probability interpretation, the uncertainty relation, spin, the Schroedinger equation, wave functions, symmetries, the hydrogen atom, atoms with many electrons, Schroedinger's cat and the Einstein-podolsky-Rosen problem, the Bell inequalities, the classical limit, quantum systems in the electromagnetic field, solids and quantum liquids, quantum information, quantum field theory, quantum theory and gravitation, the mathematical formalism of quantum theory. (HSI)

  11. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  12. Application of generalized perturbation theory to flux disadvantage factor calculations

    International Nuclear Information System (INIS)

    Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.

    1979-01-01

    The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper

  13. Communication: Random phase approximation renormalized many-body perturbation theory

    International Nuclear Information System (INIS)

    Bates, Jefferson E.; Furche, Filipp

    2013-01-01

    We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations

  14. Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions

    International Nuclear Information System (INIS)

    Ishikawa, Y.; Quiney, H.M.

    1993-01-01

    A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence

  15. Advances in heuristically based generalized perturbation theory

    International Nuclear Information System (INIS)

    Gandini, A.

    1994-01-01

    A distinctive feature of heuristically based generalized perturbation theory methodology consists in the systematic use of importance conservation concepts. As well known, this use leads to fundamental reciprocity relationship. Instead, the alternative variational and differential one approaches make a consistent use of the properties and adjoint functions. The equivalence between the importance and the adjoint functions have been demonstrated in important cases. There are some instances, however, in which the commonly known operator governing the adjoint function are not adequate. In this paper ways proposed to generalize this rules, as adopted with the heuristic generalized perturbation theory methodology, are illustrated. When applied to the neutron/nuclide field characterizing the core evolution in a power reactor system, in which also an intensive control variable (ρ) is defined, these rules leas to an orthogonality relationship connected to this same control variable. A set of ρ-mode eigenfunctions may be correspondingly defined and an extended concept of reactivity (generalizing that commonly associated with the multiplication factor) proposed as more directly indicative of the controllability of a critical reactor system. (author). 25 refs

  16. Localized and periodic exact solutions to the nonlinear Schroedinger equation with spatially modulated parameters: Linear and nonlinear lattices

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2009-01-01

    Using similarity transformations we construct explicit solutions of the nonlinear Schroedinger equation with linear and nonlinear periodic potentials. We present explicit forms of spatially localized and periodic solutions, and study their properties. We put our results in the framework of the exploited perturbation techniques and discuss their implications on the properties of associated linear periodic potentials and on the possibilities of stabilization of gap solitons using polychromatic lattices.

  17. Contribution to the establishment and resolution of the Schroedinger equation in a Riemannian manifold with constant curvature

    International Nuclear Information System (INIS)

    Rasolofoson, N.G.

    2014-01-01

    The properties of a physical system may vary significantly due to the presence of matter or energy. This change can be defined by the deformation of the space which is described as the variation of its curvature. In order to describe this law of physics, we have used differential geometry and studied especially a Schroedinger equation which describes a system evolving with time on a Riemannian manifold of constant curvature. Therefore, we have established and solved the Schroedinger equation using appropriate mathematics tools. As perspective, the study of string theory may be considered. [fr

  18. Philosophical and methodological aspects of the Schroedinger paradox

    International Nuclear Information System (INIS)

    Juha, L.; Krajca, R.; Smatera, M.

    1989-01-01

    Methodological aspects of the foundations of quantum theory are dealt with in relation to the quantum description of macroscopic systems, biological in particular. Attention is paid to the philosophical content of the problems of 1) the logical status of the reduction postulate in quantum mechanics, and 2) the paradox of Schroedinger's cat, whose physical solution has not yet been attained. The problem of the quantum description of complex macroscopic systems is also treated, as is Herbert Froehlich's important concept of the excitation of dominant modes in biological systems. (author). 61 refs

  19. Analytic theory of the Rayleigh-Taylor instability in a uniform density plasma-filled ion diode

    International Nuclear Information System (INIS)

    Hussey, T.W.; Payne, S.S.

    1987-04-01

    The J-vector x B-vector forces associated with the surface current of a plasma-filled ion diode will accelerate this plasma fill toward the anode surface. It is well known that such a configuration with a high I is susceptible to the hydromagnetic Rayleigh-Taylor instability in certain geometries. A number of ion diode plasma sources have been proposed, most of which have a falling density going away from the wall. A somewhat more unstable case, however, is that of uniform density. In this report we attempt to establish an upper limit on this effect with a simple analytic model in which a uniform-density plasma is accelerated by the magnetic field anticipated in a PBFA-II diode. We estimate the number of linear e-foldings experienced by an unstable surface as well as the most damaging wavelength initial perturbation. This model, which accounts approximately for stabilization due to field diffusion, suggests that even with a uniform fill, densities in excess of a few 10 15 are probably not damaged by the instability. In addition, even lower densities might be tolerated if perturbations near the most damaging wavelength can be kept very small

  20. SMD-based numerical stochastic perturbation theory

    Science.gov (United States)

    Dalla Brida, Mattia; Lüscher, Martin

    2017-05-01

    The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.

  1. Perturbation theory for plasmonic modulation and sensing

    KAUST Repository

    Raman, Aaswath

    2011-05-25

    We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.

  2. Perturbation theory of a symmetric center within Liénard equations

    Science.gov (United States)

    Françoise, Jean-Pierre; Xiao, Dongmei

    2015-09-01

    In this article, we introduce the use of Lambert function to develop further the global perturbation theory of an integrable Liénard equation which displays a symmetric center. We prove a global Morse lemma for the first integral and deduce the existence of an associated Picard-Fuchs system. We revisit previous contributions to first-order perturbation theory with the help of these new analytic techniques and in particular, we check that the fundamental integrals are linearly independent. The Lambert function allows to find an expansion formula for these integrals. We also study the possibility to develop a higher-order perturbation theory. The algorithm of the successive derivatives works in general in the class of analytic functions on the domain D where the level sets of the first integral are ovals. We end the article with some results on the first integral of a symmetric Liénard equation deduced from the algorithm of successive derivatives.

  3. Particle linear theory on a self-gravitating perturbed cubic Bravais lattice

    International Nuclear Information System (INIS)

    Marcos, B.

    2008-01-01

    Discreteness effects are a source of uncontrolled systematic errors of N-body simulations, which are used to compute the evolution of a self-gravitating fluid. We have already developed the so-called ''particle linear theory''(PLT), which describes the evolution of the position of self-gravitating particles located on a perturbed simple cubic lattice. It is the discrete analogue of the well-known (Lagrangian) linear theory of a self-gravitating fluid. Comparing both theories permits us to quantify precisely discreteness effects in the linear regime. It is useful to develop the PLT also for other perturbed lattices because they represent different discretizations of the same continuous system. In this paper we detail how to implement the PLT for perturbed cubic Bravais lattices (simple, body, and face-centered) in a cubic simulation box. As an application, we will study the discreteness effects--in the linear regime--of N-body simulations for which initial conditions have been set up using these different lattices.

  4. Chiral perturbation theory for nucleon generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2006-08-15

    We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)

  5. Perturbation theory for Markov chains via Wasserstein distance

    NARCIS (Netherlands)

    Rudolf, Daniel; Schweizer, Nikolaus

    2017-01-01

    Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains

  6. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  7. Perturbation theory in Lagrangian hydrodynamics for a cosmological fluid with velocity dispersion

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki; Suda, Momoko; Maeda, Kei-ichi; Morita, Masaaki; Anzai, Hiroki

    2002-01-01

    We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method up to second order. This perturbative approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion. We obtain the first-order solutions in generic background universes and the second-order solutions in a wider range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein-de Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions, we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the evolution of inhomogeneities changes for the variation of the polytropic index

  8. On the Schroedinger equation for the minisuperspace models

    International Nuclear Information System (INIS)

    Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.

    2000-01-01

    We obtain a time-dependent Schroedinger equation for the Friedmann-Robertson-Walker (FRW) model interacting with a homogeneous scalar matter field. We show that for this purpose it is necessary to include an additional action invariant under the reparametrization of time. The last one does not change the equations of motion of the system, but changes only the constraint which at the quantum level becomes time-dependent Schroedinger equation. The same procedure is applied to the supersymmetric case and the supersymmetric quantum constraints are obtained, one of them is a square root of the Schroedinger operator

  9. Ablation front rayleigh taylor dispersion curve in indirect drive

    International Nuclear Information System (INIS)

    Budil, K.S.; Lasinski, B.; Edwards, M.J.; Wan, A.S.; Remington, B.A.; Weber, S.V.; Glendinning, S.G.; Suter, L.; Stry, P.

    2000-01-01

    The Rayleigh-Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wave-lengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. We present here the results of a series of laser experiments designed to probe the roll-over and cutoff region of the ablation-front RT dispersion curve in indirect drive. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 pm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths (ge) 20 (micro)m experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a 2-D radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. We performed numerical simulations to elucidate the influence of the rippled shock wave on the eventual growth of the perturbations, allowing comparisons to the analytic model developed by Betti et al. This combination of experiments, simulations and analytic modeling illustrates the qualitative simplicity yet quantitative complexity of the compressible RT instability. We have measured the Rayleigh-Taylor (RT) dispersion curve for a radiatively-driven sample in a series of experiments on the Nova laser facility. Planar aluminum foils were ablatively-accelerated and the subsequent perturbation growth was

  10. Multireference second order perturbation theory with a simplified treatment of dynamical correlation.

    Science.gov (United States)

    Xu, Enhua; Zhao, Dongbo; Li, Shuhua

    2015-10-13

    A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.

  11. A Theory of the Perturbed Consumer with General Budgets

    DEFF Research Database (Denmark)

    McFadden, Daniel L; Fosgerau, Mogens

    We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose...... subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....

  12. The precession of mercury's perihelion via perturbation theory

    International Nuclear Information System (INIS)

    Rosales, M.H.; Castro-Quilantan, J.L.

    1984-01-01

    Perturbation theory is used to solve the problem of the precession of Mercury's perihelion, this phenomenon being a relativistic effect. The expansion parameter appears naturally when the orbit equation is written in an appropriate form and it completely justifies the use of the first order approximation. (author)

  13. Continuous Transition between Brillouin-Wigner and Rayleigh-Schrödinger Perturbation Theory, Generalized Bloch Equation, and Hilbert Space Multireference Coupled Cluster

    Czech Academy of Sciences Publication Activity Database

    Pittner, Jiří

    2003-01-01

    Roč. 118, č. 24 (2003), s. 10876-10889 ISSN 0021-9606 R&D Projects: GA MŠk OC D23.001; GA ČR GA203/99/D009; GA AV ČR IAA4040108 Institutional research plan: CEZ:AV0Z4040901 Keywords : continuous transition * Brillouin-Wigner * Rayleigh-Schrödinger Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.950, year: 2003

  14. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer; Humboldt-Universitaet, Berlin

    2016-04-01

    We discuss the determination of the strong coupling α_M_S(m_Z) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α_s(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α_s=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α_s∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  15. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Fritzsch, Patrick [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Ramos, Alberto [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration

    2016-04-15

    We discuss the determination of the strong coupling α{sub MS}(m{sub Z}) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α{sub s}(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α{sub s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α{sub s}∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  16. Existence of localizing solutions in plasticity via the geometric singular perturbation theory

    KAUST Repository

    Lee, Min-Gi; Tzavaras, Athanasios

    2017-01-01

    system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré

  17. Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.; Savina, L.S.

    2003-09-01

    A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)

  18. On a minimization of the eigenvalues of Schroedinger operator relatively domains

    International Nuclear Information System (INIS)

    Gasymov, Yu.S.; Niftiev, A.A.

    2001-01-01

    Minimization of the eigenvalues plays an important role in the operators spectral theory. The problem on the minimization of the eigenvalues of the Schroedinger operator by areas is considered in this work. The algorithm, analogous to the conditional gradient method, is proposed for the numerical solution of this problem in the common case. The result is generalized for the case of the positively determined completely continuous operator [ru

  19. Semi-classical propagation of wavepackets for the phase space Schroedinger equation: interpretation in terms of the Feichtinger algebra

    International Nuclear Information System (INIS)

    Gosson, Maurice A de

    2008-01-01

    The nearby orbit method is a powerful tool for constructing semi-classical solutions of Schroedinger's equation when the initial datum is a coherent state. In this paper, we first extend this method to arbitrary squeezed states and thereafter apply our results to the Schroedinger equation in phase space. This adaptation requires the phase-space Weyl calculus developed in previous work of ours. We also study the regularity of the semi-classical solutions from the point of view of the Feichtinger algebra familiar from the theory of modulation spaces

  20. The density of states for almost periodic Schroedinger operators and the frequency module: a counter-example

    International Nuclear Information System (INIS)

    Bellissard, J.

    1981-07-01

    We exhibit an example of a one-dimensional discrete Schroedinger operator with an almost periodic potential for which the steps of the density of states do not belong to the frequency module. This example is suggested by the K-theory

  1. The sine-Gordon model and the small κ+ region of light- cone perturbation theory

    International Nuclear Information System (INIS)

    Griffin, P.A.

    1992-01-01

    The non-perturbative ultraviolet divergence of the sine-Gordon model is used to study the k + = 0 region of light-cone perturbation theory. The light-cone vacuum is shown to be unstable at the non- perturbative β 2 = 8π critical point by a light-cone version of Coleman's variational method. Vacuum bubbles, which are k + = 0 diagram in light-cone field theory and are individually finite and non-vanishing for all β, conspire to generate ultraviolet divergences of the light-cone energy density. The k + = 0 region of momentum also contributed to connected Green's functions: the connected two point function will not diverge, as it should, at the critical point unless diagrams which contribute only at k + = 0 are properly included. This analysis shows in a simple way how the k + = 0 region cannot be ignored even for connected diagrams. This phenomenon is expected to occur in higher dimensional gauge theories starting at two loop order in light-cone perturbation theory

  2. Perturbations and quasi-normal modes of black holes in Einstein-Aether theory

    International Nuclear Information System (INIS)

    Konoplya, R.A.; Zhidenko, A.

    2007-01-01

    We develop a new method for calculation of quasi-normal modes of black holes, when the effective potential, which governs black hole perturbations, is known only numerically in some region near the black hole. This method can be applied to perturbations of a wide class of numerical black hole solutions. We apply it to the black holes in the Einstein-Aether theory, a theory where general relativity is coupled to a unit time-like vector field, in order to observe local Lorentz symmetry violation. We found that in the non-reduced Einstein-Aether theory, real oscillation frequency and damping rate of quasi-normal modes are larger than those of Schwarzschild black holes in the Einstein theory

  3. The SU(3) beta function from numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G.; Schiller, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-09-15

    The SU(3) beta function is derived from Wilson loops computed to 20th order in numerical stochastic perturbation theory. An attempt is made to include massless fermions, whose contribution is known analytically to 4th order. The question whether the theory admits an infrared stable fixed point is addressed.

  4. Keldysh meets Lindblad: Correlated Gain and Loss in Higher Order Perturbation Theory

    Science.gov (United States)

    Stace, Tom; Mueller, Clemens

    Motivated by correlated decay processes driving gain, loss and lasing in driven artificial quantum systems, we develop a theoretical technique using Keldysh diagrammatic perturbation theory to derive a Lindblad master equation that goes beyond the usual second order perturbation theory. We demonstrate the method on the driven dissipative Rabi model, including terms up to fourth order in the interaction between the qubit and both the resonator and environment. This results in a large class of Lindblad dissipators and associated rates which go beyond the terms that have previously been proposed to describe similar systems. All of the additional terms contribute to the system behaviour at the same order of perturbation theory. We then apply these results to analyse the phonon-assisted steady-state gain of a microwave field driving a double quantum-dot in a resonator. We show that resonator gain and loss are substantially affected by dephasing- assisted dissipative processes in the quantum-dot system. These additional processes, which go beyond recently proposed polaronic theories, are in good quantitative agreement with experimental observations.

  5. How to make thermodynamic perturbation theory to be suitable for low temperature?

    Science.gov (United States)

    Zhou, Shiqi

    2009-02-07

    Low temperature unsuitability is a problem plaguing thermodynamic perturbation theory (TPT) for years. Present investigation indicates that the low temperature predicament can be overcome by employing as reference system a nonhard sphere potential which incorporates one part of the attractive ingredient in a potential function of interest. In combination with a recently proposed TPT [S. Zhou, J. Chem. Phys. 125, 144518 (2006)] based on a lambda expansion (lambda being coupling parameter), the new perturbation strategy is employed to predict for several model potentials. It is shown that the new perturbation strategy can very accurately predict various thermodynamic properties even if the potential range is extremely short and hence the temperature of interest is very low and current theoretical formalisms seriously deteriorate or critically fail to predict even the existence of the critical point. Extensive comparison with existing liquid state theories and available computer simulation data discloses a superiority of the present TPT to two Ornstein-Zernike-type integral equation theories, i.e., hierarchical reference theory and self-consistent Ornstein-Zernike approximation.

  6. Convergence and analytic properties of manifestly finite perturbation theory

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1979-01-01

    The author discusses more carefully the ultraviolet convergence properties of Feynman diagrams in recently proposed manifestly finite perturbation expansions. Speccifically, he refines one of the constraints on the γ's-the noncanonical dimensions-such that, when satisfied, any general product-type interaction of massive scalar, fermion and vector fields yields finite perturbation expansions requiring no conventional renormalization procedure. Moreover, the analytic properties of the Feynman integrals in the theory are discussed and concluded with remarks on the necessity of a modified Kaellen-Lehmann representation

  7. Baryon form factors in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, B.; Meissner, U.G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik

    2001-01-01

    We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the {sigma}{sup -} charge radius and the {lambda}-{sigma}{sup 0} transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory. (orig.)

  8. "Phonon" scattering beyond perturbation theory

    Science.gov (United States)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  9. Perturbation theory for Alfven wave

    International Nuclear Information System (INIS)

    Yoshida, Z.; Mahajan, S.M.

    1995-01-01

    The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena

  10. Exact solution of the Schroedinger equation with the spin-boson Hamiltonian

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej

    2011-01-01

    We address the problem of obtaining the exact reduced dynamics of the spin-half (qubit) immersed within the bosonic bath (environment). An exact solution of the Schroedinger equation with the paradigmatic spin-boson Hamiltonian is obtained. We believe that this result is a major step ahead and may ultimately contribute to the complete resolution of the problem in question. We also construct the constant of motion for the spin-boson system. In contrast to the standard techniques available within the framework of the open quantum systems theory, our analysis is based on the theory of block operator matrices.

  11. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    Science.gov (United States)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  12. Quantum gravitational corrections to the functional Schroedinger equation

    International Nuclear Information System (INIS)

    Kiefer, C.; Singh, T.P.

    1990-10-01

    We derive corrections to the Schroedinger equation which arise from the quantization of the gravitational field. This is achieved through an expansion of the full functional Wheeler-DeWitt equation with respect to powers of the Planck mass. We demonstrate that the corrections terms are independent of the factor ordering which is chosen for the gravitational kinetic term. Although the corrections are numerically extremely tiny, we show how they lead, at least in principle, to shift in the spectral lines of hydrogen type atoms. We discuss the significance of these corrections for quantum field theory near the Planck scale. (author). 35 refs

  13. Computational study of the Rayleigh light scattering properties of atmospheric pre-nucleation clusters

    DEFF Research Database (Denmark)

    Elm, Jonas; Norman, Patrick; Bilde, Merete

    2014-01-01

    The Rayleigh and hyper Rayleigh scattering properties of the binary (H 2SO4)(H2O)n and ternary (H 2SO4)(NH3)(H2O)n clusters are investigated using a quantum mechanical response theory approach. The molecular Rayleigh scattering intensities are expressed using the dipole polarizability α...... and hyperpolarizability β tensors. Using density functional theory, we elucidate the effect of cluster morphology on the scattering properties using a combinatorial sampling approach. We find that the Rayleigh scattering intensity depends quadratically on the number of water molecules in the cluster and that a single...... ammonia molecule is able to induce a high anisotropy, which further increases the scattering intensity. The hyper Rayleigh scattering activities are found to be extremely low. This study presents the first attempt to map the scattering of atmospheric molecular clusters using a bottom-up approach...

  14. Three-nucleon scattering by using chiral perturbation theory potential

    International Nuclear Information System (INIS)

    Kamata, Hiroyuki

    2003-01-01

    Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the A y puzzle. It seems, however, too hasty to conclude that A y puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)

  15. Simulation of the Schroedinger equation on SHAC

    International Nuclear Information System (INIS)

    Stewart, A.

    1976-01-01

    A simulation of the Schroedinger wave equation for the hydrogen atom, on SHAC, a simple homogeneous analogue computer primarily intended for use in schools, is described. Due to the incorporation of FET switches very high speed switching from initial conditions to compute modes is possible. The techniques employed in the multiplier and divider are discussed and the flow diagram for the Schroedinger program shown. Results and photographs are discussed. (U.K.)

  16. Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Mahajan, S.M.

    1987-10-01

    The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs

  17. Thermal convection at low Rayleigh number from concentrated sources in porous media

    International Nuclear Information System (INIS)

    Hickox, C.E.

    1980-01-01

    A simple mathematical theory is proposed for the analysis of natural convective motion, at low Rayleigh number, from a concentrated source of heat in a fluid-saturated porous medium. The theory consists of retaining only the leading terms of series expansions of the dependent variables in terms of the Rayleigh number, is thus linear, and is valid only in the limit of small Rayleigh number. Based on fundamental results for a variety of isolated sources, superposition is used to provide solutions for situations of practical interest. Special emphasis is given to the analysis of sub-seabed disposal of nuclear waste. 8 figures

  18. Numerically exact dynamics of the interacting many-body Schroedinger equation for Bose-Einstein condensates. Comparison to Bose-Hubbard and Gross-Pitaevskii theory

    Energy Technology Data Exchange (ETDEWEB)

    Sakmann, Kaspar

    2010-07-21

    In this thesis, the physics of trapped, interacting Bose-Einstein condensates is analyzed by solving the many-body Schroedinger equation. Particular emphasis is put on coherence, fragmentation and reduced density matrices. First, the ground state of a trapped Bose-Einstein condensate and its correlation functions are obtained. Then the dynamics of a bosonic Josephson junction is investigated by solving the time-dependent many-body Schroedinger equation numerically exactly. These are the first exact results in literature in this context. It is shown that the standard approximations of the field, Gross-Pitaevskii theory and the Bose-Hubbard model fail at weak interaction strength and within their range of expected validity. For stronger interactions the dynamics becomes strongly correlated and a new equilibration phenomenon is discovered. By comparison with exact results it is shown that a symmetry of the Bose- Hubbard model between attractive and repulsive interactions must be considered an artefact of the model. A conceptual innovation of this thesis are time-dependent Wannier functions. Equations of motion for time-dependent Wannier functions are derived from the variational principle. By comparison with exact results it is shown that lattice models can be greatly improved at little computational cost by letting the Wannier functions of a lattice model become time-dependent. (orig.)

  19. Nucleon and delta masses in twisted mass chiral perturbation theory

    International Nuclear Information System (INIS)

    Walker-Loud, Andre; Wu, Jackson M.S.

    2005-01-01

    We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing, a, and the quark masses, m q , to be of the same order. We give expressions for the mass and the mass splitting of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the mass splitting between the degenerate pairs of the deltas first appears at quadratic order in the lattice spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin breaking

  20. An Introduction to Perturbative Methods in Gauge Theories

    International Nuclear Information System (INIS)

    T Muta

    1998-01-01

    This volume develops the techniques of perturbative QCD in great pedagogical detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge theories. Examples and exercises are provided to amplify the discussions on important topics. This is an ideal textbook on the subject of quantum chromodynamics and is essential for researchers and graduate students in high energy physics, nuclear physics and mathematical physics

  1. The Universe according to Schroedinger and Milo

    Science.gov (United States)

    Wolff, Milo

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Schroedinger, (1937) eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). Thus he rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff using a Scalar Wave Equation in 3D quantum space to find wave solutions. The resulting Wave Structure of Matter (WSM) contains all the electron's properties including the Schroedinger Equation. Further, Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. These the origin of all the Natural Laws. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips and to correct errors of Maxwell's Equations. Applications of the WSM describe matter at molecular dimensions: Industrial alloys, catalysts, biology and medicine, molecular computers and memories. See book ``Schroedinger's Universe'' - at Amazon.com. Pioneers of the WSM are growing rapidly. Some are: SpaceAndMotion.com, QuantumMatter.com, treeincarnation.com/audio/milowolff.htm, daugerresearch.com/orbitals/index.shtml, glafreniere.com/matter.html =A new Universe.

  2. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    International Nuclear Information System (INIS)

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  3. Variational configuration interaction methods and comparison with perturbation theory

    International Nuclear Information System (INIS)

    Pople, J.A.; Seeger, R.; Krishnan, R.

    1977-01-01

    A configuration interaction (CI) procedure which includes all single and double substitutions from an unrestricted Hartree-Fock single determinant is described. This has the feature that Moller-Plesset perturbation results to second and third order are obtained in the first CI iterative cycle. The procedure also avoids the necessity of a full two-electron integral transformation. A simple expression for correcting the final CI energy for lack of size consistency is proposed. Finally, calculations on a series of small molecules are presented to compare these CI methods with perturbation theory

  4. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J. Gonzalez [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Renner, D.B. [Jefferson Lab, Newport News, VA (United States); Shindler, A. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2012-08-24

    In a previous paper (J. G. Lopez et al.,2012) we have discussed the non-perturbative tuning of the chirally rotated Schroedinger functional ({chi}SF). This tuning is required to eliminate bulk O(a) cutoff effects in physical correlation functions. Using our tuning results obtained in this paper we perform scaling and universality tests analyzing the residual O(a) cutoff effects of several step-scaling functions and we compute renormalization factors at the matching scale. As an example of possible application of the {chi}SF we compute the renormalized strange quark mass using large volume data obtained from Wilson twisted mass fermions at maximal twist. (orig.)

  5. A quenched study of the Schroedinger functional with chirally rotated boundary conditions. Applications

    International Nuclear Information System (INIS)

    Lopez, J. Gonzalez; Jansen, K.; Renner, D.B.; Shindler, A.

    2012-01-01

    In a previous paper (J. G. Lopez et al.,2012) we have discussed the non-perturbative tuning of the chirally rotated Schroedinger functional (χSF). This tuning is required to eliminate bulk O(a) cutoff effects in physical correlation functions. Using our tuning results obtained in this paper we perform scaling and universality tests analyzing the residual O(a) cutoff effects of several step-scaling functions and we compute renormalization factors at the matching scale. As an example of possible application of the χSF we compute the renormalized strange quark mass using large volume data obtained from Wilson twisted mass fermions at maximal twist. (orig.)

  6. A higher order depletion perturbation theory with application to in-core fuel management optimization

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1990-01-01

    Perturbation techniques utilized in reactor analysis have recently been applied in the solution of the in-core nuclear fuel management optimization problem. The use of such methods is motivated by the need to evaluate many times over, the core physics characteristics of loading pattern solutions obtained through an optimization process, which is typically iterative. Perturbation theory provides an efficient alternative to the prohibitively expensive, repetitive solutions of the system few-group neutron diffusion equations required in solving the fuel placement problem. A primary concern in the use of such methods is the control of perturbation errors arising during the fuel shuffling process. First-order accurate models inevitably resort to undue restriction of fuel movement during the optimization process to control these errors. Higher order perturbation theory models have the potential to overcome such limitations, which may result in the identification of local versus global optima. An accurate, computationally efficient reactor physics model based on higher order perturbation theory and geared toward the needs of large-scale in-core fuel management optimization is presented in this paper

  7. A perturbation method for dark solitons based on a complete set of the squared Jost solutions

    International Nuclear Information System (INIS)

    Ao Shengmei; Yan Jiaren

    2005-01-01

    A perturbation method for dark solitons is developed, which is based on the construction and the rigorous proof of the complete set of squared Jost solutions. The general procedure solving the adiabatic solution of perturbed nonlinear Schroedinger + equation, the time-evolution equation of dark soliton parameters and a formula for calculating the first-order correction are given. The method can also overcome the difficulties resulting from the non-vanishing boundary condition

  8. Inflationary perturbations in no-scale theories

    Energy Technology Data Exchange (ETDEWEB)

    Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-15

    We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)

  9. Feynman path integral related to stochastic schroedinger equation

    International Nuclear Information System (INIS)

    Belavkin, V.P.; Smolyanov, O.G.

    1998-01-01

    The derivation of the Schroedinger equation describing the continuous measurement process is presented. The representation of the solution of the stochastic Schroedinger equation for continuous measurements is obtained by means of the Feynman path integral. The connection with the heuristic approach to the description of continuous measurements is considered. The connection with the Senon paradox is established [ru

  10. Theoretical investigation of cyromazine tautomerism using density functional theory and Møller–Plesset perturbation theory methods

    Science.gov (United States)

    A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to ...

  11. Linear theory of density perturbations in a neutrino+baryon universe

    International Nuclear Information System (INIS)

    Wasserman, I.

    1981-01-01

    Various aspects of the linear theory of density perturbations in a universe containing a significant population of massive neutrinos are calculated. Because linear perturbations in the neutrino density are subject to nonviscous damping on length scales smaller than the effective neutrino Jeans length, the fluctuation spectrum of the neutrino density perturbations just after photon decoupling is expected to peak near the maximum neutrino Jeans mass. The gravitational effects of nonneutrino species are included in calculating the maximum neutrino Jeans mass, which is found to be [M/sub J/(t)]/sub max/approx.10 17 M/sub sun//[m/sub ν/(eV)] 2 , about an order of magnitude smaller than is obtained when nonneutrino species are ignored. An explicit expression for the nonviscous damping of neutrino density perturbations less massive than the maximum neutrino Jeans mass is derived. The linear evolution of density perturbations after photon decoupling is discussed. Of particular interest is the possibility that fluctuations in the neutrino density induce baryon density perturbations after photon decoupling and that the maximum neutrino Jeans determines the characteristic bound mass of galaxy clusters

  12. Study on Scattering Theory and Perturbative Quantum Chromodynamics: case of quark-antiquark Top pair production

    International Nuclear Information System (INIS)

    Randriamisy, H.D.E.

    2014-01-01

    Nowadays, the study of scattering and production of particles occupies an important place in subatomic physics research. The main ongoing experiments concern high-energy scattering in the colliders, the scattering theory based on quantum field theory is used for the theoretical study. The work presented in this thesis is located in this framework, in fact it concerns a study on the scattering theory and Perturbative Quantum Chromodynamics. We used the path integral formalism of quantum field theory and perturbation theory. As we considered the higher order corrections in perturbative developments, the renormalization theory with the method of dimensional regularization was also used. As an application, the case of the Top quark production was considered. As main results, we can quote the obtention of the cross section of quark-antiquark top pair production up to second order. [fr

  13. Monodromy of the matrix Schroedinger equations and Darboux transformations

    CERN Document Server

    Goncharenko, V M

    1998-01-01

    A Schroedinger operator L=-d sup 2 /dz sup 2 +U(z) with a matrix-valued rational potential U(z) is said to have trivial monodromy if all the solutions of the corresponding Schroedinger equations L psi=lambda psi are single-valued in the complex plane z is an element of C for any lambda. A local criterion of this property in terms of the Laurent coefficients of the potential U near its singularities, which are assumed to be regular, is found. It is proved that any such operator with a potential vanishing at infinity can be obtained by a matrix analogue of the Darboux transformation from the Schroedinger operator L sub o =-d sup 2 /dz sup 2. This generalizes the well known Duistermaat-Gruenbaum result to the matrix case and gives the explicit description of the Schroedinger operators with trivial monodromy in this case. (author)

  14. New numerical method for iterative or perturbative solution of quantum field theory

    International Nuclear Information System (INIS)

    Hahn, S.C.; Guralnik, G.S.

    1999-01-01

    A new computational idea for continuum quantum Field theories is outlined. This approach is based on the lattice source Galerkin methods developed by Garcia, Guralnik and Lawson. The method has many promising features including treating fermions on a relatively symmetric footing with bosons. As a spin-off of the technology developed for 'exact' solutions, the numerical methods used have a special case application to perturbation theory. We are in the process of developing an entirely numerical approach to evaluating graphs to high perturbative order. (authors)

  15. A simple extrapolation of thermodynamic perturbation theory to infinite order

    International Nuclear Information System (INIS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2015-01-01

    Recent analyses of the third and fourth order perturbation contributions to the equations of state for square well spheres and Lennard-Jones chains show trends that persist across orders and molecular models. In particular, the ratio between orders (e.g., A 3 /A 2 , where A i is the ith order perturbation contribution) exhibits a peak when plotted with respect to density. The trend resembles a Gaussian curve with the peak near the critical density. This observation can form the basis for a simple recursion and extrapolation from the highest available order to infinite order. The resulting extrapolation is analytic and therefore cannot fully characterize the critical region, but it remarkably improves accuracy, especially for the binodal curve. Whereas a second order theory is typically accurate for the binodal at temperatures within 90% of the critical temperature, the extrapolated result is accurate to within 99% of the critical temperature. In addition to square well spheres and Lennard-Jones chains, we demonstrate how the method can be applied semi-empirically to the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT)

  16. Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations

    International Nuclear Information System (INIS)

    Hirano, Shin'ichi; Nishi, Sakine; Kobayashi, Tsutomu

    2017-01-01

    We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which is free from ghost and gradient instabilities. As a side remark, we also show that mimetic F (R) theory is plagued with the Ostrogradsky instability.

  17. Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Shin' ichi; Nishi, Sakine; Kobayashi, Tsutomu, E-mail: s.hirano@rikkyo.ac.jp, E-mail: sakine@rikkyo.ac.jp, E-mail: tsutomu@rikkyo.ac.jp [Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501 (Japan)

    2017-07-01

    We study the stability of a recently proposed model of scalar-field matter called mimetic dark matter or imperfect dark matter. It has been known that mimetic matter with higher derivative terms suffers from gradient instabilities in scalar perturbations. To seek for an instability-free extension of imperfect dark matter, we develop an effective theory of cosmological perturbations subject to the constraint on the scalar field's kinetic term. This is done by using the unifying framework of general scalar-tensor theories based on the ADM formalism. We demonstrate that it is indeed possible to construct a model of imperfect dark matter which is free from ghost and gradient instabilities. As a side remark, we also show that mimetic F (R) theory is plagued with the Ostrogradsky instability.

  18. Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    CERN Document Server

    Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-01-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...

  19. Extended Møller-Plesset perturbation theory for dynamical and static correlations

    International Nuclear Information System (INIS)

    Tsuchimochi, Takashi; Van Voorhis, Troy

    2014-01-01

    We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter

  20. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  1. Comparing energy loss and pperpendicular -broadening in perturbative QCD with strong coupling N=4 SYM theory

    International Nuclear Information System (INIS)

    Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen

    2008-01-01

    We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD

  2. Time-sliced perturbation theory for large scale structure I: general formalism

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego; Garny, Mathias; Sibiryakov, Sergey [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Ivanov, Mikhail M., E-mail: diego.blas@cern.ch, E-mail: mathias.garny@cern.ch, E-mail: mikhail.ivanov@cern.ch, E-mail: sergey.sibiryakov@cern.ch [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland)

    2016-07-01

    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein-de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.

  3. Dissipative motion perturbation theory and exact solutions

    International Nuclear Information System (INIS)

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  4. Solving the open bosonic string in perturbation theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1990-01-01

    The integrand and integration region for the N-point amplitude in the open oriented bosonic string are obtained to all orders in perturbation theory. The result is derived from the Witten covariant string field theory by using on-shell and off-shell conformal methods and Riemann surface mathematics. Although only the off-shell g-loop tachyon amplitudes are computed explicitly, the methods generalize to other external states. We derive the g-loop ghost-Jacobi identity in which the ghost correlation function cancels the jacobian factor in changing from second-quantized to first-quantized variables. Moduli space is discussed from several viewpoints and it is shown that string field theory provides an algorithm for its determination. (orig.)

  5. Estimation of high orders of the perturbation theory in quantum mechanics

    International Nuclear Information System (INIS)

    Seznec, Reynald.

    1978-01-01

    First of all the simple case of an integral of one variable (zero-dimensional model) is examined to illustrate the methods and concepts used. A system n quantum oscillators 0(n) (spherical model) is then studied. A theory of perturbations around the saddle point dominating the functional integral is developed (theory of perturbations around the instanton). The fluctuation propagator is calculated explicitly. Some properties of the corresponding Feynman diagrams are also investigated. Methods are proposed to generalize the calculations to more complicated potentials. As an example of application the calculations of the first correction to the Lipatovian term are given for the spherical model [fr

  6. Perturbative quantum field theory in the framework of the fermionic projector

    International Nuclear Information System (INIS)

    Finster, Felix

    2014-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur

  7. Perturbative Quantum Field Theory in the Framework of the Fermionic Projector

    OpenAIRE

    Finster, Felix

    2013-01-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  8. Perturbative quantum field theory in the framework of the fermionic projector

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix, E-mail: finster@ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)

    2014-04-15

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  9. Perturbative quantum field theory in the framework of the fermionic projector

    Science.gov (United States)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  10. Adiabatic perturbation theory in quantum dynamics

    CERN Document Server

    Teufel, Stefan

    2003-01-01

    Separation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.

  11. Dynamical generation of non-abelian gauge group via the improved perturbation theory

    International Nuclear Information System (INIS)

    Kuroki, Tsunehide

    2008-01-01

    It was suggested that the massive Yang-Mills-Chern-Simons matrix model has three phases and that in one of them a non-Abelian gauge symmetry is dynamically generated. The analysis was at the one-loop level around a classical solution of fuzzy sphere type. We obtain evidences that three phases are indeed realized as nonperturbative vacua by using the improved perturbation theory. It gives a good example that even if we start from a trivial vacuum, the improved perturbation theory around it enables us to observe nontrivial vacua. (author)

  12. Perturbation theory in nuclear fuel management optimization

    International Nuclear Information System (INIS)

    Ho, L.W.; Rohach, A.F.

    1982-01-01

    Perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations and, hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time and obtain better power peaking factors. The code also has a burnup capability that can be used to check power peaking throughout the core life

  13. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    Energy Technology Data Exchange (ETDEWEB)

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  14. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  15. Rayleigh scattering in an emitter-nanofiber-coupling system

    Science.gov (United States)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  16. A numerical study of three-dimensional bubble merger in the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Li, X.L.

    1996-01-01

    The Rayleigh endash Taylor instability arises when a heavy fluid adjacent to a light fluid is accelerated in a direction against the density gradient. Under this unstable configuration, a perturbation mode of small amplitude grows into bubbles of the light fluid and spikes of the heavy fluid. Taylor discovered the steady state motion with constant velocity for a single bubble or periodic bubbles in the Rayleigh endash Taylor instability. Read and Youngs studied the motion of a randomly perturbed fluid interface in the Rayleigh endash Taylor instability. They reported constant acceleration for the overall bubble envelope. Bubble merger is believed to cause the transition from constant velocity to constant acceleration. In this paper, we present a numerical study of this important physical phenomenon. It analyzes the physical process of bubble merger and the relationship between the horizontal bubble expansion and the vertical interface acceleration. A dynamic bubble velocity, beyond Taylor close-quote s steady state value, is observed during the merger process. It is believed that this velocity is due to the superposition of the bubble velocity with a secondary subharmonic unstable mode. The numerical results are compared with experiments. copyright 1996 American Institute of Physics

  17. Generalized perturbation theory in DRAGON: application to CANDU cell calculations

    International Nuclear Information System (INIS)

    Courau, T.; Marleau, G.

    2001-01-01

    Generalized perturbation theory (GPT) in neutron transport is a means to evaluate eigenvalue and reaction rate variations due to small changes in the reactor properties (macroscopic cross sections). These variations can be decomposed in two terms: a direct term corresponding to the changes in the cross section themselves and an indirect term that takes into account the perturbations in the neutron flux. As we will show, taking into account the indirect term using a GPT method is generally straight forward since this term is the scalar product of the unperturbed generalized adjoint with the product of the variation of the transport operator and the unperturbed flux. In the case where the collision probability (CP) method is used to solve the transport equation, evaluating the perturbed transport operator involves calculating the variations in the CP matrix for each change in the reactor properties. Because most of the computational effort is dedicated to the CP matrix calculation the gains expected form the GPT method would therefore be annihilated. Here we will present a technique to approximate the variations in the CP matrices thereby replacing the variations in the transport operator with source term variations. We will show that this approximation yields errors fully compatible with the standard generalized perturbation theory errors. Results for 2D CANDU cell calculations will be presented. (author)

  18. Quantum mechanics

    International Nuclear Information System (INIS)

    Ghatak, A.K.; Lokanathan, S.

    1975-01-01

    This textbook on quantum mechanics is intended for students at the graduate and post-graduate level. A balanced account of theory and applications is presented. Emphasis is laid on making results plausible and methods to be followed in solving problems. The various chapters in the book are devoted to the following: (1) Wave particle duality and uncertainty principle (2) Wave packets and time-dependent Schroedinger equation (3) Simple solutions of Schroedinger equation (4) Vector spaces and linear operators : Dirac notation (5) Angular momentum and spin (6) Addition of angular momenta (7) Time independent perturbation theory (8) The variational method (9) The WKB approximation (10) Elementary theory of scattering (11) Time-dependent perturbation theory (12) Motion in a magnetic field (13) Interaction of radiation with matter and (14) Relativistic theory. (A.K.)

  19. Bell's theorem and quantum realism. Reassessment in light of the Schroedinger paradox

    International Nuclear Information System (INIS)

    Shakur, Asif M.; Hemmick, Douglas L.

    2012-01-01

    Quantum theory presents a strange picture of the world, offering no real account of physical properties apart from observation. Neils Bohr felt that this reflected a core truth of nature: ''There is no quantum world. There is only an abstract mathematical description.'' Among the most significant developments since Bohr's day has been the theorem of John S. Bell. It is important to consider whether Bell's analysis supports such a denial of microrealism. In this book, we evaluate the situation in terms of an early work of Erwin Schroedinger. Doing so, we see how Bell's theorem is conceptually related to the Conway and Kochen Free Will theorem and also to all the major anti-realism efforts. It is easy to show that none of these analyses imply the impossibility of objective realism. We find that Schroedinger's work leads to the derivation of a new series of theoretical proofs and potential experiments, each involving ''entanglement,'' the link between particles in some quantum systems. (orig.)

  20. Analytic perturbation theory in analyzing some QCD observables

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    2001-01-01

    The paper is devoted to application of recently devised ghost-free Analytic Perturbation Theory (APT) for analysis of some QCD observables. We start with the discussion of the main problem of the perturbative QCD - ghost singularities and with the resume of this trouble solution within the APT. By a few examples in the various energy and momentum transfer regions (with the flavor number f = 3, 4 and 5) we demonstrate the effect of improved convergence of the APT modified perturbative QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (of an order of α s 3 ) is as a rule numerically inessential. This raises hope for practical solving the well-known problem of asymptotic nature of common QFT perturbation series. The second conclusion is that a common perturbative analysis of time-like events with the big π 2 term in the π 2 coefficient is not adequate at s ≤ 2 GeV 2 . In particular, this relates to τ decay. Then, for the 'high' (f = 5) region it is shown that the common two-loop (NLO, NLLA) perturbation approximation widely used there (at 10 GeV ≤ √s ≤ 170 GeV) for analysis of shape/events data contains a systematic negative error of a 1 - 2 per cent level for the extracted α bar s (2) values. Our physical conclusion is that the α bar s (M Z 2 ) value averaged over the f = 5 data s (M Z 2 )> APT; f= 5 ≅ 0.124 appreciably differs from the currently accepted 'world average' (= 0.118)

  1. Meson-baryon scattering in manifestly Lorentz invariant chiral perturbation theory

    International Nuclear Information System (INIS)

    Mai, Maxim; Bruns, Peter C.; Kubis, Bastian; Meissner, Ulf-G.

    2011-01-01

    We analyze meson-baryon scattering lengths in the framework of covariant baryon chiral perturbation theory at leading one-loop order. We compute the complete set of matching relations between the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We derive new two-flavor low-energy theorems for pion-hyperon scattering that can be tested in lattice simulations.

  2. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model......We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light....

  3. Apparently noninvariant terms of nonlinear sigma models in lattice perturbation theory

    International Nuclear Information System (INIS)

    Harada, Koji; Hattori, Nozomu; Kubo, Hirofumi; Yamamoto, Yuki

    2009-01-01

    Apparently noninvariant terms (ANTs) that appear in loop diagrams for nonlinear sigma models are revisited in lattice perturbation theory. The calculations have been done mostly with dimensional regularization so far. In order to establish that the existence of ANTs is independent of the regularization scheme, and of the potential ambiguities in the definition of the Jacobian of the change of integration variables from group elements to 'pion' fields, we employ lattice regularization, in which everything (including the Jacobian) is well defined. We show explicitly that lattice perturbation theory produces ANTs in the four-point functions of the pion fields at one-loop and the Jacobian does not play an important role in generating ANTs.

  4. Homological Perturbation Theory for Nonperturbative Integrals

    Science.gov (United States)

    Johnson-Freyd, Theo

    2015-11-01

    We use the homological perturbation lemma to produce explicit formulas computing the class in the twisted de Rham complex represented by an arbitrary polynomial. This is a non-asymptotic version of the method of Feynman diagrams. In particular, we explain that phenomena usually thought of as particular to asymptotic integrals in fact also occur exactly: integrals of the type appearing in quantum field theory can be reduced in a totally algebraic fashion to integrals over an Euler-Lagrange locus, provided this locus is understood in the scheme-theoretic sense, so that imaginary critical points and multiplicities of degenerate critical points contribute.

  5. Alien calculus and non perturbative effects in Quantum Field Theory

    Science.gov (United States)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  6. Quantum scattering via the discretisation of Schroedinger's equation

    Energy Technology Data Exchange (ETDEWEB)

    Alexopoulos, A. [Electronic Warfare and Radar Division, Defence Science and Technology Organisation (DSTO), PO Box 1500, Edinburgh 5111 (Australia)]. E-mail: aris.alexopoulos@dsto.defence.gov.au

    2007-03-19

    We obtain the scattering matrix for particles that encounter a quantum potential by discretising Schroedinger's time independent differential equation without the need to resort to the manipulation of the eigenfunctions directly. The singularities that arise in some solutions by other methods are handled with ease including the effects of resonances while convergence is excellent in all limits with only a small number of orders required to give accurate results. Our method compares the tunnelling probability with that of the WKB theory, exact numerical solutions and the modified Airy function method.

  7. Discrete transparent boundary conditions for Schroedinger-type equations

    International Nuclear Information System (INIS)

    Schmidt, F.; Yevick, D.

    1997-01-01

    We present a general technique for constructing nonlocal transparent boundary conditions for one-dimensional Schroedinger-type equations. Our method supplies boundary conditions for the θ-family of implicit one-step discretizations of Schroedinger's equation in time. The use of Mikusinski's operator approach in time avoids direct and inverse transforms between time and frequency domains and thus implements the boundary conditions in a direct manner. 14 refs., 9 figs

  8. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  9. The method of rigged spaces in singular perturbation theory of self-adjoint operators

    CERN Document Server

    Koshmanenko, Volodymyr; Koshmanenko, Nataliia

    2016-01-01

    This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...

  10. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  11. Renormalization of quantum electrodynamics in an arbitrarily strong time independent external field. [Perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik

    1975-01-01

    Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.

  12. Perturbation theory for the effective diffusion constant in a medium of random scatterers

    International Nuclear Information System (INIS)

    Dean, D S; Drummond, I T; Horgan, R R; Lefevre, A

    2004-01-01

    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random medium. The random medium contains point scatterers of density ρ uniformly distributed throughout the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis, we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalization group approach based on thinning out the scatterers; this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme, its predictions are confronted with results obtained by numerical simulation

  13. Some physical applications of fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Guo Xiaoyi; Xu Mingyu

    2006-01-01

    The fractional Schroedinger equation is solved for a free particle and for an infinite square potential well. The fundamental solution of the Cauchy problem for a free particle, the energy levels and the normalized wave functions of a particle in a potential well are obtained. In the barrier penetration problem, the reflection coefficient and transmission coefficient of a particle from a rectangular potential wall is determined. In the quantum scattering problem, according to the fractional Schroedinger equation, the Green's function of the Lippmann-Schwinger integral equation is given

  14. LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Mikaelian, K.O.

    1990-01-01

    We present the results of two-dimensional LASNEX simulations of the classical and laser-driven Rayleigh-Taylor instability. Our growth rates and eigenmodes for classical two- and three-fluid problems agree closely with the exact analytic expressions. We illustrate in several examples how perturbations feed through from one interface to another. For targets driven by a 1/4-μm laser at I=2x10 14 W/cm 2 our growth rates are 40--80 % of the classical case rates for wavelengths between 5 and 100 μm. We find that radiation transport has a stabilizing effect on the Rayleigh-Taylor instability, particularly at high intensities. A brief comparison with a laser-driven experiment is also presented

  15. S-duality invariant perturbation theory improved by holography

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Abhishek [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Honda, Masazumi [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Thakur, Somyadip [Tata Institute of Fundamental Research,Mumbai 400005 (India)

    2017-04-26

    We study anomalous dimensions of unprotected low twist operators in the four-dimensional SU (N)N=4 supersymmetric Yang-Mills theory. We construct a class of interpolating functions to approximate the dimensions of the leading twist operators for arbitrary gauge coupling τ. The interpolating functions are consistent with previous results on the perturbation theory, holographic computation and full S-duality. We use our interpolating functions to test a recent conjecture by the N=4 superconformal bootstrap that upper bounds on the dimensions are saturated at one of the duality-invariant points τ=i and τ=e{sup iπ/3}. It turns out that our interpolating functions have maximum at τ=e{sup iπ/3}, which are close to the conjectural values by the conformal bootstrap. In terms of the interpolating functions, we draw the image of conformal manifold in the space of the dimensions. We find that the image is almost a line despite the conformal manifold is two-dimensional. We also construct interpolating functions for the subleading twist operator and study level crossing phenomenon between the leading and subleading twist operators. Finally we study the dimension of the Konishi operator in the planar limit. We find that our interpolating functions match with numerical result obtained by Thermodynamic Bethe Ansatz very well. It turns out that analytic properties of the interpolating functions reflect an expectation on a radius of convergence of the perturbation theory.

  16. Derivation of the Schroedinger equation from stochastic mechanics

    International Nuclear Information System (INIS)

    Wallstrom, T.C.

    1988-01-01

    The thesis is divided into four largely independent chapters. The first three chapters treat mathematical problems in the theory of stochastic mechanics. The fourth chapter deals with stochastic mechanisms as a physical theory and shows that the Schroedinger equation cannot be derived from existing formulations of stochastic mechanics, as had previously been believed. Since the drift coefficients of stochastic mechanical diffusions are undefined on the nodes, or zeros of the density, an important problem has been to show that the sample paths stay away from the nodes. In Chapter 1, it is shown that for a smooth wavefunction, the closest approach to the nodes can be bounded solely in terms of the time-integrated energy. The ergodic properties of stochastic mechanical diffusions are greatly complicated by the tendency of the particles to avoid the nodes. In Chapter 2, it is shown that a sufficient condition for a stationary process to be ergodic is that there exist positive t and c such that for all x and y, p t (x,y) > cp(y), and this result is applied to show that the set of spin-1/2 diffusions is uniformly ergodic. Nelson has conjectured that in the limit as the particle's moment of inertia I goes to zero, the projections of the Bopp-Haag-Dankel diffusions onto IR 3 converge to a Markovian limit process. This conjecture is proved for the spin-1/2 case in Chapter 3, and the limit process identified as the diffusion naturally associated with the solution to the regular Pauli equation. In Chapter 4 it is shown that the general solution of the stochastic Newton equation does not correspond to a solution of the Schroedinger equation

  17. Generalized non-linear Schroedinger hierarchy

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-01-01

    The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy

  18. Quantum field theory with a momentum space of constant curvature (perturbation theory)

    International Nuclear Information System (INIS)

    Mir-Kasimov, R.M.

    1978-01-01

    In the framework of the field-theoretical approach in which the off-the-mass shell extension proceeds in the p-space of constant curvature, the perburbation theory is developed. The configurational representation of the de Sitter space is introduced with the help of the Fourier transformation of the group of motions. On the basis of a natural generalization of the Bogolyubov causality condition to the case of the new configurational representation a perturbation theory is constructed with the local in xi space Lagrangian density fucntion. The obtained S matrix obeys the reguirement of translation invariance. The S matrix elements are given by convergent expressions

  19. Effect of magnetic field on Rayleigh-Taylor instability of two superposed fluids

    International Nuclear Information System (INIS)

    Sharma, P K; Tiwari, Anita; Chhajlani, R K

    2012-01-01

    The effect of two dimensional magnetic field on the Rayleigh-Taylor (R-T) instability in an incompressible plasma is investigated to include simultaneously the effects of suspended particles and the porosity of the medium. The relevant linearized perturbation equations have been solved. The explicit expression of the linear growth rate is obtained in the presence of fixed boundary conditions. A stability criterion for the medium is derived and discussed the Rayleigh Taylor instabilities in different configurations. It is found that the basic Rayleigh-Taylor instability condition is modified by the presence of magnetic field, suspended particles and porosity of the medium. In case of an unstable R-T configuration, the magnetic field has a stabilizing effect on the system. It is also found that the growth rate of an unstable R-T mode decreases with increasing relaxation frequency thereby showing a stabilizing influence on the R-T configuration.

  20. On the all-order perturbative finiteness of the deformed N=4 SYM theory

    International Nuclear Information System (INIS)

    Rossi, G.C.; Sokatchev, E.; Stanev, Ya.S.

    2006-01-01

    We prove that the chiral propagator of the deformed N=4 SYM theory can be made finite to all orders in perturbation theory for any complex value of the deformation parameter. For any such value the set of finite deformed theories can be parametrized by a whole complex function of the coupling constant g. We reveal a new protection mechanism for chiral operators of dimension three. These are obtained by differentiating the Lagrangian with respect to the independent coupling constants. A particular combination of them is a CPO involving only chiral matter. Its all-order form is derived directly from the finiteness condition. The procedure is confirmed perturbatively through order g 6

  1. Dynamical affine symmetry and covariant perturbation theory for gravity

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1975-01-01

    The covariant perturbation theory for gravity with the simplest reduction properties is formulated. The main points are as follows: fundamental fields are the normal coordinates of ten-dimensional space of the gravitational field, and the fields are separated into the classical (background) and quantum ones in the generating functional along geodesics of this space

  2. Non-perturbative Green functions in quantum gauge theories

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1991-01-01

    Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs

  3. Foundations of quantum chromodynamics: Perturbative methods in gauge theories

    International Nuclear Information System (INIS)

    Muta, T.

    1986-01-01

    This volume develops the techniques of perturbative QCD in great detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge field theories. Examples and exercises are provided to amplify the discussions on important topics. Contents: Introduction; Elements of Quantum Chromodynamics; The Renormalization Group Method; Asymptotic Freedom; Operator Product Expansion Formalism; Applications; Renormalization Scheme Dependence; Factorization Theorem; Further Applications; Power Corrections; Infrared Problem. Power Correlations; Infrared Problem

  4. Baryon chiral perturbation theory extended beyond the low-energy region.

    Science.gov (United States)

    Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.

  5. Multidimensional periodic Schrödinger operator perturbation theory and applications

    CERN Document Server

    Veliev, Oktay

    2015-01-01

    The book describes the direct problems and the inverse problem of the multidimensional Schrödinger operator with a periodic potential. This concerns perturbation theory and constructive determination of the spectral invariants and finding the periodic potential from the given Bloch eigenvalues. The unique method of this book derives the asymptotic formulas for Bloch eigenvalues and Bloch functions for arbitrary dimension. Moreover, the measure of the iso-energetic surfaces in the high energy region is construct and estimated. It implies the validity of the Bethe-Sommerfeld conjecture for arbitrary dimensions and arbitrary lattices. Using the perturbation theory constructed in this book, the spectral invariants of the multidimensional operator from the given Bloch eigenvalues are determined. Some of these invariants are explicitly expressed by the Fourier coefficients of the potential. This way the possibility to determine the potential constructively by using Bloch eigenvalues as input data is given. In the ...

  6. Baryon chiral perturbation theory extended beyond the low-energy region

    International Nuclear Information System (INIS)

    Epelbaum, E.; Gegelia, J.; Meissner, Ulf G.; Yao, De-Liang

    2015-01-01

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region. (orig.)

  7. Green's functions for theories with massless particles (in perturbation theory). [Growth properties, momentum space, mass renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)

    1975-01-01

    With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.

  8. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  9. Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole

    Energy Technology Data Exchange (ETDEWEB)

    Marks, S. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.

  10. GAPER-1D, 1-D Multigroup 1. Order Perturbation Transport Theory for Reactivity Coefficient

    International Nuclear Information System (INIS)

    Koch, P.K.

    1976-01-01

    1 - Description of problem or function: Reactivity coefficients are computed using first-order transport perturbation theory for one- dimensional multi-region reactor assemblies. The number of spatial mesh-points and energy groups is arbitrary. An elementary synthesis scheme is employed for treatment of two- and three-dimensional problems. The contributions to the change in inverse multiplication factor, delta(1/k), from perturbations in the individual capture, net fission, total scattering, (n,2n), inelastic scattering, and leakage cross sections are computed. A multi-dimensional prompt neutron lifetime calculation is also available. 2 - Method of solution: Broad group cross sections for the core and perturbing or sample materials are required as input. Scalar neutron fluxes and currents, as computed by SN transport calculations, are then utilized to solve the first-order transport perturbation theory equations. A synthesis scheme is used, along with independent SN calculations in two or three dimensions, to treat a multi- dimensional assembly. Spherical harmonics expansions of the angular fluxes and scattering source terms are used with leakage and anisotropic scattering treated in a P1 approximation. The angular integrations in the perturbation theory equations are performed analytically. Various reactivity coefficients and material worths are then easily computed at specified positions in the assembly. 3 - Restrictions on the complexity of the problem: The formulation of the synthesis scheme used for two- and three-dimensional problems assumes that the fluxes and currents were computed by the DTF4 code (NESC Abstract 209). Therefore, fluxes and currents from two- or three-dimensional transport or diffusion theory codes cannot be used

  11. Instantons and large N an introduction to non-perturbative methods in quantum field theory

    CERN Document Server

    Marino, Marcos

    2015-01-01

    This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang-Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behaviour of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.

  12. Schroedinger vs Dirac bound state spectra of QantiQ-systems and a plausible Lorentz structure of the effective power-law potential

    International Nuclear Information System (INIS)

    Barik, N.; Barik, B.K.

    1981-01-01

    It is shown that a non-relativistic power-law potential model for the heavy quarks in the form V(r) = Arsup(ν) + V 0 , (A,ν>0) acquires relativistic consistency in generating Dirac bound states of QantiQ-system in agreement with the Schroedinger spectroscopy if the interaction is modelled by equally mixed scalar and vector parts as suggested by the phenomenology of fine-hyperfine splittings of heavy quarkonium systems in a non-relativistic perturbative approach. (author)

  13. Linear theory of the Rayleigh-Taylor instability in the equatorial ionsophere

    International Nuclear Information System (INIS)

    Russel, D.A.; Ott, E.

    1979-01-01

    We present a liner theory of the Rayleigh-Taylor instability in the equatorial ionosphere. For a purely exponential density profile, we find that no unstable eigenmode solutions exist. For a particular model ionosphere with an F peak, unstable eigenmode solutions exist only for sufficiently small horizontal wave numbers. In the later case, purely exponential growth at a rate identical to that for the sharp boundary instability is found. To clarify the situation in the case that eigenmodes do not exist, we solve the initial value problem for the linearized ion equation of motion in the long time asymptotic limit. Ion inertia and ion-neutral collisions are included. Assuming straight magnetic field lines, we find that when eigenmodes do not exist the growth of the response to an impulse is slower than exponential viz, t=/sup -1/2/ exp (γ/sup t/) below the F peak and t/sup -3/2/ exp(γ/sup t/) above the peak; and we determine γ

  14. Finite volume at two-loops in chiral perturbation theory

    International Nuclear Information System (INIS)

    Bijnens, Johan; Rössler, Thomas

    2015-01-01

    We calculate the finite volume corrections to meson masses and decay constants in two and three flavour Chiral Perturbation Theory to two-loop order. The analytical results are compared with the existing result for the pion mass in two-flavour ChPT and the partial results for the other quantities. We present numerical results for all quantities.

  15. Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation

    Energy Technology Data Exchange (ETDEWEB)

    Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)

    1975-01-04

    Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.

  16. Improved Fluid Perturbation Theory: Equation of state for Fluid Xenon

    OpenAIRE

    Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.

  17. Technical fine-tuning problem in renormalized perturbation theory

    International Nuclear Information System (INIS)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes

  18. Technical fine-tuning problem in renormalized perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  19. On estimating perturbative coefficients in quantum field theory and statistical physics

    International Nuclear Information System (INIS)

    Samuel, M.A.; Stanford Univ., CA

    1994-05-01

    The authors present a method for estimating perturbative coefficients in quantum field theory and Statistical Physics. They are able to obtain reliable error-bars for each estimate. The results, in all cases, are excellent

  20. Limited-diffraction solutions to Maxwell and Schroedinger equations

    International Nuclear Information System (INIS)

    Lu, Jian-yu; Greenleaf, J.F.

    1996-10-01

    The authors have developed a new family of limited diffraction electromagnetic X-shaped waves based on the scalar X-shaped waves discovered previously. These waves are diffraction-free in theory and particle-like (wave packets), in that they maintain their shape as they propagate to an infinite distance. The 'X waves' possess (theoretically) infinitely extended 'arms' and - at least, the ones studied in this paper - have an infinite total energy: therefore, they are not physically realizable. However, they can be truncated in both space and time and 'approximated' by means of a finite aperture radiator so to get a large enough depth of interest (depth of field). In addition to the Maxwell equations, X wave solutions to the free Schroedinger equation are also obtained. Possible applications of these new waves are discussed. Finally, the authors discuss the appearance of the X-shaped solutions from the purely geometric point of view of the special relativity theory

  1. Wigner function and Schroedinger equation in phase-space representation

    International Nuclear Information System (INIS)

    Chruscinski, Dariusz; Mlodawski, Krzysztof

    2005-01-01

    We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation

  2. Rayleigh-Taylor instability and mushroom-pattern formation in a two-component Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki; Akamatsu, Daisuke

    2009-01-01

    The Rayleigh-Taylor instability at the interface in an immiscible two-component Bose-Einstein condensate is investigated using the mean field and Bogoliubov theories. Rayleigh-Taylor fingers are found to grow from the interface and mushroom patterns are formed. Quantized vortex rings and vortex lines are then generated around the mushrooms. The Rayleigh-Taylor instability and mushroom-pattern formation can be observed in a trapped system.

  3. Impulsive moving mirror model and the stability of Schroedinger equation with impulse effect in a Banach space

    International Nuclear Information System (INIS)

    Kostadinov, S.I.; Petrov, G.

    1992-01-01

    From a special class of systems has been used a Schroedinger equation with impulse effect in Minkowski space field theory with time dependent boundary conditions, i.e. those of moving mirrors. The field theoretical approach for studying the properties of the vacuum starts from an analysis of the behaviour of local field quantities in Minkowski space with uniformly moving mirrors. For the impulsive moving mirror model is the real process of interaction between the quantum field and the external mirror a subject to disturbances in its evolution acting in time very short compared with the entire duration of the process. So the stability of the solution of the Schroedinger evolution equation for the process in the stability of the vacuum of Casimir. 8 refs

  4. In-core fuel management via perturbation theory

    International Nuclear Information System (INIS)

    Mingle, J.O.

    1975-01-01

    A two-step procedure is developed for the optimization of in-core nuclear fuel management using perturbation theory to predict the effects of various core configurations. The first procedure is a cycle cost minimization using linear programming with a zoned core and discrete burnup groups. The second program utilizes an individual fuel assembly shuffling sequence to minimize the maldistribution of power generation. This latter quantity is represented by a figure of merit or by an assembly power peaking factor. A pressurized water reactor example calculation is utilized. 24 references

  5. Self-consistent many-body perturbation theory in range-separated density-functional theory

    DEFF Research Database (Denmark)

    Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard

    2008-01-01

    effects adequately which, on the other hand, can be described by many-body perturbation theory MBPT. It is therefore of interest to develop a hybrid model which combines the best of both the MBPT and DFT approaches. This can be achieved by splitting the two-electron interaction into long-range and short...

  6. Modified perturbation theory for strongly correlated electron systems

    International Nuclear Information System (INIS)

    Takagi, Osamu; Saso, Tetsuro

    1999-01-01

    We propose a modified scheme for calculating the single-particle excitation spectrum of the impurity Anderson model. It is based on the second order perturbation theory, but modifies the self-energy so as to reproduce the correct atomic limit and to fulfill the Friedel sum rule. Therefore, it offers a simple scheme valid over wide range of excitation energy and parameters, and would be useful also for potential application to the lattice problems. (author)

  7. Effective Lagrangians for SUSY QCD with properties seen in perturbation theory

    International Nuclear Information System (INIS)

    Sharatchandra, H.S.

    1984-06-01

    We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)

  8. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-01-01

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model κ(T)=κ SH [1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where κ SH is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  9. The frictional Schroedinger-Newton equation in models of wave function collapse

    Energy Technology Data Exchange (ETDEWEB)

    Diosi, Lajos [Research Institute for Particle and Nuclear Physics, H-1525 Budapest 114, PO Box 49 (Hungary)

    2007-05-15

    Replacing the Newtonian coupling G by -iG, the Schroedinger--Newton equation becomes {sup f}rictional{sup .} Instead of the reversible Schroedinger-Newton equation, we advocate its frictional version to generate the set of pointer states for macroscopic quantum bodies.

  10. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  11. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  12. Sensitivity calculations of integral parameters by a generalyzed perturbation theory

    International Nuclear Information System (INIS)

    Santo, A.C.F. de.

    1981-12-01

    In this work, we first revise some concepts, concerning the neutron transport in nuclear systems. We derive the balance and importance equation. Then we discuss the neutron importance in subcritical, critical and supercritical systems. The adjoint flux is estabilished as the neutron importance for the fission process. The conventional perturbation theory is later presented. We developed a sistematic perturbative formulation in the first order variation in the distribution functions calculate the reactivity due to a system perturbation. We present in detail the flux difference and generalized functions methos. The above formulation is then extended for altered systems. We consider integral parameters of the type ratio of bilinear functionals (for which the reactivity is a particular case). We define sensitivity coeficients, for any integral parameter, corresponding to a especific system alterations. Possible aplication of the method are also discussed. In the last part of this work, we apply the perturbative formulation to the doppler reacitivity sensibility calculation, utilizing the generalized functions method. We describe in detail the compiler program written for this and some other possible aplications. (Author) [pt

  13. Perturbation theory with respect to intercenter electron exchange and superexchange with degeneracy

    International Nuclear Information System (INIS)

    Orlenko, E.V.; Rumyantsev, A.A.

    1990-01-01

    The corrections to the energy and wave functions of a multielectron system of interacting atoms are calculated in a general analytic form by taking into account degeneracy of the states in accordance with the Young schemes. The rule for writing down the perturbation operator in such systems is formulated in the case when the ground and excited state vectors are antisymmetrized with respect to interchange of electrons between the centers. A secular equation of the theory is derived by applying perturbation theory, one of the parameters of which is the degree of overlap of the wave functions. Some concrete examples of interatomic interactions of an unpaired nature which are due to exchange and superexchange effects are considered

  14. Schroedinger operators and evolutionary strategies

    International Nuclear Information System (INIS)

    Asselmeyer, T.

    1997-01-01

    First we introduce a simple model for the description of evolutionary algorithms, which is based on 2nd order partial differential equations for the distribution function of the individuals. Then we turn to the properties of Boltzmann's and Darwin's strategy. the next chapter is dedicated to the mathematical properties of Schroedinger operators. Both statements on the spectral density and their reproducibility during the simulation are summarized. The remaining of this chapter are dedicated to the analysis of the kernel as well as the dependence of the Schroedinger operator on the potential. As conclusion from the results of this chapter we obtain the classification of the strategies in dependence of the fitness. We obtain the classification of the evolutionary strategies, which are described by a 2nd order partial differential equation, in relation to their solution behaviour. Thereafter we are employed with the variation of the mutation distribution

  15. The running coupling of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih; Wolff, Ulli; Sommer, Rainer

    2010-06-01

    We have calculated the step scaling function and the running coupling of QCD in the Schroedinger functional scheme with four flavors of O(a) improved Wilson quarks. Comparisons of our non-perturbative results with 2-loop and 3-loop perturbation theory as well as with non-perturbative data for only two flavors are made. (orig.)

  16. An evaluation of diverse methods of obtaining effective Schroedinger interaction potentials for elastic scattering

    International Nuclear Information System (INIS)

    Amos, K.; Allen, L.J.; Steward, C.; Hodgson, P.E.; Sofianos, S.A.

    1995-01-01

    Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs

  17. An evaluation of diverse methods of obtaining effective Schroedinger interaction potentials for elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amos, K.; Allen, L.J.; Steward, C. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Hodgson, P.E. [Oxford Univ. (United Kingdom). Dept. of Physics; Sofianos, S.A. [University of South Africa (UNISA), Pretoria (South Africa). Dept. of Physics

    1995-10-01

    Direct solution of the Schroedinger equation and inversion methods of analysis of elastic scattering data are considered to evaluate the information that they can provide about the physical interaction between colliding nuclear particles. It was found that both optical model and inversion methods based upon inverse scattering theories are subject to ambiguities. Therefore, it is essential that elastic scattering data analyses are consistent with microscopic calculations of the potential. 25 refs.

  18. Radiation perturbation theory in gravity and quantum universe as a hydrogen atom

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1992-01-01

    In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs

  19. Skeleton inequalities and the asymptotic nature of perturbation theory for PHI4-theories in two and three dimensions

    International Nuclear Information System (INIS)

    Bovier, A.; Felder, G.

    1984-01-01

    We use the polymer representation of PHI 4 -quantum field theories to prove an infinite family of correlation inequalities, called ''skeleton inequalities'', for the 2n-point Green's functions. As an application, we show that they imply that Feynman perturbation theory is asymptotic in less than four dimensions. (orig.)

  20. Effects of modulation on Rayleigh-Benard convection. Part I

    Directory of Open Access Journals (Sweden)

    B. S. Bhadauria

    2004-01-01

    Full Text Available The linear stability of a horizontal layer of fluid heated from below and above is considered. In addition to a steady temperature difference between the walls of the fluid layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. Numerical results for the critical Rayleigh number are obtained at various Prandtl numbers and for various values of the frequency. Some comparisons have been made with the known results.