Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime
Carlin, P.W.
1996-12-01
Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases considered include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.
Shearing box simulations in the Rayleigh unstable regime
Nauman, Farrukh; Blackman, Eric G.
2015-01-01
We study the stability properties of Rayleigh unstable flows both in the purely hydrodynamic and magnetohydrodynamic (MHD) regimes for two different values of the shear $q=2.1, 4.2$ ($q = - d\\ln\\Omega / d\\ln r$) and compare it with the Keplerian case $q=1.5$. The Rayleigh stability criterion states...
Kilkenny, J.D.
1994-08-04
As shown elsewhere an ablatively imploded shell is hydrodynamically unstable, the dominant instability being the well known Rayleigh-Taylor instability with growth rate {gamma} = {radical}Akg where k = 2{pi}/{lambda} is the wave number, g is the acceleration and A the Attwood number ({rho}{sub hi} {minus} {rho}{sub lo})/({rho}{sub hi} + {rho}{sub lo}) where {rho}{sub hi} is the density of the heavier fluid and {rho}{sub lo} is the density of the lighter fluid. A theoretical understanding of ablative stabilization has gradually evolved, confirmed over the last five years by experiments. The linear growth is very well understood with excellent agreement between experiment and simulation for planar geometry with wavelengths in the region of 30--100{mu}m. There is an accurate, albeit phenomenological dispersion relation. The non-linear growth has been measured and agrees with calculations. In this lecture, the authors go into the fundamentals of the Rayleigh-Taylor instability and the experimental measurements that show it is stabilized sufficiently by ablation in regimes relevant to ICF.
Heat transport in the geostrophic regime of rotating Rayleigh-B{\\'e}nard convection
Ecke, Robert E
2013-01-01
We report experimental measurements of heat transport in rotating Rayleigh-B{\\'e}nard convection in a cylindrical convection cell with aspect ratio $\\Gamma = 1/2$. The fluid was helium gas with Prandtl number Pr = 0.7. The range of control parameters was Rayleigh number $4 \\times 10^9 < {\\rm Ra} < 4 \\times 10^{11}$ and Ekman number $2 \\times 10^{-7} < {\\rm Ek} < 3 \\times 10^{-5}$(corresponding to Taylor number $4 \\times 10^9 < {\\rm Ta} < 1 \\times 10^{14}$ and convective Rossby number $0.07 < {\\rm Ro} < 5$). We determine the crossover from weakly rotating turbulent convection to rotation dominated geostrophic convection through experimental measurements of the normalized heat transport Nu. The heat transport for the rotating state in the geostrophic regime, normalized by the zero-rotation heat transport, is consistent with scaling of $({\\rm RaEk}^{-7/4})^\\beta$ with $\\beta \\approx 1$. A phase diagram is presented that encapsulates measurements on the potential geostrophic turbulence reg...
Jorge, N.F.; Trivino, C.; Marco, J.M. [GL Garrad Iberica, S.L.U., Lisbon (Portugal)
2012-07-01
The uncertainty associated with the wind variability on wind farm energy production estimate may be mitigated when considering several wind farms within a portfolio rather than isolated. If two wind farms are geographically disperse in such a way that the wind regime in which wind farm is immersed can be considered independent or at least partly independent, the deviations on the annual energy production from the average of each wind farm may compensate each other - the so called ''portfolio effect''. This is an important feature for investors and operators when quantifying the associated uncertainty of the predicted energy yield of the overall portfolio for future timescales such as 1- year or 10-years periods. The methodology to determine the degree of dependency between wind regimes have been applied in an hypothetical portfolio of seven wind farms dispersed from north to south in continental Portugal. (orig.)
Rayleigh Doppler Lidar for Higher Tropospheric and Stratospheric Wind Observation
TANG Lei; WANG Cong-Rong; WU Hai-Bin; DONG Ji-Hui
2012-01-01
A mobile molecular Doppler wind lidar (DWL) based on the double-edge technique is described for wind measurement from 10 km to 40 km altitude.Two edge filters located in the wings of the thermally broadened molecular backscattered signal spectrum at 355 nm are employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity.The lidar operates at 355 nm with a 45 cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing.Intercomparison experiments of the lidar wind profile measurement are performed with collocated pilot balloon.The results show that the standard deviation of wind speed and direction are less than l0m/s and 30° in the 5-40 km altitude range,respectively.The small mean difference and normal distribution between DWL and pilot balloon data and the transient eddy of the west-wind jet observed demonstrate that the DWL consistently measures the wind with acceptable random errors.%A mobile molecular Doppler wind lidar (DWL) based on the double-edge technique is described for wind measurement from 10 km to 40 km altitude. Two edge filters located in the wings of the thermally broadened molecular backscattered signal spectrum at 355 nm are employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity. The lidar operates at 355 nm with a 45 cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing. Intercomparison experiments of the lidar wind profile measurement are performed with collocated pilot balloon. The results show that the standard deviation of wind speed and direction are less than 10m/s and 30° in the 5-40 km altitude range, respectively. The small mean difference and normal distribution between DWL and pilot balloon data and the transient eddy of the west-wind jet observed demonstrate that the DWL consistently measures the wind with acceptable random errors.
Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P
2015-05-29
We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.
Automatic Classification of Offshore Wind Regimes With Weather Radar Observations
Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik
2014-01-01
Weather radar observations are called to play an important role in offshore wind energy. In particular, they can enable the monitoring of weather conditions in the vicinity of large-scale offshore wind farms and thereby notify the arrival of precipitation systems associated with severe wind...... and amplitude) using reflectivity observations from a single weather radar system. A categorical sequence of most likely wind regimes is estimated from a wind speed time series by combining a Markov-Switching model and a global decoding technique, the Viterbi algorithm. In parallel, attributes of precipitation...... systems are extracted from weather radar images. These attributes describe the global intensity, spatial continuity and motion of precipitation echoes on the images. Finally, a CART classification tree is used to find the broad relationships between precipitation attributes and wind regimes...
Wind regime and wind power in North Patagonia, Argentina
Palese, C.; Laessig, J.L.; Cogliati, M.G.; Bastanski, M.A. [Universidad Nacional del Comahue, Buenos Aires (Argentina). Facultad de Ingenieria
2000-07-01
The present paper discusses wind and wind power characteristics in a region north of 40{sup o}S (North Patagonia, Argentina) as well as wind power projects sustainability. Extreme wind episodes influence most economic and social regional activities. Mean flow pattern was studied in three North Patagonia sites: Neuquen, Mari Menuco and Cutral-Co, by sampling analysis of wind direction and intensity during a year. Gusts were quantified and strong winds were studied. Available meteorological power was also estimated. It was observed that North Patagonia is a place of great wind power potential. However, the energy available, which is related to prevailing strong winds, is also associated to high gust occurrence which certainly restricts exploitation. (Author)
Wind / hydro complementary seasonal regimes in Brazil
Amarante, O.A.C. do [CAMARGO SCHUBERT Engenharia Eolica, Curitiba PR (Brazil); Schultz, D.J. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Bittencourt, R.M. [CHESF - Companhia Hidro Eletrica do Sao Francisco, Recife PE (Brazil); Rocha, N.A. [PROMON Engenharia Ltda., Rio de Janeiro, RJ (Brazil)
2001-08-01
In the last decades, wind power generation has proven its suitability to the Gigawatt scale, necessary to an effective contribution to electric systems. This paper demonstrates, from existing data, the wind / hydro seasonal complementarity in the relevant areas of Brazil, and discusses its possible effect on the feasibility of seasonal stabilization of the energy supply in the Brazilian interconnected grid, taking advantage of the country's large natural resources available. Case studies for the southern/southeastern and the northeastern regions of Brazil are presented. A brief analysis is included regarding the geographic location of the interconnected grid, main hydro power plants, and estimated promising wind farm areas in Brazil. (orig.)
On the fast magnetic rotator regime of stellar winds
Johnstone, C. P.
2017-01-01
Aims: We study the acceleration of the stellar winds of rapidly rotating low mass stars and the transition between the slow magnetic rotator and fast magnetic rotator regimes. We aim to understand the properties of stellar winds in the fast magnetic rotator regime and the effects of magneto-centrifugal forces on wind speeds and mass loss rates. Methods: We extend a solar wind model to 1D magnetohydrodynamic simulations of the winds of rotating stars. We test two assumptions for how to scale the wind temperature to other stars and assume the mass loss rate scales as dot{M_star ∝ R_star2 Ω_star1.33 M_star-3.36}, in the unsaturated regime, as estimated from observed rotational evolution. Results: For 1.0 M⊙ stars, the winds can be accelerated to several thousand km s-1, and the effects of magneto-centrifugal forces are much weaker for lower mass stars. We find that the different assumptions for how to scale the wind temperature to other stars lead to significantly different mass loss rates for the rapid rotators. If we assume a constant temperature, the mass loss rates of solar mass stars do not saturate at rapid rotation, which we show to be inconsistent with observed rotational evolution. If we assume the wind temperatures scale positively with rotation, the mass loss rates are only influenced significantly at rotation rates above 75 Ω⊙. We suggest that models with increasing wind speed for more rapid rotators are preferable to those that assume a constant wind speed. If this conclusion is confirmed by more sophisticated wind modelling. it might provide an interesting observational constraint on the properties of stellar winds. All of the codes and output data used in this paper can be downloaded from http://https://zenodo.org/record/160052#.V_y6drWkVC1 or obtained by contacting the author.
On the Fast Magnetic Rotator Regime of Stellar Winds
Johnstone, C P
2016-01-01
Aims: We study the acceleration of the stellar winds of rapidly rotating low mass stars and the transition between the slow magnetic rotator and fast magnetic rotator regimes. We aim to understand the properties of stellar winds in the fast magnetic rotator regime and the effects of magneto-centrifugal forces on wind speeds and mass loss rates. Methods: We extend the solar wind model of Johnstone et al. (2015b) to 1D magnetohydrodynamic (MHD) simulations of the winds of rotating stars. We test two assumptions for how to scale the wind temperature to other stars and assume the mass loss rate scales as Mdot ~ Rstar^2 OmegaStar^1.33 Mstar^-3.36, in the unsaturated regime, as estimated by Johnstone et al. (2015a). Results: For 1.0 Msun stars, the winds can be accelerated to several thousand km/s, and the effects of magneto-centrifugal forces are much weaker for lower mass stars. We find that the different assumptions for how to scale the wind temperature to other stars lead to significantly different mass loss ra...
Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar.
Zhao, Ruocan; Dou, Xiankang; Sun, Dongsong; Xue, Xianghui; Zheng, Jun; Han, Yuli; Chen, Tingdi; Wang, Guocheng; Zhou, Yingjie
2016-03-21
Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves.
Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime
Wu, Ka Ling; Porté-Agel, Fernando
2017-04-01
Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully
Comparison of algorithms for determination of solar wind regimes
Neugebauer, Marcia; Reisenfeld, Daniel; Richardson, Ian G.
2016-09-01
This study compares the designation of different solar wind flow regimes (transient, coronal hole, and streamer belt) according to two algorithms derived from observations by the Solar Wind Ion Composition Spectrometer, the Solar Wind Electron Proton Alpha Monitor, and the Magnetometer on the ACE spacecraft, with a similar regime determination performed on board the Genesis spacecraft. The comparison is made for the interval from late 2001 to early 2004 when Genesis was collecting solar wind ions for return to Earth. The agreement between hourly regime assignments from any pair of algorithms was less than two thirds, while the simultaneous agreement between all three algorithms was only 49%. When the results of the algorithms were compared to a catalog of interplanetary coronal mass ejection events, it was found that almost all the events in the catalog were confirmed by the spacecraft algorithms. On the other hand, many short transient events, lasting 1 to 13 h, that were unanimously selected as transient like by the algorithms, were not included in the catalog.
Aliashim Albani
2014-02-01
Full Text Available The demand for electricity in Malaysia is growing in tandem with its Gross Domestic Product (GDP growth. Malaysia is going to need even more energy as it strives to grow towards a high-income economy. Malaysia has taken steps to exploring the renewable energy (RE including wind energy as an alternative source for generating electricity. In the present study, the wind energy potential of the site is statistically analyzed based on 1-year measured hourly time-series wind speed data. Wind data were obtained from the Malaysian Meteorological Department (MMD weather stations at nine selected sites in Malaysia. The data were calculated by using the MATLAB programming to determine and generate the Weibull and Rayleigh distribution functions. Both Weibull and Rayleigh models are fitted and compared to the Field data probability distributions of year 2011. From the analysis, it was shown that the Weibull distribution is fitting the Field data better than the Rayleigh distribution for the whole year 2011. The wind power density of every site has been studied based on the Weibull and Rayleigh functions. The Weibull distribution shows a good approximation for estimation of wind power density in Malaysia.
Explicit Mapping of Acoustic Regimes For Wind Instruments
Missoum, Samy; Doc, Jean-Baptiste
2014-01-01
This paper proposes a methodology to map the various acoustic regimes of wind instruments. The maps can be generated in a multi-dimensional space consisting of design, control parameters, and initial conditions. The bound- aries of the maps are obtained explicitly in terms of the parameters using a support vector machine (SVM) classifier as well as a dedicated adaptive sam- pling scheme. The approach is demonstrated on a simplified clarinet model for which several maps are generated based on different criteria. Examples of computation of the probability of occurrence of a specific acoustic regime are also provided. In addition, the approach is demonstrated on a design optimization example for optimal intonation.
Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams
Kern, J.; Characklis, G. W.
2012-12-01
challenge, the following study was designed to investigate the potential for wind power integration to alter riparian flow regimes below hydroelectric dams. A hydrological model of a three-dam cascade in the Roanoke River basin (Virginia, USA) is interfaced with a simulated electricity market (i.e. a unit commitment problem) representing the Dominion Zone of PJM Interconnection. Incorporating forecasts of electricity demand, hydro capacity and wind availability, a mixed-integer optimization program minimizes the system cost of meeting hourly demand and reserve requirements by means of a diverse generation portfolio (e.g. nuclear, fossil, hydro, and biomass). A secondary 'balancing' energy market is executed if real-time wind generation is less than the day-ahead forecast, calling upon reserved generation resources to meet the supply shortfall. Hydropower release schedules are determined across a range of wind development scenarios (varying wind's fraction of total installed generating capacity, as well as its geographical source region). Flow regimes for each wind development scenario are compared against both historical and simulated flows under current operations (negligible wind power), as well as simulated natural flows (dam removal), in terms of ecologically relevant flow metrics. Results quantify the ability of wind power development to alter within-week stream flows downstream from hydropower dams.
Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan
2014-09-08
Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.
The Spectral Amplitude of Stellar Convection and Its Scaling in the High-Rayleigh-number Regime
Featherstone, Nicholas A.; Hindman, Bradley W.
2016-02-01
Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique test bed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation owing to this apparent overestimation. We present a series of three-dimensional stellar convection simulations designed to examine how the amplitude and spectral distribution of convective flows are established within a star’s interior. While these simulations are nonmagnetic and nonrotating in nature, they demonstrate two robust phenomena. When run with sufficiently high Rayleigh number, the integrated kinetic energy of the convection becomes effectively independent of thermal diffusion, but the spectral distribution of that kinetic energy remains sensitive to both of these quantities. A simulation that has converged to a diffusion-independent value of kinetic energy will divide that energy between spatial scales such that low-wavenumber power is overestimated and high-wavenumber power is underestimated relative to a comparable system possessing higher Rayleigh number. We discuss the implications of these results in light of the current inconsistencies between models and observations.
Shirinzadeh, B.; Hillard, M. E.; Blair, A. B.; Exton, R. J.
1991-01-01
Using a frequency-doubled Nd-YAG pulsed laser and a single-intensified CCD camera, Rayleigh scattering measurements have been performed to study the cluster formation in a Mach 6 wind tunnel at NASA Langley Research Center. These studies were conducted both in the free stream and in a model flow field for various flow conditions to gain an understanding of the dependence of the Rayleigh scattering (by clusters) on the local pressures and temperatures in the facility. Using the same laser system, simultaneous measurements of the local temperature have also been performed using the rotational Raman scattering of molecular nitrogen and determined the densities of molecular oxygen and nitrogen by using the vibrational Raman scattering from these species. Quantitative results are presented in detail with emphasis on the applicability of the Rayleigh scattering for obtaining quantitative measurements of molecular densities both in the free stream and in the model flow field.
Souma Chowdhury
2016-05-01
Full Text Available The suitability of turbine configurations to different wind resources has been traditionally restricted to considering turbines operating as standalone entities. In this paper, a framework is thus developed to investigate turbine suitability in terms of the minimum cost of energy offered when operating as a group of optimally-micro-sited turbines. The four major steps include: (i characterizing the geographical variation of wind regimes in the onshore U.S. market; (ii determining the best performing turbines for different wind regimes through wind farm layout optimization; (iii developing a metric to quantify the expected market suitability of available turbine configurations; and (iv exploring the best tradeoffs between the cost and capacity factor yielded by these turbines. One hundred thirty one types of commercial turbines offered by major global manufacturers in 2012 are considered for selection. It is found that, in general, higher rated power turbines with medium tower heights are the most favored. Interestingly, further analysis showed that “rotor diameter/hub height” ratios greater than 1.1 are the least attractive for any of the wind classes. It is also observed that although the “cost-capacity factor” tradeoff curve expectedly shifted towards higher capacity factors with increasing wind class, the trend of the tradeoff curve remained practically similar.
G. Baumgarten
2010-11-01
Full Text Available A direct detection Doppler lidar for measuring wind speed in the middle atmosphere up to 80 km with 2 h resolution was implemented in the ALOMAR Rayleigh/Mie/Raman lidar (69° N, 16° E. The random error of the line of sight wind is about 0.6 m/s and 10 m/s at 49 km and 80 km, respectively. We use a Doppler Rayleigh Iodine Spectrometer (DoRIS at the iodine line 1109 (~532.260 nm. DoRIS uses two branches of intensity cascaded channels to cover the dynamic range from 10 to 100 km altitude. The wind detection system was designed to extend the existing multi-wavelength observations of aerosol and temperature performed at wavelengths of 355 nm, 532 nm and 1064 nm. The lidar uses two lasers with a mean power of 14 W at 532 nm each and two 1.8 m diameter tiltable telescopes. Below about 49 km altitude the accuracy and time resolution is limited by the maximum count rate of the detectors used and not by the number of photons available. We report about the first simultaneous Rayleigh temperature and wind measurements by lidar in the strato- and mesosphere on 17 and 23 January 2009.
Rayleigh-Brillouin scattering in SF6 in the kinetic regime
Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim
2017-02-01
Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2-5 bar and for a wavelength of λ = 403.0 nm. The high quality data are compared to a number of light scattering models in order to address the effects of rotational and vibrational relaxation. While the vibrational relaxation rate is so slow that vibration degrees of freedom remain frozen, rotations relax on time scales comparable to those of the density fluctuations. Therefore, the heat capacity, the thermal conductivity and the bulk viscosity are all frequency-dependent transport coefficients. This is relevant for the Tenti model that depends on the values chosen for these transport coefficients. This is not the case for the other two models considered: a kinetic model based on rough-sphere interactions, and a model based on fluctuating hydrodynamics. The deviations with the experiment are similar between the three different models, except for the hydrodynamic model at pressures p≲ 2bar . As all models are in line with the ideal gas law, we hypothesize the presence of real gas effects in the measured spectra.
Wind tunnel measurements of a large wind farm model approaching the infinite wind farm regime
Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan
2016-11-01
A scaled wind farm, with 100 porous disk models of wind turbines, is used to study the effect of wind farm layout on the wind farm power output and its variability, in a wind tunnel study. The wind farm consists of 20 rows and 5 columns. The porous disk models have a diameter of 0 . 03 m and are instrumented with strain gages to measure the thrust force, as a surrogate for wind turbine power output. The frequency response of the measurements goes up to the natural frequency of the models and allows studying the spatio-temporal characteristics of the power output for different layouts. A variety of layouts are considered by shifting the individual rows in the spanwise direction. The reference layout has a regular streamwise spacing of Sx / D = 7 and a spanwise spacing of Sy / D = 5 . The parameter space is further expanded by considering layouts with an uneven streamwise spacing: Sx / D = 3 . 5 & 10 . 5 and Sx / D = 1 . 5 & 12 . 5 . We study how the mean row power changes as a function of wind farm layout and investigate the appearance of an asymptotic limiting behavior as previously described in the literature by application of the top-down model for the spatially averaged wind farm - boundary layer interaction. Work supported by ERC (Grant No. 306471, the ActiveWindFarms project) and by NSF (OISE-1243482, the WINDINSPIRE project).
Casner, A.; Liberatore, S.; Masse, L.; Martinez, D.; Haan, S. W.; Kane, J.; Moore, A. S.; Seugling, R.; Farrell, M.; Giraldez, E.; Nikroo, A.; Smalyuk, V. A.; Remington, B. A.
2016-05-01
Under the Discovery Science program, the longer pulses and higher laser energies provided by the National Ignition Facility (NIF) have been harnessed to study, first time in indirect-drive, the highly nonlinear stage of the Rayleigh-Taylor Instability (RTI) at the ablation front. A planar plastic package with pre-imposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled gold radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil, a factor 3x larger than previously achieved on other laser facilities. As a consequence, we have measured the ablative RTI in transition from the weakly nonlinear stage up to the deep nonlinear stage for various initial conditions. A bubble merger regime has been observed and the ablative stabilization strength varied by changing the plastic dopant from iodine to germanium.
Mesoscale Wind Regimes In The Elqui-valley/chile At 30 S
Kalthoff, N.; Bischoff-Gauß, I.; Fiebig-Wittmaack, M.; Fiedler, F.; Thürauf, J.; Novoa, E.; Pizarro, C.; Castillo, R.; Kohler, M.
In November 1999, four permanent surface stations were installed in the vicinity of the surface ozone monitoring station on the summit of the Cerro Tololo (2200 m amsl) at 30 S. These stations were used to study the atmospheric flow conditions which are important for the interpretation of the ozone measurements at Cerro Tololo. Addi- tionally, radiosonde ascents were performed in March 2000 near the coast and about 60 km inland. Different wind regimes were distinguished. Above 4 km, large-scale westerly winds prevailed, while northerly winds were observed in a band along the coastline between 2 km and 4 km height. The upper boundary of the northerly wind regime corresponded with the mean height of the Andes. This wind regime resulted from the westerly winds being blocked and forced to flow parallel to the Andes (when Froude number Fr < 1). The phenomenon was also confirmed by model simulations. Seasonally varying thermally induced valley winds and a sea breeze developed be- low the northerly wind regime. In summer, the valley winds reached the Cerro Tololo. Diurnal variation of the top of the valley winds also influenced the lower boundary of the northerly wind regime, which was less than 2 km amsl during the night and greater than 2 km amsl during the day. Thus, this observational and modeling study has shown that in summer the baseline ozone monitoring site at Cerro Tololo can be contaminated by polluted air that is transported from the plains by the thermally induced wind systems.
Winding number instability in the phase-turbulence regime of the complex Ginzburg-Landau equation
Montagne, R; San Miguel, M
1996-01-01
We give a statistical characterization of states with nonzero winding number in the Phase Turbulence (PT) regime of the one-dimensional Complex Ginzburg-Landau equation. We find that states with winding number larger than a critical one are unstable, in the sense that they decay to states with smaller winding number. The transition from Phase to Defect Turbulence is interpreted as an ergodicity breaking transition which occurs when the range of stable winding numbers vanishes. Asymptotically stable states which are not spatio-temporally chaotic are described within the PT regime of nonzero winding number.
Planar Rayleigh scattering results in helium-air mixing experiments in a Mach-6 wind tunnel
Shirinzadeh, B.; Hillard, M. E.; Balla, R. Jeffrey; Waitz, I. A.; Anders, J. B.; Exton, R. J.
1992-01-01
Planar Rayleigh scattering measurements with an argon—fluoride excimer laser are performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach-6 facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross-sectional area (5 cm × 10 cm) of the flow field in...
Mie-Rayleigh Doppler Wind Lidar with Two Double-edge Interferometers
孙东松
2002-01-01
The Mie-Rayleigh direct detection Doppler lidar (DDDL) with two double-edge etalons is presented. Fabry-Perot (F-P) etalon is used as the spectral analyzer for Doppler measurement formthe aerosol and molecule backscattered signals. The aerosol and molecular backscattering signals are separated by a polarization isolator with less signal decrement, so this system has about same accuracy as individual Rayleigh Doppler lidar or Mie Doppler lidar system. The simulation on a proposed ground-based DDDL at 532 nm shows that the velocity error is less than 2 m/s below 8 km for a 100 m vertical resolution by Mie channel and 2m/s up to 20 km by Rayleigh channel, respectively.
Planar Rayleigh scattering results in helium-air mixing experiments in a Mach-6 wind tunnel
Shirinzadeh, B.; Hillard, M. E.; Balla, R. J.; Waitz, I. A.; Anders, J. B.; Exton, R. J.
1992-01-01
Planar Rayleigh scattering measurements with an argon-fluoride excimer laser are performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach-6 facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross-sectional area (5 cm x 10 cm) of the flow field in the absence of clusters.
Planar Rayleigh Scattering Results in Helium/Air Mixing Experiments in a Mach 6 Wind Tunnel
Shirinzadeh, B.; Balla, R. Jeffrey; Hillard, M. E.; Anders, J. B.; Exton, R. J.; Waitz, I. A.
1991-01-01
Planar Rayleigh scattering measurements using an ArF-excimer laser have been performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach 6facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross sectional area (5 cm by 10 cm) of the flow field in the absence of clusters.
Balancing Europe's wind power output through spatial deployment informed by weather regimes.
Grams, Christian M; Beerli, Remo; Pfenninger, Stefan; Staffell, Iain; Wernli, Heini
2017-08-01
As wind and solar power provide a growing share of Europe's electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2-5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe's wind power and can help guide new deployment pathways which minimise this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour - specifically deploying in the Balkans instead of the North Sea - would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimising the negative impacts of output variability.
FIELD AND NUMERICAL STUDY OF THE WIND-WAVE REGIME ON THE GORKY RESERVOIR
Alexandra M. Kuznetsova
2016-01-01
Full Text Available The paper describes the study of wind-wave regime at the Gorky reservoir. A series of field experiments (carried out from May to October in 2012–2015 showed that the values of the drag coefficient CD for a middle-sized reservoir in the range of moderate and strong winds are approximately 50 % lower than its values typical of the ocean conditions. The obtained parameterization of CD was implemented in the wave model WAVEWATCH III to receive the correct wave forecasts for a middle-sized reservoir. Statistical distribution of the wind speeds and directions called for consideration of wind field heterogeneity over the Gorky reservoir. It was incorporated using the wind forcing from atmospheric model WRF to WAVEWATCH III. Homogeneous wind forcing from the experimental data was compared with heterogeneous wind forcing from WRF. The need for further improvement of the quality of wind and wave prediction is discussed.
Remote wind sensing with a CW diode laser lidar beyond the coherence regime
Hu, Qi; Rodrigo, Peter John; Pedersen, Christian
2014-01-01
We experimentally demonstrate for the first time (to our knowledge) a coherent CW lidar system capable of wind speed measurement at a probing distance beyond the coherence regime of the light source. A side-by-side wind measurement was conducted on the field using two lidar systems with identical...... optical designs but different laser linewidths. While one system was operating within the coherence regime, the other was measuring at least 2.4 times the coherence range. The probing distance of both lidars is 85 m and the radial wind speed correlation was measured to be r2=0.965 between the two lidars...
Climate projection of extreme wind speed regime in the Arctic
Surkova, Galina; Sokolova, Larisa
2016-04-01
Extreme surface wind events over the Arctic (60-90N, 0-360 E) are studied for the modern climate and for its future possible changes on the base of ERA-Interim reanalysis data and CMIP5 scenario RCP8.5. Horizontal surface wind speed (10 m) probability distribution functions in every grid point of reanalysis and models data over the Arctic were evaluated as well as wind speed for 50, 95, 99, 99.9 percentiles (V0.50, V0.95, V0.99, V0.999). At first, changes of V0.50, V0.95, V0.99, V0.999 were studied on the base of ERA-Interim reanalysis for 1981-2010. Results showed regional inhomogenity of wind speed trend intensity. Also, analysis was made for zonal means and separate sectors of the Arctic. To study climate projection of high wind speed there were taken u,v values from CMIP5 numerical experiments for 1961-1990 (Historical) and 2081-2100 (RCP8.5). RCP8.5 scenario was chosen as having the most pronounced response in the climate system, which gave more statistical significance to the calculated trends. Modeled extreme wind speeds for the total Arctic and zonal means show rather good agreement with reanalysis data (compared for decades 1981-1990, 1991-2000). At the same time regional intermodel variability of wind speed is revealed. Trend of extreme surface wind speed in 21 century and for 2081-2100 over the Arctic are analyzed for each model. The study was supported by the Russian Science Foundation (project no. 14-37-00038).
Wind Regimes in Complex Terrain of the Great Valley of Eastern Tennessee
Birdwell, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2011-05-01
This research was designed to provide an understanding of physical wind mechanisms within the complex terrain of the Great Valley of Eastern Tennessee to assess the impacts of regional air flow with regard to synoptic and mesoscale weather changes, wind direction shifts, and air quality. Meteorological data from 2008 2009 were analyzed from 13 meteorological sites along with associated upper level data. Up to 15 ancillary sites were used for reference. Two-step complete linkage and K-means cluster analyses, synoptic weather studies, and ambient meteorological comparisons were performed to generate hourly wind classifications. These wind regimes revealed seasonal variations of underlying physical wind mechanisms (forced channeled, vertically coupled, pressure-driven, and thermally-driven winds). Synoptic and ambient meteorological analysis (mixing depth, pressure gradient, pressure gradient ratio, atmospheric and surface stability) suggested up to 93% accuracy for the clustered results. Probabilistic prediction schemes of wind flow and wind class change were developed through characterization of flow change data and wind class succession. Data analysis revealed that wind flow in the Great Valley was dominated by forced channeled winds (45 67%) and vertically coupled flow (22 38%). Down-valley pressure-driven and thermally-driven winds also played significant roles (0 17% and 2 20%, respectively), usually accompanied by convergent wind patterns (15 20%) and large wind direction shifts, especially in the Central/Upper Great Valley. The behavior of most wind regimes was associated with detectable pressure differences between the Lower and Upper Great Valley. Mixing depth and synoptic pressure gradients were significant contributors to wind pattern behavior. Up to 15 wind classes and 10 sub-classes were identified in the Central Great Valley with 67 joined classes for the Great Valley at-large. Two-thirds of Great Valley at-large flow was defined by 12 classes. Winds
Adams, Colin S; Hsu, Scott C
2014-01-01
We present time-resolved observations of Rayleigh-Taylor-instability growth at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time ($\\sim 10$ $\\mu$s) is consistent with the estimated linear Rayleigh-Taylor growth rate calculated using experimentally inferred values of density ($\\sim 10^{14}$ cm$^{-3}$) and acceleration ($10^9$ m/s$^2$). The observed instability wavelengths ($\\gtrsim 1$ cm) are consistent with stabilization of short wavelengths by a magnetic field of the experimentally measured magnitude ($\\sim 15$ G) and direction. Comparisons of data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization.
Overplanting in offshore wind power plants in different regulatory regimes
Wolter, Christoph; Klinge Jacobsen, Henrik; Rogdakis, Georgios
2016-01-01
framework results more favourable to overplanting. The results indicate that current conceivable offshore wind power plants in the UK can increase their economic value by around 30 mio AC when optimising their capacity setup. In Denmark, current regulations are not suitable for overplanting causing loss...
Arabi, Pouria; Jafarpur, Khosrow
2016-08-01
In the present study, effect of different flow regimes on free convection heat transfer has been examined. In the light of this, a novel analytical method is developed to calculate free convection heat transfer from isothermal convex bodies with arbitrary shape over all range of Rayleigh number in fluids with any Prandtl number. The crux of this method is based on the concept of dynamic behaviors existing in natural convection flow. In the previous models the Body Gravity Function (BGF) and Turbulent Function (TF) have been taken as constant values. In this study, BGF accounts for the effect of body shape and orientation with respect to gravity vector in laminar free convection. Besides, TF accounts for the impact of Prandtl number, body shape and orientation with regard to gravity vector in turbulent free convection. By contrast, it is shown that these two parameters undergo a change through the variation of Rayleigh number and cannot be considered as a constant. These two parameters are modeled based upon the thermal resistance concept. Moreover, two transition criteria happening in free convection heat transfer will be obtained according to this new analytical method (conduction-laminar and laminar-turbulent transitions). Finally, three models (models 1, 2 and 3) are proposed for calculation free convection heat transfer and present results for ten isothermal convex bodies with various aspect ratios (0.298 ≤ √ A /P ≤ 2.470) have been compared with the available experimental and numerical data. Here, the results of model 2 are almost equal to those of model 3. Also, the results of model 1 are more precise than those of model 3 while the parameters computation of model 1 is more intricate in comparison with model 3. On the one hand, the model 1 has an average difference <6 % vis-à-vis numerical data in entire range of Rayleigh number (laminar and turbulent). On the other hand, the average difference of model 1 is not more than 8 % versus experimental data
Analysis of Detectors and Transmission Curve Correction of Mobile Rayleigh Doppler Wind Lidar
TANG Lei; SUN Dong-Song; CHA Hyunki; WANG Yong-Tao; SHU Zhi-Feng; DONG Ji-Hui; WANG Guo-Cheng; XU Wen-Jing; HU Dong-Dong; CHEN Ting-Di; DOU Xian-Kang
2010-01-01
@@ A mobile molecular Doppler wind lidar (DWL) based on double-edge technique is presented for wind measurement at altitudes from 10 km to 40 km.A triple Fabry-Perot etalon is employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity.The lidar operates at 355 nm with a 45-cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing.In order to guarantee the wind accuracy,different forms of calibration function of detectors in different count rates response range would be especially valuable.The accuracy of wind velocity iteration is improved greatly because of application of the calibration function of linearity at the ultra low light intensity especially at altitudes from 10 km to 40 km.The calibration functions of nonlinearity make the transmission of edge channel 1 and edge channel 2 increase 38.9% and 27.7% at about 1M count rates,respectively.The dynamic range of wind field measurement may also be extended because of consideration of the response function of detectors in their all possible operating range.
Regime-based supervisory control to reduce power fluctuations from offshore wind power plants
Barahona Garzón, Braulio; Cutululis, Nicolaos Antonio; Trombe, Pierre-Julien
2013-01-01
of production, hence revenue for the wind farm operator. On the other hand, progresses in short term forecasting, together with the increasing use of probabilistic forecasting can help in achieving efficient power fluctuations reduction with minimum lost production. Here we present supervisory control concepts...... that consider different wind power regimes to derive control setpoints by using a Markov-Switching AutoRegressive model. We evaluate the performance versus measured data in terms of power ramp characteristics and energy efficiency....
无
2003-01-01
A mobile incoherent Doppler lidar system has been experimentally demonstrated to be able to transmit reliable single frequency operation laser pulse, even after truck transit and in very high vibration environments. The linewidth of the injection-seeded pulse Nd:YAG laser can be measured by means of an I2 molecular filter. And, lidar validation experiments demonstrated the feasibility and capability of measuring wind field by the Mie-Rayleigh Doppler wind lidar. The uncertainty of measured wind speed is 0.985m/s in the altitude range from 2 to 4 km.
Rationality of the subsidy regime for wind power in Sweden and Denmark
Helby, P. [Lund Univ. (Sweden). Dept. of Environmental and Energy System Studies
1995-12-31
This study comprise analysis and discussion of incentives inherent in the Swedish and Danish subsidy regimes for household owned wind power. New results include an evaluation of the subsidy value of income and VAT tax breaks available to investors, and a demonstration of the importance of the choice of ownership arrangements for the profitability of wind power projects. The study outlines the complex restrictions associated with different forms of wind power ownership. These cause the investment market to be highly segmented. The discussion includes several irrational system effects of the subsidy regimes. Among these are collision with energy saving goals, excessive capital costs, dubious siting decisions, and distorted competition among technologies. In conclusion, come policy recommendations are suggested. (author)
Wind regime peculiarities in the lower thermosphere in the winter of 1983/84
Lysenko, I. A.; Makarov, N. A.; Portnyagin, Yu. I.; Petrov, B. I.; Greisiger, K. M.; Schminder, R.; Kurschner, D.
1987-08-01
Temporal variations of prevailing winds at 90 to 100 km obtained from measurements carried out in winter 1983 to 1984 at three sites in the USSR and two sites in East Germany are reported. These variations are compared with those of the thermal stratospheric regime. Measurements were carried out using the drifts D2 method (meteor wind radar) and the D1 method (ionospheric drifts). Temporal variations of zonal and meridional prevailing wind components for all the sites are given. Also presented are zonal wind data obtained using the partial reflection wind radar. Wind velocity values were obtained by averaging data recorded at between 105 and 91 km altitude. Wind velocity data averaged in such a way can be related to about the same height interval to which the data obtained by the meteor radar and ionospheric methods at other sites, i.e., the mean height of the meteor zone (about 95 km). The results presented show that there are significant fluctuations about the seasonal course of both zonal and meridional prevailing winds.
Possibility of star (pyramid) dune development in the area of bimodal wind regime
Biejat, K.
2012-04-01
Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star
A new turbulence regime in the solar-wind at electron scales
Meyrand, R.; Galtier, S.
2010-12-01
Solar wind turbulence is characterized by a Kolmogorovian magnetic fluctuations spectrum at large scales followed by a second inertial range with steeper spectra associated with nonlinear dispersive processes. Recent observations reveal the presence of a third region -- called dissipation range -- at scales smaller than the electron inertial length and characterized by steeper spectra. We investigate this regime in the electron magnetohydrodynamics approximation and discuss the possibility to derive an exact and universal law for third-order structure functions. This law corresponds to a magnetic fluctuations isotropic spectrum in k-11/3 compatible with the observations. We conclude on the possible existence of a third turbulence regime in the solar wind instead of a dissipation range as recently postulated.
Impact of climate change on surface wind regime over the Peru-Chile upwelling region
Goubanova, K.; Echevin, V.; Dewitte, B.; Garreaud, R.; Terray, P.; Vrac, M.
2009-04-01
The ocean region off the Chile-Peru coast is characterized by upwelling of cold, nutrient-rich waters, which drives an exceptionally high biological productivity. This upwelling is induced by the persistent southerly winds along the coast that exhibit a coastal jet structure at intraseasonal scales. Recent climate change studies based on the coupled atmosphere-ocean general circulation models (AOGCM) show a strengthening of the large-scale southerlies along the subtropical coast that could lead to an increase in coastal upwelling. However the coastal jet events which represent a considerable source of the synoptic variability of the alongshore winds are characterized by horizontal scale comparable to a AOGCM grid cell size, and cannot be therefore explicitly resolved by the AOGCMs. In order to provide a regional estimate of the winds as predicted by the coarse-resolution AOGCMs, a statistical downscaling method based on multiple linear regression is proposed. Large-scale wind at 10 m and sea level pressure are chosen as the predictor variables for regional 10 m wind. The validation is performed in two steps. First, QuikSCAT and ERS satellite products and NCEP reanalysis for the period 1992-2006 are used to build and validate the statistical model for the present climate. Second, the model is validated under a warmer climate: it is applied to large-scale predictors extracted from HadCM3 AOGCM simulations for the A2 and B2 SRES scenarios (2071-2100); the downscaled wind is then compared with outputs of the PRECIS regional climate model, forced at its boundaries by the same HadCM3 scenarios. To assess climate change impact on the along-shore wind, the statistical downscaling is applied to two contrasted SRES scenarios, namely the so-called preindustrial and CO2 quadrupling. The outputs of the IPSL-CM4 AOGCM are used as predictors. Evolution of the along-shore wind regime with a focus on the change of the coastal jet characteristics is discussed. For this particular
Santa Ana Winds and Fire Regimes of Southern California National Forests
Bendix, J.
2015-12-01
In Southern California, it has long been understood that foehn-type Santa Ana winds are an important factor in the occurrence of large wildfires. Although a variety of anecdotal observations and statistical analyses have confirmed the importance of these winds to wildfire, particularly in the Fall months when Santa Ana winds overlap with dry fuels from summer drought, many of the details of those winds' impacts on fire remain obscure. This paper uses data regarding individual fires from California's Fire and Resource Assessment Program database and a compilation of Santa Ana Wind days (SAW days) published by Abatzoglou et al. in 2013 to assess the relationship of Santa Ana winds to fire occurrence and size in Southern California. The analysis included 474 fires larger than 20 ha (~50 acres).that burned on the four Southern California national forests (Angeles, Cleveland, Los Padres and San Bernardino) between 1948 and 2010. Overall, just 10.3% of the fires started on SAW days, and 14.4% experienced at least one SAW day between start and containment dates. The impact of Santa Ana winds is greater, however, with increasing fire size. For fires > 4000 ha, 18.4% began on SAW days, with 30.4% experiencing at least one SAW day before containment. And 20% of fires > 20000 ha started on SAW days, with 50% including one or more SAW days. Fires beginning on SAW days were larger, with a mean of 6239 ha compared to 2150 ha for fires that began on non-SAW days. Only 2% of the fires that began on SAW days were started by lightning, suggesting that the impact of Santa Ana winds on Southern California fire regimes may be enhanced by humans' role in ignitions.
Modeling and forecasting of wind power generation - Regime-switching approaches
Trombe, Pierre-Julien
for improved forecasts over very short lead times, from a few minutes up to a few hours, because these forecasts, when generated with traditional approaches, are characterized by large uncertainty. In this thesis, this issue is considered from a statistical perspective, with time series models. The primary...... of more renewable energy into power systems since these systems are subjected to maintain a strict balance between electricity consumption and production, at any time. For this purpose, wind power forecasts offer an essential support to power system operators. In particular, there is a growing demand...... of high and low variability. They also yield substantial gains in probabilistic forecast accuracy for lead times of a few minutes. However, these models only integrate historical and local measurements of wind power and thus have a limited ability for notifying regime changes for larger lead times...
Bessac, Julie; Ailliot, Pierre; Cattiaux, Julien; Monbet, Valerie
2016-02-01
Several multi-site stochastic generators of zonal and meridional components of wind are proposed in this paper. A regime-switching framework is introduced to account for the alternation of intensity and variability that is observed in wind conditions due to the existence of different weather types. This modeling blocks time series into periods in which the series is described by a single model. The regime-switching is modeled by a discrete variable that can be introduced as a latent (or hidden) variable or as an observed variable. In the latter case a clustering algorithm is used before fitting the model to extract the regime. Conditional on the regimes, the observed wind conditions are assumed to evolve as a linear Gaussian vector autoregressive (VAR) model. Various questions are explored, such as the modeling of the regime in a multi-site context, the extraction of relevant clusterings from extra variables or from the local wind data, and the link between weather types extracted from wind data and large-scale weather regimes derived from a descriptor of the atmospheric circulation. We also discuss the relative advantages of hidden and observed regime-switching models. For artificial stochastic generation of wind sequences, we show that the proposed models reproduce the average space-time motions of wind conditions, and we highlight the advantage of regime-switching models in reproducing the alternation of intensity and variability in wind conditions.
Investigation of rainfall data with regard to low-level wind flow regime for east central Florida
Brooks, Joni
1992-01-01
Previous research has been conducted to investigate the effect of the low-level wind region on summertime convective storms in the east central Florida area. These effects were described by analyzing the distribution of lightning flashes within classifications based on the low-level wind regime for the months June through September of 1987 to 1990. The present research utilizes the same classification strategy to study rainfall patterns for data gathered for the CaPE (Convection and Precipitation/Electrification Experiment) field program. The CaPE field program was conducted in east central Florida from July 8, 1991 to August 18, 1991.
Peña, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole
2013-01-01
Here, we evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide ran....... The simulations do not approach the limits of the infinite wind farm under any stability condition as winds are not parallel to the row....
C. Lacombe
Full Text Available The solar wind properties depend on λ, the heliomagnetic latitude with respect to the heliospheric current sheet (HCS, more than on the heliographic latitude. We analyse the wind properties observed by Wind at 1 AU during about 2.5 solar rotations in 1995, a period close to the last minimum of solar activity. To determine λ, we use a model of the HCS which we fit to the magnetic sector boundary crossings observed by Wind. We find that the solar wind properties mainly depend on the modulus |λ|. But they also depend on a local parameter, the total pressure (magnetic pressure plus electron and proton thermal pressure. Furthermore, whatever the total pressure, we observe that the plasma properties also depend on the time: the latitudinal gradients of the wind speed and of the proton temperature are not the same before and after the closest HCS crossing. This is a consequence of the dynamical stream interactions. In the low pressure wind, at low |λ|, we find a clear maximum of the density, a clear minimum of the wind speed and of the proton temperature, a weak minimum of the average magnetic field strength, a weak maximum of the average thermal pressure, and a weak maximum of the average β factor. This overdense sheet is embedded in a density halo. The latitudinal thickness is about 5^{°} for the overdense sheet, and 20^{°} for the density halo. The HCS is thus wrapped in an overdense sheet surrounded by a halo, even in the non-compressed solar wind. In the high-pressure wind, the plasma properties are less well ordered as functions of the latitude than in the low-pressure wind; the minimum of the average speed is seen before the HCS crossing. The latitudinal thickness of the high-pressure region is about 20^{°}. Our observations are qualitatively consistent with the numerical model of Pizzo for the deformation of the heliospheric current sheet and plasma sheet.
Key words: Interplanetary physics (solar wind
Brown, Adrian J
2013-01-01
Scattering by particles significantly smaller than the wavelength is an important physical process in the rocky bodies in our solar system and beyond. A number of observations of spectral bluing (referred to in those papers as "Rayleigh scattering") on planetary surfaces have been recently reported, however, the necessary mathematical modeling of this phenomenon has not yet achieved maturity. This paper is a first step to this effect, by examining the effect of grain size and optical index on the albedo of small conservative and absorbing particles as a function of wavelength. The basic conditions necessary for spectral bluing or reddening to be observed in real-world situations are identified. We find that any sufficiently monomodal size distribution of scattering particles will cause spectral bluing in some part of the EM spectrum regardless of its optical index.
无
2005-01-01
The Louis scheme and the COARE algorithm (version 3.0) are tested against eddy covariance and inertial dissipation methods for friction velocity estimates in different wind-sea/swell regimes. Atmospheric forcing data, tabulated by Donelan et al. (1997.J Phys Oceanog, 27:2 087～2 099), were collected from a mast on the foredeck ofa SWATH (small water-plane area, twin hull) ship in deep sea off the State of Virginia during the surface wave dynamics experiment. These data are representative of low to moderate wind regimes.The aerodynamic roughness length is determined by using the Charnock relationship. The intercomparison shows that the Louis scheme and the COARE algorithm underestimate the friction velocity by 6% and 3% respectively under pure wind sea conditions, 15% and 13% respectively under cross swell conditions, and 21% and 17% respectively under counter swell conditions. The analysis shows that these underestimations were caused by the method chosen to determine the aerodynamic roughness length because it significantly underestimates the aerodynamic roughness length. It is especially true under the cross swell and counter swell conditions.
Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu
2016-11-01
Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.
Pena Diaz, Alfredo; Réthoré, Pierre-Elouan; Rathmann, Ole
2014-01-01
We evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range of ...... are different. The ensemble average of the simulations does not approach the limits of the infinite wind farm under any stability condition as such averages account for directions misaligned with the row....
Holko, Ladislav; Hlavata, Helena; Kostka, Zdenek; Novak, Jan
2009-01-01
The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.
Extreme wind speed regime and weather patterns in the Barents Sea
Surkova, Galina; Krylov, Aleksey
2016-04-01
The synoptic patterns of extreme wind events over the Barents Sea during 1981-2010 are studied on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude). Frequency of events was defined after analysis of 50, 95, 99, 99.9 percentiles (V(0.50), V(0.95), V(0.99), V(0.999)) of wind speed probability distribution function over the central part of the sea where wind speed is the highest. First part of the study was devoted to the features of seasonal and interannual variability of the surface (10 m) wind speed. Results showed very slow and statistically almost insignificant decreasing of wind speed for all percentile speed values during 1981-2010. The highest standard deviation for annual percentile speed values were derived for the most seldom events, V(0.999). Mean values for the central part of the Barents Sea are V(0.95)=14.3 m/s, V(0.99)=17.2 m/s, V(0.999)=20.3 m/s. At the next stage the calendar of extreme events with wind speed more the threshold value V(0.99) was extracted. Sea level pressure (SLP) fields for these extreme events were classified by cluster analysis. Formal detection of typical SLP fields accompanying by storm winds allows to evaluate their frequency in different time periods. It is more reliable then use of wind speed data because the accuracy of SLP simulation in re-analysis and climate models is higher than that for the wind speed. The progress of the work is seen as further development of climate projection of extreme events on the base of CMIP5 scenarios through the projection of synoptic situations that create these events as it was shown in our previous works. Developed methodology allows to assess the frequency of synoptic events accompanying by hazards, not only in the past, but in the future. The study was supported by the Russian Science Foundation (project no. 14-37-00038).
The effectiveness of different policy regimes for promoting wind power: Experiences from the states
Menz, Fredric C. [School of Business, Clarkson University, Bertrand H. Snell Hall, Potsdam, NY 13699-5767 (United States) and Center for International Climate and Environmental Research-Oslo, Norway (CICERO) (Norway)]. E-mail: menzf@clarkson.edu; Vachon, Stephan [School of Business, Clarkson University, Bertrand H. Snell Hall, Potsdam, NY 13699-5767 (United States)]. E-mail: svachon@clarkson.edu
2006-09-15
Governments at the state (and to a lesser extent, local) level in the United States have adopted an array of policies to promote wind and other types of 'green' energy, including solar, geothermal, low-impact hydropower, and certain forms of biomass. However, because of different regulatory environments, energy resource endowments, political interests, and other factors, there is considerable variation among the states in their green power policies. This paper analyzes the contribution to wind power development of several state-level policies (renewable portfolio standards (RPS), fuel generation disclosure rules, mandatory green power options, and public benefits funds), along with retail choice (RET) facilitated by electricity restructuring. The empirical results support existing anecdotal and case studies in finding a positive relationship between RPS and wind power development. We also found that requiring electricity suppliers to provide green power options to customers is positively related to development of wind energy, while there is a negative relationship between wind energy development and RET (i.e., allowing retail customers to choose their electricity source)
Analytical solutions for radiation-driven winds in massive stars. I. The fast regime
Araya, I.; Curé, M. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso Av. Gran Bretaña 1111, Casilla 5030, Valparaíso (Chile); Cidale, L. S., E-mail: ignacio.araya@uv.cl [Departamento de Espectroscopía, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata (UNLP), and Instituto de Astrofísica La Plata, CCT La Plata, CONICET-UNLP Paseo del Bosque S/N, 1900 La Plata (Argentina)
2014-11-01
Accurate mass-loss rate estimates are crucial keys in the study of wind properties of massive stars and for testing different evolutionary scenarios. From a theoretical point of view, this implies solving a complex set of differential equations in which the radiation field and the hydrodynamics are strongly coupled. The use of an analytical expression to represent the radiation force and the solution of the equation of motion has many advantages over numerical integrations. Therefore, in this work, we present an analytical expression as a solution of the equation of motion for radiation-driven winds in terms of the force multiplier parameters. This analytical expression is obtained by employing the line acceleration expression given by Villata and the methodology proposed by Müller and Vink. On the other hand, we find useful relationships to determine the parameters for the line acceleration given by Müller and Vink in terms of the force multiplier parameters.
Detection of small-scale structures in the dissipation regime of solar-wind turbulence.
Perri, S; Goldstein, M L; Dorelli, J C; Sahraoui, F
2012-11-09
Recent observations of the solar wind have pointed out the existence of a cascade of magnetic energy from the scale of the proton Larmor radius ρ(p) down to the electron Larmor radius ρ(e) scale. In this Letter we study the spatial properties of magnetic field fluctuations in the solar wind and find that at small scales the magnetic field does not resemble a sea of homogeneous fluctuations, but rather a two-dimensional plane containing thin current sheets and discontinuities with spatial sizes ranging from l >/~ ρ(p) down to ρ(e) and below. These isolated structures may be manifestations of intermittency that localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection, and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.
Detection of Small-Scale Structures in the Dissipation Regime of Solar-Wind Turbulence
Perri, S.; Goldstein, M. L.; Dorelli, J. C.; Sahraoui, F.
2012-11-01
Recent observations of the solar wind have pointed out the existence of a cascade of magnetic energy from the scale of the proton Larmor radius ρp down to the electron Larmor radius ρe scale. In this Letter we study the spatial properties of magnetic field fluctuations in the solar wind and find that at small scales the magnetic field does not resemble a sea of homogeneous fluctuations, but rather a two-dimensional plane containing thin current sheets and discontinuities with spatial sizes ranging from l≳ρp down to ρe and below. These isolated structures may be manifestations of intermittency that localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection, and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.
Extended self-similarity of atmospheric boundary layer wind fields in mesoscale regime: Is it real?
Kiliyanpilakkil, V P
2015-01-01
In this letter, we study the scaling properties of multi-year observed and atmospheric model-generated wind time series. We have found that the extended self-similarity holds for the observed series, and remarkably, the scaling exponents corresponding to the meoscale range closely match the well-accepted inertial-range turbulence values. However, the scaling results from the simulated time series are significantly different.
António Lopes
2013-01-01
Full Text Available Urban growth implies significant modifications in the urban climate. To understand the influence of the city of Lisbon on the urban boundary layer, a mesoscale meteorological network was installed in 2004. The main goals of the present study are to update the results of the research published in 2007 and to bring more precise information about the relationship between the Urban Heat Island (UHI and the regional and local wind systems. The highest frequencies of the UHI were found in the city centre (Restauradores. In the green park of Monsanto, the highest frequency occurred between −2 and 0°C. During the summer, the effect of the breezes was observed in Belém, lowering the temperature. The “strong” UHI (intensity >4°C occurred more often during the summer, with median values of 2°C by night and 1.8°C by day. The highest frequencies of UHI occurred for winds between 2 and 6 m/s and were not associated with atmospheric calm, as pointed out in the literature. Winds above 8 m/s inhibit the occurrence of strong UHI in Lisbon. Summer nighttime strong UHI should be further investigated, due to the heat stress consequences on the population and probable increase of energy consumption.
Detection of magnetic discontinuities in the dissipation regime of solar wind turbulence
Perri, S.; Goldstein, M. L.; Dorelli, J.; Sahraoui, F.
2012-12-01
Recent spacecraft observations of solar wind magnetic field fluctuations have shown the existence of a cascade of magnetic energy from the scale of the proton Larmor radius ρ_cp, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius ρ_ce, where electrons become demagnetized. This energy cascade has been conjectured to consist of highly oblique kinetic Alfvénic fluctuations (KAW) that are dissipated by proton and electron Landau damping. Analyzing the 450 vec/s resolution data from the STAFF search-coil magnetometer on Cluster, we report, for the first time, evidence for the existence in the solar wind of thin current sheets and discontinuities that exhibit spatial scales that range from the proton Larmor scale down to the electron Larmor scale. In the cases studied, the current sheets are very localized and have an extent between 20-200 km, size that is often close to both the proton Larmor radius and the proton inertial length. These isolated structures appear to be a manifestation of intermittency and may localize sites turbulent dissipation. Furthermore, we compare in-situ observations of thin current sheets and discontinuities in the solar wind at proton scales with results that come from two-dimensional Hall MHD turbulence simulations in the presence of a strong guide field. The initial condition in the simulations is a large scale flux rope structure which breaks down into smaller and smaller current sheets due to the turbulent energy transfer. The comparison shows good qualitative agreement between the properties of the structures observed in Cluster data and the properties of current sheets that arise in the simulations. Our results highlight two competing processes that contribute to the dissipation of solar wind turbulence when the plasma beta is of order unity; viz., kinetic (Landau) damping by protons and electrons and the general tendency of the cascade to form thin current sheets where reconnection and
Rees, Andrew B. H.; Cwynar, Les C.; Fletcher, Michael-Shawn
2015-10-01
The El Niño-Southern Oscillation (ENSO) and Southern Westerly Winds (SWW) profoundly influence synoptic-scale climate in the Southern Hemisphere. Although many studies have invoked either phenomenon to explain trends in proxy data, few have demonstrated the transition from a climate dominated by SWW flow to one controlled by El Niño activity, which is postulated to have occurred after 5 cal ka BP in the mid-latitudes of the Southern Hemisphere. Tasmania, southeast Australia, is ideally situated to detect changes in both of these climatic controls. Currently, El Niño and La Niña events result in drier and wetter conditions island-wide, respectively, with the greatest impact in the north. Further, Tasmania houses north-south trending mountain ranges near its western coast. As a result, areas west of the mountains exhibit a positive correlation between SWW flow and precipitation, while eastern regions possess either no or a negative relationship. Here, we present data from chironomid remains, charcoal, and geochemical proxies to investigate the paleohydrological history of Lake Dobson, a site located in Mount Field National Park, Tasmania. The proxies revealed three broad periods: (1) an early Holocene (11.5-8.3 cal kyr BP) characterised by generally high rainfall, the occurrence of irregular fires, and elevated charcoal influx at 11.4 and 10.2 cal ka BP - conditions compatible with attenuated SWW flow over the site; (2) an ambiguous mid-Holocene (8.3-5 cal kyr BP) that marks the transition from a SWW- to ENSO-dominated climate; and (3) a relatively dry and stable late Holocene (5 cal kyr BP to present) that is consistent with the onset of a climate controlled by ENSO activity (i.e., characterised by a more mean El Niño climate state). The proxy record of Lake Dobson highlights the teleconnections between the equatorial Pacific and southern Australasia.
Rayleigh-Taylor mixing in supernova experiments
Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Kuranz, C. C. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Arnett, D. [University of Arizona, Tucson, Arizona 85721 (United States); Hurricane, O.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-10-15
We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.
Modulational instability arising from collective Rayleigh scattering.
Robb, G R M; McNeil, B W J
2003-02-01
It is shown that under certain conditions a collection of dielectric Rayleigh particles suspended in a viscous medium and enclosed in a bidirectional ring cavity pumped by a strong laser field can produce a new modulational instability transverse to the wave-propagation direction. The source of the instability is collective Rayleigh scattering i.e., the spontaneous formation of periodic longitudinal particle-density modulations and a backscattered optical field. Using a linear stability analysis a dispersion relation is derived which determines the region of parameter space in which modulational instability of the backscattered field and the particle distribution occurs. In the linear regime the pump is modulationally stable. A numerical analysis is carried out to observe the dynamics of the interaction in the nonlinear regime. In the nonlinear regime the pump field also becomes modulationally unstable and strong pump depletion occurs.
Seles, D.; Kowalewski, D. E.
2015-12-01
Marine Isotope Stage 31 (MIS 31) is a key analogue for current warming trends yet the extent of the East Antarctic Ice Sheet (EAIS) and the West Antarctic Ice Sheet (WAIS) during this interglacial remains unresolved. Inconsistencies persist between offshore records (suggesting the instability of WAIS) and McMurdo Dry Valley (MDV) terrestrial datasets (indicating long-term ice sheet stability). Here we use a high-resolution regional scale climate model (RegCM3_Polar) to reconstruct paleoclimate during MIS 31 (warm orbit, 400 ppm CO2) and assess changes in precipitation and winds (including katabatic) with WAIS present versus WAIS absent. The MIS 31 scenario with WAIS present resulted in minimal changes in wind magnitude compared with current climate conditions. With WAIS absent, the model predicts a decrease in coastal and highland monthly mean average wind velocities. The greatest rates of snowfall remain along the coast but shift towards higher latitudes with the interior continent remaining dry when WAIS is removed. Focusing on the Ross Embayment, this decreased monthly mean wind velocity and shift of winds to the east indicate a greater influence of offshore winds from the Ross Sea, enabling the increase of precipitation southward along the Transantarctic Mountains (TAM) (i.e. MDV). The apparent decrease of katabatic winds with no WAIS implies that offshore winds may be responsible for bringing the warmer, wetter air into the TAM. The change in wind and precipitation in the Ross Embayment and specifically the MDV highlights the impact of WAIS on Antarctic climate and its subsequent influence on the mass balance of peripheral EAIS domes (i.e. Taylor Dome). Modeling suggests that if WAIS was absent during MIS 31, we would expect (1) greater accumulation at such domes and (2) MDV terrestrial records that reflect a wetter climate, and (3) weaker winds suggesting possibly lower ablation/erosion rates compared to if WAIS was present.
Andersen, Kurt Munk
1997-01-01
Rayleigh's principle expresses that the smallest eigenvalue of a regular Sturm-Liouville problem with regular boundary conditions is the minimum value of a certain functional, the so called Rayleigh's quotient, and that this value is attained at the corresponding eigenfunctions only. This can...... be proved by means of more advanced methods. However, it turns out that there is an elementary proof, which is presented in the report....
2004-09-01
flow . The Columbia Gorge gap flow plays a profound role in defining the weather and climate within and near the Gorge, which is one of the windiest...warm season when the subtropical ridge over the eastern Pacific Ocean moves north, resulting in higher surface pressure offshore. Easterly gap flow is...west (Sharp and Mass 2002, 200x). The alternation of westerly and easterly gap flow suggests the postulation of two forecast regimes, a westerly regime
Smit, Jeroen; Berghammer, Lars O.; Navalkar, Sachin;
2014-01-01
In this paper an extension of the spectrum of applicability of rotors with active aerody-namic devices is presented. Besides the classical purpose of load alleviation, a secondary objective is established: power capture optimization. As a _rst step, wind speed regions that contribute little...
Smit, Jeroen; Bernhammer, Lars O.; Navalkar, Sachin T.;
2016-01-01
An extension of the spectrum of applicability of rotors with active aerodynamic devices is presented in this paper. Besides the classical purpose of load alleviation, a secondary objective is established: optimization of power capture. As a first step, wind speed regions that contribute little...
Passive retrieval of Rayleigh waves in disordered elastic media.
Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel
2005-10-01
When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime.
M. Litt
2015-01-01
Full Text Available Over glaciers in the outer tropics, during the dry winter season, turbulent fluxes are an important sink of melt energy due to high sublimation rates, but measurements in stable surface layers, in remote and complex terrains remain challenging. Eddy-covariance (EC and bulk-aerodynamic (BA methods were used to estimate surface turbulent heat fluxes of sensible (H and latent heat (LE in the ablation zone of the tropical Zongo glacier, Bolivia (16° S, 5080 m a.s.l., from 22 July to 1 September 2007. We studied the turbulent fluxes and their associated random and systematic measurement errors under the three most frequent wind regimes. For nightly, density-driven katabatic flows, and for strong downslope flows related to large-scale forcing, H generally heats the surface (i.e., is positive, while LE cools it down (i.e., is negative. On average, both fluxes exhibit similar magnitudes and cancel each other out. Most energy losses through turbulence occur for daytime upslope flows, when H is weak due to small temperature gradients and LE is strongly negative due to very dry air. Mean random errors of the BA method (6% on net H + LE fluxes originated mainly from large uncertainties in roughness lengths. For EC fluxes, mean random errors were due mainly to poor statistical sampling of large-scale outer-layer eddies (12%. The BA method is highly sensitive to the method used to derive surface temperature from long-wave radiation measurements and underestimates fluxes due to vertical flux divergence at low heights and nonstationarity of turbulent flow. The EC method also probably underestimates the fluxes, but to a lesser extent, due to underestimation of vertical wind speed and to vertical flux divergence. For both methods, when H and LE compensate each other in downslope fluxes, biases tend to cancel each other out or remain small. When the net turbulent fluxes (H + LE are the largest in upslope flows, nonstationarity effects and underestimations of the
M. Litt
2015-08-01
Full Text Available Over glaciers in the outer tropics, during the dry winter season, turbulent fluxes are an important sink of melt energy due to high sublimation rates, but measurements in stable surface layers in remote and complex terrains remain challenging. Eddy-covariance (EC and bulk-aerodynamic (BA methods were used to estimate surface turbulent heat fluxes of sensible (H and latent heat (LE in the ablation zone of the tropical Zongo Glacier, Bolivia (16° S, 5080 m a.s.l., from 22 July to 1 September 2007. We studied the turbulent fluxes and their associated random and systematic measurement errors under the three most frequent wind regimes. For nightly, density-driven katabatic flows, and for strong downslope flows related to large-scale forcing, H generally heats the surface (i.e. is positive, while LE cools it down (i.e. is negative. On average, both fluxes exhibit similar magnitudes and cancel each other out. Most energy losses through turbulence occur for daytime upslope flows, when H is weak due to small temperature gradients and LE is strongly negative due to very dry air. Mean random errors of the BA method (6 % on net H + LE fluxes originated mainly from large uncertainties in roughness lengths. For EC fluxes, mean random errors were due mainly to poor statistical sampling of large-scale outer-layer eddies (12 %. The BA method is highly sensitive to the method used to derive surface temperature from longwave radiation measurements and underestimates fluxes due to vertical flux divergence at low heights and nonstationarity of turbulent flow. The EC method also probably underestimates the fluxes, albeit to a lesser extent, due to underestimation of vertical wind speed and to vertical flux divergence. For both methods, when H and LE compensate each other in downslope fluxes, biases tend to cancel each other out or remain small. When the net turbulent fluxes (H + LE are the largest in upslope flows, nonstationarity effects and underestimations of the
1987-01-01
studies, in general, have been much more limited. This thesis concentrates on the high Rayleigh number/small- gap flow regime. It has been found that...just prior to it. Analytical approaches, especially with regard to the high Rayleigh number/small- gap flow regime, have been virtually unexplored. To
Asymptotic Solution to the Rayleigh Problem of Dynamic Soaring
Bousquet, Gabriel D; Slotine, Jean-Jacques E
2015-01-01
It is believed that albatrosses power their flight through dynamic soaring, a technique where energy is extracted from horizontally blowing shear winds. The Rayleigh model of dynamic soaring, also called the two layer model, makes a 2-dimensional approximation of the wind field and glider trajectory. This note considers the "Rayleigh problem" of finding the minimum wind necessary for the existence of energy neutral gliding cycles. We utilize a 3-degree of freedom glider model with quadratic drag. Asymptotic solutions in the limit of large glide ratios are obtained. The optimal motion is a traveling trajectory constituted of a succession of small partial turns. It is over 50% more efficient at preserving airspeed than full half-turn based trajectories.
Evaluation of Global Wind Power and Interconnected Wind Farms
Archer, C. L.; Jacobson, M. Z.
2005-12-01
The world wind power potential is evaluated in this study. Wind speeds are calculated at 80 m, the hub height of modern, 77-m diameter, 1500 W turbines. Since relatively few observations are available at 80 m, the Least Square extrapolation technique is utilized to obtain estimates of wind speeds at 80 m given observed wind speeds at 10 m (widely available) and a network of sounding stations. Globally, about 13% of all reporting stations experience annual mean wind speeds >= 6.9 m/s at 80 m (i.e., wind power class 3 or greater) and can therefore be considered suitable for low-cost wind power generation. This estimate is believed to be conservative. Of all continents, North America has the largest number of stations in class >= 3 (453). Areas with great potential are found in Northern Europe along the North Sea, the southern tip of the South American continent, the island of Tasmania in Australia, the Great Lakes region, and the northeastern and northwestern coasts of North America. Assuming that statistics generated from all stations analyzed here are representative of the global distribution of winds, global wind power generated at locations with mean annual wind speeds >= 6.9 m/s at 80 m is found to be approximately 72 TW (54,000 Mtoe) for the year 2000. Even if only 20% of this power could be captured, it could satisfy 100% of the world's energy demand for all purposes (6,995-10,177 Mtoe) and over seven times the world electricity needs (1.6-1.8 TW). Several practical barriers need to be overcome to fully realize this potential. Wind intermittency could be perceived as one of them. However, interconnecting wind farms through the transmission grid, also known as distributed wind power, is a simple and effective way of reducing deliverable wind power swings caused by wind intermittency. As more farms are interconnected in an array, wind speed correlation among sites decreases and so does the probability that all sites experience the same wind regime at the same
Wahyu Widiyanto
2013-06-01
Full Text Available Wind characteristics especially the event probability have been more studied in the relation to wind energy availability in an area. Nevertheless, in the relation to coastal structure, it is still rare to be unveiled in a paper particulary in Indonesia. In this article, therefore, it is studied probability distribution commonly used to wind energy analysis i.e. Weibull and Rayleigh distribution. The distribution is applied to analyze wind data in Cilacap Coast. Wind data analyzed is from Board of Meteorology, Climatology and Geophysics, Cilacap branch, along two years (2009 – 2011. Mean, varians and standard deviation are founded to calculate shape factor (k and scale factor (c which must be available to arrange distribution function of Weibull and Rayleigh. In the region, it gains a result that wind speed probabilities follow Weibull and Rayleigh function fairly. Shape parameter value has been gotten k = 3,26, while scale parameter has been gotten respectively c = 3,64 for Weibull and Cr = 2,44 for Rayleigh. Value of k ≥ 3 indicates the region has regular and steady wind. Besides, mean speed of wind is 3,3 m/s.
Nonlinear diffusion model for Rayleigh-Taylor mixing.
Boffetta, G; De Lillo, F; Musacchio, S
2010-01-22
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows us to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Nonlinear diffusion model for Rayleigh-Taylor mixing
Boffetta, G; Musacchio, S
2010-01-01
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusiviy models for the mean temperature profile. It is found that a non-linear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Wang, Menghua
2016-05-30
To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude
Anelastic Rayleigh-Taylor mixing layers
Schneider, N.; Gauthier, S.
2016-07-01
Anelastic Rayleigh-Taylor mixing layers for miscible fluids are investigated with a recently built model (Schneider and Gauthier 2015 J. Eng. Math. 92 55-71). Four Chebyshev-Fourier-Fourier direct numerical simulations are analyzed. They use different values for the compressibility parameters: Atwood number (the dimensionless difference of the heavy and light fluid densities) and stratification (accounts for the vertical variation of density due to gravity). For intermediate Atwood numbers and finite stratification, compressibility effects quickly occurs. As a result only nonlinear behaviours are reached. The influence of the compressibility parameters on the growth speed of the RTI is discussed. The 0.1—Atwood number/0.4—stratification configuration reaches a turbulent regime. This turbulent mixing layer is analyzed with statistical tools such as moments, PDFs, anisotropy indicators and spectra.
Application-dependent Probability Distributions for Offshore Wind Speeds
Morgan, E. C.; Lackner, M.; Vogel, R. M.; Baise, L. G.
2010-12-01
The higher wind speeds of the offshore environment make it an attractive setting for future wind farms. With sparser field measurements, the theoretical probability distribution of short-term wind speeds becomes more important in estimating values such as average power output and fatigue load. While previous studies typically compare the accuracy of probability distributions using R2, we show that validation based on this metric is not consistent with validation based on engineering parameters of interest, namely turbine power output and extreme wind speed. Thus, in order to make the most accurate estimates possible, the probability distribution that an engineer picks to characterize wind speeds should depend on the design parameter of interest. We introduce the Kappa and Wakeby probability distribution functions to wind speed modeling, and show that these two distributions, along with the Biweibull distribution, fit wind speed samples better than the more widely accepted Weibull and Rayleigh distributions based on R2. Additionally, out of the 14 probability distributions we examine, the Kappa and Wakeby give the most accurate and least biased estimates of turbine power output. The fact that the 2-parameter Lognormal distribution estimates extreme wind speeds (i.e. fits the upper tail of wind speed distributions) with least error indicates that not one single distribution performs satisfactorily for all applications. Our use of a large dataset composed of 178 buoys (totaling ~72 million 10-minute wind speed observations) makes these findings highly significant, both in terms of large sample size and broad geographical distribution across various wind regimes. Boxplots of R2 from the fit of each of the 14 distributions to the 178 boy wind speed samples. Distributions are ranked from left to right by ascending median R2, with the Biweibull having the closest median to 1.
Luís R. A Gabriel Filho
2011-02-01
Full Text Available O regime eólico de uma região pode ser descrito por distribuição de frequências que fornecem informações e características extremamente necessárias para uma possível implantação de sistemas eólicos de captação de energia na região e consequentes aplicações no meio rural em regiões afastadas. Estas características, tais como a velocidade média anual, a variância das velocidades registradas e a densidade da potência eólica média horária, podem ser obtidas pela frequência de ocorrências de determinada velocidade, que por sua vez deve ser estudada através de expressões analíticas. A função analítica mais adequada para distribuições eólicas é a função de densidade de Weibull, que pode ser determinada por métodos numéricos e regressões lineares. O objetivo deste trabalho é caracterizar analítica e geometricamente todos os procedimentos metodológicos necessários para a realização de uma caracterização completa do regime eólico de uma região e suas aplicações na região de Botucatu - SP, visando a determinar o potencial energético para implementação de turbinas eólicas. Assim, foi possível estabelecer teoremas relacionados com a forma de caracterização do regime eólico, estabelecendo a metodologia concisa analiticamente para a definição dos parâmetros eólicos de qualquer região a ser estudada. Para o desenvolvimento desta pesquisa, utilizou-se um anemômetro da CAMPBELL.The wind regime of a region can be described by frequency distributions that provide information and features extremely necessary for a possible deployment of wind systems of energy capturing in the region and the resulting applications in rural areas in remote regions. These features, such as the annual average speed, variance of speed and hourly average of wind power density, can be obtained by the frequency of occurrences of certain speed, which in turn should be studied through analytical expressions. The analytic
Banquet Speech Some Sketches Of Rayleigh
Howard, John N.
1985-11-01
Several short sketches are presented of Lord Rayleigh, to show his method of working and his interaction with his fellow scientists. The topics discussed are: his research on the blue of the sky (Rayleigh scattering); his rescue of Waterston from near-oblivion; his research on surface acoustic waves (Rayleigh waves); his collaboration with Agnes Pockels; his research on blackbody radiation (the Rayleigh-Jeans Law).
Blue Skies, Coffee Creamer, and Rayleigh Scattering
Liebl, Michael
2010-01-01
The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…
Blue Skies, Coffee Creamer, and Rayleigh Scattering
Liebl, Michael
2010-01-01
The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…
Baele, L.T.M.; Bekaert, G.R.J.; Cho, S.; Inghelbrecht, K.; Moreno, A.
2015-01-01
A New-Keynesian macro-model is estimated accommodating regime-switching behavior in monetary policy and macro-shocks. A key to our estimation strategy is the use of survey-based expectations for inflation and output. Output and inflation shocks shift to the low volatility regime around 1985 and 1990
Convective Regimes in Crystallizing Basaltic Magma Chambers
Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.
2015-12-01
Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a
Rotating Rayleigh-Taylor turbulence
Boffetta, G.; Mazzino, A.; Musacchio, S.
2016-09-01
The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.
Characteristics for wind energy and wind turbines by considering vertical wind shear
郑玉巧; 赵荣珍
2015-01-01
The probability distributions of wind speeds and the availability of wind turbines were investigated by considering the vertical wind shear. Based on the wind speed data at the standard height observed at a wind farm, the power-law process was used to simulate the wind speeds at a hub height of 60 m. The Weibull and Rayleigh distributions were chosen to express the wind speeds at two different heights. The parameters in the model were estimated via the least square (LS) method and the maximum likelihood estimation (MLE) method, respectively. An adjusted MLE approach was also presented for parameter estimation. The main indices of wind energy characteristics were calculated based on observational wind speed data. A case study based on the data of Hexi area, Gansu Province of China was given. The results show that MLE method generally outperforms LS method for parameter estimation, and Weibull distribution is more appropriate to describe the wind speed at the hub height.
A generalised Rayleigh-Taylor condition for the Muskat problem
Escher, Joachim; Matioc, Bogdan-Vasile
2010-01-01
In this paper we consider the evolution of two fluid phases in a porous medium. The fluids are separated from each other and also the wetting phase from air by interfaces which evolve in time. We reduce the problem to an abstract evolution equation. A generalised Rayleigh-Taylor condition characterizes the parabolicity regime of the problem and allows us to establish a general well-posedness result and to study stability properties of flat steady-states. When considering surface tension effects at the interface between the fluids and if the more dense fluid lies above, we find bifurcating finger-shaped equilibria which are all unstable.
Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell
Vial, M.; Hernández, R. H.
2017-07-01
We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.
Wind energy potential in Aden-Yemen
Algifri, A.H. [University of Aden (Republic of Yemen). Faculty of Engineering
1998-02-01
In this article a number of years data on wind speed in Aden has been studied and presented. A statistical analysis was carried out from which the annual wind speed was found to be 4.5 m/s and most of the time the wind speed is in the range of 3.5-7.5 m/s. The wind speed distributions were represented by Weibull and Rayleigh distributions. It was found that the Rayleigh distribution is suitable to represent the actual probability of wind speed data for Aden. The wind speed data showed that the maximum monthly wind speed occurs in the month of February with the maximum in the month of June. It is concluded that Aden can be explored for wind energy applications. (author)
Asymptotic Rayleigh instantaneous unit hydrograph
Troutman, B.M.; Karlinger, M.R.
1988-01-01
The instantaneous unit hydrograph for a channel network under general linear routing and conditioned on the network magnitude, N, tends asymptotically, as N grows large, to a Rayleigh probability density function. This behavior is identical to that of the width function of the network, and is proven under the assumption that the network link configuration is topologically random and the link hydraulic and geometric properties are independent and identically distributed random variables. The asymptotic distribution depends only on a scale factor, {Mathematical expression}, where ?? is a mean link wave travel time. ?? 1988 Springer-Verlag.
Transitions in turbulent rotating Rayleigh-B\\'enard convection
Schmitz, S
2010-01-01
Numerical simulations of rotating Rayleigh-B\\'enard convection are presented for both no slip and free slip boundaries. The goal is to find a criterion distinguishing convective flows dominated by the Coriolis force from those nearly unaffected by rotation. If one uses heat transport as an indicator of which regime the flow is in, one finds that the transition between the flow regimes always occurs at the same value of a certain combination of Reynolds, Prandtl and Ekman numbers for both boundary conditions. If on the other hand one uses the helicity of the velocity field to identify flows nearly independent of rotation, one finds the transition at a different location in parameter space.
Effect of noise on Rayleigh-Taylor mixing with time-dependent acceleration
Swisher, Nora; Pandian, Arun; Abarzhi, Snezhana
2016-11-01
We perform a detailed stochastic study of Rayleigh-Taylor (RT) mixing with time-dependent acceleration. A set of nonlinear stochastic differential equations with multiplicative noise is derived on the basis of momentum model and group theory analysis. A broad range of parameters is investigated, and self-similar asymptotic solutions are found. The existence is shown of two sub-regimes of RT mixing dynamics - the acceleration-driven and the dissipation-driven mixing. In each sub-regime, statistic properties of the solutions are investigated, and dynamic invariants are found. Transition between the sub-regimes is studied. The work is supported by the US National Science Foundation.
Rayleigh imaging in spectral mammography
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
Multiphase Rayleigh-Bénard convection
Oresta, P.; Fornarelli, F.; Prosperetti, Andrea
2014-01-01
Numerical simulations of two-phase Rayleigh-Bénard convection in a cylindrical cell with particles or vapor bubbles suspended in the fluid are described. The particles or bubbles are modeled as points, the Rayleigh number is 2×106 and the fluids considered are air, for the particle case, and
High Rayleigh number convection numerical experiments
Verzicco, Roberto
2002-03-01
Numerical experiments on the flow developing in a cylindrical cell of aspect ratio Γ = 1/2 heated from below and cooled from above, are conducted for Rayleigh numbers (Ra) ranging from 2 x 10^6 up to 2 x 10^11. The aim of the present study is to numerically replicate the experiments by Roche et al. (2001) and Niemela et al. (2000) performed using gaseous helium close to the critical point as working fluid (Pr = 0.7). The numerical simulation permitted us to generate a large data base which was validated by the experimental results and, on the other hand, provided physical insights which are missed by the experimental approaches usually limited to pointwise temperature and global heat exchange measurements. Attention is focussed on the presence of large-scale structures whose characterization is important owing to the introduction of constant `winds' sweeping the plates and generating viscous and thermal boundary layers. The analysis of instantaneous snapshots clearly indicates that the topology of the recirculating large scale structures is quite different with respect to what is commonly observed in Γ = 1 cells where a unique large scale recirculation structure completely fills the fluid volume (e.g. Verzicco & Camussi, 1999). It is shown that a transition occurs at about Ra = 10^9; at lower Ra the flow is characterized by the presence of two counter-rotating toroidal rings attached to the horizontal plates. At larger Ra, in contrast, the most intense structure consists of two counter-rotating rolls of unitary aspect ratio. The two types of flow, which co-exists in the range 10^9 < Ra < 10^10, determine different properties of both the thermal and the viscous boundary layers. Indeed, even if the limited range of Ra analyzed in the present simulation does not allow the presence of a transition to be clearly observed in the Nu vs Ra diagram, the proposed scenario is confirmed by the direct analysis of the boundary layer thicknesses and of the kinetic energy and
Importance sampling the Rayleigh phase function
Frisvad, Jeppe Revall
2011-01-01
Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature. Thi....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation.......Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature...
Moist turbulent Rayleigh-Benard convection with Neumann and Dirichlet boundary conditions
Weidauer, Thomas
2012-01-01
Turbulent Rayleigh-Benard convection with phase changes in an extended layer between two parallel impermeable planes is studied by means of three-dimensional direct numerical simulations for Rayleigh numbers between 10^4 and 1.5\\times 10^7 and for Prandtl number Pr=0.7. Two different sets of boundary conditions of temperature and total water content are compared: imposed constant amplitudes which translate into Dirichlet boundary conditions for the scalar field fluctuations about the quiescent diffusive equilibrium and constant imposed flux boundary conditions that result in Neumann boundary conditions. Moist turbulent convection is in the conditionally unstable regime throughout this study for which unsaturated air parcels are stably and saturated air parcels unstably stratified. A direct comparison of both sets of boundary conditions with the same parameters requires to start the turbulence simulations out of differently saturated equilibrium states. Similar to dry Rayleigh-Benard convection the differences...
Gabriel Filho, Luis Roberto Almeida [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], email: gabrielfilho@tupa.unesp.br; Cremasco, Camila P. [Faculdade de Tecnologia (FATEC), Presidente Prudente, SP (Brazil); Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Dept. de Bioestatistica; Verri, Juliano A. [Universidade Estadual Paulista Julio de Mesquita Filho (FCT/UNESP), Presidente Prudente, SP (Brazil). Dept. de Matematica, Estatistica e Computacao; Viais Neto, Daniel dos S. [Faculdade de Tecnologia (FATEC), Presidente Prudente, SP (Brazil); Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas; Seraphim, Odivaldo J. [Universidade Estadual Paulista Julio de Mesquita Filho (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas. Dept. de Engenharia Rural
2011-07-01
The wind energy is an abundant source of renewable energy, clean and available almost everywhere. For its use, studies are needed to adequately describe its intensity for statistical methods and design for wind turbines. The objective is to structure the mathematical methods used to conduct a general description of the wind, to establish a description of the wind regime using the parameters described using the Weibull function and the analytical model of power from a wind turbine, as well as applications of these methods show. This work was developed at Rural Empowerment Lab of FCA/UNESP in Botucatu-SP. For the application of methods were utilized measurements of wind speed and direction, between 2004 and 2005, obtained by anemometer RM Young Wind Monitor-Campbell. As a result, they estimated the wind behavior and distribution of wind in the region, with 78 kWh of energy production, relatively low potential to supply a small house. Moreover, this energy could possibly be applied in ambient illumination, power supply for electric fences and irrigation of vegetables. (author)
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation
Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2016-07-01
The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ . The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q , three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q =6.4 . An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation.
Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2016-07-01
The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ. The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q, three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q=6.4. An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.
Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro
2016-08-01
Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.
Meireles, André Bezerra
2004-01-01
Dissertação (mestraddo) - Universidade Federal de Santa Catarina, Centro de Ciências Jurídicas. Programa de Pós-Graduação em Direito. Qual o papel dos regimes internacionais com relação ao comportamento dos agentes das relações internacionais contemporâneas, em especial, o Estado? Dentro das negociações de uma esfera internacional caracterizada por uma forte interdependência econômica, verificada a existência de múltiplos canais de conexões entre as sociedades, e uma tendência contínua p...
Seismic Rayleigh Wave Digital Processing Technology
Jie, Li
2013-04-01
In Rayleigh wave exploration, the digital processing of data plays a very important position. This directly affects the interpretation of ground effect. Therefore, the use of accurate processing software and effective method in the Rayleigh wave exploration has important theoretical and practical significance. Previously, Rayleigh wave dispersion curve obtained by the one-dimensional phase analysis. This method requires channel spacing should be less than the effective wavelength. And minimal phase error will cause great changes in the phase velocity of Rayleigh wave. Damped least square method is a local linear model. It is easy to cause that inversion objective function cannot find the global optimal solution. Therefore, the method and the technology used in the past are difficult to apply the requirements of the current Rayleigh wave exploration. This study focused on the related technologies and algorithms of F-K domain dispersion curve extraction and GA global non-linear inversion, and combined with the impact of Rayleigh wave data acquisition parameters and the characteristics. Rayleigh wave exploration data processing software design and process technology research is completed. Firstly, the article describes the theoretical basis of Rayleigh wave method. This is also part of the theoretical basis of following treatment. The theoretical proof of existence of Rayleigh wave Dispersive in layered strata. Secondly, F-K domain dispersion curve extraction tests showed that the method can overcome the one-dimensional digital processing technology deficiencies, and make full use of multi-channel Rayleigh wave data record information. GA global non-linear inversion indicated that the inversion is not easy getting into local optimal solution. Thirdly, some examples illustrate each mode Rayleigh wave dispersion curve characteristics in the X-T domain. Tests demonstrated the impact on their extraction of dispersion curves. Parameters change example (including the X
High Prandtl number effect on Rayleigh-Bénard convection heat transfer at high Rayleigh number
Ma, Li; Li, Jing; Ji, Shui; Chang, Huajian
2017-02-01
This paper represents results of the Rayleigh-Bénard convection heat transfer in silicon oil confined by two horizontal plates, heated from below, and cooled from above. The Prandtl numbers considered as 100-10,000 corresponding to three types of silicon oil. The experiments covered a range of Rayleigh numbers from 2.14·109 to 2.27·1013. The data points that the Nusselt number dependents on the Rayleigh number, which is asymptotic to a 0.248 power. Furthermore, the experiment results can fit the data in low Rayleigh number well.
Overview of Rayleigh-Taylor instability
Sharp, D.H.
1983-01-01
The aim of this talk is to survey Rayleigh-Taylor instability, describing the phenomenology that occurs at a Taylor unstable interface, and reviewing attempts to understand these phenomena quantitatively.
Numerical simulations of compressible Rayleigh-Taylor turbulence in stratified fluids
Scagliarini, A; Sbragaglia, M; Sugiyama, K; Toschi, F
2010-01-01
We present results from numerical simulations of Rayleigh-Taylor turbulence, performed using a recently proposed lattice Boltzmann method able to describe consistently a thermal compressible flow subject to an external forcing. The method allowed us to study the system both in the nearly-Boussinesq and strongly compressible regimes. Moreover, we show that when the stratification is important, the presence of the adiabatic gradient causes the arrest of the mixing process.
A new approach to Rayleigh-Taylor instability: Application to accelerated elastic solids
Piriz, A.R. [E.T.S.I. Industriales, Universidad de Castilla - La Mancha, 13071 Ciudad Real (Spain)]. E-mail: roberto.piriz@uclm.es; Lopez Cela, J.J. [E.T.S.I. Industriales, Universidad de Castilla - La Mancha, 13071 Ciudad Real (Spain); Serna Moreno, M.C. [E.T.S.I. Industriales, Universidad de Castilla - La Mancha, 13071 Ciudad Real (Spain); Cortazar, O.D. [E.T.S.I. Industriales, Universidad de Castilla - La Mancha, 13071 Ciudad Real (Spain); Tahir, N.A. [Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Hoffmann, D.H.H. [Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Institut fuer Kernephysik, Technische Universitaet of Darmstadt, 64289 Darmstadt (Germany)
2007-07-01
A new approach to Rayleigh-Taylor instability based on the Newton second law is presented. The model is applied to the instability analysis of elastic solid/viscous fluid interfaces. The effect of the thickness of the elastic medium is studied by considering a thin elastic plate. The importance of the initial transient phase that takes place before reaching the asymptotic regime is also shown.
Flow structure in turbulent rotating Rayleigh-Bénard convection
Kunnen, Rudie; Corre, Yoann; Clercx, Herman
2012-11-01
Turbulent Rayleigh-Bénard convection is usually studied in an upright cylinder. The addition of axial rotation has profound effects on the flow structuring. The well-known large-scale circulation (LSC) of the non-rotating case is still found at low rotation rates but is replaced by an irregular array of vertically aligned vortical plumes at higher rotation rates. We report PIV measurements of turbulent rotating convection in a cylindrical cell of diameter-to-height aspect ratio Γ = 1 / 2 at Rayleigh number Ra = 4 . 5 ×109 and at many rotation rates covering both the LSC and the vortical-plume regime. We focus on: (i) the azimuthal precession of the LSC, (ii) collective motions of the vortical plumes, and (iii) the sidewall boundary layers. With these results we can clarify remarkable differences between the Γ = 1 and Γ = 1 / 2 cases reported recently in the literature. Traineeship project carried out in Eindhoven as part of Master's Degree at Université Paris-Sud, France.
Comparison between rough and smooth plates within the same Rayleigh-Benard cell
Rusaouen, Eleonore; Salort, Julien; Seychelles, Fanny; Tisserand, Jean-Christophe; Creyssels, Matthieu; Liot, Olivier; Castaing, Bernard; Chilla, Francesca
2012-11-01
A Rayleigh-Benard cell consist in a tank filled of a fluid on which a temperature difference is imposed thanks to a cold plate at top and a hot at bottom. Movement is induced by the buoyancy force. Considering most of experimental apparatus previously used all around the world, both plates are smooth. Recently, the effect of roughness on thermal transfer had become a subject of interest. The present experiment is an asymetrical rough Rayleigh-Benard cell. Indeed the hot plate is rough whereas the cold plate is still smooth. Previously, tests conducted with 2 mm high roughness showed independence of the two plates and a heat flux enhancement on the rough plate, which appeared to be greater than expected from the surface increase. This regime was caracterized by a Nu ~ Ra 1 / 2 law. New results obtained with a 4mm high roughness also show this flux enhancement and the independent behaviour of the plates. But a transition appears at high Rayleigh from the 1/2 power law regime to a 1/3 one. Former results obtained in the same symetrical smooth/smooth cell also showed a 1/3 law. But the rough 1/3 regime reveals a multiplier coefficient of 1.6 with the smooth one.
Rayleigh-Taylor instability in partially ionized prominence plasma
Khomenko, E; de Vicente, A; Collados, M; Luna, M
2013-01-01
We study Rayleigh-Taylor instability (RTI) at the coronal-prominence boundary by means of 2.5D numerical simulations in a single-fluid MHD approach including a generalized Ohm's law. The initial configuration includes a homogeneous magnetic field forming an angle with the direction in which the plasma is perturbed. For each field inclination we compare two simulations, one for the pure MHD case, and one including the ambipolar diffusion in the Ohm's law, otherwise identical. We find that the configuration containing neutral atoms is always unstable. The growth rate of the small-scale modes in the non-linear regime is larger than in the purely MHD case.
Rayleigh-Taylor stabilization by material strength at Mbar pressures
Remington, Bruce; Park, Hye-Sook; Lorenz, Thomas; Cavallo, Robert; Pollaine, Stephen; Prisbrey, Shon; Rudd, Robert; Becker, Richard; Bernier, Joel
2009-11-01
We present experiments on the Rayleigh-Taylor (RT) instability in the plastic flow regime of solid-state vanadium (V) foils at 1 Mbar pressures and strain rates of 1.e6-1.e8 1/s, using a laser based, ramped-pressure acceleration technique. High pressure material strength causes strong stabilization of the RT instability at short wavelengths. Comparisons with 2D simulations utilizing models of high pressure strength show that the V strength increases by factors of 3-4 at peak pressure, compared to its ambient strength. An effective lattice viscosity of 400 poise would have a similar effect. [1] Constitutive models, and theoretical implications of these experiments will be discussed. [1] H.S. Park, B.A. Remington et al., submitted for publication (July, 2009).
Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction
Ha, Seung-Yeal [Department of Mathematical Sciences, Seoul National University, Seoul 151-747 (Korea, Republic of); Ha, Taeyoung; Kim, Jong-Ho, E-mail: syha@snu.ac.k, E-mail: tha@nims.re.k, E-mail: jhkim@nims.re.k [National Institute for Mathematical Sciences, 385-16, 3F Tower Koreana, Doryong-dong, Yuseong-gu, Daejeon, 305-340 (Korea, Republic of)
2010-08-06
We study the asymptotic flocking dynamics for the Cucker-Smale-type second-order continuous-time dynamical system with the Rayleigh friction. For mean-field communications with a positive lower bound, we show that an asymptotic flocking occurs for any compactly supported initial configuration in a large coupling regime. In contrast, in a small coupling regime, an asymptotic flocking is possible for a restricted class of initial configurations near complete flocking states. We also present several numerical simulations and compare them with our analytical results.
Diversity-Multiplexing Tradeoff in the Low-SNR Regime
Loyka, Sergey
2011-01-01
An extension of the popular diversity-multiplexing tradeoff framework to the low-SNR (or wideband) regime is proposed. The concept of diversity gain is shown to be redundant in this regime since the outage probability is SNR-independent and depends on the multiplexing gain and the channel power gain statistics only. The outage probability under the DMT framework is obtained in an explicit, closed form for a broad class of channels. The low and high-SNR regime boundaries are explicitly determined for the scalar Rayleigh-fading channel, indicating a significant limitation of the SNR-asymptotic DMT when the multiplexing gain is small.
Rayleigh--Taylor spike evaporation
Schappert, G. T.; Batha, S. H.; Klare, K. A.; Hollowell, D. E.; Mason, R. J.
2001-09-01
Laser-based experiments have shown that Rayleigh--Taylor (RT) growth in thin, perturbed copper foils leads to a phase dominated by narrow spikes between thin bubbles. These experiments were well modeled and diagnosed until this '' spike'' phase, but not into this spike phase. Experiments were designed, modeled, and performed on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton , Opt. Commun. 133, 495 (1997)] to study the late-time spike phase. To simulate the conditions and evolution of late time RT, a copper target was fabricated consisting of a series of thin ridges (spikes in cross section) 150 {mu}m apart on a thin flat copper backing. The target was placed on the side of a scale-1.2 hohlraum with the ridges pointing into the hohlraum, which was heated to 190 eV. Side-on radiography imaged the evolution of the ridges and flat copper backing into the typical RT bubble and spike structure including the '' mushroom-like feet'' on the tips of the spikes. RAGE computer models [R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski, Phys. Fluids 8, 2471 (1996)] show the formation of the '' mushrooms,'' as well as how the backing material converges to lengthen the spike. The computer predictions of evolving spike and bubble lengths match measurements fairly well for the thicker backing targets but not for the thinner backings.
Chromo-Rayleigh Interactions of Dark Matter
Bai, Yang
2015-01-01
For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.
Bivariate Rayleigh Distribution and its Properties
Ahmad Saeed Akhter
2007-01-01
Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.
Reflectometry using longitudinal, shear and Rayleigh waves.
Chen, W; Wu, J
2000-09-01
A new technique of reflectometry using longitudinal, shear and Rayleigh waves is presented. Reflection coefficient as a function of angle incidence of an ultrasound beam with a finite beamwidth was measured for water-aluminum, water-brass, and water-glass interfaces. The measured values have matched very favorably with the results of numerical calculations based on the angular spectrum of waves method. It has been shown that the speeds of longitudinal, shear and Rayleigh waves of a solid can be determined very accurately by measuring a spectacularly reflected signal versus angle of incidence.
Optical results with Rayleigh quotient discrimination filters
Juday, Richard D.; Rollins, John M.; Monroe, Stanley E., Jr.; Morelli, Michael V.
1999-03-01
We report experimental laboratory results using filters that optimize the Rayleigh quotient [Richard D. Juday, 'Generalized Rayleigh quotient approach to filter optimization,' JOSA-A 15(4), 777-790 (April 1998)] for discriminating between two similar objects. That quotient is the ratio of the correlation responses to two differing objects. In distinction from previous optical processing methods it includes the phase of both objects -- not the phase of only the 'accept' object -- in the computation of the filter. In distinction from digital methods it is explicitly constrained to optically realizable filter values throughout the optimization process.
Hansen, Anca Daniela
2017-01-01
, and with or without gearboxes, using the latest in power electronics, aerodynamics, and mechanical drive train designs [4]. The main differences between all wind turbine concepts developed over the years, concern their electrical design and control. Today, the wind turbines on the market mix and match a variety......, the design of wind turbines has changed from being convention driven to being optimized driven within the operating regime and market environment. Wind turbine designs have progressed from fixed speed, passive controlled and with drive trains with gearboxes, to become variable speed, active controlled......,6] and to implement modern control system strategies....
Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability
Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.
2004-01-12
A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.
Wind energy estimation at Quetta
Nasir, S.M.; Raza, S.M.; Jafri, Y.Z. (Balochistan Univ., Quetta (PK))
1991-01-01
Hourly wind data at Quetta airport (Samungli) for the year 1984-1985, were obtained using a standard anemometer height of 10 m, with a view to working out the feasibility of wind energy utilization. Quetta (lat. 30{sup o}11'N long, 66{sup o}57'E) is elevated at 1799 m above sea level. In this paper we analyse the wind energy data by using the Weibull distribution. Scaling and shaping parameters are determined by using the least-squares approximation to a straight line. Actual wind data, weighted Weibull density function and weighted Rayleigh probability density function for regular and continuous periods of 4 weeks up to a year (wind characteristics are being recorded and summarized as diurnal and monthly wind velocity distributions and wind power density roses) are plotted. This shows that the Weibull distribution is generally of the right shape to fit low-averaged wind speed frequency curves. However, a density function of a normal distribution is also determined. Deviations in wind speed distributions at very low-averaged wind speeds and at comparatively large-averaged wind speeds are found. (author).
Rayleigh instability of confined vortex droplets in critical superconductors
Lukyanchuk, I.; Vinokur, V. M.; Rydh, A.; Xie, R.; Milošević, M. V.; Welp, U.; Zach, M.; Xiao, Z. L.; Crabtree, G. W.; Bending, S. J.; Peeters, F. M.; Kwok, W. K.
2015-01-01
Depending on the Ginzburg-Landau parameter κ, superconductors can either be fully diamagnetic if (type I superconductors) or allow magnetic flux to penetrate through Abrikosov vortices if (type II superconductors; refs , ). At the Bogomolny critical point, , a state that is infinitely degenerate with respect to vortex spatial configurations arises. Despite in-depth investigations of conventional type I and type II superconductors, a thorough understanding of the magnetic behaviour in the near-Bogomolny critical regime at κ ~ κc remains lacking. Here we report that in confined systems the critical regime expands over a finite interval of κ forming a critical superconducting state. We show that in this state, in a sample with dimensions comparable to the vortex core size, vortices merge into a multi-quanta droplet, which undergoes Rayleigh instability on increasing κ and decays by emitting single vortices. Superconducting vortices realize Nielsen-Olesen singular solutions of the Abelian Higgs model, which is pervasive in phenomena ranging from quantum electrodynamics to cosmology. Our study of the transient dynamics of Abrikosov-Nielsen-Olesen vortices in systems with boundaries promises access to non-trivial effects in quantum field theory by means of bench-top laboratory experiments.
Tuning transitions in rotating Rayleigh-Bénard convection
Joshi, Pranav; Kunnen, Rudie; Clercx, Herman
2015-11-01
Turbulent rotating Rayleigh-Bénard convection, depending on the system parameters, exhibits multiple flow states and transitions between them. The present experimental study aims to control the transitions between the flow regimes, and hence the system heat transfer characteristics, by introducing particles in the flow. We inject near-neutrally buoyant silver coated hollow ceramic spheres (~100 micron diameter) and measure the system response, i.e. the Nusselt number, at different particle concentrations and rotation rates. Both for rotating and non-rotating cases, most of the particles settle on the top and bottom plates in a few hours following injection. This rapid settling may be a result of ``trapping'' of particles in the laminar boundary layers at the horizontal walls. These particle layers on the heat-transfer surfaces reduce their effective conductivity, and consequently, lower the heat transfer rate. We calculate the effective system parameters by estimating, and accounting for, the temperature drop across the particle layers. Preliminary analysis suggests that the thermal resistance of the particle layers may affect the flow structure and delay the transition to the ``geostrophic'' regime. Financial support from Foundation for Fundamental Research on Matter.
Grooms, Ian
2014-01-01
The non-hydrostatic, quasigeostrophic approximation for rapidly rotating Rayleigh-B\\'enard convection admits a class of exact `single mode' solutions. These solutions correspond to steady laminar convection with a separable structure consisting of a horizontal planform characterized by a single wavenumber multiplied by a vertical amplitude profile, with the latter given as the solution of a nonlinear boundary value problem. The heat transport associated with these solutions is studied in the regime of strong thermal forcing (large reduced Rayleigh number $\\widetilde{Ra}$). It is shown that the Nusselt number $Nu$, a nondimensional measure of the efficiency of heat transport by convection, for this class of solutions is bounded below by $Nu\\gtrsim \\widetilde{Ra}^{3/2}$, independent of the Prandtl number, in the limit of large reduced Rayleigh number. Matching upper bounds include only logarithmic corrections, showing the accuracy of the estimate. Numerical solutions of the nonlinear boundary value problem for ...
Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection.
King, Eric M; Aurnou, Jonathan M
2012-01-01
We investigate flow structures in rotating Rayleigh-Bénard convection experiments in water using thermal measurements. We focus on correlations between time series measurements of temperature in the top and bottom boundaries. Distinct anticorrelations are observed for rapidly rotating convection, which are argued to attest to heat transport by convective Taylor columns. In support of this argument, these quasigeostrophic flow structures are directly observed in flow visualizations, and their thermal signature is qualitatively reproduced by a simple model of heat transport by columnar flow. Weakly rotating and nonrotating convection produces positively correlated temperature changes across the layer, indicative of heat transport by large-scale circulation. We separate these regimes using a transition parameter that depends on the Rayleigh and Ekman numbers, RaE3/2.
The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-B\\'enard convection
Kunnen, Rudie P J; Overkamp, Jim; Sun, Chao; van Heijst, GertJan F; Clercx, Herman J H
2011-01-01
When the classical Rayleigh-B\\'enard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned vortices. Regime III (strong rotation) is characterized by suppression of the vertical velocity fluctuations. Using results from experiments and direct numerical simulations of RB convection for a cell with a diameter-to-height aspect ratio equal to one at $Ra \\sim 10^8-10^9$ ($Pr=4-6$) and $0 \\lesssim 1/Ro \\lesssim 25$ we identified the characteristics of the azimuthal temperature profiles at the sidewall in the different regimes. In regime I the azimuthal wall temperature profile shows a cosine shape and a vertical temperature gradient due to plumes that travel with the LSC close to the sidewall. In regime II and III this cosine profile disappears, but the vertical wall temperature gradient is still observed. It t...
Non-linear Evolution of Rayleigh-Taylor Instability in a Radiation Supported Atmosphere
Jiang, Yan-Fei; Stone, James
2012-01-01
The non-linear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small scale structures are also suppressed in this case. In the non-linear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a variable Eddington tensor (VET) versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the non-linear development of RTI...
Renewable Energy Essentials: Wind
NONE
2008-07-01
Subjects for further research, specific to wind energy technology, include more refined resource assessment; materials with higher strength to mass ratios; advanced grid integration and power quality and control technologies; standardisation and certification; development of low-wind regime turbines; improved forecasting; increased fatigue resistance of major components such as gearboxes; better models for aerodynamics and aeroelasticity; generators based on superconductor technology; deep-offshore foundations; and high-altitude 'kite' concepts.
The sensitivity of rotating Rayleigh-Bénard convection to the Ekman number
Plumley, Meredith; Julien, Keith; Marti, Philippe; Stellmach, Stephan; Aurnou, Jonathan; Hawkins, Emily
2016-11-01
Many geophysical and astrophysical applications of rotating Rayleigh-Bénard convection require no-slip boundaries. These boundaries lead to Ekman pumping, which has a dominant impact on the heat transport and affects the transfer of energy within the system. Here I present the 2D surface of the Nusselt number as a function of the Rayleigh number (Ra) and the Ekman number (E) for no-slip boundaries, generated through a combination of results from experiments, DNS, rescaled DNS, and asymptotic simulations. The Ra - E space is mapped from the transition of the weakly-rotating into the rotation-dominated regime (E 10-7) to lower E in the rapidly-rotating regime (E 10-11). This exploration provides insight into the sensitivity of the flow to the Ekman number, specifically the effect of the boundaries on the types and ranges of flow structures and the difference between stress-free and no-slip boundaries at low E, a regime of interest for modeling planetary interiors.
Solitary Dunes under Bimodal Winds
Reffet, Erwan; Courrech du Pont, S.; Hersen, P.; Fulchignoni, M.; Douady, S.
2009-01-01
The high resolution and coverage achieved on Mars' surface have detailed lots of sand dunes of various types [1]. Many are reported as barchan or barchanoid dunes and present a diversity of shape ascribed to compound wind regimes, collisions or cementation. This diversity reminds us that aeolian structures are fairly complex. Although dunes have been extensively observed and documented, the conditions of their formation and evolution are still difficult to study because of the long time required for their development and their large length-scale. We developed a laboratory approach using underwater experiments to study the morphology of dunes. This method has been used successfully to reproduce various types of dunes downsized to a few centimeters. Barchan dunes are formed using a unidirectional wind-equivalent regime on a pile of ceramic sand-sized grains [2]. Changing the wind regime to a more complex one reveals other structures. In the case of multiple wind directions star dunes can be observed. A bimodal wind regime, e.g. switching between two distinct directions, over an homogeneous layer of sand leads to transverse, longitudinal or complex compound sandbeds depending on the angle between these wind directions [3]. Here, we apply bimodal wind regimes to isolated patches of sand in order to observe the variation of morphology of the resulting dunes. We present the barchanoid dunes obtained for various angles of bimodal wind and show the transition to the "chestnut” dunes type. We also investigate sudden variations in wind direction over a barchan dune. Therefore, we illustrate how the (not so) simple barchan shape can be affected by a more complex wind regime and give a new insight in understanding dunes on Mars. [1] http://www.mars-dunes.org/ . [2] Hersen et al. PRL, 2003. [3] Reffet et al. pldu.work 2008.
Rayleigh reflections and nonlinear acoustics of solids
Breazeale, M. A.
1980-10-01
Schlierken studies of ultrasonic waves, and nonlinear acoustics of solids are addressed. A goniometer for use in a Schlieren system for visualization of ultrasonic waves in liquids is described. The goniometer is used to obtain Schlieren photographs of leaky Rayleigh waves excited on an Al2O3 layer on a stainless steel reflector immersed in water, showing that the Rayleigh wave velocity in this case is less than that of either a water Al203 layer or a water stainless steel layer. Also investigated are: (1) nonlinearity parameters and third order elastic constants of copper between 300 and 3 K; (2) measurement of nonlinearity parameters in small solid samples by the harmonic generation technique; (3) relationship between solid nonlinearity parameters and thermodynamic Gruneisen parameters; and (4) quantum mechanical theory of nonlinear interaction of ultrasonic waves.
ALE simulation of Rayleigh-Taylor instability
Anbarlooei, H.R. [Univ. of Science and Technology, Dept. of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Mazaheri, K. [Univ. of Tarbiyat Modares, Dept. of Mechanical Engineering, Tehran, (Iran, Islamic Republic of)]. E-mail: Kiumars@modares.ac.ir; Bidabadi, M. [Univ. of Science and Technology, Dept. of Mechanical Engineering, Tehran (Iran, Islamic Republic of)
2004-07-01
This paper investigates the use of an Arbitrary Lagrangian-Eulerian (ALE) technique for the simulation of a single mode Rayleigh-Taylor instability. A compatible Lagrangian algorithm is used on a simply connected quadrilateral grid in Lagrangian Phase. This algorithm includes subzonal pressures, which are used to control spurious grid motion, and an edge centered artificial viscosity. We use Reference Jacobians optimization based rezone algorithm in the rezoning phase of ALE method. Also a second order sign preserving method is used for remapping. To force monotonocity in remapping phase a Repair algorithm is used. Finally, for remapping of nodal variables we used a second order transformer to transfer these data to cell centers. It is shown that the usage of these algorithms for an ALE method can improve the simulation of a single mode Rayleigh-Taylor Instability. (author)
High-Frequency Rayleigh-Wave Method
Jianghai Xia; Richard D Millerg; Xu Yixian; Luo Yinhe; Chen Chao; Liu Jiangping; Julian Ivanov; Chong Zeng
2009-01-01
High-frequency (≥2 Hz) Rayleigh-wave data acquired with a multichannei recording sys-tem have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave tech-niques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a nou-iuvasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.
Hawthorne, P. J.
1976-01-01
Data obtained in wind tunnel test OA148 are presented. The objectives of the test series were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 orbiter in the thermal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes.
On the evolution of flow topology in turbulent Rayleigh-Bénard convection
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2016-11-01
Small-scale dynamics is the spirit of turbulence physics. It implicates many attributes of flow topology evolution, coherent structures, hairpin vorticity dynamics, and mechanism of the kinetic energy cascade. In this work, several dynamical aspects of the small-scale motions have been numerically studied in a framework of Rayleigh-Bénard convection (RBC). To do so, direct numerical simulations have been carried out at two Rayleigh numbers Ra = 108 and 1010, inside an air-filled rectangular cell of aspect ratio unity and π span-wise open-ended distance. As a main feature, the average rate of the invariants of the velocity gradient tensor (QG, RG) has displayed the so-called "teardrop" spiraling shape through the bulk region. Therein, the mean trajectories are swirling inwards revealing a periodic spin around the converging origin of a constant period that is found to be proportional to the plumes lifetime. This suggests that the thermal plumes participate in the coherent large-scale circulation and the turbulent wind created in the bulk. Particularly, it happens when the plumes elongate substantially to contribute to the large-scale eddies at the lower turbulent state. Supplementary small-scale properties, which are widely common in many turbulent flows have been observed in RBC. For example, the strong preferential alignment of vorticity with the intermediate eigenstrain vector, and the asymmetric alignment between vorticity and the vortex-stretching vector. It has been deduced that in a hard turbulent flow regime, local self-amplifications of straining regions aid in contracting the vorticity worms, and enhance the local interactions vorticity/strain to support the linear vortex-stretching contributions. On the other hand, the evolution of invariants pertained to the traceless part of velocity-times-temperature gradient tensor has also been considered in order to determine the role of thermals in the fine-scale dynamics. These new invariants show an
Bezrukovs Valerijs
2016-01-01
Full Text Available Investigations of the wind shear up to the height of 200 (m on the Latvian coast of the Baltic Sea have been carried out using a Pentalum SpiDAR laser measuring complex. Based on wind speeds measurements for three levels – 30, 40 and 50 (m, assessment of the operational efficiency of the wind turbines for heights 100, 140 and 180 (m have been performed. For comparison, this analysis involves five different approaches: the Rayleigh frequency distribution, three different Weibull frequency distributions and method based on approximation of the cubic wind speed. Results are compared with measurements on the corresponding heights.
Sustainable urban regime adjustments
Quitzau, Maj-Britt; Jensen, Jens Stissing; Elle, Morten
2013-01-01
The endogenous agency that urban governments increasingly portray by making conscious and planned efforts to adjust the regimes they operate within is currently not well captured in transition studies. There is a need to acknowledge the ambiguity of regime enactment at the urban scale. This directs...... attention to the transformative implications of conscious strategic maneuvering by incumbent regime actors, when confronting regime structurations. This article provides insight to processes of regime enactment performed by local governments by applying a flow-oriented perspective on regime dynamics...
Heymann, Matthias; Nielsen, Kristian Hvidtfelt
power largely failed until the late 1970s. Denmark was the first country to develop reliable wind energy converters and successfully use wind power in the course of the 1970s and 80s. The reinvention of wind power use has been described as a remarkable success story. Wind technology development...... in Denmark proved more successful than heavily funded efforts in the USA, Sweden or Germany. Within few years, Danish wind turbines dominated California wind parks and outclassed the turbines from other producers. Since the 1980s, all successful wind turbine producers copied basic features of “Danish Design......Wind power was an important power source not only in the preindustrial era but also into the nineteenth and early twentieth century. In most regions by the mid twentieth century the ubiquitous windmill was quickly replaced by alternative power sources, mainly electricity. Efforts to revive wind...
In situ Characterization of Nanoparticles Using Rayleigh Scattering
Biswajit Santra; Shneider, Mikhail N; Roberto Car
2017-01-01
We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected co...
Generation of large-scale winds in horizontally anisotropic convection
von Hardenberg, J; Provenzale, A; Spiegel, E A
2015-01-01
We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.
Rivero, S.; Chico, B.; Fuente, D. de la; Morcillo, M.
2007-07-01
The present work studies the atmospheric corrosion of carbon steel (UNE-EN 10130) in a sub-polar marine environment (Artigas Antarctic Scientific Base (BCAA), Uruguay) as a function of site atmospheric salinity and exposure time. A linear relationship is established between corrosion rate and airborne salinity deposition rate, valid in the deposition range encountered (125-225 mg Cl-l/m{sup 2}.d) and a bi logarithmic relationship established between corrosion and exposure time (1-4 years). Atmospheric salinity is related with the monthly wind speed average, based on the concept of the wind run. chloride ion deposition rates of less than 300 mg Cl-l/m{sup 2}.d are related with remote (oceanic) winds and coastal winds basically of speeds between 1-40 km/h, while higher deposition rates (300-700 mg Cl-/m{sup 2}.d) correspond to coastal marine winds of a certain persistence with speeds of between 41-80 km/h. (Author) 39 refs.
Scaling regimes in spherical shell rotating convection
Gastine, T; Aubert, J
2016-01-01
Rayleigh-B\\'enard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\\times 10^{-7} \\leq E \\leq 10^{-1}$, Rayleigh numbers within the range $10^3 < Ra < 2\\times 10^{10}$ and a Prandtl number unity. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection $Nu\\sim Ra^{3/2}E^{2}$ in ...
Imaging Rayleigh wave attenuation with USArray
Bao, Xueyang; Dalton, Colleen A.; Jin, Ge; Gaherty, James B.; Shen, Yang
2016-07-01
The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. The surface wave amplitudes that constrain upper-mantle attenuation are sensitive to factors in addition to attenuation, including the earthquake source excitation, focusing and defocusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave traveltime and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique, which takes advantage of waveform similarity at nearby stations. Several estimates of Rayleigh wave attenuation and site amplification are generated at each period, using different approaches to separate the effects of attenuation and local site amplification on amplitude. It is assumed that focusing and defocusing effects can be described by the Laplacian of the traveltime field. All approaches identify the same large-scale patterns in attenuation, including areas where the attenuation values are likely contaminated by unmodelled focusing and defocusing effects. Regionally averaged attenuation maps are constructed after removal of the contaminated attenuation values, and the variations in intrinsic shear attenuation that are suggested by these Rayleigh wave attenuation maps are explored.
Leaky Rayleigh wave investigation on mortar samples.
Neuenschwander, J; Schmidt, Th; Lüthi, Th; Romer, M
2006-12-01
Aggressive mineralized ground water may harm the concrete cover of tunnels and other underground constructions. Within a current research project mortar samples are used to study the effects of sulfate interaction in accelerated laboratory experiments. A nondestructive test method based on ultrasonic surface waves was developed to investigate the topmost layer of mortar samples. A pitch and catch arrangement is introduced for the generation and reception of leaky Rayleigh waves in an immersion technique allowing the measurement of their propagation velocity. The technique has been successfully verified for the reference materials aluminium, copper, and stainless steel. First measurements performed on mortar specimens demonstrate the applicability of this new diagnostic tool.
Global study of Rayleigh-Duffing oscillators
Chen, Hebai; Zou, Lan
2016-04-01
In this paper we investigate the global dynamics of Rayleigh-Duffing oscillators with global parameters, including equilibria at both finity and infinity, existences and coexistence of limit cycles and homoclinic loops. In fact, this oscillator will occur Hopf bifurcations, homoclinic bifurcations and double limit cycle bifurcations. Moreover, we find that the homoclinic bifurcation of this oscillator is special which is a gluing bifurcation. The global bifurcation diagram and all phase portrait are given, and numerical simulations are shown to verify our analysis finally.
Decoherence due to elastic rayleigh scattering
Uys, H
2010-11-01
Full Text Available in this manuscript now enables an accurate calculation of Rayleigh decoherence for these low-field trapped ion as well as other coherent-control experiments. We thank W.M. Itano, J. P. Britton, D. Hanneke, and M. J. Holland for useful suggestions.M. J. B.... acknowledges support from Georgia Tech and IARPA. D.M. is supported by NSF. This work was supported by the DARPA OLE program and by IARPA. This manuscript is the contribution of NIST and is not subject to U.S. copyright. *huys@csir.co.za †john...
Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.; Plimpton, S. J.
2016-08-01
The Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters the self-similar regime, in agreement with experimental observations. For the conditions simulated, diffusion can influence the initial instability growth significantly.
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-11-01
Rayleigh Taylor instability in a power-law time dependent acceleration field is investigated theoretically for a flow with the symmetry group p6mm (hexagon) in the plane normal to acceleration. In the nonlinear regime, regular asymptotic solutions form a one-parameter family. The physically significant solution is identified with the one having the fastest growth and being stable (bubble tip velocity). Two distinct regimes are identified depending on the acceleration exponent. Particularly, the RM-type regime, where the dynamics is identical to conventional RM instability and is dominated by initial conditions, and the RT-type regime where the dynamics is dominated by the acceleration term. For the latter, the time dependence has profound effects on the dynamics. In the RT non-linear regime, the time dependence has no consequence on the morphology of the bubbles; the growth rate (bubble tip velocity) evolves as power law with the exponent set by the acceleration. The solutions for a one-parameter family, and are convergent with exponential decay of Fourier amplitudes. The solutions are stable at maximum tip velocity, whereas flat bubbles are unstable, and the growth/decay of perturbations is no longer purely exponential and depends on the acceleration exponent. The work is supported by the US National Science Foundation.
Search for the ``ultimate state" in turbulent Rayleigh-B'enard convection
Ahlers, Guenter; Funfschilling, Denis; Bodenschatz, Eberhard
2009-11-01
Measurements of the Nusselt number Nu will be reported for turbulent Rayleigh-B'enard convection of a cylindrical sample. They cover the Rayleigh-number range 10^11 Ra 2x10^15 using N2 (Pr = 0.72) and SF6 (Pr = 0.79 to 0.84) at pressures up to 19 bars and near-ambient temperatures. The sample had a height L=2.24m and diameter D = 1.12m and utilized the high-pressure vessel known as the ``Uboot of G"ottingen" at the Max Planck Institute for Dynamics and Self-Organization in G"ottingen, Germany. For Ra 4x10^13 the data yielded Nu Ra^γeff with γeff= 0.308 and did not show the transition near Ra = 10^11 to an ``ultimate regime" that was reported by Chavanne et al. At Ra = 4x10^13 there is a well defined but continuous transition to a regime where γeff is smaller than 0.30.
Compressible, inviscid Rayleigh-Taylor instability
Guo, Yan
2009-01-01
We consider the Rayleigh-Taylor problem for two compressible, immiscible, inviscid, barotropic fluids evolving with a free interface in the presence of a uniform gravitational field. After constructing Rayleigh-Taylor steady-state solutions with a denser fluid lying above the free interface with the second fluid, we turn to an analysis of the equations obtained from linearizing around such a steady state. By a natural variational approach, we construct normal mode solutions that grow exponentially in time with rate like $e^{t \\sqrt{\\abs{\\xi}}}$, where $\\xi$ is the spatial frequency of the normal mode. A Fourier synthesis of these normal mode solutions allows us to construct solutions that grow arbitrarily quickly in the Sobolev space $H^k$, which leads to an ill-posedness result for the linearized problem. Using these pathological solutions, we then demonstrate ill-posedness for the original non-linear problem in an appropriate sense. More precisely, we use a contradiction argument to show that the non-linear...
Short Rayleigh length free electron lasers
W. B. Colson
2006-03-01
Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.
Superstructures in Rayleigh-Benard convection
Stevens, Richard; Verzicco, Roberto; Lohse, Detlef
2016-11-01
We study the heat transfer and the flow structures in Rayleigh-Bénard convection as function of the Rayleigh number Ra and the aspect ratio. We consider three-dimensional direct numerical simulations (DNS) in a laterally periodic geometry with aspect ratios up to Γ =Lx /Lz =Ly /Lz = 64 at Ra =108 , where Lx and Ly indicate the horizontal domain sizes and Lz the height. We find that the heat transport convergences relatively quickly with increasing aspect ratio. In contrast, we find that the large scale flow structures change significantly with increasing aspect ratio due to the formation of superstructures. For example, at Ra =108 we find the formation of basically only one large scale circulation roll in boxes with an aspect ratio up to 8. For larger boxes we find the formation of multiple of these extremely large convection rolls. We illustrate this by movies of horizontal cross-section of the bulk and the boundary layer and analyze them by using spectra in the boundary layer and the bulk. In addition, we study the effect of the large scale flow structures on the mean and higher order temperature and velocity statistics in the boundary layer and the bulk by comparing the simulation results obtained in different aspect ratio boxes. Foundation for fundamental Research on Matter (FOM), Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), SURFsara, Gauss Large Scale project.
Sub-Rayleigh limit imaging via intensity correlation measurements
姚旭日; 李龙珍; 刘雪峰; 俞文凯; 翟光杰
2015-01-01
We demonstrate sub-Rayleigh limit imaging of an object via intensity correlation measurements. The image com-pletely unaffected by the disturbance of diffraction-limit is achieved under the condition that the imaging system has an appropriate field of view. The resolution of this sub-Rayleigh limit imaging system is only tied to the lateral resolution of the illumination light.
WIND STRESS AND SURFACE ROUGHNESS AT AIR-SEA INTERFACE
Based on the compiled data of thirty independent observations, the report presents the wind - stress coefficient, the surface roughness and the...boundary layer flow regime at the air-sea interface under various wind conditions. Both the wind - stress coefficient and the surface roughness are found to...data and Charnock’s proportionality constant is determined. Finally, two approximate formulae for the wind - stress coefficient, one for light wind and the other for strong wind are suggested.
Universality of energy spectrum in turbulent Rayleigh-Benard convection
Bai, Kunlun; Hoeller, Judith; Brown, Eric
2016-11-01
We present study of energy spectrum in turbulent Rayleigh-Benard convection, in both cylindrical and cubic containers, tilting and non-tilting conditions, and with Rayleigh number ranging from 0 . 5 ×109 to 1 ×1010 . For these different conditions of geometry, tilt, and Rayleigh number, the temperature spectra measured on the system side walls are significantly different from each other. Even for the same condition, the spectrum varies depending on whether the sensors locate in the path of large-scale circulations. However, quite interestingly, once the signals of large-scale circulations are subtracted from the raw temperature, all spectra display a universal shape, regardless of system geometry, tilt, Rayleigh number, and location of sensors. It suggests that one could model the large-scale circulations and small-scale fluctuations separately in turbulent Rayleigh-Benard convection.
Rayleigh scattering: blue sky thinking for future CMB observations
Lewis, Antony
2013-01-01
Rayleigh scattering from neutral hydrogen during and shortly after recombination causes the CMB anisotropies to be significantly frequency dependent at high frequencies. This may be detectable with Planck, and would be a strong signal at in any future space-based CMB missions. The later peak of the Rayleigh visibility compared to Thomson scattering gives an increased large-scale CMB polarization signal that is a greater than 4% effect for observed frequencies greater than 500GHz. There is a similar magnitude suppression on small scales from additional damping. Due to strong correlation between the Rayleigh and primary signal, measurement of the Rayleigh component is limited by noise and foregrounds, not cosmic variance of the primary CMB, and should observable over a wide range of angular scales at frequencies between roughly 200GHz and 800GHz. I give new numerical calculations of the temperature and polarization power spectra, and show that future CMB missions could measure the temperature Rayleigh cross-spe...
Nordsiek, Freja; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef; Lathrop, Daniel P
2014-01-01
Azimuthal velocity profiles were measured in a Taylor-Couette apparatus, which has been used as a model of stellar and planetary accretion disks. The apparatus has a cylinder radius ratio of $\\eta = 0.7158$, an aspect-ratio of $\\Gamma = 11.74$, and axial boundaries attached to the outer cylinder --- known to have significant Ekman pumping. We investigated angular momentum transport and Ekman pumping in the Rayleigh-stable regime. The regime is linearly stable and is characterized by radially increasing specific angular momentum. We measured several Rayleigh-stable profiles for shear Reynolds numbers $Re_S \\sim O\\left(10^5\\right) \\,$, both for $\\Omega_i > \\Omega_o > 0$ (quasi-Keplerian regime) and $\\Omega_o > \\Omega_i > 0$ (sub-rotating regime) where $\\Omega_{i,o}$ is the inner/outer cylinder rotation rate. None of the velocity profiles matched the non-vortical laminar Taylor-Couette profile. The deviation from that profile increased as solid-body rotation was approached at fixed $Re_S$. Flow super-rotation, a...
The Spectral Amplitude of Stellar Convection and its Scaling in the High-Rayleigh-Number Regime
Featherstone, Nicholas A
2015-01-01
Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely-hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique testbed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation due to this apparent overestimation. We present a series of 3-dimensional (3-D) stellar convection simulations designed to examine how the amplitude and spectral distribution of ...
Boss, Alan P.
2017-08-01
Recent meteoritical analyses support an initial abundance of the short-lived radioisotope (SLRI) 60Fe that may be high enough to require nucleosynthesis in a core-collapse supernova, followed by rapid incorporation into primitive meteoritical components, rather than a scenario where such isotopes were inherited from a well-mixed region of a giant molecular cloud polluted by a variety of supernovae remnants and massive star winds. This paper continues to explore the former scenario, by calculating three-dimensional, adaptive mesh refinement, hydrodynamical code (FLASH 2.5) models of the self-gravitational, dynamical collapse of a molecular cloud core that has been struck by a thin shock front with a speed of 40 km s-1, leading to the injection of shock front matter into the collapsing cloud through the formation of Rayleigh-Taylor fingers at the shock-cloud intersection. These models extend the previous work into the nonisothermal collapse regime using a polytropic approximation to represent compressional heating in the optically thick protostar. The models show that the injection efficiencies of shock front materials are enhanced compared to previous models, which were not carried into the nonisothermal regime, and so did not reach such high densities. The new models, combined with the recent estimates of initial 60Fe abundances, imply that the supernova triggering and injection scenario remains a plausible explanation for the origin of the SLRIs involved in the formation of our solar system.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Technical Report: Rayleigh Scattering Combustion Diagnostic
Adams, Wyatt [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hecht, Ethan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-07-29
A laser Rayleigh scattering (LRS) temperature diagnostic was developed over 8 weeks with the goal of studying oxy-combustion of pulverized coal char in high temperature reaction environments with high concentrations of carbon dioxide. Algorithms were developed to analyze data collected from the optical diagnostic system and convert the information to temperature measurements. When completed, the diagnostic will allow for the kinetic gasification rates of the oxy-combustion reaction to be obtained, which was previously not possible since the high concentrations of high temperature CO_{2} consumed thermocouples that were used to measure flame temperatures inside the flow reactor where the combustion and gasification reactions occur. These kinetic rates are important for studying oxycombustion processes suitable for application as sustainable energy solutions.
Rayleigh-type parametric chemical oscillation
Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-10-01
Rayleigh Taylor instability in a power-law time dependent acceleration field is investigated for a flow with the symmetry group p6mm (hexagonal) in the plane normal to acceleration. The Regular asymptotic solutions form a one-parameter family and the physically significant solution is identified with the one having the fastest growth and being stable (bubble tip velocity). Two distinct regimes are identified dependent on the acceleration exponent, the RM-type regime, where the dynamics is identical to conventional RM instability and is dominated by initial conditions, and the RT-type regime where the dynamics is dominated by the acceleration term. For the latter, the time dependence has profound effects on the dynamics. In the RT non-linear regime, the time dependence has no consequence on the morphology of the bubbles but the growth rate (bubble tip velocity) evolves as power law with the exponent set by the acceleration. The solutions for a one-parameter family, and are convergent with exponential decay of Fourier amplitudes close to the physical solution. The solutions are stable at maximum tip velocity and flat bubbles are unstable, and the growth/decay of perturbations is no longer purely exponential and depends on the acceleration exponent. The work is supported by the US National Science Foundation.
QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.
Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy
We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.
Stregger, D.L.; Fisher, W.H.
1980-06-01
A study was undertaken to investigate the technical and economic viability of a generalized system composed of a wind-electric and hydroelectric system interacting together to provide firm power to a grid, and to determine limits in the extent to which such a combination can be effected. Several scenarios were considered, including: a farm of horizontal axis wind turbines with various generator ratings, generating into a grid; the same wind turbine generator used to pump water into a hydroelectric plant reservoir; and a cursory examination of mechanical pumping with wind energy to increase the water supply of a hydroelectric project. The review of the state-of-the-art indicated that the scenarios investigated represent the most practical utility applications of wind-hydro combinations. The present state-of-the-art is more advanced for multi-megawatt horizontal axis tubines than for vertical axis wind turbines. The utilization factor, on a monthly determination, of the firm wind energy varies with the shape of the hydrograph, load and the wind regimes. Across Canada it was found to vary from a low of 79% to a maximum of 100%. The most important parameter in the economic evaluation of the break-even costs of wind-hydro generation is the cost of alternative supplies of energy. The regions of Canada where wind-hydro combinations appear to be within economic limits at present cost levels are Newfoundland, assuming a oil-fired thermal alternative, and isolated areas such as the Northwest Territories, assuming a diesel alternative. 67 refs., 12 figs., 13 tabs.
Hawthorne, P. J.
1976-01-01
Data obtained in wind tunnel tests are presented. The objectives of the tests were to: (1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes. Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 4.57 million to 2.74 million per foot. Model angle-of-attack was varied from -4 to 16 degrees and angles of side slip ranged from -8 to 8 degrees.
Hawthorne, P. J.
1976-01-01
Data obtained in a wind tunnel test were examined to: (1) obtain pressure distributions, forces and moments over the vehicle 5 Orbiter in the terminal area energy management (TAEM) and approach phases of flight; (2) obtain elevon and rudder hinge moments in the TAEM and approach phases of flight; (3) obtain body flap and elevon loads for verification of loads balancing with integrated pressure distributions; and (4) obtain pressure distributions near the short OMS pods in the high subsonic, transonic and low supersonic Mach number regimes. Testing was conducted over a Mach number range from 0.6 to 1.4 with Reynolds number variations from 7.57 x 1 million to 2.74 x 1 million per foot. Model angle of attack was varied from -4 to 16 degrees and angles of sideslip ranged from -8 to 8 degrees.
Makhalas, Kharsan Al; Alsehlli, Faisal
2015-01-01
This Bachelor thesis has been written at the Blekinge Institute of Technology. This thesis concentrates on the wind power and their components, also the large wind farm is studied. The electrical power is generated by using the power in wind to drive a wind turbine to produce mechanical power. This mechanical power can be converted into electrical power by using electrical induction generators. There are two types of the wind turbines, the horizontal axis and vertical axis wind turbine, where...
Li, Jiaoyang; Ni, Jiqin
2014-01-01
Wind measurement is needed in many practical and scientific research situations. Some specific applications require to precisely measuring both wind direction and wind speed at the same time. Current commercial sensors for wind direction and wind speed measurement usually use ultrasonic technology and the sensors are very expensive (> $1500). In addition, the sensors are large in dimension and cannot measure airflow patterns in high spatial resolution. Therefore new and low cost wind speed an...
Measuring autocratic regime stability
Joseph Wright
2016-01-01
Full Text Available Researchers measure regime stability in autocratic contexts using a variety of data sources that capture distinct concepts. Often this research uses concepts developed for the study of democratic politics, such as leadership change or institutionalized authority, to construct measures of regime breakdown in non-democratic contexts. This article assesses whether the measure a researcher chooses influences the results they obtain by examining data on executive leadership, political authority, and autocratic regimes. We illustrate the conceptual differences between these variables by extending recent studies in the literature on the political consequences of non-tax revenue and unearned foreign income.
Beker Emilija
2006-01-01
Full Text Available The choice of an adequate exchange rate regime proves to be a highly sensitive field within which the economic authorities present and confirm themselves. The advantages and disadvantages of fixed and flexible exchange rate regimes, which have been quite relativized from the conventional point of view, together with simultaneous, but not synchronized effects of structural and external factors, remain permanently questioned throughout a complex process of exchange rate regime decision making. The paper reflects the attempt of critical identification of the key exchange rate performances with emphasis on continuous non-uniformity and (uncertainty of shelf life of a relevant choice.
On a Misconception Involving Point Collocation and the Rayleigh Hypothesis
Christiansen, Søren; Kleinman, Ralph E.
1996-01-01
It is shown that the Rayleigh hypothesis does notgovern convergence of the simple point collocationapproach to the numerical solutions of scatteringby a sinusoidal grating. A recently developed numerical technique, interval arithmetic, is employed to perform some decisive numerical experiments wh...
Beating Rayleigh's Curse by Imaging Using Phase Information
Tham, Weng-Kian; Ferretti, Hugo; Steinberg, Aephraim M.
2017-02-01
Every imaging system has a resolution limit, typically defined by Rayleigh's criterion. Given a fixed number of photons, the amount of information one can gain from an image about the separation between two sources falls to zero as the separation drops below this limit, an effect dubbed "Rayleigh's curse." Recently, in a quantum-information-inspired proposal, Tsang and co-workers found that there is, in principle, infinitely more information present in the full electromagnetic field in the image plane than in the intensity alone, and suggested methods for extracting this information and beating the Rayleigh limit. In this Letter, we experimentally demonstrate a simple scheme that captures most of this information, and show that it has a greatly improved ability to estimate the distance between a pair of closely separated sources, achieving near-quantum-limited performance and immunity to Rayleigh's curse.
Rayleigh scattering in the atmospheres of hot stars
Fišák, Jakub; Munzar, Dominik; Kubát, Jiří
2016-01-01
Rayleigh scattering is a result of an interaction of photons with bound electrons. Rayleigh scattering is mostly neglected in calculations of hot star model atmospheres because most of the hydrogen atoms are ionized and the heavier elements have a lower abundance than hydrogen. In atmospheres of some chemically peculiar stars, helium overabundant regions containing singly ionized helium are present and Rayleigh scattering can be a significant opacity source. We evaluate the contribution of Rayleigh scattering by neutral hydrogen and singly ionized helium in the atmospheres of hot stars with solar composition and in the atmospheres of helium overabundant stars. We computed several series of model atmospheres using the TLUSTY code and emergent fluxes using the SYNSPEC code. These models describe atmospheres of main sequence B-type stars with different helium abundance. We used an existing grid of models for atmospheres with solar chemical composition and we calculated an additional grid for helium-rich stars wi...
Generalized Rayleigh and Jacobi Processes and Exceptional Orthogonal Polynomials
Chou, C.-I.; Ho, C.-L.
2013-09-01
We present four types of infinitely many exactly solvable Fokker-Planck equations, which are related to the newly discovered exceptional orthogonal polynomials. They represent the deformed versions of the Rayleigh process and the Jacobi process.
Rayleigh-Lagrange formalism for classical dissipative systems.
Virga, Epifanio G
2015-01-01
It is often believed that the Rayleigh-Lagrange formalism for classical dissipative systems is unable to encompass forces described by nonlinear functions of the velocities. Here we show that this is indeed a misconception.
Bayes Estimation for Inverse Rayleigh Model under Different Loss Functions
Guobing Fan
2015-04-01
Full Text Available The inverse Rayleigh distribution plays an important role in life test and reliability domain. The aim of this article is study the Bayes estimation of parameter of inverse Rayleigh distribution. Bayes estimators are obtained under squared error loss, LINEX loss and entropy loss functions on the basis of quasi-prior distribution. Comparisons in terms of risks with the estimators of parameter under three loss functions are also studied. Finally, a numerical example is used to illustrate the results.
Stability of Rayleigh-Taylor Vortices in Dusty Plasma
MA Jun; CHEN Yin-Hua; GAN Bao-Xia; WANG Fei-Hu; WANG Dong
2006-01-01
@@ The evolution of Rayleigh-Taylor mode in dusty plasma with vortex-flow is investigated. Based on fluid theory and Bayly's method, we derive the coupling equations describing the Rayleigh-Taylor mode in the core of vortex,and research the evolution characteristics of the perturbation amplitude with time numerically. It is shown that the eccentric of vortex and the content of dust have considerable effects on the amplitude evolutions.
Rayleigh scattering in the atmospheres of hot stars
Fišák, J.; Krtička, J.; Munzar, D.; Kubát, J.
2016-05-01
Context. Rayleigh scattering is a result of an interaction of photons with bound electrons. Rayleigh scattering is mostly neglected in calculations of hot star model atmospheres because most of the hydrogen atoms are ionized and the heavier elements have a lower abundance than hydrogen. In atmospheres of some chemically peculiar stars, helium overabundant regions containing singly ionized helium are present and Rayleigh scattering can be a significant opacity source. Aims: We evaluate the contribution of Rayleigh scattering by neutral hydrogen and singly ionized helium in the atmospheres of hot stars with solar composition and in the atmospheres of helium overabundant stars. Methods: We computed several series of model atmospheres using the TLUSTY code and emergent fluxes using the SYNSPEC code. These models describe atmospheres of main sequence B-type stars with different helium abundance. We used an existing grid of models for atmospheres with solar chemical composition and we calculated an additional grid for helium-rich stars with N(He)/N(H) = 10. Results: Rayleigh scattering by neutral hydrogen can be neglected in atmospheres of hot stars, while Rayleigh scattering by singly ionized helium can be a non-negligible opacity source in some hot stars, especially in helium-rich stars.
Lyapunov exponents for small aspect ratio Rayleigh-Bénard convection.
Scheel, J D; Cross, M C
2006-12-01
Leading order Lyapunov exponents and their corresponding eigenvectors have been computed numerically for small aspect ratio, three-dimensional Rayleigh-Benard convection cells with no-slip boundary conditions. The parameters are the same as those used by Ahlers and Behringer [Phys. Rev. Lett. 40, 712 (1978)] and Gollub and Benson [J. Fluid Mech. 100, 449 (1980)] in their work on a periodic time dependence in Rayleigh-Benard convection cells. Our work confirms that the dynamics in these cells truly are chaotic as defined by a positive Lyapunov exponent. The time evolution of the leading order Lyapunov eigenvector in the chaotic regime will also be discussed. In addition we study the contributions to the leading order Lyapunov exponent for both time periodic and aperiodic states and find that while repeated dynamical events such as dislocation creation/annihilation and roll compression do contribute to the short time Lyapunov exponent dynamics, they do not contribute to the long time Lyapunov exponent. We find instead that nonrepeated events provide the most significant contribution to the long time leading order Lyapunov exponent.
Rayleigh-Taylor instability simulations with CRASH
Chou, C.-C.; Fryxell, B.; Drake, R. P.
2012-03-01
CRASH is a code package developed for the predictive study of radiative shocks. It is based on the BATSRUS MHD code used extensively for space-weather research. We desire to extend the applications of this code to the study of hydrodynamically unstable systems. We report here the results of Rayleigh-Taylor instability (RTI) simulations with CRASH, as a necessary step toward the study of such systems. Our goal, motivated by the previous comparison of simulations and experiment, is to be able to simulate the magnetic RTI with self-generated magnetic fields produced by the Biermann Battery effect. Here we show results for hydrodynamic RTI, comparing the effects of different solvers and numerical parameters. We find that the early-time behavior converges to the analytical result of the linear theory. We observe that the late-time morphology is sensitive to the numerical scheme and limiter beta. At low-resolution limit, the growth of RTI is highly dependent on the setup and resolution, which we attribute to the large numerical viscosity at low resolution.
Kinetic Simulations of Rayleigh-Taylor Instabilities
Sagert, Irina; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance
2014-01-01
We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is i...
Optical switching by stimulated thermal Rayleigh scattering
Peterson, Lauren M.
1986-06-01
Preliminary experiments were conducted whose ultimate goal is to develop all-optical control functions useful in an all-optical or optical-electronic hybrid digital computer or for optical interconnects. Stimulated thermal Rayleigh scattering (STRS) based upon generator experiments was pursued for scattering angles of 90 deg and 180 deg (backscattering). A pulsed nitrogen laser pumped dye laser served as the radiation source and the interaction medium was a liquid to which an absorbing dye was added. STRS amplifier experiments were successful and gain was observed and studied parametrically using eosine dye in ethanol. The gain was found to increase (although the gain coefficient decreased) with increasing pump power and the gain was found to be a maximum at an absorption coefficient of about 2.6 per cm. The generator experiments did not lead to stimulated scattering due to the limited output power of the laser and its multi-longitudinal spectral mode content. These studies will be continued along with analytical modeling in order to characterize the interaction and to enable the optimization of the scattering process.
Modeling of Rayleigh wave dispersion in Iberia
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Gopalakrishnan, S. S.; Carballido-Landeira, J.; De Wit, A.; Knaepen, B.
2017-01-01
The relative role of convection and diffusion is characterized both numerically and experimentally for porous media flows due to a Rayleigh-Taylor instability of a horizontal interface between two miscible solutions in the gravity field. We show that, though globally convection dominates over diffusion during the nonlinear regime, diffusion can locally be as important as convection and even dominates over lateral convection far away from the fingertips. Our experimental and numerical computations of the temporal evolution of the mixing length, the width of the fingers, and their wavelength are in good agreement and show that the lateral evolution of fingers is governed by diffusion.
New subgrid-scale models for large-eddy simulation of Rayleigh-Bénard convection
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2016-09-01
At the crossroad between flow topology analysis and the theory of turbulence, a new eddy-viscosity model for Large-eddy simulation has been recently proposed by Trias et al.[PoF, 27, 065103 (2015)]. The S3PQR-model has the proper cubic near-wall behaviour and no intrinsic limitations for statistically inhomogeneous flows. In this work, the new model has been tested for an air turbulent Rayleigh-Benard convection in a rectangular cell of aspect ratio unity and n span-wise open-ended distance. To do so, direct numerical simulation has been carried out at two Rayleigh numbers Ra = 108 and 1010, to assess the model performance and investigate a priori the effect of the turbulent Prandtl number. Using an approximate formula based on the Taylor series expansion, the turbulent Prandtl number has been calculated and revealed a constant and Ra-independent value across the bulk region equals to 0.55. It is found that the turbulent components of eddy-viscosity and eddy-diffusivity are positively prevalent to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. On the other hand, the new eddy-viscosity model is preliminary tested for the case of Ra = 108 and showed overestimation of heat flux within the boundary layer but fairly good prediction of turbulent kinetics at this moderate turbulent flow.
A molecular Rayleigh scattering setup to measure density fluctuations in thermal boundary layers
Panda, J.
2016-12-01
A Rayleigh scattering-based density fluctuation measurement system was set up inside a low-speed wind tunnel of NASA Ames Research Center. The immediate goal was to study the thermal boundary layer on a heated flat plate. A large number of obstacles had to be overcome to set up the system, such as the removal of dust particles using air filters, the use of photoelectron counting electronics to measure low intensity light, an optical layout to minimize stray light contamination, the reduction in tunnel vibration, and an expanded calibration process to relate photoelectron arrival rate to air density close to the plate surface. To measure spectra of turbulent density fluctuations, a two-PMT cross-correlation system was used to minimize the shot noise floor. To validate the Rayleigh measurements, temperature fluctuations spectra were calculated from density spectra and then compared with temperature spectra measured with a cold-wire probe operated in constant current mode. The spectra from the downstream half of the plate were found to be in good agreement with cold-wire probe, whereas spectra from the leading edge differed. Various lessons learnt are discussed. It is believed that the present effort is the first measurement of density fluctuations spectra in a boundary layer flow.
Wind turbine wake measurement in complex terrain
Hansen, Kurt Schaldemose; Larsen, Gunner Chr.; Menke, Robert;
2016-01-01
SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large...
Wind Structure and Wind Loading
Brorsen, Michael
The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...
Ouyang Liping; Wu Xingzuo
2007-01-01
2006 witnessed an intense struggle between nuclear proliferation and nonproliferation. Iran's nuclear issue and North Korea's nuclear test have cast a deep shadow over the current international nonproliferation regime. The international contest for civil nuclear development became especially fierce as global energy prices went up. Such a situation , to some extent, accelerated the pace of nuclear proliferation. Furthermore, the existing international nonproliferation regime, based upon the Nuclear Nonproliferation Treaty (NPT), was affected by loopholes, and the U.S. failed in its ambition to unite other forces to mend fences. The international community needs to come up with a comprehensive and long-term strategy to meet the demand for an effective future nonproliferation regime in a healthy nuclear order.
Rayleigh-Taylor instability in Magnetohydrodynamic Simulations of the Crab Nebula
Porth, Oliver; Keppens, Rony
2014-01-01
In this paper we discuss the development of Rayleigh-Taylor filaments in axisymmetric simulations of Pulsar wind nebulae (PWN). High-resolution adaptive mesh refinement magnetohydrodynamic (MHD) simulations are used to resolve the non-linear evolution of the instability. The typical separation of filaments is mediated by the turbulent flow in the nebula and hierarchical growth of the filaments. The strong magnetic dissipation and field-randomization found in recent global three-dimensional simulations of PWN suggests that magnetic tension is not strong enough to suppress the growth of RT filaments, in agreement with the observations of prominent filaments in the Crab nebula. The long-term axisymmetric results presented here confirm this finding.
The effects of Ekman pumping on quasi-geostrophic Rayleigh-Benard convection
Plumley, Meredith; Marti, Philippe; Stellmach, Stephan
2016-01-01
Numerical simulations of 3D, rapidly rotating Rayleigh-Benard convection are performed using an asymptotic quasi-geostrophic model that incorporates the effects of no-slip boundaries through (i) parameterized Ekman pumping boundary conditions, and (ii) a thermal wind boundary layer that regularizes the enhanced thermal fluctuations induced by pumping. The fidelity of the model, obtained by an asymptotic reduction of the Navier-Stokes equations that implicitly enforces a pointwise geostrophic balance, is explored for the first time by comparisons of simulations against the findings of direct numerical simulations and laboratory experiments. Results from these methods have established Ekman pumping as the mechanism responsible for significantly enhancing the vertical heat transport. This asymptotic model demonstrates excellent agreement over a range of thermal forcing for Pr ~1 when compared with results from experiments and DNS at maximal values of their attainable rotation rates, as measured by the Ekman numb...
Arts, Irma; Buijs, A.E.; Verschoor, G.M.
2017-01-01
Legitimacy of environmental management and policies is an important topic in environmental research. Based on the notion of ‘regimes of justification’, we aim to analyse the dynamics in argumentations used to legitimize and de-legitimize Dutch nature conservation practices. Contrary to prior
Rayleigh scattering in few-mode optical fibers
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-01-01
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003
Rayleigh scattering in few-mode optical fibers
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-10-01
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.
Boundary between Stable and Unstable Regimes of Accretion. Ordered and Chaotic Unstable Regimes
Blinova, A A; Lovelace, R V E
2015-01-01
We search for the boundary between stable and Rayleigh-Taylor unstable regimes of accretion to magnetized stars in a new set of high grid resolution simulations. We found that the boundary between stable and unstable regimes is mainly determined by the ratio of the corotation radius r_cor (where the Keplerian angular velocity in the disc matches the angular velocity of the star) to the magnetospheric radius r_m (where the magnetic stress in the magnetosphere matches the matter stress in the disc). Instability is stronger when r_cor is larger with respect to r_m, that is, when the gravitational force is larger than the centrifugal force at the inner disc. In the cases of a small tilt of the magnetosphere, Theta=5 deg, and a small alpha-parameter of viscosity, alpha=0.02, the boundary is located at r_cor approx. 1.4 r_m. Instability becomes stronger at higher values of viscosity, and occurs at lower values of r_cor/r_m. At higher values of Theta, the variability associated with instability decreases. Simulation...
Index for Wind Power Variability
Kiviluoma, Juha; Holttinen, Hannele; Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Scharff, Richard; Milligan, Michael; Weir, David Edward
2014-11-13
Variability of large scale wind power generation is dependent on several factors: characteristics of installed wind power plants, size of the area where the plants are installed, geographic dispersion within that area and its weather regime(s). Variability can be described by ramps in power generation, i.e. changes from time period to time period. Given enough data points, it can be described with a probability density function. This approach focuses on two dimensions of variability: duration of the ramp and probability distribution. This paper proposes an index based on these two dimensions to enable comparisons and characterizations of variability under different conditions. The index is tested with real, large scale wind power generation data from several countries. Considerations while forming an index are discussed, as well as the main results regarding what the drivers of variability experienced for different data.
AN EFFICIENT SIMULATION OF MULTIPLE CORRELATED RAYLEIGH FADING ENVELOPES
Zhou Ke; Cao Shike; Song Rongfang
2008-01-01
In order to better assess the performance of wireless communication systems,it is desirable to produce multiple Rayleigh fading envelopes with specified correlations. In this paper,we analyze theoretically a procedure which generates correlated Gaussian random variables from independent Gaussian random variables and give a physical explanation for the limitation of this procedure. Then,based on some uncorrelated Rayleigh fading envelopes,a simple but efficient procedure for generating an arbitrary number of cross-correlated Rayleigh fading envelopes is proposed. Simulation results and computational complexity analysis are presented,which show that the proposed method has some advantages,such as high accuracy,low computational complexity and easy implementation,over the conventional simulation method.
In situ Characterization of Nanoparticles Using Rayleigh Scattering
Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto
2017-01-01
We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.
In situ Characterization of Nanoparticles Using Rayleigh Scattering.
Santra, Biswajit; Shneider, Mikhail N; Car, Roberto
2017-01-10
We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.
Regime-based forecast performance during WFIP 1
Freedman, J. M.; Zack, J. W.; Manobianco, J.; Beaucage, P.; Rojowsky, K.
2015-12-01
The principal objectives of the first Wind Forecast Improvement Project (WFIP 1) were to improve short-term (0 - 6 hr) wind power forecasts through the assimilation of targeted remote sensing and surface observations with an enhanced model ensemble forcast system. The WFIP 1 field deployment/modeling campaign in the Southern Study Area (SSA--encompassing most of central and western Texas) ran from August 2011 through Septembe 2012. This ensured observational data and model output for all representative weather regimes affecting the SSA. Cold and warm season regimes featured synoptic-scale, convective, and low-level jet (LLJ) phenomena that are responsible for the favorable wind resource in the SSA, and also posed a challenge for assigning specific explanations for the observed forecast improvements (e.g. additional observations, model improvements, or a combination of both). LLJs produced hourly capacity factors exceeding 80% in aggregated wind farm power production, while synoptic-scale systems were responsible for the largest ramp events observed during WFIP 1. Accurately forecasting convective phenomena (such as outflow boundaries) during WFIP 1 was at times problematic. Here, we present regime-based and phenomenological-related forecast performance results for WFIP 1. These performance metrics suggest future research pathways that will facilitate improvements in operational wind power forecasts.
Sridharan, S. [National Atmospheric Research Lab., Chittoor (India); Sathishkumar, S.; Gurubaran, S. [Indian Inst. of Geomagnetism, Tirunelveli (India). Equatorial Geophysical Research Lab.
2008-07-01
Three nights of simultaneous Rayleigh lidar temperature measurements over Gadanki (13.5 N,79.2 E) and medium frequency (MF) radar wind measurements over Tirunelveli (8.7 N,77.8 E) have been analyzed to illustrate the possible effects due to tidal-gravity wave interactions on upper mesospheric inversion layers. The occurrence of tidal gravity wave interaction is investigated using MF radar wind measurements in the altitude region 86-90 km. Of the three nights, it is found that tidal gravity wave interaction occurred in two nights. In the third night, diurnal tidal amplitude is found to be significantly larger. As suggested in Sica et al. (2007), mesospheric temperature inversion seems to be a signature of wave saturation in the mesosphere, since the temperature inversion occurs at heights, when the lapse rate is less than half the dry adiabatic lapse rate. (orig.)
Sridharan, S.; Sathishkumar, S.; Gurubaran, S.
2008-11-01
Three nights of simultaneous Rayleigh lidar temperature measurements over Gadanki (13.5° N, 79.2° E) and medium frequency (MF) radar wind measurements over Tirunelveli (8.7° N, 77.8° E) have been analyzed to illustrate the possible effects due to tidal-gravity wave interactions on upper mesospheric inversion layers. The occurrence of tidal gravity wave interaction is investigated using MF radar wind measurements in the altitude region 86 90 km. Of the three nights, it is found that tidal gravity wave interaction occurred in two nights. In the third night, diurnal tidal amplitude is found to be significantly larger. As suggested in Sica et al. (2007), mesospheric temperature inversion seems to be a signature of wave saturation in the mesosphere, since the temperature inversion occurs at heights, when the lapse rate is less than half the dry adiabatic lapse rate.
Graphene-coated rayleigh SAW resonators for NO2 detection
Thomas, Stephen M.; Cole, Marina; De Luca, A; Torrisi, F.; Ferrari, A. C.; Udrea, Florin; Gardner, J. W.
2014-01-01
This paper describes the development of a novel low-cost Rayleigh Surface Acoustic Wave Resonator (SAWR) device coated with a graphene layer that is capable of detecting PPM levels of NO2 in air. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh SAWRs arranged in a dual oscillator configuration; where one resonator is coated with gas-sensitive graphene, and the other left uncoated to act as a reference. An array of NMP-dispersed exfoliated reduced graphene oxide dots was deposited...
Ergodic channel capacity of the spatial correlated rayleigh MIMO channel
ZHANG Hui-ping; WU Ping; LIU Ai-jun
2007-01-01
The theoretical capacity of the spatial correlated Rayleigh multiple input multiple output (MIMO) channel is an important issue in MIMO technology. In this article, an ergodic channel capacity formula of the spatial correlated rayleigh MIMO channel is provided, which is deduced when two antennas exist at either the transmitter or the receiver. The multi-dimensional least-squares fit algorithm is employed to narrow the difference between the theoretical formula capacity and the practical capacity. Simulation results show that the theoretical capacity approaches the practical one closely.
Timmes, F X
2000-01-01
The burning regimes encountered by laminar deflagrations and ZND detonations propagating through helium-rich compositions in the presence of buoyancy-driven turbulence are analyzed. Particular attention is given to models of X-ray bursts which start with a thermonuclear runaway on the surface of a neutron star, and the thin shell helium instability of intermediate-mass stars. In the X-ray burst case, turbulent deflagrations propagating in the lateral or radial directions encounter a transition from the distributed regime to the flamlet regime at a density of 10^8 g cm^{-3}. In the radial direction, the purely laminar deflagration width is larger than the pressure scale height for densities smaller than 10^6 g cm^{-3}. Self-sustained laminar deflagrations travelling in the radial direction cannot exist below this density. Similarily, the planar ZND detonation width becomes larger than the pressure scale height at 10^7 g cm^{-3}, suggesting that a steady-state, self-sustained detonations cannot come into exista...
Buogo, Silvano; Cannelli, Giovanni B
2002-06-01
The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse.
Effect of noise on Rayleigh-Taylor mixing with space-dependent acceleration
Pandian, Arun; Abarzhi, Snezhana
2016-11-01
We analyze, for the first time by our knowledge, the effect of noise on Rayleigh-Taylor (RT) mixing with space-dependent acceleration by applying the stochastic model. In these conditions, the RT mixing is a statistically unsteady process where the means values of the flow quantities vary in space and time, and there are also the space and time dependent fluctuations around these mean values. The stochastic model is derived from the momentum model and is represented by a set of nonlinear differential equations with multiplicative noise. The models equations are solved theoretically and numerically. Investigating a broad range of values of acceleration, self-similar asymptotic solutions are found in the mixing regime. There are two types of mixing sub-regimes (acceleration-driven and dissipation-driven respectively), each of which has its own types of solutions and characteristic values with the latter saturating to a value on the order of one. It is also observed that the representation of the dynamics in an implicit form is noisier as compared to the case of an explicit time-dependent form. The work is supported by the US National Science Foundation.
On hot-wire diagnostics in Rayleigh-Taylor mixing layers
Kraft, Wayne N. [Texas A and M University, Department of Mechanical Engineering, College Station, TX (United States); Banerjee, Arindam [Missouri University of Science and Technology, Department of Mechanical and Aerospace Engineering, Rolla, MO (United States); Andrews, Malcolm J. [Texas A and M University, Department of Mechanical Engineering, College Station, TX (United States); Los Alamos National Laboratory, NM (United States)
2009-07-15
Two hot-wire flow diagnostics have been developed to measure a variety of turbulence statistics in the buoyancy driven, air-helium Rayleigh-Taylor mixing layer. The first diagnostic uses a multi-position, multi-overheat (MPMO) single wire technique that is based on evaluating the wire response function to variations in density, velocity and orientation, and gives time-averaged statistics inside the mixing layer. The second diagnostic utilizes the concept of temperature as a fluid marker, and employs a simultaneous three-wire/cold-wire anemometry technique (S3WCA) to measure instantaneous statistics. Both of these diagnostics have been validated in a low Atwood number (A{sub t}{<=} 0.04), small density difference regime, that allowed validation of the diagnostics with similar experiments done in a hot-water/cold-water water channel facility. Good agreement is found for the measured growth parameters for the mixing layer, velocity fluctuation anisotropy, velocity fluctuation p.d.f behavior, and measurements of molecular mixing. We describe in detail the MPMO and S3WCA diagnostics, and the validation measurements in the low Atwood number regime (A{sub t}{<=} 0.04). We also outline the advantages of each technique for measurement of turbulence statistics in fluid mixtures with large density differences. (orig.)
Scaling of large-scale quantities in Rayleigh-B\\'enard convection
Pandey, Ambrish
2016-01-01
We derive a formula for the P\\'eclet number ($\\mathrm{Pe}$) by estimating the relative strengths of various terms of the momentum equation. Using direct numerical simulations in three dimensions we show that in the turbulent regime, the fluid acceleration is dominated by the pressure gradient, with relatively small contributions arising from the buoyancy and the viscous term, in the viscous regime, acceleration is very small due to a balance between the buoyancy and the viscous term. Our formula for $\\mathrm{Pe}$ describes the past experiments and numerical data quite well. We also show that the ratio of the nonlinear term and the viscous term is $\\mathrm{Re} \\mathrm{Ra}^{-0.14}$, where $\\mathrm{Re}$ and $\\mathrm{Ra}$ are Reynolds and Rayleigh numbers respectively, and that the viscous dissipation rate $\\epsilon_u = (U^3/d) \\mathrm{Ra}^{-0.21}$, where $U$ is the root mean square velocity and $d$ is the distance between the two horizontal plates. The aforementioned decrease in nonlinearity compared to free tur...
Rayleigh-Taylor instability in partially ionized compressible plasmas: one fluid approach
Diaz, A J; Collados, M
2014-01-01
We study the modification of the classical criterion for the linear onset and growth rate of the Rayleigh-Taylor instability (RTI) in a partially ionized (PI) plasma in the one-fluid description, considering a generalized induction equation. The governing linear equations and appropriate boundary conditions, including gravitational terms, are derived and applied to the case of the RTI in a single interface between two partially ionized plasmas. The boundary conditions lead to an equation for the frequencies in which some of them have positive complex parts, marking the appearance of the RTI. We study the ambipolar term alone first, extending the result to the full induction equation later. We find that the configuration is always unstable because of the presence of a neutral species. In the classical stability regime the growth rate is small, since the collisions prevent the neutral fluid to fully develop the RTI. For parameters in the classical instability regime the growth rate is lowered, but for the consi...
The Göttingen rotating turbulent Rayleigh-Bénard convection facility
Bodenschatz, Eberhard; van Gils, Dennis; He, Xiaozhou; Ahlers, Guenter; International CollaborationTurbulence Research, EuHIT Collaboration
2015-11-01
This presentation will focus on the newly commissioned rotating RBC facility at the Max Planck Institute for Dynamics and Self-Organization (MPIDS). The MPIDS has a pressure vessel, called the Uboot of Göttingen, which can house different RBC cells. By pressurizing the Uboot with sulfur hexafluoride, nitrogen, or helium up to 19 bars one can obtain Rayleigh numbers spanning 109 Uboot, on top of which the current RBC cell of aspect ratio 0.50 can be installed. The accessible parameter space is 0 . 02 < Ro-1 < 20 for the inverse Rossby number and 10-8 < Ek <10-3 for the Ekman number. At strong rotation (small Ek) but still turbulently convective (large Ra) one enters the geostrophic turbulent regime. Recent experiments involve measuring in and near this regime of which preliminary results will be shown and discussed. We thank the Max Planck Society, the German Science Foundation SFB 963, the NSF grant DMR11-58514, and EuHIT for generous support.
Field-Correlation Effects on Rayleigh-Enhanced Nondegenerate Four-Wave Mixing
王延帮; 姜谦; 米辛; 俞祖和; 傅盘铭
2002-01-01
We study Rayleigh-enhanced nondegenerate four-wave mixing (NFWM) with time-delayed, correlated fluctuating fields. The importance of the field correlation is revealed in the Rayleigh-enhanced NFWM spectrum when the time delay is varied. The Rayleigh-enhanced NFWM is employed to study the ultrafast processes in the frequency domain. A relaxation time as short as 220 fs was deduced in the Rayleigh-enhanced NFWM experiments in carbon disulphide.
Demonstration of short-range wind lidar in a high-performance wind tunnel
Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm;
A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and hi...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....
Demonstration of short-range wind lidar in a high-performance wind tunnel
Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm;
2012-01-01
A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and hi...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....
A Simple Capacity Formula for Correlated Diversity Rayleigh Fading Channels
CHENG Xing-qing; SU Shu-chun; LI Dao-ben
2004-01-01
Abstract: The system capacity can be considerably increased if we appropriately exploit the randomness of multipath propagation. A simple average capacity formula is derived for correlated diversity Rayleigh fading channels through linear transformation method.Numerical results that illustrate the effect of correlation parameter and diversity order on the diversitycapacity are also presented.
Heat transfer mechanisms in bubbly Rayleigh-Bénard convection
Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Presperetti, Andrea
2009-01-01
The heat transfer mechanism in Rayleigh-Bénard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with pointlike vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both
A Rayleigh Doppler Frequency Estimator Derived from Maximum Likelihood Theory
Hansen, Henrik; Affes, Sofiene; Mermelstein, Paul
1999-01-01
Reliable estimates of Rayleigh Doppler frequency are useful for the optimization of adaptive multiple access wireless receivers.The adaptation parameters of such receivers are sensitive to the amount of Doppler and automatic reconfiguration to the speed of terminalmovement can optimize cell...
PALM and STORM: what hides beyond the Rayleigh limit?
Henriques, R
2009-06-01
Full Text Available -1 Biotechnol. J. 2009, 4, 846?857 Review PALM and STORM: What hides beyond the Rayleigh limit? Ricardo Henriques1 and Musa M. Mhlanga1,2 1 Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de...
A COMPARATIVE STUDY UNDER PROGRESSIVELY FIRST FAILURE CENSORED RAYLEIGH DATA
Gyan Prakash
2015-06-01
Full Text Available A comparative study presented in this article for two different asymmetric loss functions is based on simulation. Two-parameter Rayleigh model is considered here as the underline model for evaluating the properties of Bayes estimators under progressive first failure censored data. Known and unknown both cases of location parameter are considered here for Bayes estimation of scale parameter.
Attenuation of Rayleigh Surface Waves in a Porous Material
DEBBOUB Salima; BOUMA(I)ZA Youcef; BOUDOUR Amar; TAHRAOUI Tarek
2012-01-01
Using acoustic microscopy at higher frequency,we show the velocity evolutions of surface acoustic waves,in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer.The velocities are obtained from different V(z) curves,which are determined experimentally at a frequency of 600MHz.The analysis of V(z) data yields attenuation that is directly dependent on porosity.On the other hand,αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.%Using acoustic microscopy at higher frequency, we show the velocity evolutions of surface acoustic waves, in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer. The velocities are obtained from different V(z) curves, which are determined experimentally at a frequency of 600 MHz. The analysis of V(z) data yields attenuation that is directly dependent on porosity. On the other hand, αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.
Spatial sub-Rayleigh imaging analysis via speckle laser illumination
Wang, Yunlong; Liu, Ruifeng; Chen, Dongxu; Gao, Hong; Zhang, Pei; Li, Fuli
2016-01-01
It is commonly accepted that optical sub-Rayleigh imaging has potential application in many fields. In this Letter, by confining the divergence of the optical field, as well as the size of the illumination source, we show that the first-order averaged intensity measurement via speckle laser illumina- tion can make an actual breakthrough on the Rayleigh limit. For a high-order algorithm, it has been reported that the autocorrelation function can be utilized to achieve the sub-Rayleigh feature. However, we find that this sub- Rayleigh feature for the high-order algorithm is limited only to binary objects, and the image will be distorted when a gray object is placed. This property encourages us to find the physics behind the high-order correlation imaging algo- rithm. We address these explanations in this Letter and find that for different types of high-order algorithm, there is always a seat in the right place from the cross-correlation function.
mitants of Order Statistics from Bivariate Inverse Rayleigh Distribution
Muhammad Aleem
2006-01-01
Full Text Available The probability density function (pdf of the rth, 1 r n and joint pdf of the rth and sth, 1 rRayleigh Distribution and their moments, product moments are obtained. Its percentiles are also obtained.
A Rayleigh Doppler frequency estimator derived from maximum likelihood theory
Hansen, Henrik; Affes, Sofiéne; Mermelstein, Paul
1999-01-01
Reliable estimates of Rayleigh Doppler frequency are useful for the optimization of adaptive multiple access wireless receivers. The adaptation parameters of such receivers are sensitive to the amount of Doppler and automatic reconfiguration to the speed of terminal movement can optimize cell cap...
Covariant Lyapunov vectors of chaotic Rayleigh-Bénard convection.
Xu, M; Paul, M R
2016-06-01
We explore numerically the high-dimensional spatiotemporal chaos of Rayleigh-Bénard convection using covariant Lyapunov vectors. We integrate the three-dimensional and time-dependent Boussinesq equations for a convection layer in a shallow square box geometry with an aspect ratio of 16 for very long times and for a range of Rayleigh numbers. We simultaneously integrate many copies of the tangent space equations in order to compute the covariant Lyapunov vectors. The dynamics explored has fractal dimensions of 20≲D_{λ}≲50, and we compute on the order of 150 covariant Lyapunov vectors. We use the covariant Lyapunov vectors to quantify the degree of hyperbolicity of the dynamics and the degree of Oseledets splitting and to explore the temporal and spatial dynamics of the Lyapunov vectors. Our results indicate that the chaotic dynamics of Rayleigh-Bénard convection is nonhyperbolic for all of the Rayleigh numbers we have explored. Our results yield that the entire spectrum of covariant Lyapunov vectors that we have computed are tangled as indicated by near tangencies with neighboring vectors. A closer look at the spatiotemporal features of the Lyapunov vectors suggests contributions from structures at two different length scales with differing amounts of localization.
Exponential stabilization of a Rayleigh beam using collocated control
Weiss, George; Curtain, Ruth F.
We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0, pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi is an element of [0, pi] and the other measures the bending (curvature) of the beam at the same point.
Retrieval of Rayleigh Wave Ellipticity from Ambient Vibration Recordings
Maranò, Stefano; Hobiger, Manuel; Fäh, Donat
2017-01-01
The analysis of ambient vibrations is a useful tool in microzonation and geotechnical investigations. Ambient vibrations are composed to a large part of surface waves, both Love and Rayleigh waves. One reason to analyse surface waves is that they carry information about the subsurface. The dispersion curve of Rayleigh waves and Love waves can be retrieved using array processing techniques. The Rayleigh wave ellipticity, including the sense of rotation of the particle motion, can also be retrieved using array techniques. These quantities are used in an inversion procedure aimed at obtaining a structural model of the subsurface. The focus of this work is the retrieval of Rayleigh wave ellipticity. We show applications of the (ML) method presented in Maranó et al. (2012) to a number of sites in Switzerland. The sites examined are chosen to reflect a wide range of soil conditions that are of interest in microzonation studies. Using a synthetic wavefield with known structural model, we compare our results with theoretical ellipticity curves and we show the accuracy of the considered algorithm. The sense of rotation of the particle motion (prograde vs. retrograde) is also estimated. In addition, we show that by modelling the presence of both Love and Rayleigh waves it is possible to mitigate the disruptive influence of Love waves on the estimation of Rayleigh wave ellipticity. Using recordings from several real sites, we show that it is possible to retrieve the ellipticity curve over a broad range of frequencies. Fundamental modes and higher modes are retrieved. Singularities of the ellipticity, corresponding to a change of the sense of rotation from prograde to retrograde (or vice versa), are detected with great accuracy. Knowledge of Rayleigh wave ellipticity, including the sense of rotation, is useful in several ways. The ellipticity angle allows us to pinpoint accurately the frequency of singularities (i.e., peaks and zeros of the H/V representation of the
Abrahamson, Peter
2017-01-01
. Political science studies tend to conclude that the region has left the old legacies behind and are now welfare states comparable to European states including them either in the conservative type (e.g. Japan), the liberal type (e.g. Korea) or even as a tendency in the Nordic type (e.g. China), while studies......The paper asks if East Asian welfare regimes are still productivist and Confucian? And, have they developed public care policies? The literature is split on the first question but (mostly) confirmative on the second. Care has to a large, but insufficient extent, been rolled out in the region...
Ripesi, P; Schifano, S F; Tripiccione, R
2014-01-01
We study the turbulent evolution originated from a system subjected to a Rayleigh-Taylor instability with a double density at high resolution in a 2 dimensional geometry using a highly optimized thermal Lattice Boltzmann code for GPUs. The novelty of our investigation stems from the initial condition, given by the superposition of three layers with three different densities, leading to the development of two Rayleigh-Taylor fronts that expand upward and downward and collide in the middle of the cell. By using high resolution numerical data we highlight the effects induced by the collision of the two turbulent fronts in the long time asymptotic regime. We also provide details on the optimized Lattice-Boltzmann code that we have run on a cluster of GPUs
Yeoman, J.C. Jr.
1978-12-01
This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.
Statistically steady measurements of Rayleigh-Taylor mixing in a gas channel
Banerjee, Arindam
A novel gas channel experiment was constructed to study the development of high Atwood number Rayleigh-Taylor mixing. Two gas streams, one containing air and the other containing helium-air mixture, flow parallel to each other separated by a thin splitter plate. The streams meet at the end of a splitter plate leading to the formation of an unstable interface and of buoyancy driven mixing. This buoyancy driven mixing experiment allows for long data collection times, short transients and was statistically steady. The facility was designed to be capable of large Atwood number studies of At ˜ 0.75. We describe work to measure the self similar evolution of mixing at density differences corresponding to 0.035 hot-wire anemometer, and high resolution digital image analysis. The hot-wire probe gives velocity, density and velocity-density statistics of the mixing layer. Two different multi-position single-wire techniques were used to measure the velocity fluctuations in three mutually perpendicular directions. Analysis of the measured data was used to explain the mixing as it develops to a self-similar regime in this flow. These measurements are to our knowledge, the first use of hot-wire anemometry in the Rayleigh-Taylor community. Since the measurement involved extensive calibration of the probes in a binary gas mixture of air and helium, a new convective heat transfer correlation was formulated to account for variable-density low Reynolds number flows past a heated cylinder. In addition to the hot-wire measurements, a digital image analysis procedure was used to characterize various properties of the flow and also to validate the hot-wire measurements. A test of statistical convergence was performed and the study revealed that the statistical convergence was a direct consequence of the number of different large three-dimensional structures that were averaged over the duration of the run.
Ganley, Jason; Zhang, Jie; Hodge, Bri-Mathias
2016-03-15
Wind energy is a variable and uncertain renewable resource that has long been used to produce mechanical work, and has developed into a large producer of global electricity needs. As renewable sources of energy and feedstocks become more important globally to produce sustainable products, many different processes have started adopting wind power as an energy source. Many times this is through a conversion to hydrogen through electrolysis that allows for a more continuous process input. Other important pathways include methanol and ammonia. As the demand for sustainable products and production pathways increases, and wind power capital costs decrease, the role of wind power in chemical and energy production seems poised to increase significantly.
The relation between the statistics of open ocean currents and the temporal correlations of the wind
Bel, Golan
2013-01-01
We study the statistics of wind-driven open ocean currents. Using the Ekman layer model for the integrated currents, we investigate, analytically and numerically, the relation between the wind distribution and its temporal correlations and the statistics of the open ocean currents. We find that temporally long-range correlated wind results in currents whose statistics is proportional to the wind-stress statistics. On the other hand, short-range correlated wind leads to Gaussian distributions of the current components, regardless of the stationary distribution of the winds, and therefore, to a Rayleigh distribution of the current amplitude if the wind stress is isotropic. An interesting result is the existence of an optimum in the amplitude of the ocean currents as a function of the correlation time of the wind stress. The results were validated using an oceanic general circulation model.
Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.
Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine
2016-05-01
Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners.
Gallego, Cristobal; Pinson, Pierre; Madsen, Henrik
2011-01-01
Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some of these e......Wind power time series usually show complex dynamics mainly due to non-linearities related to the wind physics and the power transformation process in wind farms. This article provides an approach to the incorporation of observed local variables (wind speed and direction) to model some...... of these effects by means of statistical models. To this end, a benchmarking between two different families of varyingcoefficient models (regime-switching and conditional parametric models) is carried out. The case of the offshore wind farm of Horns Rev in Denmark has been considered. The analysis is focused...... underlying effects in the dynamics of wind power time series....
Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging
Yan, Zewu; Ju, Li; Eon, François; Gras, Slawomir; Zhao, Chunnong; Jacob, John; Blair, David G.
2004-03-01
Rayleigh scattering in test masses can introduce noise and reduce the sensitivity of laser interferometric gravitational wave detectors. In this paper, we present laser Rayleigh scattering imaging as a technique to investigate sapphire test masses. The system provides three-dimensional Rayleigh scattering mapping of entire test masses and quantitative evaluation of the Rayleigh scattering coefficient. Rayleigh scattering mapping of two sapphire samples reveals point defects as well as inhomogeneous structures in the samples. We present results showing significant non-uniform scattering within two 4.5 kg sapphire test masses manufactured by the heat exchanger method.
Viscosity effects in wind wave generation
Paquier, Anna; Rabaud, Marc
2016-01-01
We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier, Moisy and Rabaud [Phys. Fluids {\\bf 27}, 122103 (2015)] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the Free-Surface Synthetic Schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkles regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as $\
2009-01-01
China’s wind power industry shifts into full gear The global oil crunch and environmental degradation have given rise to an ardent search for alternative and green energies throughout the world. For China, wind power is a choice one and its development is sizzling hot backed by
Babinet's principle in the Fresnel regime studied using ultrasound
Hitachi, Akira
2009-01-01
Babinet's principle in the Fresnel regime has been confirmed directly by observing ultrasound diffracted by a circular disk and an aperture of the same size. The amplitude and the phase of diffracted ultrasonic waves have been measured and a graphical treatment of the results is performed. It is also found that the wave without the diffracting objects is indeed 90 deg in phase behind the wave from the center of the zone system. This paradox has previously been regarded as a defect of Fresnel's theory. The 90 deg phase difference appears also in Fresnel-Kirchhoff diffraction, Rayleigh-Sommerfeld diffraction and even in the edge-diffracted approach by Young. The apparatus used is intended as a table-top instrument for the student laboratory in general science and engineering classes.
Optimum operating regimes for the ideal wind turbine
Okulov, Valery; Sørensen, Jens Nørkær
2007-01-01
We here present new results on the classical work of the optimum rotor. The emphasis is put vortex theory for which we have developed a new analytical method to determine the loading on an optimum win turbine rotor. The introduction of the work is a repetition of results using momentum theory...
Leithead, W E
2007-04-15
From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.
EU-NORSEWIND - Delivering Offshore Wind Speed Data
Oldroyd, Andy; Hasager, Charlotte Bay; Stickland, M.T.
Offshore wind is the major growth area in the wind industry sector today, with a host of large projects being announced and innovative approaches being proposed. However, with all this investment and innovation there remains a key, fundamental missing element - a thorough understanding...... of the offshore wind climatology and likely wind resource. As the wind industry starts to look in detail at the wind regime offshore, the need for more physical data becomes apparent. As well as the normal AEP requirements for project finance, baseline data is required in order to better understand the local...... conditions with respect to shear and hence loading implications, and of equal concern directionality which can feed into important research areas such as offshore wake propagation. Indeed, a good baseline understanding of the wind flow regime is essential in being able to determine the accumulative impact...
Nielsen, Max
2006-01-01
Supply in fisheries is traditionally known for its backward bending nature, owing to externalities in production. Such a supply regime, however, exist only for pure open access fisheries. Since most fisheries worldwide are neither pure open access, nor optimally managed, rather between the extremes......-economic supply model with mesh sizes is developed. It is found that in the presence of realistic management schemes, the supply curves are close to vertical in the relevant range. Also, the supply curve under open access with mesh size limitations is almost vertical in the relevant range, owing to constant...... recruitment. The implications are that the effects on supply following from e.g. trade liberalisation and reductions of subsidies are small in several and probably most fisheries worldwide. Keywords: backward-bending supply, regulated open access, regulated restricted access, mesh size regulation, Beverton...
Forest trees filter chronic wind-signals to acclimate to high winds.
Bonnesoeur, Vivien; Constant, Thiéry; Moulia, Bruno; Fournier, Meriem
2016-05-01
Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status.
Delay-Limited Capacity in the Low Power Regime
Rezki, Zouheir
2016-02-11
Outage performance of the M-block fading with additive white Gaussian noise (BF-AWGN) is investigated in the low-power regime. We consider delay-constrained constant-rate communications with perfect channel state information (CSI) at both the transmitter and the receiver (CSI-TR), under a shortterm power constraint (STPC) and a long-term power constraint (LTPC). Subject to STPC, we show that selection diversity that allocates all the power to the strongest block is asymptotically optimal. Then, we provide a simple characterization of the outage probability in the regime of interest. We quantify the reward due to CSI-TR over the constant-rate constant-power scheme and show that this reward increases with the delay constraint. For instance, for Rayleigh fading, we find that a power gain up to 4.3 dB is achievable. Subject to LTPC, we show that the above guidelines still holds and that the outage performance improves due to the flexibility of the LTPC over the STPC. More interestingly, we prove that LTPC allows zero-outage communication even at low SNR and characterize the delaylimited capacity at low SNR in a simple form. More precisely, we establish that the delay-limited capacity scales linearly with the power constraint, for a given M < 1. Our framework highlights the benefit of fading at low SNR as the delay-limited capacity may outperform the AWGN capacity. For instance, for Rayleigh fading and with M = 3, the delay-limited capacity is 16% higher than the capacity of an AWGN channel.
Shiels, C.; Butler, S. L.
2015-09-01
Mantle convection models with a low viscosity asthenosphere and high viscosity surface plates have been shown to produce very large aspect ratio convection cells like those inferred to exist in Earth's mantle and to exhibit two asthenospheric flow regimes. When the surface plate is highly mobile, the plate velocity exceeds the flow velocities in the asthenosphere and the plate drives a Couette-type flow in the asthenospheric channel. For sluggish plates, the flow velocities in the asthenosphere exceed the plate velocity and the asthenospheric flow is more Poiseuille-like. It has been shown that under certain circumstances, flows become increasingly Couette-like as the aspect ratio of the plate is increased in numerical simulations. These models also show an increase in the average surface heat flux with aspect ratio which is counterintuitive, as one would expect that large aspect ratio models would result in older and colder oceanic lithosphere. Previous investigations have used single internal heating rates and Rayleigh numbers and a plate formulation that did not preclude significant deformation within the plate. In this paper, we investigate the conditions necessary for Couette and Poiseuille asthenospheric flows and for surface heat flux to increase with plate aspect ratio by varying the internal heating rate, the Rayleigh number and the representation of surface plates in 2D mantle convection models Plates are represented as a high viscosity layer with (1) a free-slip top surface boundary condition and (2) a force-balance boundary condition that imposes a constant surface velocity within the plate. We find that for models with a free-slip surface boundary condition, the internal heating rate and Rayleigh number do not strongly affect the dominance of Couette or Poiseuille flows in the asthenosphere but the increase in surface heat flux with model aspect ratio in the Poiseuille asthenospheric flow regime increases with internal heating rate. For models using
The wind speed profile at offshore wind farm sites
Lange, B.; Larsen, S. E.; Højstrup, J.; Barthelmie, R.
2003-04-01
The first large offshore wind farms are in the planning phase in several countries in Europe. Their economic viability depends on the favourable wind conditions compared to sites on land. The higher energy yield has to compensate the additional installation and maintenance cost. For project planning and siting a reliable prediction of the wind resource is therefore crucial. For turbine design the wind shear of the marine surface layer is an important design parameter, especially since the growing rotor diameter makes turbines more vulnerable for spatial wind speed variations. Compared to land surfaces the roughness of water is very low. It is commonly described either as a constant (as in the wind resource estimation program WAsP) or by means of the Charnock approach, relating sea surface roughness and friction velocity. While this relation works well for the open oceans it has been found inappropriate for coastal areas where waves are not fully developed. Information about the wave field is needed to model the sea surface roughness more accurately (see e.g. Johnson et al. (1998)). The atmospheric stability differs greatly between land and water areas. It is more important offshore compared to land sites due to the low surface roughness of water. The main influence of the atmospheric stability is on the vertical momentum transport, which is reflected in the vertical wind speed profile. It is usually described with Monin-Obukhov similarity theory. However, other effects not described by this approach might also play an important role: For offshore flow the flow regime at coastal sites is affected by the land-sea discontinuity (Højstrup, 1999). An internal boundary layer develops at the coastline and an inhomogeneous flow field might develop in the coastal zone, especially in stable stratification (see e.g. (Smedman et al. (1997)) Recent data from the measurement at Rødsand, 10 km off the Danish coast in the Baltic Sea, include simultaneous wind and wave data from
Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes
Blinova, A. A.; Romanova, M. M.; Lovelace, R. V. E.
2016-07-01
We present a new study of the Rayleigh-Taylor unstable regime of accretion on to rotating magnetized stars in a set of high grid resolution three-dimensional magnetohydrodynamic simulations performed in low-viscosity discs. We find that the boundary between the stable and unstable regimes is determined almost entirely by the fastness parameter ωs = Ω⋆/ΩK(rm), where Ω⋆ is the angular velocity of the star and ΩK(rm) is the angular velocity of the Keplerian disc at the disc-magnetosphere boundary r = rm. We found that accretion is unstable if ωs ≲ 0.6. Accretion through instabilities is present in stars with different magnetospheric sizes. However, only in stars with relatively small magnetospheres, rm/R⋆ ≲ 7, do the unstable tongues produce chaotic hotspots on the stellar surface and irregular light curves. At even smaller values of the fastness parameter, ωs ≲ 0.45, multiple irregular tongues merge, forming one or two ordered unstable tongues that rotate with the angular frequency of the inner disc. This transition occurs in stars with even smaller magnetospheres, rm/R⋆ ≲ 4.2. Most of our simulations were performed at a small tilt of the dipole magnetosphere, Θ = 5°, and a small viscosity parameter α = 0.02. Test simulations at higher α values show that many more cases become unstable, and the light curves become even more irregular. Test simulations at larger tilts of the dipole Θ show that instability is present, however, accretion in two funnel streams dominates if Θ ≳ 15°. The results of these simulations can be applied to accreting magnetized stars with relatively small magnetospheres: Classical T Tauri stars, accreting millisecond X-ray pulsars, and cataclysmic variables.
A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths
Gu, Ziyu; van Duijn, Eric-Jan; Ubachs, Wim; 10.1063/1.4721272
2012-01-01
A spectrometer for the measurement of spontaneous Rayleigh-Brillouin scattering line profiles at ultraviolet wavelengths from gas phase molecules has been developed, employing a high-power frequency-stabilized UV laser with narrow bandwidth (2 MHz). The UV light from a frequency-doubled titanium:sapphire laser is further amplified in an enhancement cavity, delivering a 5 Watt UV-beam propagating through the interaction region inside a scattering cell. The design of the RB-scattering cell allows for measurements at gas pressures in the range 0-4 bar and at stably controlled temperatures from -30 to 70 degree Celsius. A scannable Fabry-Perot analyzer with instrument resolution of 232 MHz probes the Rayleigh-Brillouin profiles. Measurements on N2 and SF6 gases demonstrate the high signal-to-noise ratio achievable with the instrument, at the 1% level at the peak amplitude of the scattering profile.
Theoretical Analysis of Rayleigh Backscattering Noise in Fiber Raman Amplifiers
无
2005-01-01
In this paper, a new theoretical model for Rayleigh backscattering (RB) analysis of fiber Raman amplifiers is proposed. The model includes all the interactions among the pumps, signals, and all orders of RB. The results show that the higher order RB has a negligible influence on the performance of the amplifier. The co-propagating and counterpropagating RB power of the signal grow quadratically with the net-gain of the amplifier. The signal to double Rayleigh backscattering noise ratio (OSNRDRB ) of backward-pumped FRAs is better than that of the forward-pumped ones at high net-gain level (＞ 13 dB), while at low net-gain level the OSNRDrb of the forward-pumped FRAs is slightly better than that of the backward-pumped ones.
Polarized Rayleigh back-scattering from individual semiconductor nanowires
Zhang Duming; Wu Jian; Lu Qiujie; Gutierrez, Humberto R; Eklund, Peter C, E-mail: hur3@psu.edu [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)
2010-08-06
A complete understanding of the interaction between electromagnetic radiation and semiconductor nanowires (NWs) is required in order to further develop a new generation of opto-electronic and photonic devices based on these nanosystems. The reduced dimensionality and high aspect ratio of nanofilaments can induce strong polarization dependence of the light absorption, emission and scattering, leading in some cases to the observation of optical antenna effects. In this work we present the first systematic study of polarized Rayleigh back-scattering from individual crystalline semiconductor NWs with known crystalline structure, orientation and diameters. To explain our experimental Rayleigh polar patterns, we propose a simple theory that relies on a secondary calculation of the volume-averaged internal electromagnetic fields inside the NW. These results revealed that the internal and emitted field can be enhanced depending on the polarization with respect to the NW axis; we also show that this effect strongly depends on the NW diameter.
GENERALIZATION OF RAYLEIGH MAXIMUM LIKELIHOOD DESPECKLING FILTER USING QUADRILATERAL KERNELS
S. Sridevi
2013-02-01
Full Text Available Speckle noise is the most prevalent noise in clinical ultrasound images. It visibly looks like light and dark spots and deduce the pixel intensity as murkiest. Gazing at fetal ultrasound images, the impact of edge and local fine details are more palpable for obstetricians and gynecologists to carry out prenatal diagnosis of congenital heart disease. A robust despeckling filter has to be contrived to proficiently suppress speckle noise and simultaneously preserve the features. The proposed filter is the generalization of Rayleigh maximum likelihood filter by the exploitation of statistical tools as tuning parameters and use different shapes of quadrilateral kernels to estimate the noise free pixel from neighborhood. The performance of various filters namely Median, Kuwahura, Frost, Homogenous mask filter and Rayleigh maximum likelihood filter are compared with the proposed filter in terms PSNR and image profile. Comparatively the proposed filters surpass the conventional filters.
Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction
Colquitt, D J; Craster, R V; Roux, P; Guenneau, S R L
2016-01-01
We consider the canonical problem of an array of rods, which act as resonators, placed on an elastic substrate; the substrate being either a thin elastic plate or an elastic half-space. In both cases the flexural plate, or Rayleigh surface, waves in the substrate interact with the resonators to create interesting effects such as effective band-gaps for surface waves or filters that transform surface waves into bulk waves; these effects have parallels in the field of optics where such sub-wavelength resonators create metamaterials, and metasurfaces, in the bulk and at the surface respectively. Here we carefully analyse this canonical problem by extracting the dispersion relations analytically thereby examining the influence of both the flexural and compressional resonances on the propagating wave. For an array of resonators atop an elastic half-space we augment the analysis with numerical simulations. Amongst other effects, we demonstrate the striking effect of a dispersion curve that transitions from Rayleigh...
Remarks on the Rayleigh-Benard Convection on Spherical Shells
Wang, Shouhong
2011-01-01
The main objective of this article is to study the effect of spherical geometry on dynamic transitions and pattern formation for the Rayleigh-Benard convection. The study is mainly motivated by the importance of spherical geometry and convection in geophysical flows. It is shown in particular that the system always undergoes a continuous (Type-I) transition to a $2l_c$-dimensional sphere $S^{2lc}$, where lc is the critical wave length corresponding to the critical Rayleigh number. Furthermore, it has shown in [12] that it is critical to add nonisotropic turbulent friction terms in the momentum equation to capture the large-scale atmospheric and oceanic circulation patterns. We show in particular that the system with turbulent friction terms added undergoes the same type of dynamic transition, and obtain an explicit formula linking the critical wave number (pattern selection), the aspect ratio, and the ratio between the horizontal and vertical turbulent friction coefficients.
Nonlinear mixing of laser generated narrowband Rayleigh surface waves
Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2017-02-01
This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.
Suppression of Rayleigh-scattering-induced noise in OEOs.
Okusaga, Olukayode; Cahill, James P; Docherty, Andrew; Menyuk, Curtis R; Zhou, Weimin; Carter, Gary M
2013-09-23
Optoelectronic oscillators (OEOs) are hybrid RF-photonic devices that promise to be environmentally robust high-frequency RF sources with very low phase noise. Previously, we showed that Rayleigh-scattering-induced noise in optical fibers coupled with amplitude-to-phase noise conversion in photodetectors and amplifiers leads to fiber-length-dependent noise in OEOs. In this work, we report on two methods for the suppression of this fiber-length-dependent noise: altering the amplitude-dependent phase delay of the OEO loops and suppressing the Rayleigh-scattering-induced noise in optical fibers. We report a 20 dB reduction in the flicker phase noise of a 6 km OEO via these suppression techniques.
Beating Rayleigh's Curse by Imaging Using Phase Information
Tham, Weng Kian; Steinberg, Aephraim M
2016-01-01
Any imaging device such as a microscope or telescope has a resolution limit, a minimum separation it can resolve between two objects or sources; this limit is typically defined by "Rayleigh's criterion", although in recent years there have been a number of high-profile techniques demonstrating that Rayleigh's limit can be surpassed under particular sets of conditions. Quantum information and quantum metrology have given us new ways to approach measurement ; a new proposal inspired by these ideas has now re-examined the problem of trying to estimate the separation between two poorly resolved point sources. The "Fisher information" provides the inverse of the Cramer-Rao bound, the lowest variance achievable for an unbiased estimator. For a given imaging system and a fixed number of collected photons, Nair and Tsang observed that the Fisher information carried by the intensity of the light in the image-plane (the only information available to traditional techniques, including previous super-resolution approaches...
Resilience of river flow regimes.
Botter, Gianluca; Basso, Stefano; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2013-08-06
Landscape and climate alterations foreshadow global-scale shifts of river flow regimes. However, a theory that identifies the range of foreseen impacts on streamflows resulting from inhomogeneous forcings and sensitivity gradients across diverse regimes is lacking. Here, we derive a measurable index embedding climate and landscape attributes (the ratio of the mean interarrival of streamflow-producing rainfall events and the mean catchment response time) that discriminates erratic regimes with enhanced intraseasonal streamflow variability from persistent regimes endowed with regular flow patterns. Theoretical and empirical data show that erratic hydrological regimes typical of rivers with low mean discharges are resilient in that they hold a reduced sensitivity to climate fluctuations. The distinction between erratic and persistent regimes provides a robust framework for characterizing the hydrology of freshwater ecosystems and improving water management strategies in times of global change.
Fast sampling model for X-ray Rayleigh scattering
Grichine, V M
2013-01-01
A simple model for X-ray Rayleigh scattering is discussed in terms of the process total cross-section and the angular distribution of scattered X-ray photons. Comparisons with other calculations and experimental data are presented. The model is optimized for the simulation of X-ray tracking inside experimental setups with complex geometry where performance and memory volume are issues to be optimized. (C) 2013 Elsevier B.V. All rights reserved.
Rayleigh-Ritz variation method and connected-moments expansions
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: fernande@quimica.unlp.edu.ar
2009-11-15
We compare the connected-moments expansion (CMX) with the Rayleigh-Ritz variational method in the Krylov space (RRK). As a benchmark model we choose the same two-dimensional anharmonic oscillator already treated earlier by means of the CMX. Our results show that the RRK converges more smoothly than the CMX. We also discuss the fact that the CMX is size consistent while the RRK is not.
Parametrics Resonances of a Forced Modified Rayleigh-Duffing Oscillator
Miwadinou, C H; Chabi, J B
2013-01-01
We investigate in this paper the superharmonic and subharmonic resonances of forced modified Rayleigh-Duffing oscillator. We analyse this equation by method of multiple scales and we obtain superharmonic and subharmonic resonances order-two and order-three. We obtain also regions where steady-state subharmonic responses exist. Finally, we use the amplitude-frequency curve for demonstrate the effect of various parameters on the response of the system.
Size Determination of Argon Clusters from a Rayleigh Scattering Experiment
LEI An-Le; ZHAI Hua-Jin; LIU Bing-Chen; LI Zhong; NI Guo-Yuan; XU Zhi-Zhan
2000-01-01
Argon clusters are produced in the process of adiabatic expansion of a high backing pressure gas into vacuum through a nozzle. The cluster size is determined by a Rayleigh scattering measurement. The scattered signal measured is proportional to the 2.78th power of gas stagnation pressure. The average cluster sizes vary from 100 to more than 12000 atoms/cluster with the argon gas backing pressures ranging between 3 to 45 atm.
The dune effect on sand-transporting winds on Mars
Jackson, Derek W. T.; Bourke, Mary C.; Smyth, Thomas A. G.
2015-11-01
Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern `wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.
The dune effect on sand-transporting winds on Mars.
Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G
2015-11-05
Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.
The dune effect on sand-transporting winds on Mars
Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.
2015-01-01
Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669
Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)
2013-02-15
Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.
Leakage predictions for Rayleigh-step, helium-purge seals
Proctor, Margaret P.
1988-01-01
Rayleigh-step, helium purge, annular shaft seals, studied for use in liquid oxygen turbopumps, generate a hydrodynamic force that enables the seal to follow shaft perturbations. Hence, smaller clearances can be used to reduce seal leakage. FLOWCAL, a computer code developed by Mechanical Technology Incorporated, predicts gas flow rate through an annular seal with an axial pressure gradient. Analysis of a 50-mm Rayleigh-step, helium-purge, annular seal showed the flow rate increased axial pressure gradient, downstream pressure, and eccentricity ratio. Increased inlet temperature reduced leakage. Predictions made at maximum and minimum clearances (due to centrifugal and thermal growths, machining tolerances and + or - 2 percent uncertainty in the clearance measurement) placed wide boundaries on expected flow rates. The widest boundaries were set by thermal growth conditions. Predicted flow rates for a 50-mm Rayleigh-step, helium-purge, annular seal underestimated measured flow rates by three to seven times. However, the analysis did accurately predict flow rates for choked gas flow through annular seals when compared to flow rates measured in two other independent studies.
Islam Khandaker Dahirul
2016-01-01
Full Text Available This paper explores wind speed distribution using Weibull probability distribution and Rayleigh distribution methods that are proven to provide accurate and efficient estimation of energy output in terms of wind energy conversion systems. Two parameters of Weibull (shape and scale parameters k and c respectively and scale parameter of Rayleigh distribution have been determined based on hourly time-series wind speed data recorded from October 2014 to October 2015 at Saint Martin’s island, Bangladesh. This research has been carried out to examine three numerical methods namely Graphical Method (GM, Empirical Method (EM, Energy Pattern Factor method (EPF to estimate Weibull parameters. Also, Rayleigh distribution method has been analyzed throughout the study. The results in the research revealed that the Graphical method followed by Empirical method and Energy Pattern Factor method were the most accurate and efficient way for determining the value of k and c to approximate wind speed distribution in terms of estimating power error. Rayleigh distribution gives the most power error in the research. Potential for wind energy development in Saint Martin’s island, Bangladesh as found from the data analysis has been explained in this paper.
Liot, Olivier; Rusaouën, Elonore; Coudarchet, Thibaut; Salort, Julien; Chillà, Francesca
2016-01-01
We report Particle Image Velocimetry of the Large Scale Circulation and the viscous boundary layer in turbulent thermal convection. We use two parallelepipedic Rayleigh-B{\\'e}nard cells with a top smooth plate. The first one has a rough bottom plate and the second one has a smooth one so we compare the rough-smooth and the smooth-smooth configurations. The dimensions of the cell allow to consider a bi-dimensional mean flow. Lots of previous heat flux measurements have shown a Nusselt--Rayleigh regime transition corresponding to an increase of the heat flux in presence of roughness which is higher than the surface increase. Our velocity measurements show that if the mean velocity field is not clearly affected by the roughness, the velocity fluctuations rise dramatically. It is accompanied by a change of the longitudinal velocity structure functions scaling. Moreover, we show that the boundary layer becomes turbulent close to roughness, as it was observed recently in the air [Liot et al., JFM, vol. 786, pp. 275...
National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...
The economics of transmission constraints on wind farms: some evidence from South Australia
Boerema, Nicholas; MacGill, Iain
2010-01-01
The impacts of transmission congestion and network investment on the development of the Australian wind energy industry have received growing attention from wind farm developers as well as relevant policy stakeholders such as the Australian Energy Market Commission (AEMC). There are many potential wind farm sites across the country with excellent wind regimes yet only limited transmission capacity. At least one wind farm in South Australia has spent a period following construction where its o...
Nonlinear Laplacian spectral analysis of Rayleigh-Bénard convection
Brenowitz, N. D.; Giannakis, D.; Majda, A. J.
2016-06-01
The analysis of physical datasets using modern methods developed in machine learning presents unique challenges and opportunities. These datasets typically feature many degrees of freedom, which tends to increase the computational cost of statistical methods and complicate interpretation. In addition, physical systems frequently exhibit a high degree of symmetry that should be exploited by any data analysis technique. The classic problem of Rayleigh Benárd convection in a periodic domain is an example of such a physical system with trivial symmetries. This article presents a technique for analyzing the time variability of numerical simulations of two-dimensional Rayleigh-Bénard convection at large aspect ratio and intermediate Rayleigh number. The simulated dynamics are highly unsteady and consist of several convective rolls that are distributed across the domain and oscillate with a preferred frequency. Intermittent extreme events in the net heat transfer, as quantified by the time-weighted probability distribution function of the Nusselt number, are a hallmark of these simulations. Nonlinear Laplacian Spectral Analysis (NLSA) is a data-driven method which is ideally suited for the study of such highly nonlinear and intermittent dynamics, but the trivial symmetries of the Rayleigh-Bénard problem such as horizontal shift-invariance can mask the interesting dynamics. To overcome this issue, the vertical velocity is averaged over parcels of similar temperature and height, which substantially compresses the size of the dataset and removes trivial horizontal symmetries. This isothermally averaged dataset, which is shown to preserve the net convective heat-flux across horizontal surfaces, is then used as an input to NLSA. The analysis generates a small number of orthogonal modes which describe the spatiotemporal variability of the heat transfer. A regression analysis shows that the extreme events of the net heat transfer are primarily associated with a family of
Pandian, Arun; Swisher, Nora C.; Abarzhi, S. I.
2017-01-01
Rayleigh-Taylor (RT) mixing occurs in a variety of natural and man-made phenomena in fluids, plasmas and materials, from celestial event to atoms. In many circumstances, RT flows are driven by variable acceleration, whereas majority of existing studies have considered only sustained acceleration. In this work we perform detailed analytical and numerical study of RT mixing with a power-law time-dependent acceleration. A set of deterministic nonlinear non-homogeneous ordinary differential equations and nonlinear stochastic differential equations with multiplicative noise are derived on the basis of momentum model. For a broad range of parameters, self-similar asymptotic solutions are found analytically, and their statistical properties are studied numerically. We identify two sub-regimes of RT mixing dynamics depending on the acceleration exponent—the acceleration-driven mixing and dissipation-driven mixing. Transition between the sub-regimes is studied, and it is found that each sub-regime has its own characteristic dimensionless invariant quantity.
WIND PROTECTION OF LANDSCAPE ARCHITECTURE
Trubitsyna Natalja Anatolevna
2017-07-01
Full Text Available The article discusses the interaction between the wind regime and the landscape. Examples of objects of landscape architecture in high-tech and science-intensive spheres, such as the launch pad of a spacecraft, are given. Wind protection is represented as a result of work on wind power engineering and a means of increasing bioclimatic comfort. The terms of landscape architecture are disclosed and mutual influence on the climate and impact on woody-shrub vegetation and field crops are analyzed. The phenomenon of air permeability for optimal operation of windproof structures and orientations of geoplastics and dendroplastics is described. In this paper, a classification of terrain types is described with a description of their elemental composition, as well as various categories of landscape. The proposal to consider the landscape as a territorial complex, and landscape buildings, landscape-architectural structures as objects of landscape architecture possessing properties of wind protection and air permeability was introduced. Thus, the concept of a landscape-architectural complex as a single group of landscape-architectural objects located on the territory and connected by a common system of communications, functions, technical elements and a visual image is formulated. Further research is based on the rationale for the use of the term ensemble in relation to the objects of the landscape and architectural complex and the identification of their design and planning features that can affect the parameters of wind protection and air permeability. The paper concludes that frequent coincidence of favorable for the fauna wind regime and mimicry of landscape architecture objects. The combination in the landscape of functions for wind protection and aesthetics is analyzed with analysis of such elements of landscape architecture as hedges and windproof properties of green plantations. In the work examples of wind engineering small architectural forms are
Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.
2016-08-01
In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.
Zhong, Caijun
2010-09-01
This paper studies the ergodic capacity of multiple-input multiple-output (MIMO) systems with a single co-channel interferer in the low signal-to-noise-ratio (SNR) regime. Two MIMO models namely Rician and Rayleigh-product channels are investigated. Exact analytical expressions for the minimum energy per information bit, {Eb/N0min, and wideband slope, S0, are derived for both channels. Our results show that the minimum energy per information bit is the same for both channels while their wideband slopes differ significantly. Further, the impact of the numbers of transmit and receive antennas, the Rician K factor, the channel mean matrix and the interference-to-noise-ratio (INR) on the capacity, is addressed. Results indicate that interference degrades the capacity by increasing the required minimum energy per information bit and reducing the wideband slope. Simulation results validate our analytical results. © 2010 IEEE.
Fluctuations of offshore wind generation: Statistical modelling
Pinson, Pierre; Christensen, Lasse E.A.; Madsen, Henrik
2007-01-01
The magnitude of power fluctuations at large offshore wind farms has a significant impact on the control and management strategies of their power output. If focusing on the minute scale, one observes successive periods with smaller and larger power fluctuations. It seems that different regimes...... production averaged at a 1, 5, and 10-minute rate. The exercise consists in one-step ahead forecasting of these time-series with the various regime-switching models. It is shown that the MSAR model, for which the succession of regimes is represented by a hidden Markov chain, significantly outperforms...
Capacity of Fading Channels in the Low Power Regime
Benkhelifa, Fatma
2013-01-01
The low power regime has attracted various researchers in the information theory and communication communities to understand the performance limits of wireless systems. Indeed, the energy consumption is becoming one of the major limiting factors in wireless systems. As such, energy-efficient wireless systems are of major importance to the next generation wireless systems designers. The capacity is a metric that measures the performance limit of a wireless system. The study of the ergodic capacity of some fading channels in the low power regime is the main subject of this thesis. In our study, we consider that the receiver has always a full knowledge of the channel state information. However, we assume that the transmitter has possibly imperfect knowledge of the channel state information, i.e. he knows either perfectly the channel or only an estimated version of the channel. Both radio frequency and free space optical communication channel models are considered. The main contribution of this work is the explicit characterization of how the capacity scales as function of the signal-to-noise ratio in the low power regime. This allows us to characterize the gain due to the perfect knowledge compared to no knowledge of the channel state information at the transmitter. In particular, we show that the gain increases logarithmically for radio frequency communication. However, the gain increases as log2(Pavg) or log4(Pavg) for free-space optical communication, where Pavg is the average power constraint imposed to the input. Furthermore, we characterize the capacity of cascaded fading channels and we applied the result to Rayleigh-product fading channel and to a free-space optical link over gamma-gamma atmospheric turbulence in the presence of pointing errors. Finally, we study the capacity of Nakagami-m fading channel under quality of service constraints, namely the effective capacity. We have shown that the effective capacity converges to Shannon capacity in the very low
Unitary Housing Regimes in Transition
Bengtsson, Bo; Jensen, Lotte
2013-01-01
to the Danish and Swedish housing regimes are analysed and the responses and outcomes in terms of policy change and/or institutional continuity (path dependence) are compared. Overall, the more decentralized Danish housing regime seems to have resisted pressures for change and retrenchment better so far than...
Regime shifts in resource management
de Zeeuw, A.J.
2014-01-01
Resource management has to take account of the possibility of tipping points and regime shifts in ecological systems that provide the resources. This article focuses on the typical model of regime shifts in the ecological literature and analyzes optimal management and common-property issues when tra
Examination Regimes and Student Achievement
Cosentino de Cohen, Clemencia
2010-01-01
Examination regimes at the end of secondary school vary greatly intra- and cross-nationally, and in recent years have undergone important reforms often geared towards increasing student achievement. This research presents a comparative analysis of the relationship between examination regimes and student achievement in the OECD. Using a micro…
'Regime shopping' across (blurring) boundaries
Houwerzijl, M.S.; Evju, Stein
2014-01-01
This book chapter identifies and explores the (blurring) boundaries between the legal regimes for labour mobility across the EU. In the context of - what is sometimes called - 'regime shopping' a close look is taken into the law on freedom of movement within the EU. Several categories of transnation
'Regime shopping' across (blurring) boundaries
Houwerzijl, M.S.; Evju, Stein
2014-01-01
This book chapter identifies and explores the (blurring) boundaries between the legal regimes for labour mobility across the EU. In the context of - what is sometimes called - 'regime shopping' a close look is taken into the law on freedom of movement within the EU. Several categories of
Wright, G. B.; Barnett, G. A.; Yuen, D. A.
2009-12-01
We present an efficient method based on fourth order compact finite-differences for simulating three dimensional mantle convection (i.e. Rayleigh-Bénard convection in the infinite Prandtl number limit) with constant viscosity in a rectangular box. In the high Rayleigh number regime, this thermal convection model has recently been shown to exhibit many of the features of turbulent flow that are typically identified with high Reynolds number flow [1]. High order compact finite schemes are known to be particularly good for simulating turbulent flows because of their spectral like resolution [2], which ameliorates dispersion and anisotropy errors. They have also been shown to be much less susceptible than second order schemes to spurious oscillations for transient convection diffusion equations at large Péclet number (as occurs for the temperature equation in the mantle convection model at high Rayleigh number). Finally, high order schemes have been shown to be more efficient than low order methods in terms of degrees of freedom required to attain a specified error level, which is important for reducing memory requirements so simulations can be performed on emerging low-cost high performance computational platforms like graphics processing units (GPUs). We demonstrate the capabilities of our compact fourth order scheme at accurately capturing such phenomena as transient periods of double layered convection[3] (see Figure 1) and flow reversals using far fewer degrees of freedom than required for traditional second order methods. Finally, we discuss the computational cost of the scheme and its efficient implementation on GPUs. References: [1] M. Breuer and U. Hansen, Turbulent convection in the zero Reynolds number limit, EPL, 86, 24004, 2009. [2] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16, 1992. [3] A. P. Boss and I. S. Sacks, Time-dependent models of single- and double-layer mantle convection, Nature, 308
Smalyuk, V A
2012-06-07
Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.
Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.
2016-11-01
Within the framework of the long-standing so-called "number problem" in the physics of solar flares, we consider the excitation of a super-Dreicer electric field at the leading edge of the electric current pulse that occurs at the chromospheric legs of a coronal magnetic loop as a result of the magnetic Rayleigh-Taylor instability. It is shown that for a sufficiently strong electric current, I0 ≥ 10^{10} A, the current pulse propagates in the non-linear mode and generates a strong longitudinal electric field Ez, which strongly depends on the current (Ez ∝ I03) and can exceed the Dreicer field (Ez > ED). In this case, the bulk of electrons in the site of the current pulse is in a runaway mode, and the energy release rate in the chromosphere increases significantly. Super-Dreicer electric fields also provide injection of protons into the regime of acceleration by Langmuir turbulence generated by fast electrons at the leading edge of the electric current pulse. The electric field at the pulse edge can exceed the Dreicer field starting from the chromosphere level with the number density n ≈ 10^{13} cm^{-3}. At a lower current I0 < 10^{10} A, a super-Dreicer mode at the higher levels of the chromosphere with n < 10^{12} cm^{-3} occurs.
Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.
2016-09-01
Within the framework of the long-standing so-called "number problem" in the physics of solar flares, we consider the excitation of a super-Dreicer electric field at the leading edge of the electric current pulse that occurs at the chromospheric legs of a coronal magnetic loop as a result of the magnetic Rayleigh-Taylor instability. It is shown that for a sufficiently strong electric current, I0 ≥ 10^{10} A, the current pulse propagates in the non-linear mode and generates a strong longitudinal electric field Ez, which strongly depends on the current ( Ez ∝ I03) and can exceed the Dreicer field ( Ez > ED). In this case, the bulk of electrons in the site of the current pulse is in a runaway mode, and the energy release rate in the chromosphere increases significantly. Super-Dreicer electric fields also provide injection of protons into the regime of acceleration by Langmuir turbulence generated by fast electrons at the leading edge of the electric current pulse. The electric field at the pulse edge can exceed the Dreicer field starting from the chromosphere level with the number density n ≈ 10^{13} cm^{-3}. At a lower current I0 < 10^{10} A, a super-Dreicer mode at the higher levels of the chromosphere with n < 10^{12} cm^{-3} occurs.
Khomenko, E; de Vicente, A; Collados, M; Luna, M
2014-01-01
We study the Rayleigh-Taylor instability (RTI) at a prominence-corona transition region in a non-linear regime. Our aim is to understand how the presence of neutral atoms in the prominence plasma influences the instability growth rate, and the evolution of velocity, magnetic field vector and thermodynamic parameters of turbulent drops. We perform 2.5D numerical simulations of the instability initiated by a multi-mode perturbation at the corona-prominence interface using a single-fluid MHD approach including a generalized Ohm's law. The initial equilibrium configuration is purely hydrostatic and contains a homogeneous horizontal magnetic field forming an angle with the direction in which the plasma is perturbed. We analyze simulations with two different orientations of the magnetic field. For each field orientation we compare two simulations, one for the pure MHD case, and one including the ambipolar diffusion in the Ohm's law (AD case). Other than that, both simulations for each field orientation are identica...
Adjoint-based approach to Enhancing Mixing in Rayleigh-Taylor Turbulence
Kord, Ali; Capecelatro, Jesse
2016-11-01
A recently developed adjoint method for multi-component compressible flow is used to measure sensitivity of the mixing rate to initial perturbations in Rayleigh-Taylor (RT) turbulence. Direct numerical simulations (DNS) of RT instabilities are performed at moderate Reynolds numbers. The DNS are used to provide an initial prediction, and the corresponding space-time discrete-exact adjoint provides a sensitivity gradient for a specific quantity of interest (QoI). In this work, a QoI is defined based on the time-integrated scalar field to quantify the mixing rate. Therefore, the adjoint solution is used to measure sensitivity of this QoI to a set of initial perturbations, and inform a gradient-based line search to optimize mixing. We first demonstrate the adjoint approach in the linear regime and compare the optimized initial conditions to the expected values from linear stability analysis. The adjoint method is then used in the high Reynolds number limit where theory is no longer valid. Finally, chaos is known to contaminate the accuracy of the adjoint gradient in turbulent flows when integrated over long time horizons. We assess the influence of chaos on the accuracy of the adjoint gradient to guide the work of future studies on adjoint-based sensitivity of turbulent mixing. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
Wind turbine wake measurement in complex terrain
Hansen, KS; Larsen, GC; Menke, R.; Vasiljevic, N.; Angelou, N.; Feng, J.; Zhu, WJ; Vignaroli, A.; W, W. Liu; Xu, C.; Shen, WZ
2016-09-01
SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology.
Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering
Hoffman, D.; Münch, K.-U.; Leipertz, A.
1996-04-01
We present what to our knowledge are the first filtered Rayleigh scattering temperature measurements and use them in sooting flame. This new technique for two-dimensional thermography in gas combustion overcomes some of the major disadvantages of the standard Rayleigh technique. It suppresses scattered background light from walls or windows and permits detection of two-dimensional Rayleigh intensity distributions of the gas phase in the presence of small particles by spectral filtering of the scattered light.
Elm, Jonas; Norman, Patrick; Bilde, Merete;
2014-01-01
and hyperpolarizability β tensors. Using density functional theory, we elucidate the effect of cluster morphology on the scattering properties using a combinatorial sampling approach. We find that the Rayleigh scattering intensity depends quadratically on the number of water molecules in the cluster and that a single......The Rayleigh and hyper Rayleigh scattering properties of the binary (H 2SO4)(H2O)n and ternary (H 2SO4)(NH3)(H2O)n clusters are investigated using a quantum mechanical response theory approach. The molecular Rayleigh scattering intensities are expressed using the dipole polarizability α...
Coexisting Raman- and Rayleigh-Enhanced Four-Wave Mixing in Femtosecond Polarization Beats
NIE Zhi-Qiang; ZHAO Yan; ZHANG Yan-Peng; GAN Chen-Li; ZHENG Huai-Sin; LI Chang-Biao; LU Ke-Qing
2009-01-01
Based on the polarization interference of Raman- and Rayleigh-enhanced four-wave mixing processes,heterodyne detection of the Raman,Rayleigh and coexisting Raman and Rayleigh femtosecond difference-frequency polarization beats is investigated in the cw and the three Markovian stochastic models,respectively.These two processes exhibit asymmetric and symmetric spectra,respectively,and the thermal effect in them can be suppressed by a field-correlation method.Such studies of coexisting Raman- and Rayleigh-enhanced four-wave mixing processes can have important applications in coherence quantum control,and quantum information processing.
Numerical simulation of Martian historical dynamo: Impact of the Rayleigh number on the dynamo state
WANG TianYuan; KUANG WeiJia; MA ShiZhuang
2009-01-01
The observed Mars remnant magnetism suggests that there was an active dynamo in the Martian core.We use the MoSST core dynamics model to simulate the Martian historical dynamo,focusing on the variation of the dynamo states with the Rayleigh number Ra (a non-dimensional parameter describing the buoyancy force in the core).Our numerical results show that the mean field length scale does not vary monotonically with the Rayleigh number,and the field morphology at the core mantle boundary changes with Rayleigh number.In particular,it drifts westward with a speed decreasing with Rayleigh number.
Numerical simulation of Martian historical dynamo:Impact of the Rayleigh number on the dynamo state
无
2009-01-01
The observed Mars remnant magnetism suggests that there was an active dynamo in the Martian core. We use the MoSST core dynamics model to simulate the Martian historical dynamo, focusing on the variation of the dynamo states with the Rayleigh number Ra (a non-dimensional parameter describing the buoyancy force in the core). Our numerical results show that the mean field length scale does not vary monotonically with the Rayleigh number, and the field morphology at the core mantle boundary changes with Rayleigh number. In particular, it drifts westward with a speed decreasing with Rayleigh number.
ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development
Robert W. Preus; DOE Project Officer - Keith Bennett
2008-04-23
This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.
Dyrbye, Claes; Hansen, Svend Ole
pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations......Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...
Dyrbye, Claes; Hansen, Svend Ole
pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations......Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...
Analysing wind farm efficiency on complex terrains
Castellani, Francesco; Astolfi, Davide; Terzi, Ludovico
2014-01-01
measurements. The fatigue polar has been determined for an (almost) complete 360° inflow sector for both load sensors, representing mean wind speeds below and above rated wind speed, respectively, with the inflow conditions classified into three different stratification regimes: unstable, neutral and stable......The stratification of the atmospheric boundary layer (ABL) is classified in terms of the M-O length and subsequently used to determine the relationship between ABL stability and the fatigue loads of a wind turbine located inside an offshore wind farm. Recorded equivalent fatigue loads, representing...... blade-bending and tower bottom bending, are combined with the operational statistics from the instrumented wind turbine as well as with meteorological statistics defining the inflow conditions. Only a part of all possible inflow conditions are covered through the approximately 8200 hours of combined...
Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.
Li, Haiyan; Wu, Jun; Miao, Aimin; Yu, Pengfei; Chen, Jianhua; Zhang, Yufeng
2017-04-17
Ultrasound imaging plays an important role in computer diagnosis since it is non-invasive and cost-effective. However, ultrasound images are inevitably contaminated by noise and speckle during acquisition. Noise and speckle directly impact the physician to interpret the images and decrease the accuracy in clinical diagnosis. Denoising method is an important component to enhance the quality of ultrasound images; however, several limitations discourage the results because current denoising methods can remove noise while ignoring the statistical characteristics of speckle and thus undermining the effectiveness of despeckling, or vice versa. In addition, most existing algorithms do not identify noise, speckle or edge before removing noise or speckle, and thus they reduce noise and speckle while blurring edge details. Therefore, it is a challenging issue for the traditional methods to effectively remove noise and speckle in ultrasound images while preserving edge details. To overcome the above-mentioned limitations, a novel method, called Rayleigh-maximum-likelihood switching bilateral filter (RSBF) is proposed to enhance ultrasound images by two steps: noise, speckle and edge detection followed by filtering. Firstly, a sorted quadrant median vector scheme is utilized to calculate the reference median in a filtering window in comparison with the central pixel to classify the target pixel as noise, speckle or noise-free. Subsequently, the noise is removed by a bilateral filter and the speckle is suppressed by a Rayleigh-maximum-likelihood filter while the noise-free pixels are kept unchanged. To quantitatively evaluate the performance of the proposed method, synthetic ultrasound images contaminated by speckle are simulated by using the speckle model that is subjected to Rayleigh distribution. Thereafter, the corrupted synthetic images are generated by the original image multiplied with the Rayleigh distributed speckle of various signal to noise ratio (SNR) levels and
ADM-Aeolus: wind profiles from space
de Kloe, Jos; Stoffelen, Ad; Marseille, Gert-Jan
2017-04-01
ADM-Aeolus is primarily a research and demonstration mission, flying the first Doppler wind lidar in space, scheduled to be launched end of 2017 by ESA. The lidar is operated in the UV at 355 nm wavelength. Part of the emitted signal is scattered back by molecules (Rayleigh scattering) and detected by the instrument Rayleigh channel. Another part of the emitted signal is scattered back by aerosol and cloud particles (Mie scattering), and detected by the Mie channel. The light received is Doppler shifted due to the movement of the scatterers along the laser Line- Of- Sight (LOS) and a horizontal LOS (HLOS) wind component profile is infered which extends from the surface up to a height of about 30 km. The number of rangebins is limited to 24 per channel. The vertical resolution is adjustable and will typically be 250 m close to the surface, 1 km in the free troposphere and 2 km in the stratosphere. The horizontal resolution is adjustable as well, with a raw resolution of around 3 km, but signals will be accumulated into observations of typically 84 km length to improve the signal-to-noise ratio before processing. ADM-Aeolus aims to measure wind component profiles with a quality comparable to radiosonde soundings to expect substantial impact on NWP models. To achieve this, signals measured in clear air will be separated from signals measured in scenes containing clouds or aerosols, before accumulation over 84 km. This requires a feature detection algorithm, which is part of the level-2B (L2B) processing, and based on detection of cross-talk, i.e. detection of Mie signal in the Rayleigh channel signal. This allows the flexibility to position the Rayleigh range bins in the stratosphere, without the need of a co-located Mie range bin. Cross-talk detection is based on comparing the measured and expected signal. The latter is calculated from auxiliary meteorological information obtained from NWP input, typically temperature and pressure, and instrument calibration
1989-01-01
When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.
On Lamb and Rayleigh wave convergence in viscoelastic tissues
Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)
2011-10-21
Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.
On Lamb and Rayleigh Wave Convergence in Viscoelastic Tissues
Nenadic, Ivan Z.; Urban, Matthew W.; Aristizabal, Sara; Mitchell, Scott A.; Humphrey, Tye C.; Greenleaf, James F.
2012-01-01
Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using Shearwave Dispersion Ultrasound Vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave Dispersion Ultrasound Vibrometry (LDUV) to quantify mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ’s surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40–500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium. PMID:21970846
Rayleigh-Wave Group-Velocity Tomography of Saudi Arabia
Tang, Zheng; Mai, P. Martin; Chang, Sung-Joon; Zahran, Hani
2017-04-01
We use surface-wave tomography to investigate the lithospheric structure of the Arabian plate, which is traditionally divided into the Arabian shield in the west and the Arabian platform in the east. The Arabian shield is a complicated mélange of crustal material, composed of several Proterozoic terrains separated by ophiolite-bearing suture zones and dotted by outcropping Cenozoic volcanic rocks. The Arabian platform is primarily covered by very thick Paleozoic, Mesozoic and Cenozoic sediments. We develop high-resolution tomographic images from fundamental-mode Rayleigh-wave group-velocities across Saudi Arabia, utilizing the teleseismic data recorded by the permanent Saudi National Seismic Network (SNSN). Our study extends previous efforts on surface wave work by increasing ray path density and improving spatial resolution. Good quality dispersion measurements for roughly 3000 Rayleigh-wave paths have been obtained and utilized for the group-velocity tomography. We have applied the Fast Marching Surface Tomography (FMST) scheme of Rawlinson (2005) to obtain Rayleigh-wave group-velocity images for periods from 8 s to 40 s on a 0.8° 0.8° grid and at resolutions approaching 2.5° based on the checkerboard tests. Our results indicate that short-period group-velocity maps (8-15 s) correlate well with surface geology, with slow velocities delineating the main sedimentary features including the Arabian platform, the Persian Gulf and Mesopotamia. For longer periods (20-40 s), the velocity contrast is due to the differences in crustal thickness and subduction/collision zones. The lower velocities are sensitive to the thicker continental crust beneath the eastern Arabia and the subduction/collision zones between the Arabian and Eurasian plate, while the higher velocities in the west infer mantle velocity.
On Lamb and Rayleigh wave convergence in viscoelastic tissues.
Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F
2011-10-21
Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40–500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.
Rayleigh scattering and nonlinear inversion of elastic waves
Gritto, R.
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of {minus}100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k{sub p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Lidar observations of wind over Xin Jiang, China: general characteristics and variation
Han, Yan; Sun, Dong-song; Weng, Ning-quan; Wang, Jian-guo; Dou, Xian-kang; Zhang, Yan-hong; Guan, Jun; Miao, Qingjian; Chen, Xin
2016-08-01
The mobile Rayleigh Doppler lidar based on a Fabry-Perot etalon is developed for wind measurement. The structure and technical parameters of this lidar system are described in brief. The 1740 wind profiles from 8 to 40 km altitudes by the lidar in Xinjiang, China, were obtained in 2010 and 2011, and were used to analyze the characteristics and variations of wind. The results shown that the wind velocity is within a three-layer structure: westerly jet layer (9-14 km), quasi-zero velocity layer (18-22 km) and gale layer (22-40 km). In August and September, the wind direction is within a three-layer structure: zonal westerly wind layer (5-18 km) where wind direction is west, zonal wind reverse layer (18-22 km) where wind direction is unstable and easterly wind layer (22-40 km) where wind direction is east. In October, wind direction is west (8-40 km). Wind observations by lidar are a realistic offset to the rawins.
Rayleigh-type Surface Quasimodes in General Linear Elasticity
Hansen, Sönke
2010-01-01
Rayleigh-type surface waves correspond to the characteristic variety, in the elliptic boundary region, of the displacement-to-traction map. In this paper, surface quasimodes are constructed for the reduced elastic wave equation, anisotropic in general, with traction-free boundary. Assuming a global variant of a condition of Barnett and Lothe, the construction is reduced to an eigenvalue problem for a selfadjoint scalar first order pseudo-differential operator on the boundary. The principal and the subprincipal symbol of this operator are computed. The formula for the subprincipal symbol seems to be new even in the isotropic case.
Rayleigh-Brillouin spectrum in special relativistic hydrodynamics.
Garcia-Perciante, A L; Garcia-Colin, L S; Sandoval-Villalbazo, A
2009-06-01
In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.
The Rayleigh-Brillouin Spectrum in Special Relativistic Hydrodynamics
García-Perciante, A L; Sandoval-Villalbazo, A
2009-01-01
In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to non-equilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic non-equilibrium thermodynamics. The answer will clearly require deeper examination of this problem.
RAYLEIGH LAMB WAVES IN MICROPOLAR ISOTROPIC ELASTIC PLATE
Rajneesh Kumar; Geeta Partap
2006-01-01
The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit,the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.
Statistics and scaling in turbulent Rayleigh-Bénard convection
Ching, Emily SC
2013-01-01
This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for
Dynamic stabilization of Rayleigh-Taylor instability in ablation fronts
Piriz A.R.
2013-11-01
Full Text Available Dynamic stabilization of Rayleigh-Taylor instability in an ablation front is studied by considering the simplest possible modulations in the acceleration. Explicit analytical expressions for the instability growth rate and for the boundaries of the stability region are obtained by considering a sequence of Dirac deltas. Besides, general square waves allow for studying the effect of the driving asymmetries on the stability region as well as the optimization process. The essential role of compressibility is phenomenologically addressed in order to find the constraints it imposes on the stability region.
Phenomenological Theory for Spatiotemporal Chaos in Rayleigh-Benard Convection
Li, Xiao-jun; Xi, Hao-wen; Gunton, J. D.
1997-01-01
We present a phenomenological theory for spatiotemporal chaos (STC) in Rayleigh-Benard convection, based on the generalized Swift-Hohenberg model. We apply a random phase approximation to STC and conjecture a scaling form for the structure factor $S(k)$ with respect to the correlation length $\\xi_2$. We hence obtain analytical results for the time-averaged convective current $J$ and the time-averaged vorticity current $\\Omega$. We also define power-law behaviors such as $J \\sim \\epsilon^\\mu$,...
Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities
Lau, Yue Ying [University of Michigan, Ann Arbor, MI (United States); Gilgenbach, Ronald [University of Michigan, Ann Arbor, MI (United States)
2013-07-07
Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.
Analytical evaluation of atomic form factors: application to Rayleigh scattering
Safari, L; Amaro, P; Jänkälä, K; Fratini, F
2014-01-01
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wavefunctions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
RAYLEIGH WAVE STUDIES OF CATHODIC H-CHARGING OF Fe
Lunarska, E.; Fiore, N.
1981-01-01
The attenuation of 2-6 MHz Rayleigh waves /RW/ was measured in sheet samples of Fe which were undergoing electrolytic charging with H. The cathodic polarization and As2O3 addition into electrolyte were found to effect the attenuation and velocity of the surface waves. The attenuation changes were retarded by the deposition of a thin /2µm/ layer of Cu on the Fe surface, with the Cu acting as a H-permeation barrier. The decrease in attenuation was caused by the entry of H into solid solution at...
Turbo Detection in Rayleigh flat fading channel with unknown statistics
Paul Fortier
2010-11-01
Full Text Available The turbo detection of turbo coded symbols over correlated Rayleigh flat fading channels generatedaccording to Jakes’ model is considered in this paper. We propose a method to estimate the channelsignal-to-noise ratio (SNR and the maximum Doppler frequency. These statistics are required bythe linear minimum mean squared error (LMMSE channel estimator. To improve the system convergence,we redefine the channel reliability factor by taking into account the channel estimationerror statistics. Simulation results for rate 1=3 turbo code and two different normalized fading ratesshow that the use of the new reliability factor greatly improves the performance. The improvementis more substantial when channel statistics are unknown.
Rayleigh-Brillouin Scattering in Binary Gas Mixtures
Gu, Ziyu; van de Water, Willem; Marques, Wilson
2015-01-01
Precise measurements are performed on spectral lineshapes of spontaneous Rayleigh-Brillouin scattering in mixtures of the noble gases Ar and Kr, with He. Admixture of a light He atomic fraction results in marked changes of the spectra, although in all experiments He is merely a spectator atom: it affects the relaxation of density fluctuations of the heavy constituent, but its contribution to the scattered light intensity is negligibly small. The results are compared to a theory for the spectral lineshape without adjustable parameters, yielding excellent agreement for the case of binary mono-atomic gases, signifying a step towards modeling and understanding of light scattering in more complex molecular media.
Instantaneous Rayleigh scattering from excitons localized in monolayer islands
Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis;
2000-01-01
We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...... resonance is observed. Instead, when exciting only a subsystem of the exciton resonance, in our case excitons localized in quantum well regions of a specific monolayer thickness, the rise has an instantaneous component. This is due to the spatial nonuniformity of the initially excited exciton polarization...
Energy budget in Rayleigh-Bénard convection.
Kerr, R M
2001-12-10
It is shown using three series of Rayleigh number simulations of varying aspect ratio AR and Prandtl number Pr that the normalized dissipation at the wall, while significantly greater than 1, approaches a constant dependent upon AR and Pr. It is also found that the peak velocity, not the mean square velocity, obeys the experimental scaling of Ra(0.5). The scaling of the mean square velocity is closer to Ra(0.46), which is shown to be consistent with experimental measurements and the numerical results for the scaling of Nu and the temperature if there are strong correlations between the velocity and temperature.
Selective Manipulation of Microscopic Particles with Precursor Swirling Rayleigh Waves
Riaud, Antoine; Baudoin, Michael; Bou Matar, Olivier; Becerra, Loic; Thomas, Jean-Louis
2017-02-01
Contactless manipulation of microparticles is demonstrated with single-beam acoustical tweezers based on precursor swirling Rayleigh waves. These surface waves degenerate into acoustical vortices when crossing a stack made of a fluid layer and its solid support, hence creating a localized acoustical trap in a fluid cavity. They can be synthesized with a single interdigitated transducer whose spiraling shape encodes the phase of the field like a hologram. For applications, these tweezers have many attractive features: they are selective, flat, easily integrable, and compatible with disposable substrates.
2012-09-30
Jochen Horstmann of NATO Undersea Research Centre ( NURC ). GD and NURC have developed separate methods for estimating wind directions. In addition, NURC ...has been developing “cross-pol” GMFs, which have a lot of promise in the high wind regime. The GD and NURC wind directions are merged into a single
Collecting of new data on existing wind energy converters
Jensen, S. A.; Bjerregaard, E. T. D.; Paulsen, U. S.
Measurements on a 55 kW VESTAS wind turbine were carried out during a period of approximately 2 months. The wind turbine is erected at a farm, and the produced energy is used for central heating and in cooling and drying systems at the farm. The energy production of the wind turbine is calculated as a function of the annual mean wind speed, and it is assumed that the wind speed frequency distribution is a Rayleigh distribution. The energy production during a period of 46 days from January the 20th to March the 7th 1983 was 20,665 kWh, and the total energy consumption by the owner in the same period was 12,983 kWh. The mean wind speed at hub height during the same period was 7.6 m/s. Approximately 8975 kWh or 69 per cent of the consumption was delivered directly from the wind turbine, and 11,690 kWh produced by the wind turbine was sold to the power supply company.
Cortina, Gerard; Calaf, Marc; Cal, Raúl Bayoán
2016-11-01
An isolated wind turbine and a very large wind farm are introduced into large-eddy simulations of an atmospheric boundary layer. The atmospheric flow is forced with a constant geostrophic wind and a time-varying surface temperature extracted from a selected period of the CASES-99 field experiment. A control volume approach is used to directly compare the transfer of mean kinetic energy around a characteristic wind turbine throughout a diurnal cycle considering both scenarios. For the very large wind farm case, results illustrate that the recovery of mean kinetic energy around a wind turbine is dominated by the vertical flux, regardless of atmospheric stratification. Contrarily, for an isolated wind turbine, the recovery is dependent on the background atmospheric stratification and it is produced by a combination of advection, vertical flux, and pressure redistribution. The analysis also illustrates that during the unstable stratification periods vertical entrainment of mean kinetic energy dominates, whereas during the stable regime horizontal entrainment is predominant. Finally, it is observed that in both scenarios, the single wind turbine and the large wind farm cases, turbulent mixing is driven by the background convective stratification during the unstable period and by the effect of the wind turbine during the stable regime.
Remote Sensing Wind and Wind Shear System.
Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.
Østrup, Finn
, a comparisonbetween monetary regimes suggests that welfare is highest under nominalincome targeting where the nominal income target is determined to bring aboutprice stability.Keywords: Monetary regimes; fiscal policy; monetary non-neutrality.JEL classicification: E42, E61, E62.......The article examines how government spending is determined in a closedeconomy where the nominal wage is pre-set through contracts and the wage settershave perfect foresight regarding subsequent policy decisions. The monetaryregime affects government spending because: (i) with a pre-set nominal wage......, agiven change in government spending has different effects on employment andinflation under different monetary regimes, and (ii) the authorities' inclinationto expand government spending is affected by the inflation rate which dependson the monetary regime. If the costs related to inflation are high...
THE ETHIOPIAN ENVIRONMENTAL REGIME VERSUS ...
Haramaya Law Review ... ozone layer and climate change regimes, among others, to succeed. Id. ... international act dealing with general aspects of air pollution. ..... environmental and developmental decisions that affect their interests or the.
Preliminary results of Aruba wind resource assessment
Guda, M.H. [Fundashon Antiyano Pa Energia, Curacao (Netherlands Antilles)
1996-12-31
As part of a project to assess the possibilities for wind energy utilitization in the Dutch Antilles islands, windspeed and -direction data were collected in Aruba for two years, from March 1992 to February 1994. Five sites that were estimated to be representative for the islands` wind regimes, were monitored during this period: two sites on the windward coast, one east and one west; two inland sites, again one east and one west, and one site topping the cliffs overlooking the eastern windward coast. Additionally, twenty years worth of data were analyzed for the reference site at the airport, which is in the middle part of the island, on the leeward coast. Correlation calculations between these data and the data for the project sites were performed, in order to establish a methodology for estimating the long-term behavior of the wind regimes at these sites. 8 figs., 3 tabs.
Urban, Pavel; Hanzelka, Pavel; Musilová, Věra; Králík, Tomáš; La Mantia, Marco; Srnka, Aleš; Skrbek, Ladislav
2014-05-01
We present experimental results on the heat transfer efficiency of cryogenic turbulent Rayleigh-Bénard convection (RBC) in a cylindrical cell 0.3 m in both diameter and height which has improvements with respect to various corrections connected with finite thermal conductivity of sidewalls and plates. The heat transfer efficiency described by the Nusselt number {\\rm{Nu}}={\\rm{Nu}}({\\rm{Ra}},Pr ) is investigated for the range of Rayleigh number {{10}^{6}}account. In contrast, if the mean temperature is determined as an arithmetic mean of the bottom and top plate temperatures, {\\rm{Nu}}({\\rm{Ra}})\\propto {\\rm{R}}{{{\\rm{a}}}^{\\gamma }} displays spurious crossover to higher γ that might be misinterpreted as a transition to the ultimate Kraichnan regime. The second step of our analysis, reported here for the first time, is to ignore the NOB effects affecting the top half of the RBC cell. We replace it by the inverted nearly OB bottom half in order to eliminate the boundary layer asymmetry. This leads to the effective temperature difference \\Delta {{T}_{{\\rm{eff}}}}=2({{T}_{{\\rm{b}}}}-{{T}_{{\\rm{c}}}}), where {{T}_{{\\rm{b}}}} denotes the bottom plate temperature, and to effective {\\rm{N}}{{{\\rm{u}}}_{{\\rm{eff}}}} and {\\rm{R}}{{{\\rm{a}}}_{{\\rm{eff}}}} values. The effective heat transfer efficiency obtained, showing no tendency of crossover to the ultimate regime up to 2\\times {{10}^{15}} in {\\rm{R}}{{{\\rm{a}}}_{{\\rm{eff}}}}, is reported and discussed.
Beresh, Steven Jay; Grasser, Thomas W.; Kearney, Sean Patrick; Schefer, Robert W.
2004-01-01
Simulation-based life-cycle-engineering and the ASCI program have resulted in models of unprecedented size and fidelity. The validation of these models requires high-resolution, multi-parameter diagnostics. Within the thermal-fluids disciplines, the need for detailed, high-fidelity measurements exceeds the limits of current engineering sciences capabilities and severely tests the state of the art. The focus of this LDRD is the development and application of filtered Rayleigh scattering (FRS) for high-resolution, nonintrusive measurement of gas-phase velocity and temperature. With FRS, the flow is laser-illuminated and Rayleigh scattering from naturally occurring sources is detected through a molecular filter. The filtered transmission may be interpreted to yield point or planar measurements of three-component velocities and/or thermodynamic state. Different experimental configurations may be employed to obtain compromises between spatial resolution, time resolution, and the quantity of simultaneously measured flow variables. In this report, we present the results of a three-year LDRD-funded effort to develop FRS combustion thermometry and Aerosciences velocity measurement systems. The working principles and details of our FRS opto-electronic system are presented in detail. For combustion thermometry we present 2-D, spatially correlated FRS results from nonsooting premixed and diffusion flames and from a sooting premixed flame. The FRS-measured temperatures are accurate to within {+-}50 K (3%) in a premixed CH4-air flame and within {+-}100 K for a vortex-strained diluted CH4-air diffusion flame where the FRS technique is severely tested by large variation in scattering cross section. In the diffusion flame work, FRS has been combined with Raman imaging of the CH4 fuel molecule to correct for the local light scattering properties of the combustion gases. To our knowledge, this is the first extension of FRS to nonpremixed combustion and the first use of joint FRS
Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)
2012-06-15
An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.
Rotating thermal convection at very large Rayleigh numbers
Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard
2016-11-01
The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.
Rayleigh wave inversion using heat-bath simulated annealing algorithm
Lu, Yongxu; Peng, Suping; Du, Wenfeng; Zhang, Xiaoyang; Ma, Zhenyuan; Lin, Peng
2016-11-01
The dispersion of Rayleigh waves can be used to obtain near-surface shear (S)-wave velocity profiles. This is performed mainly by inversion of the phase velocity dispersion curves, which has been proven to be a highly nonlinear and multimodal problem, and it is unsuitable to use local search methods (LSMs) as the inversion algorithm. In this study, a new strategy is proposed based on a variant of simulated annealing (SA) algorithm. SA, which simulates the annealing procedure of crystalline solids in nature, is one of the global search methods (GSMs). There are many variants of SA, most of which contain two steps: the perturbation of model and the Metropolis-criterion-based acceptance of the new model. In this paper we propose a one-step SA variant known as heat-bath SA. To test the performance of the heat-bath SA, two models are created. Both noise-free and noisy synthetic data are generated. Levenberg-Marquardt (LM) algorithm and a variant of SA, known as the fast simulated annealing (FSA) algorithm, are also adopted for comparison. The inverted results of the synthetic data show that the heat-bath SA algorithm is a reasonable choice for Rayleigh wave dispersion curve inversion. Finally, a real-world inversion example from a coal mine in northwestern China is shown, which proves that the scheme we propose is applicable.
Boundary layer structure in turbulent Rayleigh-Benard convection
Shi, Nan; Schumacher, Joerg
2012-01-01
The structure of the boundary layers in turbulent Rayleigh-Benard convection is studied by means of three-dimensional direct numerical simulations. We consider convection in a cylindrical cell at an aspect ratio one for Rayleigh numbers of Ra=3e+9 and 3e+10 at fixed Prandtl number Pr=0.7. Similar to the experimental results in the same setup and for the same Prandtl number, the structure of the laminar boundary layers of the velocity and temperature fields is found to deviate from the prediction of the Prandtl-Blasius-Pohlhausen theory. Deviations decrease when a dynamical rescaling of the data with an instantaneously defined boundary layer thickness is performed and the analysis plane is aligned with the instantaneous direction of the large-scale circulation in the closed cell. Our numerical results demonstrate that important assumptions which enter existing classical laminar boundary layer theories for forced and natural convection are violated, such as the strict two-dimensionality of the dynamics or the s...
Transient growth in Rayleigh-B\\'enard-Poiseuille/Couette convection
Jerome, J John Soundar; Huerre, Patrick
2016-01-01
An investigation of the effect of a destabilizing cross-stream temperature gradient on the transient growth phenomenon of plane Poiseuille flow and plane Couette flow is presented. Only the streamwise-uniform and nearly streamwise-uniform disturbances are highly influenced by the Rayleigh number Ra and Prandtl number Pr. The maximum optimal transient growth G max of streamwise-uniform disturbances increases slowly with increasing Ra and decreasing Pr. For all Ra and Pr, at moderately large Reynolds numbersRe, the supremum of G max is always attained for streamwise-uniform perturbations (or nearly streamwise-uniform perturbations, in the case of plane Couette flow) which produce large streamwise streaks and Rayleigh-B\\'enard convection rolls (RB). The optimal growth curves retain the same large-Reynolds-number scaling as in pure shear flow. A 3D vector model of the governing equations demonstrates that the short-time behavior is governed by the classical lift-up mechanism and that the influence of Ra on this m...
Experimental Study of Rayleigh-Taylor Instability Using Paramagnetic Fluids
Tsiklashvili, Vladimer; Likhachev, Oleg; Jacobs, Jeffry
2009-11-01
Experiments that take advantage of the properties of paramagnetic liquids are used to study Rayleigh-Taylor instability. A gravitationally unstable combination of a paramagnetic salt solution and a nonmagnetic solution is initially stabilized by a magnetic field gradient that is produced by the contoured pole-caps of a large electromagnet. Rayleigh-Taylor instability originates with the rapid removal of current from the electromagnet, which results in the heavy liquid falling into the light liquid due to gravity and, thus, mixing with it. The mixing zone is visualized by back-lit photography and is recorded with a digital video camera. For visualization purposes, a blue-green dye is added to the magnetic fluid. The mixing rate of the two liquids is determined from an averaged dye concentration across the mixing layer by means of the Beer-Lambert law. After removal of the suspending magnetic field, the initially flat interface between the two liquids develops a random surface pattern with the dominant length scale well approximated by the fastest growing wavelength in accordance with the viscous linear stability theory. Several combinations of paramagnetic and nonmagnetic solutions have been considered during the course of the research. A functional dependence of the mixing layer growth constant, α, on the properties of the liquids is a primary subject of the present study.
Sidewall effects in Rayleigh-B\\'enard convection
Stevens, Richard J A M; Verzicco, Roberto
2014-01-01
We investigate the influence of the temperature boundary conditions at the sidewall on the heat transport in Rayleigh-B\\'enard (RB) convection using direct numerical simulations. For relatively low Rayleigh numbers Ra the heat transport is higher when the sidewall is isothermal, kept at a temperature $T_c+\\Delta/2$ (where $\\Delta$ is the temperature difference between the horizontal plates and $T_c$ the temperature of the cold plate), than when the sidewall is adiabatic. The reason is that in the former case part of the heat current avoids the thermal resistance of the fluid layer by escaping through the sidewall that acts as a short-circuit. For higher Ra the bulk becomes more isothermal and this reduces the heat current through the sidewall. Therefore the heat flux in a cell with an isothermal sidewall converges to the value obtained with an adiabatic sidewall for high enough Ra ($\\simeq 10^{10}$). However, when the sidewall temperature deviates from $T_c+\\Delta/2$ the heat transport at the bottom and top p...
Experimental and theoretical study of Rayleigh-Lamb wave propagation
Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.
1990-01-01
Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.
Rayleigh-Taylor instability of viscous fluids with phase change
Kim, Byoung Jae; Kim, Kyung Doo
2016-04-01
Film boiling on a horizontal surface is a typical example of the Rayleigh-Taylor instability. During the film boiling, phase changes take place at the interface, and thus heat and mass transfer must be taken into consideration in the stability analysis. Moreover, since the vapor layer is not quite thick, a viscous flow must be analyzed. Existing studies assumed equal kinematic viscosities of two fluids, and/or considered thin viscous fluids. The purpose of this study is to derive the analytical dispersion relation of the Rayleigh-Taylor instability for more general conditions. The two fluids have different properties. The thickness of the vapor layer is finite, but the liquid layer is thick enough to be nearly semi-infinite in view of perturbation. Initially, the vapor is in equilibrium with the liquid at the interface, and the direction of heat transfer is from the vapor side to the liquid side. In this case, the phase change has a stabilizing effect on the growth rate of the interface. When the vapor layer is thin, there is a coupled effect of the vapor viscosity, phase change, and vapor thickness on the critical wave number. For the other limit of a thick vapor, both the liquid and vapor viscosities influence the critical wave number. Finally, the most unstable wavelength is investigated. When the vapor layer is thin, the most unstable wavelength is not affected by phase change. When the vapor layer is thick, however, it increases with the increasing rate of phase change.
Heat transport measurements in turbulent rotating Rayleigh-Benard convection
Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory
2008-01-01
We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.
Optical trapping of metallic Rayleigh particle by combined beam
CHENG Ke; ZHONG Xian-qiong; XIANG An-ping
2012-01-01
Radiation forces and trapping stability of metallic (i.e.gold) Rayleigh particle by combined beam are analyzed,and the combined beam is formed by superimposing two partially coherent off-axis fiat-topped beams.The dependences of radiation forces on off-axis distance parameter,correlation length and particle radius are illustrated by numerical examples.The results show that there exist critical values d0,cand σ0,c for the combined beam.For 0＜d ≤ d0,c or 0＜σ0 ≤σ0,c the Gaussianlike intensity profile takes place at the geometrical focal plane,so that the transverse gradient force can act as restoring force.As the off-axis distance parameter increases or the correlation length decreases,the maximal intensity,the radiation force and trapping stiffness become smaller,while the transverse and longitudinal trapping ranges become larger.In comparison with a single beam,the combined beam is more favourable for trapping metallic Rayleigh particle owing to the stronger trapping stiffness and the larger trapping range.
Optimal Heat Transport in Rayleigh-B\\'enard Convection
Sondak, David; Waleffe, Fabian
2015-01-01
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-B\\'enard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Ra\\sim 10^9$. Power law scalings of $Nu\\sim Ra^{\\gamma}$ are observed with $\\gamma\\approx 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr \\lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a...
A simple analytic approximation to the Rayleigh-Bénard stability threshold
Prosperetti, Andrea
2011-01-01
The Rayleigh-Bénard linear stability problem is solved by means of a Fourier series expansion. It is found that truncating the series to just the first term gives an excellent explicit approximation to the marginal stability relation between the Rayleigh number and the wave number of the perturbatio
A general purpose exact Rayleigh scattering look-up table for ocean color remote sensing
无
2006-01-01
The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practical application, a general purpose Rayleigh scattering LUT which can be applied to all ocean color remote sensors is generated. An adding-doubling method to solve the vector radiative transfer equation in the plane-parallel atmosphere is deduced in detail. Compared with the exact Rayleigh scattering radiance derived from the MODIS exact Rayleigh scattering LUT, it is proved that the relative error of Rayleigh scattering calculation with the adding-doubling method is less than 0.25%, which meets the required accuracy of the atmospheric correction of ocean color remote sensing. Therefore,the adding-doubling method can be used to generate the exact Rayleigh scattering LUT for the ocean color remote sensors. Finally, the general purpose exact Rayleigh scattering LUT is generated using the adding-doubling method. On the basis of the general purpose LUT, the calculated Rayleigh scattering radiance is tested by comparing with the LUTs of MODIS, SeaWiFS and the other ocean color sensors, showing that the relative errors are all less than 0.5%, and this general purpose LUT can be applied to all ocean color remote sensors.
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
Ahlers, Guenter; Grossmann, Siegfried; Lohse, Detlef
2009-01-01
The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinet
Benabid, F.; Notcutt, M.; Ju, L.; Blair, D. G.
1999-10-01
We present the level of noise induced by Rayleigh-scattered light from sapphire test mass, the limit of scattering loss on build-up power inside the interferometer and finally the tolerable absorption loss in order to meet the specification of the interferometer sensitivity. The results show that the Rayleigh scattering induced noise remains below h˜10 -25 Hz -1/2 and a higher tolerance on the absorption level in sapphire substrate compared with silica substrate.
On the outage capacity of the block fading channel at low-power regime
Rezki, Zouheir
2014-06-01
Outage performance of the M-block fading with additive white Gaussian noise (BF-AWGN) is investigated at low-power regime. We consider delay-constrained constant-rate communications with perfect channel state information (CSI) at both the transmitter and the receiver (CSI-TR), under a short-term power constraint. We show that selection diversity that allocates all the power to the strongest block is asymptotically optimal. Then, we provide a simple characterization of the outage probability in the regime of interest. We quantify the reward due to CSI-TR over the constant-rate constant-power scheme and show that this reward increases with the delay constraint. For instance, for Rayleigh fading, we find that a power gain up to 4.3 dB is achievable. © 2014 IEEE.
On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models
Zhang, S.; Wang, Minghuai; Ghan, Steven J.; Ding, A.; Wang, Hailong; Zhang, Kai; Neubauer, David; Lohmann, U.; Ferrachat, S.; Takeamura, Toshihiko; Gettelman, A.; Morrison, H.; Lee, Y. H.; Shindell, D. T.; Partridge, Daniel; Stier, P.; Kipling, Z.; Fu, Congbin
2016-03-04
Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (ω500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascend (ω500 < -25 hPa/d) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. 42" It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm/d) contributes the most to the total aerosol indirect forcing (from 64% to nearly 100%). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.
Simultaneous wind and temperature measurements in the middle atmosphere with a twin Doppler lidar
Hildebrand, Jens; Baumgarten, Gerd; Fiedler, Jens; Lübken, Franz-Josef
2016-04-01
Winds play an important role for the filtering of gravity waves traveling from the ground to higher altitudes. They control the propagation of gravity waves and the amount of transported energy and momentum. The thermal structure of the atmosphere determines its stability, hence the buoyancy frequency. Therefore, knowing winds and temperatures in the middle atmosphere is crucial to study and interpret atmospheric dynamics comprehensively. Both temperature and wind affect the propagation of infrasound waves through the middle atmosphere. Observing winds and temperatures in the middle atmosphere on routine basis is challenging since a large part of this altitude range is not accessible by radars or satellites. Using the Doppler Rayleigh Iodine Spectrometer DoRIS, our Rayleigh/Mie/Raman lidar at the Arctic station ALOMAR in Northern Norway (69°N, 16°E) is capable to measure winds and temperatures simultaneously in the middle atmosphere between about 20 and 80 km altitude. Since two independently steerable telescopes are used, we can derive two wind components at once. Winds and temperatures are measured even under daylight conditions, yielding observations spanning multiple days, which is essential for, e.g., gravity-wave studies. We will present results from case studies and a larger data set covering winter situations between 2012 and 2015, including stratospheric warmings and periods of enhanced gravity wave activity.
Observable Signatures of Classical T Tauri Stars Accreting in an Unstable Regime
Kurosawa Ryuichi
2014-01-01
Full Text Available We discuss key observational signatures of Classical T Tauri stars (CTTSs accreting through Rayleigh-Taylor instability, which occurs at the interface between an accretion disk and a stellar magnetosphere. In this study, the results of global 3-D MHD simulations of accretion flows, in both stable and unstable regimes, are used to predict the variability of hydrogen emission lines and light curves associated with those two distinctive accretion flow patterns. In the stable regime, a redshifted absorption component (RAC periodically appears in some hydrogen lines, but only during a fraction of a stellar rotation period. In the unstable regime, the RAC is present rather persistently during a whole stellar rotation period, and its strength varies non-periodically. The latter is caused by multiple accreting streams, formed randomly due to the instability, passing across the line of sight to an observer during one stellar rotation. This results in the quasi-stationarity appearance of the RAC because at least one of the accretion stream is almost always in the line of sight to an observer. In the stable regime, two stable hot spots produce a smooth and periodic light curve that shows only one or two peaks per stellar rotation. In the unstable regime, multiple hot spots formed on the surface of the star, produce the stochastic light curve with several peaks per rotation period.
HUANG Lin; JIAN Guang-de; QIU Xiao-ming
2007-01-01
The synergistic stabilizing effect of gyroviscosity and sheared axial flow on the Rayleigh-Taylor instability in Z-pinch implosions is studied by means of the incompressible viscid magneto-hydrodynamic equations. The gyroviscosity (or finite Larmor radius) effects are introduced in the momentum equation through an anisotropic ion stress tensor. Dispersion relation with the effect of a density discontinuity is derived. The results indicate that the short-wavelength modes of the Rayleigh-Taylor instability are easily stabilized by the gyroviscosity effects. The long wavelength modes are stabilized by the sufficient sheared axial flow. However, the synergistic effects of the finite Larmor radius and sheared axial flow can heavily mitigate the Rayleigh-Taylor instability. This synergistic effect can compress the Rayleigh-Taylor instability to a narrow wave number region. Even with a sufficient gyroviscosity and large enough flow velocity, the synergistic effect can completely suppressed the Rayleigh-Taylor instability in whole wave number region.
Rayleigh-type waves in nonlocal micropolar solid half-space.
Khurana, Aarti; Tomar, S K
2017-01-01
Propagation of Rayleigh type surface waves in nonlocal micropolar elastic solid half-space has been investigated. Two modes of Rayleigh-type waves are found to propagate under certain approximations. Frequency equations of these Rayleigh type modes and their conditions of existence have been derived. These frequency equations are found to be dispersive in character due to the presence of micropolarity and nonlocality parameters in the medium. One of the frequency equations is a counterpart of the classical Rayleigh waves and the other is new and has appeared due to micropolarity of the medium. Phase speeds of these waves are computed numerically for Magnesium crystal and their variation against wavenumber are presented graphically. Comparisons have been made between the phase speeds of Rayleigh type waves through nonlocal micropolar, local micropolar and elastic solid half-spaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Simulation of Rayleigh-Bénard convection using lattice Boltzmann method
Shan, X
1996-01-01
Rayleigh-Bénard convection is numerically simulated in two- and three-dimensions using a recently developed two-component lattice Boltzmann equation (LBE) method. The density field of the second component, which evolves according to the advection-diffusion equation of a passive-scalar, is used to simulate the temperature field. A body force proportional to the temperature is applied, and the system satisfies the Boussinesq equation except for a slight compressibility. A no-slip, isothermal boundary condition is imposed in the vertical direction, and periodic boundary conditions are used in horizontal directions. The critical Rayleigh number for the onset of the Rayleigh-Bénard convection agrees with the theoretical prediction. As the Rayleigh number is increased higher, the steady two-dimensional convection rolls become unstable. The wavy instability and aperiodic motion observed, as well as the Nusselt number as a function of the Rayleigh number, are in good agreement with experimental observations and the...
The propagation dynamics of ultraviolet light filament with Rayleigh scattering in air
Zhang Hua
2005-01-01
In this paper we present for the first time the effects of Rayleigh scattering on the long distance propagation of ultraviolet (UV) light filament in air based on the stationary analysis. The simulation results show that the effects of Rayleigh scattering on the propagation of UV laser filaments may not be ignored. These influences are slightly dependent on the laser wavelength. We also compare the UV filament propagations at different input powers in the presence and the absence of the Rayleigh scattering and discuss the mechanisms of power loss and beam defocusing.In the absence of Rayleigh scattering, the filament propagation is determined by the oscillating behaviour of the beam size. In the presence of the scattering, the propagation lengths of filament are close to each other at different initial powers and determined by the Rayleigh scattering.
Meier, D. L.
1982-01-01
A general analytic theory is presented of winds driven by super-Eddington luminosities. The relevant parameters are the mass of the central object, the radius at which the luminosity and matter are injected, the ratio of the free-fall time to the heating time at this radius, and the total luminosity injected at the radius. Several different regimes of dynamical wind structure are identified, and the analytic expressions are shown to agree with the numerical results in Meier (1979) in the appropriate case. It is noted that, in its general form, the theory is the optically thick (to electron scattering) counterpart to optically thin radiation pressure-driven stellar winds.
Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik
2011-01-01
The substantial impact of wind power fluctuations at large offshore wind farms calls for the development of dedicated monitoring and prediction approaches. Based on recent findings, a Local Area Weather Radar (LAWR) was installed at Horns Rev with the aim of improving predictability, controlability...... and potentially maintenance planning. Additional images are available from a Doppler radar covering the same area. The parallel analysis of rain events detection and of regime sequences in wind (and power) fluctuations demonstrates the interest of employing weather radars for a better operation and management...
MULTILATERAL DIPLOMACY AND INTERNATIONAL REGIMES
BENEA Ciprian-Beniamin
2014-12-01
Full Text Available The history of diplomacy can by divided in three main periods: one is that of occasional diplomacy peculiar to Middle Ages, while other belong to permane diplomacy, peculiar to modern times. But this one can be divided in two parts, too: one with a bilateral character, previos to 1st World War, and one with a multilateral character, manifested especially after the end on 1st World War. This third type is the focus of present paper. And it cannot be separated from the newly international constructs: international regimes, and international organizations. International instritutions the area where international regimes are belonging to – are legal constructs which provide the formal (and legal framework for continous negotiations. They are the most visible part of the new diplomacy – the one which has a permanent character, and it has an more open face. Anyway, the most important connection has to do with the international institutions, international regimes, and multilateral international negotiations. In the era of the new diplomacy, they all have a permanent character. International institutions help international negotiations carring on; while in their turn, they provide the base for international regimes’ creation, and especially for their evolution. The international regimes’ evolution is an inseparable part of a permanent international framework. And if there is missing a permanent international framework (international organization connected to a specific regime, this regime is a difuse one, its members have only informal relations among them, while they survey each other, looking at their behavior, but they don’t have a formal relationship among them, which could help them solving their future common interests, and protect them from their common fears. International regimes are very important in the era when evrithing touches, and influences everything. In the same time, the complexity of our present world can be successfully
Axisymmetric Simulations of Hot Jupiter-Stellar Wind Hydrodynamic Interaction
Christie, Duncan; Li, Zhi-Yun
2016-01-01
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyman-alpha transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, th...
A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations
Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik
2012-01-01
Accurate wind power forecasts highly contribute to the integration of wind power into power systems. The focus of the present study is on large-scale offshore wind farms and the complexity of generating accurate probabilistic forecasts of wind power fluctuations at time-scales of a few minutes...... power measurements only. We introduce an advanced Markov Chain Monte Carlo (MCMC) estimation method to account for the different features observed in an empirical time series of wind power: autocorrelation, heteroscedasticity and regime-switching. The model we propose is an extension of Markov......-Switching Autoregressive (MSAR) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors in each regime to cope with the heteroscedasticity. Then, we analyze the predictive power of our model on a one-step ahead exercise of time series sampled over 10 min intervals. Its performances are compared...
Gonzalez, C. M.; Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.
2010-12-01
As computational modeling became prolific throughout the physical sciences community, newer and more efficient ways of processing large amounts of data needed to be devised. One particular method for processing such large amounts of data arose in the form of using a graphics processing unit (GPU) for calculations. Computational scientists were attracted to the GPU as a computational tool as the performance, growth, and availability of GPUs over the past decade increased. Scientists began to utilize the GPU as the sole workhorse for their brute force calculations and modeling. The GPUs, however, were not originally designed for this style of use. As a result, difficulty arose when trying to find a use for the GPU from a scientific standpoint. A lack of parallel programming routines was the main culprit behind the difficulty in programming with a GPU, but with time and a rise in popularity, NVIDIA released a proprietary architecture named Fermi. The Fermi architecture, when used in conjunction with development tools such as CUDA, allowed the programmer easier access to routines that made parallel programming with the NVIDIA GPUs an ease. This new architecture enabled the programmer full access to faster memory, double-precision support, and large amounts of global memory at their fingertips. Our model was based on using a second-order, spatially correct finite difference method and a third order Runge-Kutta time-stepping scheme for studying the 2D Rayleigh-Benard code. The code extensively used the CUBLAS routines to do the heavy linear algebra calculations. The calculations themselves were completed using a single GPU, the NVDIA C2070 Fermi, which boasts 6 GB of global memory. The overall scientific goal of our work was to apply the Tesla C2070's computing potential to achieve an onset of flow reversals as a function of increasing large Rayleigh numbers. Previous investigations were successful using a smaller grid size of 1000x1999 and a Rayleigh number of 10^9. The
The Probability Distribution Model of Wind Speed over East Malaysia
Nurulkamal Masseran
2013-07-01
Full Text Available Many studies have found that wind speed is the most significant parameter of wind power. Thus, an accurate determination of the probability distribution of wind speed is an important parameter to measure before estimating the wind energy potential over a particular region. Utilizing an accurate distribution will minimize the uncertainty in wind resource estimates and improve the site assessment phase of planning. In general, different regions have different wind regimes. Hence, it is reasonable that different wind distributions will be found for different regions. Because it is reasonable to consider that wind regimes vary according to the region of a particular country, nine different statistical distributions have been fitted to the mean hourly wind speed data from 20 wind stations in East Malaysia, for the period from 2000 to 2009. The values from Kolmogorov-Smirnov statistic, Akaike’s Information Criteria, Bayesian Information Criteria and R2 correlation coefficient were compared with the distributions to determine the best fit for describing the observed data. A good fit for most of the stations in East Malaysia was found using the Gamma and Burr distributions, though there was no clear pattern observed for all regions in East Malaysia. However, the Gamma distribution was a clear fit to the data from all stations in southern Sabah.
Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection
Kuehn, Kerry, K.
2008-10-28
We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii
Caffagni, Enrico; Cattaneo, Marco; Bordoni, Paola
2016-04-01
Spectral ratio techniques, such as the Horizontal-to-Vertical (HV) and Standard (SSR) may exhibit different trends in specific frequency bands when conducted in alluvial basins. A possible explanation of this discrepancy can be provided by the presence of Rayleigh oscillations, that are considered responsible of an amplification of the vertical component with respect to the horizontal. We propose a new methodology for the identification of Rayleigh waves arrivals, to test on small-size basins. With this procedure, candidate Rayleigh waves are localized in time-frequency domain on an instantaneous polarization plane which is constructed by defining the instantaneous maximum vertical and horizontal spectral amplitudes. Validation of the candidate Rayleigh arrivals is performed by evaluating the instantaneous ellipticity. This step yields to a quantitative measure of the polarization, providing an indicator of the Rayleigh contribution to ground motion. We tested this methodology in the Norcia basin (central Italy) using a 18 selected earthquakes (2.0 L'Aquila sequence (2009). We demonstrate the robustness of our methodology by localizing evidences of Rayleigh wave arrivals immediately from (1 s) up to 30 s after the first S-wave group, even for low-magnitude events (Ml < 3.0). The generation of the detected Rayleigh waves analyzed in time-frequency range, appears to be magnitude-dependent and in function of the location in the basin. Our quantitative estimate of the Rayleigh polarization resulted to be comparable to the HV response value in specific frequency bands, for example in deamplification, demonstrating a plausible connection with Rayleigh oscillations. The authors encourage the usage or implementation of similar procedures conducted in basin studies, in order to determine quantitatively the Rayleigh contribution to ground motion, for a better characterization of the local seismic response.
AXISYMMETRIC SIMULATIONS OF HOT JUPITER–STELLAR WIND HYDRODYNAMIC INTERACTION
Christie, Duncan; Arras, Phil; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States)
2016-03-20
Gas giant exoplanets orbiting at close distances to the parent star are subjected to large radiation and stellar wind fluxes. In this paper, hydrodynamic simulations of the planetary upper atmosphere and its interaction with the stellar wind are carried out to understand the possible flow regimes and how they affect the Lyα transmission spectrum. Following Tremblin and Chiang, charge exchange reactions are included to explore the role of energetic atoms as compared to thermal particles. In order to understand the role of the tail as compared to the leading edge of the planetary gas, the simulations were carried out under axisymmetry, and photoionization and stellar wind electron impact ionization reactions were included to limit the extent of the neutrals away from the planet. By varying the planetary gas temperature, two regimes are found. At high temperature, a supersonic planetary wind is found, which is turned around by the stellar wind and forms a tail behind the planet. At lower temperatures, the planetary wind is shut off when the stellar wind penetrates inside where the sonic point would have been. In this regime mass is lost by viscous interaction at the boundary between planetary and stellar wind gases. Absorption by cold hydrogen atoms is large near the planetary surface, and decreases away from the planet as expected. The hot hydrogen absorption is in an annulus and typically dominated by the tail, at large impact parameter, rather than by the thin leading edge of the mixing layer near the substellar point.
Great Lakes' regional climate regimes
Kravtsov, Sergey; Sugiyama, Noriyuki; Roebber, Paul
2016-04-01
We simulate the seasonal cycle of the Great Lakes' water temperature and lake ice using an idealized coupled lake-atmosphere-ice model. Under identical seasonally varying boundary conditions, this model exhibits more than one seasonally varying equilibrium solutions, which we associate with distinct regional climate regimes. Colder/warmer regimes are characterized by abundant/scarce amounts of wintertime ice and cooler/warmer summer temperatures, respectively. These regimes are also evident in the observations of the Great Lakes' climate variability over recent few decades, and are found to be most pronounced for Lake Superior, the deepest of the Great Lakes, consistent with model predictions. Multiple climate regimes of the Great Lakes also play a crucial role in the accelerated warming of the lakes relative to the surrounding land regions in response to larger-scale global warming. We discuss the physical origin and characteristics of multiple climate regimes over the lakes, as well as their implications for a longer-term regional climate variability.
Jorge, Clàudia; Stuer, Joris; Mahy, Philip; Hawksley, Will
2013-01-01
The European Project Semester is about much more than a period of study, it is an opportunity to explore new surroundings and embrace new cultures, all while studying in a unique environment with a blend of people from diff erent disciplines. Our project, put together with the help of our supervisor Gunther Steenackers fi nds three product developers and one ICT engineer coming together to work on a project for an urban wind turbine. Our Aim is as follows: “We wi...
Wind conditions for wind turbine design
Maribo Pedersen, B.
1999-04-01
Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)
Probabilistic fatigue methodology and wind turbine reliability
Lange, C.H. [Stanford Univ., CA (United States)
1996-05-01
Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.
Comparison of three methods for wind turbine capacity factor estimation.
Ditkovich, Y; Kuperman, A
2014-01-01
Three approaches to calculating capacity factor of fixed speed wind turbines are reviewed and compared using a case study. The first "quasiexact" approach utilizes discrete wind raw data (in the histogram form) and manufacturer-provided turbine power curve (also in discrete form) to numerically calculate the capacity factor. On the other hand, the second "analytic" approach employs a continuous probability distribution function, fitted to the wind data as well as continuous turbine power curve, resulting from double polynomial fitting of manufacturer-provided power curve data. The latter approach, while being an approximation, can be solved analytically thus providing a valuable insight into aspects, affecting the capacity factor. Moreover, several other merits of wind turbine performance may be derived based on the analytical approach. The third "approximate" approach, valid in case of Rayleigh winds only, employs a nonlinear approximation of the capacity factor versus average wind speed curve, only requiring rated power and rotor diameter of the turbine. It is shown that the results obtained by employing the three approaches are very close, enforcing the validity of the analytically derived approximations, which may be used for wind turbine performance evaluation.
Friction Regimes in the Lubricants Solid-State Regime
Schipper, D.J.; Maathuis, O.; Dowson, D.; Taylor, C.M.; Childs, T.H.C.; Dalmaz, G.
1995-01-01
Friction measurements were performed in the lubricant's solid-state regime to study the transition from full-film lubrication, in which the separation is maintained by a solidified lubricant, to mixed lubrication. Special attention is paid to the influence of temperature (inlet viscosity) and roughn
An Update to the Warm-Season Convective Wind Climatology of KSC/CCAFS
Lupo, Kevin
2012-01-01
Total of 1100 convective events in the 17-year warm-season climatology at KSC/CCAFS. July and August typically are the peak of convective events, May being the minimum. Warning and non-warning level convective winds are more likely to occur in the late afternoon (1900-2000Z). Southwesterly flow regimes and wind directions produce the strongest winds. Storms moving from southwesterly direction tend to produce more warning level winds than those moving from the northerly and easterly directions.
Angelini, S.; Theofanous, T.G.; Yuen, W.W. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety
1998-01-01
The conditions of the MAGICO-2000 experiment are extended to more broadly investigate the regimes of premixing, and the corresponding internal structures of mixing zones. With the help of the data and numerical simulations using the computer code PM-ALPHA, we can distinguish extremes of behavior dominated by inertia and thermal effects - we name these the inertia and thermal regimes, respectively. This is an important distinction that should guide future experiments aimed at code verification in this area. Interesting intermediate behaviors are also delineated and discussed. (author)
Drop stability in wind: theory
Lee, Sungyon
2015-11-01
Water drops may remain pinned on a solid substrate against external forcing due to contact angle hysteresis. Schmucker and White investigated this phenomenon experimentally in a high Reynolds number regime, by measuring the critical wind velocity at which partially wetting water drops depin inside a wind tunnel. Due to the unsteady turbulent boundary layer, droplets are observed to undergo vortex-shedding induced oscillations. By contrast, the overall elongation of the drop prior to depinning occurs on a much slower timescale with self-similar droplet shapes at the onset. Based on these observations, a simple, quasi-static model of depinning droplet is developed by implementing the phenomenological description of the boundary layer. The resultant model successfully captures the critical onset of droplet motion and is the first of on-going studies that connect the classical boundary layer theory with droplet dynamics.
Efficient Third Harmonic Generation for Wind Lidar Applications
Mordaunt, David W.; Cheung, Eric C.; Ho, James G.; Palese, Stephen P.
1998-01-01
The characterization of atmospheric winds on a global basis is a key parameter required for accurate weather prediction. The use of a space based lidar system for remote measurement of wind speed would provide detailed and highly accurate data for future weather prediction models. This paper reports the demonstration of efficient third harmonic conversion of a 1 micrometer laser to provide an ultraviolet (UV) source suitable for a wind lidar system based on atmospheric molecular scattering. Although infrared based lidars using aerosol scattering have been demonstrated to provide accurate wind measurement, a UV based system using molecular or Rayleigh scattering will provide accurate global wind measurements, even in those areas of the atmosphere where the aerosol density is too low to yield good infrared backscatter signals. The overall objective of this work is to demonstrate the maturity of the laser technology and its suitability for a near term flight aboard the space shuttle. The laser source is based on diode-pumped solid-state laser technology which has been extensively demonstrated at TRW in a variety of programs and internal development efforts. The pump laser used for the third harmonic demonstration is a breadboard system, designated the Laser for Risk Reduction Experiments (LARRE), which has been operating regularly for over 5 years. The laser technology has been further refined in an engineering model designated as the Compact Advanced Pulsed Solid-State Laser (CAPSSL), in which the laser head was packaged into an 8 x 8 x 18 inch volume with a weight of approximately 61 pounds. The CAPSSL system is a ruggedized configuration suitable for typical military applications. The LARRE and CAPSSL systems are based on Nd:YAG with an output wavelength of 1064 nm. The current work proves the viability of converting the Nd:YAG fundamental to the third harmonic wavelength at 355 nm for use in a direct detection wind lidar based on atmospheric Rayleigh scattering.
Spectral Ratios for Crack Detection Using P and Rayleigh Waves
Enrique Olivera-Villaseñor
2012-01-01
Full Text Available We obtain numerical results to help the detection and characterization of subsurface cracks in solids by the application of P and Rayleigh elastic waves. The response is obtained from boundary integral equations, which belongs to the field of elastodynamics. Once the implementation of the boundary conditions has been done, a system of Fredholm integral equations of the second kind and order zero is found. This system is solved using the method of Gaussian elimination. Resonance peaks in the frequency domain allow us to infer the presence of cracks using spectral ratios. Several models of cracked media were analyzed, where effects due to different crack orientations and locations were observed. The results obtained are in good agreement with those published in the references.
Performance of Multicarrier CDMA Rake System over Rayleigh Fading Channel
SONG Li-xin; HUANG Tian-shu; DING Yao-ming
2005-01-01
Based on the theory of multicarrier (MC) technique and the Rake receiver, a multicarrier DSCDMA Rake system is proposed, where a data sequence multiplied by a spreading sequence modulates multiple carriers. The receiver provides a Rake for each subcarrier, and the outputs of the Rakes are combined by a maximal-ratio combiner. The average probability of error of the system is derived from an uncorrelated subcarrier and frequency-selective fading channel model. The system performances are evaluated over Rayleigh fading channel with an exponential multipath intensity profile(MIP) and with a rectangular MIP, respectively,when multipath interference is present. It is found that this kind of model has larger superiority in an exponential MIP than in a rectangular MIP.
Plasma transport driven by the Rayleigh-Taylor instability
Ma, X.; Delamere, P. A.; Otto, A.
2016-06-01
Two important differences between the giant magnetospheres (i.e., Jupiter's and Saturn's magnetospheres) and the terrestrial magnetosphere are the internal plasma sources and the fast planetary rotation. Thus, there must be a radially outward flow to transport the plasma to avoid infinite accumulation of plasma. This radial outflow also carries the magnetic flux away from the inner magnetosphere due to the frozen-in condition. As such, there also must be a radial inward flow to refill the magnetic flux in the inner magnetosphere. Due to the similarity between Rayleigh-Taylor (RT) instability and the centrifugal instability, we use a three-dimensional RT instability to demonstrate that an interchange instability can form a convection flow pattern, locally twisting the magnetic flux, consequently forming a pair of high-latitude reconnection sites. This process exchanges a part of the flux tube, thereby transporting the plasma radially outward without requiring significant latitudinal convection of magnetic flux in the ionosphere.
The magnetic Rayleigh-Taylor instability in astrophysical discs
Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.
2016-10-01
This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.
Coherent Rayleigh-Brillouin scattering as a flow diagnostic technique
Graul, J. S.; Lilly, T. C. [Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918 (United States)
2014-12-09
Broadband coherent Rayleigh-Brillouin scattering (CRBS) was used to measure translational gas temperatures for nitrogen at the ambient pressure of 0.8 atm using a purpose-built Fabry-Perot etalon spectrometer. Temperatures derived from the CRBS spectral analysis were compared with experimentally-measured temperatures, and were found to be, on average, within 2% of the experimentally-measured value. Axial flow velocities from a double jet at a pressure ratio of 0.38 were also measured by looking at the Doppler shift of the CRBS line shape. With recent developments in chirped laser technology and the capacity of CRBS to simultaneously provide thermodynamic and bulk flow information, the CRBS line shape acquisition and analysis technique presented here may allow for future time-resolved, characterization of aerospace flows.
Internally heated convection and Rayleigh-Bénard convection
Goluskin, David
2016-01-01
This Brief describes six basic models of buoyancy-driven convection in a fluid layer: three configurations of internally heated convection and three configurations of Rayleigh-Bénard convection. The author discusses the main quantities that characterize heat transport in each model, along with the constraints on these quantities. This presentation is the first to place the various models in a unified framework, and similarities and differences between the cases are highlighted. Necessary and sufficient conditions for convective motion are given. For the internally heated cases only, parameter-dependent lower bounds on the mean fluid temperature are proven, and results of past simulations and laboratory experiments are summarized and reanalyzed. The author poses several open questions for future study.
Performance of LTE ADVANCED Uplink in a Flat Rayleigh Channel
Edward Kasem
2013-01-01
Full Text Available This paper describes the performance of LTE advanced uplink transmission in a flat Rayleigh channel. The uplink is simulated using a modified version of the Vienna uplink link level matlab code simulator. This modified version supports two transmission antennas instead of one. Moreover, it includes two extra processes; layer mapping and precoding. In addition, the demodulation reference signal is presented and employed to allow channel estimation. In this paper, the structure of the LTE advanced system is described. Furthermore, we present generation of the demodulation reference signal. Four combinations of two distinct channel estimation and two signal detection methods are used to provide the simulation results of performance evaluation in term of the BER and throughput curves for selected scenarios.
Convection in an ideal gas at high Rayleigh numbers.
Tilgner, A
2011-08-01
Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.
Rayleigh-Taylor instability in accelerated solid media
Piriz, A. R.; Sun, Y. B.; Tahir, N. A.
2017-01-01
A linear study of the Rayleigh-Taylor instability based on momentum conservation and the consideration of an irrotational velocity field for incompressible perturbations is discussed. The theory allows for a very appealing physical picture and for a relatively simple description of the main features of the instability. As a result, it is suitable for the study of the very complex problem of the instability of accelerated solids with non-linear elastic-plastic constitutive properties, which cannot be studied by the usual normal modes approach. The elastic to plastic transition occurring early in the instability process determines the entire evolution and makes the instability exhibit behavior that cannot be captured by an asymptotic analysis.
Rayleigh-Taylor instability in soft elastic layers
Riccobelli, D.; Ciarletta, P.
2017-04-01
This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
Ergodicity in randomly forced Rayleigh-Bénard convection
Földes, J.; Glatt-Holtz, N. E.; Richards, G.; Whitehead, J. P.
2016-11-01
We consider the Boussinesq approximation for Rayleigh-Bénard convection perturbed by an additive noise and with boundary conditions corresponding to heating from below. In two space dimensions, with sufficient stochastic forcing in the temperature component and large Prandtl number Pr > 0, we establish the existence of a unique ergodic invariant measure. In three space dimensions, we prove the existence of a statistically invariant state, and establish unique ergodicity for the infinite Prandtl Boussinesq system. Throughout this work we provide streamlined proofs of unique ergodicity which invoke an asymptotic coupling argument, a delicate usage of the maximum principle, and exponential martingale inequalities. Lastly, we show that the background method of Constantin and Doering (1996 Nonlinearity 9 1049-60) can be applied in our stochastic setting, and prove bounds on the Nusselt number relative to the unique invariant measure.
THE RAYLEIGH-TAYLOR INSTABILITY IN SMALL ASPECT RATIO CONTAINERS
RIVERA, MICHAEL K. [Los Alamos National Laboratory; ECKE, ROBERT E. [Los Alamos National Laboratory
2007-01-22
We present experimental measurements of density and velocity obtained from the mixing zone of buoyancy driven turbulence initiated by the Rayleigh-Taylor instability in a small aspect ration chamber (a chamber who's vertical height is significantly larger than its lateral dimesion). The mixing front propogates at a slightly slower rate than the expected t{sup 2} behavior obtained from earlier experiments and numerics. Once the front has propogated significantly far away, we observe that the mixing zone develops to a statistically stationary state. In this stationary state, the spectral distributions of energy and density deviate from the familiar k{sup -5/3} ubiquitous to turbulence in three dimensions.
DSMC simulation of Rayleigh-Brillouin scattering in binary mixtures
Bruno, Domenico; Frezzotti, Aldo; Ghiroldi, Gian Pietro
2016-11-01
Rayleigh-Brillouin scattering spectra (RBS) in dilute gas mixtures have been simulated by the Direct Simulation Monte Carlo method (DSMC). Different noble gas binary mixtures have been considered and the spectra have been simulated adopting the hard sphere collision model. It is suggested that DSMC simulations can be used in the interpretation of light scattering experiments in place of approximate kinetic models. Actually, the former have a firmer physical ground and can be readily extended to treat gas mixtures of arbitrary complexity. The results obtained confirm the capability of DSMC to predict experimental spectra and clears the way towards the simulation of polyatomic gas mixtures of interest for actual application (notably, air) where tractable kinetic model equations are still lacking.
Non-stationary Rayleigh-Taylor instability in supernovae ejecta
Ribeyre, X; Tikhonchuk, V T; Bouquet, S; Sanz, J; Ribeyre, Xavier; Hallo, Ludovic; Tikhonchuk, Vladimir; Bouquet, Serge; Sanz, Javier
2005-01-01
The Rayleigh-Taylor instability plays an important role in the dynamics of several astronomical objects, in particular, in supernovae (SN) evolution. In this paper we develop an analytical approach to study the stability analysis of spherical expansion of the SN ejecta by using a special transformation in the co-moving coordinate frame. We first study a non-stationary spherical expansion of a gas shell under the pressure of a central source. Then we analyze its stability with respect to a no radial, non spherically symmetric perturbation of the of the shell. We consider the case where the polytropic constant of the SN shell is $\\gamma=5/3$ and we examine the evolution of a arbitrary shell perturbation. The dispersion relation is derived. The growth rate of the perturbation is found and its temporal and spatial evolution is discussed. The stability domain depends on the ejecta shell thickness, its acceleration, and the perturbation wavelength.
The cylindrical magnetic Rayleigh-Taylor instability for viscous fluids
Chambers, K.; Forbes, L. K. [School of Mathematics and Physics, University of Tasmania, Private Bag 37-Hobart, Tasmania 7005 (Australia)
2012-10-15
This paper considers a cylindrical Rayleigh-Taylor instability, in which a heavy fluid surrounds a light fluid, and gravity is directed radially inwards. A massive object is located at the centre of the light fluid, and it behaves like a line dipole both for fluid flow and magnetic field strength. The initially circular interface between the two conducting fluids evolves into plumes, dependent on the magnetic and fluid dipole strengths and the nature of the initial disturbance to the interface. A spectral method is presented to solve the time-dependent interface shapes, and results are presented and discussed. Bipolar solutions are possible, and these are of particular relevance to astrophysics. The solutions obtained resemble structures of some HII regions and nebulae.
Rayleigh wave scattering at the foot of a mountain
P. S. Deshwal
1987-01-01
Full Text Available A theoretical study of scattering of seismic waves at the foot of a mountain is discussed here. A mountain of an arbitrary shape and of width a (0≤x≤a, z=0 in the surface of an elastic solid medium (z≥0 is hit by a Rayleigh wave. The method of solution is the technique of Wiener and Hopf. The reflected, transmitted and scattered waves are obtained by inversion of Fourier transforms. The scattered waves behave as decaying cylindrical waves at distant points and have a large amplitude near the foot of the mountain. The transmitted wave decreases exponentially as its distance from the other end of the mountain increases.
Magneto-Rayleigh-Taylor growth and feedthrough in cylindrical liners
Weis, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Peterson, Kyle; Hess, Mark
2013-10-01
Cylindrical liner implosions in the MagLIF concept are susceptible to the magneto-Rayleigh-Taylor instability (MRT). The linearized ideal MHD equations are solved, including the presence of an axial magnetic field and the effects of sausage and kink modes. The eigenmode solution, using appropriate equilibrium profiles, allows an assessment of the local MRT growth rate and of the instantaneous feedthrough factor during the entire implosion process. Of particular interest will be the high convergence/stagnation phase, which is difficult to image experimentally. Strong axial magnetic fields can mitigate feedthrough and MRT growth, which may be useful at the fuel/liner interface during this phase of the MagLIF implosion. For the MRT growth rate and feedthrough factors, the LLNL code, HYDRA, is used to benchmark with the analytic theory, and with experiments on the Z-machine. This work was supported by DoE and NSF.
EVALUATION OF MIMO SYSTEM CAPACITY OVER RAYLEIGH FADING CHANNEL
Emad. Mohamed
2015-06-01
Full Text Available High transmission data rate, spectral efficiency and reliability are essential for future wireless communications systems. MIMO (multi-input multi-output diversity technique is a band width efficient system achieving high data transmission which eventually establishing a high capacity communication system. Without needing to increase the transmitted power or the channel bandwidth, gain in capacity can be considerably improved by varying the number of antennas on both sides. Correlated and uncorrelated channels MIMO system was considered in this paper for different number of antennas and different SNR over Rayleigh fading channel. At the transmitter both CSI(channel state information technique and Water filling power allocation principle was also considered in this paper
The Magnetic Rayleigh-Taylor Instability in Astrophysical Discs
Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.
2016-01-01
This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.
Qualitative and quantitative features of Rayleigh-Taylor mixing dynamics
Ramaprabhu, Praveen; Karkhanis, Varad; Lawrie, Andrew; Bhowmick, Aklant; Abarzhi, Snezhana; RTI Collaboration
2015-11-01
We consider dynamics of Rayleigh-Taylor (RT) flow in a large aspect ratio three-dimensional domain with square symmetry in the plane for fluids with contrasting densities. In order to quantify the interface evolution from a small amplitude single-mode initial perturbation to advanced stage of RT mixing, we apply numerical simulations using the MOBILE code, theoretical analyses, including group theory and momentum model, as well as parameters describing the interplay between acceleration and turbulence. We find: In RT flow, the fluid motion is intense near the interface and is negligible far from the interface. At late times the growth rates of RT bubbles and spikes may increase without a corresponding increase of length-scales in the direction normal to acceleration. The parameters describing the interplay between acceleration and turbulence in RT mixing are shown to scale well with the flow Reynolds number and Froude number.
Collisional effects on Rayleigh-Taylor-induced magnetic fields
Manuel, M. J.-E. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Flaig, M.; Plewa, T. [Florida State University, Tallahassee, Florida 32306 (United States); Li, C. K.; Séguin, F. H.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hu, S. X.; Betti, R.; Hager, J.; Meyerhofer, D. D.; Smalyuk, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)
2015-05-15
Magnetic-field generation from the Rayleigh-Taylor (RT) instability was predicted more than 30 years ago, though experimental measurements of this phenomenon have only occurred in the past few years. These pioneering observations demonstrated that collisional effects are important to B-field evolution. To produce fields of a measurable strength, high-intensity lasers irradiate solid targets to generate the nonaligned temperature and density gradients required for B-field generation. The ablation process naturally generates an unstable system where RT-induced magnetic fields form. Field strengths inferred from monoenergetic-proton radiographs indicate that in the ablation region diffusive effects caused by finite plasma resistivity are not negligible. Results from the first proof-of-existence experiments are reviewed and the role of collisional effects on B-field evolution is discussed in detail.
Outage Probability for Multi-Cell Processing under Rayleigh Fading
Garcia, Virgile; Lebedev, Nikolai
2010-01-01
Multi-cell processing, also called Coordinated Multiple Point (CoMP), is a very promising distributed multi-antennas technique that uses neighbour cell's antennas. This is expected to be part of next generation cellular networks standards such as LTE-A. Small cell networks in dense urban environment are mainly limited by interferences and CoMP can strongly take advantage of this fact to improve cell-edge users' throughput. This paper provides an analytical derivation of the capacity outage probability for CoMP experiencing fast Rayleigh fading. Only the average received power (slow varying fading) has to be known, and perfect Channel State Information (CSI) is not required. An optimisation of the successfully received data-rate is then derived with respect to the number of cooperating stations and the outage probability, illustrated by numerical examples.
The necessary distance between large wind farms offshore - study
Frandsen, S.; Barthelmie, R.J.; Pryor, S.C.;
2005-01-01
the new Storpark Analytical Model has been developed and evaluated. As it is often the need for offshore wind farms, the model handles a regular array-geometry with straight rows of wind turbines and equidistantspacing between units in each row and equidistant spacing between rows. Firstly, the case...... with the flow direction being parallel to rows in a rectangular geometry is considered by defining three flow regimes. Secondly, when the flow is not in line withthe main rows, solutions are found for the patterns of wind turbine units emerging corresponding to each wind direction. The model complex...
Wind Technologies & Evolving Opportunities (Presentation)
Robichaud, R.
2014-07-01
This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.
Performance evaluation of Jepirachi Wind Park
Pinilla, Alvaro [Mechanical Engineering Department, Universidad de Los Andes, Cra 1 Este No. 18 A - 10, Bogota (Colombia); Rodriguez, Luis; Trujillo, Rodrigo [Generation Planning Management Office, Empresas Publicas de Medellin, Medellin (Colombia)
2009-01-15
This paper presents some technical details, operational experiences, and lessons learnt by the Colombian public utility - Empresas Publicas de Medellin - with a recently installed 19.5 MW wind park in the northern region of Colombia - province of La Guajira. This is the first ever wind park feeding to the electricity network in Colombia. The Jepirachi Wind Park was commissioned in April 2004 and it has to date accumulated nearly 180,000 h of operation. During that time 15 NORDEX N60/1.3 MW turbines have fed electricity to the Colombian main electricity grid. This work describes the park layout, including meteorological stations installed in the surroundings and the wind regime prevailing in the zone. Details are also given about remote monitoring of the Wind Park and individual turbines, through the Supervisory, Control and Data Acquisition system (SCADA Nordex Control 2). Since July 2004, Empresas Publicas de Medellin (EEPPM) and Universidad de Los Andes-Bogota, Colombia have been working together in a wind park performance monitoring programme. This has permitted both institutions to learn more rapidly matters relating to evaluation, planning and operation of wind parks exposed to extreme climatic conditions like those present in the semi-desert region of the Guajira. This work describes the wind park operation, where individual wind turbines have yielded monthly production capacity factors as high as 65-75%; values which are high when compared to similar turbines installed elsewhere. Accordingly, levels of electrical energy production of up to 1750 kWh/m{sup 2}-year per turbine have been measured, exceeding typical values reported in the wind energy literature. A series of operational and technical troubles have become evident, which are related to some of the particular features of the climate and the wind regime at the site of the Jepirachi Wind Park. Because of these local features it is suggested that a greater level of uncertainty (limiting the validity of
Powell, A. M., Jr.; Xu, J.
2015-04-01
This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is that the global atmospheric planetary waves can lead to changes in the global surface air-sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956-1957, 1964-1965, 1977-1978, 1988-1989, and 1998-1999) in the most recent 59-year period (1950-2008) have been identified based on Student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic, and Indian) ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. The global forcing mechanism is described with a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO) global fish capture data (catch/stock). Analyses are performed to demonstrate that examining the interactions between the atmosphere, ocean, and fisheries is a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from longwave (relatively smooth and less complex) to shorter
A. M. Powell Jr.
2014-08-01
Full Text Available This investigation focuses on a global forcing mechanism for decadal regime shifts and their subsequent impacts. The proposed global forcing mechanism is the global atmospheric planetary waves that can lead to changes in the global surface air–sea conditions and subsequently fishery changes. In this study, the five decadal regime shifts (1956–1957, 1964–1965, 1977–1978, 1988–1989, and 1998–1999 in the recent 59 years (1950–2008 have been identified based on student t tests and their association with global marine ecosystem change has been discussed. Changes in the three major oceanic (Pacific, Atlantic and Indian ecosystems will be explored with the goal of demonstrating the linkage between stratospheric planetary waves and the ocean surface forcing that leads to fisheries impacts. Due to the multidisciplinary audience, the global forcing mechanism is described from a top-down approach to help the multidisciplinary audience follow the analysis. Following previous work, this analysis addresses how changes in the atmospheric planetary waves may influence the vertical wind structure, surface wind stress, and their connection with the global ocean ecosystems based on a coupling of the atmospheric regime shifts with the decadal regime shifts determined from marine life changes. The multiple decadal regime shifts related to changes in marine life are discussed using the United Nations Food and Agriculture Organization's (FAO global fish capture data (catch/stock. Analyses are performed to demonstrate the interactions between the atmosphere, ocean, and fisheries are a plausible approach to explaining decadal climate change in the global marine ecosystems and its impacts. The results show a consistent mechanism, ocean wind stress, responsible for marine shifts in the three major ocean basins. Changes in the planetary wave pattern affect the ocean wind stress patterns. A change in the ocean surface wind pattern from long wave (relatively
Wave Modeling of the Solar Wind.
Ofman, Leon
The acceleration and heating of the solar wind have been studied for decades using satellite observations and models. However, the exact mechanism that leads to solar wind heating and acceleration is poorly understood. In order to improve the understanding of the physical mechanisms that are involved in these processes a combination of modeling and observational analysis is required. Recent models constrained by satellite observations show that wave heating in the low-frequency (MHD), and high-frequency (ion-cyclotron) range may provide the necessary momentum and heat input to coronal plasma and produce the solar wind. This review is focused on the results of several recent solar modeling studies that include waves explicitly in the MHD and the kinetic regime. The current status of the understanding of the solar wind acceleration and heating by waves is reviewed.
Wind above the treetops; Ueber den Wipfeln
Treder, Joachim [HSH Nordbank AG, Hamburg (Germany). Origination Energy
2013-03-15
The actual developments in policy, economy and society - especially the financial and economic crisis - attend the discussion on a sustainable energy supply. The financing of wind power projects and the reliability of the tariff regime are the decisive preconditions for the realisation of wind power projects. The Federal Government aspires to an amount of 35 per cent of the renewable energy sources at the power supply up to the year 2020. In addition to the utilization of sites by repowering, new priority areas are recognized by the authorities for the energy policy turnaround with wind power. Especially forest areas are focused. Thus, forest areas are attractive for project planners, investors and banks. If the technology supplies a stable and predictable output in the long-term, and if the Federal Government pretends a precise and reliable legal and regulatory environment, an economic utilization of wind power is possible in form of a project financing.
Transient growth in Rayleigh-Bénard-Poiseuille/Couette convection
John Soundar Jerome, J.; Chomaz, Jean-Marc; Huerre, Patrick
2012-04-01
An investigation of the effect of a destabilizing cross-stream temperature gradient on the transient growth phenomenon of plane Poiseuille flow and plane Couette flow is presented. Only the streamwise-uniform and nearly streamwise-uniform disturbances are highly influenced by the Rayleigh number Ra and Prandtl number Pr. The maximum optimal transient growth Gmax of streamwise-uniform disturbances increases slowly with increasing Ra and decreasing Pr. For all Ra and Pr, at moderately large Reynolds numbers Re, the supremum of Gmax is always attained for streamwise-uniform perturbations (or nearly streamwise-uniform perturbations, in the case of plane Couette flow) which produce large streamwise streaks and Rayleigh-Bénard convection rolls (RB). The optimal growth curves retain the same large-Reynolds-number scaling as in pure shear flow. A 3D vector model of the governing equations demonstrates that the short-time behavior is governed by the classical lift-up mechanism and that the influence of Ra on this mechanism is secondary and negligible. The optimal input for the largest long-time response is given by the adjoint of the dominant eigenmode with respect to the energy scalar product: the RB eigenmode without its streamwise velocity component. These short-time and long-time responses depict, to leading order, the optimal transient growth G(t). At moderately large Ra (or small Pr at a fixed Ra), the dominant adjoint mode is a good approximation to the optimal initial condition for all time. Over a general class of norms that can be considered as growth functions, the results remain qualitatively similar, for example, the dominant adjoint eigenmode still approximates the maximum optimal response.
Rotating non-Boussinesq Rayleigh-Benard convection
Moroz, Vadim Vladimir
This thesis makes quantitative predictions about the formation and stability of hexagonal and roll patterns in convecting system unbounded in horizontal direction. Starting from the Navier-Stokes, heat and continuity equations, the convection problem is then reduced to normal form equations using equivariant bifurcation theory. The relative stabilities of patterns lying on a hexagonal lattice in Fourier space are then determined using appropriate amplitude equations, with coefficients obtained via asymptotic expansion of the governing partial differential equations, with the conducting state being the base state, and the control parameter and the non-Boussinesq effects being small. The software package Mathematica was used to calculate amplitude coefficients of the appropriate coupled Ginzburg-Landau equations for the rigid-rigid and free-free case. A Galerkin code (initial version of which was written by W. Pesch et al.) is used to determine pattern stability further from onset and for strongly non-Boussinesq fluids. Specific predictions about the stability of hexagon and roll patterns for realistic experimental conditions are made. The dependence of the stability of the convective patterns on the Rayleigh number, planform wavenumber and the rotation rate is studied. Long- and shortwave instabilities, both steady and oscillatory, are identified. For small Prandtl numbers oscillatory sideband instabilities are found already very close to onset. A resonant mode interaction in hexagonal patterns arising in non-Boussinesq Rayleigh-Benard convection is studied using symmetry group methods. The lowest-order coupling terms for interacting patterns are identified. A bifurcation analysis of the resulting system of equations shows that the bifurcation is transcritical. Stability properties of resulting patterns are discussed. It is found that for some fluid properties the traditional hexagon convection solution does not exist. Analytical results are supported by numerical
Casner, A., E-mail: alexis.casner@cea.fr; Masse, L.; Liberatore, S.; Loiseau, P.; Masson-Laborde, P. E.; Jacquet, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Martinez, D.; Moore, A. S.; Seugling, R.; Felker, S.; Haan, S. W.; Remington, B. A.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Farrell, M.; Giraldez, E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States)
2015-05-15
Academic tests in physical regimes not encountered in Inertial Confinement Fusion will help to build a better understanding of hydrodynamic instabilities and constitute the scientifically grounded validation complementary to fully integrated experiments. Under the National Ignition Facility (NIF) Discovery Science program, recent indirect drive experiments have been carried out to study the ablative Rayleigh-Taylor Instability (RTI) in transition from weakly nonlinear to highly nonlinear regime [A. Casner et al., Phys. Plasmas 19, 082708 (2012)]. In these experiments, a modulated package is accelerated by a 175 eV radiative temperature plateau created by a room temperature gas-filled platform irradiated by 60 NIF laser beams. The unique capabilities of the NIF are harnessed to accelerate this planar sample over much larger distances (≃1.4 mm) and longer time periods (≃12 ns) than previously achieved. This extended acceleration could eventually allow entering into a turbulent-like regime not precluded by the theory for the RTI at the ablation front. Simultaneous measurements of the foil trajectory and the subsequent RTI growth are performed and compared with radiative hydrodynamics simulations. We present RTI growth measurements for two-dimensional single-mode and broadband multimode modulations. The dependence of RTI growth on initial conditions and ablative stabilization is emphasized, and we demonstrate for the first time in indirect-drive a bubble-competition, bubble-merger regime for the RTI at ablation front.
Martinez, David
2015-11-01
We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.
Petrescu, Laura; Darbyshire, Fiona; Bastow, Ian; Totten, Eoghan; Gilligan, Amy
2017-05-01
The thick, seismically fast lithospheric keels underlying continental cores (cratons) are thought to have formed in the Precambrian and resisted subsequent tectonic destruction. A consensus is emerging from a variety of disciplines that keels are vertically stratified, but the processes that led to their development remain uncertain. Eastern Canada is a natural laboratory to study Precambrian lithospheric formation and evolution. It comprises the largest Archean craton in the world, the Superior Craton, surrounded by multiple Proterozoic orogenic belts. To investigate its lithospheric structure, we construct a frequency-dependent anisotropic seismic model of the region using Rayleigh waves from teleseismic earthquakes recorded at broadband seismic stations across eastern Canada. The joint interpretation of phase velocity heterogeneity and azimuthal anisotropy patterns reveals a seismically fast and anisotropically complex Superior Craton. The upper lithosphere records fossilized Archean tectonic deformation: anisotropic patterns align with the orientation of the main tectonic boundaries at periods ≤110 s. This implies that cratonic blocks were strong enough to sustain plate-scale deformation during collision at 2.5 Ga. Cratonic lithosphere with fossil anisotropy partially extends beneath adjacent Proterozoic belts. At periods sensitive to the lower lithosphere, we detect fast, more homogenous, and weakly anisotropic material, documenting postassembly lithospheric growth, possibly in a slow or stagnant convection regime. A heterogeneous, anisotropic transitional zone may also be present at the base of the keel. The detection of multiple lithospheric fabrics at different periods with distinct tectonic origins supports growing evidence that cratonization processes may be episodic and are not exclusively an Archean phenomenon.
Analysis of Rayleigh-Taylor Instability Part I: Bubble and Spike Count
Kamath, C; Gezahegne, A; Miller, P
2006-08-08
The use of high-performance computers to simulate hydrodynamic instabilities has resulted in the generation of massive amounts of data. One aspect of the analysis of this data involves the identification and characterization of coherent structures known as ''bubbles'' and ''spikes''. This can be a challenge as there is no precise definition of these structures, and the large size of the data, as well as its distributed nature, precludes any extensive experimentation with different definitions and analysis algorithms. In this report, we describe the use of image processing techniques to identify and count bubbles and spikes in the Rayleigh-Taylor instability, which occurs when an initially perturbed interface between a heavier fluid and a lighter fluid is allowed to grow under the influence of gravity. We analyze data from two simulations, one a large-eddy simulation with 30 terabytes of analysis data, and the other a direct numerical simulation with 80 terabytes of analysis data. We consider different techniques to first convert the three-dimensional data to two dimensions and then count the structures of interest in the two-dimensional data. Our analysis of the bubble and spike counts over time indicates that there are four distinct regimes in the process of the mixing of the two fluids, starting from the initial linear stage, followed by the non-linear stage with weak turbulence, the mixing transition stage, and the final stage of strong turbulence. We also show that our results are relatively insensitive to the parameters used in our algorithms.
Wind-induced leaf transpiration
Huang, Cheng-Wei; Chu, Chia-Ren; Hsieh, Cheng-I.; Palmroth, Sari; Katul, Gabriel G.
2015-12-01
While the significance of leaf transpiration (fe) on carbon and water cycling is rarely disputed, conflicting evidence has been reported on how increasing mean wind speed (U) impacts fe from leaves. Here, conditions promoting enhancement or suppression of fe with increasing U for a wide range of environmental conditions are explored numerically using leaf-level gas exchange theories that combine a stomatal conductance model based on optimal water use strategies (maximizing the 'net' carbon gain at a given fe), energy balance considerations, and biochemical demand for CO2. The analysis showed monotonic increases in fe with increasing U at low light levels. However, a decline in modeled fe with increasing U were predicted at high light levels but only in certain instances. The dominant mechanism explaining this decline in modeled fe with increasing U is a shift from evaporative cooling to surface heating at high light levels. New and published sap flow measurements for potted Pachira macrocarpa and Messerschmidia argentea plants conducted in a wind tunnel across a wide range of U (2 - 8 m s-1) and two different soil moisture conditions were also employed to assess how fe varies with increasing U. The radiative forcing imposed in the wind tunnel was only restricted to the lower end of expected field conditions. At this low light regime, the findings from the wind tunnel experiments were consistent with the predicted trends.
Monetary regimes in open economies
Korpos, A.
2006-01-01
This thesis presents a two-country open economy framework for the analysis of strategic interactions among monetary authorities and wage bargaining institutions. From this perspective, the thesis investigates the economic consequences of replacing flexible and fixed exchange rate regimes with a mone
Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars
: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed......Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed...
2004-01-01
[figure removed for brevity, see original site] Released 12 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. Windstreaks are features caused by the interaction of wind and topographic landforms. The raised rims and bowls of impact craters causes a complex interaction such that the wind vortex in the lee of the crater can both scour away the surface dust and deposit it back in the center of the lee. If you look closely, you will see evidence of this in a darker 'rim' enclosing a brighter interior. Image information: VIS instrument. Latitude 6.9, Longitude 69.4 East (290.6 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing
The effect of transparency on stratification and mixing regime in lakes
Shatwell, Tom; Adrian, Rita; Kirillin, Georgiy
2016-04-01
The mixing regime is fundamentally important to lake ecology. Whereas shallow lakes mix to the bottom regularly, deep lakes tend to stratify seasonally. Water transparency strongly affects stratification duration and the mixing regime of lakes of intermediate depth. We review our recent research on how water transparency affects stratification duration and mixing regime in lakes. Firstly we derive physical scaling for the critical depth at which lakes switch from polymixis to seasonal stratification based on the radiation balance, the wind speed, water transparency and lake length. This scaling relation showed that the critical depth varies almost linearly with Secchi depth (transparency) and successfully classified the mixing regime of over 80% of the 379 lakes in our dataset. Secondly we investigated how seasonal variation in transparency due to phytoplankton affects stratification and mixing by analysing long term lake data and performing simulations with a hydrodynamic model. Here we found that the spring clear water phase, which is caused when zooplankton graze the spring phytoplankton bloom, can strongly influence stratification duration and sometimes also the mixing regime. Finally using model simulations of climate scenarios, we show how global warming and a change in transparency can potentially affect lake mixing regimes. Polymictic - dimictic regime shifts were more sensitive to transparency than warming, whereas dimictic - monomictic regime shifts were more sensitive to warming than transparency. Transparency has the strongest effect on stratification in clear lakes between 4 and 10 m deep. Changes in transparency due to biotic interactions or anthropogenic impact may lead to mixing regime shifts in these lakes.
Transient regimes of the three-phase power transformers
Olivian Chiver
2015-12-01
Full Text Available The transient regimes of a three-phase power transformer will be studied in this paper. The transient currents in the windings will be determined both analytically and by finite elements method (FEM. The no load and short circuit regimes will be considered. The current dependence of the instantaneous phase voltage and of the initial current value will be highlighted, by FEM. In order to determine analytically the transient currents, for inductances the analytical and FEM values will be used. The inductances are determined with FEM through the simulation of experimental tests. With FEM, the transient currents will be determined using transient analysis. Finally, the FEM and analytical results will be compared and discussed.
Liming, Drew; Hamilton, James
2011-01-01
As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…
Swapp, Andy; Schreuders, Paul; Reeve, Edward
2011-01-01
Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…
Swapp, Andy; Schreuders, Paul; Reeve, Edward
2011-01-01
Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…
Sub-Rayleigh ghost imaging via sparsity constraints based on a digital micro-mirror device
Chen, Jie; Gong, Wenlin, E-mail: gongwl@siom.ac.cn; Han, Shensheng, E-mail: sshan@mail.shcnc.ac.cn
2013-10-30
In a diffraction-limited system, the imaging resolution limit is given by Rayleigh criterion. When both the image's sparsity and the point spread function determined by the optical system's Rayleigh diffraction limit are taken as popular a priori, sub-Rayleigh ghost imaging, which is backed up by numerical simulation and experiments, is achieved by modulating the thermal light with a digital micro-mirror device (DMD). The differences between this approach and former ghost imaging without considering the optical system's point spread function are also discussed.
Study of Rayleigh scattering for visualization of helium-air mixing at Mach 6
Shirinzadeh, B.; Balla, R. J.; Hillard, M. E.; Anders, J. B.; Exton, R. J.; Waitz, I. A.
1991-01-01
Using an ArF excimer laser, planar Rayleigh scattering measurements were performed to investigate helium mixing into air at supersonic speeds. These experiments were conducted in the Mach 6, high-Reynolds-number facility at NASA Langley Research Center. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment was demonstrated. The qualitative agreement between the averaged Rayleigh results and the reduced mean-mass-densities obtained from probe measurements substantiate that careful application of the technique, even in the presence of clusters, can give very useful results. It was also demonstrated that planar, quantitative measurements can be made in the absence of clusters.
Early Warning Signals for Regime Transition in the Stable Boundary Layer
Hooijdonk, van I.G.S.; Moene, A.F.; Scheffer, M.; Clercx, H.J.H.; Wiel, van de B.J.H.
2017-01-01
The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically
Algorithm for wind speed estimate with polarimetric radar
Ю. А. Авер’янова
2013-07-01
Full Text Available The connection of wind speed and drops behavior is substantiated as well as the drop behavior influence onto the polarization characteristics of electromagnetic waves. The expression to calculate the wind speed taking into account the Weber number for the critical regime of drop deformation is obtained. The critical regime of drop deformation is the regime when drop is divided into two parts. The dependency of critical wind speed on the drop diameter is calculated and shown. The concept o polarization spectrum that is introduced in the previous papers is used to estimate the dynamic processes in the atmosphere. At the moment when the drop is under the influence of the wind that is equal to the critical wind speed the drop will be divided into two parts. This process will be reflected as the appearance of the two equal components of polarization spectra of reflected electromagnetic waves at the orthogonal antennas of Doppler Polarimetric Radar. Owing the information about the correspondence of the polarization component energy level to the drop diameter it is possible to estimate the wind speed with the obtained dependency. The process of the wind speed estimate with polarimetric radar is presented with the developed common algorithm
The use of wind energy in Brasil
Hirata, M.H. (Laboratorio de Mecanica dos Fluidos-Aerodinamica, PEM-COPPE/UFRJ, Rio de Janeiro (BR))
1991-01-01
The main objective of this paper is to provide a brief introductory survey of the wind energy in Brazil. A description of the wind in the country which enables one to identify some regions with a good wind regime is presented. For two of these promissing regions some complementary data about the wind distribution are available; these are the northeast and the south regions of the country. The second part of the paper deals with the use of wind energy in Brazil. An introduction to the generation and distribution of electricity is made and a conclusion that the generation of electricity for rural areas is the most promissing application of the wind energy. The energy for rural areas would be used mainly for irrigation purposes in order to substitute for the existing diesel pumps; of course with the introduction of wind energy for irrigation the agriculture frontier would expand, not only in the traditionally productive regions, but also in the midwest region which is characterized for having a good soil but not so much rain. (CLS).
Modulational instability in wind-forced waves
Brunetti, Maura
2014-01-01
We consider the wind-forced nonlinear Schroedinger (NLS) equation obtained in the potential flow framework when the Miles growth rate is of the order of the wave steepness. In this case, the form of the wind-forcing terms gives rise to the enhancement of the modulational instability and to a band of positive gain with infinite width. This regime is characterised by the fact that the ratio between wave momentum and norm is not a constant of motion, in contrast to what happens in the standard case where the Miles growth rate is of the order of the steepness squared.
Polarizing Michelson interferometer for measuring thermospheric winds
Bird, J.C.
1991-01-01
The Polarizing Atmospheric Michelson Interferometer, PAMI, a new version of the Wide Angle Michelson Interferometer, is used to measure winds in the termosphere. In the polarizing instrument, the optical path difference is changed simply by rotating a polarizing filter external to the interferometer. This allows a very simple scanning mechanism. PAMI is similar to other instruments such as WAMDII that measure thermospheric winds and temperatures, retaining the benefits of high light throughput, while offering advantages including lower cost, simplicity, and portability. The instrument is highly sensitive and thus is designed to be used for field measurements at locations far from city lights. Results are shown from the AIDA observation campaign in Puerto Rico where coordinated observations were made by PAMI along with other optical and radio measurements during April and May 1989. Intensities of the green line layer at 95 km were compared to those observed by several other instruments. For example, MORTI (Mesopause Oxygen Rotational Temperature Imager), a colocated instrument which was looking at the 94 km 867.6 nm molecular oxygen emission. MORTI and PAMI emission rates were found to show the same trends. On the brightest night recorded during April, the zenith emission rate reached over 400 Rayleighs; emission enhancements were sometimes related to auroral events. During the observing period of April 4 to April 11, 1989, most of the observations of the 94 km airglow were after midnight where the winds were found to be generally towards the north east at about 50 to 100 m/s. During auroral activity this wind vector always turned counterclockwise, towards the west. During the nights of May 2 and May 6 these wind vectors follow a wave-like variation in magnitude and direction. It is concluded that auroral activity changes the global circulation in a way that sometimes transports increased amounts of oxygen atoms over Arecibo.
Spectral variability of classical T Tauri stars accreting in an unstable regime
Kurosawa, Ryuichi
2013-01-01
Classical T Tauri stars (CTTSs) are variable in different time-scales. One type of variability is possibly connected with the accretion of matter through the Rayleigh-Taylor instability that occurs at the interface between an accretion disc and a stellar magnetosphere. In this regime, matter accretes in a several temporarily formed accretion streams or `tongues' which appear in random locations, and produce stochastic photometric and line variability. We use the results of global three-dimensional magnetohydrodynamic simulations of matter flows in both stable and unstable accretion regimes to calculate time-dependent hydrogen line profiles and study their variability behaviours. In the stable regime, some hydrogen lines (e.g. H-beta, H-gamma, H-delta, Pa-beta and Br-gamma) show a redshifted absorption component only during a fraction of a stellar rotation period, and its occurrence is periodic. However, in the unstable regime, the redshifted absorption component is present rather persistently during a whole s...
National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from Wind Gust Charts. Record contains hourly wind directions and speed with a peak wind recorded at the end of each day. Sorted by: station,...
Periodic Partial Extinction Regime in Acoustically Coupled Fuel Droplet Combustion
Plascencia Quiroz, Miguel; Bennewitz, John; Vargas, Andres; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann
2016-11-01
This experimental study investigates the response of burning liquid fuel droplets exposed to standing acoustic waves, extending prior studies quantifying mean and temporal flame response to moderate acoustic excitation. This investigation explores alternative fuels exposed to a range of acoustic forcing conditions (frequencies and amplitudes), with a focus on ethanol and JP-8. Three fundamental flame regimes are observed: sustained oscillatory combustion, periodic partial extinction and reignition (PPER), and full extinction. Phase-locked OH* chemiluminescence imaging and local temporal pressure measurements allow quantification of the combustion-acoustic coupling through the local Rayleigh index G. As expected, PPER produces negative G values, despite having clear flame oscillations. PPER is observed to occur at low-frequency, high amplitude excitation, where the acoustic time scales are large compared with kinetic/reaction times scales for diffusion-limited combustion processes. These quantitative differences in behavior are determined to depend on localized fluid mechanical strain created by the acoustic excitation as well as reaction kinetics. Supported by AFOSR Grant FA9550-15-1-0339.
Perotti, Jose; Voska, Ned (Technical Monitor)
2002-01-01
This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.
Exchange rate regimes and monetary arrangements
Ivan Ribnikar
2005-06-01
Full Text Available There is a close relationship between a country’s exchange rate regime and monetary arrangement and if we are to examine monetary arrangements then exchange rate regimes must first be analysed. Within the conventional and most widely used classification of exchange rate regimes into rigid and flexible or into polar regimes (hard peg and float on one side, and intermediate regimes on the other there, is a much greater variety among intermediate regimes. A more precise and, as will be seen, more useful classification of exchange rate regimes is the first topic of the paper. The second topic is how exchange rate regimes influence or determine monetary arrangements and monetary policy or monetary policy regimes: monetary autonomy versus monetary nonautonomy and discretion in monetary policy versus commitment in monetary policy. Both topics are important for countries on their path to the EU and the euro area
Lorna Weir
2008-07-01
Full Text Available “Truth regime” is a much used but little theorized concept, with the Foucauldian literature presupposing that truth in modernity is uniformly scientific/quasi-scientific and enhances power. I argue that the forms of truth characteristic of our present are wider than Foucault recognized, their relations to power more various, and their historicity more complex. The truth regime of advanced modernity is characterized by multiple, irreducible truth formulae that co-exist and sometimes vie for dominance. A truth formula stabilizes a network of elements: a relation between representation and presentation (words and things, truth and non-truth, and the place of the subject in discourse. Our contemporary truth regime comprises radically heterogeneous truthful knowledges – science, governance, religion/politics, and common culture – that have distinct histories and relations to power.
Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing
Susie Wright
2017-07-01
Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.
Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method
ZHANG Xu; TAN Duo-Wang
2009-01-01
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady threedimensional high-order spectral element method code.The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation.The code is first validated with the results of linear stability perturbation theory.Then several characteristics of the Rayleigh-Taylor instabjJjties are studied using this three-dimensional unsteady code,inducling instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers.These results indicate that turbulent structures ofRayleigh-Taylor instabilities are strongly dependent on the initial conditions.The results also suggest that a high-order numerical method should provide the capability of sir.ulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows.
Fast Sampling for Strongly Rayleigh Measures with Application to Determinantal Point Processes
Li, Chengtao; Jegelka, Stefanie; Sra, Suvrit
2016-01-01
In this note we consider sampling from (non-homogeneous) strongly Rayleigh probability measures. As an important corollary, we obtain a fast mixing Markov Chain sampler for Determinantal Point Processes.
Declercq, Nico Felicien
2014-02-01
When a bounded beam is incident on an immersed plate Lamb waves or Rayleigh waves can be generated. Because the amplitude of a bounded beam is not constant along its wave front, a specific beam profile is formed that influences the local efficiency of energy conversion of incident sound into Lamb waves or Rayleigh waves. Understanding this phenomenon is important for ultrasonic immersion experiments of objects because the quality of such experiments highly depends on the amount of energy transmitted into the object. This paper shows by means of experiments based on monochromatic Schlieren photography that the area within the bounded beam responsible for Lamb wave generation differs from that responsible for Rayleigh wave generation. Furthermore it provides experimental verification of an earlier numerical study concerning Rayleigh wave generation.
Demonstration of Shear Waves, Lamb Waves, and Rayleigh Waves by Mode Conversion.
Leung, W. P.
1980-01-01
Introduces an experiment that can be demonstrated in the classroom to show that shear waves, Rayleigh waves, and Lamb waves can be easily generated and observed by means of mode conversion. (Author/CS)
Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space
Baljeet Singh
2013-01-01
Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.
Generalized Rayleigh quotient and finite element two-grid discretization schemes
2009-01-01
This study discusses generalized Rayleigh quotient and high efficiency finite element discretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint problems. Generalized Rayleigh quotients of operator form and weak form are defined and the basic relationship between approximate eigenfunction and its generalized Rayleigh quotient is established. 2) New error estimates are obtained by replacing the ascent of exact eigenvalue with the ascent of finite element approximate eigenvalue. 3) Based on the work of Xu Jinchao and Zhou Aihui, finite element two-grid discretization schemes are established to solve nonselfadjoint elliptic differential operator eigenvalue problems and these schemes are used in both conforming finite element and non-conforming finite element. Besides, the efficiency of the schemes is proved by both theoretical analysis and numerical experiments. 4) Iterated Galerkin method, interpolated correction method and gradient recovery for selfadjoint elliptic differential operator eigenvalue problems are extended to nonselfadjoint elliptic differential operator eigenvalue problems.
Thompson, Laird A.; Teare, Scott W.
2002-09-01
Laser guide stars created by Rayleigh scattering provide a reasonable means to monitor atmospheric wavefront distortions for real-time correction by adaptive optics systems. Because of the λ-4 wavelength dependence of Rayleigh scattering, short-wavelength lasers are a logical first choice for astronomical laser guide star systems, and in this paper we describe the results from a sustained experimental effort to integrate into an adaptive optics system a 351 nm Rayleigh laser guide star created at an altitude of 20 km (above mean sea level) at the Mount Wilson 2.5 m telescope. In addition to providing obvious scientific benefits, the 351 nm laser guide star projected by the University of Illinois Seeing Improvement System is ``stealth qualified'' in terms of the Federal Aviation Administration and airplane avoidance. Because of the excellent return signal at the wavefront sensor, there is no doubt that future applications will be found for short-wavelength Rayleigh-scattered laser guide stars.
Rayleigh-Taylor Instability in a Relativistic Fireball on a Moving Computational Grid
Duffell, Paul C
2013-01-01
We numerically calculate the growth and saturation of the Rayleigh-Taylor instability caused by the deceleration of relativistic outflows with Lorentz factor \\Gamma = 10, 30, and 100. The instability generates turbulence whose scale exhibits strong dependence on Lorentz factor, as only modes within the causality scale \\Delta \\theta ~ 1/\\Gamma can grow. We develop a simple diagnostic to measure the fraction of energy in turbulent eddies and use it to estimate magnetic field amplification by the instability. We estimate a magnetic energy fraction ~ 0.01 due to Rayleigh-Taylor turbulence in a shock-heated region behind the forward shock. The instability completely disrupts the contact discontinuity between the ejecta and the swept up circumburst medium. The reverse shock is stable, but is impacted by the Rayleigh-Taylor instability, which strengthens the reverse shock and pushes it away from the forward shock. The forward shock front is unaffected by the instability, but Rayleigh-Taylor fingers can penetrate abo...
Generalized Rayleigh quotient and finite element two-grid discretization schemes
YANG YiDu; FAN XinYue
2009-01-01
This study discusses generalized Rayleigh quotient and high efficiency finite element dis-cretization schemes. Some results are as follows: 1) Rayleigh quotient accelerate technique is extended to nonselfadjoint problems. Generalized Rayleigh quotients of operator form and weak form are defined and the basic relationship between approximate eigenfunction and its generalized Rayleigh quotient is established. 2) New error estimates are obtained by replacing the ascent of exact eigenvalue with the ascent of finite element approximate eigenvalue. 3) Based on the work of Xu Jinchao and Zhou Aihui, finite element two-grid discretization schemes are established to solve nonselfadjoint elliptic differential operator eigenvalue problems and these schemes are used in both conforming finite element and non-conforming finite element. Besides, the efficiency of the schemes is proved by both theoretical analysis and numerical experiments. 4) Iterated Galerkin method, interpolated correction method and gradient recovery for selfadjoint elliptic differential operator eigenvalue problems are extended to nonselfadjoint elliptic differential operator eigenvalue problems.
Zernike polynomial based Rayleigh-Ritz model of a piezoelectric unimorph deformable mirror
Long, CS
2012-04-01
Full Text Available , are routinely and conveniently described using Zernike polynomials. A Rayleigh-Ritz structural model, which uses Zernike polynomials directly to describe the displacements, is proposed in this paper. The proposed formulation produces a numerically inexpensive...
Baring-Gould, I.
2010-05-01
As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.
None
1995-05-01
This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.
Detecting spatial regimes in ecosystems
Sundstrom, Shana M.; Eason, Tarsha; Nelson, R. John; Angeler, David G.; Barichievy, Chris; Garmestani, Ahjond S.; Graham, Nicholas A.J.; Granholm, Dean; Gunderson, Lance; Knutson, Melinda; Nash, Kirsty L.; Spanbauer, Trisha; Stow, Craig A.; Allen, Craig R.
2017-01-01
Research on early warning indicators has generally focused on assessing temporal transitions with limited application of these methods to detecting spatial regimes. Traditional spatial boundary detection procedures that result in ecoregion maps are typically based on ecological potential (i.e. potential vegetation), and often fail to account for ongoing changes due to stressors such as land use change and climate change and their effects on plant and animal communities. We use Fisher information, an information theory-based method, on both terrestrial and aquatic animal data (U.S. Breeding Bird Survey and marine zooplankton) to identify ecological boundaries, and compare our results to traditional early warning indicators, conventional ecoregion maps and multivariate analyses such as nMDS and cluster analysis. We successfully detected spatial regimes and transitions in both terrestrial and aquatic systems using Fisher information. Furthermore, Fisher information provided explicit spatial information about community change that is absent from other multivariate approaches. Our results suggest that defining spatial regimes based on animal communities may better reflect ecological reality than do traditional ecoregion maps, especially in our current era of rapid and unpredictable ecological change.
Tsui, Po-Hsiang; Wan, Yung-Liang; Tai, Dar-In; Shu, Yu-Chen
2015-08-01
Ultrasound Nakagami imaging has recently attracted interest as an imaging technique for analyzing envelope statistics. Because the presence of structures has a strong effect on estimation of the Nakagami parameter, previous studies have indicated that Nakagami imaging should be used specifically for characterization of soft tissues with fewer structures, such as liver tissues. Typically, changes in the properties of the liver parenchyma cause the backscattered statistics to transform from a Rayleigh distribution to a pre-Rayleigh distribution, and this transformation can be visualized using a Nakagami imaging technique. However, different estimators result in different estimated values; thus, the performance of a Nakagami image may depend on the type of estimator used. This study explored the effects of various estimators on ultrasound Nakagami imaging to describe the backscattered statistics as they change from a Rayleigh distribution to a pre-Rayleigh distribution. Simulations and clinical measurements involving patients with liver fibrosis (n = 85) yielded image data that were used to construct B-mode and conventional Nakagami images based on the moment estimator (denoted as mINV images) and maximum-likelihood estimator (denoted as mML images). In addition, novel window-modulated compounding Nakagami images based on the moment estimator (denoted as mWMC images) were also obtained. The means and standard deviations of the Nakagami parameters were examined as a function of the backscattered statistics. The experimental results indicate that the mINV, mML and mWMC images enabled quantitative visualization of the change in backscattered statistics from a Rayleigh distribution to a pre-Rayleigh distribution. Importantly, the mWMC image is superior to both mINV and mML images because it simultaneously realizes sensitive detection of the backscattered statistics and a reduction of estimation variance for image smoothness improvement. We therefore recommend using m
The 1.5 MW wind turbine of tomorrow
De Wolff, T.J.; Sondergaard, H. [Nordtank Energy Group, Richmond, VA (United States)
1996-12-31
The Danish company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2300 wind turbine generators with a total name plate capacity that is exceeding 350 MW. This paper will describe two major wind turbine technology developments that Nordtank has accomplished during the last year: Site Optimization of Nordtank wind turbines: Nordtank has developed a flexible design concept for its WTGs in the 500/600 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Nordtank`s 1.5 MW wind turbine: In September 1995, Nordtank was the first company to install a commercial 1.5 NM WTG. This paper will document the development process, the design as well as operations of the Nordtank 1.5 MW WTG.
Forecasting Evaluation of WindSat in the Coastal Environment
Lee, Thomas F.; Bettenhausen, Mike H.; Hawkins, Jeffrey D.; Richardson, Kim; Jedlovec, Gary; Smith, Matt
2012-01-01
WindSat has demonstrated that measurements from polarimetric space-based microwave radiometers can be used to retrieve global ocean surface vector winds. Since the date of launch in 2003, substantial incremental improvements have been made to WindSat data processing, calibration, and retrieval algorithms. The retrievals now have higher resolution, improved wind vector ambiguity removal, and enhanced capability to represent high winds. Utilization of WindSat retrievals (wind vectors, total precipitable water, rainrate and sea surface temperature) will be demonstrated in the context of operational weather forecasting applications, especially the monitoring of topographically-forced winds. Examples will be presented from various parts of the world, including inland seas, midlatitude oceans, the tropics, and the United States. We will illustrate retrievals in extreme high- and extreme low-wind regimes, both of which can be problematic. Rain contamination will be addressed. We will include a comparison of WindSat vector maps to corresponding maps from the QuikScat scatterometer. We will discuss how near-realtime data from WindSat is being transitioned to specific offices within the National Weather Service.
Quasi-Rayleigh waves in butt-welded thick steel plate
Kamas, Tuncay; Giurgiutiu, Victor; Lin, Bin
2015-03-01
This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.
无
2011-01-01
This letter reports experimental observation of a direct correlation between the acoustic nonlinearity parameter (NP) measured with nonlinear Rayleigh waves and the accumulation of plasticity damage in an AZ31 magnesium alloy plate specimen.Rayleigh waves are generated and detected with wedge transducers,and the NPs are measured at different stress levels.The results show that there is a significant increase in the NPs with monotonic tensile loads surpassing the material's yielding stress.The research sugge...
Quasi-Rayleigh waves in butt-welded thick steel plate
Kamas, Tuncay, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Giurgiutiu, Victor, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu; Lin, Bin, E-mail: kamas@email.sc.edu, E-mail: victorg@sc.edu, E-mail: linbin@cec.sc.edu [Mechanical Engineering University of South Carolina, 300 Main Str., Columbia, SC 29208 (United States)
2015-03-31
This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.
Degenerate Rayleigh-Plateau instability in a magnetically annealed colloidal dispersion
Swan, James W; First, Eric M
2013-01-01
This fluid dynamics video depicts the evolution of a suspension of paramagnetic colloids un- der the influence of a uniform, pulsed magnetic field. At low pulse frequencies, the suspension condenses into columns which decompose via a Rayleigh-Plateau instability. At high pulse fre- quencies, the suspension forms a kinetically arrested, system spanning network. We demonstrate the degeneration of the Rayleigh-Plateau instability with increasing pulse frequency.
Initial versus tangent stiffness-based Rayleigh damping in inelastic time history seismic analyses
Jehel, Pierre; Ibrahimbegovic, Adnan
2013-01-01
In the inelastic time history analyses of structures in seismic motion, part of the seismic energy that is imparted to the structure is absorbed by the inelastic structural model, and Rayleigh damping is commonly used in practice as an additional energy dissipation source. It has been acknowledged that Rayleigh damping models lack physical consistency and that, in turn, it must be carefully used to avoid encountering unintended consequences as the appearance of artificial damping. There are concerns raised by the mass proportional part of Rayleigh damping, but they are not considered in this paper. As far as the stiffness proportional part of Rayleigh damping is concerned, either the initial structural stiffness or the updated tangent stiffness can be used. The objective of this paper is to provide a comprehensive comparison of these two types of Rayleigh damping models so that a practitioner (i) can objectively choose the type of Rayleigh damping model that best fits her/his needs and (ii) is provided with u...
The dynamics of radiation driven, optically thick winds
Shen, Rong-Feng; Piran, Tsvi
2016-01-01
Recent observation of some luminous transient sources with low color temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass loss rate regimes ($\\dot{M} > L_{\\rm Edd\\,}/c^2$). In the large total luminosity regime the solution resembles an adiabatic wind solution. Both the radiative luminosity, $L$, and the kinetic luminosity, $L_k$, are super-Eddington with $L < L_k$ and $L \\propto L_k^{1/3}$. In the lower total luminosity regime most of the energy is carried out by the radiation with $L_k < L \\approx L_{\\rm Edd\\,}$. In a third, low mass loss regime ($\\dot{M} < L_{\\rm Edd\\,}/c^2$), the wind becomes optically t...
Linear Rayleigh-Taylor instability for viscous, compressible fluids
Guo, Yan
2009-01-01
We study the equations obtained from linearizing the compressible Navier-Stokes equations around a steady-state profile with a heavier fluid lying above a lighter fluid along a planar interface, i.e. a Rayleigh-Taylor instability. We consider the equations with or without surface tension, with the viscosity allowed to depend on the density, and in both periodic and non-periodic settings. In the presence of viscosity there is no natural variational framework for constructing growing mode solutions to the linearized problem. We develop a general method of studying a family of modified variational problems in order to produce maximal growing modes. Using these growing modes, we construct smooth (when restricted to each fluid domain) solutions to the linear equations that grow exponentially in time in Sobolev spaces. We then prove an estimate for arbitrary solutions to the linearized equations in terms of the fastest possible growth rate for the growing modes. In the periodic setting, we show that sufficiently sm...
Critical Magnetic Number in the MHD Rayleigh-Taylor instability
Wang, Yanjin
2010-01-01
We reformulate in Lagrangian coordinates the two-phase free boundary problem for the equations of Magnetohydrodynamics in a infinite slab, which is incompressible, viscous and of zero resistivity, as one for the Navier-Stokes equations with a force term induced by the fluid flow map. We study the stabilized effect of the magnetic field for the linearized equations around the steady-state solution by assuming that the upper fluid is heavier than the lower fluid, $i. e.$, the linear Rayleigh-Taylor instability. We identity the critical magnetic number $|B|_c$ by a variational problem. For the cases $(i)$ the magnetic number $\\bar{B}$ is vertical in 2D or 3D; $(ii)$ $\\bar{B}$ is horizontal in 2D, we prove that the linear system is stable when $|\\bar{B}|\\ge |B|_c$ and is unstable when $|\\bar{B}|<|B|_c$. Moreover, for $|\\bar{B}|<|B|_c$ the vertical $\\bar{B}$ stabilizes the low frequency interval while the horizontal $\\bar{B}$ stabilizes the high frequency interval, and the growth rate of growing modes is bou...
Heat Transport by Coherent Rayleigh-B\\'enard Convection
Waleffe, Fabian; Smith, Leslie M
2015-01-01
Steady but generally unstable solutions of the 2D Boussinesq equations are obtained for no-slip boundary conditions and Prandtl number 7. The primary solution that bifurcates from the conduction state at Rayleigh number $Ra \\approx 1708$ has been calculated up to $Ra\\approx 5. 10^6$ and shows heat flux $Nu \\sim 0.143\\, Ra^{0.28}$ with a delicate spiral structure in the temperature field. Another solution that maximizes $Nu$ over the horizontal wavenumber has been calculated up to $Ra=10^9$ and its heat flux scales as $Nu \\sim 0.115\\, Ra^{0.31}$ for $10^7 < Ra \\le 10^9$, quite similar to 3D turbulent data. The latter is a simple yet multi-scale coherent solution whose horizontal wavenumber scales as $0.133 \\, Ra^{0.217}$ in that range. That optimum solution is unstable to larger scale perturbations and in particular to mean shear flows, yet it appears to be relevant as a backbone for turbulent solutions, possibly setting the scale, strength and spacing of elemental plumes.
Reynolds and Atwood Numbers Effects on Homogeneous Rayleigh Taylor Instability
Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam
2015-11-01
The effects of Reynolds and Atwood numbers on turbulent mixing of a heterogeneous mixture of two incompressible, miscible fluids with different densities are investigated by using high-resolution Direct Numerical Simulations (DNS). The flow occurs in a triply periodic 3D domain, with the two fluids initially segregated in random patches, and turbulence is generated in response to buoyancy. In turn, stirring produced by turbulence breaks down the scalar structures, accelerating the molecular mixing. Statistically homogeneous variable-density (VD) mixing, with density variations due to compositional changes, is a basic mixing problem and aims to mimic the core of the mixing layer of acceleration driven Rayleigh Taylor Instability (RTI). We present results covering a large range of kinematic viscosity values for density contrasts including small (A =0.04), moderate (A =0.5), and high (A =0.75 and 0.9) Atwood numbers. Particular interest will be given to the structure of the turbulence and mixing process, including the alignment between various turbulence and scalar quantities, as well as providing fidelity data for verification and validation of mix models. Arindam Banerjee acknowledges support from NSF CAREER award # 1453056.
DSMC Simulations of the Rayleigh-Taylor Instability in Gases
Gallis, Michael; Koehler, Timothy; Torczynski, John; Plimpton, Steven
2015-11-01
The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is applied to simulate the Rayleigh-Taylor instability (RTI) in atmospheric-pressure monatomic gases (e.g., argon and helium). The computational domain is a 1 mm × 4 mm rectangle divided into 50-nm square cells. Each cell is populated with 1000 computational molecules, and time steps of 0.1 ns are used. Simulations are performed to quantify the growth of a single-mode perturbation on the interface as a function of the Atwood number and the gravitational acceleration. The DSMC results qualitatively reproduce all observed features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models. Consistent with previous work in this field, the DSMC simulations indicate that the growth of the RTI follows a universal behavior. For cases with multiple-mode perturbations, the numbers of bubble-spike pairs that eventually appear are found to be in agreement with theoretical results for the most unstable wavelength. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Superaccurate finite element eigenvalues via a Rayleigh quotient correction
Fried, Isaac; Leong, Kaiwen
2005-11-01
The consistent finite element formulation of the vibration problem generates upper bounds on the corresponding exact eigenvalues but requires the solution of the highly expensive general algebraic eigenproblem Kx=λMx with a global matrix M that is of the same sparsity pattern as the global stiffness K. The lumped, diagonal, mass matrix finite element formulation is no longer variationally correct but results in a simplified algebraic eigenproblem of comparable accuracy. We may write the mass matrix as a linear matrix function, M(γ)=M1+γM2, of parameter γ such that M(γ=1) is the (diagonal) lumped mass matrix and M(γ=0) is the consistent mass matrix. It has been shown that an optimal γ exists between these two states which results in superaccurate eigenvalues. What detracts from the appeal of this approach is that the superior accuracy thus achieved comes at the hefty price of having to solve the still general algebraic eigenproblem with a nondiagonal mass matrix. In this note we show that the same superior accuracy can be had by first computing an eigenvector u from Ku=λDu, in which D=M1+M2 is the lumped, diagonal, mass matrix, and then obtaining the corresponding, superaccurate, eigenvalue from the Rayleigh quotient R[u]=uTKu/uTM(γ)u, M(γ)=M1+γM2 for an optimal γ.
Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops.
Chang, Chun-Ti; Bostwick, Joshua B; Steen, Paul H; Daniel, Susan
2013-08-01
In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.
Magneto-Rayleigh-Taylor instability in solid media
Sun, Y. B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Physical Science and Technology, Lanzhou University, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Piriz, A. R., E-mail: roberto.piriz@uclm.es [E.T.S.I. Industriales (Spain); CYTEMA (Spain); Instituto de Investigaciones Energéticas, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)
2014-07-15
A linear analysis of the magneto-Rayleigh-Taylor instability at the interface between a Newtonian fluid and an elastic-plastic solid is performed by considering a uniform magnetic B{sup →}, parallel to the interface, which has diffused into the fluid but not into the solid. It is found that the magnetic field attributes elastic properties to the viscous fluid which enhance the stability region by stabilizing all the perturbation wavelengths shorter than λ{sub 0}∝B{sup 2} for any initial perturbation amplitude. Longer wavelengths are stabilized by the mechanical properties of the solid provided that the initial perturbation wavelength is smaller than a threshold value determined by the yield strength and the shear modulus of the solid. Beyond this threshold, the amplitude grows initially with a growth rate reduced by the solid strength properties. However, such properties do not affect the asymptotic growth rate which is only determined by the magnetic field and the fluid viscosity. The described physical situation intends to resemble some of the features present in recent experiments involving the magnetic shockless acceleration of flyers plates.
Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions.
Yoshikawa, H N; Tadie Fogaing, M; Crumeyrolle, O; Mutabazi, I
2013-04-01
Thermal convection in a dielectric fluid layer between two parallel plates subjected to an alternating electric field and a temperature gradient is investigated under microgravity conditions. A thermoelectric coupling resulting from the thermal variation of the electric permittivity of the fluid produces the dielectrophoretic (DEP) body force, which can be regarded as thermal buoyancy due to an effective gravity. This electric gravity can destabilize a stationary conductive state of the fluid to develop convection. The similarity of the DEP thermal convection with the Rayleigh-Bénard (RB) convection is examined by considering its behavior in detail by a linear stability theory and a two-dimensional direct numerical simulation. The results are analyzed from an energetic viewpoint and in the framework of the Ginzburg-Landau (GL) equation. The stabilizing effects of a thermoelectric feedback make the critical parameters different from those in the RB instability. The nonuniformity of the electric gravity arising from the finite variation of permittivity also affects the critical parameters. The characteristic constants of the GL equation are comparable with those for the RB convection. The heat transfer in the DEP convection is weaker than in the RB convection as a consequence of the feedback that impedes the convection.
Resonance Rayleigh scattering for detection of proteins in HPLC.
Lu, Xin; Luo, Zhihui; Liu, Chengwei; Zhao, Shulin
2008-09-01
An HPLC-resonance Rayleigh scattering (RRS) (HPLC-RRS) detection system is described for separation and detection of proteins. This system is based on the modification of a commercial HPLC instrument involving the addition of a pump and a T-shaped interface, and a common fluorescence detector was used for detection. The detection principle is based on the change of RRS intensity of the ion-association complex formed from biebrich scarlet (BS) and protein. The RRS signal was detected at lambdaex=lambdaem=376 nm. The utility of the presented method was demonstrated by the separation and determination of four proteins involving cytochrome (Cyt-c), lysozyme (Lys), HSA, and gamma-globulin (gamma-Glo). An LOD of 0.2-1.0 microg/mL was reached and a linear range was found between peak area and concentration in the range of 0.20-3.0 microg/mL for Cyt-c, 0.25-2.5 microg/mL for Lys, 1.5-10 microg/mL for HSA, and 2.0-15 microg/mL for gamma-Glo, with linear regression coefficients all above 0.99. The method presented has been applied to determine HSA and gamma-Glo in human serum samples synchronously.
Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops
Chang, Chun-Ti; Bostwick, Joshua B.; Steen, Paul H.; Daniel, Susan
2013-08-01
In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.
Cylindrical Effects on Magneto-Rayleigh-Taylor Instability
Weis, Matthew; Lau, Yue Ying; Gilgenbach, Ronald; Jennings, Christopher; Hess, Mark
2012-10-01
This paper concentrates on the effects of cylindrical geometry on the magneto-Rayleigh-Taylor instability (MRT), a major concern in the magnetized liner inertial fusion concept (MagLIF) [1]. Several issues are being studied, such as the Bell-Plesset effect [2], the effects of magnetic shear and feedthrough [3], and the nonzero MRT growth rate that remains (but was hardly noticed) in the k = m = 0 limit in Harris' seminal paper on a cylindrical liner [4], where k and m are respectively the azimuthal and axial wavenumber. We shall use simulation and direct integration of the eigenvalue equation to investigate the importance of the cylindrical geometry, which is particularly relevant in the final stage of compression in the MagLIF concept. [4pt] [1] S. A. Slutz, et. al, Phys. Plasmas 17, 056303 (2010). [0pt] [2] G. I. Bell, Los Alamos Scientific Laboratory, Report LA-1321 (1951); M. S. Plesset, J. Appl. Phys. 25, 96 (1954).[0pt] [3] P. Zhang et al., Phys. Plasmas 19, 200703 (2012); Y. Y. Lau et al., Phys. Rev. E 83, 006405 (2011). [0pt] [4] E. G. Harris, Phys. Fluids 5, 1057 (1962).
The role of Rayleigh-Taylor instabilities in filament threads
Terradas, J; Ballester, J L
2012-01-01
Many solar filaments and prominences show short-lived horizontal threads lying parallel to the photosphere. In this work the possible link between Rayleigh-Taylor instabilities and thread lifetimes is investigated. This is done by calculating the eigenmodes of a thread modelled as a Cartesian slab under the presence of gravity. An analytical dispersion relation is derived using the incompressible assumption for the magnetohydrodynamic (MHD) perturbations. The system allows a mode that is always stable, independently of the value of the Alfv\\'en speed in the thread. The character of this mode varies from being localised at the upper interface of the slab when the magnetic field is weak, to having a global nature and resembling the transverse kink mode when the magnetic field is strong. On the contrary, the slab model permits another mode that is unstable and localised at the lower interface when the magnetic field is weak. The growth rates of this mode can be very short, of the order of minutes for typical thr...
In Situ Characterization of Nanostructures Using Rayleigh Scattering
Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto
Controlling selective growth of nanotubes has posed a considerable challenge over the last two decades. A crucial step to overcoming such hurdle is to gain detailed knowledge of the early stage of nanomaterial syntheses for which in situ measurements are required. Laser-based probes, such as Rayleigh scattering (RS), can potentially characterize the shape and size of nanoparticles in situ . The intensity of RS in a gas mixed with nanoparticles is proportional to the polarizabilities of the constituent particles, therefore, theoretical spectroscopy can complement such measurements. Here, we employed time-dependent density functional theory to compute the frequency-dependent polarizabilities of various nanostructures and predicted the corresponding RS intensity and depolarization. We found that with increasing length and asymmetry of the nanostructures the longitudinal polarizability exhibited characteristic resonances leading to measurable signatures in the RS intensity and depolarization. Also by considering gas-particle mixtures at estimated experimental conditions for nanoparticle synthesis on the periphery of an arch, we predict that in situ characterization of a few nanometer long particles with concentration as low as one particle per million is feasible using RS. This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Assessment potential wind energy in the north area of Iraq
Ahmed F. Hassoon
2013-01-01
Full Text Available Wind energy is renewable and environment friendly, which can be connected for various end-uses. A precise knowledge of wind energy regime is a pre-requisite for the efficient planning and implementation of any wind energy project. However, due to the absence of a reliable and accurate Iraq Wind Atlas, further studies on the assessment of wind energy are necessary. The main purpose of this paper is present and perform an investigation on the wind energy potential in the northern area of Iraq. Therefore, in this study, wind data collected over a period of nearly three decades at five different locations in order to figure out the wind energy potential in this region. The data from selected stations were analyzed using the two-parameter Weibull probability distribution function. The higher probability frequency wind speed at windy month (July is found in Tuz and Tikrit stations. In Tuz the range (2.5-3.0 m/s taken about 45% from the domain wind, In Tikrit the high ranges of wind (3.5-4.0 m/s and (4.0-4.5m/s form 40.9% and 36.4% of wind speed frequency, but high frequency of low wind speed is concentrated at Biji, Kirkuk and Mosul. This is reflected on The maximum expected energy output (13.5kw/h occupied at Tikrit station. Overall The study presented here is an attempt to promote wind energy in north Iraq and to bridge the gap in order to create prospective Wind Atlas of Iraq.
Palomares Losada, A. M.
2003-07-01
The straits of gibraltar is a privileged zone for the exploitation of the wind energy, and in a broad sense, its general wind regime is known. Nevertheless, in this zone, a special phenomenon takes place, in with the both effect of the synoptic weather systems and the peculiar orography of the straits, surrounded by two mountain chains, gives place to these wind characteristics, in which the behaviour of e and w winds is totally different in order to study this wind characteristics, two years of 10 minutes averages data,have been analysed evaluating not only the general wind regime (wind roses, weibull distributions, etc.) but also more details of the main differences between the e and w winds, as the different daily evolutions some possible explanations based on this peculiar orography are given for the obtained results. (Author) 104 refs.
Winds and temperatures in the stratosphere and mesosphere at ALOMAR derived by Doppler lidar
Hildebrand, Jens; Baumgarten, Gerd; Fiedler, Jens; Lübken, Franz-Josef
2016-04-01
Wind and temperature measurements in the middle atmosphere are crucial for a comprehensive understanding of atmospheric dynamics. Unfortunately, they are very challenging, especially with vertical and temporal resolutions reasonable for gravity-wave studies. The Doppler Rayleigh Iodine Spectrometer (DoRIS) of the Rayleigh/Mie/Raman lidar at the Arctic station ALOMAR in Northern Norway (69°N, 16°E) is the only remote sensing instrument that simultaneously derives temperatures and two wind components in the entire stratosphere and mesosphere, even under daylight conditions, necessarily for long-duration gravity-wave studies. The temporal and vertical resolutions are, typically, 1 h and 3 km, respectively. We are going to present case studies of middle atmospheric winds and temperatures, obtained during winter seasons 2010 - 2015. During a sounding rocket campaign in March 2015 an extensive salvo of meteorological rockets for in-situ wind measurements was launched at the Andøya Space Center close to ALOMAR. This gave the opportunity for a comprehensive comparison of winds derived by lidar and in-situ observations in the middle atmosphere, whose results we will present.
The january effect across volatility regimes
Agnani, Betty; Aray, Henry
2007-01-01
Using a Markov regime switching model, this article presents evidence on the well-known January effect on stock returns. The specification allows a distinction to be drawn between two regimes, one with high volatility and other with low volatility. We obtain a time-varying January effect that is, in general, positive and significant in both volatility regimes. However, this effect is larger in the high volatility regime. In sharp contrast with most previous literature we find two major result...
Wisse, J.A.; Stigter, C.J.
2007-01-01
The International Association for Wind Engineering (IAWE) has very few contacts in Africa, the second-largest continent. This paper reviews important wind-related African issues. They all require data on wind climate, which are very sparse in Africa. Wind engineering in Africa can assist in collecti
Emergency wind erosion control
February through May is the critical time for wind erosion in Kansas, but wind erosion can happen any time when high winds occur on smooth, wide fields with low vegetation and poor soil structure. The most effective wind erosion control is to ensure a protective cover of residue or growing crop thro...
Site-optimization of wind turbine generators
Wolff, T.J. de; Thillerup, J. [Nordtank Energy Group, Richmond, VA (United States)
1997-12-31
The Danish Company Nordtank is one of the pioneers within the wind turbine industry. Since 1981 Nordtank has installed worldwide more than 2500 wind turbine generators with a total name plate capacity that is exceeding 450 MW. The opening up of new and widely divergent markets has demanded an extremely flexible approach towards wind turbine construction. The Nordtank product range has expanded considerable in recent years, with the main objective to develop wind energy conversion machines that can run profitable in any given case. This paper will describe site optimization of Nordtank wind turbines. Nordtank has developed a flexible design concept for its WTGs in the 500/750 kW range, in order to offer the optimal WTG solution for any given site and wind regime. Through this flexible design, the 500/750 turbine line can adjust the rotor diameter, tower height and many other components to optimally fit the turbine to each specific project. This design philosophy will be illustrated with some case histories of recently completed projects.
Implementation Regimes and Street-Level Bureaucrats
Winter, Søren; T. Dinesen, Peter; J. May, Peter
-government regimes foster greater policy commitment, attention to rules, and adherence among frontline workers than is the case for a local-government implementation regime. These lead to actions of street-level bureaucrats in central-government regimes that are more in line with national policies than those...
Accommodating human values in the climate regime
Cook, Rosalind; Tauschinsky, Eljalill
2008-01-01
The climate regime addresses one of the most important challenges facing humankind today. However, while the environmental and economic sides of the problem are well represented, it lacks the inclusion of social and human aspects. The human rights regime, in contrast, is a regime which has been esta
Fu Hongya; Wang Xianfeng; Han Zhenyu; Fu Yunzhong
2007-01-01
A theory of composite material patch winding is proposed to determine the winding trajectory with a meshed data model. Two different conditions are considered in this study. One is Bridge condition on the concave surface and the other is Slip line condition in the process of patch winding. This paper presents the judgment principles and corresponding solutions by applying differential geometry theory and space geometry theory. To verify the feasibility of the patch winding method, the winding control code is programmed. Furthermore, the winding experiments on an airplane inlet and a vane are performed. From the experiments, it shows that the patch winding theory has the advantages of flexibility, easy design and application.
Geo-effectiveness of Solar Wind Extremes
Hari Om Vats
2006-06-01
Examples of extreme events of solar wind and their effect on geomagnetic conditions are discussed here. It is found that there are two regimes of high speed solar wind streams with a threshold of ∼ 850 km s-1. Geomagnetic activity enhancement rate (GAER) is defined as an average increase in Ap value per unit average increase in the peak solar wind velocity (Vp) during the stream. GAER was found to be different in the two regimes of high speed streams with +ve and -ve IMF. GAER is 0.73 and 0.53 for solar wind streams with +ve and -ve IMF respectively for the extremely high speed streams (< 850 km s-1). This indicates that streams above the threshold speed with +ve IMF are 1.4 times more effective in enhancing geomagnetic activity than those with -ve IMF. However, the high speed streams below the threshold with -ve IMF are 1.1 times more effective in enhancing geomagnetic activity than those with +ve IMF. The violent solar activity period (October–November 2003) of cycle 23 presents a very special case during which many severe and strong effects were seen in the environment of the Earth and other planets; however, the z-component of IMF (Bz) is mostly positive during this period. The most severe geomagnetic storm of this cycle occurred when Bz was positive.
Energy dissipation processes in solar wind turbulence
Wang, Y; Feng, X S; Xu, X J; Zhang, J; Sun, T R; Zuo, P B
2015-01-01
Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation cannot be ultimately achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind magnetic reconnection region. We find that the magnetic reconnection region shows a unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for the intermittent multifractal dissipation region scaling around a magnetic reconnection site, and they also have significant implications for the fundamental energy...
ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE
Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)
2015-12-15
Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.
Space-time wind speed forecasting for improved power system dispatch
Zhu, Xinxin
2014-02-27
To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, space-time wind speed forecasting model that allows the forecast regimes to vary with the dominant wind direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast models. This, in turn, leads to cost-effective scheduling of system-wide wind generation. Potential economic benefits arise from the system-wide generation of cost savings and from the ancillary service cost savings. We illustrate the economic benefits using a test system in the northwest region of the United States. Compared with persistence and autoregressive models, our model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars annually in regions with high wind penetration, such as Texas and the Pacific northwest. © 2014 Sociedad de Estadística e Investigación Operativa.
Wind power. [electricity generation
Savino, J. M.
1975-01-01
A historical background on windmill use, the nature of wind, wind conversion system technology and requirements, the economics of wind power and comparisons with alternative systems, data needs, technology development needs, and an implementation plan for wind energy are presented. Considerable progress took place during the 1950's. Most of the modern windmills feature a wind turbine electricity generator located directly at the top of their rotor towers.
2011-07-01
The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.
Harrison, D. E.
1984-01-01
The need for improved surface wind and wind stress data is discussed. The collection of wind data using ship reports, research buoys, and cloud motion vectors is examined. The need for data on surface-wind stress fields is emphasized. Accurate stress data are required for studying: (1) the normal seasonal cycle and the intraannual events; (2) wind stress curls and the forcing of ocean circulation; (3) El Nino events; and (4) the low response of the midlatitude ocean circulation.
Corotis, R. B.
1980-05-01
The distribution for the magnitude of the vector sum of two orthogonal horizontal wind velocity components is often modelled by the Rayleigh, which is derived assuming that the components are independent, identically distributed, zero-mean, Gaussian random variables; the probability density function for a more realistic case where the two components are correlated and not equal in variance is derived. It is found that the derived distribution is adequately modelled by the Rayleigh distribution. A 24-hour record of 20-second average wind speed was collected to assess the effect of sampling rate and averaging time on computed wind speed means and variances, autocorrelation, and run duration. Definite effects on autocorrelation and run duration due to averaging time and sampling rate, respectively, are observed. An approximate procedure is developed to simulate the time sequence of wind speed at a single site; the procedure uses a Weibull distribution with conditional parameters updated each hour as a function of the previously simulated value and the autocorrelation.
Adaptation in Collaborative Governance Regimes
Emerson, Kirk; Gerlak, Andrea K.
2014-10-01
Adaptation and the adaptive capacity of human and environmental systems have been of central concern to natural and social science scholars, many of whom characterize and promote the need for collaborative cross-boundary systems that are seen as flexible and adaptive by definition. Researchers who study collaborative governance systems in the public administration, planning and policy literature have paid less attention to adaptive capacity specifically and institutional adaptation in general. This paper bridges the two literatures and finds four common dimensions of capacity, including structural arrangements, leadership, knowledge and learning, and resources. In this paper, we focus on institutional adaptation in the context of collaborative governance regimes and try to clarify and distinguish collaborative capacity from adaptive capacity and their contributions to adaptive action. We posit further that collaborative capacities generate associated adaptive capacities thereby enabling institutional adaptation within collaborative governance regimes. We develop these distinctions and linkages between collaborative and adaptive capacities with the help of an illustrative case study in watershed management within the National Estuary Program.
Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering
Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.
1999-01-01
The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.
Non-equilibrium Thermodynamics of Rayleigh-Taylor instability
Sengupta, Tapan K.; Sengupta, Aditi; Shruti, K. S.; Sengupta, Soumyo; Bhole, Ashish
2016-10-01
Rayleigh-Taylor instability (RTI) has been studied here as a non-equilibrium thermodynamics problem. Air masses with temperature difference of 70K, initially with heavier air resting on lighter air isolated by a partition, are allowed to mix by impulsively removing the partition. This results in interface instabilities, which are traced here by solving two dimensional (2D) compressible Navier-Stokes equation (NSE), without using Boussinesq approximation (BA henceforth). The non-periodic isolated system is studied by solving NSE by high accuracy, dispersion relation preserving (DRP) numerical methods described in Sengupta T.K.: High Accuracy Computing Method (Camb. Univ. Press, USA, 2013). The instability onset is due to misaligned pressure and density gradients and is evident via creation and evolution of spikes and bubbles (when lighter fluid penetrates heavier fluid and vice versa, associated with pressure waves). Assumptions inherent in compressible formulation are: (i) Stokes' hypothesis that uses zero bulk viscosity assumption and (ii) the equation of state for perfect gas which is a consequence of equilibrium thermodynamics. Present computations for a non-equilibrium thermodynamic process do not show monotonic rise of entropy with time, as one expects from equilibrium thermodynamics. This is investigated with respect to the thought-experiment. First, we replace Stokes' hypothesis, with another approach where non-zero bulk viscosity of air is taken from an experiment. Entropy of the isolated system is traced, with and without the use of Stokes' hypothesis. Without Stokes' hypothesis, one notes the rate of increase in entropy to be higher as compared to results with Stokes' hypothesis. We show this using the total entropy production for the thermodynamically isolated system. The entropy increase from the zero datum is due to mixing in general; punctuated by fluctuating entropy due to creation of compression and rarefaction fronts originating at the interface