Phase dispersion of Raman and Rayleigh-enhanced four-wave mixings in femtosecond polarization beats
International Nuclear Information System (INIS)
Yan, Zhao; Zhi-Qiang, Nie; Chang-Biao, Li; Yan-Peng, Zhang; Chen-Li, Gan; Huai-Bin, Zheng; Yuan-Yuan, Li; Ke-Qing, Lu
2009-01-01
Based on color-locking noisy field correlation in three Markovian stochastic models, phase dispersions of the Raman- and Rayleigh-enhanced four-wave mixing (FWM) have been investigated. The phase dispersions are modified by both linewidth and time delay for negative time delay, but only by linewidth for positive time delay. Moreover, the results under narrowband condition are close to the nonmodified nonlinear dispersion and absorption of the material. Homodyne and heterodyne detections of the Raman, the Rayleigh and the mixing femtosecond difference-frequency polarization beats have also been investigated, separately
Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean
Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen
2017-05-01
Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.
Rayleigh and Love Wave Phase Velocities in the Northern Gulf Coast of the United States
Li, A.; Yao, Y.
2017-12-01
The last major tectonic event in the northern Gulf Coast of the United States is Mesozoic continental rifting that formed the Gulf of Mexico. This area also experienced igneous activity and local uplifts during Cretaceous. To investigate lithosphere evolution associated with the rifting and igneous activity, we construct Rayleigh and Love wave phase velocity models at the periods of 6 s to 125 s in the northern Gulf Coast from Louisiana to Alabama including the eastern Ouachita and southern Appalachian orogeny. The phase velocities are derived from ambient noise and earthquake data recorded at the 120 USArray Transportable Array stations. At periods below 20 s, phase velocity maps are characterized by significant low velocities in the Interior Salt Basin and Gulf Coast Basin, reflecting the effects of thick sediments. The northern Louisiana and southern Arkansas are imaged as a low velocity anomaly in Rayleigh wave models but a high velocity anomaly of Love wave at the periods of 14 s to 30 s, indicating strong lower crust extension to the Ouachita front. High velocity is present in the Mississippi Valley Graben from period 20 s to 35 s, probably reflecting a thin crust or high-velocity lower crust. At longer periods, low velocities are along the Mississippi River to the Gulf Coast Basin, and high velocity anomaly mainly locates in the Black Warrior Basin between the Ouachita Belt and Appalachian Orogeny. The magnitude of anomalies in Love wave images is much smaller than that in Rayleigh wave models, which is probably due to radial anisotropy in the upper mantle. A 3-D anisotropic shear velocity model will be developed from the phase velocities and will provide more details for the crust and upper mantle structure beneath the northern Gulf of Mexico continental margin.
International Nuclear Information System (INIS)
Liu, Y.; Ecke, R.E.
1999-01-01
We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society
Deflecting Rayleigh surface acoustic waves by a meta-ridge with a gradient phase shift
Xu, Yanlong; Yang, Zhichun; Cao, Liyun
2018-05-01
We propose a non-resonant meta-ridge to deflect Rayleigh surface acoustic waves (RSAWs) according to the generalized Snell’s law with a gradient phase shift. The gradient phase shift is predicted by an analytical formula, which is related to the path length of the traveling wave. The non-resonant meta-ridge is designed based on the characteristics of the RSAW: it only propagates along the interface with a penetration depth, and it is dispersion-free with a constant phase velocity. To guarantee that the characteristics are still valid when RSAWs propagate in a three-dimensional (3D) structure, grooves are employed to construct the supercell of the meta-ridge. The horizontal length, inclined angle, and thickness of the ridge, along with the filling ratio of the groove, are parametrically examined step by step to investigate their influences on the propagation of RSAWs. The final 3D meta-ridges are designed theoretically and their capability of deflecting the incident RSAWs are validated numerically. The study presents a new method to control the trajectory of RSAWs, which will be conducive to developing innovative devices for surface acoustic waves.
Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.
2017-12-01
Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km
Rayleigh Wave Phase Velocities Beneath the Central and Southern East African Rift System
Adams, A. N.; Miller, J. C.
2017-12-01
This study uses the Automated Generalized Seismological Data Function (AGSDF) method to develop a model of Rayleigh wave phase velocities in the central and southern portions of the East African Rift System (EARS). These phase velocity models at periods of 20-100s lend insight into the lithospheric structures associated with surficial rifting and volcanism, as well as basement structures that pre-date and affect the course of rifting. A large dataset of >700 earthquakes is used, comprised of Mw=6.0+ events that occurred between the years 1995 and 2016. These events were recorded by a composite array of 176 stations from twelve non-contemporaneous seismic networks, each with a distinctive array geometry and station spacing. Several first-order features are resolved in this phase velocity model, confirming findings from previous studies. (1) Low velocities are observed in isolated regions along the Western Rift Branch and across the Eastern Rift Branch, corresponding to areas of active volcanism. (2) Two linear low velocity zones are imaged trending southeast and southwest from the Eastern Rift Branch in Tanzania, corresponding with areas of seismic activity and indicating possible incipient rifting. (3) High velocity regions are observed beneath both the Tanzania Craton and the Bangweulu Block. Furthermore, this model indicates several new findings. (1) High velocities beneath the Bangweulu Block extend to longer periods than those found beneath the Tanzania Craton, perhaps indicating that rifting processes have not altered the Bangweulu Block as extensively as the Tanzania Craton. (2) At long periods, the fast velocities beneath the Bangweulu Block extend eastwards beyond the surficial boundaries, to and possibly across the Malawi Rift. This may suggest the presence of older, thick blocks of lithosphere in regions where they are not exposed at the surface. (3) Finally, while the findings of this study correspond well with previous studies in regions of overlapping
Pollitz, F.F.; Snoke, J. Arthur
2010-01-01
We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the ﬁrst step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by deﬁning a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local ﬁts to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images conﬁrm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat ﬂow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high
Modeling of Rayleigh wave dispersion in Iberia
Directory of Open Access Journals (Sweden)
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Rayleigh wave ellipticity across the Iberian Peninsula and Morocco
Gómez García, Clara; Villaseñor, Antonio
2015-04-01
Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared
Importance sampling the Rayleigh phase function
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2011-01-01
Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation....
High-frequency Rayleigh-wave method
Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.
2009-01-01
High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
Subsonic leaky Rayleigh waves at liquid-solid interfaces.
Mozhaev, V G; Weihnacht, M
2002-05-01
The paper is devoted to the study of leaky Rayleigh waves at liquid-solid interfaces close to the border of the existence domain of these modes. The real and complex roots of the secular equation are computed for interface waves at the boundary between water and a binary isotropic alloy of gold and silver with continuously variable composition. The change of composition of the alloy allows one to cross a critical velocity for the existence of leaky waves. It is shown that, contrary to popular opinion, the critical velocity does not coincide with the phase velocity of bulk waves in liquid. The true threshold velocity is found to be smaller, the correction being of about 1.45%. Attention is also drawn to the fact that using the real part of the complex phase velocity as a velocity of leaky waves gives only approximate value. The most interesting feature of the waves under consideration is the presence of energy leakage in the subsonic range of the phase velocities where, at first glance, any radiation by harmonic waves is not permitted. A simple physical explanation of this radiation with due regard for inhomogeneity of radiated and radiating waves is given. The controversial question of the existence of leaky Rayleigh waves at a water/ice interface is reexamined. It is shown that the solution considered previously as a leaky wave is in fact the solution of the bulk-wave-reflection problem for inhomogeneous waves.
Rayleigh wave effects in an elastic half-space.
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile
Directory of Open Access Journals (Sweden)
T.A. Sanny
2003-05-01
Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.
Cho, I.; Tada, T.; Shinozaki, Y.
2005-12-01
We have developed a Centerless Circular Array (CCA) method of microtremor exploration, an algorithm that enables to estimate phase velocities of Rayleigh waves by analyzing vertical-component records of microtremors that are obtained with an array of three or five seismic sensors placed around a circumference. Our CCA method shows a remarkably high performance in long-wavelength ranges because, unlike the frequency-wavenumber spectral method, our method does not resolve individual plane-wave components in the process of identifying phase velocities. Theoretical considerations predict that the resolving power of our CCA method in long-wavelength ranges depends upon the SN ratio, or the ratio of power of the propagating components to that of the non-propagating components (incoherent noise) contained in the records from the seismic array. The applicability of our CCA method to small-sized arrays on the order of several meters in radius has already been confirmed in our earlier work (Cho et al., 2004). We have deployed circular seismic arrays of different sizes at test sites in Japan where the underground structure is well documented through geophysical exploration, and have applied our CCA method to microtremor records to estimate phase velocities of Rayleigh waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. For arrays of 5, 25, 300 and 600 meters in radii, the estimated and model phase velocities demonstrated fine agreement within a broad wavelength range extending from a little larger than 3r (r: the array radius) up to at least 40r, 14r, 42r and 9r, respectively. This demonstrates the applicability of our CCA method to arrays on the order of several to several hundreds of meters in radii, and also illustrates, in a typical way, the markedly high performance of our CCA method in long-wavelength ranges. We have also invented a mathematical model that enables to evaluate the SN ratio in a given
Directory of Open Access Journals (Sweden)
Pijush Pal Roy
1988-01-01
Full Text Available A study is made of the propagation of Rayleigh waves in a thinly layered laminated thermoelastic medium under deviatoric, hydrostatic, and couple stresses. The frequency equation of the Rayleigh waves is obtained. The phase velocity of the Rayleigh waves depends on the initial stress, deviatoric stress, and the couple stress. The laminated medium is first replaced by an equivalent anisotropic thermoelastic continuum. The corresponding thermoelastic coefficients (after deformation are derived in terms of initially isotropic thermoelastic coefficients (before deformation of individual layers. Several particular cases are discussed for the determination of the displacement fields with or without the effect of the couple stress.
Energy Technology Data Exchange (ETDEWEB)
Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E
2009-07-06
In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations
Study on evaluation methods for Rayleigh wave dispersion characteristic
Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.
2005-01-01
The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.
On the interaction of Rayleigh surface waves with structures
International Nuclear Information System (INIS)
Simpson, I.C.
1976-12-01
A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)
Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface
Energy Technology Data Exchange (ETDEWEB)
Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)
2007-12-15
Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness
Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface
International Nuclear Information System (INIS)
Kim, No Hyu; Yang, Seung Yong
2007-01-01
Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness
Effects of shock waves on Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Zhang Yongtao; Shu Chiwang; Zhou Ye
2006-01-01
A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process
Passive retrieval of Rayleigh waves in disordered elastic media
International Nuclear Information System (INIS)
Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel
2005-01-01
When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime
Grain size measurements by ultrasonic Rayleigh surface waves
International Nuclear Information System (INIS)
Palanichamy, P.; Jayakumar, T.
1996-01-01
The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)
Rayleigh waves in elastic medium with double porosity
Directory of Open Access Journals (Sweden)
Rajneesh KUMAR
2018-03-01
Full Text Available The present paper deals with the propagation of Rayleigh waves in isotropic homogeneous elastic half-space with double porosity whose surface is subjected to stress-free boundary conditions. The compact secular equations for elastic solid half-space with voids are deduced as special cases from the present analysis. In order to illustrate the analytical developments, the secular equations have been solved numerically. The computer simulated results for copper materials in respect of Rayleigh wave velocity and attenuation coe¢ cient have been presented graphically.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Dipping-interface mapping using mode-separated Rayleigh waves
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.
Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry
International Nuclear Information System (INIS)
Yanovskaya, T.B.; Savina, L.S.
2003-09-01
A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)
Zheng, Xuhui; Liu, Lei; Sun, Jinzhong; Li, Gao; Zhou, Fubiao; Xu, Jiemin
2018-01-01
Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan'an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit.
On Lamb and Rayleigh wave convergence in viscoelastic tissues
Energy Technology Data Exchange (ETDEWEB)
Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)
2011-10-21
Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.
Resonance scattering of Rayleigh waves by a mass defect
International Nuclear Information System (INIS)
Croitoru, M.; Grecu, D.
1978-06-01
The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)
Workman, Eli Joseph
We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.
Rayleigh scattering and nonlinear inversion of elastic waves
Energy Technology Data Exchange (ETDEWEB)
Gritto, Roland [Univ. of California, Berkeley, CA (United States)
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k_{p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Relationship between ultrasonic Rayleigh waves and surface residual stress
International Nuclear Information System (INIS)
Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.
1977-01-01
Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments
Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests
International Nuclear Information System (INIS)
Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama
2005-01-01
This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)
Generation of Rayleigh waves into mortar and concrete samples.
Piwakowski, B; Fnine, Abdelilah; Goueygou, M; Buyle-Bodin, F
2004-04-01
The paper deals with a non-destructive method for characterizing the degraded cover of concrete structures using high-frequency ultrasound. In a preliminary study, the authors emphasized on the interest of using higher frequency Rayleigh waves (within the 0.2-1 MHz frequency band) for on-site inspection of concrete structures with subsurface damage. The present study represents a continuation of the previous work and aims at optimizing the generation and reception of Rayleigh waves into mortar and concrete be means of wedge transducers. This is performed experimentally by checking the influence of the wedge material and coupling agent on the surface wave parameters. The selection of the best combination wedge/coupling is performed by searching separately for the best wedge material and the best coupling material. Three wedge materials and five coupling agents were tested. For each setup the five parameters obtained from the surface wave measurement i.e. the frequency band, the maximal available central frequency, the group velocity error and its standard deviation and finally the error in velocity dispersion characteristic were investigated and classed as a function of the wedge material and the coupling agent. The selection criteria were chosen so as to minimize the absorption of both materials, the randomness of measurements and the systematic error of the group velocity and of dispersion characteristic. Among the three tested wedge materials, Teflon was found to be the best. The investigation on the coupling agent shows that the gel type materials are the best solutions. The "thick" materials displaying higher viscosity were found as the worst. The results show also that the use of a thin plastic film combined with the coupling agent even increases the bandwidth and decreases the uncertainty of measurements.
Energy Technology Data Exchange (ETDEWEB)
Matsuoka, T; Umezawa, N [Saitama Institute of Environmental Pollution, Saitama (Japan)
1996-05-01
To render the spatial autocorrelation (SAC) method easier to use, a system has been constructed that can be used with ease on the site for the calculation of phase velocities. This system can perform two observation methods of the same frequency characteristics, that is, the simultaneous multi-point observation and one-point independent observation. The pickup is a velocity type seismograph of a natural period of 1 second that has been so electrically adjusted as to work on an apparent natural period of 7 seconds. Among the frequency characteristics, those related to phase are regarded as important because the SAC method is based on the measurement of coherence between two points. The analysis software runs on a waveform processing software DADiSP/WIN designed for personal computers. To know the operability of this system on the site and to accumulate records using the SAC method, observations were made at the depth of 100-500m at 6 locations in Saitama Prefecture where the underground structure was known thanks to prior PS logging. As the result, a dispersion curve was obtained by use of an array of appropriate dimensions at every location agreeing with the underground structure. 9 refs., 10 figs.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, H; Mizutani, K; Saito, t [Iwate University, Iwate (Japan). Faculty of Engineering
1997-10-22
Discussions were given on the possibility of estimating Rayleigh-wave spectral ratio utilizing phase difference between horizontal movements and vertical movements by using a three-component single-station seismograph. The test has selected as an observation point a location in the city of Kushiro where a pulp and paper mill generating microtremors is the focal point, and the underground structure at that point has been estimated by using the vertical array observation method. The observation system has used three components of a velocity type seismograph having a natural period of one second, an amplifier and an analog data recorder. As a result of the discussions, the following matters were made clear: the spectral ratio with a phase difference of 90 degrees agrees with the frequency at a peak trough of the theoretical Rayleigh-wave spectral ratio; the values of the spectral ratio at the phase difference of 90 degrees and the values of the theoretical Rayleigh-wave spectral ratio correspond well excepting in frequency bands of the peak trough; and these results suggest that the Rayleigh-wave spectral ratio may be estimated by utilizing the phase difference between horizontal movements and vertical movements. Estimation of the underground structure by using the inverse analysis of this Rayleigh-wave spectral ratio is expected in the future. 6 refs., 5 figs., tab.
Rayleigh wave behavior in functionally graded magneto-electro-elastic material
Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben
2017-12-01
Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.
A Numerical Model for Prediction of Residual Stress Using Rayleigh Waves
International Nuclear Information System (INIS)
Yuan, Mao Dan; Kang, To; Kim, Hak Joon; Song, Sung Jin
2011-01-01
In this work, a numerical model is proposed for the relation between the magnitudes and the depth residual stress with the velocity of Rayleigh wave. Three cases, stress-free, uniform stress and layered stress, are investigated for the change tendency of the Rayleigh wave speed. Using the simulated signal with variation of residual stress magnitude and depth, investigation of the parameters for fitting residual stress and velocity change are performed. The speed change of Rayleigh wave shows a linear relation with the magnitude and an exponential relation with the depth of residual stress. The combination of these two effects could be used for the depth profile evaluation of the residual stress
Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space
Directory of Open Access Journals (Sweden)
Baljeet Singh
2013-01-01
Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.
Quantitative use of Rayleigh waves to locate and size subsurface holes
International Nuclear Information System (INIS)
Zachary, L.W.
1982-01-01
An ultrasonic inspection method is used to obtain the circumference of a subsurface hole and the depth of the hole below the surface. A pitch-catch Rayleigh wave transducer set-up was used to launch a Rayleigh surface wave at the flaw and to capture and record the scattered waves. The frequency spectrum of the scattered waves can be used to obtain the depth of the hole. The ligament of material between the hole and the surface is sent into resonance, and this feature can be extracted from the scattered waves' frequency spectrum. The frequency is a function of the ligament length; thus the hole depth can be obtained. The circumference of the hole is found from a time of flight measurement. A Rayleigh wave is formed that travels around the hole's surface. The length of time required for the wave to travel around the hole is a measure of the circumference
Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.
2011-12-01
We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo
2017-06-20
A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.
Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu
2018-03-01
This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.
Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion
Cercato, Michele
2018-04-01
The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.
Rayleigh wave tomography of the British Isles from ambient seismic noise
Nicolson, Heather; Curtis, Andrew; Baptie, Brian
2014-08-01
We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
Simons, J.-P.; Hilst, R.D. van der; Montagner, F.J.,; Zielhuis, A.
2002-01-01
We present an azimuthally anisotropic 3-D shear-wave speed model of the Australian upper mantle obtained from the dispersion of fundamental and higher modes of Rayleigh waves.We compare two tomographic techniques to map path-average earth models into a 3-D model for heterogeneity and azimuthal
Elastic properties of amorphous thin films studied by Rayleigh waves
International Nuclear Information System (INIS)
Schwarz, R.B.; Rubin, J.B.
1993-01-01
Physical vapor deposition in ultra-high vacuum was used to co-deposit nickel and zirconium onto quartz single crystals and grow amorphous Ni 1-x Zr x (0.1 < x < 0.87) thin film. A high-resolution surface acoustic wave technique was developed for in situ measurement of film shear moduli. The modulus has narrow maxima at x = 0. 17, 0.22, 0.43, 0.5, 0.63, and 0.72, reflecting short-range ordering and formation of aggregates in amorphous phase. It is proposed that the aggregates correspond to polytetrahedral atom arrangements limited in size by geometrical frustration
Miao, W.; Li, G.; Niu, F.
2016-12-01
Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.
Juretzek, C.; Perleth, M.; Hadziioannou, C.
2015-12-01
Ambient seismic noise has become an important source of signal for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about the common and different origins of Love and Rayleigh waves in the microseism bands is still limited. This applies in particular to constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the differently polarized wave types present in the noise field recorded at several arrays across Europe. The focus lies on frequencies around the primary and secondary microseismic bands. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured at each array, and a dependence on direction is observed. We constrain the corresponding source regions of both wave types by backprojection. By using a full year of data in 2013, we are able to track the seasonal changes in our observations of Love-to-Rayleigh ratio and source locations.
Servali, A.; Long, M. D.; Benoit, M.
2017-12-01
The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.
Czech Academy of Sciences Publication Activity Database
Červ, Jan
2008-01-01
Roč. 2, č. 5 (2008), s. 762-772 ISSN 1970-8734 R&D Projects: GA AV ČR(CZ) IAA200760611 Institutional research plan: CEZ:AV0Z20760514 Keywords : rayleigh edge waves * elastic orthotropic material * plane state of stress Subject RIV: BI - Acoustics
Ledoux, L.A.F.; Berkhoff, Arthur P.; Thijssen, J.M.
The Conjugate Gradient Rayleigh method for the calculation of acoustic reflection and transmission at a rough interface between two media was experimentally verified. The method is based on a continuous version of the conjugate gradient technique and plane-wave expansions. We measured the beam
Determination of Love- and Rayleigh-Wave Magnitudes for Earthquakes and Explosions and Other Studies
2012-12-30
09-C-0012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Jessie L. Bonner, Anastasia Stroujkova, Dale Anderson, Jonathan...AND RAYLEIGH-WAVE MAGNITUDES FOR EARTHQUAKES AND EXPLOSIONS Jessie L. Bonner, Anastasia Stroujkova, and Dale Anderson INTRODUCTION Since...MAXIMUM LIKELIHOOD ESTIMATION: APPLICATION TO MIDDLE EAST EARTHQUAKE DATA Anastasia Stroujkova and Jessie Bonner Weston Geophysical Corporation
Juretzek, Carina; Hadziioannou, Céline
2014-05-01
Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.
Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe
Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine
2016-04-01
Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.
International Nuclear Information System (INIS)
Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc
2015-01-01
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps
Energy Technology Data Exchange (ETDEWEB)
Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, 40132, Bandung (Indonesia); Yudistira, Tedi; Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Zulhan, Zulfakriza [Earth Science Graduate Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Saygin, Erdinc [Research School of Earth Sciences, The Australian National University, Canberra ACT 0200 (Australia)
2015-04-24
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.
Taori, A.; Kamalakar, V.; Raghunath, K.; Rao, S. V. B.; Russell, J. M.
2012-04-01
We utilize simultaneous Rayleigh lidar and mesospheric OH and O2 airglow measurements to identify the dominant and propagating waves within 40-95 km altitude regions over a low latitude station Gadanki (13.8° N, 79.2 °E). It is found that waves with 0.4-0.6 h periodicity are common throughout the altitude range of 40-95 km with significant amplitudes. The ground based temperature measurements with lidar and airglow monitoring are found to compare well with SABER data. With simultaneous Rayleigh lidar (temperature) and mesospheric airglow (emission intensity and temperature) measurements, we estimate the amplitude growth and Krassovsky parameters to characterize the propagation and dissipation of these upward propagating waves.
Welding induced residual stress evaluation using laser-generated Rayleigh waves
Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles
2018-04-01
Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.
Seismic prediction ahead of tunnel construction using Rayleigh-waves
Jetschny, Stefan; De Nil, Denise; Bohlen, Thomas
2008-01-01
To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. We developed a new forward looking seismic imaging technique e.g. to determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of tunnel surface-waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the fr...
Palomeras, I.; Thurner, S.; Levander, A.; Liu, K.; Villasenor, A.; Carbonell, R.; Harnafi, M.
2014-01-01
We present a 3-D shear wave velocity model for the crust and upper mantle of the western Mediterranean from Rayleigh wave tomography. We analyzed the fundamental mode in the 20-167 s period band (6.0-50.0 mHz) from earthquakes recorded by a number of temporary and permanent seismograph arrays. Using the two-plane wave method, we obtained phase velocity dispersion curves that were inverted for an isotropic Vs model that extends from the southern Iberian Massif, across the Gibraltar Arc and the Atlas mountains to the Saharan Craton. The area of the western Mediterranean that we have studied has been the site of complex subduction, slab rollback, and simultaneous compression and extension during African-European convergence since the Oligocene. The shear velocity model shows high velocities beneath the Rif from 65 km depth and beneath the Granada Basin from ˜70 km depth that extend beneath the Alboran Domain to more than 250 km depth, which we interpret as a near-vertical slab dangling from beneath the western Alboran Sea. The slab appears to be attached to the crust beneath the Rif and possibly beneath the Granada Basin and Sierra Nevada where low shear velocities (3.8 km/s) are mapped to >55 km depth. The attached slab is pulling down the Gibraltar Arc crust, thickening it, and removing the continental margin lithospheric mantle beneath both Iberia and Morocco as it descends into the deeper mantle. Thin lithosphere is indicated by very low upper mantle velocities beneath the Alboran Sea, above and east of the dangling slab and beneath the Cenozoic volcanics.
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm
Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun
2017-12-01
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Rayleigh wave tomography in North-China from ambient seismic noise
Fang, Lihua
2010-01-01
2008/2009 The theory and methodology of ambient noise tomography has been studied and applied to North-China successfully. Continuous vertical-component seismograms, spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 broadband stations and 10 very broadband stations, have been used. The cross correlation technique has been applied to ambient noise data recorded by North-China Seismic Array for each station pairs of the array. Rayleigh wave group ve...
High resolution Rayleigh wave group velocity tomography in North-China from ambient seismic noise
International Nuclear Information System (INIS)
Fang Lihua; Wu Jianping; Ding Zhifeng; Panza, G.F.
2009-03-01
This study presents the results of the Rayleigh wave group velocity tomography in North-China performed using ambient seismic noise observed at 190 broadband and 10 very broadband stations of the North-China Seismic Array. All available vertical component time-series for the 14 months span between January, 2007 and February, 2008 are cross-correlated to obtain empirical Rayleigh wave Green functions that are subsequently processed, with the multiple filter method, to isolate the group velocity dispersion curves of the fundamental mode of Rayleigh wave. Tomographic maps, with a grid spacing of 0.25 deg. x 0.25 deg., are computed at the periods of 4.5s, 12s, 20s, 28s. The maps at short periods reveal an evident lateral heterogeneity in the crust of North-China, quite well in agreement with known geological and tectonic features. The North China Basin is imaged as a broad low velocity area, while the Taihangshan and Yanshan uplifts and Ordos block are imaged as high velocity zones, and the Quaternary intermountain basins show up as small low-velocity anomalies. The group velocity contours at 4.5s, 12s and 20s are consistent with the Bouguer gravity anomalies measured in the area of the Taihangshan fault, that cuts through the lower crust at least. Most of the historical strong earthquakes (M≥6.0) are located where the tomographic maps show zones with moderate velocity gradient. (author)
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Moustafa, S.S.R.; Al-Arifi, N.
2018-01-01
Roč. 175, č. 1 (2018), s. 67-88 ISSN 0033-4553 Institutional support: RVO:67985891 Keywords : surface wave dispersion * joint inversion of seismic data * Rayleigh waves * holistic analysis of surface waves Impact factor: 1.591, year: 2016
Rayleigh-wave scattering by shallow cracks using the indirect boundary element method
International Nuclear Information System (INIS)
Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J
2009-01-01
The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks
Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.
2017-12-01
The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface
The propagation of nonlinear rayleigh waves in layered elastic half-space
International Nuclear Information System (INIS)
Ahmetolan, S.
2004-01-01
In this work, the propagation of small but finite amplitude generalized Rayleigh waves in an elastic half-space covered by a different elastic layer of uniform and finite thickness is considered. The constituent materials are assumed to be homogeneous, isotropic, compressible hyperelastic. Excluding the harmonic resonance phenomena, it is shown that the nonlinear self modulation of generalized Rayleigh waves is governed asymptotically by a nonlinear Schrodinger (NLS) equation. The stability of the solutions and the existence of solitary wave-type solutions a NLS are strongly depend on the sign of the product of the coefficients of the nonlinear and dipersion terms of the equation.Therefore the analysis continues with the examination of dependence of these coefficients on the nonlinear material parameters. Three different models have been considered which are nonlinear layer-nonlinear half space, linear layer-nonlinear half space and nonlinear layer-linear half space. The behavior of the coefficients of the NLS equation was also analyzed the limit as h(thickness of the layer) goes to zero and k(the wave number) is constant. Then conclusions are drawn about the effect of nonlinear material parameters on the wave modulation. In the numerical investigations both hypothetical and real material models are used
International Nuclear Information System (INIS)
Kopainsky, J.
1975-01-01
In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)
Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions
Hirschfelder, J. O.; Certain, P. R.
1974-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.
Quiros, D.; Pulliam, J.; Polanco Rivera, E.; Huerfano Moreno, V. A.
2017-12-01
The eastern North America-Caribbean (NA-CAR) plate boundary near the islands of Hispaniola (which is comprised of the Dominican Republic and Haiti) and Puerto Rico is a complex transition zone in which strain is accommodated by two transform fault systems and oblique subduction. In 2013, scientists from Baylor University, the Autonomous University of Santo Domingo, and the Puerto Rico Seismic Network deployed 16 broadband stations on the Dominican Republic to expand the local permanent network. The goal of the Greater Antilles Seismic Program (GrASP) is to combine its data with that from permanent networks in Puerto Rico, Haiti, Cuba, the Cayman Islands, and Jamaica to develop a better understanding of the crust and upper mantle structure in the Northeastern Caribbean (Greater Antilles). One important goal of GrASP is to develop robust velocity models that can be used to improve earthquake location and seismic hazard efforts. In this study, we focus on obtaining Rayleigh wave group velocity maps from ambient noise tomography. By cross-correlating ambient seismic noise recorded at 53 stations between 2010 to present, we obtain Green's functions between 1165 pairs of stations. From these, we obtain dispersion curves by the application of FTAN methods with phase-matched filtering. Selection criteria depend on the signal-to-noise ratio and seasonal variability, with further filtering done by rejecting velocities incompatible with maps produced from overdamped tomographic inversions. Preliminary dispersion maps show strong correlations with large-scale geological and tectonic features for periods between 5 - 20 s, such as the Cordillera Central in both the Dominican Republic and Puerto Rico, the Mona Passage, and the NA-CAR subduction zone. Ongoing efforts focus on including shorter periods in Puerto Rico as its denser station distribution could allow us to retrieve higher resolution group velocity maps.
Pan, Yudi; Gao, Lingli; Bohlen, Thomas
2018-05-01
Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.
Rayleigh waves ellipticity and mode mis-identification in multi-channel analysis of surface waves
DEFF Research Database (Denmark)
Boaga, Jacopo; Cassiani, Giorgio; Strobbia, Claudio
dispersion curve which is then inverted. Typically, single component vertical and multi channel receivers are used. In most cases the inversion of the dispersion properties is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode...... to each other reaching similar Rayleigh velocity. It is known ‘osculation’ happens generally in presence of strong velocity contrasts, typically with a fast bedrock underlying loose sediments. The practical limitations of the acquired data affect the spectral and modal resolution, making it often...
Directory of Open Access Journals (Sweden)
Victor M. García-Chocano
2011-12-01
Full Text Available Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.
Xu, Yanlong
2015-01-21
We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.
Thermal Aging Evaluation of Mod. 9Cr-1Mo Steel using Nonlinear Rayleigh Waves
Energy Technology Data Exchange (ETDEWEB)
Joo, Young-Sang; Kim, Hoe-Woong; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Marino, Daniel; Kim, Jin-Yeon; Jacobs, L.J [Georgia Institute of Technology, Atlanta (United States); Ruiz, Alberto [UMSNH, Morelia (Mexico)
2014-10-15
Thermal aging can pose a high risk to decreases in the mechanical properties such as strength or creep resistance. This can lead to an unexpected failure during long term operation. Nonlinear NDE techniques are preferred over conventional NDE techniques (linear ultrasonic measurements) because nonlinear ultrasonic techniques have shown their capability to detect a microstructural damage in the structures undergoing fatigue and creep. These nonlinear ultrasonic techniques make use of the fact that the dislocation density increases, which will create a nonlinear distortion of an ultrasonic wave; this damage causes the generation of measurable higher harmonic components in an initially mono-chromatic ultrasonic signal. This study investigates the recently developed non-contact nonlinear ultrasonic technique to detect the microstructural damage of mod. 9Cr-1Mo steel based on nonlinear Rayleigh wave with varying propagation distances. Nonlinear Rayleigh surface wave measurements using a non-contact, air-coupled ultrasonic transducer have been applied for the thermal aging evaluation of modified 9Cr-1Mo ferritic-martensitic steel. Thermal aging for various heat treatment times of mod.. 9Cr-1Mo steel specimens is performed to obtain the nucleation and growth of precipitated particles in specimens. The amplitudes of the first and second harmonics are measured along the propagation distance and the relative nonlinearity parameter is obtained from these amplitudes. The relative nonlinearity parameter shows a similar trend with the Rockwell C hardness.
Crustal structure of northern Italy from the ellipticity of Rayleigh waves
Berbellini, Andrea; Morelli, Andrea; G. Ferreira, Ana M.
2017-04-01
Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10-60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region's crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region's subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region's Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively.
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Puzzilli, L.M.
2017-01-01
Roč. 14, č. 4 (2017), s. 431-444 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : surface wave analysis * Rayleigh wave dispersion * joint inversion * Vs30 Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 0.699, year: 2016
Method and analysis for determining yielding of titanium alloy with nonlinear Rayleigh surface waves
Energy Technology Data Exchange (ETDEWEB)
Guo, Shifeng; Zhang, Lei; Mirshekarloo, Meysam Sharifzadeh; Chen, Shuting; Chen, Yi Fan; Wong, Zheng Zheng; Shen, Zhiyuan; Liu, Huajun; Yao, Kui, E-mail: k-yao@imre.a-star.edu.sg
2016-07-04
Methods for determining yielding of titanium (Ti) alloy material with second harmonic Rayleigh ultrasonic wave are investigated. Both piezoelectric angle beam transducers and high frequency laser scanning vibrometer (LSV) are used to detect ultrasonic signals in the Ti alloy specimens with different plastic strain levels. Technical features and outcomes with use of piezoelectric transducers and LSV are compared. The method using piezoelectric transducers, with much higher signal-to-noise ratio than LSV, has been further improved by deploying two transducers with central frequencies corresponding to the fundamental and second order harmonic signals respectively to improve the testing reliability and accuracy. Both the techniques using piezoelectric transducer and LSV demonstrate consistently that the acoustic nonlinearity increases with plastic strain, and the second harmonic Rayleigh ultrasonic wave can be utilized for effective determination of yielding in Ti alloy. Our experiments further show that the acoustic nonlinearity increases gradually with plastic strain at small plastic strain level, and there is a more significant increase of acoustic nonlinearity when the plastic strain reaches a higher level. Microscopic investigations using scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) are conducted for clarifying the relationship between the observed acoustic nonlinearity and micro-structural changes.
Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector
Kuszewski, P.; Camara, I. S.; Biarrotte, N.; Becerra, L.; von Bardeleben, J.; Savero Torres, W.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.; Thevenard, L.
2018-06-01
We show on in-plane magnetized thin films that magnetization can be switched efficiently by 180 degrees using large amplitude Rayleigh waves travelling along the hard or easy magnetic axis. Large characteristic filament-like domains are formed in the latter case. Micromagnetic simulations clearly confirm that this multi-domain configuration is compatible with a resonant precessional mechanism. The reversed domains are in both geometries several hundreds of , much larger than has been shown using spin transfer torque- or field-driven precessional switching. We show that surface acoustic waves can travel at least 1 mm before addressing a given area, and can interfere to create magnetic stripes that can be positioned with a sub-micronic precision.
Li, Peng; Thurber, Clifford
2018-06-01
We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.
Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.
2018-01-01
Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).
Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.
2016-05-01
It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.
Directory of Open Access Journals (Sweden)
Esteban Flores-Mendez
2012-01-01
Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.
Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave
International Nuclear Information System (INIS)
Kim, Min Soo; Lee, Ho Yong; Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon; Kwon, Sung Duck
2017-01-01
Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk
Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Soo; Lee, Ho Yong [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kwon, Sung Duck [Dept. of Physics, Andong National University, Andong (Korea, Republic of)
2017-02-15
Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk.
Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.
Baynes, Alexander B; Godin, Oleg A
2017-12-01
Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.
Ball, Justin S.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi; Yeck, William L.; Collins, John A.
2016-05-01
We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18-70 s period) and ambient noise-based (8-25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs 50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.
The internal waves and Rayleigh-Taylor instability in compressible quantum plasmas
International Nuclear Information System (INIS)
Lu, H. L.; Qiu, X. M.
2011-01-01
In this paper, we investigate the quantum effect on internal waves and Rayleigh-Taylor (RT) instability in compressible quantum plasmas. First of all, let us consider the case of the limit of short wavelength perturbations. In the case, the dispersion relation including quantum and compressibility effects and the RT instability growth rate can be derived using Wentzel-Kramers-Brillouin method. The results show that the internal waves can propagate along the transverse direction due to the quantum effect, which was first pointed out by Bychkov et al.[Phys. Lett. A 372, 3042 (2008)], and the coupling between it and compressibility effect, which is found out in this paper. Then, without making the approximation assumption of short wavelength limit, we examine the linearized perturbation equation following Qiu et al.'s solving process [Phys. Plasmas 10, 2956 (2003)]. It is found that the quantum effect always stabilizes the RT instability in either incompressible or compressible quantum plasmas. Moreover, in the latter case, the coupling between it and compressibility effect makes this stabilization further enhance.
Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin
2015-01-01
The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
Scholz, John-Robert; Barruol, Guilhem; Fontaine, Fabrice R.; Sigloch, Karin
2016-04-01
To image the upper mantle structure beneath La Réunion hotspot, a large-scale seismic network has been deployed on land and at sea in the frame of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel). This French-German passive seismic experiment was designed to investigate and image the deep structure beneath La Réunion, from crust to core, to precise the shape and depth origin of a mantle plume, if any, and to precise the horizontal and vertical mantle flow associated to a possible plume upwelling, to its interaction with the overlying plate and with the neighboring Indian ridges. For this purpose, 57 Ocean-Bottom Seismometers (OBS) were installed around La Réunion and along the Central and Southwest Indian ridges. Broad-band instruments were deployed with the French R/V Marion Dufresne in late 2012 (cruise MD192), and recovered 13 months later by the German R/V Meteor (cruise M101). The pool of OBS was complemented by ~60 terrestrial stations, installed on different islands in the western Indian Ocean, such as La Réunion, Madagascar, Mauritius, Seychelles, Mayotte and the Îles Éparses in the Mozambique channel. The OBS installation is a free-fall down to the seafloor, where they landed in an unknown orientation. Since seismologic investigations of crustal and upper mantle structure (e.g., receiver functions) and azimuthal anisotropy (e.g., SKS-splitting and Rayleigh waves) rely on the knowledge of the correct OBS orientation with respect to the geographic reference frame, it is of importance to determine the orientations of the OBS while recording on the seafloor. In an isotropic, horizontally homogeneous and non-dipping layered globe, the misorientation of each station refers to the offset between theoretical and recorded back-azimuth angle of a passive seismic event. Using large earthquakes (MW > 5.0), it is possible to establish multiple successful measurements per station and thus to determine with good confidence the
International Nuclear Information System (INIS)
Park, Je Woong; Yang, In Young; Im, Kwang Hee; Hsu, David K.; Jung, Jong An
2012-01-01
The importance of carbon fiber reinforced plastics (CFRP) has been generally recognized, and CFRP composite laminates have become widely used. Thus, a nondestructive technique would be very useful for evaluating CF/epoxy composite laminates. A pitch catch UT signal is more sensitive than is a normal incidence backwall echo of a longitudinal wave in composites. The depth of the sampling volume where the pitch catch UT signal came from is relatively shallow, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Moreover, a method is utilized to determine the porosity content of a composite lay up by processing micrograph images of the laminate. The porosity content of a composite structure is critical to the overall strength and performance of the structure. The image processing method developed utilizes software to process micrograph images of the test sample. The results from the image processing method are compared with existing data. Beam profile is characterized in unidirectional CFRP using pitch catch Rayleigh probes. The one sided and two sided pitch catch techniques are utilized to produce C scan images with the aid of an automatic scanner. The pitch catch ultrasonic signal corresponds with the simulated results of unidirectional CFRP composites
Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments
Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov
2017-10-01
Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Czech Academy of Sciences Publication Activity Database
Stoklasová, Pavla; Sedlák, Petr; Seiner, Hanuš; Landa, Michal
2015-01-01
Roč. 56, February 2015 (2015), s. 381-389 ISSN 0041-624X R&D Projects: GA ČR GPP101/12/P428 Institutional support: RVO:61388998 Keywords : surface acoustic waves * anisotropic materials * Ritz-Rayleigh method * inverse problem Subject RIV: BI - Acoustics Impact factor: 1.954, year: 2015 http://www.sciencedirect.com/science/article/pii/S0041624X14002686
Performance of equal gain combining with quantized phases in rayleigh fading channels
Rizvi, Umar H.
2011-01-01
In this paper, we analyze the error probability of equal gain combining with quantized channel phase compensation for binary phase shift keying signalling over Rayleigh fading channels. The probability density and characteristic functions of the combined signal amplitude are derived and used to compute the analytic expressions for the bit error probability in dependance of the number of quantization levels L, the number of diversity branches N-R and the average received signal-to-noise ratio. The analysis is utilized to outline the trade-off between N-R and L and to compare the performance with non-coherent binary frequency shift keying and differential binary phase shift keying schemes under diversity reception. © 2011 IEEE.
Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.
Energy Technology Data Exchange (ETDEWEB)
Park, Y; Nyblade, A; Rodgers, A; Al-Amri, A
2007-11-09
The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanic line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.
Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries
Titarchuk, Lev
2002-01-01
Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the
Palomeras, Imma; Villasenor, Antonio; Thurner, Sally; Levander, Alan; Gallart, Josep; Harnafi, Mimoun
2016-04-01
The Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin, constitute the westernmost Mediterranean. From north to south this region consists of the Pyrenees, the result of interaction between the Iberian and Eurasian plates; the Iberian Massif, a region that has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes) and the Atlas Mountains, resulting from post-Oligocene subduction roll-back and Eurasian-Nubian plate convergence. In this study we analyze data from recent broad-band array deployments and permanent stations on the Iberian Peninsula and in Morocco (Spanish IberArray and Siberia arrays, the US PICASSO array, the University of Munster array, and the Spanish, Portuguese, and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km, comparable to USArray. We have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. The model shows differences in the crust for the different areas, where the highest shear velocities are mapped in the Iberian Massif crust. The crustal thickness is highly variable ranging from ~25 km beneath the eastern Betics to ~55km beneath the Gibraltar Strait, Internal Betics and Internal Rif. Beneath this region a unique arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas
Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.
2014-12-01
The westernmost Mediterranean comprises the Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin. From north to south this region consists of the Pyrenees, resulting from Iberia-Eurasia collision; the Iberian Massif, which has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes), resulting from post-Oligocene subduction roll-back; and the Atlas Mountains. We analyzed data from recent broad-band array deployments and permanent stations in the area (IberArray and Siberia arrays, the PICASSO array, the University of Munster array, and the Spanish, Portuguese and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km. We calculated the Rayleigh waves phase velocities from ambient noise (periods 4 to 40 s) and teleseismic events (periods 20 to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. Our results correlate well with the surface expression of the main structural units with higher crustal velocity for the Iberian Massif than for the Alpine Iberia and Atlas Mountains. The Gibraltar Arc has lower crustal shear velocities than the regional average at all crustal depths. It also shows an arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas.
Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor
Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.
2017-10-01
The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.
Numerical Modelling of Rayleigh Wave Propagation in Course of Rapid Impulse Compaction
Herbut, Aneta; Rybak, Jarosław
2017-10-01
As the soil improvement technologies are the area of a rapid development, they require designing and implementing novel methods of control and calibration in order to ensure the safety of geotechnical works. At Wroclaw University of Science and Technology (Poland), these new methods are continually developed with the aim to provide the appropriate tools for the preliminary design of work process, as well as for the further ongoing on-site control of geotechnical works (steel sheet piling, pile driving or soil improvement technologies). The studies include preliminary numerical simulations and field tests concerning measurements and continuous histogram recording of shocks and vibrations and its ground-born dynamic impact on engineering structures. The impact of vibrations on reinforced concrete and masonry structures in the close proximity of the construction site may be destroying in both architectural and structural meaning. Those limits are juxtaposed in codes of practice, but always need an individual judgment. The results and observations make it possible to delineate specific modifications to the parameters of technology applied (e.g. hammer drop height). On the basis of numerous case studies of practical applications, already summarized and published, we were able to formulate the guidelines for work on the aforementioned sites. This work presents specific aspects of the active design (calibration of building site numerical model) by means of technology calibration, using the investigation of the impact of vibrations that occur during the Impulse Compaction on adjacent structures. A case study entails the impact of construction works on Rayleigh wave propagation in the zone of 100 m (radius) around the Compactor.
Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan
We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.
Rayleigh-Taylor instability in the deceleration phase of spherical implosion experiments
International Nuclear Information System (INIS)
Smalyuk, V.A.; Delettrez, J.A.; Goncharov, V.N.; Marshall, F.J.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Town, R.P.J.; Yaakobi, B.
2002-01-01
The temporal evolution of inner-shell modulations, unstable during the deceleration phase of a laser-driven spherical implosion, has been measured through K-edge imaging [B. Yaakobi et al., Phys. Plasmas 7, 3727 (2000)] of shells with titanium-doped layers. The main study was based on the implosions of 1 mm diam, 20 μm thick shells filled with either 18 atm or 4 atm of D 3 He gas driven with 23 kJ, 1 ns square laser pulses on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. These targets have similar modulation levels at the beginning of the deceleration phase due to similar modulation growths in the acceleration phase, but different modulation growths throughout the deceleration phase due to different fill pressures (convergence ratios). At peak compression, the measured inner surface, areal-density nonuniformity σ rms levels were 23±5 % for more-stable 18 atm fill targets and 53±11 % for less-stable 4 atm fill targets. The inner-surface modulations grow throughout the deceleration phase due to Rayleigh-Taylor instability and Bell-Plesset convergence effects. The nonuniformity at peak compression is sensitive to the initial perturbation level as measured in implosions with different laser-smoothing conditions
Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.
2018-01-01
A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.
Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome
2013-10-01
The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.
Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi
2018-01-01
The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40–80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150–200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove
Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi
2018-04-01
The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40-80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150-200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift
Czech Academy of Sciences Publication Activity Database
Brepta, R.; Valeš, F.; Červ, Jan; Tikal, B.
1996-01-01
Roč. 58, č. 6 (1996), s. 1233-1244 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA101/93/1195 Institutional research plan: CEZ:AV0Z2076919 Keywords : thin elastic body * Rayleigh waves * grid dispersion Subject RIV: BI - Acoustics Impact factor: 0.254, year: 1996 http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=U2EJknka3H@mKemE37@&page=1&doc=1&colname=WOS
Study of Rayleigh-Love coupling from Spatial Gradient Observation
Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.
2017-12-01
We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.
Ultrasonic phased array with surface acoustic wave for imaging cracks
Directory of Open Access Journals (Sweden)
Yoshikazu Ohara
2017-06-01
Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.
Wave Tank Studies of Phase Velocities of Short Wind Waves
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
Directory of Open Access Journals (Sweden)
Carolina Buffoni
2018-01-01
Full Text Available In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego (TdF, Argentina, by the analysis of short-period Rayleigh wave group velocities. The island, situated in the southernmost South America, is a key area of investigation among the interaction between the South American and Scotia plates and is considered as a very seismically active one. Through cross-correlating the vertical components of ambient seismic noise registered at four broadband stations in TdF, we were able to extract Rayleigh waves which were used to estimate group velocities in the period band of 2.5–16 s using a time-frequency analysis. Although ambient noise sources are distributed inhomogeneously, robust empirical Green's functions could be recovered from the cross-correlation of 12 months of ambient noise. The observed group velocities were inverted considering a non-linear iterative damped least-squares inversion procedure and several 1-D shear wave velocity models of the upper crust were obtained. According to the inversion results, the S-wave velocity ranges between 1.75 and 3.7 km/s in the first 10 km of crust, depending on the pair of stations considered. These results are in agreement to the major known surface and sub-surface geological and tectonic features known in the area. This study represents the first ambient seismic noise analysis in TdF in order to constraint the upper crust beneath this region. It can also be considered as a successful feasibility study for future analyses with a denser station deployment for a more detailed imaging of structure.
Tang, Zheng
2018-05-15
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
Tang, Zheng; Mai, Paul Martin; Chang, Sung-Joon; Zahran, Hani
2018-01-01
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
Fletcher, Jon B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse
2016-04-01
If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta, then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of freshwater for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental mode, Rayleigh wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations was stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 s. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which are dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4°. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large crosscutting features like the Stockton arch. At shorter periods around 5.5 s, the model's western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries of the low
Fletcher, Jon Peter B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse
2016-01-01
If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of fresh water for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental-mode, Rayleigh-wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations were stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 seconds. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which is dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4 degrees. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large cross cutting features like the Stockton arch. At shorter periods around 5.5s, the model’s western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries
Han, Libo; Peng, Zhigang; Johnson, Christopher W.; Pollitz, Fred F.; Li, Lu; Wang, Baoshan; Wu, Jing; Li, Qiang; Wei, Hongmei
2017-12-01
We present a case of remotely triggered seismicity in Southwest China by the 2015/04/25 M7.8 Gorkha, Nepal earthquake. A local magnitude ML3.8 event occurred near the Qijiang district south of Chongqing city approximately 12 min after the Gorkha mainshock. Within 30 km of this ML3.8 event there are 62 earthquakes since 2009 and only 7 ML > 3 events, which corresponds to a likelihood of 0.3% for a ML > 3 on any given day by a random chance. This observation motivates us to investigate the relationship between the ML3.8 event and the Gorkha mainshock. The ML3.8 event was listed in the China Earthquake National Center (CENC) catalog and occurred at shallow depth (∼3 km). By examining high-frequency waveforms, we identify a smaller local event (∼ML 2.5) ∼ 15 s before the ML3.8 event. Both events occurred during the first two cycles of the Rayleigh waves from the Gorkha mainshock. We perform seismic event detection based on envelope function and waveform matching by using the two events as templates. Both analyses found a statistically significant rate change during the mainshock, suggesting that they were indeed dynamically triggered by the Rayleigh waves. Both events occurred during the peak normal and dilatational stress changes (∼10-30 kPa), consistent with observations of dynamic triggering in other geothermal/volcanic regions. Although other recent events (i.e., the 2011 M9.1 Tohoku-Oki earthquake) produced similar peak ground velocities, the 2015 Gorkha mainshock was the only event that produced clear dynamic triggering in this region. The triggering site is close to hydraulic fracturing wells that began production in 2013-2014. Hence we suspect that fluid injections may increase the region's susceptibility to remote dynamic triggering.
Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete
International Nuclear Information System (INIS)
Lee, Joon Hyun; Song, Won Joon; Popovics, J. S.; Achenbach, J. D.
1997-01-01
A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.
Yoshizawa, K.; Hamada, K.
2017-12-01
A new 3-D S-wave model of the North American upper mantle is constructed from a large number of inter-station phase and amplitude measurements of surface waves. A fully nonlinear waveform fitting method by Hamada and Yoshizawa (2015, GJI) is applied to USArray for measuring inter-station phase speeds and amplitude ratios of the fundamental-mode Rayleigh and Love waves. We employed the seismic events from 2007 - 2014 with Mw 6.0 or greater, and collected a large-number of inter-station phase speed data (about 130,000 for Rayleigh and 85,000 for Love waves) and amplitude ratio data (about 75,000 for Rayleigh waves) in a period range from 30 to 130 s for fundamental-mode surface waves. Typical inter-station distances are mostly in a range between 300 and 800 km, which can be of help in enhancing the lateral resolution of a regional tomography model. We first invert Rayleigh-wave phase speeds and amplitudes simultaneously for phase speed maps as well as local amplification factors at receiver locations. The isotropic 3-D S-wave model constructed from these phase speed maps incorporating both phase and amplitude data exhibits better recovery of the strength of velocity perturbations. In particular, local tectonic features characterized by strong velocity gradients, such as Rio Grande Rift, Colorado Plateau and New Madrid Seismic Zone, are more enhanced than conventional models derived from phase information only. The results indicate that surface-wave amplitude, which is sensitive to the second derivative of phase speeds, can be of great help in retrieving small-scale heterogeneity in the upper mantle. We also obtain a radial anisotropy model from the simultaneous inversions of Rayleigh and Love waves (without amplitude information). The model has shown faster SH wave speed anomalies than SV above the depth of 100 km, particularly in tectonically active regions in the western and central U.S., representing the effects of current and former tectonic processes on
Slow growth of the Rayleigh-Plateau instability in aqueous two phase systems
Geschiere, S.D.; Ziemecka, I.; Van Steijn, V.; Koper, G.J.M.; Van Esch, J.H.; Kreutzer, M.T.
2012-01-01
This paper studies the Rayleigh-Plateau instability for co-flowing immiscible aqueous polymer solutions in a microfluidic channel. Careful vibration-free experiments with controlled actuation of the flow allowed direct measurement of the growth rate of this instability. Experiments for the
Reversed phase propagation for hyperbolic surface waves
DEFF Research Database (Denmark)
Repän, Taavi; Novitsky, Andrey; Willatzen, Morten
2018-01-01
Magnetic properties can be used to control phase propagation in hyperbolic metamaterials. However, in the visible spectrum magnetic properties are difficult to obtain. We discuss hyperbolic surface waves allowing for a similar control over phase, achieved without magnetic properties....
International Nuclear Information System (INIS)
Naghizadeh, M.; Javaherian, A.; Sadidkhooy, A.
2005-01-01
Surface wave amplitudes from explosion sources show less variation for a given event than body wave amplitudes, so it is natural to expect that yield estimation derived from surface waves will be more accurate than yield estimation derived from body waves. However yield estimation from surface waves is complicated by the presence of tectonic strain release, which acts like one or more earthquake sources superimposed on the explosion. Explosions on an island or near a mountain slope can exhibit anomalous surface waves similar to those caused by tectonic strain release. One of the methods in estimating the yield of nuclear explosions is to determine a relationship between the magnitude and the yield of an explosion. The kind of magnitude employed has an important role in this regard. In this paper, vertical component of long period seismograms at SRO, Mashhad from explosions occurred in semipalatinsk test site, semipalatinsk test site east of Kazakhstan) are considered. First, by using the relationships of IASPEI and Rezapour and Pearce (1998), we determined surface wave magnitude (MS) which is defined as the logarithm of the amplitude plus a distance correction. Then we derived a relation for M S versus yield for a data set which includes a 15 long period seismograms recorded at SRO Mashhad station from semipalatinsk test site nuclear explosions. Furthermore, by digitizing the vertical component of seismograms and transforming them to the frequency domain, the mean amplitude of records at frequency ranges of 0.04-0.06 Hz were calculated. Then, surface wave magnitudes in the frequency domain (M Sf ) and their corresponding yield-magnitude relationship were obtained. By comparing correlation coefficients of these two yield-magnitude relationships, following relationship M S = 1.079 log(Y) + 1.714, was chosen for estimating the yield of semipalatinsk test site nuclear explosion from seismograms of SRO
A Numerical Method for Predicting Rayleigh Surface Wave Velocity in Anisotropic Crystals (Postprint)
2017-09-05
velocity, preventing the use of gradient-based optimization routines. The typical approach to solving this problem is to perform the inverse many times...is dependent on the wave velocity. However, the wave velocity is unknown at this point, which means p and v must be determined simultaneously . One way...defined as: Z=−iBA−1 (11) where A is the matrix formed by combining the displacement vectors, a into a single matrix. The inverse is guaranteed to exist
Li, Yonghua; Wang, Xingchen; Zhang, Ruiqing; Wu, Qingju; Ding, Zhifeng
2017-05-01
We investigated the crustal structure at 34 stations using the H-κ stacking method and jointly inverting receiver functions with Rayleigh-wave phase and group velocities. These seismic stations are distributed along a profile extending across the Songpan-Ganzi Terrane, Qinling-Qilian terranes and southwestern Ordos Basin. Our results reveal the variation in crustal thickness across this profile. We found thick crust beneath the Songpan-Ganzi Terrane (47-59 km) that decreases to 45-47 km in the west Qinling and Qilian terranes, and reaches its local minimum beneath the southwestern Ordos Block (43-51 km) at an average crustal thickness of 46.7 ± 2.5 km. A low-velocity zone in the upper crust was found beneath most of the stations in NE Tibet, which may be indicative of partial melt or a weak detachment layer. Our observations of low to moderate Vp/Vs (1.67-1.79) represent a felsic to intermediate crustal composition. The shear velocity models estimated from joint inversions also reveal substantial lateral variations in velocity beneath the profile, which is mainly reflected in the lower crustal velocities. For the Ordos Block, the average shear wave velocities below 20 km are 3.8 km/s, indicating an intermediate-to-felsic lower crust. The thick NE Tibet crust is characterized by slow shear wave velocities (3.3-3.6 km/s) below 20 km and lacks high-velocity material (Vs ≥ 4.0 km/s) in the lower crust, which may be attributed to mafic lower crustal delamination or/and the thickening of the upper and middle crust.
Ammirati, J. B.; Alvarado, P. M.; Beck, S. L.
2014-12-01
Receiver Function (RF) analyses using teleseismic P waveforms is a technique to isolate P to S conversions from seismic discontinuities in the lithosphere. Using earthquakes with a good azimuthal distribution, RFs recorded at a three-component seismic station can be inverted to obtain detailed lithospheric velocity structures. The technique, however presents a velocity-depth trade-off, which results in a non-unique model because RFs do not depend on the absolute seismic velocities but rather on relative velocity contrasts. Unlike RF, surface wave dispersion is sensitive to the average shear-wave velocity which makes it well suited for studying long period variations of the lithospheric seismic velocities. We performed a joint inversion of RF and Rayleigh-wave phase velocity dispersion to investigate the structure beneath the SIEMBRA network, a 43-broadband-seismic-station array deployed in the Pampean flat slab region of Argentina. Our results indicate: 1) The presence of several mid-crustal discontinuities probably related with terrane accretion; 2) A high seismic velocity in the lower crust suggesting partial eclogitization; 3) A thicker crust (> 50 km) beneath the western Sierras Pampeanas with an abrupt change in the relative timing of the Moho signal indicating a thinner crust to the east; 4) The presence of the subducting oceanic crust lying at ~100 km depth. We then built a 1D regional velocity model for the flat slab region of Argentina and used it for regional moment tensor inversions for local earthquakes. This technique is notably dependent on small-scale variations of Earth structure when modeling higher frequency seismic waveforms. Eighteen regional focal mechanisms have been determined. Our solutions are in good agreement with GCMT source estimations although our solutions for deep earthquakes systematically resulted in shallower focal depths suggesting that the slab seismicity could be concentrated at the top of the subducting Nazca plate. Solutions
Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Julià, Jordi; Wiens, Douglas A.; Pasyanos, Michael E.
2010-11-01
The Cameroon Volcanic Line (CVL) consists of a linear chain of Tertiary to Recent, generally alkaline, volcanoes that do not exhibit an age progression. Here we study crustal structure beneath the CVL and adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broad-band seismic stations deployed between 2005 January and 2007 February. We find that (1) crustal thickness (35-39km) and velocity structure is similar beneath the CVL and the Pan African Oubanguides Belt to the south of the CVL, (2) crust is thicker (43-48km) under the northern margin of the Congo Craton and is characterized by shear wave velocities >=4.0kms-1 in its lower part and (3) crust is thinner (26-31km) under the Garoua rift and the coastal plain. In addition, a fast velocity layer (Vs of 3.6-3.8kms-1) in the upper crust is found beneath many of the seismic stations. Crustal structure beneath the CVL and the Oubanguides Belt is very similar to Pan African crustal structure in the Mozambique Belt, and therefore it appears not to have been modified significantly by the magmatic activity associated with the CVL. The crust beneath the coastal plain was probably thinned during the opening of the southern Atlantic Ocean, while the crust beneath the Garoua rift was likely thinned during the formation of the Benue Trough in the early Cretaceous. We suggest that the thickened crust and the thick mafic lower crustal layer beneath the northern margin of the Congo Craton may be relict features from a continent-continent collision along this margin during the formation of Gondwana.
International Nuclear Information System (INIS)
Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Jordi Julia; Wiens, Douglas A.; Pasyanos, Michael E.
2009-09-01
The joint inversion of Rayleigh wave group velocities and receiver functions was carried out to investigate the crustal and uppermost mantle structures beneath Cameroon. This was achieved using data from 32 broadband seismic stations installed for 2 years across Cameroon. The Moho depth estimates reveal that the Precambrian crust is variable across the country and shows some significant differences compared to other similar geologic units in East and South Africa. These differences suggest that the setting of the Cameroon Volcanic Line (CVL) and the eastward extension of the Benue Trough have modified the crust of the Panafrican mobile belt in Cameroon by thinning beneath the Rift area and CVL. The velocity models obtained from the joint inversion show at most stations, a layer with shear wave velocities ≥ 4.0 km/s, indicating the presence of a mafic component in the lower crust, predominant beneath the Congo Craton. The lack of this layer at stations within the Panafrican mobile belt may partly explain the crustal thinning observed beneath the CVL and rift area. The significant presence of this layer beneath the Craton, results from the 2100 Ma magmatic events at the origin of the emplacement of swarms of mafic dykes in the region. The CVL stations are underlain by a crust of 35 km on average except near Mt-Cameroon where it is about 25 km. The crustal thinning observed beneath Mt. Cameroon supported by the observed positive gravity anomalies here, suggests the presence of dense astenospheric material within the lithosphere. Shear wave velocities are found to be slower in the crust and uppermost mantle beneath the CVL than the nearby tectonic terrains, suggesting that the origin of the line may be an entirely mantle process through the edge-flow convection process. (author)
Hamada, K.; Yoshizawa, K.
2015-09-01
A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit
Response of a Circular Tunnel Through Rock to a Harmonic Rayleigh Wave
Kung, Chien-Lun; Wang, Tai-Tien; Chen, Cheng-Hsun; Huang, Tsan-Hwei
2018-02-01
A factor that combines tunnel depth and incident wavelength has been numerically determined to dominate the seismic responses of a tunnel in rocks that are subjected to harmonic P- and S-waves. This study applies the dynamic finite element method to investigate the seismic response of shallow overburden tunnels. Seismically induced stress increments in the lining of a circular tunnel that is subjected to an incident harmonic R-wave are examined. The determination of R-wave considers the dominant frequency of acceleration history of the 1999 Chi-Chi earthquake measured near the site with damage to two case tunnels at specifically shallow depth. An analysis reveals that the normalized seismically induced axial, shear and flexural stress increments in the lining of a tunnel reach their respective peaks at the depth h/ λ = 0.15, where the ground motion that is generated by an incident of R-wave has its maximum. The tunnel radius has a stronger effect on seismically induced stress increments than does tunnel depth. A greater tunnel radius yields higher normalized seismically induced axial stress increments and lower normalized seismically induced shear and flexural stress increments. The inertia of the thin overburden layer above the tunnel impedes the propagation of the wave and affects the motion of the ground around the tunnel. With an extremely shallow overburden, such an effect can change the envelope of the normalized seismically induced stress increments from one with a symmetric four-petal pattern into one with a non-symmetric three-petal pattern. The simulated results may partially elucidate the spatial distributions of cracks that were observed in the lining of the case tunnels.
International Nuclear Information System (INIS)
Miles, A.R.; Edwards, M.J.; Greenough, J.A.
2004-01-01
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, the results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types is considered. Compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Certain aspects of the initial conditions, including the rms amplitude, are shown to have a strong effect on the time to transition to the quasi-self-similar regime
Ang, Kar M; Yeo, Leslie Y; Hung, Yew M; Tan, Ming K
2016-09-21
The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method.
Rayleigh-Taylor stability for a shock wave-density discontinuity interaction
International Nuclear Information System (INIS)
Fraley, G.S.
1981-01-01
Shells in inertial fusion targets are typically accelerated and decelerated by two or three shocks followed by continuous acceleration. The analytic solution for perturbation growth of a shock wave striking a density discontinuity in an inviscid fluid is investigated. The Laplace transform of the solution results in a functional equation, which has a simple solution for weak shock waves. The solution for strong shock waves may be given by a power series. It is assumed that the equation of state is given by a gamma law. The four independent parameters of the solution are the gamma values on each side of the material interface, the density ratio at the interface, and the shock strength. The asymptotic behavior (for large distances and times) of the perturbation velocity is given. For strong shocks the decay of the perturbation away from the interface is much weaker than the exponential decay of an incompressible fluid. The asymptotic value is given by a constant term and a number of slowly decaying discreet frequencies. The number of frequencies is roughly proportional to the logarithm of the density discontinuity divided by that of the shock strength. The asymptotic velocity at the interface is tabulated for representative values of the independent parameters. For weak shocks the solution is compared with results for an incompressible fluid. The range of density ratios with possible zero asymptotic velocities is given
Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F. C.; Collins, J. A.
2015-12-01
We present the first 3D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath Campbell and Challenger plateaus. Our model is constructed via linearized inversion of both teleseismic (18 -70 s period) and ambient noise-based (8 - 25 s period) Rayleigh wave dispersion measurements. We augment an array of 29 ocean-bottom instruments deployed off the South Island's east and west coasts in 2009-2010 with 28 New Zealand land-based seismometers. The ocean-bottom seismometers and 4 of the land seismometers were part of the Marine Observations of Anisotropy Near Aotearoa (MOANA) experiment, and the remaining land seismometers are from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs<4.3km/s) body extending to at least 75km depth beneath the Banks and Otago peninsulas, a high-velocity (Vs~4.7km/s) upper mantle anomaly underlying the Southern Alps to a depth of 100km, and discontinuous lithospheric velocity structure between eastern and western Challenger Plateau. Using the 4.5km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau is substantially greater than that of Campbell Plateau. The high-velocity anomaly we resolve beneath the central South Island exhibits strong spatial correlation with subcrustal earthquake hypocenters along the Alpine Fault (Boese et al., 2013). The ~400km-long low velocity zone we image beneath eastern South Island underlies Cenozoic volcanics and mantle-derived helium observations (Hoke et al., 2000) on the surface. The NE-trending low-velocity zone dividing Challenger Plateau in our model underlies a prominent magnetic discontinuity (Sutherland et al., 1999). The latter feature has been interpreted to represent a pre-Cretaceous crustal boundary, which our results suggest may involve the entire mantle lithosphere.
Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume
2018-03-01
The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.
Phononic Crystal Made of Multilayered Ridges on a Substrate for Rayleigh Waves Manipulation
Directory of Open Access Journals (Sweden)
Mourad Oudich
2017-12-01
Full Text Available We present a phononic crystal to achieve efficient manipulation of surface acoustic waves (SAW. The structure is made of finite phononic micro-ridges arranged periodically in a substrate surface. Each ridge is constructed by staking silicon and tungsten layers so that it behaves as one-dimensional phononic crystal which exhibits band gaps for elastic waves. The band gap allows the existence of resonance modes where the elastic energy is either confined within units in the free end of the ridge or the ones in contact with the substrate. We show that SAW interaction with localized modes in the free surface of the ridge gives rise to sharp attenuation in the SAW transmission, while the modes confined within the ridge/substrate interface cause broad band attenuations of SAW. Furthermore, we demonstrate that the coupling between the two kinds of modes within the band gap gives high SAW transmission amplitude in the form of Fano-like peaks with high quality factor. The structure could provide an interesting solution for accurate SAW control for sensing applications, for instance.
Rayleigh Wave Group Velocity Tomography from Microseisms in the Acambay Graben
Valderrama Membrillo, S.; Aguirre, J.; Zuñiga-Davila, R.; Iglesias, A.
2017-12-01
The Acambay graben is one of the most outstanding structures of the Trans-Mexican Volcanic Belt. The Acambay graben has a length of 80km and 15 to 18 km wide and reaches a maximum height of 400 m in its central part. We obtained the group velocity seismic tomography for the Acamaby graben for three different frequencies (f = 0.1, 0.2 and 0.3 Hz). The graben was divided into 6x6 km cells for the tomography and covered a total area of 1008 km2. Seismic noise data from 10 broadband seismic stations near the Acambay graben were used to extract the surface wave arrival-times between all station pairs. The Green's function was recovered in each stations pair by cross-correlation technique. This technique was applied to seismic recordings collected on the vertical component of 10 broadband stations for a continuous recording period of 5 months. Data processing consisted of removing instrumental response, mean, and trend. After that, we applied time domain normalization, a spectral whitening and applied band-pas filtering of 0.1 to 1 Hz. There are shallow studies of the Acambay graben. But little is known of the distribution of deep graben structures. This study estimated the surface wave velocity deep structure. The structures at the frequency 0.3 Hz indicate a lower depth than the remaining frequencies. The result for this frequency show consistencies with previous studies of gravimetry and resistivity, also defines the fault system of Temascalcingo.
Velocity model of the Hronov-Poříčí Fault Zone from Rayleigh wave dispersion
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Valenta, Jan; Málek, Jiří
2014-01-01
Roč. 18, č. 3 (2014), s. 617-635 ISSN 1383-4649 R&D Projects: GA ČR GA205/09/1244; GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : Bohemian Massif * surface waves * phase-velocity * dispersion curve Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.386, year: 2014
Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data
Mora, P.; Spies, M.
2018-05-01
We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.
Coupling of Rayleigh-like waves with zero-sound modes in normal 3He
International Nuclear Information System (INIS)
Bogacz, S.A.; Ketterson, J.B.
1985-01-01
The Landau kinetic equation is solved in the collisionless regime for a sample of normal 3 He excited by a surface perturbation of arbitrary ω and k. The boundary condition for the nonequilibrium particle distribution is determined for the case of specular reflection of the elementary excitations at the interface. Using the above solution, the energy flux through the boundary is obtained as a function of the surface wave velocity ω/k. The absorption spectrum and its frequency derivative are calculated numerically for typical values of temperature and pressure. The spectrum displays a sharp, resonant-like maximum concentrated at the longitudinal sound velocity and a sharp maximum of the derivative concentrated at the transverse sound velocity. The energy transfer is cut off discontinuously below the Fermi velocity. An experimental measurement of the energy transfer spectrum would permit a determination of both zero-sound velocities and the Fermi velocity with spectroscopic precision
Waves in separated two-phase flow
International Nuclear Information System (INIS)
Pols, R.M.
1998-06-01
This dissertation presents an integral approach to the modelling of co-current flow of liquid and gas for a class of non-linear wave problems. Typically the liquid phase and the gas phase are decoupled and the liquid is depth averaged. The resulting non-linear shallow water equations are solved to predict the behaviour of the finite amplitude waves. The integral approach is applied to the modelling of two-dimensional waves in a horizontal and slightly inclined rectangular channel, two-dimensional waves in a vertical pipe and three-dimensional waves in a horizontal tube. For flow in a horizontal or slightly inclined channel the liquid is driven by the interfacial shear from the gas phase and the surface is subject to extensive wave action. For thin liquid films the pressure in the liquid may be taken as hydrostatic and gravity acts as a restoring force on the liquid. Roll wave solutions to the non-linear shallow water equations are sought corresponding to an interfacial shear stress dependent on the liquid film height. Wave solutions are shown to exist but only for parameters within a defined range dependent on the channel inclination, interfacial roughness and linear dependence on the liquid film height of the shear stresses. Such solutions are discontinuous and are pieced together by a jump where mass and momentum are conserved. The model calculations on wave height and wave velocity are compared with experimental data. The essentially two-dimensional analysis developed for stratified horizontal flow can be extended to quasi three-dimensional flow in the case of shallow liquid depth for a circular pipe. In this case the liquid depth changes with circumferential position and consequently modifies the interfacial shear exerted on the liquid surface creating a wave spreading mechanism alongside changing the wave profile across the pipe. The wave spreading mechanism supposes a wave moving in axial direction at a velocity faster than the liquid thereby sweeping liquid
Energy Technology Data Exchange (ETDEWEB)
Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E
2010-02-18
Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.
Fluctuation spectroscopy: From Rayleigh-Jeans waves to Abrikosov vortex clusters
Varlamov, A. A.; Galda, A.; Glatz, A.
2018-01-01
Superconducting (SC) fluctuations, discovered in the late 1960s, have constituted an important research area in superconductivity as they are manifest in a variety of phenomena. Indeed, the underlying physics of SC fluctuations makes it possible to elucidate the fundamental properties of the superconducting state. The interest in SC fluctuation phenomena was further enhanced with the discovery of cuprate high-temperature superconductors (HTSs). In these materials, superconducting fluctuations appear over a wide range of temperatures due to the superconductors extremely short coherence lengths and low effective dimensionality of the electron systems. These strong fluctuations lead to anomalous properties of the normal state in some HTS materials. Within the framework of the phenomenological Ginzburg-Landau theory, and more extensively in the diagrammatic microscopic approach based on BCS theory, SC fluctuations as well as other quantum contributions (weak localization, etc.) enabled a new way to investigate and characterize disordered electron systems, granular metals, Josephson structures, artificial superlattices, and others. The characteristic feature of SC fluctuations is its strong dependence on temperature and magnetic field in the vicinity of the superconducting phase transition. This dependence allows the separation of fluctuation effects from other contributions and provides information about the microscopic parameters of a material, in particular, the critical temperature and the zero-temperature critical magnetic field. As such, SC fluctuations are very sensitive to the relaxation processes that break phase coherence and can be used as a versatile characterization instrument for SCs: Fluctuation spectroscopy has emerged as a powerful tool for studying the properties of superconducting systems on a quantitative level. Here the physics of SC fluctuations is reviewed, commencing from a qualitative description of thermodynamic fluctuations close to the
International Nuclear Information System (INIS)
Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi
2006-01-01
We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response
Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing
2017-10-01
Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.
The phase mixing of shear Alfven waves
International Nuclear Information System (INIS)
Uberoi, C.
1993-04-01
The phase mixing of shear Alfven waves is discussed as a current sheets crossover phenomena by using the well-behaved time dependent solution of the Alfven wave equation. This method is a more direct approach than the initial value problem technique to find the collisionless damping time of the surface waves, which as it represents the coherency loss is argued to be the phase mixing time. The phase mixing time obtained by both the methods compares well. The direct method however, has an advantage that no particular profile for the magnetic field variation need to be chosen and secondly the phase mixing time and the time scale for which the resistivity effects become important can be expressed conveniently in terms of Alfven transit times before crossover. (author). 11 refs
Costanzo, M. R.; Nunziata, C.; Strollo, R.
2017-11-01
Shear wave velocities (VS) are defined in the uppermost 1-2 km of the Campi Flegrei caldera through the non-linear inversion of the group velocity dispersion curves of fundamental-mode Rayleigh waves extracted from ambient noise cross-correlations between two receivers. Noise recordings, three months long, at 12 seismic stations are cross-correlated between all couples of stations. The experiment provided successful results along 54 paths (inter-stations distance), of which 27 sampled a depth > 1 km. VS contour lines are drawn from 0.06 km b.s.l. to 1 km depth b.s.l. and show difference between the offshore (gulf of Pozzuoli and coastline) and the onshore areas. At 0.06 km b.s.l., the gulf of Pozzuoli and the coastline are characterized by VS of 0.3-0.5 km/s and of 0.5-0.7 km/s, respectively. Such velocities are typical of Neapolitan pyroclastic soils and fractured or altered tuffs. The inland shows VS in the range 0.7-0.9 km/s, typical of Neapolitan compact tuffs. Velocities increase with depth and, at 1 km depth b.s.l., velocities lower than 1.5 km/s are still present in the gulf and along the coastline while velocities higher than 1.9 km/s characterize the eastern sector (grossly coincident with the Neapolitan Yellow Tuff caldera rim), the S. Vito plain and the area between Solfatara and SW of Astroni. Such features are much more evident along two cross-sections drawn in the offshore and onshore sectors by integrating our VS models with literature data. Our models join previous noise cross-correlation studies at greater scale at depths of 0.7-0.8 km, hence the picture of the Campi Flegrei caldera is shown up to a depth of 15 km. VS of about 1.7 km/s, corresponding to compression velocities (VP) of about 3 km/s (computed by using the VP/VS ratio resulted in the inversion), are found at depths of 1.1 km, in the centre of the gulf of Pozzuoli, and at a depth of about 0.7 km b.s.l. onshore. An increment of VS velocity ( 1.9-2.0 km/s) is locally observed onshore
Extracting surface waves, hum and normal modes: time-scale phase-weighted stack and beyond
Ventosa, Sergi; Schimmel, Martin; Stutzmann, Eleonore
2017-10-01
Stacks of ambient noise correlations are routinely used to extract empirical Green's functions (EGFs) between station pairs. The time-frequency phase-weighted stack (tf-PWS) is a physically intuitive nonlinear denoising method that uses the phase coherence to improve EGF convergence when the performance of conventional linear averaging methods is not sufficient. The high computational cost of a continuous approach to the time-frequency transformation is currently a main limitation in ambient noise studies. We introduce the time-scale phase-weighted stack (ts-PWS) as an alternative extension of the phase-weighted stack that uses complex frames of wavelets to build a time-frequency representation that is much more efficient and fast to compute and that preserve the performance and flexibility of the tf-PWS. In addition, we propose two strategies: the unbiased phase coherence and the two-stage ts-PWS methods to further improve noise attenuation, quality of the extracted signals and convergence speed. We demonstrate that these approaches enable to extract minor- and major-arc Rayleigh waves (up to the sixth Rayleigh wave train) from many years of data from the GEOSCOPE global network. Finally we also show that fundamental spheroidal modes can be extracted from these EGF.
Energy Technology Data Exchange (ETDEWEB)
Kawamura, S [Nippon Geophysical Prospecting Co. Ltd., Tokyo (Japan)
1996-10-01
Smoothness-constrained least-squares technique with ABIC minimization was applied to the inversion of phase velocity of surface waves during geophysical exploration, to confirm its usefulness. Since this study aimed mainly at the applicability of the technique, Love wave was used which is easier to treat theoretically than Rayleigh wave. Stable successive approximation solutions could be obtained by the repeated improvement of velocity model of S-wave, and an objective model with high reliability could be determined. While, for the inversion with simple minimization of the residuals squares sum, stable solutions could be obtained by the repeated improvement, but the judgment of convergence was very hard due to the smoothness-constraint, which might make the obtained model in a state of over-fitting. In this study, Love wave was used to examine the applicability of the smoothness-constrained least-squares technique with ABIC minimization. Applicability of this to Rayleigh wave will be investigated. 8 refs.
Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; mimoun, H.
2013-12-01
The complex Mesozoic-Cenozoic Alpine deformation in the western Mediterranean extends from the Pyrenees in northern Spain to the Atlas Mountains in southern Morocco. The Iberian plate was accreted to the European plate in late Cretaceous, resulting in the formation of the Pyrenees. Cenozoic African-European convergence resulted in subduction of the Tethys oceanic plate beneath Europe. Rapid Oligocene slab rollback from eastern Iberia spread eastward and southward, with the trench breaking into three segments by the time it reached the African coast. One trench segment moved southwestward and westward creating the Alboran Sea, floored by highly extended continental crust, and building the encircling Betics Rif mountains comprising the Gibraltar arc, and the Atlas mountains, which formed as the inversion of a Jurassic rift. A number of recent experiments have instrumented this region with broad-band arrays (the US PICASSO array, Spanish IberArray and Siberia arrays, the University of Munster array), which, including the Spanish, Portuguese, and Moroccan permanent networks, provide a combined array of 350 stations having an average interstation spacing of ~60 km. Taking advantage of this dense deployment, we have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). Approximately 50,000 stations pairs were used to measure the phase velocity from ambient noise and more than 160 teleseismic events to measure phase velocity for longer periods. The inversion of the phase velocity dispersion curves provides a 3D shear velocity for the crust and uppermost mantle. Our results show differences between the various tectonic regions that extend to upper mantle depths (~200 km). In Iberia we obtain, on average, higher upper mantle shear velocities in the western Variscan region than in the younger eastern part. We map high upper mantle velocities (>4.6 km/s) beneath the
Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km
Xing, Z.; Beghein, C.; Yuan, K.
2012-12-01
This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density
Gravitational Waves from a Dark Phase Transition.
Schwaller, Pedro
2015-10-30
In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios.
The Rayleigh-Taylor instability in the spherical pinch
International Nuclear Information System (INIS)
Chen, H.B.; Hilko, B.; Panarella, E.
1994-01-01
The spherical pinch (SP) concept is an outgrowth of the inertial confinement model (ICF). Unlike the ICF where instabilities, especially the Rayleigh-Taylor instability, have been studied extensively, the instability study of the spherical pinch has just begun. The Raleigh-Taylor instability is investigated for the first time in the SP in the present work. By using the simple condition for the Rayleigh-Taylor instability ∇p · ∇p < O (density and pressure gradients have opposite direction), we have qualitatively identified the regions for development of instabilities in the SP. It is found that the explosion phase (central discharge) is stable and instabilities take place in the imploding phase. However, the growth rate for the instability is not in exponential form, and the appearance of the Rayleigh-Taylor instability does not prevent the main shock wave from converging to the center of the sphere
Characteristics of phase-averaged equations for modulated wave groups
Klopman, G.; Petit, H.A.H.; Battjes, J.A.
2000-01-01
The project concerns the influence of long waves on coastal morphology. The modelling of the combined motion of the long waves and short waves in the horizontal plane is done by phase-averaging over the short wave motion and using intra-wave modelling for the long waves, see e.g. Roelvink (1993).
International Nuclear Information System (INIS)
Betti, R.; Umansky, M.; Lobatchev, V.; Goncharov, V.N.; McCrory, R.L.
2001-01-01
A model for the deceleration phase of imploding inertial confinement fusion capsules is derived by solving the conservation equations for the hot spot. It is found that heat flux leaving the hot spot goes back in the form of internal energy and pdV work of the material ablated off the inner shell surface. Though the hot-spot temperature is reduced by the heat conduction losses, the hot-spot density increases due to the ablated material in such a way that the hot-spot pressure is approximately independent of heat conduction. For direct-drive National Ignition Facility-like capsules, the ablation velocity off the shell inner surface is of the order of tens μm/ns, the deceleration of the order of thousands μm/ns2, and the density-gradient scale length of the order a few μm. Using the well-established theory of the ablative Rayleigh-Taylor instability, it is shown that the growth rates of the deceleration phase instability are significantly reduced by the finite ablative flow and the unstable spectrum exhibits a cutoff for mode numbers of about l≅90
Scattering of wave packets with phases
Energy Technology Data Exchange (ETDEWEB)
Karlovets, Dmitry V. [Department of Physics, Tomsk State University, Lenina Ave. 36, 634050 Tomsk (Russian Federation)
2017-03-09
A general problem of 2→N{sub f} scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3+1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ{sub p}/〈p〉 as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.
Symmetry, phase modulation and nonlinear waves
Bridges, Thomas J
2017-01-01
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Knapmeyer-Endrun, Brigitte; Golombek, Matthew P.; Ohrnberger, Matthias
2017-10-01
The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight's heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.
Energy Technology Data Exchange (ETDEWEB)
Abd-Alla, A. M.; Abo-Dahab, S. M. [Taif University, Taif (Egypt); Khan, Aftab [COMSATS, Chakshahzad (Pakistan)
2015-10-15
In this paper, we investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a higher order and fraction orders of nth order including time rate of strain with voids. The general surface wave speed is derived to study the effect of rotation and voids on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. In order zero our results are well agreeing with classical results. Also by neglecting the reinforced elastic parameters and voids the results reduce to well known isotropic medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is observed that Love wave remains unaffected with respect to rotation and voids. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results are given and illustrated graphically.
International Nuclear Information System (INIS)
Abd-Alla, A. M.; Abo-Dahab, S. M.; Khan, Aftab
2015-01-01
In this paper, we investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a higher order and fraction orders of nth order including time rate of strain with voids. The general surface wave speed is derived to study the effect of rotation and voids on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. In order zero our results are well agreeing with classical results. Also by neglecting the reinforced elastic parameters and voids the results reduce to well known isotropic medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is observed that Love wave remains unaffected with respect to rotation and voids. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results are given and illustrated graphically.
EB Frond wave energy converter - phase 2
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
The EB Frond project is a wave energy programme developed by The Engineering Business (EB) from an original idea at Lancaster University. The EB Frond is a wave generator with a collector vane on top of an arm that pivots near the seabed. Phase 1 of the project demonstrated the technical feasibility of the project and provided proof of concept. Phase 2 involved further assesment of the technical and commercial viability of the concept through the development of mathematical and physical modelling methods. The work involved small-scale (1/25th) testing in wave tanks at Newcastle and Lancaster Universities and the development, verification and validation of a time domain mathematical model. The decision by EB to put on hold its renewable generation programme meant that plans to test at an intermediate scale (1/16th), assess different survival strategies in extreme wave conditions, carry out site characterisation for full-scale systems and to produce a robust economic model were not fulfilled. However, the mathematical and physical modelling work was used to develop an economic model for the Frond system. This produced a predicted unit cost of electricity by a pre-commercial 5 MW demonstration farm of about 17 pence/kWh. The report discusses the small-scale testing, test results, mathematical modelling, analysis and interpretation, survivability, the economic model and the development route to full-scale production.
Beam splitter phase shifts: Wave optics approach
Agnesi, Antonio; Degiorgio, Vittorio
2017-10-01
We investigate the phase relationships between transmitted and reflected waves in a lossless beam splitter having a multilayer structure, using the matrix approach as outlined in classical optics books. Contrarily to the case of the quantum optics formalism generally employed to describe beam splitters, these matrices are not unitary. In this note we point out the existence of general relations among the elements of the transfer matrix that describes the multilayer beam splitter. Such relations, which are independent of the detailed structure of the beam splitter, fix the phase shifts between reflected and transmitted waves. It is instructive to see how the results obtained by Zeilinger by using spinor algebra and Pauli matrices can be easily derived from our general relations.
Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.
2017-12-01
By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.
Phase spectral composition of wind generated ocean surface waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
A study of the composition of the phase spectra of wind generated ocean surface waves is carried out using wave records collected employing a ship borne wave recorder. It is found that the raw phase spectral estimates could be fitted by the Uniform...
Gravitational waves from the electroweak phase transition
International Nuclear Information System (INIS)
Leitao, Leonardo; Mégevand, Ariel; Sánchez, Alejandro D.
2012-01-01
We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10 −4 Hz, and give intensities as high as h 2 Ω GW ∼ 10 −8
Impact of wave phase jumps on stochastic heating
International Nuclear Information System (INIS)
Zasenko, V.I.; Zagorodny, A.G.; Cherniak, O.M.
2016-01-01
Interaction of charged particles with fields of random waves brings about known effects of stochastic acceleration and heating. Jumps of wave phases can increase the intensity of these processes substantially. Numerical simulation of particle heating and acceleration by waves with regular phases, waves with jumping phase and stochastic electric field impulses is performed. Comparison of the results shows that to some extent an impact of phase jumps is similar to the action of separate field impulses. Jumps of phase not only increase the intensity of resonant particle heating but involves in this process non-resonant particles from a wide range of initial velocities
Influence of yielding base and rigid base on propagation of Rayleigh ...
Indian Academy of Sciences (India)
The present study aims to study the propagation of Rayleigh-type wave in a layer, composed of isotropic viscoelastic material of Voigt type, with the effect of yielding base and rigid base in two distinct cases.With the aid of an analytical treatment, closed-form expressions of phase velocity and damped velocity for both the ...
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo
2015-01-01
Roč. 254, JUL 1 (2015), s. 338-349 ISSN 0019-1035 Institutional support: RVO:67985891 Keywords : moon * Regoliths * geophysics * surface- wave Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.383, year: 2015
Xu, Yanlong; Peng, Pai
2015-01-01
. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a
Experimental demonstration of the Rayleigh acoustic viscous boundary layer theory.
Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; Tovar, R
2006-03-01
Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.
Travelling Wave Solutions to Stretched Beam's Equation: Phase Portraits Survey
International Nuclear Information System (INIS)
Betchewe, Gambo; Victor, Kuetche Kamgang; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2011-01-01
In this paper, following the phase portraits analysis, we investigate the integrability of a system which physically describes the transverse oscillation of an elastic beam under end-thrust. As a result, we find that this system actually comprises two families of travelling waves: the sub- and super-sonic periodic waves of positive- and negative-definite velocities, respectively, and the localized sub-sonic loop-shaped waves of positive-definite velocity. Expressing the energy-like of this system while depicting its phase portrait dynamics, we show that these multivalued localized travelling waves appear as the boundary solutions to which the periodic travelling waves tend asymptotically. (general)
Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun
2018-03-02
It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.
International Nuclear Information System (INIS)
Akhshik, Siamak; Moharrami, Rasool
2009-01-01
To achieve an acceptable safety in many industrial applications such as nuclear power plants and power generation, it is extremely important to gain an understanding of the magnitudes and distributions of the residual stresses in a pipe formed by joining two sections with a girth butt weld. Most of the methods for high-accuracy measurement of residual stress are destructive. These destructive measurement methods cannot be applied to engineering systems and structures during actual operation. In this paper, we present a method based on the measurement of ultrasonic Rayleigh wave velocity variations versus the stress state for nondestructive evaluation of residual stress in dissimilar pipe welded joint. We show some residual stress profile obtained by this method. These are then compared with other profiles determined using a semi-destructive technique (hole-drilling) that makes it possible to check our results. According to the results, we also present a new method for adjusting the ultrasonic measurements to improve the agreement with the results obtained from other techniques.
Pilz, Marco; Parolai, Stefano; Petrovic, Bojana; Silacheva, Natalya; Abakanov, Tanatkan; Orunbaev, Sagynbek; Moldobekov, Bolot
2018-04-01
During the past two centuries, several large earthquakes have caused extensive damages in the city of Almaty in Kazakhstan. Increasing the preparedness for future events, the definition of the optimal engineering designs for civil structures and the corresponding mitigation of earthquake risks involves the accomplishment of site response studies. To this regard, a temporary seismological network of 15 stations was installed in the city aiming at the accurate identification of local variations of site response at different locations. As the city is settled on a deep sediment-filled plain with laterally strongly varying thicknesses, bound to the south by the Tien-Shan mountain range, the city might face important site effects: large amplification and significant increase of shaking duration. In addition, surface waves in the low-frequency range around and slightly higher than the fundamental resonance frequency, which could be generated at the boundaries of the basin, can carry a large amount of energy. In turn, this will influence both the spatial distribution of the level of amplification and the temporal lengthening of ground motion significantly. For quantifying these effects, we apply complex trace analysis, which uses the instantaneous polarization characteristics of the seismic signal for separating waves arriving at a single site from different directions. In this way, secondary surface waves originating at various sites along the edge of the Almaty basin can be identified as well as their generation regions. After having assessed 1-D amplification effects with well-established techniques like the standard spectral ratio and the horizontal-to-vertical spectral ratio techniques, the results further indicate that thick layers of soft clay deposits and the 3-D structure of the basin give rise to lengthening of ground motion and high amplification values at low frequencies around 0.2 Hz. The steep structure of the sediment-bedrock interface at the southern edge
Anomalous Surface Wave Launching by Handedness Phase Control
Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2015-01-01
Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anomalous Surface Wave Launching by Handedness Phase Control
Zhang, Xueqian
2015-10-09
Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gravitational waves from global second order phase transitions
Energy Technology Data Exchange (ETDEWEB)
Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)
2012-11-01
Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
Stability of an expanding cylindrical plasma envelope: Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Han, S.J.
1982-01-01
The stability of a cylindrically symmetric plasma envelope driven outward by blast waves is considered. The plasma fluid is assumed to be a compressible, isentropic gas describable as an ideal gas ( p = arho/sup γ/, γ>1). The stability problem of such an envelope undergoing self-similar motion is solved by considering the initial-value problem. It is shown that in the early phase of an expansion, the envelope is unstable to Rayleigh--Taylor modes which develop at the inner surface. In the later phase of the expansion, the Rayleigh--Taylor modes are weakened due to the geometrical divergence effect. The implications of the time-dependent behavior of the Rayleigh--Taylor instability for plasma switches are discussed
Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams
International Nuclear Information System (INIS)
Desselberger, M.; Willi, O.; Savage, M.; Lamb, M.J.
1990-01-01
Growth rates of the Rayleigh-Taylor instability were measured in targets with imposed sinusoidal modulations irradiated by optically smoothed 0.53-μm laser beams. A hybrid optical smoothing technique utilizing induced-spatial-incoherence and random-phase-plate technology was used for the first time. The wave-number dependence and the nonlinear behavior of Rayleigh-Taylor growth were investigated by using targets with a range of modulation periodicities and depths. The results are compared to 2D hydrodynamic-code simulations
Millimeter-wave Camera, Phase I
National Aeronautics and Space Administration — Traditional SAR imaging at millimeter wave frequencies can provide excellent, high SNR, 3D images of features inside dielectric solids. However, imaging at these...
National Research Council Canada - National Science Library
Gaherty, James; Lerner-Lam, Arthur
2007-01-01
We have mapped lateral variations in seismic Q in eastern Eurasia, including continental China, central Asia, Mongolia and Siberia, using high-frequency regional phases Lg and Pn, as well as long-period Rayleigh waves...
Gravitational waves from phase transition in split NMSSM
Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.
2018-04-01
We discuss gravitational wave signal from the strongly first order electroweak phase transition in the split NMSSM. We find that for sets of parameters predicting successful electroweak baryogenesis the gravitational wave signal can be within the reach of future experiments LISA, BBO and Ultimate DECIGO.
Nonlinear diffuse scattering of the random-phased wave
International Nuclear Information System (INIS)
Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.
1983-01-01
First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)
Active Metamaterial Based Ultrasonic Guided Wave Transducer System, Phase I
National Aeronautics and Space Administration — An active and tunable metamaterial phased array transducer for guided wave mode selection with high intensity per driving channel and with dramatically lower modal...
Pulsed Traveling-wave Quadrature Squeezing Using Quasi-phase Matched Lithium Niobate Crystals
Chen, Chao-Hsiang
Interests in generating higher quantum noise squeezing in order to develop methods to enhance optical measurement below the shot-noise limit in various applications has grown in recent years. The noise suppression from squeezing can improve the SNR in coherent optical systems when the returning signal power is weak, such as optical coherence tomography, LADAR, confocal microscopy and low-light coherent imaging. Unlike the generation of squeezing with a continuous wave, which is currently developed mainly for gravitational wave detection in LIGO project, the study of pulsed-traveling waves is focused on industrial, medical and other commercial interests. This dissertation presents the experimental results of pulsed traveling wave squeezing. The intention of the study is to explore the possibility of using quasi-phase matched crystals to generate the highest possible degree of quadrature squeezing. In order to achieve this goal, efforts to test the various effects from spatial Gaussian modes and relative beam waist placement for the second-harmonic pump were carried out in order to further the understanding of limiting factors to pulsed traveling wave squeezing. 20mm and 30mm-long periodically poled lithium noibate (PPLN) crystals were used in the experiment to generate a squeezed vacuum state. A maximum of 4.2+/-0.2dB quadrature squeezing has been observed, and the measured anti-squeezing exceeds 20dB.The phase sensitive amplification (PSA) gain and de-gain performance were also measured to compare the results of measured squeezing. The PPLN crystals can produce high conversion efficiency of second-harmonic generation (SHG) without a cavity. When a long PPLN crystal is used in a squeezer, the beam propagation in the nonlinear medium does not follow the characteristics in thin crystals. Instead, it is operated under the long-crystal criteria, which the crystal length is multiple times longer than the Rayleigh range of the injected beam i n the crystals. Quasi-phase
Traveling wave accelerating structures with a large phase advance
International Nuclear Information System (INIS)
Paramonov, V.V.
2012-01-01
The cells RF parameters for the well known Disk Loaded Waveguide (DLW) are considered in higher pass bands of TM01 wave, providing operating phase advance between 180 o - 1230 o per cell. With an appropriate shape optimization and some additional elements proposed traveling wave structures with such large phase advance overlap the classical first band DLW in RF efficiency. Examples of proposed structures together with RF and dispersion properties are presented.
On quantum mechanical phase-space wave functions
DEFF Research Database (Denmark)
Wlodarz, Joachim J.
1994-01-01
An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....
Reconfigurable Wave Velocity Transmission Lines for Phased Arrays
Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix
2013-01-01
Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.
Assessing ground compaction via time lapse surface wave analysis
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.
2016-01-01
Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016
Bivariate Rayleigh Distribution and its Properties
Directory of Open Access Journals (Sweden)
Ahmad Saeed Akhter
2007-01-01
Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.
CORRIGENDUM: Atoms riding Rayleigh waves Atoms riding Rayleigh waves
Benedek, G.; Echenique, P. M.; Toennies, J. P.; Traeger, F.
2010-09-01
In the original paper the affiliation list is incorrect. The correct address list is as follows: G Benedek1, 5, P M Echenique1, 2, J P Toennies3 and F Traeger4 1 Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018 Donostia—San Sebastián, Spain 2 Departamento de Física de Materiales and CFM (CSIC-UPV/EHU), Universidad del País Vasco/Euskal Herriko Unibertsitatea, E-20018 San Sebastián/Donostia, Spain 3 Max Planck-Institut für Dynamik und Selbstorganisation, Bunsenstraße 10 D-37073 Göttingen, Germany 4 Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum Universitätsstraße 150, 44801 Bochum, Germany 5 Permanent address: Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
Orbitally limited pair-density-wave phase of multilayer superconductors
Möckli, David; Yanase, Youichi; Sigrist, Manfred
2018-04-01
We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .
Phase velocity of nonlinear plasma waves in the laser beat-wave accelerator
International Nuclear Information System (INIS)
Spence, W.L.
1985-01-01
The suggested plasma-laser accelerator is an attempt to achieve a very high energy gradient by resonantly exciting a longitudinal wave traveling at close to the speed of light in cold plasma by means of the beat-wave generated by the transverse fields in two laser beams. Previous calculations to all orders in v/sub z/ have been done essentially from the laboratory frame point of view and have treated the plasma wave as having sharply defined phase velocity equal to the speed of light. However a high energy particle beam undergoing acceleration sees the plasma wave from a nearly light-like frame of reference and hence is very sensitive to small deviations in its phase velocity. Here the authors introduce a calculational scheme that includes all orders in v/sub z/ and in the plasma density, and additionally takes into account the influence of plasma nonlinearities on the wave's phase velocity. The main assumption is that the laser frequencies are very large compared to the plasma frequency - under which they are able to in essence formally sum up all orders of forward Raman scattering. They find that the nonlinear plasma wave does not have simply a single phase velocity - it is really a superposition of many - but that the beat-wave which drives it is usefully described by a non-local effective phase velocity function
Four-wave mixing and phase conjugation in plasmas
International Nuclear Information System (INIS)
Federici, J.F.
1989-01-01
Nonlinear optical effects such as Stimulated Brillouin Scattering, Stimulated Raman Scattering, self-focusing, wave-mixing, parametric mixing, etc., have a long history in plasma physics. Recently, four-wave mixing in plasmas and its applications to phase conjugation has been extensively studied. Although four-wave mixing (FWM), using various nonlinear mediums, has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate FWM for wavelengths longer than 10μm. Plasmas as phase conjugate mirrors have received considerable attention since they become more efficient at longer wavelengths (far-infrared to microwave). The purpose of this thesis is to study various fundamental issues which concern the suitability of plasmas for four-wave mixing and phase conjugation. The major contributions of this thesis are the identification and study of thermal and ionization nonlinearities as potential four-wave mixing and phase conjugation mechanisms and the study of the affect of density inhomogeneities on the FWM process. Using a fluid description for the plasma, this thesis demonstrates that collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. The prospect of using a novel ionization nonlinearity in weakly ionized plasmas for wave-mixing and phase conjugation is discussed. The ionization nonlinearity arises from localized heating of the plasma by the beat-wave. Wherever, the local temperature is increased, a plasma density grating is produced due to increased electron-impact ionization. Numerical estimates of the phase conjugate reflectivity indicate reflectivities in the range of 10 -4 -10 -3 are possible in a weakly ionized steady-state gas discharge plasma
On phase and ray directions of magnetosonic waves
International Nuclear Information System (INIS)
Lerche, I.
1978-01-01
The behavior of phase speed for the 'slow' and 'fast' magnetosonic waves is well documented in the literature. Not so well documented is the behavior of the ray direction and its relation to the phase direction - indeed the author has not found the ray behavior recorded in most of the standard plasma physics texts. This situation is rectified and some of the curiosities associated with the direction of the 'slow' ray relative to the direction of the 'slow' phase wave are pointed out. These calculations have been performed as a necessary basis for discussion of phase and ray evolution of magnetosonic waves in differentially shearing plasmas, which subject is the topic of a later paper. (Auth.)
Stroh formalism and Rayleigh waves
Tanuma, Kazumi
2008-01-01
Introduces a powerful and elegant mathematical method for the analysis of anisotropic elasticity equationsThe reader can grasp the essentials as quickly as possibleCan be used as a textbook, which presents compactly introduction and applications of the Stroh formalismAppeals to the people not only in mathematics but also in mechanics and engineering sciencePrerequisites are only basic linear algebra, calculus and fundamentals of differential equations
Gravitational waves from a very strong electroweak phase transition
Energy Technology Data Exchange (ETDEWEB)
Leitao, Leonardo; Mégevand, Ariel, E-mail: lleitao@mdp.edu.ar, E-mail: megevand@mdp.edu.ar [IFIMAR (UNMdP-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, UNMdP, Deán Funes 3350, (7600) Mar del Plata (Argentina)
2016-05-01
We investigate the production of a stochastic background of gravitational waves in the electroweak phase transition. We consider extensions of the Standard Model which can give very strongly first-order phase transitions, such that the transition fronts either propagate as detonations or run away. To compute the bubble wall velocity, we estimate the friction with the plasma and take into account the hydrodynamics. We track the development of the phase transition up to the percolation time, and we calculate the gravitational wave spectrum generated by bubble collisions, magnetohydrodynamic turbulence, and sound waves. For the kinds of models we consider, we find parameter regions for which the gravitational waves are potentially observable at the planned space-based interferometer eLISA. In such cases, the signal from sound waves is generally dominant, while that from bubble collisions is the least significant of them. Since the sound waves and turbulence mechanisms are diminished for runaway walls, the models with the best prospects of detection at eLISA are those which do not have such solutions. In particular, we find that heavy extra bosons provide stronger gravitational wave signals than tree-level terms.
Three phase full wave dc motor decoder
Studer, P. A. (Inventor)
1977-01-01
A three phase decoder for dc motors is disclosed which employs an extremely simple six transistor circuit to derive six properly phased output signals for fullwave operation of dc motors. Six decoding transistors are coupled at their base-emitter junctions across a resistor network arranged in a delta configuration. Each point of the delta configuration is coupled to one of three position sensors which sense the rotational position of the motor. A second embodiment of the invention is disclosed in which photo-optical isolators are used in place of the decoding transistors.
Orbit waves in the ABM phase of superfluid 3He
International Nuclear Information System (INIS)
Cross, M.C.; Anderson, P.W.
1975-01-01
Orbit waves are the Goldstone Boson mode of the broken rotational symmetry of the A phase of 3 He. In the absence of the nuclear dipole interaction they would simply be an oscillation of l, the direction in k-space of the point nodes of the gap in the excitation energy. First the case of the no dipole interaction is considered and the effects of this are included later. It is shown that over the range of temperatures for which the A phase is usually stable orbit waves are highly overdamped. (Auth.)
Hanstholm phase 2B. Offshore wave energy test 1994 - 1996
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-11-01
The wave power converter consists of a float 2.5 meter in diameter, connected by a rope to a seabed-mounted piston pump, installed on 25 meter deep water 2,5 km offshore Hanstholm, Denmark. The converter is designed to absorb an average maximum power of 1 kW. Measured data in real sea conditions are compared to results based on computer simulations and previous tank testing. Losses caused by rope elasticity and hysteresis, friction in the pump and back flow through the valves are assessed. The economic perspectives of a large wave power plant are presented, based on a revised prototype incorporating the results and experience gained during the test period. The wave energy conversion test `Hanstholm phase 2B` has showed, that it it technically possible to exploit the offshore wave energy resource. This source of energy could become attractive for commercial enterprise. The wave power converter demonstrated a reliable performance over a period of nine months. It produced energy under all wave conditions and survived storm waves of 9,6 m. A 300 MW wave power plant in the Danish part of the North sea is estimated to produce electricity at a cost between 2,1 - 2,4 DKK/kWh. The electrical transmission to shore contribute to approximately 20% of the cost. New data predict a potential of 23 kW per meter wave front. The energy plan Energy 21 proposed by the Danish Department of Energy, includes a scenario incorporating wave energy in the energy system year 2030. A strategy for the development of wave energy, has been proposed as part of the project OWEC-1 supported by the European Joule R and D programme. A proposal for future Danish initiatives to develop second generation point absorber systems is outlined. (ARW) 29 refs.
Surface Acoustic Waves in ferroelectrics
Czech Academy of Sciences Publication Activity Database
Tarasenko A., Nataliya; Jastrabík, Lubomír; Tarasenko, Alexander
2004-01-01
Roč. 298, - (2004), s. 325-333 ISSN 0015-0193 R&D Projects: GA AV ČR IBS1010203 Keywords : Rayleigh waves * ferroelectric films * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004
Rayleigh-Taylor mixing in supernova experiments
International Nuclear Information System (INIS)
Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.
2015-01-01
We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order
WDM Phase-Modulated Millimeter-Wave Fiber Systems
DEFF Research Database (Denmark)
Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood
2012-01-01
This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....
A phase space approach to wave propagation with dispersion.
Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J
2015-08-01
A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.
Stability of interfacial waves in two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Liu, W S [Ontario Hydro, Toronto, ON (Canada)
1996-12-31
The influence of the interfacial pressure and the flow distribution in the one-dimensional two-fluid model on the stability problems of interfacial waves is discussed. With a proper formulation of the interfacial pressure, the following two-phase phenomena can be predicted from the stability and stationary criteria of the interfacial waves: onset of slug flow, stationary hydraulic jump in a stratified flow, flooding in a vertical pipe, and the critical void fraction of a bubbly flow. It can be concluded that the interfacial pressure plays an important role in the interfacial wave propagation of the two-fluid model. The flow distribution parameter may enhance the flow stability range, but only plays a minor role in the two-phase characteristics. (author). 20 refs., 3 tabs., 4 figs.
Gravitational Waves From a Dark (Twin) Phase Transition
Schwaller, Pedro
2015-01-01
In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early universe, which could lead to a detectable gravitational wave signal. We summarise the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_f flavours, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes Twin Higgs and SIMP models as well as symmetric and asymmetric composite dark matter scenarios.
The phase detection and calculation for low hybrid wave phase-feedback control system
International Nuclear Information System (INIS)
Liu Qiang; Liang Hao; Zhou Yongzhao; Shan Jiafang
2008-01-01
A method of phase detection and calculation for low hybrid wave phase-feedback control system and the implementing the algorithms on DSP cores embedded in FPGA is introduced. By taking the advantages of matlab-aided design and algorithms optimization to carry out parallel processing of multi-channel phase calculation in FPGA with rich resources, the purposed of fast phase-feedback control is achieved under the need of complicated mathematical operations. (authors)
International Nuclear Information System (INIS)
Wang Lifeng; Peng Jingdong; Liu Limin
2008-01-01
A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm x 4.6 mm; 4 μm) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min -1 . Column temperature was 30 deg. C. The RRS signal was detected at λ ex = λ em = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 μg mL -1 was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 μg mL -1 for oxytetracycline (OTC), 12.11-605.5 μg mL -1 for tetracycline (TC), 11.79-589.5 μg mL -1 for chlortetracycline (CTC) and 10.32-516.0 μg mL -1 for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability
Energy Technology Data Exchange (ETDEWEB)
Lifeng, Wang [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Peng Jingdong [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)], E-mail: hxpengjd@swu.edu.cn; Limin, Liu [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)
2008-12-07
A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm x 4.6 mm; 4 {mu}m) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min{sup -1}. Column temperature was 30 deg. C. The RRS signal was detected at {lambda}{sub ex} = {lambda}{sub em} = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 {mu}g mL{sup -1} was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 {mu}g mL{sup -1} for oxytetracycline (OTC), 12.11-605.5 {mu}g mL{sup -1} for tetracycline (TC), 11.79-589.5 {mu}g mL{sup -1} for chlortetracycline (CTC) and 10.32-516.0 {mu}g mL{sup -1} for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability.
Surface wave phase velocities between Bulgaria and the Czech Republic
Czech Academy of Sciences Publication Activity Database
Gaždová, Renata; Kolínský, Petr; Popova, I.; Dimitrova, L.
2011-01-01
Roč. 18, č. 2 (2011), s. 16-23 ISSN 1803-1447. [OVA´11 – New Knowledge and Measurements in Seismology, Engineering Geophysics and Geotechnics. Ostrava, 12.04.2011-14.04.2011] R&D Projects: GA ČR GA205/09/1244 Institutional research plan: CEZ:AV0Z30460519 Keywords : surface waves * phase velocity * shear wave velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure http://www.caag.cz/egrse/2011-2/03%20gazdova_ova.pdf
Torre, Amalia
2005-01-01
Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f
Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading
International Nuclear Information System (INIS)
Hai-Feng, Song; Hai-Feng, Liu; Guang-Cai, Zhang; Yan-Hong, Zhao
2009-01-01
We undertake a numerical simulation of shock experiments on tin reported in the literature, by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β, γ and liquid phases. In the MSG model, the Bauschinger effect is considered to better describe the unloading behavior. The phase diagram and Hugoniot of tin are calculated by MEOS, and they agree well with the experimental data. Combined with the MEOS and MSG models, hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment. Moreover, by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin, we further discuss the complex behavior of tin under shock-wave loading. (condensed matter: structure, mechanical and thermal properties)
Shock wave of vapor-liquid two-phase flow
Institute of Scientific and Technical Information of China (English)
Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN
2008-01-01
The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.
Phased antenna arrays for fast wave power generation
International Nuclear Information System (INIS)
Bosia, G.; Jacquinot, J.
1991-01-01
A method for the generation of travelling waves in the Ion Cyclotron frequency range in JET is presented. The success of the method relies on the control of the array toroidal current, which in turn, is obtained by a coordinated vectorial control of the array power sources and tuning networks. This method has general application to present and future ICRF arrays. For uninterrupted, periodically fed and resonant toroidal arrays, phased operation requires only conventional tuning devices. For localised arrays, phased operation is inefficient at low plasma coupling. This inefficiency can be however removed with the addition of external coupling structures either at the antenna or at the generator ends. The performances of JET A1 antennae in phased operation is presented. The design philosophy for the JET A2 phased arrays is also discussed. These methods are applicable and extensible to Next Step Devices design
Issues concerning gravity waves from first-order phase transitions
International Nuclear Information System (INIS)
Kosowsky, A.
1993-01-01
The stochastic background of gravitational radiation is a unique and potentially valuable source of information about the early universe. Photons thermally decoupled when the universe was around 100,000 years old; electromagnetic radiation cannot directly provide information about the epoch earlier than this. In contrast, gravitons presumably decoupled around the Planck time, when the universe was only 10 -44 seconds old. Since gravity wave propagate virtually unimpeded, any energetic event in the evolution of the universe will leave an imprint on the gravity wave background. Turner and Wilczek first suggested that first-order phase transitions, and particularly transitions which occur via the nucleation, expansion, and percolation of vacuum bubbles, will be a particularly efficient source of gravitational radiation. Detailed calculations with scalar-field vacuum bubbles confirm this conjecture and show that strongly first-order phase transitions are probably the strongest stochastic gravity-wave source yet conjectured. In this work the author first reviews the vacuum bubble calculations, stressing their physical assumptions. The author then discusses realistic scenarios for first-order phase transitions and describes how the calculations must be modified and extended to produce reliable results. 11 refs
Eiichirou, Kawamori
2018-04-01
We report the observation of supercontinuum of Langmuir plasma waves, that exhibits broad power spectrum having significant spatio-temporal coherence grown from a monochromatic seed-wave, in one-dimensional particle-in-cell simulations. The Langmuir wave supercontinuum (LWSC) is formed when the seed wave excites side-band fields efficiently by the modulational instabilities. Its identification is achieved by the use of the tricoherence analysis, which detects four wave mixings (FWMs) of plasmons (plasma wave quanta), and evaluation of the first order coherence, which is a measure of temporal coherence, of the wave electric fields. The irreversible evolution to the coherent LWSC from the seed wave is realized by the wave-particle interactions causing stochastic electron motions in the phase space and the coherence of LWSC is maintained by the phase-preserving FWMs of plasmons. The LWSC corresponds to a quasi Bernstein-Greene-Kruskal mode.
Degenerate four-wave mixing with the phase diffusion field
International Nuclear Information System (INIS)
Anderson, M.H.; Chen, CE.; Elliott, D.S.; Cooper, J.; Smith, S.J.
1993-01-01
We report measurements of the effect of laser fluctuations on a strong-field degenerate four-wave mixing interaction, carried out in a nearly Doppler-free, two-level system using a single laser with statistically well-defined phase fluctuations. The counterpropagating pump beams and the probe beam, each split from this phase-noise-modulated source, were fully correlated. The nonlinear medium was an optically-pumped diffuse beam of atomic sodium. By time-delaying the probe with respect to the pump beams, the composite field becomes non-Markovian. Four-wave mixing results in the generation of a phase-conjugate beam anti-parallel to the probe beam. With the laser field spectrum nearly Lorentzian in shape, and with a field linewidth greater (and, for comparison, much narrower) than the natural linewidth of the sodium, we measured the intensity of the phase-conjugate beam as the pump and probe beams were tuned through the D2 resonance, as a function of intensity of die pump beam (up to intensities several times the saturation intensity), and for varying delay between the pump and probe fields. This experiment provides a cleaner measurement of this interaction than any previously available
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, H; Yakuwa, A; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering
1997-10-22
Three component microtremor array observations were carried out in two locations in the city of Morioka for an attempt of estimating phase velocity and power fraction of Love wave by applying the expanded three component spatial self-correlation method. The microtremors were observed by using a seismograph with a natural period of one second. The arrays were so arranged as to form an equilateral triangle consisted of seven points. The maximum radii were 100 m, 50 m, 25 m and 12.5 m for vertical movements, and 100 m and 30 m for horizontal movements at the Iwate University, and 80 m, 40 m, 20 m and 10 m for vertical movements and 90 m for horizontal movements at the Morioka Technical Highschool. The analysis has used three sections, each with relatively steady state of about 40 seconds as selected from records of observations for about 30 minutes. The result of the discussions revealed that it is possible to derive phase velocity of not only Rayleigh waves but also Love waves by applying the expanded spatial self-correlation method to the observation record. Thus, estimation of underground structures with higher accuracy has become possible by using simultaneously the Rayleigh waves and Love waves. 3 refs., 11 figs., 2 tabs.
Particle separation by phase modulated surface acoustic waves.
Simon, Gergely; Andrade, Marco A B; Reboud, Julien; Marques-Hueso, Jose; Desmulliez, Marc P Y; Cooper, Jonathan M; Riehle, Mathis O; Bernassau, Anne L
2017-09-01
High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution.
Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching
International Nuclear Information System (INIS)
Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min
2015-01-01
The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidth of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory
International Nuclear Information System (INIS)
Shmerlin, Boris Ya; Kalashnik, Maksim V
2013-01-01
Convective motions in moist saturated air are accompanied by the release of latent heat of condensation. Taking this effect into account, we consider the problem of convective instability of a moist saturated air layer, generalizing the formulation of the classical Rayleigh problem. An analytic solution demonstrating the fundamental difference between moist convection and Rayleigh convection is obtained. Upon losing stability in the two-dimensional case, localized convective rolls or spatially periodic chains of rollers with localized areas of upward motion evolve. In the case of axial symmetry, the growth of localized convective vortices with circulation characteristic of tropical cyclones (hurricanes) is possible at the early stages of development and on the scale of tornados to tropical cyclones. (methodological notes)
Charge density wave instabilities and incommensurate structural phase transformations
International Nuclear Information System (INIS)
Axe, J.D.
1977-10-01
Incommensurate structural phase transformations involve the appearance of modulated atomic displacements with spatial periodicity unrelated to the fundamental periodicity of the basic lattice. In the case of some quasi one- or two-dimensional metals such transformations are the result of Fermi-surface instabilities that also produce electronic charge density waves (CDW's) and soft phonon modes due to metallic electron screening singularities. Incommensurate soft mode instabilities have been found in insulators as well. Recent neutron scattering studies of both the statics and dynamics of incommensurate structural instabilities will be reviewed
Rayleigh reciprocity relations: Applications
International Nuclear Information System (INIS)
Lin Ju; Li Xiao-Lei; Wang Ning
2016-01-01
Classical reciprocity relations have wide applications in acoustics, from field representation to generalized optical theorem. In this paper we introduce our recent results on the applications and generalization of classical Rayleigh reciprocity relation: higher derivative reciprocity relations as a generalization of the classical one and a theoretical proof on the Green’s function retrieval from volume noises. (special topic)
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong; Liu, Yike; Schuster, Gerard T.
2015-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve
Mode coupling in nonlinear Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.
1992-01-01
This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase
Effect of phase coupling on surface amplitude distribution of wind waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
Nonlinear features of wind generated surface waves are considered here to be caused by nonrandomness (non-Uniform) in the phase spectrum. Nonrandomness in recorded waves, if present, would be generally obscured within the error level of observations...
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Málek, Jiří; Brokešová, J.
2011-01-01
Roč. 15, č. 1 (2011), s. 81-104 ISSN 1383-4649 R&D Projects: GA AV ČR IAA300460602; GA AV ČR IAA300460705; GA ČR(CZ) GA205/06/1780 Institutional research plan: CEZ:AV0Z30460519 Keywords : love waves * phase velocity dispersion * frequency-time analysis Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.326, year: 2011 www.springerlink.com/content/w3149233l60111t1/
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
A Method and an Apparatus for Generating a Phase-Modulated Wave Front of Electromagnetic Radiation
DEFF Research Database (Denmark)
2002-01-01
The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase-modulation of the...
Tada, T.; Cho, I.; Shinozaki, Y.
2005-12-01
We have invented a Two-Radius (TR) circular array method of microtremor exploration, an algorithm that enables to estimate phase velocities of Love waves by analyzing horizontal-component records of microtremors that are obtained with an array of seismic sensors placed around circumferences of two different radii. The data recording may be done either simultaneously around the two circles or in two separate sessions with sensors distributed around each circle. Both Rayleigh and Love waves are present in the horizontal components of microtremors, but in the data processing of our TR method, all information on the Rayleigh waves ends up cancelled out, and information on the Love waves alone are left to be analyzed. Also, unlike the popularly used frequency-wavenumber spectral (F-K) method, our TR method does not resolve individual plane-wave components arriving from different directions and analyze their "vector" phase velocities, but instead directly evaluates their "scalar" phase velocities --- phase velocities that contain no information on the arrival direction of waves --- through a mathematical procedure which involves azimuthal averaging. The latter feature leads us to expect that, with our TR method, it is possible to conduct phase velocity analysis with smaller numbers of sensors, with higher stability, and up to longer-wavelength ranges than with the F-K method. With a view to investigating the capabilities and limitations of our TR method in practical implementation to real data, we have deployed circular seismic arrays of different sizes at a test site in Japan where the underground structure is well documented through geophysical exploration. Ten seismic sensors were placed equidistantly around two circumferences, five around each circle, with varying combinations of radii ranging from several meters to several tens of meters, and simultaneous records of microtremors around circles of two different radii were analyzed with our TR method to produce
A two-phase full-wave superconducting rectifier
International Nuclear Information System (INIS)
Ariga, T.; Ishiyama, A.
1989-01-01
A two-phase full-wave superconducting rectifier has been developed as a small cryogenic power supply of superconducting magnets for magnetically levitation trains. Those magnets are operated in the persistent current mode. However, small ohmic loss caused at resistive joints and ac loss induced by the vibration of the train cannot be avoided. Therefore, the low-power cryogenic power supply is required to compensate for the reduction in magnet current. The presented superconducting rectifier consists of two identical full-wave rectifiers connected in series. Main components of each rectifier are a troidal shape superconducting set-up transformer and two thermally controlled switches. The test results using a 47.5 mH load magnet at 0.2 Hz and 0.5 Hz operations are described. To estimate the characteristics of the superconducting rectifier, the authors have developed a simulation code. From the experiments and the simulations, the transfer efficiency is examined. Furthermore, the optimal design of thermally controlled switches based on the finite element analysis is also discussed
Phase Coherence of Large Amplitude MHD Waves in the Earth's Foreshock: Geotail Observations
International Nuclear Information System (INIS)
Hada, Tohru; Koga, Daiki; Yamamoto, Eiko
2003-01-01
Large amplitude MHD turbulence is commonly found in the earth's foreshock region. It can be represented as a superposition of Fourier modes with characteristic frequency, amplitude, and phase. Nonlinear interactions between the Fourier modes are likely to produce finite correlation among the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in quasi-linear theories) or they have a finite coherence. However, naive inspection of wave phases does not reveal anything, as the wave phase is sensitively related to the choice of origin of the coordinate, which should be arbitrary. Using a method based on a surrogate data technique and a fractal analysis, we analyzed Geotail magnetic field data to evaluate the phase coherence among the MHD waves in the earth's foreshock region. We show that the correlation of wave phases does exist, indicating that the nonlinear interactions between the waves is in progress. Furthermore, by introducing an index to represent the degree of the phase coherence, we discuss that the wave phases become more coherent as the turbulence amplitude increases, and also as the propagation angle of the most dominant wave mode becomes oblique. Details of the analysis as well as implications of the present results to transport processes of energetic particles will be discussed
Numerical simulation of wind wave surface profiles with tuned phase spectra
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
It is known that the phases of the individual harmonic components in a linear narrow band wave spectrum are uniformly random. It has been suggested by some workers that some sort of phase coupling and `locking' between the different spectral...
Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells
DEFF Research Database (Denmark)
Überall, Herbert; Claude Ahyi, A.; Raju, P. K.
2001-01-01
Our earlier studies regarding acoustic scattering resonances and the dispersive phase velocities of the surface waves that generate them, have demonstrated the effectiveness of obtaining phase velocity dispersion curves from the known acoustic resonance frequencies, and their accuracy. This possi...
Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; vanÂ derÂ Hilst, Robert D.
2016-05-01
We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.
Directory of Open Access Journals (Sweden)
Kareema Abed Al-Kadim
2017-12-01
Full Text Available In this paper Rayleigh Pareto distribution have introduced denote by( R_PD. We stated some useful functions. Therefor we give some of its properties like the entropy function, mean, mode, median , variance , the r-th moment about the mean, the rth moment about the origin, reliability, hazard functions, coefficients of variation, of sekeness and of kurtosis. Finally, we estimate the parameters so the aim of this search is to introduce a new distribution
Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F
International Nuclear Information System (INIS)
Jain, R.K.; Das, A.C.
1978-01-01
The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)
Directory of Open Access Journals (Sweden)
K. A. Shapovalov
2015-01-01
Full Text Available The paper concerns the light scattering problem of biological objects of complicated structure.It considers optically “soft” (having a refractive index close to that of a surrounding medium homogeneous cylindrical capsules, composed of three parts: central one that is cylindrical and two symmetrical rounding end caps. Such capsules can model more broad class of biological objects than the ordinary shapes of a spheroid or sphere. But, unfortunately, if a particle has other than a regular geometrical shape, then it is very difficult or impossible to solve the scattering problem analytically in its most general form that oblige us to use numerical and approximate analytical methods. The one of such approximate analytical method is the Rayleigh-Gans-Debye approximation (or the first Born approximation.So, the Rayleigh-Gans-Debye approximation is valid for different objects having size from nanometer to millimeter and depending on wave length and refractive index of an object under small phase shift of central ray.The formulas for light scattering amplitude of cylindrical capsule with arbitrary end caps in the Rayleigh-Gans-Debye approximation in scalar form are obtained. Then the light scattering phase function [or element of scattering matrix f11] for natural incident light (unpolarized or arbitrary polarized light is calculated.Numerical results for light scattering phase functions of cylindrical capsule with conical, spheroidal, paraboloidal ends in the Rayleigh-Gans-Debye approximation are compared. Also numerical results for light scattering phase function of cylindrical capsule with conical ends in the Rayleigh-Gans-Debye approximation and in the method of Purcell-Pennypacker (or Discrete Dipole method are compared. The good agreement within an application range of the RayleighGans-Debye approximation is obtained.Further continuation of the work, perhaps, is a consideration of multilayer cylindrical capsule in the Rayleigh
Coupling to the fast wave via a phased waveguide array
International Nuclear Information System (INIS)
Olson, L.; McWilliams, R.; Glanz, J.; Motley, R.W.
1984-03-01
A dielectric-loaded waveguide array has been used to launch fast waves into a plasma in which ω/sup pi/ < ω << ω/sub pe/ approx. ω/sub ce/. The wave propagates when accessibility and cutoff requirements are satisfied. Reflection coefficients as low as 1% have been measured. Use of the fast wave for steady-state current drive is suggested
Coupling to the fast wave via a phased waveguide array
Energy Technology Data Exchange (ETDEWEB)
Olson, L.; McWilliams, R.; Glanz, J.; Motley, R.W.
1984-03-01
A dielectric-loaded waveguide array has been used to launch fast waves into a plasma in which ..omega../sup pi/ < ..omega.. << ..omega../sub pe/ approx. ..omega../sub ce/. The wave propagates when accessibility and cutoff requirements are satisfied. Reflection coefficients as low as 1% have been measured. Use of the fast wave for steady-state current drive is suggested.
Extended Rayleigh Damping Model
Directory of Open Access Journals (Sweden)
Naohiro Nakamura
2016-07-01
Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.
A simple analytic approximation to the Rayleigh-Bénard stability threshold
Prosperetti, Andrea
2011-01-01
The Rayleigh-Bénard linear stability problem is solved by means of a Fourier series expansion. It is found that truncating the series to just the first term gives an excellent explicit approximation to the marginal stability relation between the Rayleigh number and the wave number of the
Wavelet brain angiography suggests arteriovenous pulse wave phase locking.
Directory of Open Access Journals (Sweden)
William E Butler
Full Text Available When a stroke volume of arterial blood arrives to the brain, the total blood volume in the bony cranium must remain constant as the proportions of arterial and venous blood vary, and by the end of the cardiac cycle an equivalent volume of venous blood must have been ejected. I hypothesize the brain to support this process by an extraluminally mediated exchange of information between its arterial and venous circulations. To test this I introduce wavelet angiography methods to resolve single moving vascular pulse waves (PWs in the brain while simultaneously measuring brain pulse motion. The wavelet methods require angiographic data acquired at significantly faster rate than cardiac frequency. I obtained these data in humans from brain surface optical angiograms at craniotomy and in piglets from ultrasound angiograms via cranial window. I exploit angiographic time of flight to resolve arterial from venous circulation. Initial wavelet reconstruction proved unsatisfactory because of angiographic motion alias from brain pulse motion. Testing with numerically simulated cerebral angiograms enabled the development of a vascular PW cine imaging method based on cross-correlated wavelets of mixed high frequency and high temporal resolution respectively to attenuate frequency and motion alias. Applied to the human and piglet data, the method resolves individual arterial and venous PWs and finds them to be phase locked each with separate phase relations to brain pulse motion. This is consistent with arterial and venous PW coordination mediated by pulse motion and points to a testable hypothesis of a function of cerebrospinal fluid in the ventricles of the brain.
Recent results in Rayleigh scattering
International Nuclear Information System (INIS)
Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva
1997-01-01
New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)
Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications
Directory of Open Access Journals (Sweden)
Carlos A. Gutiérrez
2017-01-01
Full Text Available This paper deals with the modeling of nonstationary time-frequency (TF dispersive multipath fading channels for vehicle-to-vehicle (V2V communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of plane wave propagation (PWP and assuming that the transmitted signal reaches the receiver antenna through double interactions with multiple interfering objects (IOs randomly located in the propagation area. As a consequence of such interactions, the first-order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D TF correlation function (TF-CF, and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is presented for the particular case of the geometrical two-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.
Energy Technology Data Exchange (ETDEWEB)
Miyakoshi, K; Okada, H; Ling, S [Hokkaido University, Sapporo (Japan)
1996-05-01
To specify the maximum wavelength of the phase velocities that can be estimated by the spatial autocorrelation (SPAC) method or F-K method in microtremor exploration, investigations were conducted using numerical simulation. In view of feasibility, an equilateral triangle array was employed, the maximum radius of the array having 7 observation points being 0.10km. The dispersion curve of the Rayleigh wave basic mode was calculated from an underground structure model. White noise was used as the incident wave, and, in case the waves came in from multiple directions, a different phase spectrum was assigned to each direction. In searching for the maximum wave length of phase velocities that could be estimated, a limit was imposed upon estimation, and it was prescribed that the wavelength be the limit if the difference between the theoretical value and estimated phase velocity was 5% or higher. As the result, it was found that it is possible to estimate the phase velocity when the wavelength is up to approximately 10 times longer than the array maximum radius in the SPAC method, and up to approximately 5 times longer in case of the F-K method. 10 refs., 5 figs., 1 tab.
Acoustic waves and the detectability of first-order phase transitions by eLISA
Weir, David J.
2017-05-01
In various extensions of the Standard Model it is possible that the electroweak phase transition was first order. This would have been a violent process, involving the formation of bubbles and associated shock waves. Not only would the collision of these bubbles and shock waves be a detectable source of gravitational waves, but persistent acoustic waves could enhance the signal and improve prospects of detection by eLISA. I summarise the results of a recent campaign to model such a phase transition based on large-scale hydrodynamical simulations, and its implications for the eLISA mission.
Gravitational waves from a first-order electroweak phase transition: a brief review.
Weir, David J
2018-03-06
We review the production of gravitational waves by an electroweak first-order phase transition. The resulting signal is a good candidate for detection at next-generation gravitational wave detectors, such as LISA. Detection of such a source of gravitational waves could yield information about physics beyond the Standard Model that is complementary to that accessible to current and near-future collider experiments. We summarize efforts to simulate and model the phase transition and the resulting production of gravitational waves.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Ablation front rayleigh taylor dispersion curve in indirect drive
International Nuclear Information System (INIS)
Budil, K.S.; Lasinski, B.; Edwards, M.J.; Wan, A.S.; Remington, B.A.; Weber, S.V.; Glendinning, S.G.; Suter, L.; Stry, P.
2000-01-01
The Rayleigh-Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wave-lengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. We present here the results of a series of laser experiments designed to probe the roll-over and cutoff region of the ablation-front RT dispersion curve in indirect drive. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 pm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths (ge) 20 (micro)m experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a 2-D radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. We performed numerical simulations to elucidate the influence of the rippled shock wave on the eventual growth of the perturbations, allowing comparisons to the analytic model developed by Betti et al. This combination of experiments, simulations and analytic modeling illustrates the qualitative simplicity yet quantitative complexity of the compressible RT instability. We have measured the Rayleigh-Taylor (RT) dispersion curve for a radiatively-driven sample in a series of experiments on the Nova laser facility. Planar aluminum foils were ablatively-accelerated and the subsequent perturbation growth was
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
Effect of dynamical phase on the resonant interaction among tsunami edge wave modes
Geist, Eric L.
2018-01-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ1 + θ2 − θ3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
Geist, Eric L.
2018-04-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange ( φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Effect of Dynamical Phase on the Resonant Interaction Among Tsunami Edge Wave Modes
Geist, Eric L.
2018-02-01
Different modes of tsunami edge waves can interact through nonlinear resonance. During this process, edge waves that have very small initial amplitude can grow to be as large or larger than the initially dominant edge wave modes. In this study, the effects of dynamical phase are established for a single triad of edge waves that participate in resonant interactions. In previous studies, Jacobi elliptic functions were used to describe the slow variation in amplitude associated with the interaction. This analytical approach assumes that one of the edge waves in the triad has zero initial amplitude and that the combined phase of the three waves φ = θ 1 + θ 2 - θ 3 is constant at the value for maximum energy exchange (φ = 0). To obtain a more general solution, dynamical phase effects and non-zero initial amplitudes for all three waves are incorporated using numerical methods for the governing differential equations. Results were obtained using initial conditions calculated from a subduction zone, inter-plate thrust fault geometry and a stochastic earthquake slip model. The effect of dynamical phase is most apparent when the initial amplitudes and frequencies of the three waves are within an order of magnitude. In this case, non-zero initial phase results in a marked decrease in energy exchange and a slight decrease in the period of the interaction. When there are large differences in frequency and/or initial amplitude, dynamical phase has less of an effect and typically one wave of the triad has very little energy exchange with the other two waves. Results from this study help elucidate under what conditions edge waves might be implicated in late, large-amplitude arrivals.
Langmuir wave phase-mixing in warm electron-positron-dusty plasmas
Pramanik, Sourav; Maity, Chandan
2018-04-01
An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.
Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun
2017-01-01
A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.
3D High Density mmWave Interconnects, Phase I
National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...
Validation of Standing Wave Liner Impedance Measurement Method, Phase I
National Aeronautics and Space Administration — Hersh Acoustical Engineering, Inc. proposes to establish the feasibility and practicality of using the Standing Wave Method (SWM) to measure the impedance of...
An Ultra-Wideband Millimeter-Wave Phased Array
Novak, Markus H.; Miranda, Felix A.; Volakis, John L.
2016-01-01
Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.
Electron Bernstein wave current drive in the start-up phase of a tokamak discharge
International Nuclear Information System (INIS)
Montes, A.; Ludwig, G.O.
1986-04-01
Current drive by electron Bernstein waves in the start-up phase of tokamak discharges is studied. A general analytical expression is derived for the figure of merit J/Pd associated with these waves. This is coupled with a ray tracing code, allowing the calculation of the total current generated per unit of incident power in realistic tokamak conditions. The resuts show that the electron Bernstein waves can drive substantial currents even at very low electron temperatures. (Author) [pt
Pressure waves in bubble, two-component, two-phase flows. Theoretical approach
International Nuclear Information System (INIS)
Micaelli, J.C.
1982-05-01
Common methods of modelling pressure waves (global or acoustic) and their inadequacy are described. A model is proposed, based on a stochastic treatment of the gaseous phase. Different mechanisms which affect pressure wave propagation are analysed. The importance of interfacial momentum and heat transfer is confirmed [fr
DEFF Research Database (Denmark)
Hashemi, Mahdieh; Xiao, Sanshui; Farzad, Mahmood Hosseini
2014-01-01
Interference of surface plasmon (SP) waves plays a key role in light transmission through a subwavelength aperture surrounded by groove structures. In order to characterize interference of the hole and groove-generated SP waves, their phase information was carefully investigated using finite diff...
Wavelet analysis of interfacial waves in cocurrent two-phase flow in horizontal duct
International Nuclear Information System (INIS)
Kondo, Masaya; Kukita, Yutaka
1996-07-01
Wavelet analysis was applied to spatially-growing interfacial waves in a cocurrent gas/liquid two-phase flow. The wave growth plays a key role in the transition from stratified-wavy to slug flow, which is an important phenomena in many engineering applications. Of particular interest to the present study was the quick growth or decay of particular waves which were observed in experiments together with the general growth of waves with distance in the flow direction. Among the several wavelet functions tested in the present study, the Morlet wavelet and the Gabor function were found to have spectral and spatial resolutions suitable to the analysis of interfacial wave data taken by the authors. The analysis revealed that 1) the spectral components composing the interfacial waves are propagating at different phase velocities which agree to the theoretical velocities of deep-water waves, 2) the group velocity of the waves also agrees to the deep-water theory, and 3) the quick growth and decay of particular waves occur as a result of the superposition of spectral components with different phase velocities. (author)
Directional spectrum of ocean waves from array measurements using phase/time/path difference methods
Digital Repository Service at National Institute of Oceanography (India)
Fernandes, A.A.; Sarma, Y.V.B.; Menon, H.B.
Wave direction has for the first time been consistently, accurately and unambiguously evaluated from array measurements using the phase/time/path difference (PTPD) methods of Esteva in case of polygonal arrays and Borgman in case of linear arrays...
Phase Singularities and Termination of Spiral Wave Reentry
National Research Council Canada - National Science Library
Eason, James
2001-01-01
In order to elucidate the mechanisms by which a strong shock terminates reentrant wavefronts, we employed phase analysis techniques to study phase singularity dynamics in a finite element model of cardiac tissue...
A phase-plane analysis of localized frictional waves
Putelat, T.; Dawes, J. H. P.; Champneys, A. R.
2017-07-01
Sliding frictional interfaces at a range of length scales are observed to generate travelling waves; these are considered relevant, for example, to both earthquake ground surface movements and the performance of mechanical brakes and dampers. We propose an explanation of the origins of these waves through the study of an idealized mechanical model: a thin elastic plate subject to uniform shear stress held in frictional contact with a rigid flat surface. We construct a nonlinear wave equation for the deformation of the plate, and couple it to a spinodal rate-and-state friction law which leads to a mathematically well-posed problem that is capable of capturing many effects not accessible in a Coulomb friction model. Our model sustains a rich variety of solutions, including periodic stick-slip wave trains, isolated slip and stick pulses, and detachment and attachment fronts. Analytical and numerical bifurcation analysis is used to show how these states are organized in a two-parameter state diagram. We discuss briefly the possible physical interpretation of each of these states, and remark also that our spinodal friction law, though more complicated than other classical rate-and-state laws, is required in order to capture the full richness of wave types.
Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix
International Nuclear Information System (INIS)
Wu, J.-X.; Li, X.-F.; Tang, G.-J.
2012-01-01
This article studies transverse waves propagating in carbon nanotubes (CNTs) embedded in a surrounding medium. The CNTs are modeled as a nonlocal elastic beam, whereas the surrounding medium is modeled as a bi-parameter elastic medium. When taking into account the effect of rotary inertia of cross-section, a governing equation is acquired. A comparison of wave speeds using the Rayleigh and Euler-Bernoulli theories of beams with the results of molecular dynamics simulation indicates that the nonlocal Rayleigh beam model is more adequate to describe flexural waves in CNTs than the nonlocal Euler-Bernoulli model. The influences of the surrounding medium and rotary inertia on the phase speed for single-walled and double-walled CNTs are analyzed. Obtained results turn out that the surrounding medium plays a dominant role for lower wave numbers, while rotary inertia strongly affects the phase speed for higher wave numbers.
Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix
Energy Technology Data Exchange (ETDEWEB)
Wu, J.-X. [School of Civil Engineering, Central South University, Changsha, Hunan 410075 (China); Li, X.-F., E-mail: xfli25@yahoo.com.cn [School of Civil Engineering, Central South University, Changsha, Hunan 410075 (China); Tang, G.-J. [College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China)
2012-02-15
This article studies transverse waves propagating in carbon nanotubes (CNTs) embedded in a surrounding medium. The CNTs are modeled as a nonlocal elastic beam, whereas the surrounding medium is modeled as a bi-parameter elastic medium. When taking into account the effect of rotary inertia of cross-section, a governing equation is acquired. A comparison of wave speeds using the Rayleigh and Euler-Bernoulli theories of beams with the results of molecular dynamics simulation indicates that the nonlocal Rayleigh beam model is more adequate to describe flexural waves in CNTs than the nonlocal Euler-Bernoulli model. The influences of the surrounding medium and rotary inertia on the phase speed for single-walled and double-walled CNTs are analyzed. Obtained results turn out that the surrounding medium plays a dominant role for lower wave numbers, while rotary inertia strongly affects the phase speed for higher wave numbers.
Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites
Martin, A. J.; Yong, A.; Salomone, L.
2014-12-01
Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible
Nonlinear saturation of the Rayleigh endash Taylor instability
International Nuclear Information System (INIS)
Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.
1997-01-01
A detailed numerical simulation of the nonlinear state of the Rayleigh endash Taylor instability has been carried out. There are three distinct phases of evolution where it is governed by the (i) linear effects, (ii) effects arising from the conventional nonlinear terms and (iii) subtle nonlinear effects arising through the coupling terms. During the third phase of evolution, there is a self-consistent generation of shear flow which saturates the Rayleigh endash Taylor instability even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. The Galerkin approximation is presented to provide an understanding of our numerical findings. Last, there is an attempt to provide a comprehensive understanding of the nonlinear state of the Rayleigh endash Taylor instability by comparing and contrasting this work with earlier studies. copyright 1997 American Institute of Physics
Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD
Directory of Open Access Journals (Sweden)
M. Ahmadvand
2017-09-01
Full Text Available We study the gravitational waves produced by the collision of the bubbles as a probe for the cosmological first order QCD phase transition, considering heavy static quarks. Using AdS/QCD and the correspondence between a first order Hawking–Page phase transition and confinement–deconfinement phase transition, we find the spectrum and the strain amplitude of the gravitational wave within the hard and soft wall models. We postulate the duration of the phase transition corresponds to the evaporation time of the black hole in the five dimensional dual gravity space, and thereby obtain a bound on the string length in the space and correspondingly on the duration of the QCD phase transition. We also show that IPTA and SKA detectors will be able to detect these gravitational waves, which can be an evidence for the first order deconfinement transition.
Xu, Guanjun; Song, Zhaohui
2017-04-01
Traveling solar wind disturbances have a significant influence on radio wave characteristics during the superior solar conjunction communication. This paper considers the impact of solar scintillation on phase fluctuations of electromagnetic (EM) wave propagation during the superior solar conjunction. Based on the Geometric Optics approximation, the close-form approximation model for phase fluctuations is developed. Both effects of anisotropic temporal variations function of plasma irregularities and their power spectrum are presented and analyzed numerically. It is found that phase fluctuations rapidly decrease with increasing Sun-Earth-Probe angle and decrease with increasing frequency at the rate of 1/f2. Moreover, the role of various features of the solar wind irregularities and their influence on the EM wave characteristic parameters is studied and discussed. Finally, we study the phase fluctuations of typical cases in order to better understand the impact of phase fluctuations in future deep space communication scenarios during solar conjunction periods.
Extracting scattering phase shifts in higher partial waves from lattice QCD calculations
Energy Technology Data Exchange (ETDEWEB)
Luu, Thomas; Savage, Martin J.
2011-06-01
Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.
Photoacoustic wave propagating from normal into superconductive phases in Pb single crystals
Iwanaga, Masanobu
2005-01-01
Photoacoustic (PA) wave has been examined in a superconductor of the first kind, Pb single crystal. The PA wave is induced by optical excitation of electronic state and propagates from normal into superconductive phases below T$_{\\rm C}$. It is clearly shown by wavelet analysis that the measured PA wave includes two different components. The high-frequency component is MHz-ultrasonic and the relative low-frequency one is induced by thermal wave. The latter is observed in a similar manner irre...
International Nuclear Information System (INIS)
Caprini, Chiara; Durrer, Ruth; Servant, Geraldine
2008-01-01
Gravitational wave production from bubble collisions was calculated in the early 1990s using numerical simulations. In this paper, we present an alternative analytic estimate, relying on a different treatment of stochasticity. In our approach, we provide a model for the bubble velocity power spectrum, suitable for both detonations and deflagrations. From this, we derive the anisotropic stress and analytically solve the gravitational wave equation. We provide analytical formulas for the peak frequency and the shape of the spectrum which we compare with numerical estimates. In contrast to the previous analysis, we do not work in the envelope approximation. This paper focuses on a particular source of gravitational waves from phase transitions. In a companion article, we will add together the different sources of gravitational wave signals from phase transitions: bubble collisions, turbulence and magnetic fields and discuss the prospects for probing the electroweak phase transition at LISA
Phase-space description of plasma waves. Linear and nonlinear theory
International Nuclear Information System (INIS)
Biro, T.
1992-11-01
We develop an (r,k) phase space description of waves in plasmas by introducing Gaussian window functions to separate short scale oscillations from long scale modulations of the wave fields and variations in the plasma parameters. To obtain a wave equation that unambiguously separates conservative dynamics from dissipation also in an inhomogeneous and time varying background plasma, we first discuss the proper form of the current response function. On the analogy of the particle distribution function f(v,r,t), we introduce a wave density N(k,r,t) on phase space. This function is proven to satisfy a simple continuity equation. Dissipation is also included, and this allows us to describe the damping or growth of wave density' along rays. Problems involving geometric optics of continuous media often appear simpler when viewed in phase space, since the flow of N in phase space is incompressible. Within the phase space representation, we obtain a very general formula for the second order nonlinear current in terms of the vector potential. This formula is a convenient starting point for studies of coherent as well as turbulent nonlinear processes. We derive kinetic equations for weakly inhomogeneous and turbulent plasma, including the effects of inhomogeneous turbulence, wave convection and refraction. (author)
Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells
DEFF Research Database (Denmark)
Überall, Herbert; Ahyi, A. C.; Raju, P. K.
2002-01-01
In earlier studies of acoustic scattering resonances and of the dispersive phase velocities of surface waves that generate them [see, e.g., Talmant et al., J. Acoust. Soc. Am. 86, 278–289 (1989) for spherical aluminum shells] we have demonstrated the effectiveness and accuracy of obtaining phase ...
Stability of a family of travelling wave solutions in a feedforward chain of phase oscillators
International Nuclear Information System (INIS)
Lanford, O E III; Mintchev, S M
2015-01-01
Travelling waves are an important class of signal propagation phenomena in extended systems with a preferred direction of information flow. We study the generation of travelling waves in unidirectional chains of coupled oscillators communicating via a phase-dependent pulse-response interaction borrowed from mathematical neuroscience. Within the context of such systems, we develop a widely applicable, jointly numerical and analytical methodology for deducing existence and stability of periodic travelling waves. We provide careful numerical studies that support the existence of a periodic travelling wave solution as well as the asymptotic relaxation of a single oscillator to the wave when it is forced with the wave profile. Using this evidence as an assumption, we analytically prove global stability of waves in the infinite chain, with respect to initial perturbations of downstream sites. This rigorous stability result suggests that asymptotic relaxation to the travelling wave occurs even when the forcing is perturbed from the wave profile, a property of the motivating system that is supported by previous work as well as the convergence of the more sophisticated numerical algorithm that we propose in order to compute a high-precision approximation to the solution. We provide additional numerical studies that show that the wave is part of a one-parameter family, and we illustrate the structural robustness of this family with respect to changes in the coupling strength. (paper)
Bias-free spin-wave phase shifter for magnonic logic
Energy Technology Data Exchange (ETDEWEB)
Louis, Steven; Tyberkevych, Vasyl; Slavin, Andrei [Department of Physics, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan, 48309–4401 (United States); Lisenkov, Ivan, E-mail: ivan.lisenkov@phystech.edu [Department of Physics, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan, 48309–4401 (United States); Kotelnikov Institute of Radio-engineering and Electronics of RAS, 11–7 Mokhovaya st., Moscow, 125009 (Russian Federation); Nikitov, Sergei [Kotelnikov Institute of Radio-engineering and Electronics of RAS, 11–7 Mokhovaya st., Moscow, 125009 (Russian Federation); Moscow Institute of Physics and Technology, 9 Instituskij per., Dolgoprudny, 141700, Moscow Region (Russian Federation); Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov, 410012 (Russian Federation)
2016-06-15
A design of a magnonic phase shifter operating without an external bias magnetic field is proposed. The phase shifter uses a localized collective spin wave mode propagating along a domain wall “waveguide” in a dipolarly-coupled magnetic dot array with a chessboard antiferromagnetic (CAFM) ground state. It is demonstrated numerically that the remagnetization of a single magnetic dot adjacent to the domain wall waveguide introduces a controllable phase shift in the propagating spin wave mode without significant change to the mode amplitude. It is also demonstrated that a logic XOR gate can be realized in the same system.
S-wave kaon-nucleon phase shifts with instanton induced effects
International Nuclear Information System (INIS)
Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.
2003-01-01
The kaon-nucleon S-wave phase shifts have been calculated, for both isospin channels I=0 and I=1, in the framework of a semirelativistic quark potential model which includes an instanton induced force. The agreement with experimental phase shifts is poor essentially because of a dominant attraction coming from instantons. The low-energy behaviour of S-wave phase shifts, for I=0 and I=1 channels, obtained in the kaon-nucleon system is characteristic of a potential which can produce one loosely bound state
S-wave kaon-nucleon phase shifts with instanton induced effects
Energy Technology Data Exchange (ETDEWEB)
Lemaire, S. E-mail: lemaire@cenbg.in2p3.fr; Labarsouque, J.; Silvestre-Brac, B
2003-09-22
The kaon-nucleon S-wave phase shifts have been calculated, for both isospin channels I=0 and I=1, in the framework of a semirelativistic quark potential model which includes an instanton induced force. The agreement with experimental phase shifts is poor essentially because of a dominant attraction coming from instantons. The low-energy behaviour of S-wave phase shifts, for I=0 and I=1 channels, obtained in the kaon-nucleon system is characteristic of a potential which can produce one loosely bound state.
Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions
International Nuclear Information System (INIS)
Perreault, John D.; Cronin, Alexander D.
2005-01-01
The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm
Short Rayleigh length free electron lasers
Directory of Open Access Journals (Sweden)
W. B. Colson
2006-03-01
Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.
Optical Techniques for Millimeter-Wave Phased Array Communications Antennas
National Research Council Canada - National Science Library
Edge, Colin
1998-01-01
The scope of this program was to study the application of optical techniques to signal distribution and beamforming networks in phased array antennas for Army mobile tactical communications systems...
Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids
Santos, J. E.; Savioli, G. B.
2018-04-01
Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.
Elastic wave manipulation by using a phase-controlling meta-layer
Shen, Xiaohui; Sun, Chin-Teh; Barnhart, Miles V.; Huang, Guoliang
2018-03-01
In this work, a high pass meta-layer for elastic waves is proposed. An elastic phase-controlling meta-layer is theoretically realized using parallel and periodically arranged metamaterial sections based on the generalized Snell's law. The elastic meta-layer is composed of periodically repeated supercells, in which the frequency dependent elastic properties of the metamaterial are used to control a phase gradient at the interface between the meta-layer and conventional medium. It is analytically and numerically demonstrated that with a normal incident longitudinal wave, the wave propagation characteristics can be directly manipulated by the periodic length of the meta-layer element at the sub-wavelength scale. It is found that propagation of the incident wave through the interface is dependent on whether the working wavelength is longer or shorter than the periodic length of the meta-layer element. Specifically, a mode conversion of the P-wave to an SV-wave is investigated as the incident wave passes through the meta-layer region. Since the most common and damaging elastic waves in civil and mechanical industries are in the low frequency region, the work in this paper has great potential in the seismic shielding, engine vibration isolation, and other highly dynamic fields.
Calculation of coupling to slow and fast waves in the LHRF from phased waveguide arrays
International Nuclear Information System (INIS)
Pinsker, R.I.; Duvall, R.E.; Fortgang, C.M.; Colestock, P.L.
1986-04-01
A previously reported algorithm for solving the problem of coupling electromagnetic energy in the LHRF from a phased array of identical rectangular waveguides to a plane-stratified, magnetized cold plasma is numerically implemented. The resulting computer codes are sufficiently general to allow for an arbitrary number of waveguides with finite dimensions in both poloidal and toroidal directions, and are thus capable of computing coupling to both slow and fast waves in the plasma. Some of the details of the implementation and the extension of the algorithm to allow study of the Fourier spectrum of slow and fast waves launched by the array are discussed. Good agreement is found with previously reported, less general work for the slow wave launching case. The effect of phasing multirow arrays in the poloidal direction is studied, and an asymmetry between phasing 'up' and 'down' is found that persists in the case where the plasma adjacent to the array is uniform. A 4 x 3 array designed to launch fast waves of high phase velocity is studied. By using the optimal poloidal phasing, low reflection coefficients (absolute value of R 2 less than or equal to 20%) are found under some not unrealistic edge plasma conditions, but most of the input power is trapped in the outermost layer of the plasma. Implications of our results for fast wave current drive experiments are discussed
Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.
Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan
2016-04-22
We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.
Preliminary Results from Second Phase Sea Testing of the Wave Dragon Prototype Wave Energy Converter
DEFF Research Database (Denmark)
Soerensen, Hans Chr.; Tedd, James; Friis-Madsen, Erik
2006-01-01
In March 2006 the prototype Wave Dragon has been redeployed to a more energetic site in Nissum Bredning an inland sea in Western Denmark. This has followed a period of renovation of many aspects of the device which have resulted in 20% higher energy output. This paper describes the preliminary...
Rayleigh scattering in an emitter-nanofiber-coupling system
Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng
2017-04-01
Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.
Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle
Hamada, K.; Yoshizawa, K.
2015-12-01
For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.
Rayleigh's hypothesis and the geometrical optics limit.
Elfouhaily, Tanos; Hahn, Thomas
2006-09-22
The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.
A method to implement the reservoir-wave hypothesis using phase-contrast magnetic resonance imaging
Gray, Robert D.M.; Parker, Kim H.; Quail, Michael A.; Taylor, Andrew M.; Biglino, Giovanni
2016-01-01
The reservoir-wave hypothesis states that the blood pressure waveform can be usefully divided into a “reservoir pressure” related to the global compliance and resistance of the arterial system, and an “excess pressure” that depends on local conditions. The formulation of the reservoir-wave hypothesis applied to the area waveform is shown, and the analysis is applied to area and velocity data from high-resolution phase-contrast cardiovascular magnetic resonance (CMR) imaging. A validation stud...
Phase Defects as a Measure of Disorder in Traveling-Wave Convection
International Nuclear Information System (INIS)
La Porta, A.; Surko, C.M.
1996-01-01
Spatiotemporal disorder is studied in traveling-wave convection in an ethanol-water mixture. A technique for calculating the complex order parameter of the pattern is described, and the identification of phase defects is demonstrated. Point defects, domain boundaries, and standing wave patterns are shown to produce unique defect structures. The transition from a disordered state to a more ordered pattern is described in terms of the dynamics of defects and their statistics. copyright 1996 The American Physical Society
An Eulerian two-phase flow model for sediment transport under realistic surface waves
Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.
2017-12-01
Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.
Sine-wave three phase resonance inverter for operation of ...
African Journals Online (AJOL)
This paper proposes a high performance single-stage three phase inverter topology for the autonomous operation of renewable energy systems. The proposed configuration can boost the low voltage of renewable energy systems such as photo voltaic systems, fuel cells, and etc can also convert the output dc power, into ...
Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal.
Suizu, Koji; Shibuya, Takayuki; Uchida, Hirohisa; Kawase, Kodo
2010-02-15
Terahertz (THz) wave generation based on nonlinear frequency conversion is a promising method for realizing a tunable monochromatic high-power THz-wave source. Unfortunately, many nonlinear crystals have strong absorption in the THz frequency region. This limits efficient and widely tunable THz-wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. Here, we propose a prism-coupled Cherenkov phase-matching (PCC-PM) method, in which a prism with a suitable refractive index at THz frequencies is coupled to a nonlinear crystal. This has the following advantages. Many crystals can be used as THz-wave emitters; the phase-matching condition inside the crystal does not have to be observed; the absorption of the crystal does not prevent efficient generation of radiation; and pump sources with arbitrary wavelengths can be employed. Here we demonstrate PCC-PM THz-wave generation using the organic crystal 4-dimethylamino-N-metyl-4-stilbazolium tosylate (DAST) and a Si prism coupler. We obtain THz-wave radiation with tunability of approximately 0.1 to 10 THz and with no deep absorption features resulting from the absorption spectrum of the crystal. The obtained spectra did not depend on the pump wavelength in the range 1300 to 1450 nm. This simple technique shows promise for generating THz radiation using a wide variety of nonlinear crystals.
Invasion-wave-induced first-order phase transition in systems of active particles.
Ihle, Thomas
2013-10-01
An instability near the transition to collective motion of self-propelled particles is studied numerically by Enskog-like kinetic theory. While hydrodynamics breaks down, the kinetic approach leads to steep solitonlike waves. These supersonic waves show hysteresis and lead to an abrupt jump of the global order parameter if the noise level is changed. Thus they provide a mean-field mechanism to change the second-order character of the phase transition to first order. The shape of the wave is shown to follow a scaling law and to quantitatively agree with agent-based simulations.
Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition
International Nuclear Information System (INIS)
Chung, Daniel J. H.; Zhou Peng
2010-01-01
Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.
Visualization of large waves in churn and annular two-phase flow
International Nuclear Information System (INIS)
Dasgupta, Arnab; Chandraker, D.K.; Nayak, A.K.; Vijayan, P.K.; Kshirasagar, S.; Reddy, B.R.; Walker, S.P.
2015-01-01
The study of churn and annular two-phase flow regimes is important for boiling systems like nuclear reactors, U-tube steam generators etc. In this paper, visualization studies on air-water churn and annular two-phase flow regimes are reported. Though there are differences between air-water and boiling steam water systems, the major flow-pattern characteristics are similar (if not same).The specific object of study is the large waves which exist in both churn and annular regimes. These waves are responsible for majority of the momentum and mass dispersion across the phases. The differentiating characteristics of these waves in the chum and annular flow regimes are reported. The visualization also leads to a more quantitative representation of the transition from churn to annular flow. A new interpretation of the criterion for onset of entrainment is also evolved from the studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Marzola, Luca; Racioppi, Antonio; Vaskonen, Ville [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)
2017-07-15
Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal. (orig.)
Black Hole Coalescence: The Gravitational Wave Driven Phase
Schnittman, Jeremy D.
2011-01-01
When two supermassive black holes (SMBHS) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.
Voinovich, Peter; Merlen, Alain
2005-12-01
The effect of parametric wave phase conjugation (WPC) in application to ultrasound or acoustic waves in magnetostrictive solids has been addressed numerically by Ben Khelil et al. [J. Acoust. Soc. Am. 109, 75-83 (2001)] using 1-D unsteady formulation. Here the numerical method presented by Voinovich et al. [Shock waves 13(3), 221-230 (2003)] extends the analysis to the 2-D effects. The employed model describes universally elastic solids and liquids. A source term similar to Ben Khelil et al.'s accounts for the coupling between deformation and magnetostriction due to external periodic magnetic field. The compatibility between the isotropic constitutive law of the medium and the model of magnetostriction has been considered. Supplementary to the 1-D simulations, the present model involves longitudinal/transversal mode conversion at the sample boundaries and separate magnetic field coupling with dilatation and shear stress. The influence of those factors in a 2-D geometry on the potential output of a magneto-elastic wave phase conjugator is analyzed in this paper. The process under study includes propagation of a wave burst of a given frequency from a point source in a liquid into the active solid, amplification of the waves due to parametric resonance, and formation of time-reversed waves, their radiation into liquid, and focusing. The considered subject is particularly important for ultrasonic applications in acoustic imaging, nondestructive testing, or medical diagnostics and therapy.
Source effects on surface waves from Nevada Test Site explosions
International Nuclear Information System (INIS)
Patton, H.J.; Vergino, E.S.
1981-11-01
Surface waves recorded on the Lawrence Livermore National Laboratory (LLNL) digital network have been used to study five underground nuclear explosions detonated in Yucca Valley at the Nevada Test Site. The purpose of this study is to characterize the reduced displacement potential (RDP) at low frequencies and to test secondary source models of underground explosions. The observations consist of Rayleigh- and Love-wave amplitude and phase spectra in the frequency range 0.03 to 0.16 Hz. We have found that Rayleigh-wave spectral amplitudes are modeled well by a RDP with little or no overshoot for explosions detonated in alluvium and tuff. On the basis of comparisons between observed and predicted source phase, the spall closure source proposed by Viecelli does not appear to be a significant source of Rayleigh waves that reach the far field. We tested two other secondary source models, the strike-slip, tectonic strain release model proposed by Toksoez and Kehrer and the dip-slip thrust model of Masse. The surface-wave observations do not provide sufficient information to discriminate between these models at the low F-values (0.2 to 0.8) obtained for these explosions. In the case of the strike-slip model, the principal stress axes inferred from the fault slip angle and strike angle are in good agreement with the regional tectonic stress field for all but one explosion, Nessel. The results of the Nessel explosion suggest a mechanism other than tectonic strain release
Gravitational waves from the asymmetric-dark-matter generating phase transition
International Nuclear Information System (INIS)
Baldes, Iason
2017-02-01
The baryon asymmetry, together with a dark matter asymmetry, may be produced during a first order phase transition in a generative sector. We study the possibility of a gravitational wave signal in a model realising such a scenario. We identify areas of parameter space with strong phase transitions which can be probed by future, space based, gravitational wave detectors. Other signals of this scenario include collider signatures of a Z"', DM self interactions, a contribution to ΔN_e_f_f and nuclear recoils at direct detection experiments.
On Low-Pass Phase Noise Mitigation in OFDM System for mmWave Communications
DEFF Research Database (Denmark)
Chen, Xiaoming; Fan, Wei; Zhang, Anxue
2017-01-01
A phase noise (PN) mitigation scheme was proposed for orthogonal frequency division multiplexing (OFDM) in a previous work. The proposed scheme does not require detailed knowledge of PN statistics and can eectively compensate the PN with sucient number of unknowns. In this paper, we analyze....... It is also shown that the PN spectral shape of the phase-lockedloop (PLL) based oscillator also aects the PN mitigation and that a larger PN may not necessarily degrade the performance of the OFDM system with PN mitigation. Simulations with realistic millimeter-wave (mmWave) PN and channel models...
Lagrangian analysis of two-phase hydrodynamic and nuclear-coupled density-wave oscillations
International Nuclear Information System (INIS)
Lahey, R.T. Jr.; Yadigaroglu, G.
1974-01-01
The mathematical technique known as the ''method of characteristics'' has been used to construct an exact, analytical solution to predict the onset of density-wave oscillations in diabatic two-phase systems, such as Boiling Water Nuclear Reactors (BWR's). Specifically, heater wall dynamics, boiling boundary dynamics and nuclear kinetics have been accounted for in this analysis. Emphasis is placed on giving the reader a clear physical understanding of the phenomena of two-phase density-wave oscillations. Explanations are presented in terms of block diagram logic, and phasor representations of the various pressure drop perturbations are given. (U.S.)
The phase accumulation and antenna near field of microscopic propagating spin wave devices
Energy Technology Data Exchange (ETDEWEB)
Chang, Crosby S.; Kostylev, Mikhail, E-mail: mikhail.kostylev@uwa.edu.au; Ivanov, Eugene [School of Physics M013, The University of Western Australia, Crawley, WA 6009 (Australia); Ding, Junjia; Adeyeye, Adekunle O. [Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore (Singapore)
2014-01-20
We studied phase accumulation by the highly non-reciprocal magnetostatic surface spin waves in thin Permalloy microstripes excited and received by microscopic coplanar antennae. We find that the experimentally measured characteristic length of the near field of the antenna is smaller than the total width of the coplanar. This is confirmed by our numerical simulations. Consequently, the distance over which the spin wave accumulates its phase while travelling between the input and output antennae coincides with the distance between the antennae symmetry axes with good accuracy.
The phase accumulation and antenna near field of microscopic propagating spin wave devices
International Nuclear Information System (INIS)
Chang, Crosby S.; Kostylev, Mikhail; Ivanov, Eugene; Ding, Junjia; Adeyeye, Adekunle O.
2014-01-01
We studied phase accumulation by the highly non-reciprocal magnetostatic surface spin waves in thin Permalloy microstripes excited and received by microscopic coplanar antennae. We find that the experimentally measured characteristic length of the near field of the antenna is smaller than the total width of the coplanar. This is confirmed by our numerical simulations. Consequently, the distance over which the spin wave accumulates its phase while travelling between the input and output antennae coincides with the distance between the antennae symmetry axes with good accuracy
Phase locking in backward-wave oscillators with strong end reflections
International Nuclear Information System (INIS)
Nusinovich, G. S.; Sinitsyn, O. V.; Rodgers, J.; Shkvarunets, A. G.; Carmel, Y.
2007-01-01
The theory of phase-locked oscillations in a backward-wave oscillator with strong end reflections is developed. Numerical results demonstrate that the locking bandwidth of such a device phase-locked by a prebunched electron beam can be twice the bandwidth of a resonator formed by a waveguide with strong end reflections. It is also shown that the device can operate with the efficiency exceeding 50% and that, in some cases, it can exhibit a hysteresis in the process of tuning the signal frequency. The applicability of the results obtained to the experiments with the plasma-assisted backward-wave oscillator currently underway at the University of Maryland is discussed
Phase separation and d-wave superconductivity induced by extended electron-exciton interaction
Energy Technology Data Exchange (ETDEWEB)
Cheng Ming [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)], E-mail: cheng896@hotmail.com; Su Wupei [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)
2008-12-15
Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling.
Phase separation and d-wave superconductivity induced by extended electron-exciton interaction
International Nuclear Information System (INIS)
Cheng Ming; Su Wupei
2008-01-01
Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling
International Nuclear Information System (INIS)
Long, K.A.; Tahir, N.A.
1987-01-01
In this paper we present an analysis of the theory of the energy deposition of ions in cold materials and hot dense plasmas together with numerical calculations for heavy and light ions of interest to ion-beam fusion. We have used the gorgon computer code of Long, Moritz, and Tahir (which is an extension of the code originally written for protons by Nardi, Peleg, and Zinamon) to carry out these calculations. The energy-deposition data calculated in this manner has been used in the design of heavy-ion-beam-driven fusion targets suitable for a reactor, by its inclusion in the medusa code of Christiansen, Ashby, and Roberts as extended by Tahir and Long. A number of other improvements have been made in this code and these are also discussed. Various aspects of the theoretical analysis of such targets are discussed including the calculation of the hydrodynamic stability, the hydrodynamic efficiency, and the gain. Various different target designs have been used, some of them new. In general these targets are driven by Bi + ions of energy 8--12 GeV, with an input energy of 4--6.5 MJ, with output energies in the range 600--900 MJ, and with gains in the range 120--180. The peak powers are in the range of 500--750 TW. We present detailed calculations of the ablation, compression, ignition, and burn phases. By the application of a new stability analysis which includes ablation and density-gradient effects we show that these targets appear to implode in a stable manner. Thus the targets designed offer working examples suited for use in a future inertial-confinement fusion reactor
Velocity Profile measurements in two-phase flow using multi-wave sensors
Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.
2009-02-01
Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.
Velocity Profile measurements in two-phase flow using multi-wave sensors
International Nuclear Information System (INIS)
Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M
2009-01-01
Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.
International Nuclear Information System (INIS)
Tanaka, K.
1983-01-01
Attention is called to a laboratory experiment of an optical-fiber interferometer which can show the gravitationally induced phase shift of optical waves. A phase shift of approx.10 -6 rad is anticipated for the Earth's gravitational potential difference of 1 m when a He-Ne laser and two multiple-turn optical-fiber loops of length 5 km are used. The phase shift can be varied by rotating the loops about an axis parallel to the Earth's surface. This order of phase shifts can be detected by current optical-fiber interferometric techniques
Phase slip process and charge density wave dynamics in a one dimensional conductor
Habiballah, N.; Zouadi, M.; Arbaoui, A.; Qjani, M.; Dumas, J.
In this paper, we study the phase slip effect on the charge density wave (CDW) dynamics in a one-dimensional conductor in the weak pinning limit. A considerable enhancement of JCDW is observed in the presence of phase slips. In addition, a spatial dependence of the CDW current density JCDW is also studied showing that a decrease of JCDW with distance from the current contact occurs. The results are discussed in terms the relationship between additional phase slips and the mobility of phase dislocations nucleated at electrical contacts.
Background velocity inversion by phase along reflection wave paths
Yu, Han; Guo, Bowen; Schuster, Gerard T.
2014-01-01
A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.
Background velocity inversion by phase along reflection wave paths
Yu, Han
2014-08-05
A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.
International Nuclear Information System (INIS)
Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.
2012-01-01
Radio frequency waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat tokamak plasmas. In ICRF heating schemes involving multiple ion species, the launched fast waves convert to ion cyclotron waves or ion Bernstein waves at the two-ion hybrid resonances. Mode converted waves are of interest as actuators to optimise plasma performance through current drive and flow drive. In order to describe these processes accurately in a realistic tokamak geometry, numerical simulations are essential, and it is important that these codes be validated against experiment. In this study, the mode converted waves were measured using a phase contrast imaging technique in D-H and D- 3 He plasmas. The measured mode converted wave intensity in the D- 3 He mode conversion regime was found to be a factor of ∼50 weaker than the full-wave predictions. The discrepancy was reduced in the hydrogen minority heating regime, where mode conversion is weaker.
Temperature anomalies of shock and isentropic waves of quark-hadron phase transition
Konyukhov, A. V.; Iosilevskiy, I. L.; Levashov, P. R.; Likhachev, A. P.
2018-01-01
In this work, we consider a phenomenological equation of state, which combinesstatistical description for hadron gas and a bag-model-based approach for the quark-gluon plasma. The equation of state is based on the excluded volume method in its thermodynamically consistent variant from Satarov et al [2009 Phys. At. Nucl. 72 1390]. The characteristic shape of the Taub adiabats and isentropes in the phase diagram is affected by the anomalous pressure-temperature dependence along the curve of phase equilibrium. The adiabats have kink points at the boundary of the two-phase region, inside which the temperature decreases with compression. Thermodynamic properties of matter observed in the quark-hadron phase transition region lead to hydrodynamic anomalies (in particular, to the appearance of composite compression and rarefaction waves). On the basis of relativistic hydrodynamics equations we investigate and discuss the structure and anomalous temperature behavior in these waves.
Gravitational waves from the sound of a first order phase transition.
Hindmarsh, Mark; Huber, Stephan J; Rummukainen, Kari; Weir, David J
2014-01-31
We report on the first three-dimensional numerical simulations of first-order phase transitions in the early Universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the gravitational wave (GW) spectrum resulting from the nucleation, expansion, and collision of bubbles of the low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of interest. We find that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source. For a wide range of models, the main source of the GWs produced by a phase transition is, therefore, the sound the bubbles make.
Phase and group velocities for Lamb waves in DOP-26 iridium alloy sheet
International Nuclear Information System (INIS)
Simpson, W.A.; McGuire, D.J.
1994-07-01
The relatively coarse grain structure of iridium weldments limits the ultrasonic inspection of these structures to frequencies in the low megahertz range. As the material thickness is nominally 0.635 mm for clad vent set capsules, the low frequencies involved necessarily entail the generation of Lamb waves m the specimen. These waves are, of course, dispersive and detailed knowledge of both the phase and group velocities is required in order to determine accurately the location of flaws detected using Lamb waves. Purpose of this study is to elucidate the behavior of Lamb waves propagating in the capsule alloy and to quantify the velocities so that accurate flaw location is ensured. We describe a numerical technique for computing the phase velocities of Lamb waves (or of any other type of guided wave) and derive the group velocities from this information. A frequency-domain method is described for measuring group velocity when multiple Lamb modes are present and mutually interfering in the time domain, and experimental confirmation of the group velocity is presented for the capsule material
Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg4I5
International Nuclear Information System (INIS)
Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V.
1984-01-01
The dynamical properties of RbAg 4 I 5 has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag + ion oscillatory motion and diffusion in RbAg 4 I 5 depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg 4 I 5 the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincides. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction
Soliton Coupling Driven by Phase Fluctuations in Auto-Parametric Resonance
Binder, B
2002-01-01
In this paper the interaction of sine-Gordon solitons and mediating linear waves is modelled by a special case of auto-parametric resonance, the Rayleigh-type self-excited non-linear autonomous system driven by a statistical phase gradient related to the soliton energy. Spherical symmetry can stimulate "whispering gallery modes" (WGM) with integral coupling number M=137.
Influence of a relativistic kinematics on s-wave KN phase shifts in a quark model
International Nuclear Information System (INIS)
Lemaire, S.; Labarsouque, J.; Silvestre-Brac, B.
2001-01-01
The I = 1 and I = 0 kaon-nucleon s-wave phase shifts have been calculated in a quark potential model using the resonating group method (RGM) and a relativistic kinematics. The spinless Salpeter equation has been solved numerically using the Fourier grid Hamiltonian method. The results have been compared to the non-relativistic ones. For each isospin channel the phase shifts obtained are not so far from the non-relativistic results. (author)
Wave packet dynamics, time scales and phase diagram in the IBM-Lipkin-Meshkov-Glick model
Castaños, Octavio; de los Santos, Francisco; Yáñez, Rafael; Romera, Elvira
2018-02-01
We derive the phase diagram of a scalar two-level boson model by studying the equilibrium and stability properties of its energy surface. The plane of control parameters is enlarged with respect to previous studies. We then analyze the time evolution of wave packets centered around the ground state at various quantum phase transition boundary lines. In particular, classical and revival times are computed numerically.
Sculpturing the electron wave function using nanoscale phase masks
Energy Technology Data Exchange (ETDEWEB)
Shiloh, Roy, E-mail: royshilo@post.tau.ac.il; Lereah, Yossi; Lilach, Yigal; Arie, Ady
2014-09-15
Electron beams are extensively used in lithography, microscopy, material studies and electronic chip inspection. Today, beams are mainly shaped using magnetic or electric forces, enabling only simple shaping tasks such as focusing or scanning. Recently, binary amplitude gratings achieved complex shapes. These, however, generate multiple diffraction orders, hence the desired shape, appearing only in one order, retains little of the beam energy. Here we demonstrate a method in electron-optics for arbitrarily shaping electron beams into a single desired shape, by precise patterning of a thin-membrane. It is conceptually similar to shaping light beams using refractive or diffractive glass elements such as lenses or holograms – rather than applying electromagnetic forces, the beam is controlled by spatially modulating its wavefront. Our method allows for nearly-maximal energy transference to the designed shape, and may avoid physical damage and charging effects that are the scorn of commonly-used (e.g. Zernike and Hilbert) phase-plates. The experimental demonstrations presented here – on-axis Hermite–Gauss and Laguerre–Gauss (vortex) beams, and computer-generated holograms – are a first example of nearly-arbitrary manipulation of electron beams. Our results herald exciting prospects for microscopic material studies, enables electron lithography with fixed sample and beam and high resolution electronic chip inspection by structured electron illumination. - Highlights: • Nanoscale-patterned membranes are used to shape electron beams. • Designing on-axis phase plates outside the back focal plane is possible. • Computer-generated holograms enable nearly-arbitrary beam shaping. • Applications in microscopy, lithography, chip inspection and material sciences.
Rivera-Ortega, Uriel; Dirckx, Joris
2015-09-01
In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.
KN s-wave phase shifts in the non-relativistic quark model
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Labarsouque, J.
1995-01-01
The I=1 and 0 kaon-nucleon s-wave phase shifts have been calculated in a quark potential model using the resonating group method (RGM). The Hill-Wheeler equation has been solved numerically without any parametrization of the KN relative wave-function. The kaon and the nucleon wave-functions have been expanded as sums of several well-chosen gaussian functions, and the sensitivity of the results to the number of terms was analyzed carefully. The I=0 phase shifts are in agreement with the experimental data. In the I=1 channel too much repulsion is obtained, probably due to the lack of medium-range boson exchange type attraction. ((orig.))
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2018-01-01
of the complex hypergeometric function 2F1 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far......In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation......-field scattering components, that is, the phase function. I include recurrence formulae for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity...
Quantum Mechanics in the Gaussian wave-packet phase space representation: Dynamics
International Nuclear Information System (INIS)
Mizrahi, S.S.
1985-01-01
The Heisenberg and Liouville dynamical equations are mapped using the Wave-Packet Phase Space Representation. A semiclassical perturbative expansion is introduced - the Quasi-Causal Approximation - for the Green function and an expression for transition probabilities is derived up to the first order. (Author) [pt
Kaon-nucleon S-wave phase shifts in a QCD-motivated quark model
International Nuclear Information System (INIS)
Bender, I.; Dosch, H.G.
1982-01-01
We calculate kaon-nucleon central potentials and S-wave phase shifts for I = 0 and I = 1 in an QCD-motivated quark model. In our model the K-N interaction is derived from short-range perturbative quark-quark interactions. (orig.)
On measuring surface wave phase velocity from station–station cross-correlation of ambient signal
DEFF Research Database (Denmark)
Boschi, Lapo; Weemstra, Cornelis; Verbeke, Julie
2012-01-01
We apply two different algorithms to measure surface wave phase velocity, as a function of frequency, from seismic ambient noise recorded at pairs of stations from a large European network. The two methods are based on consistent theoretical formulations, but differ in the implementation: one met...
ICRF Mode Conversion Studies with Phase Contrast Imaging and Comparisons with Full-Wave Simulations
International Nuclear Information System (INIS)
Tsujii, N.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Porkolab, M.; Jaeger, E. F.; Harvey, R. W.
2011-01-01
Waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat toka-mak plasmas. In a multi-ion-species plasma, the FW converts to ion cyclotron waves (ICW) and ion Bernstein waves (IBW) around the ion-ion hybrid resonance (mode conversion). The mode converted wave is of interest as an actuator to optimise plasma performance through flow drive and current drive. Numerical simulations are essential to describe these processes accurately, and it is important that these simulation codes be validated. On Alcator C-Mod, direct measurements of the mode converted waves have been performed using Phase Contrast Imaging (PCI), which measures the line-integrated electron density fluctuations. The results were compared to full-wave simulations AORSA and TORIC. AORSA is coupled to a Fokker-Planck code CQL3D for self-consistent simulation of the wave electric field and the minority distribution function. The simulation results are compared to PCI measurements using synthetic diagnostic. The experiments were performed in D-H and D- 3 He plasmas over a wide range of ion species concentrations. The simulations agreed well with the measurements in the strong absorption regime. However, the measured fluctuation intensity was smaller by 1-2 orders of magnitudes in the weakly abosorbing regime, and a realistic description of the plasma edge including dissipation and antenna geometry may be required in these cases.
Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations
Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.
2018-02-01
We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.
Directory of Open Access Journals (Sweden)
Y. Nariyuki
2006-01-01
Full Text Available Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfvén waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfvén waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation. We first discuss the modulational instability within the derivative nonlinear Schrödinger (DNLS equation, which is a subset of the Hall-MHD system including the right- and left-hand polarized, nearly degenerate quasi-parallel Alfvén waves. The dominant nonlinear process within this model is the four wave interaction, in which a quartet of waves in resonance can exchange energy. By numerically time integrating the DNLS equation with periodic boundary conditions, and by evaluating relative phase among the quartet of waves, we show that the phase coherence is generated when the waves exchange energy among the quartet of waves. As a result, coherent structures (solitons appear in the real space, while in the phase space of the wave frequency and the wave number, the wave power is seen to be distributed around a straight line. The slope of the line corresponds to the propagation speed of the coherent structures. Numerical time integration of the Hall-MHD system with periodic boundary conditions reveals that, wave power of transverse modes and that of longitudinal modes are aligned with a single straight line in the dispersion relation phase space, suggesting that efficient exchange of energy among transverse and longitudinal wave modes is realized in the Hall-MHD. Generation of the longitudinal wave modes violates the assumptions employed in deriving the DNLS such as the quasi
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Characteristics of surface acoustic waves in (11\\bar 2 0)ZnO film/ R-sapphire substrate structures
Wang, Yan; Zhang, ShuYi; Xu, Jing; Xie, YingCai; Lan, XiaoDong
2018-02-01
(11\\bar 2 0)ZnO film/ R-sapphire substrate structure is promising for high frequency acoustic wave devices. The propagation characteristics of SAWs, including the Rayleigh waves along [0001] direction and Love waves along [1ī00] direction, are investigated by using 3 dimensional finite element method (3D-FEM). The phase velocity ( v p), electromechanical coupling coefficient ( k 2), temperature coefficient of frequency ( TCF) and reflection coefficient ( r) of Rayleigh wave and Love wave devices are theoretically analyzed. Furthermore, the influences of ZnO films with different crystal orientation on SAW properties are also investigated. The results show that the 1st Rayleigh wave has an exceedingly large k 2 of 4.95% in (90°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate associated with a phase velocity of 5300 m/s; and the 0th Love wave in (0°, 90°, 0°) (11\\bar 2 0)ZnO film/ R-sapphire substrate has a maximum k 2 of 3.86% associated with a phase velocity of 3400 m/s. And (11\\bar 2 0)ZnO film/ R-sapphire substrate structures can be used to design temperature-compensated and wide-band SAW devices. All of the results indicate that the performances of SAW devices can be optimized by suitably selecting ZnO films with different thickness and crystal orientations deposited on R-sapphire substrates.
Modeling quiescent phase transport of air bubbles induced by breaking waves
Shi, Fengyan; Kirby, James T.; Ma, Gangfeng
Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear
The Measurement and Interpretation of Surface Wave Group Arrival Times
Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.
2005-12-01
We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.
Detailed phase matching characterization of inter-modal four-wave mixing in a two-mode fiber
DEFF Research Database (Denmark)
Friis, Søren Michael Mørk; Jung, Y.; Begleris, I.
2016-01-01
We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups.......We experimentally characterize the phase matching properties of two inter-modal four-wave mixing processes in a graded index fiber guiding the LP01 and LP11 mode-groups....
Rayleigh-type parametric chemical oscillation
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
The cosmic QCD phase transition with dense matter and its gravitational waves from holography
Ahmadvand, M.; Bitaghsir Fadafan, K.
2018-04-01
Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.
P-wave holographic superconductor/insulator phase transitions affected by dark matter sector
International Nuclear Information System (INIS)
Rogatko, Marek; Wysokinski, Karol I.
2016-01-01
The holographic approach to building the p-wave superconductors results in three different models: the Maxwell-vector, the SU(2) Yang-Mills and the helical. In the probe limit approximation, we analytically examine the properties of the first two models in the theory with dark matter sector. It turns out that the effect of dark matter on the Maxwell-vector p-wave model is the same as on the s-wave superconductor studied earlier. For the non-Abelian model we study the phase transitions between p-wave holographic insulator/superconductor and metal/superconductor. Studies of marginally stable modes in the theory under consideration allow us to determine features of p-wave holographic droplet in a constant magnetic field. The dependence of the superconducting transition temperature on the coupling constant α to the dark matter sector is affected by the dark matter density ρ_D. For ρ_D>ρ the transition temperature is a decreasing function of α. The critical chemical potential μ_c for the quantum phase transition between insulator and metal depends on the chemical potential of dark matter μ_D and for μ_D=0 is a decreasing function of α.
High-efficiency toroidal current drive using low-phase-velocity kinetic Alfven waves
International Nuclear Information System (INIS)
Puri, S.
1991-09-01
A method for obtaining efficient current drive in Tokamaks using low-phase-velocity (v ρ = ω/K parallel ∝ 0.1v te ) kinetic Alfen wave is proposed. The wave momentum, imparted primarily to the trapped electrons by Landau damping, is stored as the canonical angular momentum via the Ware pinch. In steady state, collisions restore the pinched electrons to their original phase-space configuration, in the process releasing the stored canonical angular momentum to the background ions and electrons in proportion to the respective collision frequencies. Despite the loss of a part of the original impulse to the plasma ions, well over half the wave momentum is ultimately delivered to the bulk-plasma electrons, resulting in an efficient current drive. A normalized current-drive efficiency γ = R 0 20 > I/P ∝ 2 would be feasible using the subthermal kinetic-Alfen-wave current drive in a Tokamak of reactor parameters. Optimum antenna loading conditions are described. The problem of accessibility is discussed. In an elongated, high-β plasma with a density dependence n e ∝ (1-ρ 2 ) Χn , accessibility is restricted to ρ > or approx. 3/(4A Χn ), where A is the aspect ratio. For current drive at still lower values of ρ, operation in conjunction with fast-wave current drive is suggested. (orig.)
Kinetic simulations of Rayleigh-Taylor instabilities
International Nuclear Information System (INIS)
Sagert, Irina; Bauer, Wolfgang; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance
2014-01-01
We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is in the linear regime, we compare its position and shape to the analytic prediction. Despite the broadening of the fluid interface we see a good agreement with the analytic solution. At later times we observe the development of a mushroom like shape caused by secondary Kelvin-Helmholtz instabilities as seen in hydrodynamic simulations and consistent with experimental observations.
Acoustofluidic particle dynamics: Beyond the Rayleigh limit.
Baasch, Thierry; Dual, Jürg
2018-01-01
In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Control phase shift of spin-wave by spin-polarized current and its application in logic gates
International Nuclear Information System (INIS)
Chen, Xiangxu; Wang, Qi; Liao, Yulong; Tang, Xiaoli; Zhang, Huaiwu; Zhong, Zhiyong
2015-01-01
We proposed a new ways to control the phase shift of propagating spin waves by applying a local spin-polarized current on ferromagnetic stripe. Micromagnetic simulation showed that a phase shift of about π can be obtained by designing appropriate width and number of pinned magnetic layers. The ways can be adopted in a Mach-Zehnder-type interferometer structure to fulfill logic NOT gates based on spin waves. - Highlights: • Spin-wave phase shift can be controlled by a local spin-polarized current. • Spin-wave phase shift increased with the increasing of current density. • Spin-wave phase shift can reach about 0.3π at a particular current density. • The ways can be used in a Mach-Zehnder-type interferometer to fulfill logic gates
International Nuclear Information System (INIS)
Zhou, Guobing; Yang, Yongping; Wang, Xin; Cheng, Jinming
2010-01-01
Thermal characteristics of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal temperature wave on the outer surface were investigated numerically and compared with traditional building materials such as brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation under convective boundary conditions was solved using fully implicit finite-difference scheme. The simulation results showed that the SSPCM wallboard presents distinct characteristics from other ordinary building materials. Phase transition keeping time of inner surface and decrement factor were applied to analyze the effects of PCM thermophysical properties (melting temperature, heat of fusion, phase transition zone and thermal conductivity), inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. It was found that melting temperature is one important factor which influences both the phase transition keeping time and the decrement factor; for a certain outside temperature wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the phase transition keeping time or the decrement factor are scarcely influenced; thermal conductivity of PCM and inner surface convective coefficient have little effect on the phase transition keeping time but significantly influence the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segment of inner surface temperature line. The results aim to be useful for the selection of SSPCMs and their applications in passive solar buildings.
Latitudinal amplitude-phase structure of MHD waves: STARE radar observations and modeling
Directory of Open Access Journals (Sweden)
Pilipenko V.
2016-09-01
Full Text Available We have developed a numerical model that yields a steady-state distribution of field components of MHD wave in an inhomogeneous plasma box simulating the realistic magnetosphere. The problem of adequate boundary condition at the ionosphere–magnetosphere interface for coupled MHD mode is considered. To justify the model’s assumptions, we have derived the explicit inequality showing when the ionospheric inductive Hall effect can be neglected upon the consideration of Alfven wave reflection from the ionospheric boundaries. The model predicts a feature of the ULF spatial amplitude/phase distribution that has not been noticed by the field line resonance theory: the existence of a region with opposite phase delays on the source side of the resonance. This theoretical prediction is supported by the amplitude-phase latitudinal structures of Pc5 waves observed by STARE radar and IMAGE magnetometers. A gradual decrease in azimuthal wave number m at smaller L-shells was observed at longitudinally separated radar beams.
Vortex-Induced Waves in Two-Phase Liquid-Liquid Flows past Bluff Body
Zainal Abidin, M. I. I.; Park, Kyeong H.; Angeli, Panagiota; Xie, Zhihua; Kahouadji, Lyes; Matar, Omar K.
2017-11-01
Transverse cylinders of various sizes are used to generate vortex-induced interfacial waves in two-phase oil-water flows and to influence flow pattern transitions. The vortex shedding properties at different cylinder sizes and the resulting induced waves are studied experimentally with Particle Image Velocimetry (PIV) and high-speed imaging. The system consists of a 7 m long horizontal 37 mm ID acrylic pipe and different cylinders with diameters of 2, 5 and 8 mm, located in the water phase, 460 mm after the two phases come into contact. The cylinder generates waves with frequencies similar to the von Karman vortices and changes in vortex shedding properties at different cylinder size are reflected on the resulting interfacial wave characteristics. The presence of the transverse cylinder actuates the transition from stratified to dispersed flows; the boundary between the two patterns is shifted to lower mixture velocity with increasing cylinder size. Three-dimensional numerical simulation of the system is developed to assist in designing new system. Project funded by EPSRC UK and Memphis Grant.
Broadband Millimeter-Wave In-Phase and Out-of-Phase Waveguide Dividers with High Isolation
Dong, Jun; Liu, Yu; Yang, Ziqiang; Peng, Hao; Yang, Tao
2015-11-01
In this paper, two novel broadband in-phase and out-of-phase waveguide power dividers with high isolation are presented. Based on the substrate-integrated waveguide (SIW) divider and SIW-to-waveguide transition circuit, two kinds of E-plane waveguide dividers have been implemented. Due to the features of in-phase and out-of-phase performances, the proposed waveguide dividers can provide much more flexibilities than that of conventional E-plane waveguide T-junction. A broadband phase and amplitude performances are achieved across the whole Ka-band owing to the wideband characteristic of the SIW divider and transition circuits. To minimize the size and loss of the divider, a compact and low-loss SIW-to-waveguide transition circuit has been developed using the antisymmetric tapered probes. Two prototypes of the Ka-band waveguide dividers, including the in-phase and out-of-phase types, have been fabricated and measured. Measured results show that the isolation, input return loss, output return loss, amplitude imbalance, and phase imbalance of the in-phase divider are better than 15.5, 13.1, 10.8, 0.4 dB, and 3.50, while those of the out-of-phase divider are better than 15.0, 13.4, 10.4, 0.5 dB, and 3.60, respectively, over the frequency range from 26.5 to 40 GHz. The measured results agree well with the simulated ones. Considering their wide bandwidth, high isolation, good port matching performance, and compact configuration, the two types of waveguide dividers can be good candidates for broadband applications in millimeter-wave waveguide systems.
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing
2017-08-17
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing; Schuster, Gerard T.; Lin, Fan-Chi; Alam, Amir
2017-01-01
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Numerical and experimental study of disturbance wave development in vertical two-phase annular flow
Hewitt, Geoffrey; Yang, Junfeng; Zhao, Yujie; Markides, Christos; Matar, Omar
2013-11-01
The annular flow regime is characterized by the presence of a thin, wavy liquid film driven along the wall by the shear stress exerted by the gas phase. Under certain liquid film Reynolds numbers, large disturbance waves are observed to traverse the interface, whose length is typically on the order of 20 mm and whose height is typically on the order of 5 times the thickness of the thin (substrate) layer between the waves. Experimental wok has been conducted to study the disturbance wave onset by probing the local film thickness for different Reynolds numbers. It is observed the disturbance waves grow gradually from wavy initiation and form the ring-like structure. To predict the wavy flow field observed in the experiment, 3D CFD simulations are performed using different low Reynolds number turbulence models and Large Eddy Simulation. Modeling results confirm that there is recirculation within the waves, and that they as a packet of turbulence traveling over a laminar substrate film. We also predict the coalescence and the break-up of waves leading to liquid droplet entrainment into the gas core. Skolkovo Foundation, UNIHEAT project.
Glass transition in the spin-density wave phase of (TMTSF)2PF6
DEFF Research Database (Denmark)
Lasjaunias, J.C.; Biljakovic, K.; Nad, F.
1994-01-01
We present the results of low frequency dielectric measurements and a detailed kinetic investigation of the specific heat anomaly in the spin-density wave phase of (TMTSF)(2)PF6 in the temperature range between 2 and 4 K. The dielectric relaxation shows a critical slowing down towards a ''static'......'' glass transition around 2 K. The jump in the specific heat in different controlled kinetic conditions shows all the characteristics of freezing in supercooled liquids. Both effects give direct evidence of a glass transition in the spin-density wave ground state....
Phase modulation spectroscopy of space-charge wave resonances in Bi12SiO20
DEFF Research Database (Denmark)
Vasnetsov, M.; Buchhave, Preben; Lyuksyutov, S.
1997-01-01
A new experimental method for the study of resonance effects and space-charge wave excitation in photorefractive Bi12SiO20 crystals by using a combination of frequency detuning and phase modulation technique has been developed. The accuracy of the method allows a detection of resonance peaks...... of diffraction efficiency within 0.5 Hz. Numerical simulations of the nonlinear differential equations describing the behaviour of the space-charge waves in photorefractive crystals have been performed and found to be in a good agreement with experiment. We have measured the photocurrent through the crystal...
Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method
International Nuclear Information System (INIS)
Zhang Xu; Tan Duowang
2009-01-01
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)
Pandian, Arun; Stellingwerf, Robert F.; Abarzhi, Snezhana I.
2017-07-01
While it is a common wisdom that initial conditions influence the evolution of the Richtmyer-Meshkov instability (RMI), the research in this area is focused primarily on the effects of the wavelength and amplitude of the interface perturbation. The information has hitherto largely ignored the influences on RMI dynamics of the relative phase of waves constituting a multiwave initial perturbation and the interference of the perturbation waves. In this work we systematically study the influence of the relative phase and the interference of waves constituting a multiwave initial perturbation on a strong-shock-driven Richtmyer-Meshkov unstable interface separating ideal fluids with contrast densities. We apply group theory analysis and smoothed particle hydrodynamics numerical simulations. For verification and validation of the simulations, qualitative and quantitative comparisons are performed with rigorous zeroth-order, linear, and nonlinear theories as well as with gas dynamics experiments achieving good agreement. For a sample case of a two-wave (two-mode) initial perturbation we select the first-wave amplitude enabling the maximum initial growth rate of the RMI and we vary the second-wave amplitude from 1% to 100% of the first-wave amplitude. We also vary the relative phase of the first and second waves and consider the in-phase, the antiphase and the random-phase cases. We find that the relative phase and the interference of waves are important factors of RMI dynamics influencing qualitatively and quantitatively the symmetry, morphology, and growth rate of the Richtmyer-Meshkov unstable interface, as well as the order and disorder in strong-shock-driven RMI.
Experimental Results on the Level Crossing Intervals of the Phase of Sine Wave Plus Noise
Youssef, Neji; Munakata, Tsutomu; Mimaki, Tadashi
1993-03-01
Experimental study was made on the level crossing intervals of a phase process of a sine wave plus narrow-band Gaussian noise. Since successive level crossings of phase do not necessarily occur alternately in the upward and downward direction due to the phase jump beyond 2π, the usual definitions of the probability densities of the level crossing intervals for continuous random processes are not applicable in the case of the phase process. Therefore, the probability densities of level crossing intervals of phase process are newly defined. Measurements of these densities were performed for noise having lowpass spectra of Gaussian and 7th order Butterworth types. Results are given for various values of the signal-to-noise power ratio and of the crossing level, and compared with corresponding approximation developed under the assumption of quasi-independence. The validity of the assumption depends on the spectrum shape of the noise.
Directory of Open Access Journals (Sweden)
Ivan Aldaya
2015-01-01
Full Text Available Given the interference avoidance capacity, high gain, and dynamical reconfigurability, phased array antennas (PAAs have emerged as a key enabling technology for future broadband mobile applications. This is especially important at millimeter-wave (mm-wave frequencies, where the high power consumption and significant path loss impose serious range constraints. However, at mm-wave frequencies the phase and amplitude control of the feeding currents of the PAA elements is not a trivial issue because electrical beamforming requires bulky devices and exhibits relatively narrow bandwidth. In order to overcome these limitations, different optical beamforming architectures have been presented. In this paper we review the basic principles of phased arrays and identify the main challenges, that is, integration of high-speed photodetectors with antenna elements and the efficient optical control of both amplitude and phase of the feeding current. After presenting the most important solutions found in the literature, we analyze the impact of the different noise sources on the PAA performance, giving some guidelines for the design of optically fed PAAs.
Energy Technology Data Exchange (ETDEWEB)
Evangelou, Sofia, E-mail: Evangelousof@gmail.com
2017-05-10
Highlights: • A high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers is studied. • A Δ-type coupling configuration is formed. • The spin states of the ground state triplet of the NV centers interact with a strain field and two microwave fields. • The absorption and dispersion properties of the acoustic wave field are controlled by the use of the relative phase of the fields. • Phase-dependent acoustic wave absorption, transparency, and gain are obtained. • “Slow sound” and negative group velocities are also possible. - Abstract: We consider a high-Q single-crystal diamond nanomechanical resonator embedded with nitrogen-vacancy (NV) centers. We study the interaction of the transitions of the spin states of the ground state triplet of the NV centers with a strain field and two microwave fields in a Δ-type coupling configuration. We use the relative phase of the fields for the control of the absorption and dispersion properties of the acoustic wave field. Specifically, we show that by changing the relative phase of the fields, the acoustic field may exhibit absorption, transparency, gain and very interesting dispersive properties.
Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase
Djebbi, Ramzi
2014-02-18
Wave equation tomography attempts to improve on traveltime tomography, by better adhering to the requirements of our finite-frequency data. Conventional wave equation tomography, based on the first-order Born approximation followed by cross-correlation traveltime lag measurement, or on the Rytov approximation for the phase, yields the popular hollow banana sensitivity kernel indicating that the measured traveltime at a point is insensitive to perturbations along the ray theoretical path at certain finite frequencies. Using the instantaneous traveltime, which is able to unwrap the phase of the signal, instead of the cross-correlation lag, we derive new finite-frequency traveltime sensitivity kernels. The kernel reflects more the model-data dependency, we typically encounter in full waveform inversion. This result confirms that the hollow banana shape is borne of the cross-correlation lag measurement, which exposes the Born approximations weakness in representing transmitted waves. The instantaneous traveltime can thus mitigate the additional component of nonlinearity introduced by the hollow banana sensitivity kernels in finite-frequency traveltime tomography. The instantaneous traveltime simply represents the unwrapped phase of Rytov approximation, and thus is a good alternative to Born and Rytov to compute the misfit function for wave equation tomography. We show the limitations of the cross-correlation associated with Born approximation for traveltime lag measurement when the source signatures of the measured and modelled data are different. The instantaneous traveltime is proven to be less sensitive to the distortions in the data signature. The unwrapped phase full banana shape of the sensitivity kernels shows smoother update compared to the banana–doughnut kernels. The measurement of the traveltime delay caused by a small spherical anomaly, embedded into a 3-D homogeneous model, supports the full banana sensitivity assertion for the unwrapped phase.
Gravity waves from the non-renormalizable electroweak vacua phase transition
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Eric [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Vaudrevange, Pascal M. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-11-15
It is currently believed that the Standard Model is an effective low energy theory which in principle may contain higher dimensional non-renormalizable operators. These operators may modify the standard model Higgs potential in many ways, one of which being the appearance of a second vacuum. For a wide range of parameters, this new vacuum becomes the true vacuum. It is then assumed that our universe is currently sitting in the false vacuum. Thus the usual second-order electroweak phase transition at early times will be followed by a second, first-order phase transition. In cosmology, a first-order phase transition is associated with the production of gravity waves. In this paper we present an analysis of the production of gravitational waves during such a second electroweak phase transition. We find that, for one certain range of parameters, the stochastic background of gravitational waves generated by bubble nucleation and collision have an amplitude which is estimated to be of order {omega}{sub GW}h{sup 2}{proportional_to}10{sup -11} at f=3 x 10{sup -4} Hz, which is within reach of the planned sensitivity of LISA. For another range of parameters, we find that the amplitude is estimated to be of order {omega}{sub GW}h{sup 2}{proportional_to} 0{sup -25} around f=10{sup 3} Hz, which is within reach of LIGO. Hence, it is possible to detect gravity waves from such a phase transition at two different detectors, with completely different amplitude and frequency ranges. (orig.)
Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase
Djebbi, Ramzi; Alkhalifah, Tariq Ali
2014-01-01
Wave equation tomography attempts to improve on traveltime tomography, by better adhering to the requirements of our finite-frequency data. Conventional wave equation tomography, based on the first-order Born approximation followed by cross-correlation traveltime lag measurement, or on the Rytov approximation for the phase, yields the popular hollow banana sensitivity kernel indicating that the measured traveltime at a point is insensitive to perturbations along the ray theoretical path at certain finite frequencies. Using the instantaneous traveltime, which is able to unwrap the phase of the signal, instead of the cross-correlation lag, we derive new finite-frequency traveltime sensitivity kernels. The kernel reflects more the model-data dependency, we typically encounter in full waveform inversion. This result confirms that the hollow banana shape is borne of the cross-correlation lag measurement, which exposes the Born approximations weakness in representing transmitted waves. The instantaneous traveltime can thus mitigate the additional component of nonlinearity introduced by the hollow banana sensitivity kernels in finite-frequency traveltime tomography. The instantaneous traveltime simply represents the unwrapped phase of Rytov approximation, and thus is a good alternative to Born and Rytov to compute the misfit function for wave equation tomography. We show the limitations of the cross-correlation associated with Born approximation for traveltime lag measurement when the source signatures of the measured and modelled data are different. The instantaneous traveltime is proven to be less sensitive to the distortions in the data signature. The unwrapped phase full banana shape of the sensitivity kernels shows smoother update compared to the banana–doughnut kernels. The measurement of the traveltime delay caused by a small spherical anomaly, embedded into a 3-D homogeneous model, supports the full banana sensitivity assertion for the unwrapped phase.
Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities
International Nuclear Information System (INIS)
Lock, Edwin H
2012-01-01
Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than λ 0 /D (where λ 0 is the incident wavelength, and D is the slit width), but can also be zero under certain conditions. (methodological notes)
Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Experimental study
Binda, L.; Fernández, D.; El Hasi, C.; Zalts, A.; D'Onofrio, A.
2018-01-01
Lateral movements of the fingers in Rayleigh-Taylor hydrodynamic instabilities at the interface between two fluids are studied. We show that transverse movements appear when a physical boundary is present; these phenomena have not been explained until now. The boundary prevents one of the fluids from crossing it. Such frontiers can be buoyancy driven as, for example, the frontier to the passage of a less dense solution through a denser solution or when different aggregation states coexist (liquid and gaseous phases). An experimental study of the lateral movement velocity of the fingers was performed for different Rayleigh numbers (Ra), and when oscillations were detected, their amplitudes were studied. Liquid-liquid (L-L) and gas-liquid (G-L) systems were analysed. Aqueous HCl and Bromocresol Green (sodium salt, NaBCG) solutions were used in L-L experiments, and CO2 (gas) and aqueous NaOH, NaHCO3, and CaCl2 solutions were employed for the G-L studies. We observed that the lateral movement of the fingers and finger collapses near the interface are more notorious when Ra increases. The consequences of this, for each experience, are a decrease in the number of fingers and an increase in the velocity of the lateral finger movement close to the interface as time evolves. We found that the amplitude of the oscillations did not vary significantly within the considered Ra range. These results have an important implication when determining the wave number of instabilities in an evolving system. The wave number could be strongly diminished if there is a boundary.
Automatic picking of direct P, S seismic phases and fault zone head waves
Ross, Z. E.; Ben-Zion, Y.
2014-10-01
We develop a set of algorithms for automatic detection and picking of direct P and S waves, as well as fault zone head waves (FZHW), generated by earthquakes on faults that separate different lithologies and recorded by local seismic networks. The S-wave picks are performed using polarization analysis and related filters to remove P-wave energy from the seismograms, and utilize STA/LTA and kurtosis detectors in tandem to lock on the phase arrival. The early portions of P waveforms are processed with STA/LTA, kurtosis and skewness detectors for possible first-arriving FZHW. Identification and picking of direct P and FZHW is performed by a multistage algorithm that accounts for basic characteristics (motion polarities, time difference, sharpness and amplitudes) of the two phases. The algorithm is shown to perform well on synthetic seismograms produced by a model with a velocity contrast across the fault, and observed data generated by earthquakes along the Parkfield section of the San Andreas fault and the Hayward fault. The developed techniques can be used for systematic processing of large seismic waveform data sets recorded near major faults.
Damage detection in multilayered fiber-metal laminates using guided-wave phased array
Energy Technology Data Exchange (ETDEWEB)
Maghsoodi, Ameneh; Ohadi, Abdolrezap; Sadighi, Mojtaba; Amindavar, Hamidreza [Amirkabir University, Tehran (Iran, Islamic Republic of)
2016-05-15
This study employs the Lamb wave method to detect damage in Fiber-metal laminates (FMLs). The method is based on quasiisotropic behavior approximation and beam forming techniques. Delay and sum and minimum variance distorsionless response beam formers are applied to a uniform linear phased array. The simulation in finite element software is conducted to evaluate the performance of the presented procedure. The two types of damage studied are the following: (1) Delamination between fiber-epoxy and metal layers and (2) crack on the metal layer. The present study has the following important contributions: (1) Health monitoring of multi-damaged FMLs using Lamb waves and beam forming technique, (2) detection of damage type, (3) detection of damage size by 1D phased array, and (4) identification of damages that occurred very close to the laminate edges or close to each other.
Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas
International Nuclear Information System (INIS)
Gao Xianlong; Rizzi, M.; Polini, Marco; Tosi, M. P.; Fazio, Rosario; Campo, V. L. Jr.; Capelle, K.
2007-01-01
The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern
Laser cavities with self-pumped phase conjugation by mixing of four waves in an amplifier
International Nuclear Information System (INIS)
Sillard, Pierre
1998-01-01
The purpose of this research thesis is to characterise a new type of cavities with self-pumped phase conjugation which uses a mixing of four waves degenerated in a solid amplifier. After a definition of phase conjugation and a brief overview of the history of this technique, the author describes and compares the different laser architectures with phase conjugation. He explains benefits and perspectives related to cavities with self-pumped phase conjugation using a mixing of four waves in an amplifier. He develops the necessary formalism for the resolution of the coupled equations of four wave mixing in transient regime for a resonant and saturated non-linearity. He shows how these results can be applied to solid amplifiers, in particularly to the Nd:YAG amplifier which is used in all experiments. In the next part, the author describes the principle and characteristics of cavity with self-pumped phase conjugation injected by another laser. An experiment is performed with two conventional Nd:YAG amplifiers pumped by flash lamps. The excellent performance of the cavity allows the study of cavity without this injection, but self-oscillating is to be envisaged, and a modelling of self-oscillating cavities is proposed and studied. Results are compared with those obtained with two N:YAG amplifiers pumped by flash lamps. Polarisation properties of the self-oscillating cavity are also studied. Finally, the author reports an experimental validation of a cavity with self-pumped phase conjugation all in solid state, pumped by laser diodes (a more efficient pumping) [fr
Parisi, Laura
2016-02-10
The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ∼ 45–150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ∼ 45–150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ∼ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ∼20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ∼ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT\\'s phase errors are smaller, notably for the shortest wave periods considered (T
Zhang, Xueqian; Tian, Zhen; Yue, Weisheng; Gu, Jianqiang; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2013-01-01
A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xueqian
2013-06-21
A broadband terahertz wave deflector based on metasurface induced phase discontinuities is reported. Various frequency components ranging from 0.43 to 1.0 THz with polarization orthogonal to the incidence are deflected into a broad range of angles from 25° to 84°. A Fresnel zone plate consequently developed from the beam deflector is capable of focusing a broadband terahertz radiation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications
Energy Technology Data Exchange (ETDEWEB)
Le Bourdais, F.; Le Polles, T. [Non Destructive Testing Department at the French Atomic Energy Commission (CEA), Saclay, 91191 Gif sur Yvette CEDEX, (France); Baque, F. [Department of Sodium Technology at the French Atomic Energy Commission (CEA), Cadarache, 13108 St Paul lez Durance CEDEX, (France)
2015-07-01
This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)
Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications
International Nuclear Information System (INIS)
Le Bourdais, F.; Le Polles, T.; Baque, F.
2015-01-01
This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)
Predicting phase shift of elastic waves in pipes due to fluid flow and imperfections
DEFF Research Database (Denmark)
Thomsen, Jon Juel; Dahl, Jonas; Fuglede, Niels
2009-01-01
. This is relevant for understanding wave propagation in elastic media in general, and for the design and trouble-shooting of phase-shift measuring devices such as Coriolis mass flowmeters in particular. A multiple time scaling perturbation analysis is employed for a simple model of a fluid-conveying pipe......Flexural vibrations of a fluid-conveying pipe is investigated, with special consideration to the spatial shift in phase caused by fluid flow and various imperfections, e.g., non-ideal supports, non-uniform stiffness or mass, non-proportional damping, weak nonlinearity, and flow pulsation...
Magnetic structures, phase diagram and spin waves of magneto-electric LiNiPO4
DEFF Research Database (Denmark)
Jensen, Thomas Bagger Stibius
2007-01-01
LiNiPO4 is a magneto-electric material, having co-existing antiferromagnetic and ferroelectric phases when suitable magnetic fields are applied at low temperatures. Such systems have received growing interest in recent years, but the nature of the magneticelectric couplings is yet to be fully...... through the last three years, it is not the primary subject of this thesis. The objective of the phD project has been to provide groundwork that may be beneficiary to future studies of LiNiPO4. More specifically, we have mapped out the magnetic HT phase diagram with magnetic fields below 14.7 T applied...... along the crystallographic c-axis, determined the magnetic structures for the phases in the phase diagram, and have set up a spin model Hamiltonian describing the spin wave dynamics and estimating the relevant magnetic interactions....
Phase coexistence and pinning of charge density waves by interfaces in chromium
Singer, A.; Patel, S. K. K.; Uhlíř, V.; Kukreja, R.; Ulvestad, A.; Dufresne, E. M.; Sandy, A. R.; Fullerton, E. E.; Shpyrko, O. G.
2016-11-01
We study the temperature dependence of the charge density wave (CDW) in a chromium thin film using x-ray diffraction. We exploit the interference between the CDW satellite peaks and Laue oscillations to determine the amplitude, the phase, and the period of the CDW. We find discrete half-integer periods of CDW in the film and switching of the number of periods by one upon cooling/heating with a thermal hysteresis of 20 K. The transition between different CDW periods occurs over a temperature range of 30 K, slightly larger than the width of the thermal hysteresis. A comparison with simulations shows that the phase transition occurs as a variation of the volume fraction of two distinct phases with well-defined periodicities. The phase of the CDW is constant for all temperatures, and we attribute it to strong pinning of the CDW by the mismatch-induced strain at the film-substrate interface.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Nonlinear piezoelectricity in PZT ceramics for generating ultrasonic phase conjugate waves
Yamamoto; Kokubo; Sakai; Takagi
2000-03-01
We have succeeded in the generation of acoustic phase conjugate waves with nonlinear PZT piezoelectric ceramics and applied them to ultrasonic imaging systems. Our aim is to make a phase conjugator with 100% efficiency. For this purpose, it is important to clarify the mechanism of acoustic phase conjugation through nonlinear piezoelectricity. The process is explained by the parametric interaction via the third-order nonlinear piezoelectricity between the incident acoustic wave at angular frequency omega and the pump electric field at 2 omega. We solved the coupling equations including the third-ordered nonlinear piezoelectricity and theoretically derived the amplitude efficiency of the acoustic phase conjugation. We compared the efficiencies between the theoretical and experimental values for PZT ceramics with eight different compositions. Pb[(Zn1/3Nb2/3)(1 - x)Tix]O3 (X = 0.09, PZNT91/9) piezoelectric single crystals have been investigated for high-performance ultrasonic transducer application, because these have large piezoelectric constants, high electrical-mechanical coupling factors and high dielectric constants. We found that they have third-order nonlinear piezoelectric constants much larger than PZT and are hopeful that the material as a phase conjugator has over 100% efficiency.
Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation
International Nuclear Information System (INIS)
Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.
2006-01-01
Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility
Turbidity current flow over an erodible obstacle and phases of sediment wave generation
Strauss, Moshe; Glinsky, Michael E.
2012-06-01
We study the flow of particle-laden turbidity currents down a slope and over an obstacle. A high-resolution 2-D computer simulation model is used, based on the Navier-Stokes equations. It includes poly-disperse particle grain sizes in the current and substrate. Particular attention is paid to the erosion and deposition of the substrate particles, including application of an active layer model. Multiple flows are modeled from a lock release that can show the development of sediment waves (SW). These are stream-wise waves that are triggered by the increasing slope on the downstream side of the obstacle. The initial obstacle is completely erased by the resuspension after a few flows leading to self consistent and self generated SW that are weakly dependant on the initial obstacle. The growth of these waves is directly related to the turbidity current being self sustaining, that is, the net erosion is more than the net deposition. Four system parameters are found to influence the SW growth: (1) slope, (2) current lock height, (3) grain lock concentration, and (4) particle diameters. Three phases are discovered for the system: (1) "no SW," (2) "SW buildup," and (3) "SW growth". The second phase consists of a soliton-like SW structure with a preserved shape. The phase diagram of the system is defined by isolating regions divided by critical slope angles as functions of current lock height, grain lock concentration, and particle diameters.
Rayleigh imaging in spectral mammography
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL
Directory of Open Access Journals (Sweden)
S. F. Kolomiets
2014-01-01
Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.
KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING
International Nuclear Information System (INIS)
Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F.; Matthaeus, W. H.
2015-01-01
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d p may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d p and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained
KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING
Energy Technology Data Exchange (ETDEWEB)
Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036, Rende (CS) (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States)
2015-12-10
One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.
Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare
Yu, S.; Chen, B.; Reeves, K.
2017-12-01
We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.
Does the Berry phase in a quantum optical system originate from the rotating wave approximation?
International Nuclear Information System (INIS)
Wang, Minghao; Wei, L.F.; Liang, J.Q.
2015-01-01
The Berry phase (BP) in a quantized light field demonstrated more than a decade ago (Fuentes-Guridi et al., 2002 [9]) has attracted considerable attention, since it plays an important role in the cavity quantum electrodynamics. However, it is argued in Larson (2012) [15] that such a BP is just due to the rotating wave approximation (RWA) and the relevant BP should vanish beyond this approximation. Based on a consistent analysis we conclude in this letter that the BP in a generic Rabi model actually exists, no matter whether the RWA is applied. The existence of BP is also generalized to a three-level atom in the quantized cavity field. - Highlights: • Non-zero Berry phases for the Rabi model (without rotating wave approximation) are verified. • A general formulation of Berry phases for both the JC model and the Rabi model is presented. • The claim of vanishing Berry phase in the Rabi model is a result of improper semiclassical approximation. • Analytic solutions for the Rabi model is presented in the semiclassical approximation
Size invariance of the granular Rayleigh-Taylor instability.
Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen
2010-04-01
The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.
Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.
Directory of Open Access Journals (Sweden)
Elijah E W Van Houten
Full Text Available The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.
DEFF Research Database (Denmark)
Li, Jiying; Jensen, Thomas Bagger Stibius; Andersen, Niels Hessel
2009-01-01
) indicates the instability of the Ising-type ground state that eventually evolves into the incommensurate phase as the temperature is raised. The pure LiNiPO4 system (x=0) undergoes a first-order magnetic phase transition from a long-range incommensurate phase to an antiferromagnetic (AFM) ground state at TN......Elastic and inelastic neutron-scattering studies of Li(Ni1−xFex)PO4 single crystals reveal anomalous spin-wave dispersions along the crystallographic direction parallel to the characteristic wave vector of the magnetic incommensurate phase. The anomalous spin-wave dispersion (magnetic soft mode......=20.8 K. At 20% Fe concentrations, although the AFM ground state is to a large extent preserved as that of the pure system, the phase transition is second order, and the incommensurate phase is completely suppressed. Analysis of the dispersion curves using a Heisenberg spin Hamiltonian that includes...
High resolution 3-D shear wave velocity structure in South China from surface wave tomography
Ning, S.; Guo, Z.; Chen, Y. J.
2017-12-01
Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP
Analytical evaluation of atomic form factors: Application to Rayleigh scattering
Energy Technology Data Exchange (ETDEWEB)
Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)
2015-05-15
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser
Wu, Han; Wang, Zinan; Fan, Mengqiu; Li, Jiaqi; Meng, Qingyang; Xu, Dangpeng; Rao, Yunjiang
2018-03-01
In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.
Study of phase transitions in cerium in shock-wave experiments
Directory of Open Access Journals (Sweden)
Zhernokletov M.V.
2015-01-01
Full Text Available Cerium has a complex phase diagram that is explained by the presence of structure phase transitions. Planar gauges were used in various combinations in experiments for determination of sound velocity dependence on pressure in cerium by the technique of PVDF gauge. The data of time dependence on pressure profiles with use of x(t diagrams and the D(u relation for cerium allowed the definition of the Lagrangian velocity of the unloading wave CLagr and the Eulerian velocity CEul by taking into account the compression σ. These results accords with data obtained by using the technique of VISAR and a manganin-based gauge, and calculated pressure dependence of isentropic sound velocity according to the VNIITF EOS. Metallography analysis of post-experimental samples did not find any changes in a phase composition.
Phase and Amplitude Drift Research of Millimeter Wave Band Local Oscillator System
Directory of Open Access Journals (Sweden)
Changhoon Lee
2010-06-01
Full Text Available In this paper, we developed a local oscillator (LO system of millimeter wave band receiver for radio astronomy observation. We measured the phase and amplitude drift stability of this LO system. The voltage control oscillator (VCO of this LO system use the 3 mm band Gunn oscillator. We developed the digital phase locked loop (DPLL module for the LO PLL function that can be computer-controlled. To verify the performance, we measured the output frequency/power and the phase/amplitude drift stability of the developed module and the commercial PLL module, respectively. We show the good performance of the LO system based on the developed PLL module from the measured data analysis. The test results and discussion will be useful tutorial reference to design the LO system for very long baseline interferometry (VLBI receiver and single dish radio astronomy receiver at the 3 mm frequency band.
Czech Academy of Sciences Publication Activity Database
Varavin, A.V.; Ermak, G.P.; Vasiliev, A.S.; Fateev, A.V.; Varavin, Mykyta; Žáček, František; Zajac, Jaromír
2016-01-01
Roč. 75, č. 11 (2016), s. 1009-1025 ISSN 0040-2508 Institutional support: RVO:61389021 Keywords : AD8302 * Interferometer * Millimeter wave * Phase meter * Programmable gate array * Tokamak Subject RIV: BL - Plasma and Gas Discharge Physics
Energy Technology Data Exchange (ETDEWEB)
Kobakhidze, Archil; Lagger, Cyril; Manning, Adrian [University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia); Yue, Jason [National Taiwan Normal University, Department of Physics, Taipei (China)
2017-08-15
We investigate the properties of a stochastic gravitational wave background produced by a first-order electroweak phase transition in the regime of extreme supercooling. We study a scenario whereby the percolation temperature that signifies the completion of the transition, T{sub p}, is as low as a few MeV (nucleosynthesis temperature), while most of the true vacuum bubbles are formed much earlier at the nucleation temperature, T{sub n} ∝ 50 GeV. This implies that the gravitational wave spectrum is mainly produced by the collisions of large bubbles and characterised by a large amplitude and a peak frequency as low as f ∝ 10{sup -9}-10{sup -7} Hz. We show that such a scenario can occur in (but not limited to) a model based on a non-linear realisation of the electroweak gauge group, so that the Higgs vacuum configuration is altered by a cubic coupling. In order to carefully quantify the evolution of the phase transition of this model over such a wide temperature range we go beyond the usual fast transition approximation, taking into account the expansion of the Universe as well as the behaviour of the nucleation probability at low temperatures. Our computation shows that there exists a range of parameters for which the gravitational wave spectrum lies at the edge between the exclusion limits of current pulsar timing array experiments and the detection band of the future Square Kilometre Array observatory. (orig.)
Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.
Frisvad, Jeppe Revall
2018-04-01
In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.
RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES
International Nuclear Information System (INIS)
Jacquet, Emmanuel; Krumholz, Mark R.
2011-01-01
We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick a diabaticregime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.
KN s-wave phase shifts in a quark model with gluon and boson exchange at the quark level
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Leandri, J.
1997-01-01
The kaon-nucleon s-wave phase shifts have been calculated in a quark potential model using the resonating group method (RGM). The interquark potential includes gluon, pion and sigma exchanges. The kaon and nucleon wave functions are expanded as a sum of Gaussian functions and the Hill-Wheeler (HW) equation is solved numerically. The I=0 phase shifts present too much attraction and in the I=1 channel too much repulsion is obtained. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela, E-mail: Gabriela.Barenboim@uv.es; Park, Wan-Il, E-mail: Wanil.Park@uv.es
2016-08-10
We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.
International Nuclear Information System (INIS)
Popov, N.N.; Panchenko, A.M.; Sevryugina, I.V.; Novikov, S.A.
2002-01-01
The data are obtained for the influence of preliminary plastic deformation of titanium nickelide in an austenitic state on the character of its elastic properties variation during various type phase transitions. It is shown that the defect structure evolution occurring as a result of shock wave loading has a combined ambiguous effect on microstructural mechanisms being the basis for martensitic phase transformations. Shock wave loading is stated to stimulate the dislocation-displacement mechanism of R-phase formation and to increase the stability of R-phase to R→B19'-transition [ru
Detectable gravitational waves from very strong phase transitions in the general NMSSM
International Nuclear Information System (INIS)
Huber, Stephan J.; Nardini, Germano; Bern Univ.
2015-12-01
We study the general NMSSM with an emphasis on the parameter regions with a very strong first-order electroweak phase transition (EWPT). In the presence of heavy fields coupled to the Higgs sector, the analysis can be problematic due to the existence of sizable radiative corrections. In this paper we propose a subtraction scheme that helps to circumvent this problem. For simplicity we focus on a parameter region that is by construction hidden from the current collider searches. The analysis proves that (at least) in the identified parameter region the EWPT can be very strong and striking gravitational wave signals can be produced. The corresponding gravitational stochastic background can potentially be detected at the planned space-based gravitational wave observatory eLISA, depending on the specific experiment design that will be approved.
Exact solution to the Coulomb wave using the linearized phase-amplitude method
Directory of Open Access Journals (Sweden)
Shuji Kiyokawa
2015-08-01
Full Text Available The author shows that the amplitude equation from the phase-amplitude method of calculating continuum wave functions can be linearized into a 3rd-order differential equation. Using this linearized equation, in the case of the Coulomb potential, the author also shows that the amplitude function has an analytically exact solution represented by means of an irregular confluent hypergeometric function. Furthermore, it is shown that the exact solution for the Coulomb potential reproduces the wave function for free space expressed by the spherical Bessel function. The amplitude equation for the large component of the Dirac spinor is also shown to be the linearized 3rd-order differential equation.
Negative Longitudinal Magnetoresistance in the Density Wave Phase of Y_{2}Ir_{2}O_{7}.
Juyal, Abhishek; Agarwal, Amit; Mukhopadhyay, Soumik
2018-03-02
The ground state of nanowires of single-crystalline pyrochlore Y_{2}Ir_{2}O_{7} is a density wave. The application of a transverse magnetic field increases the threshold electric field for the collective depinning of the density wave state at a low temperature, leading to colossal magnetoresistance for voltages around the depinning threshold. This is in striking contrast to the case where even a vanishingly small longitudinal magnetic field sharply reduces the depinning threshold voltage, resulting in negative magnetoresistance. Ruling out several other possibilities, we argue that this phenomenon is likely to be a consequence of the chiral anomaly in the gapped out Weyl semimetal phase in Y_{2}Ir_{2}O_{7}.
Negative Longitudinal Magnetoresistance in the Density Wave Phase of Y2Ir2O7
Juyal, Abhishek; Agarwal, Amit; Mukhopadhyay, Soumik
2018-03-01
The ground state of nanowires of single-crystalline pyrochlore Y2Ir2O7 is a density wave. The application of a transverse magnetic field increases the threshold electric field for the collective depinning of the density wave state at a low temperature, leading to colossal magnetoresistance for voltages around the depinning threshold. This is in striking contrast to the case where even a vanishingly small longitudinal magnetic field sharply reduces the depinning threshold voltage, resulting in negative magnetoresistance. Ruling out several other possibilities, we argue that this phenomenon is likely to be a consequence of the chiral anomaly in the gapped out Weyl semimetal phase in Y2Ir2O7 .
International Nuclear Information System (INIS)
Metzler, N.; Velikovich, A.L.; Schmitt, A.J.; Karasik, M.; Serlin, V.; Mostovych, A.N.; Obenschain, S.P.; Gardner, J.H.; Aglitskiy, Y.
2003-01-01
A substantial reduction of the laser imprint with a short, low-energy 'shaping' laser pulse incident upon a foam-plastic sandwich target prior to the main laser pulse has been demonstrated to be possible [Metzler et al., Phys. Plasmas 9, 5050 (2002)]. Nonuniformity of this shaping pulse, however, produces standing sonic waves in the target. Laser-imprinted seeds for the Rayleigh-Taylor (RT) instability growth then emerge from the interaction of these waves with the strong shock wave launched by the drive laser pulse. Such coherent interaction between different waves and modes perturbed at the same wavelength is shown to be important in a variety of situations relevant to the inertial confinement fusion studies. As an example, an oscillatory transition from the classical Richtmyer-Meshkov shock-interface instability development to the RT growth exhibiting a characteristic phase reversal in a target of finite thickness is described. Another example refers to the feedout mechanism of seeding the perturbations that come from the nonuniformities of the rear (inner) surface of the laser target. The coherent interaction between the strong shock wave from the main laser pulse and the rippled rarefaction wave produced by a low-intensity foot of the pulse produces observable effects, such as an extra phase reversal compared to the case of no foot. Some of these predictions are shown to be consistent with our new experimental results obtained in the feedout geometry on the Nike laser facility [S. P. Obenschain et al. Phys. Plasmas 3, 2098 (1996)
Gravitational wave signals of electroweak phase transition triggered by dark matter
Energy Technology Data Exchange (ETDEWEB)
Chao, Wei [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, 100875 (China); Guo, Huai-Ke; Shu, Jing, E-mail: chaowei@bnu.edu.cn, E-mail: ghk@itp.ac.cn, E-mail: jshu@itp.ac.cn [CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2017-09-01
We study in this work a scenario that the universe undergoes a two step phase transition with the first step happened to the dark matter sector and the second step being the transition between the dark matter and the electroweak vacuums, where the barrier between the two vacuums, that is necessary for a strongly first order electroweak phase transition (EWPT) as required by the electroweak baryogenesis mechanism, arises at the tree-level. We illustrate this idea by working with the standard model (SM) augmented by a scalar singlet dark matter and an extra scalar singlet which mixes with the SM Higgs boson. We study the conditions for such pattern of phase transition to occur and especially for the strongly first order EWPT to take place, as well as its compatibility with the basic requirements of a successful dark matter, such as observed relic density and constraints of direct detections. We further explore the discovery possibility of this pattern EWPT by searching for the gravitational waves generated during this process in spaced based interferometer, by showing a representative benchmark point of the parameter space that the generated gravitational waves fall within the sensitivity of eLISA, DECIGO and BBO.
Degenerate four-wave mixing and phase conjugation in a collisional plasma
International Nuclear Information System (INIS)
Federici, J.F.; Mansfield, D.K.
1986-06-01
Although degenerate four-wave mixing (DFWM) has many practical applications in the visible regime, no successful attempt has been made to study or demonstrate DFWM for wavelengths longer than 10μm. Recently, Steel and Lam established plasma as a viable DFWM and phase conjugation (PC) medium for infrared, far-infrared, and microwaves. However, their analysis is incomplete since collisional effects were not included. Using a fluid description, our results demonstrate that when collisional absorption is small and the collisional mean-free path is shorter than the nonlinear density grating scale length, collisional heating generates a thermal force which substantially enhances the phase conjugate reflectivity. When the collisional attenuation length becomes comparable to the length of the plasma, the dominant effect is collisional absorption of the pump waves. Numerical estimates of the phase conjugate reflectivity indicate that for modest power levels, gains greater than or equal to1 are possible in the submillimeter to centimeter wavelength range. This suggests that a plasma is a viable PC medium at those long wavelengths. In addition, doubly DFWM is discussed
Multilevel photonic modules for millimeter-wave phased-array antennas
Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.
2000-09-01
Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.
Charge imbalance waves and nonequilibrium dynamics near a superconducting phase-slip center
International Nuclear Information System (INIS)
Kadin, A.M.; Smith, L.N.; Skocpol, W.J.
1980-01-01
Using a generalized two-fluid picture to describe a quasi-one-dimensional superconductor near T/sub c/, we provide a heuristic derivation for a set of equations governing the temporal and spatial evolution of the charge imbalance (or branch imbalance) in the quasiparticles. We show that these equations are isomorphic to those that describe a simple electrical transmission line, so that charge imbalance waves may propagate in the superconductor in analogy with electrical signals that propagate down the transmission line. We propose as a model for a phase-slip center in a superconducting filament a localized Josephson oscillator coupled to the transmission line. Applying standard transmission-line theory to solve the problem, we show that the Josephson oscillations in the center generate charge imbalance waves that the propagate out to a frequency-dependent distance of the order of the quasiparticle diffusion length GAMMA/sub Q/*= (Dtau/sub Q/*)/sup 1/2/ before they damp out. The time-averaged behavior of the model reduces to the earlier model of Skocpol, Beasley, and Tinkham. A novel consequence of the model is a prediction of intrinsic hysteresis in the dc current--voltage relation. The model also provides a convenient framework for dealing with ac effects in phase-slip centers, including resonance and synchronization in systems of closely spaced phase-slip centers and microbridges
Ultrasonic backscatter imaging by shear-wave-induced echo phase encoding of target locations.
McAleavey, Stephen
2011-01-01
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.
Directory of Open Access Journals (Sweden)
Matsui Toshinori
2018-01-01
Full Text Available Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.
Berger, N. K.; Zhukov, E. A.; Novokhatskiĭ, V. V.
1984-04-01
The use of a semiconductor-metal phase transition for wavefront reversal of laser radiation was proposed. An investigation was made of nonlinear reflection of CO2 laser radiation at a phase transition in VO2. A three-wave interaction on a VO2 surface was achieved using low-power cw and pulsed CO2 lasers. In the first case, the intensity reflection coefficient was 0.5% for a reference wave intensity of 0.9 W/cm2 and in the second case, it was 42% for a threshold reference wave energy density of 0.6-0.8 mJ/cm2.
Gough, Douglas; Merryfield, William J.; Toomre, Juri
1998-01-01
A method is proposed for analyzing an almost monochromatic train of waves propagating in a single direction in an inhomogeneous medium that is not otherwise changing in time. An effective phase is defined in terms of the Hilbert transform of the wave function, which is related, via the JWKB approximation, to the spatial variation of the background state against which the wave is propagating. The contaminating effect of interference between the truly monochromatic components of the train is eliminated using its propagation properties. Measurement errors, provided they are uncorrelated, are manifest as rapidly varying noise; although that noise can dominate the raw phase-processed signal, it can largely be removed by low-pass filtering. The intended purpose of the analysis is to determine the distortion of solar oscillations induced by horizontal structural variation and material flow. It should be possible to apply the method directly to sectoral modes. The horizontal phase distortion provides a measure of longitudinally averaged properties of the Sun in the vicinity of the equator, averaged also in radius down to the depth to which the modes penetrate. By combining such averages from different modes, the two-dimensional variation can be inferred by standard inversion techniques. After taking due account of horizontal refraction, it should be possible to apply the technique also to locally sectoral modes that propagate obliquely to the equator and thereby build a network of lateral averages at each radius, from which the full three-dimensional structure of the Sun can, in principle, be determined as an inverse Radon transform.
What is the contribution of scattering to the Love-to-Rayleigh ratio in ambient microseismic noise?
Ziane, D.; Hadziioannou, C.
2015-12-01
Several observations show the existence of both Rayleigh and Love waves in the secondary microseism. While the Rayleigh wave excitation is well described by Longuet-Higgins, the process responsible for Love wave generation still needs further investigation. Several different mechanisms could excite Love waves in this frequency band: broadly speaking, we can differentiate between source effects, like pressure variations on the oblique sea floor, or internal effects in the medium along the propagation path, such as scattering and conversions. Here we will focus on the internal effects. We perform single scattering tests in 2D and 3D to gain a better understanding of the scattering radiation pattern and the conversion between P, S, Rayleigh and Love waves. Furthermore, we use random media with continuous variations of the elastic parameters to create a scattering regime similar to the Earths interior, e.g. Gaussian or von Karmann correlation functions. The aim is to explore the contribution of scattering along the propagation path to the observed Love to Rayleigh wave energy ratios, assuming a purely vertical force source mechanism. We use finite different solvers to calculate the synthetic seismograms, and to separate the different wave types we measure the rotational and divergent components of the wave field.
Energy Technology Data Exchange (ETDEWEB)
Acharyya, Muktish, E-mail: muktish.physics@presiuniv.ac.in; Halder, Ajay, E-mail: ajay.rs@presiuniv.ac.in
2017-03-15
The dynamical responses of Blume-Capel (S=1) ferromagnet to the plane propagating (with fixed frequency and wavelength) and standing magnetic field waves are studied separately in two dimensions by extensive Monte Carlo simulation. Depending on the values of temperature, amplitude of the propagating magnetic field and the strength of anisotropy, two different dynamical phases are observed. For a fixed value of anisotropy and the amplitude of the propagating magnetic field, the system undergoes a dynamical phase transition from a driven spin wave propagating phase to a pinned or spin frozen state as the system is cooled down. The time averaged magnetisation over a full cycle of the propagating magnetic field plays the role of the dynamic order parameter. A comprehensive phase diagram is plotted in the plane formed by the amplitude of the propagating wave and the temperature of the system. It is found that the phase boundary shrinks inward as the anisotropy increases. The phase boundary, in the plane described by the strength of the anisotropy and temperature, is also drawn. This phase boundary was observed to shrink inward as the field amplitude increases. - Highlights: • The Blume-Capel ferromagnet in propagating and standing magnetic wave. • Monte Carlo single spin flip Metropolis algorithm is employed. • The dynamical modes are observed. • The nonequilibrium phase transitions are studied. • The phase boundaries are drawn.
Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)
Energy Technology Data Exchange (ETDEWEB)
Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel [Plasma Physics Group, Faculty of Sciences-Physics, Theoretical Physics Laboratory, University of Bab-Ezzouar, USTHB BP 32, El Alia, Algiers 16111 (Algeria)], E-mail: mtribeche@usthb.dz
2009-09-15
A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.
Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)
International Nuclear Information System (INIS)
Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel
2009-01-01
A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.
International Nuclear Information System (INIS)
Manapuram, R K; Larin, K V; Baranov, S A; Manne, V G R; Mashiatulla, M; Sudheendran, N; Aglyamov, S; Emelianov, S
2011-01-01
We propose a real-time technique based on phase-sensitive swept source optical coherence tomography (PhS-SSOCT) modality for noninvasive quantification of very small optical path length changes produced on the surface of a mouse crystalline lens. Propagation of submicron mechanical waves on the surface of the lens was induced by periodic mechanical stimulation. Obtained results demonstrate that the described method is capable of detecting minute damped vibrations with amplitudes as small as 30 nanometers on the lens surface and hence, PhS-SSOCT could be potentially used to assess biomechanical properties of a crystalline lens with high accuracy and sensitivity
International Nuclear Information System (INIS)
Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang
2008-01-01
In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. 'Anti-phase spiral wave synchronization' can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.
Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg/sub 4/I/sub 5/
Energy Technology Data Exchange (ETDEWEB)
Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V. (AN SSSR, Chernogolovka. Otdelenie Inst. Khimicheskoj Fiziki)
1984-04-01
The dynamical properties of RbAg/sub 4/I/sub 5/ has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag/sup +/ ion oscillatory motion and diffusion in RbAg/sub 4/I/sub 5/ depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg/sub 4/I/sub 5/ the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincide. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction.
Real time EM waves monitoring system for oil industry three phase flow measurement
International Nuclear Information System (INIS)
Al-Hajeri, S; Wylie, S R; Shaw, A; Al-Shamma'a, A I
2009-01-01
Monitoring fluid flow in a dynamic pipeline is a significant problem in the oil industry. In order to manage oil field wells efficiently, the oil industry requires accurate on line sensors to monitor the oil, gas, and water flow in the production pipelines. This paper describes a non-intrusive sensor that is based on an EM Waves cavity resonator. It determines and monitors the percentage volumes of each phase of three phase (oil, gas, and water) in the pipeline, using the resonant frequencies shifts that occur within an electromagnetic cavity resonator. A laboratory prototype version of the sensor system was constructed, and the experimental results were compared to the simulation results which were obtained by the use of High Frequency Structure Simulation (HFSS) software package.
Ultimate regime of high Rayleigh number convection in a porous medium.
Hewitt, Duncan R; Neufeld, Jerome A; Lister, John R
2012-06-01
Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10(4) which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu~Ra, is attained asymptotically. The flow dynamics are analyzed, and the interior of the vigorously convecting system is shown to be increasingly well described as Ra→∞ by a simple columnar "heat-exchanger" model with a single horizontal wave number k and a linear background temperature field. The numerical results are approximately fitted by k~Ra(0.4).
Zhang, Yin; Liang, Lanju; Yang, Jing; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian; Jin, Biaobing; Liu, Weiwei
2016-05-26
Suppressing specular electromagnetic wave reflection or backward radar cross section is important and of broad interests in practical electromagnetic engineering. Here, we present a scheme to achieve broadband backward scattering reduction through diffuse terahertz wave reflection by a flexible metasurface. The diffuse scattering of terahertz wave is caused by the randomized reflection phase distribution on the metasurface, which consists of meta-particles of differently sized metallic patches arranged on top of a grounded polyimide substrate simply through a certain computer generated pseudorandom sequence. Both numerical simulations and experimental results demonstrate the ultralow specular reflection over a broad frequency band and wide angle of incidence due to the re-distribution of the incident energy into various directions. The diffuse scattering property is also polarization insensitive and can be well preserved when the flexible metasurface is conformably wrapped on a curved reflective object. The proposed design opens up a new route for specular reflection suppression, and may be applicable in stealth and other technology in the terahertz spectrum.
Phase defects and spatiotemporal disorder in traveling-wave convection patterns
International Nuclear Information System (INIS)
La Porta, A.; Surko, C.M.
1997-01-01
Spatiotemporal disorder is studied in traveling-wave convection in ethanol-water mixtures. Spectral measures of disorder, linear correlation functions, and mutual information are used to characterize the patterns, and are found to give a weak indication of the level of disorder. The calculation of the complex order parameter for experimental patterns is described. It is found that the ordering of the patterns is accompanied by a dramatic change in the topological structure of the order parameter. Specific arrangements of defects are found to be associated with the elements of traveling-wave patterns, and the net charge and total number of defects is introduced as a measure of disorder in the patterns. The coarsening of the patterns is marked by an accumulation of net charge and a dramatic decrease in the number of defects. The physical significance of the defects is discussed, and it is shown that the phase velocity of the waves is lower in the vicinity of the defects. The defect-defect correlation functions are calculated for the convection patterns. It is shown that the ordering of the patterns is closely related to the apparent defect-defect interactions. copyright 1997 The American Physical Society
Soliton Compton Mass from Auto-Parametric Wave-Soliton Coupling
Binder, B
2002-01-01
In this paper a self-excited Rayleigh-type system models the auto-parametric wave-soliton coupling via phase fluctuations. The parameter of dissipative terms determine not only the most likely quantum coupling between solitons and linear waves but also the most likely mass of the solitons. Phase fluctuations are mediated by virtual photons coupling at light-velocity in a permanent Compton scattering process. With a reference to the SI-units and proper scaling relations in length and velocity, the final result shows a highly interesting sequence: the likely soliton Compton mass is about 1.00138 times the neutron and 1.00276 times the proton mass.
Short Rayleigh Length Free Electron Lasers
Crooker, P P; Armstead, R L; Blau, J
2004-01-01
Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.
Chemical Applications of Second Harmonic Rayleigh Scattering ...
Indian Academy of Sciences (India)
Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.
Anomalous spin waves and the commensurate-incommensurate magnetic phase transition in LiNiPO4
DEFF Research Database (Denmark)
Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.
2009-01-01
Detailed spin-wave spectra of magnetoelectric LiNiPO4 have been measured by neutron scattering at low temperatures in the commensurate (C) antiferromagnetic (AF) phase below T-N=20.8 K. An anomalous shallow minimum is observed at the modulation vector of the incommensurate (IC) AF phase appearing...
Spatially-resolved studies of charge-density-wave phase slip and dynamics in NbSe3
International Nuclear Information System (INIS)
Lemay, S.G.; Adelman, T.L.; Zaitsev-Zotov, S.V.; Thorne, R.E.
1999-01-01
We review our spatially and temporally resolved studies of charge-density-wave (CDW) phase slip and dynamics in NbSe 3 . Measurements of the steady-state CDW current, phase slip and strain profiles and their transient evolutions in response to a change in current direction provide a detailed picture of the interplay between elastic deformations and plasticity in this material. (orig.)
Saha, Anirban; Gangopadhyay, Sunandan; Saha, Swarup
2018-02-01
Owing to the extreme smallness of any noncommutative scale that may exist in nature, both in the spatial and momentum sector of the quantum phase space, a credible possibility of their detection lies in the gravitational wave (GW) detection scenario, where one effectively probes the relative length-scale variations ˜O [10-20-10-23] . With this motivation, we have theoretically constructed how a free particle and a harmonic oscillator will respond to linearly and circularly polarized gravitational waves if their quantum mechanical phase space has a noncommutative structure. We critically analyze the formal solutions which show resonance behavior in the responses of both free particle and HO systems to GW with both kind of polarizations. We discuss the possible implications of these solutions in detecting noncommutativity in a GW detection experiment. We use the currently available upper-bound estimates on various noncommutative parameters to anticipate the relative importance of various terms in the solutions. We also argue how the quantum harmonic oscillator system we considered here can be very relevant in the context of the resonant bar detectors of GW which are already operational.
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
International Nuclear Information System (INIS)
Idei, H.; Sakaguchi, M.; Kalinnikova, E.I.
2010-11-01
The phased-array antenna system for Electron Bernstein Wave Heating and Current Drive (EBWH/CD) experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the EBWH/CD experiments, and was tested at a low power level. The measured two orthogonal fields were in excellent agreements with the fields evaluated by a developed Kirchhoff code. The heat load and thermal stress in CW 200 kW operation were analyzed with finite element codes. The phased array has been fast scanned [∼10 4 degree/s] to control the incident polarization and angle to follow time evolutions of the plasma current and density. The RF startup and sustainment experiments were conducted using the developed antenna system. The plasma current (< ∼15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection. The long pulse discharge of 10 kA was attained for 40 s with the 30 kW injection. (author)
Gao, C; Kuklane, K; Wang, F; Holmér, I
2012-12-01
The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.
Energy Technology Data Exchange (ETDEWEB)
Mkrtichyan, G. S., E-mail: hay-13@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)
2015-07-15
The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectory corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.
Observation of Rayleigh - Taylor growth to short wavelengths on Nike
International Nuclear Information System (INIS)
Pawley, C.J.; Bodner, S.E.; Dahlburg, J.P.; Obenschain, S.P.; Schmitt, A.J.; Sethian, J.D.; Sullivan, C.A.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Lehecka, T.
1999-01-01
The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to ablatively accelerate 40 μm thick polystyrene planar targets with pulse shaping to minimize shock heating of the compressed material. The foils had imposed small-amplitude sinusoidal wave perturbations of 60, 30, 20, and 12.5 μm wavelength. The shortest wavelength is near the ablative stabilization cutoff for Rayleigh - Taylor growth. Modification of the saturated wave structure due to random laser imprint was observed. Excellent agreement was found between the two-dimensional simulations and experimental data for most cases where the laser imprint was not dominant. copyright 1999 American Institute of Physics
Hyper-Rayleigh scattering in centrosymmetric systems
Energy Technology Data Exchange (ETDEWEB)
Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)
2015-09-28
Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.
Hindmarsh, Mark
2018-02-01
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k , the power spectrum decreases to k-3. At wave numbers below the inverse bubble separation, the power spectrum goes to k5. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k1 power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
Hindmarsh, Mark
2018-02-16
A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.
Millimeter-wave pseudomorphic HEMT MMIC phased array components for space communications
Lan, G. L.; Pao, C. K.; Wu, C. S.; Mandolia, G.; Hu, M.; Yuan, S.; Leonard, Regis
1991-01-01
Recent advances in pseudomorphic HEMT MMIC (PMHEMT/MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. This paper describes the development of PMHEMT/MMIC components at Ka-band and V-band. Specifically, the following PMHEMT/MMIC components will be described: power amplifiers at Ka-band; power amplifiers at V-band; and four-bit phase shifters at V-band. For the Ka-band amplifier, 125 mW output power with 5.5 dB gain and 21 percent power added efficiency at 2 dB compression point has been achieved. For the V-band amplifier, 112 mW output power with 6 dB gain and 26 percent power added efficiency has been achieved. And, for the V-band phase shifter, four-bit (45 deg steps) phase shifters with less than 8 dB insertion loss from 61 GHz to 63 GHz will be described.
International Nuclear Information System (INIS)
Ondrej Slezak; Milan Kalal; Hon Jin Kong
2010-01-01
Complete text of publication follows. Analytical description of an experimentally verified scheme leading to a phase-locked stimulated Brillouin scattering (SBS), used in a laser beam combination systems, is presented. The essential condition for the phase-locking effect for SBS is the fixation of the starting position and time of the acoustic Brillouin wave. It is shown that the starting position fixation of this acoustic wave may have its origin in a transient acoustic standing wave initiated by an arising optical interference field produced by the back-seeding concave mirror. This interference field leads to a stationary density modulation of the medium. However, the way to the formation of this density modulation leads via the acoustic standing wave. An appropriate solution, in the form of the standing wave, was obtained from solving the acoustic wave-equation using the electrostriction as a driving force. As a consequence of the damping term included in this equation the acoustic standing wave becomes gradually attenuated and contrary to the undamped solution published earlier, thus constitutes a truly transient phenomenon. Using a mathematical formalism similar to that which is used for the SBS description in the case of a random phase, the coupled equations describing the phase-locked SBS were derived. Contrary to the case without the back-seeding mirror, where the wave chosen from the thermal noise background subsequently plays the role of a trigger of the stimulated process, in this case it is replaced by the transient standing wave produced as a consequence of the presence of an optical interference field arisen in the focal region of the back-seeding concave mirror.
Characterization of a quantum phase transition in Dirac systems by means of the wave-packet dynamics
Directory of Open Access Journals (Sweden)
E. Romera
2012-12-01
Full Text Available We study the signatures of phase transitions in the time evolution of wave-packets by analyzing two simple model systems: a graphene quantum dot model in a magnetic field and a Dirac oscillator in a magnetic field. We have characterized the phase transitions using the autocorrelation function. Our work also reveals that the description in terms of Shannon entropy of the autocorrelation function is a clear phase transition indicator.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Directory of Open Access Journals (Sweden)
V. Deepa
2006-10-01
Full Text Available The altitude profiles of temperature fluctuations in the stratosphere and mesosphere observed with the Rayleigh Lidar at Gadanki (13.5° N, 79.2° E on 30 nights during January to March 1999 and 21 nights during February to April 2000 were analysed to bring out the temporal and vertical propagation characteristics of gravity wave perturbations. The gravity wave perturbations showed periodicities in the 0.5–3-h range and attained large amplitudes (4–5 K in the mesosphere. The phase propagation characteristics of gravity waves with different periods showed upward wave propagation with a vertical wavelength of 5–7 km. The mean flow acceleration computed from the divergence of momentum flux of gravity waves is compared with that calculated from monthly values of zonal wind obtained from RH-200 rockets flights. Thus, the contribution of gravity waves towards the generation of Stratospheric Semi Annual Oscillation (SSAO is estimated.
Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal
Baumgaertl, Korbinian; Watanabe, Sho; Grundler, Dirk
2018-04-01
Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co 20 Fe 60 B 20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program a single stripe of opposed magnetization in an otherwise saturated 1D MC. Its influence on propagating spin waves is studied via broadband microwave spectroscopy. Depending on an in-plane bias magnetic field, we observe spin wave phase shifts of up to almost π and field-controlled attenuation attributed to the reversed nanostripe. Our findings are of importance for magnetologics, where the control of spin wave phases is essential.
Shock wave produced by hadron-quark phase transition in neutron star
Energy Technology Data Exchange (ETDEWEB)
Gustavo de Almeida, Luis, E-mail: lgalmeida@cbpf.br [Universidade Federal do Acre – Campus Floresta, Estrada do Canela Fina, km 12, CEP 69980-000, Cruzeiro do Sul, AC (Brazil); Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, RJ (Brazil); Duarte, Sérgio José Barbosa, E-mail: sbd@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, RJ (Brazil); Rodrigues, Hilário, E-mail: harg.astrophys@gmail.com [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Av. Maracanã, 229, CEP 20271-110, Rio de Janeiro, RJ (Brazil)
2015-12-17
In this work we present a schematic description of the detonation wave in hadronic matter inside a neutron star core. We have used a simplified two shells model where the inner shell medium is initially composed of a small lump of strange quark matter surrounded by a large outer shell composed of hadronic matter. We have utilized an equation of state (EOS) based on Relativistic Mean Field Theory with the parameter set NL3 to describe the nuclear and subnuclear phases. We use the MIT bag model to describe the strange quark matter. The hadron-quark phase transition actually induces highly non equilibrium modes, which may become a detonation process (faster) or a burning process (slower). The main purpose of the work is to study the formation of a remnant quark star and the possibility of mass ejection caused by the hadron-quark phase transition. We have found that the total amount of ejected mass is dependant of the bag constant utilized in the strange matter description.
National Aeronautics and Space Administration — A majority of millimeter wave based systems used for space exploration, communications and research, require a millimeter wave oscillator. These oscillators have...
Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography
Yoshizawa, K.; Ekström, G.
2008-12-01
The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.
Barashkov, M. S.; Iskanderov, N. A.
1987-08-01
An analysis is made of the reduction of the fluctuations introduced in the intensity of the phase conjugate wave and of the reduction in the time for establishment of quasisteady conjugation conditions and in the relaxation time of the intensity of the conjugate wave after switching on of the pump fields in the case of stochastic excitation of a transition. It is shown that, in principle, it is possible to generate a narrow-band pump-induced component of the conjugate wave spectrum.
Nonlinear interaction of infrared waves on a VO2 surface at a semiconductor-metal phase transition
Berger, N. K.; Zhukov, E. A.; Novokhatskii, V. V.
1984-04-01
Nonlinear interactions (including wavefront reversal) of light from CW or pulsed 10.6-micron CO2 lasers at the semiconductor-metal phase transition in a VO2 film are investigated experimentally. The results are presented in graphs and characterized in detail. The intensity reflection coefficients of the three-wave interactions are found to be 0.5 percent for a CW reference wave of intensity 900 mW/sq cm and 42 percent for a pulsed reference wave of threshold density 600-800 microjoule/sq cm.
International Nuclear Information System (INIS)
Caprini, Chiara; Hindmarsh, Mark; Helsinki Univ.; Huber, Stephan
2016-04-01
We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.
International Nuclear Information System (INIS)
Arnaud, N.; Balembois, L.; Bizouard, M.A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.
2017-01-01
The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry–Perot cavities on the arms and the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.
Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2016-01-01
Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.
Energy Technology Data Exchange (ETDEWEB)
Arnaud, N.; Balembois, L.; Bizouard, M.A.; Brisson, V. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Casanueva, J., E-mail: casanuev@lal.in2p3.fr [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France); Loriette, V.; Maksimovic, I. [ESPCI, CNRS, F-75005 Paris (France); Robinet, F. [LAL, Univ. Paris-Sud, IN2P3/CNRS, Univ. Paris-Saclay, Orsay (France)
2017-02-11
The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry–Perot cavities on the arms and the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.
Wave-mixing-induced transparency with zero phase shift in atomic vapors
Zhou, F.; Zhu, C. J.; Li, Y.
2017-12-01
We present a wave-mixing induced transparency that can lead to a hyper-Raman gain-clamping effect. This new type of transparency is originated from a dynamic gain cancellation effect in a multiphoton process where a highly efficient light field of new frequency is generated and amplified. We further show that this novel dynamic gain cancellation effect not only makes the medium transparent to a probe light field at appropriate frequency but also eliminates the probe field propagation phase shift. This gain-cancellation-based induced transparency holds for many potential applications on optical communication and may lead to effective suppression of parasitic Raman/hyper-Raman noise field generated in high intensity optical fiber transmissions.
Arnaud, N.; Balembois, L.; Bizouard, M. A.; Brisson, V.; Casanueva, J.; Cavalier, F.; Davier, M.; Frey, V.; Hello, P.; Huet, D.; Leroy, N.; Loriette, V.; Maksimovic, I.; Robinet, F.
2017-02-01
The second generation of Gravitational waves detectors are kilometric Michelson interferometers with additional recycling Fabry-Perot cavities on the arms and the addition of two more recycling cavities to enhance their sensitivity, with the particularity that all the mirrors are suspended. In order to control them a new technique, based on the use of auxiliary lasers, has been developed to bring the interferometer to its working point, with all the cavities on their resonance, in an adiabatic way. The implementation of this technique in Advanced Virgo is under preparation and the propagation of a stable laser through a 3-km optical fibre is one of the most problematic issues. A new technique of active phase noise cancellation based on the use of Electro Optical Modulators has been developed, and a first prototype has been successfully tested.
Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching
International Nuclear Information System (INIS)
White, T. C.; Mutus, J. Y.; Hoi, I.-C.; Barends, R.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Martinis, John M.; Megrant, A.; Chaudhuri, S.
2015-01-01
Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance, while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Crucially, we have inserted λ/4 resonators at regular intervals along the transmission line in order to maintain the phase matching condition between pump, signal, and idler and increase gain. We achieve an average gain of 12 dB across a 4 GHz span, along with an average saturation power of −92 dBm with noise approaching the quantum limit
Wave equation tomography using the unwrapped phase - Analysis of the traveltime sensitivity kernels
Djebbi, Ramzi
2013-01-01
Full waveform inversion suffers from the high non-linearity in the misfit function, which causes the convergence to a local minimum. In the other hand, traveltime tomography has a quasi-linear misfit function but yields low- resolution models. Wave equation tomography (WET) tries to improve on traveltime tomography, by better adhering to the requirements of our finite-frequency data. However, conventional (WET), based on the crosscorelaion lag, yields the popular hallow banana sensitivity kernel indicating that the measured wavefield at a point is insensitive to perturbations along the ray theoretical path at certain finite frequencies. Using the instantaneous traveltime, the sensitivity kernel reflects more the model-data dependency we grown accustom to in seismic inversion (even phase inversion). Demonstrations on synthetic and the Mamousi model support such assertions.
Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition
Energy Technology Data Exchange (ETDEWEB)
Domcke, Valerie
2013-09-15
The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1){sub B-L} symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.
Travelling-wave amplitudes as solutions of the phase-field crystal equation
Nizovtseva, I. G.; Galenko, P. K.
2018-01-01
The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the method (Malfliet & Hereman 1996 Phys. Scr. 15, 563-568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713-723 (doi:10.1016/S0096-3003(03)00745-8)). The general solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1-10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Matter, dark matter and gravitational waves from a GUT-scale U(1) phase transition
International Nuclear Information System (INIS)
Domcke, Valerie
2013-09-01
The cosmological realization of the spontaneous breaking of B-L, the difference of baryon and lepton number, can generate the initial conditions for the hot early universe. In particular, we show that entropy, dark matter and a matter-antimatter asymmetry can be produced in accordance with current observations. If B-L is broken at the grand unification scale, F-term hybrid inflation can be realized in the false vacuum of unbroken B-L. The phase transition at the end of inflation, governed by tachyonic preheating, spontaneously breaks the U(1) B-L symmetry and sets the initial conditions for the following perturbative reheating phase. We provide a detailed, time-resolved picture of the reheating process. The competition of cosmic expansion and entropy production leads to an intermediate plateau of constant temperature, which controls both the generated lepton asymmetry and the dark matter abundance. This enables us to establish relations between the neutrino and superparticle mass spectrum, rendering this mechanism testable. Moreover, we calculate the entire gravitational wave spectrum for this setup. This yields a promising possibility to probe cosmological B - L breaking with forthcoming gravitational wave detectors such as eLISA, advanced LIGO and BBO/DECIGO. The largest contribution is obtained from cosmic strings which is, for typical parameter values, at least eight orders of magnitude higher then the contribution from inflation. Finally, we study the possibility of realizing hybrid inflation in a superconformal framework. We find that superconformal D-term inflation is an interesting possibility generically leading to a two-field inflation model, but in its simplest version disfavoured by the recently published Planck data.
Breaking phase focused wave group loads on offshore wind turbine monopiles
DEFF Research Database (Denmark)
Ghadirian, Amin; Bredmose, Henrik; Dixen, M.
2016-01-01
The current method for calculating extreme wave loads on offshore wind turbine structures is based on engineering models for non-breaking regular waves. The present article has the aim of validating previously developed models at DTU, namely the OceanWave3D potential flow wave model and a coupled...
Rayleigh-Taylor mixing with time-dependent acceleration
Abarzhi, Snezhana
2016-10-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.
Rayleigh-Taylor mixing with space-dependent acceleration
Abarzhi, Snezhana
2016-11-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.
Nonlinear interaction of Rayleigh--Taylor and shear instabilities
International Nuclear Information System (INIS)
Finn, J.M.
1993-01-01
Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed
Rayleigh scattering from ions near threshold
International Nuclear Information System (INIS)
Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.
1988-01-01
Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt
Chromo-Rayleigh interactions of dark matter
International Nuclear Information System (INIS)
Bai, Yang; Osborne, James
2015-01-01
For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.
International Nuclear Information System (INIS)
Qin, Chaochao; Zhang, Lili; Zhang, Xianzhou; Liu, Yufang; Qiu, Xuejun
2016-01-01
The coherent control of interference between dissociating wave packets of the HD + molecules generated by a pair of time-delayed and phase-locked femtosecond laser pulses is theoretically studied by using the time-dependent quantum wave packet method. The density function in both coordinate and momentum representation are presented and discussed. It is demonstrated that the interference pattern is observed in both coordinate and momentum density functions. The interference undergoes a π-phase shift when the delay time between the two phase-locked femtosecond laser pulses is changed by half an optical period. In particular, the number of interference fringes, the fringe spacing in the R-dependent density distribution |ψ(R)| 2 , and the modulation period of the energy-dependent distribution of the fragments P(E) can be tuned by two phase-locked femtosecond pulses. (paper)
Hindle, Francis; Cuisset, Arnaud; Bocquet, Robin; Mouret, Gaël
2008-03-01
Recent advances in the development of monochromatic continuous-wave terahertz sources suitable for high resolution gas phase spectroscopy and pollution monitoring are reviewed. Details of a source using an ultra fast opto-electronic photomixing element are presented. The construction of a terahertz spectrometer using this source has allowed spectroscopic characterisation and application studies to be completed. Analysis of H 2S and OCS under laboratory conditions are used to demonstrate the spectrometer performance, and the determination of the transition line strengths and pressure self broadening coefficients for pure rotational transitions of OCS. The spectral purity 5 MHz, tunability 0.3 to 3 THz, and long wavelength ≈200 μm of this source have been exploited to identify and quantify numerous chemical species in cigarette smoke. The key advantages of this frequency domain are its high species selectivity and the possibility to make reliable measurements of gas phase samples heavily contaminated by aerosols and particles. To cite this article: F. Hindle et al., C. R. Physique 9 (2008).
Attractors of the periodically forced Rayleigh system
Directory of Open Access Journals (Sweden)
Petre Bazavan
2011-07-01
Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.
Tian, Zhen
2013-09-01
A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.
Tian, Zhen; Zhang, Xueqian; Yue, Weisheng; Gu, Jianqiang; Zhang, Shuang; Han, Jiaguang; Zhang, Weili
2013-01-01
A terahertz metamaterial comprised of C-shaped SRRs was experimentally devised and demonstrated to exhibit high-efficient and broadband anomalous refraction with strong phase discontinuities. The generalized refraction properties of the proposed metamaterial, including the effect of various incident angles and polarizations were investigated at broad terahertz frequencies. By employing such metasurface, we demonstrated a simple method to tailor transmission and phase of terahertz wave. © 2013 IEEE.
International Nuclear Information System (INIS)
Ruspini, L.C.
2012-01-01
Highlights: ► The stability influence of piping fluid inertia on two-phase instabilities is studied. ► Inlet inertia stabilizes the system while outlet inertia destabilizes it. ► High-order modes oscillations are found and analyzed. ► The effect of compressible volumes in the system is studied. ► Inlet compressibility destabilizes the system while outlet comp. stabilizes it. - Abstract: The most common kind of static and dynamic two-phase flow instabilities namely Ledinegg and density wave oscillations are studied. A new model to study two-phase flow instabilities taking into account general parameters from real systems is proposed. The stability influence of external parameters such as the fluid inertia and the presence of compressible gases in the system is analyzed. High-order oscillation modes are found to be related with the fluid inertia of external piping. The occurrence of high-order modes in experimental works is analyzed with focus on the results presented in this work. Moreover, both inertia and compressibility are proven to have a high impact on the stability limits of the systems. The performed study is done by modeling the boiling channel using a one dimensional equilibrium model. An incompressible transient model describes the evolution of the flow and pressure in the non-heated regions and an ideal gas model is used to simulate the compressible volumes in the system. The use of wavelet decomposition analysis is proven to be an efficient tool in stability analysis of several frequencies oscillations.
International Nuclear Information System (INIS)
Choi, Seok Ki; Kim, Seong O
2011-01-01
A 600 MWe demonstration reactor being developed at KAERI employs a once-through helically coiled steam generator. The helically coiled steam generator is compact and is efficient for heat transfer, however, it may suffer from the two-phase instability. It is well known that the density wave instability is the main source of instability among various types of instabilities in a helically coiled S/G in a LMR. In the present study a simple method for analysis of the density wave two phase instability in a liquid metal reactor S/G is proposed and the method is applied to the analysis of density wave instability in a S/G of 600MWe liquid metal reactor
DEFF Research Database (Denmark)
2010-01-01
is absorbed into said plasma (104), and where a sound pressure level of said generated ultrasonic high intensity and high power acoustic waves (102) is at least substantially 140 dB and where an acoustic power of said generated ultrasonic high intensity and high power acoustic waves (102); is at least...... substantially 100 W. In this way, a high sound intensity and power are obtained that efficiently enhances a gas-phase reaction in the plasma, which enhances the plasma process, e.g. enabling more efficient ozone or hydrogen generation using plasma in relation to reaction speed and/or obtained concentration......This invention relates to enhancing a gas-phase reaction in a plasma comprising: creating plasma (104) by at least one plasma source (106), and wherein that the method further comprises: generating ultrasonic high intensity and high power acoustic waves (102) having a predetermined amount...
International Nuclear Information System (INIS)
Nagel, H.
1986-01-01
The flow induced valve operation is calculated for single and two-phase flow conditions by the fluid dynamic computer code DYVRO and results are compared to experimental data. The analysis show that the operational behaviour of the valves is not only dependent on the condition of the induced flow, but also the pipe flow can cause a feedback as a result of the induced pressure waves. For the calculation of pressure wave propagation in pipes of which the operation of flow induced valves has a considerable influence it is therefore necessary to have a coupled analysis of the pressure wave propagation and the operational behaviour of the valves. The analyses of the fast transient transfer from steam to two-phase flow show a good agreement with experimental data. Hence even these very high loads on pipes resulting from such fluid dynamic transients can be calculated realistically. (orig.)
DEFF Research Database (Denmark)
Parmigiani, F.; Jung, Y.; Friis, Søren Michael Mørk
2016-01-01
We experimentally study inter-modal four-wave mixing (FWM) in few-mode fibres with different phase matching properties. The possibility of transmitting two spatial modes without intermodal FWM cross-talk in the C-band is presented....
Czech Academy of Sciences Publication Activity Database
Farra, V.; Pšenčík, Ivan
2016-01-01
Roč. 60, č. 3 (2016), s. 403-418 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : weak anisotropy * P-wave * phase velocity * ray velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.764, year: 2016
On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator
Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.
1996-01-01
The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of
Energy Technology Data Exchange (ETDEWEB)
Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Bogucki, Darek; Yu, Yi-Hsiang
2017-09-01
The slider crank is a proven mechanical linkage system with a long history of successful applications, and the slider-crank ocean wave energy converter (WEC) is a type of WEC that converts linear motion into rotation. This paper presents a control algorithm for a slider-crank WEC. In this study, a time-domain hydrodynamic analysis is adopted, and an AC synchronous machine is used in the power take-off system to achieve relatively high system performance. Also, a rule-based phase control strategy is applied to maximize energy extraction, making the system suitable for not only regular sinusoidal waves but also irregular waves. Simulations are carried out under regular sinusoidal wave and synthetically produced irregular wave conditions; performance validations are also presented with high-precision, real ocean wave surface elevation data. The influences of significant wave height, and peak period upon energy extraction of the system are studied. Energy extraction results using the proposed method are compared to those of the passive loading and complex conjugate control strategies; results show that the level of energy extraction is between those of the passive loading and complex conjugate control strategies, and the suboptimal nature of this control strategy is verified.
From the Somigliana waves to the evanescent waves
Directory of Open Access Journals (Sweden)
Pietro Caloi
2010-02-01
Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.
Ramadan, Islam A; Bailliet, Hélène; Valière, Jean-Christophe
2018-01-01
The influence of both the natural convection and end-effects on Rayleigh streaming pattern in a simple standing-wave thermoacoustic engine is investigated experimentally at different acoustic levels. The axial mean velocity inside the engine is measured using both Laser Doppler Velocimetry and Particle Image Velocimetry. The mean flow patterns are categorized in three different regions referred to as "cold streaming" region, "hot streaming" region, and "end-effects" region. In the cold streaming region, the dominant phenomenon is Rayleigh streaming and the mean velocity measurements correspond well with the theoretical expectations of Rayleigh streaming at low acoustic levels. At higher acoustic levels, the measurements deviate from the theoretical expectations which complies with the literature. In the hot streaming region, temperature measurements reveal that the non-uniformity of the resonator wall temperature is the origin of natural convection flow. Velocity measurements show that natural convection flow superimposes on the Rayleigh streaming flow so that the measured mean velocity deviates from the theoretical expectations of Rayleigh streaming. In the last region, the measured mean velocity is very different from Rayleigh streaming due to the combined effects of both the flow disturbances generated near the extremity of the stack and the natural convection flow.
Three caveats for linear stability theory: Rayleigh-Benard convection
International Nuclear Information System (INIS)
Greenside, H.S.
1984-06-01
Recent theories and experiments challenge the applicability of linear stability theory near the onset of buoyancy-driven (Rayleigh-Benard) convection. This stability theory, based on small perturbations of infinite parallel rolls, is found to miss several important features of the convective flow. The reason is that the lateral boundaries have a profound influence on the possible wave numbers and flow patterns even for the largest cells studied. Also, the nonlinear growth of incoherent unstable modes distorts the rolls, leading to a spatially disordered and sometimes temporally nonperiodic flow. Finally, the relation of the skewed varicose instability to the onset of turbulence (nonperiodic time dependence) is examined. Linear stability theory may not suffice to predict the onset of time dependence in large cells close to threshold
Stability of a short Rayleigh length laser resonator
Directory of Open Access Journals (Sweden)
P. P. Crooker
2005-04-01
Full Text Available Motivated by the prospect of constructing a short Rayleigh length free-electron laser in a high-vibration environment, we demonstrate the use of a collection of rays to study the effect of mirror vibration and distortion on the behavior of the fundamental optical mode of a cold-cavity resonator. We find that the ray collection accurately describes both on-axis and off-axis optical beams. We show that a tilt or transverse shift of a mirror causes the optical mode to rock about the original resonator axis, while a longitudinal mirror shift or a change in the mirror’s radius of curvature causes the beam diameter at a mirror to successively dilate and contract on the mirror. Results are in excellent agreement with analytic calculations and wave front propagation simulations as long as the mirrors remain large with respect to the beam diameter.
Directory of Open Access Journals (Sweden)
Sankar N. Bhattacharya
2015-11-01
Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.
First measurement of the Rayleigh cross section
Naus, H.; Ubachs, W.
2000-01-01
Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of
Rayleigh scattering in coupled microcavities: theory.
Vörös, Zoltán; Weihs, Gregor
2014-12-03
In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.