Rayleigh scattering and nonlinear inversion of elastic waves
Energy Technology Data Exchange (ETDEWEB)
Gritto, Roland [Univ. of California, Berkeley, CA (United States)
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k_{p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile
Directory of Open Access Journals (Sweden)
T.A. Sanny
2003-05-01
Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.
Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion
Cercato, Michele
2018-04-01
The use of Rayleigh wave ellipticity has gained increasing popularity in recent years for investigating earth structures, especially for near-surface soil characterization. In spite of its widespread application, the sensitivity of the ellipticity function to the soil structure has been rarely explored in a comprehensive and systematic manner. To this end, a new analytical method is presented for computing the sensitivity of Rayleigh wave ellipticity with respect to the structural parameters of a layered elastic half-space. This method takes advantage of the minor decomposition of the surface wave eigenproblem and is numerically stable at high frequency. This numerical procedure allowed to retrieve the sensitivity for typical near surface and crustal geological scenarios, pointing out the key parameters for ellipticity interpretation under different circumstances. On this basis, a thorough analysis is performed to assess how ellipticity data can efficiently complement surface wave dispersion information in a joint inversion algorithm. The results of synthetic and real-world examples are illustrated to analyse quantitatively the diagnostic potential of the ellipticity data with respect to the soil structure, focusing on the possible sources of misinterpretation in data inversion.
Zeng, C.; Xia, J.; Miller, R.D.; Tsoflias, G.P.
2011-01-01
Conventional surface wave inversion for shallow shear (S)-wave velocity relies on the generation of dispersion curves of Rayleigh waves. This constrains the method to only laterally homogeneous (or very smooth laterally heterogeneous) earth models. Waveform inversion directly fits waveforms on seismograms, hence, does not have such a limitation. Waveforms of Rayleigh waves are highly related to S-wave velocities. By inverting the waveforms of Rayleigh waves on a near-surface seismogram, shallow S-wave velocities can be estimated for earth models with strong lateral heterogeneity. We employ genetic algorithm (GA) to perform waveform inversion of Rayleigh waves for S-wave velocities. The forward problem is solved by finite-difference modeling in the time domain. The model space is updated by generating offspring models using GA. Final solutions can be found through an iterative waveform-fitting scheme. Inversions based on synthetic records show that the S-wave velocities can be recovered successfully with errors no more than 10% for several typical near-surface earth models. For layered earth models, the proposed method can generate one-dimensional S-wave velocity profiles without the knowledge of initial models. For earth models containing lateral heterogeneity in which case conventional dispersion-curve-based inversion methods are challenging, it is feasible to produce high-resolution S-wave velocity sections by GA waveform inversion with appropriate priori information. The synthetic tests indicate that the GA waveform inversion of Rayleigh waves has the great potential for shallow S-wave velocity imaging with the existence of strong lateral heterogeneity. ?? 2011 Elsevier B.V.
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm
Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun
2017-12-01
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Puzzilli, L.M.
2017-01-01
Roč. 14, č. 4 (2017), s. 431-444 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : surface wave analysis * Rayleigh wave dispersion * joint inversion * Vs30 Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 0.699, year: 2016
Pan, Yudi; Gao, Lingli; Bohlen, Thomas
2018-05-01
Correct estimation of near-surface seismic-wave velocity when encountering lateral heterogeneity and free surface topography is one of the challenges to current shallow seismic. We propose to use time-domain full-waveform inversion (FWI) of surface waves, including both Rayleigh and Love waves, to solve this problem. We adopt a 2D time-domain finite-difference method with an improved vacuum formulation (IVF) to simulate shallow-seismic Rayleigh wave in presence of free-surface topography. We modify the IVF for SH-wave equation for the simulation of Love wave in presence of topographic free surface and prove its accuracy by benchmark tests. Checkboard model tests are performed in both cases when free-surface topography is included or neglected in FWI. Synthetic model containing a dipping planar free surface and lateral heterogeneity was then tested, in both cases of considering and neglecting free-surface topography. Both checkerboard and synthetic models show that Rayleigh- and Love-wave FWI have similar ability of reconstructing near-surface structures when free-surface topography is considered, while Love-wave FWI could reconstruct near-surface structures better than Rayleigh-wave when free-surface topography is neglected.
Simons, J.-P.; Hilst, R.D. van der; Montagner, F.J.,; Zielhuis, A.
2002-01-01
We present an azimuthally anisotropic 3-D shear-wave speed model of the Australian upper mantle obtained from the dispersion of fundamental and higher modes of Rayleigh waves.We compare two tomographic techniques to map path-average earth models into a 3-D model for heterogeneity and azimuthal
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Moustafa, S.S.R.; Al-Arifi, N.
2018-01-01
Roč. 175, č. 1 (2018), s. 67-88 ISSN 0033-4553 Institutional support: RVO:67985891 Keywords : surface wave dispersion * joint inversion of seismic data * Rayleigh waves * holistic analysis of surface waves Impact factor: 1.591, year: 2016
Czech Academy of Sciences Publication Activity Database
Stoklasová, Pavla; Sedlák, Petr; Seiner, Hanuš; Landa, Michal
2015-01-01
Roč. 56, February 2015 (2015), s. 381-389 ISSN 0041-624X R&D Projects: GA ČR GPP101/12/P428 Institutional support: RVO:61388998 Keywords : surface acoustic waves * anisotropic materials * Ritz-Rayleigh method * inverse problem Subject RIV: BI - Acoustics Impact factor: 1.954, year: 2015 http://www.sciencedirect.com/science/article/pii/S0041624X14002686
Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.
2018-01-01
Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).
Miao, W.; Li, G.; Niu, F.
2016-12-01
Knowledge on the 3D sediment structure beneath the Gulf of Mexico passive margin is not only important to explore the oil and gas resources in the area, but also essential to decipher the deep crust and mantle structure beneath the margin with teleseismic data. In this study, we conduct a joint inversion of Rayleigh wave ellipticity and phase velocity at 6-40 s to construct a 3-D S wave velocity model in a rectangular area of 100°-87° west and 28°-37° north. We use ambient noise data from a total of 215 stations of the Transportable Array deployed under the Earthscope project. Rayleigh wave ellipticity, or Rayleigh wave Z/H (vertical to horizontal) amplitude ratio is mostly sensitive to shallow sediment structure, while the dispersion data are expected to have reasonably good resolution to uppermost mantle depths. The Z/H ratios measured from stations inside the Gulf Coastal Plain are distinctly lower in comparison with those measured from the inland stations. We also measured the phase velocity dispersion from the same ambient noise dataset. Our preliminary 3-D model is featured by strong low-velocity anomalies at shallow depth, which are spatially well correlated with Gulf Cost, East Texas, and the Lower Mississippi basins. We will discuss other features of the 3-D models once the model is finalized.
Inversion of residual stress profiles from ultrasonic Rayleigh wave dispersion data
Mora, P.; Spies, M.
2018-05-01
We investigate theoretically and with synthetic data the performance of several inversion methods to infer a residual stress state from ultrasonic surface wave dispersion data. We show that this particular problem may reveal in relevant materials undesired behaviors for some methods that could be reliably applied to infer other properties. We focus on two methods, one based on a Taylor-expansion, and another one based on a piecewise linear expansion regularized by a singular value decomposition. We explain the instabilities of the Taylor-based method by highlighting singularities in the series of coefficients. At the same time, we show that the other method can successfully provide performances which only weakly depend on the material.
International Nuclear Information System (INIS)
Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Jordi Julia; Wiens, Douglas A.; Pasyanos, Michael E.
2009-09-01
The joint inversion of Rayleigh wave group velocities and receiver functions was carried out to investigate the crustal and uppermost mantle structures beneath Cameroon. This was achieved using data from 32 broadband seismic stations installed for 2 years across Cameroon. The Moho depth estimates reveal that the Precambrian crust is variable across the country and shows some significant differences compared to other similar geologic units in East and South Africa. These differences suggest that the setting of the Cameroon Volcanic Line (CVL) and the eastward extension of the Benue Trough have modified the crust of the Panafrican mobile belt in Cameroon by thinning beneath the Rift area and CVL. The velocity models obtained from the joint inversion show at most stations, a layer with shear wave velocities ≥ 4.0 km/s, indicating the presence of a mafic component in the lower crust, predominant beneath the Congo Craton. The lack of this layer at stations within the Panafrican mobile belt may partly explain the crustal thinning observed beneath the CVL and rift area. The significant presence of this layer beneath the Craton, results from the 2100 Ma magmatic events at the origin of the emplacement of swarms of mafic dykes in the region. The CVL stations are underlain by a crust of 35 km on average except near Mt-Cameroon where it is about 25 km. The crustal thinning observed beneath Mt. Cameroon supported by the observed positive gravity anomalies here, suggests the presence of dense astenospheric material within the lithosphere. Shear wave velocities are found to be slower in the crust and uppermost mantle beneath the CVL than the nearby tectonic terrains, suggesting that the origin of the line may be an entirely mantle process through the edge-flow convection process. (author)
Tokam, Alain-Pierre K.; Tabod, Charles T.; Nyblade, Andrew A.; Julià, Jordi; Wiens, Douglas A.; Pasyanos, Michael E.
2010-11-01
The Cameroon Volcanic Line (CVL) consists of a linear chain of Tertiary to Recent, generally alkaline, volcanoes that do not exhibit an age progression. Here we study crustal structure beneath the CVL and adjacent regions in Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broad-band seismic stations deployed between 2005 January and 2007 February. We find that (1) crustal thickness (35-39km) and velocity structure is similar beneath the CVL and the Pan African Oubanguides Belt to the south of the CVL, (2) crust is thicker (43-48km) under the northern margin of the Congo Craton and is characterized by shear wave velocities >=4.0kms-1 in its lower part and (3) crust is thinner (26-31km) under the Garoua rift and the coastal plain. In addition, a fast velocity layer (Vs of 3.6-3.8kms-1) in the upper crust is found beneath many of the seismic stations. Crustal structure beneath the CVL and the Oubanguides Belt is very similar to Pan African crustal structure in the Mozambique Belt, and therefore it appears not to have been modified significantly by the magmatic activity associated with the CVL. The crust beneath the coastal plain was probably thinned during the opening of the southern Atlantic Ocean, while the crust beneath the Garoua rift was likely thinned during the formation of the Benue Trough in the early Cretaceous. We suggest that the thickened crust and the thick mafic lower crustal layer beneath the northern margin of the Congo Craton may be relict features from a continent-continent collision along this margin during the formation of Gondwana.
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong; Liu, Yike; Schuster, Gerard T.
2015-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve
Energy Technology Data Exchange (ETDEWEB)
Tokam, A K; Tabod, C T; Nyblade, A A; Julia, J; Wiens, D A; Pasyanos, M E
2010-02-18
Cameroon using 1-D shear wave velocity models obtained from the joint inversion of Rayleigh wave group velocities and P-receiver functions for 32 broadband seismic stations. From the 1-D shear wave velocity models, we obtain new insights into the composition and structure of the crust and upper mantle across Cameroon. After briefly reviewing the geological framework of Cameroon, we describe the data and the joint inversion method, and then interpret variations in crustal structure found beneath Cameroon in terms of the tectonic history of the region.
High-frequency Rayleigh-wave method
Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.
2009-01-01
High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.
Knapmeyer-Endrun, Brigitte; Golombek, Matthew P.; Ohrnberger, Matthias
2017-10-01
The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight's heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.
Ammirati, J. B.; Alvarado, P. M.; Beck, S. L.
2014-12-01
Receiver Function (RF) analyses using teleseismic P waveforms is a technique to isolate P to S conversions from seismic discontinuities in the lithosphere. Using earthquakes with a good azimuthal distribution, RFs recorded at a three-component seismic station can be inverted to obtain detailed lithospheric velocity structures. The technique, however presents a velocity-depth trade-off, which results in a non-unique model because RFs do not depend on the absolute seismic velocities but rather on relative velocity contrasts. Unlike RF, surface wave dispersion is sensitive to the average shear-wave velocity which makes it well suited for studying long period variations of the lithospheric seismic velocities. We performed a joint inversion of RF and Rayleigh-wave phase velocity dispersion to investigate the structure beneath the SIEMBRA network, a 43-broadband-seismic-station array deployed in the Pampean flat slab region of Argentina. Our results indicate: 1) The presence of several mid-crustal discontinuities probably related with terrane accretion; 2) A high seismic velocity in the lower crust suggesting partial eclogitization; 3) A thicker crust (> 50 km) beneath the western Sierras Pampeanas with an abrupt change in the relative timing of the Moho signal indicating a thinner crust to the east; 4) The presence of the subducting oceanic crust lying at ~100 km depth. We then built a 1D regional velocity model for the flat slab region of Argentina and used it for regional moment tensor inversions for local earthquakes. This technique is notably dependent on small-scale variations of Earth structure when modeling higher frequency seismic waveforms. Eighteen regional focal mechanisms have been determined. Our solutions are in good agreement with GCMT source estimations although our solutions for deep earthquakes systematically resulted in shallower focal depths suggesting that the slab seismicity could be concentrated at the top of the subducting Nazca plate. Solutions
Li, Yonghua; Wang, Xingchen; Zhang, Ruiqing; Wu, Qingju; Ding, Zhifeng
2017-05-01
We investigated the crustal structure at 34 stations using the H-κ stacking method and jointly inverting receiver functions with Rayleigh-wave phase and group velocities. These seismic stations are distributed along a profile extending across the Songpan-Ganzi Terrane, Qinling-Qilian terranes and southwestern Ordos Basin. Our results reveal the variation in crustal thickness across this profile. We found thick crust beneath the Songpan-Ganzi Terrane (47-59 km) that decreases to 45-47 km in the west Qinling and Qilian terranes, and reaches its local minimum beneath the southwestern Ordos Block (43-51 km) at an average crustal thickness of 46.7 ± 2.5 km. A low-velocity zone in the upper crust was found beneath most of the stations in NE Tibet, which may be indicative of partial melt or a weak detachment layer. Our observations of low to moderate Vp/Vs (1.67-1.79) represent a felsic to intermediate crustal composition. The shear velocity models estimated from joint inversions also reveal substantial lateral variations in velocity beneath the profile, which is mainly reflected in the lower crustal velocities. For the Ordos Block, the average shear wave velocities below 20 km are 3.8 km/s, indicating an intermediate-to-felsic lower crust. The thick NE Tibet crust is characterized by slow shear wave velocities (3.3-3.6 km/s) below 20 km and lacks high-velocity material (Vs ≥ 4.0 km/s) in the lower crust, which may be attributed to mafic lower crustal delamination or/and the thickening of the upper and middle crust.
Modeling of Rayleigh wave dispersion in Iberia
Directory of Open Access Journals (Sweden)
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Rayleigh wave ellipticity across the Iberian Peninsula and Morocco
Gómez García, Clara; Villaseñor, Antonio
2015-04-01
Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
Wave-equation dispersion inversion
Li, Jing
2016-12-08
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.
Amodeo, K.; Rathnayaka, S.; Weeraratne, D. S.; Kohler, M. D.
2016-12-01
Continental and oceanic lithosphere, which form in different tectonic environments, are studied in a single amphibious seismic array across the Southern California continental margin. This provides a unique opportunity to directly compare oceanic and continental lithosphere, asthenosphere, and the LAB (Lithosphere-Asthenosphere Boundary) in a single data set. The complex history of the region, including spreading center subduction, block rotation, and Borderland extension, allows us to study limits in the rigidity and strength of the lithosphere. We study Rayleigh wave phase velocities obtained from the ALBACORE (Asthenospheric and Lithospheric Broadband Architecture from the California Offshore Region Experiment) offshore seismic array project and invert for shear wave velocity structure as a function of depth. We divide the study area into several regions: continent, inner Borderland, outer Borderland, and oceanic seafloor categorized by age. A unique starting Vs model is used for each case including layer thicknesses, densities, and P and S velocities which predicts Rayleigh phase velocities and are compared to observed phase velocities in each region. We solve for shear wave velocities with the best fit between observed and predicted phase velocity data in a least square sense. Preliminary results indicate that lithospheric velocities in the oceanic mantle are higher than the continental region by at least 2%. The LAB is observed at 50 ± 20 km beneath 15-35 Ma oceanic seafloor. Asthenospheric low velocities reach a minimum of 4.2 km/s in all regions, but have a steeper positive velocity gradient at the base of the oceanic asthenosphere compared to the continent. Seismic tomography images in two and three dimensions will be presented from each study region.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing
2017-02-08
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Wave-equation Qs Inversion of Skeletonized Surface Waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is the one that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs inversion (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to full waveform inversion (FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsurface Qs distribution as long as the Vs model is known with sufficient accuracy.
Rayleigh wave effects in an elastic half-space.
Aggarwal, H. R.
1972-01-01
Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.
Study on evaluation methods for Rayleigh wave dispersion characteristic
Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.
2005-01-01
The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.
On the interaction of Rayleigh surface waves with structures
International Nuclear Information System (INIS)
Simpson, I.C.
1976-12-01
A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)
Effects of shock waves on Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Zhang Yongtao; Shu Chiwang; Zhou Ye
2006-01-01
A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process
Zhang, Zhendong; Schuster, Gerard T.; Liu, Yike; Hanafy, Sherif M.; Li, Jing
2016-01-01
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized
Passive retrieval of Rayleigh waves in disordered elastic media
International Nuclear Information System (INIS)
Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel
2005-01-01
When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime
Grain size measurements by ultrasonic Rayleigh surface waves
International Nuclear Information System (INIS)
Palanichamy, P.; Jayakumar, T.
1996-01-01
The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)
Rayleigh waves in elastic medium with double porosity
Directory of Open Access Journals (Sweden)
Rajneesh KUMAR
2018-03-01
Full Text Available The present paper deals with the propagation of Rayleigh waves in isotropic homogeneous elastic half-space with double porosity whose surface is subjected to stress-free boundary conditions. The compact secular equations for elastic solid half-space with voids are deduced as special cases from the present analysis. In order to illustrate the analytical developments, the secular equations have been solved numerically. The computer simulated results for copper materials in respect of Rayleigh wave velocity and attenuation coe¢ cient have been presented graphically.
Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean
Godfrey, Karen E.; Dalton, Colleen A.; Ritsema, Jeroen
2017-05-01
Variations in the phase velocity of fundamental-mode Rayleigh waves across the Indian Ocean are determined using two inversion approaches. First, variations in phase velocity as a function of seafloor age are estimated using a pure-path age-dependent inversion method. Second, a two-dimensional parameterization is used to solve for phase velocity within 1.25° × 1.25° grid cells. Rayleigh wave travel time delays have been measured between periods of 38 and 200 s. The number of measurements in the study area ranges between 4139 paths at a period of 200 s and 22,272 paths at a period of 40 s. At periods Rodriguez Triple Junction and the Australian-Antarctic Discordance and anomalously low velocities immediately to the west of the Central Indian Ridge.
Dipping-interface mapping using mode-separated Rayleigh waves
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.
2009-01-01
Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.
Wave-equation dispersion inversion
Li, Jing; Feng, Zongcai; Schuster, Gerard T.
2016-01-01
We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained
Subsonic leaky Rayleigh waves at liquid-solid interfaces.
Mozhaev, V G; Weihnacht, M
2002-05-01
The paper is devoted to the study of leaky Rayleigh waves at liquid-solid interfaces close to the border of the existence domain of these modes. The real and complex roots of the secular equation are computed for interface waves at the boundary between water and a binary isotropic alloy of gold and silver with continuously variable composition. The change of composition of the alloy allows one to cross a critical velocity for the existence of leaky waves. It is shown that, contrary to popular opinion, the critical velocity does not coincide with the phase velocity of bulk waves in liquid. The true threshold velocity is found to be smaller, the correction being of about 1.45%. Attention is also drawn to the fact that using the real part of the complex phase velocity as a velocity of leaky waves gives only approximate value. The most interesting feature of the waves under consideration is the presence of energy leakage in the subsonic range of the phase velocities where, at first glance, any radiation by harmonic waves is not permitted. A simple physical explanation of this radiation with due regard for inhomogeneity of radiated and radiating waves is given. The controversial question of the existence of leaky Rayleigh waves at a water/ice interface is reexamined. It is shown that the solution considered previously as a leaky wave is in fact the solution of the bulk-wave-reflection problem for inhomogeneous waves.
On Lamb and Rayleigh wave convergence in viscoelastic tissues
Energy Technology Data Exchange (ETDEWEB)
Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)
2011-10-21
Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.
Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests
International Nuclear Information System (INIS)
Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama
2005-01-01
This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)
Resonance scattering of Rayleigh waves by a mass defect
International Nuclear Information System (INIS)
Croitoru, M.; Grecu, D.
1978-06-01
The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)
Zhang, Zhendong
2016-07-26
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.
Relationship between ultrasonic Rayleigh waves and surface residual stress
International Nuclear Information System (INIS)
Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.
1977-01-01
Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments
On process capability and system availability analysis of the inverse Rayleigh distribution
Directory of Open Access Journals (Sweden)
Sajid Ali
2015-04-01
Full Text Available In this article, process capability and system availability analysis is discussed for the inverse Rayleigh lifetime distribution. Bayesian approach with a conjugate gamma distribution is adopted for the analysis. Different types of loss functions are considered to find Bayes estimates of the process capability and system availability. A simulation study is conducted for the comparison of different loss functions.
Fast evaluation of the Rayleigh integral and applications to inverse acoustics
Wind, Jelmer; Wijnant, Ysbrand H.; de Boer, Andries
2006-01-01
In this paper we present a fast evaluation of the Rayleigh integral, which leads to fast and robust solutions in inverse acoustics. The method commonly used to reconstruct acoustic sources on a plane in space is Planar Nearfield Acoustic Holography (PNAH). Some of the most important recent
Generation of Rayleigh waves into mortar and concrete samples.
Piwakowski, B; Fnine, Abdelilah; Goueygou, M; Buyle-Bodin, F
2004-04-01
The paper deals with a non-destructive method for characterizing the degraded cover of concrete structures using high-frequency ultrasound. In a preliminary study, the authors emphasized on the interest of using higher frequency Rayleigh waves (within the 0.2-1 MHz frequency band) for on-site inspection of concrete structures with subsurface damage. The present study represents a continuation of the previous work and aims at optimizing the generation and reception of Rayleigh waves into mortar and concrete be means of wedge transducers. This is performed experimentally by checking the influence of the wedge material and coupling agent on the surface wave parameters. The selection of the best combination wedge/coupling is performed by searching separately for the best wedge material and the best coupling material. Three wedge materials and five coupling agents were tested. For each setup the five parameters obtained from the surface wave measurement i.e. the frequency band, the maximal available central frequency, the group velocity error and its standard deviation and finally the error in velocity dispersion characteristic were investigated and classed as a function of the wedge material and the coupling agent. The selection criteria were chosen so as to minimize the absorption of both materials, the randomness of measurements and the systematic error of the group velocity and of dispersion characteristic. Among the three tested wedge materials, Teflon was found to be the best. The investigation on the coupling agent shows that the gel type materials are the best solutions. The "thick" materials displaying higher viscosity were found as the worst. The results show also that the use of a thin plastic film combined with the coupling agent even increases the bandwidth and decreases the uncertainty of measurements.
Rayleigh waves ellipticity and mode mis-identification in multi-channel analysis of surface waves
DEFF Research Database (Denmark)
Boaga, Jacopo; Cassiani, Giorgio; Strobbia, Claudio
dispersion curve which is then inverted. Typically, single component vertical and multi channel receivers are used. In most cases the inversion of the dispersion properties is carried out assuming that the experimental dispersion curve corresponds to a single mode, mostly the fundamental Rayleigh mode...... to each other reaching similar Rayleigh velocity. It is known ‘osculation’ happens generally in presence of strong velocity contrasts, typically with a fast bedrock underlying loose sediments. The practical limitations of the acquired data affect the spectral and modal resolution, making it often...
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, H; Mizutani, K; Saito, t [Iwate University, Iwate (Japan). Faculty of Engineering
1997-10-22
Discussions were given on the possibility of estimating Rayleigh-wave spectral ratio utilizing phase difference between horizontal movements and vertical movements by using a three-component single-station seismograph. The test has selected as an observation point a location in the city of Kushiro where a pulp and paper mill generating microtremors is the focal point, and the underground structure at that point has been estimated by using the vertical array observation method. The observation system has used three components of a velocity type seismograph having a natural period of one second, an amplifier and an analog data recorder. As a result of the discussions, the following matters were made clear: the spectral ratio with a phase difference of 90 degrees agrees with the frequency at a peak trough of the theoretical Rayleigh-wave spectral ratio; the values of the spectral ratio at the phase difference of 90 degrees and the values of the theoretical Rayleigh-wave spectral ratio correspond well excepting in frequency bands of the peak trough; and these results suggest that the Rayleigh-wave spectral ratio may be estimated by utilizing the phase difference between horizontal movements and vertical movements. Estimation of the underground structure by using the inverse analysis of this Rayleigh-wave spectral ratio is expected in the future. 6 refs., 5 figs., tab.
Directory of Open Access Journals (Sweden)
Pijush Pal Roy
1988-01-01
Full Text Available A study is made of the propagation of Rayleigh waves in a thinly layered laminated thermoelastic medium under deviatoric, hydrostatic, and couple stresses. The frequency equation of the Rayleigh waves is obtained. The phase velocity of the Rayleigh waves depends on the initial stress, deviatoric stress, and the couple stress. The laminated medium is first replaced by an equivalent anisotropic thermoelastic continuum. The corresponding thermoelastic coefficients (after deformation are derived in terms of initially isotropic thermoelastic coefficients (before deformation of individual layers. Several particular cases are discussed for the determination of the displacement fields with or without the effect of the couple stress.
A Numerical Model for Prediction of Residual Stress Using Rayleigh Waves
International Nuclear Information System (INIS)
Yuan, Mao Dan; Kang, To; Kim, Hak Joon; Song, Sung Jin
2011-01-01
In this work, a numerical model is proposed for the relation between the magnitudes and the depth residual stress with the velocity of Rayleigh wave. Three cases, stress-free, uniform stress and layered stress, are investigated for the change tendency of the Rayleigh wave speed. Using the simulated signal with variation of residual stress magnitude and depth, investigation of the parameters for fitting residual stress and velocity change are performed. The speed change of Rayleigh wave shows a linear relation with the magnitude and an exponential relation with the depth of residual stress. The combination of these two effects could be used for the depth profile evaluation of the residual stress
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing
2017-08-17
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Wave-equation dispersion inversion of surface waves recorded on irregular topography
Li, Jing; Schuster, Gerard T.; Lin, Fan-Chi; Alam, Amir
2017-01-01
Significant topographic variations will strongly influence the amplitudes and phases of propagating surface waves. Such effects should be taken into account, otherwise the S-velocity model inverted from the Rayleigh dispersion curves will contain significant inaccuracies. We now show that the recently developed wave-equation dispersion inversion (WD) method naturally takes into account the effects of topography to give accurate S-velocity tomograms. Application of topographic WD to demonstrates that WD can accurately invert dispersion curves from seismic data recorded over variable topography. We also apply this method to field data recorded on the crest of mountainous terrain and find with higher resolution than the standard WD tomogram.
Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space
Directory of Open Access Journals (Sweden)
Baljeet Singh
2013-01-01
Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.
Rayleigh wave tomography of the British Isles from ambient seismic noise
Nicolson, Heather; Curtis, Andrew; Baptie, Brian
2014-08-01
We present the first Rayleigh wave group speed maps of the British Isles constructed from ambient seismic noise. The maps also constitute the first surface wave tomography study of the crust under the British Isles at a relatively high resolution. We computed interferometric, interstation Rayleigh waves from vertical component records of ambient seismic noise recorded on 63 broad-band and short-period stations across the UK and Ireland. Group velocity measurements were made from the resulting surface wave dispersion curves between 5 and 25 s using a multiple phase-matched filter method. Uncertainties in the group velocities were computed by calculating the standard deviation of four dispersion curves constructed by stacking a random selection of daily cross-correlations. Where an uncertainty could not be obtained for a ray path using this method, we estimated it as a function of the interreceiver distance. Group velocity maps were computed for 5-25-s period using the Fast Marching forward solution of the eikonal equation and iterative, linearized inversion. At short and intermediate periods, the maps show remarkable agreement with the major geological features of the British Isles including: terrane boundaries in Scotland; regions of late Palaeozoic basement uplift; areas of exposed late Proterozoic/early Palaeozoic rocks in southwest Scotland, northern England and northwest Wales and, sedimentary basins formed during the Mesozoic such as the Irish Sea Basin, the Chester Basin, the Worcester Graben and the Wessex Basin. The maps also show a consistent low-velocity anomaly in the region of the Midlands Platform, a Proterozoic crustal block in the English Midlands. At longer periods, which are sensitive velocities in the lower crustal/upper mantle, the maps suggest that the depth of Moho beneath the British Isles decreases towards the north and west. Areas of fast velocity in the lower crust also coincide with areas thought to be associated with underplating of the
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing; Schuster, Gerard T.
2016-01-01
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel
Quantitative use of Rayleigh waves to locate and size subsurface holes
International Nuclear Information System (INIS)
Zachary, L.W.
1982-01-01
An ultrasonic inspection method is used to obtain the circumference of a subsurface hole and the depth of the hole below the surface. A pitch-catch Rayleigh wave transducer set-up was used to launch a Rayleigh surface wave at the flaw and to capture and record the scattered waves. The frequency spectrum of the scattered waves can be used to obtain the depth of the hole. The ligament of material between the hole and the surface is sent into resonance, and this feature can be extracted from the scattered waves' frequency spectrum. The frequency is a function of the ligament length; thus the hole depth can be obtained. The circumference of the hole is found from a time of flight measurement. A Rayleigh wave is formed that travels around the hole's surface. The length of time required for the wave to travel around the hole is a measure of the circumference
Fang, Hongjian; Zhang, Haijiang; Yao, Huajian; Allam, Amir; Zigone, Dimitri; Ben-Zion, Yehuda; Thurber, Clifford; vanÂ derÂ Hilst, Robert D.
2016-05-01
We introduce a new algorithm for joint inversion of body wave and surface wave data to get better 3-D P wave (Vp) and S wave (Vs) velocity models by taking advantage of the complementary strengths of each data set. Our joint inversion algorithm uses a one-step inversion of surface wave traveltime measurements at different periods for 3-D Vs and Vp models without constructing the intermediate phase or group velocity maps. This allows a more straightforward modeling of surface wave traveltime data with the body wave arrival times. We take into consideration the sensitivity of surface wave data with respect to Vp in addition to its large sensitivity to Vs, which means both models are constrained by two different data types. The method is applied to determine 3-D crustal Vp and Vs models using body wave and Rayleigh wave data in the Southern California plate boundary region, which has previously been studied with both double-difference tomography method using body wave arrival times and ambient noise tomography method with Rayleigh and Love wave group velocity dispersion measurements. Our approach creates self-consistent and unique models with no prominent gaps, with Rayleigh wave data resolving shallow and large-scale features and body wave data constraining relatively deeper structures where their ray coverage is good. The velocity model from the joint inversion is consistent with local geological structures and produces better fits to observed seismic waveforms than the current Southern California Earthquake Center (SCEC) model.
Berg, E.; Lin, F. C.; Qiu, H.; Wang, Y.; Allam, A. A.; Clayton, R. W.; Ben-Zion, Y.
2017-12-01
Rayleigh waves extracted from cross-correlations of ambient seismic noise have proven useful in imaging the shallow subsurface velocity structure. In contrast to phase velocities, which are sensitive to slightly deeper structure, Rayleigh wave ellipticity (H/V ratios) constrains the uppermost crust. We conduct Rayleigh wave ellipticity and phase dispersion measurements in Southern California between 6 and 18 second periods, computed from multi-component ambient noise cross-correlations using 315 stations across the region in 2015. Because of the complimentary sensitivity of phase velocity and H/V, this method enables simple and accurate resolution of near-surface geological features from the surface to 20km depth. We compare the observed H/V ratios and phase velocities to predictions generated from the current regional models (SCEC UCVM), finding strong correspondence where the near-surface structure is well-resolved by the models. This includes high H/V ratios in the LA Basin, Santa Barbara Basin and Salton Trough; and low ratios in the San Gabriel, San Jacinto and southern Sierra Nevada mountains. Disagreements in regions such as the Western Transverse Ranges, Salton Trough, San Jacinto and Elsinore fault zones motivate further work to improve the community models. A new updated 3D isotropic model of the area is derived via a joint inversion of Rayleigh phase dispersions and H/V ratios. Additionally, we examine azimuthal dependence of the H/V ratio to ascertain anisotropy patterns for each station. Clear 180º periodicity is observed for many stations suggesting strong shallow anisotropy across the region including up to 20% along the San Andreas fault, 15% along the San Jacinto Fault and 25% in the LA Basin. To better resolve basin structures, we apply similar techniques to three dense linear geophone arrays in the San Gabriel and San Bernardino basins. The three arrays are composed by 50-125 three-component 5Hz geophones deployed for one month each with 15-25km
Directory of Open Access Journals (Sweden)
Ramesh K.
2018-01-01
Full Text Available The Rayleigh lidar at National Atmospheric Research Laboratory, Gadanki (13.5°N, 79.2°E, India operates at 532 nm green laser with ~600 mJ/pulse since 2007. The vertical temperature profiles are derived above ~30 km by assuming the atmosphere is in hydrostatic equilibrium and obeys ideal gas law. A large mesospheric inversion layer (MIL is observed at ~77.4-84.6 km on the night of 22 March 2007 over Gadanki. Although dynamics and chemistry play vital role, both the mechanisms are compared for the occurrence of the MIL in the present study.
Ramesh, K.; Sridharan, S.; Raghunath, K.
2018-04-01
The Rayleigh lidar at National Atmospheric Research Laboratory, Gadanki (13.5°N, 79.2°E), India operates at 532 nm green laser with 600 mJ/pulse since 2007. The vertical temperature profiles are derived above 30 km by assuming the atmosphere is in hydrostatic equilibrium and obeys ideal gas law. A large mesospheric inversion layer (MIL) is observed at 77.4-84.6 km on the night of 22 March 2007 over Gadanki. Although dynamics and chemistry play vital role, both the mechanisms are compared for the occurrence of the MIL in the present study.
Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface
Energy Technology Data Exchange (ETDEWEB)
Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)
2007-12-15
Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness
Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface
International Nuclear Information System (INIS)
Kim, No Hyu; Yang, Seung Yong
2007-01-01
Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness
Levshin, A. L.; Barmin, M. P.; Moschetti, M. P.; Mendoza, C.; Ritzwoller, M. H.
2011-12-01
We describe a novel method to locate regional seismic events based on exploiting Empirical Green's Functions (EGF) that are produced from ambient seismic noise. Elastic EGFs between pairs of seismic stations are determined by cross-correlating long time-series of ambient noise recorded at the two stations. The EGFs principally contain Rayleigh waves on the vertical-vertical cross-correlations and Love waves on the transverse-transverse cross-correlations. Earlier work (Barmin et al., "Epicentral location based on Rayleigh wave empirical Green's functions from ambient seismic noise", Geophys. J. Int., 2011) showed that group time delays observed on Rayleigh wave EGFs can be exploited to locate to within about 1 km moderate sized earthquakes using USArray Transportable Array (TA) stations. The principal advantage of the method is that the ambient noise EGFs are affected by lateral variations in structure similarly to the earthquake signals, so the location is largely unbiased by 3-D structure. However, locations based on Rayleigh waves alone may be biased by more than 1 km if the earthquake depth is unknown but lies between 2 km and 7 km. This presentation is motivated by the fact that group time delays for Love waves are much less affected by earthquake depth than Rayleigh waves; thus exploitation of Love wave EGFs may reduce location bias caused by uncertainty in event depth. The advantage of Love waves to locate seismic events, however, is mitigated by the fact that Love wave EGFs have a smaller SNR than Rayleigh waves. Here, we test the use of Love and Rayleigh wave EGFs between 5- and 15-sec period to locate seismic events based on the USArray TA in the western US. We focus on locating aftershocks of the 2008 M 6.0 Wells earthquake, mining blasts in Wyoming and Montana, and small earthquakes near Norman, OK and Dallas, TX, some of which may be triggered by hydrofracking or injection wells.
Zhang, Shuzeng; Li, Xiongbing; Jeong, Hyunjo
2017-06-20
A theoretical model, along with experimental verification, is developed to describe the generation, propagation and reception of a Rayleigh wave using angle beam wedge transducers. The Rayleigh wave generation process using an angle beam wedge transducer is analyzed, and the actual Rayleigh wave sound source distributions are evaluated numerically. Based on the reciprocity theorem and considering the actual sound source, the Rayleigh wave beams are modeled using an area integral method. The leaky Rayleigh wave theory is introduced to investigate the reception of the Rayleigh wave using the angle beam wedge transducers, and the effects of the wave spreading in the wedge and transducer size are considered in the reception process. The effects of attenuations of the Rayleigh wave and leaky Rayleigh wave are discussed, and the received wave results with different sizes of receivers are compared. The experiments are conducted using two angle beam wedge transducers to measure the Rayleigh wave, and the measurement results are compared with the predictions using different theoretical models. It is shown that the proposed model which considers the wave spreading in both the sample and wedges can be used to interpret the measurements reasonably.
Energy Technology Data Exchange (ETDEWEB)
Kawamura, S [Nippon Geophysical Prospecting Co. Ltd., Tokyo (Japan)
1996-10-01
Smoothness-constrained least-squares technique with ABIC minimization was applied to the inversion of phase velocity of surface waves during geophysical exploration, to confirm its usefulness. Since this study aimed mainly at the applicability of the technique, Love wave was used which is easier to treat theoretically than Rayleigh wave. Stable successive approximation solutions could be obtained by the repeated improvement of velocity model of S-wave, and an objective model with high reliability could be determined. While, for the inversion with simple minimization of the residuals squares sum, stable solutions could be obtained by the repeated improvement, but the judgment of convergence was very hard due to the smoothness-constraint, which might make the obtained model in a state of over-fitting. In this study, Love wave was used to examine the applicability of the smoothness-constrained least-squares technique with ABIC minimization. Applicability of this to Rayleigh wave will be investigated. 8 refs.
Skeletonized wave equation of surface wave dispersion inversion
Li, Jing
2016-09-06
We present the theory for wave equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. Similar to wave-equation travel-time inversion, the complicated surface-wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the (kx,ω) domain. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2D or 3D velocity models. This procedure, denoted as wave equation dispersion inversion (WD), does not require the assumption of a layered model and is less prone to the cycle skipping problems of full waveform inversion (FWI). The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distribution in laterally heterogeneous media.
Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu
2018-03-01
This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.
Planetary wave-gravity wave interactions during mesospheric inversion layer events
Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.
2013-07-01
lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion
Ball, Justin S.; Sheehan, Anne F.; Stachnik, Joshua C.; Lin, Fan-Chi; Yeck, William L.; Collins, John A.
2016-05-01
We present a crust and mantle 3-D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath the South Island as well as the Campbell and Challenger Plateaus. Our model is constructed via linearized inversion of both teleseismic (18-70 s period) and ambient noise-based (8-25 s period) Rayleigh wave dispersion measurements. We augment an array of 4 land-based and 29 ocean bottom instruments deployed off the South Island's east and west coasts in 2009-2010 by the Marine Observations of Anisotropy Near Aotearoa experiment with 28 land-based seismometers from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs 50 km) beneath the central South Island exhibits strong spatial correlation with upper mantle earthquake hypocenters beneath the Alpine Fault. The ~400 km long low-velocity zone we image beneath eastern South Island and the inner Bounty Trough underlies Cenozoic volcanics and the locations of mantle-derived helium measurements, consistent with asthenospheric upwelling in the region.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Juretzek, C.; Perleth, M.; Hadziioannou, C.
2015-12-01
Ambient seismic noise has become an important source of signal for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about the common and different origins of Love and Rayleigh waves in the microseism bands is still limited. This applies in particular to constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the differently polarized wave types present in the noise field recorded at several arrays across Europe. The focus lies on frequencies around the primary and secondary microseismic bands. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured at each array, and a dependence on direction is observed. We constrain the corresponding source regions of both wave types by backprojection. By using a full year of data in 2013, we are able to track the seasonal changes in our observations of Love-to-Rayleigh ratio and source locations.
Quasi-Rayleigh waves in transversely isotropic half-space with inclined axis of symmetry
International Nuclear Information System (INIS)
Yanovskaya, T.B.; Savina, L.S.
2003-09-01
A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in the case of Rayleigh wave in isotropic half-space. Though the theory is simple enough, a numerical procedure for the calculation of surface wave velocity presents some difficulties. The difficulty is conditioned by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of nonlinear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in isotropic half-space. Unlike Rayleigh wave in isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincide with the direction of propagation only in azimuths 0 deg. (180 deg.) and 90 deg. (270 deg.). (author)
Support minimized inversion of acoustic and elastic wave scattering
International Nuclear Information System (INIS)
Safaeinili, A.
1994-01-01
This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion
Czech Academy of Sciences Publication Activity Database
Červ, Jan
2008-01-01
Roč. 2, č. 5 (2008), s. 762-772 ISSN 1970-8734 R&D Projects: GA AV ČR(CZ) IAA200760611 Institutional research plan: CEZ:AV0Z20760514 Keywords : rayleigh edge waves * elastic orthotropic material * plane state of stress Subject RIV: BI - Acoustics
Ledoux, L.A.F.; Berkhoff, Arthur P.; Thijssen, J.M.
The Conjugate Gradient Rayleigh method for the calculation of acoustic reflection and transmission at a rough interface between two media was experimentally verified. The method is based on a continuous version of the conjugate gradient technique and plane-wave expansions. We measured the beam
Zheng, Xuhui; Liu, Lei; Sun, Jinzhong; Li, Gao; Zhou, Fubiao; Xu, Jiemin
2018-01-01
Geological and hydrogeological conditions in karst areas are complicated from the viewpoint of engineering. The construction of underground structures in these areas is often disturbed by the gushing of karst water, which may delay the construction schedule, result in economic losses, and even cause heavy casualties. In this paper, an innovative method of multichannel transient Rayleigh wave detecting is proposed by introducing the concept of arrival time difference phase between channels (TDP). Overcoming the restriction of the space-sampling law, the proposed method can extract the phase velocities of different frequency components from only two channels of transient Rayleigh wave recorded on two adjacent detecting points. This feature greatly improves the work efficiency and lateral resolution of transient Rayleigh wave detecting. The improved multichannel transient Rayleigh wave detecting method is applied to the detection of karst caves and fractures in rock mass of the foundation pit of Yan'an Road Station of Guiyang Metro. The imaging of the detecting results clearly reveals the distribution of karst water inflow channels, which provided significant guidance for water plugging and enabled good control over karst water gushing in the foundation pit.
Determination of Love- and Rayleigh-Wave Magnitudes for Earthquakes and Explosions and Other Studies
2012-12-30
09-C-0012 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6. AUTHOR(S) Jessie L. Bonner, Anastasia Stroujkova, Dale Anderson, Jonathan...AND RAYLEIGH-WAVE MAGNITUDES FOR EARTHQUAKES AND EXPLOSIONS Jessie L. Bonner, Anastasia Stroujkova, and Dale Anderson INTRODUCTION Since...MAXIMUM LIKELIHOOD ESTIMATION: APPLICATION TO MIDDLE EAST EARTHQUAKE DATA Anastasia Stroujkova and Jessie Bonner Weston Geophysical Corporation
Directory of Open Access Journals (Sweden)
Carolina Buffoni
2018-01-01
Full Text Available In this study, the ambient seismic noise cross-correlation technique is applied to estimate the upper structure of the crust beneath Great Island of Tierra del Fuego (TdF, Argentina, by the analysis of short-period Rayleigh wave group velocities. The island, situated in the southernmost South America, is a key area of investigation among the interaction between the South American and Scotia plates and is considered as a very seismically active one. Through cross-correlating the vertical components of ambient seismic noise registered at four broadband stations in TdF, we were able to extract Rayleigh waves which were used to estimate group velocities in the period band of 2.5–16 s using a time-frequency analysis. Although ambient noise sources are distributed inhomogeneously, robust empirical Green's functions could be recovered from the cross-correlation of 12 months of ambient noise. The observed group velocities were inverted considering a non-linear iterative damped least-squares inversion procedure and several 1-D shear wave velocity models of the upper crust were obtained. According to the inversion results, the S-wave velocity ranges between 1.75 and 3.7 km/s in the first 10 km of crust, depending on the pair of stations considered. These results are in agreement to the major known surface and sub-surface geological and tectonic features known in the area. This study represents the first ambient seismic noise analysis in TdF in order to constraint the upper crust beneath this region. It can also be considered as a successful feasibility study for future analyses with a denser station deployment for a more detailed imaging of structure.
Juretzek, Carina; Hadziioannou, Céline
2014-05-01
Our knowledge about common and different origins of Love and Rayleigh waves observed in the microseism band of the ambient seismic noise field is still limited, including the understanding of source locations and source mechanisms. Multi-component array methods are suitable to address this issue. In this work we use a 3-component beamforming algorithm to obtain source directions and polarization states of the ambient seismic noise field within the primary and secondary microseism bands recorded at the Gräfenberg array in southern Germany. The method allows to distinguish between different polarized waves present in the seismic noise field and estimates Love and Rayleigh wave source directions and their seasonal variations using one year of array data. We find mainly coinciding directions for the strongest acting sources of both wave types at the primary microseism and different source directions at the secondary microseism.
Phase dispersion of Raman and Rayleigh-enhanced four-wave mixings in femtosecond polarization beats
International Nuclear Information System (INIS)
Yan, Zhao; Zhi-Qiang, Nie; Chang-Biao, Li; Yan-Peng, Zhang; Chen-Li, Gan; Huai-Bin, Zheng; Yuan-Yuan, Li; Ke-Qing, Lu
2009-01-01
Based on color-locking noisy field correlation in three Markovian stochastic models, phase dispersions of the Raman- and Rayleigh-enhanced four-wave mixing (FWM) have been investigated. The phase dispersions are modified by both linewidth and time delay for negative time delay, but only by linewidth for positive time delay. Moreover, the results under narrowband condition are close to the nonmodified nonlinear dispersion and absorption of the material. Homodyne and heterodyne detections of the Raman, the Rayleigh and the mixing femtosecond difference-frequency polarization beats have also been investigated, separately
Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe
Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine
2016-04-01
Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.
International Nuclear Information System (INIS)
Trichandi, Rahmantara; Yudistira, Tedi; Nugraha, Andri Dian; Zulhan, Zulfakriza; Saygin, Erdinc
2015-01-01
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps
Energy Technology Data Exchange (ETDEWEB)
Trichandi, Rahmantara, E-mail: rachmantara.tri@gmail.com [Geophysical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, 40132, Bandung (Indonesia); Yudistira, Tedi; Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Zulhan, Zulfakriza [Earth Science Graduate Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Bandung, 40132 (Indonesia); Saygin, Erdinc [Research School of Earth Sciences, The Australian National University, Canberra ACT 0200 (Australia)
2015-04-24
Ambient noise tomography is relatively a new method for imaging the shallow structure of the Earth subsurface. We presents the application of this method to produce a Rayleigh wave group velocity maps around the Merapi Volcano, Central Java. Rayleigh waves group velocity maps were reconstructed from the cross-correlation of ambient noise recorded by the DOMERAPI array which consists 43 broadband seismometers. In the processing stage, we first filtered the observation data to separatethe noise from the signal that dominated by the strong volcanic activities. Next, we cross-correlate the filtered data and stack to obtain the Green’s function for all possible station pairs. Then we carefully picked the peak of each Green’s function to estimate the dispersion trend and appliedMultiple Filter Technique to obtain the dispersion curve. Inter-station group velocity curvesare inverted to produceRayleigh wave group velocity maps for periods 1 to 10 s. The resulted Rayleigh group velocity maps show the interesting features around the Merapi Volcano which generally agree with the previous studies. Merapi-Lawu Anomaly (MLA) is emerged as a relatively low anomaly in our group velocity maps.
Taori, A.; Kamalakar, V.; Raghunath, K.; Rao, S. V. B.; Russell, J. M.
2012-04-01
We utilize simultaneous Rayleigh lidar and mesospheric OH and O2 airglow measurements to identify the dominant and propagating waves within 40-95 km altitude regions over a low latitude station Gadanki (13.8° N, 79.2 °E). It is found that waves with 0.4-0.6 h periodicity are common throughout the altitude range of 40-95 km with significant amplitudes. The ground based temperature measurements with lidar and airglow monitoring are found to compare well with SABER data. With simultaneous Rayleigh lidar (temperature) and mesospheric airglow (emission intensity and temperature) measurements, we estimate the amplitude growth and Krassovsky parameters to characterize the propagation and dissipation of these upward propagating waves.
Welding induced residual stress evaluation using laser-generated Rayleigh waves
Ye, Chong; Zhou, Yuanlai; Reddy, Vishnu V. B.; Mebane, Aaron; Ume, I. Charles
2018-04-01
Welding induced residual stress could affect the dimensional stability, fatigue life, and chemical resistance of the weld joints. Ultrasonic method serves as an important non-destructive tool for the residual stress evaluation due to its easy implementation, low cost and wide application to different materials. Residual stress would result in the ultrasonic wave velocity variation, which is the so called acoustoelastic effect. In this paper, Laser/EMAT ultrasonic technique was proposed to experimentally study the relative velocity variation ΔV/V of Rayleigh wave, which has the potential to evaluate surface/subsurface longitudinal residual stress developed during the Gas Metal Arc Welding process. Broad band ultrasonic waves were excited by pulsed Q-Switched Nd: YAG laser. An electromagnetic acoustic transducer (EMAT) attached to the welded plates was used to capture the Rayleigh wave signals propagating along the weld seam direction. Different time of flight measurements were conducted by varying the distance between the weld seam and Rayleigh wave propagating path in the range of 0 to 45 mm. The maximum relative velocity difference was found on the weld seam. With the increasing distance away from the weld seam, the relative velocity difference sharply decreased to negative value. With further increase in distance, the relative velocity difference slowly increased and approached zero. The distribution of relative velocity variations indicates that tensile stress appears in the melted zone as it becomes compressive near the heat-affected zone.
Tang, Zheng
2018-05-15
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
Tang, Zheng; Mai, Paul Martin; Chang, Sung-Joon; Zahran, Hani
2018-01-01
We investigate the crustal and upper-mantle shear-velocity structure of Saudi Arabia by fundamental-mode Rayleigh-wave group-velocity tomography and shear-wave velocity inversion. The seismic dataset is compiled using ∼140 stations of the Saudi National Seismic Network (SNSN) operated by the Saudi Geological Survey (SGS). We measure Rayleigh-wave group-velocities at periods of 8–40 s from regional earthquakes. After obtaining 1-D shear-wave velocity models by inverting group-velocities at each grid node, we construct a 3-D shear-velocity model for Saudi Arabia and adjacent regions by interpolating the 1-D models. Our 3-D model indicates significant lateral variations in crustal and lithospheric thickness, as well as in the shear-wave velocity over the study region. In particular, we identify zones of reduced shear-wave speed at crustal levels beneath the Cenozoic volcanic fields in the Arabian Shield. The inferred reductions of 2–5% in shear-wave speed may be interpreted as possibly indicating the presence of partial melts. However, their precise origin we can only speculate about. Our study also reveals an upper-mantle low velocity zone (LVZ) below the Arabian Shield, supporting the model of lateral mantle flow from the Afar plume. Further geophysical experiments are needed to confirm (or refute) the hypothesis that partial melts may exist below the Cenozoic volcanism in western Saudi Arabia, and to build a comprehensive geodynamic–geological model for the evolution and present state of the lithosphere of the Arabian Plate and the Red Sea.
Seismic prediction ahead of tunnel construction using Rayleigh-waves
Jetschny, Stefan; De Nil, Denise; Bohlen, Thomas
2008-01-01
To increase safety and efficiency of tunnel constructions, online seismic exploration ahead of a tunnel can become a valuable tool. We developed a new forward looking seismic imaging technique e.g. to determine weak and water bearing zones ahead of the constructions. Our approach is based on the excitation and registration of tunnel surface-waves. These waves are excited at the tunnel face behind the cutter head of a tunnel boring machine and travel into drilling direction. Arriving at the fr...
Wave-equation reflection traveltime inversion
Zhang, Sanzong
2011-01-01
The main difficulty with iterative waveform inversion using a gradient optimization method is that it tends to get stuck in local minima associated within the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. No travel-time picking is needed and no high-frequency approximation is assumed. The mathematical derivation and the numerical examples are presented to partly demonstrate its efficiency and robustness. © 2011 Society of Exploration Geophysicists.
Quiros, D.; Pulliam, J.; Polanco Rivera, E.; Huerfano Moreno, V. A.
2017-12-01
The eastern North America-Caribbean (NA-CAR) plate boundary near the islands of Hispaniola (which is comprised of the Dominican Republic and Haiti) and Puerto Rico is a complex transition zone in which strain is accommodated by two transform fault systems and oblique subduction. In 2013, scientists from Baylor University, the Autonomous University of Santo Domingo, and the Puerto Rico Seismic Network deployed 16 broadband stations on the Dominican Republic to expand the local permanent network. The goal of the Greater Antilles Seismic Program (GrASP) is to combine its data with that from permanent networks in Puerto Rico, Haiti, Cuba, the Cayman Islands, and Jamaica to develop a better understanding of the crust and upper mantle structure in the Northeastern Caribbean (Greater Antilles). One important goal of GrASP is to develop robust velocity models that can be used to improve earthquake location and seismic hazard efforts. In this study, we focus on obtaining Rayleigh wave group velocity maps from ambient noise tomography. By cross-correlating ambient seismic noise recorded at 53 stations between 2010 to present, we obtain Green's functions between 1165 pairs of stations. From these, we obtain dispersion curves by the application of FTAN methods with phase-matched filtering. Selection criteria depend on the signal-to-noise ratio and seasonal variability, with further filtering done by rejecting velocities incompatible with maps produced from overdamped tomographic inversions. Preliminary dispersion maps show strong correlations with large-scale geological and tectonic features for periods between 5 - 20 s, such as the Cordillera Central in both the Dominican Republic and Puerto Rico, the Mona Passage, and the NA-CAR subduction zone. Ongoing efforts focus on including shorter periods in Puerto Rico as its denser station distribution could allow us to retrieve higher resolution group velocity maps.
Rayleigh-Taylor Gravity Waves and Quasiperiodic Oscillation Phenomenon in X-ray Binaries
Titarchuk, Lev
2002-01-01
Accretion onto compact objects in X-ray binaries (black hole, neutron star (NS), white dwarf) is characterized by non-uniform flow density profiles. Such an effect of heterogeneity in presence of gravitational forces and pressure gradients exhibits Rayleigh-Taylor gravity waves (RTGW). They should be seen as quasiperiodic wave oscillations (QPO) of the accretion flow in the transition (boundary) layer between the Keplerian disk and the central object. In this paper the author shows that the main QPO frequency, which is very close to the Keplerian frequency, is split into separate frequencies (hybrid and low branch) under the influence of the gravitational forces in the rotational frame of reference. The RTGWs must be present and the related QPOs should be detected in any system where the gravity, buoyancy and Coriolis force effects cannot be excluded (even in the Earth and solar environments). The observed low and high QPO frequencies are an intrinsic signature of the RTGW. The author elaborates the conditions for the density profile when the RTGW oscillations are stable. A comparison of the inferred QPO frequencies with QPO observations is presented. The author finds that hectohertz frequencies detected from NS binaries can be identified as the RTGW low branch frequencies. The author also predicts that an observer can see the double NS spin frequency during the NS long (super) burst events when the pressure gradients and buoyant forces are suppressed. The Coriolis force is the only force which acts in the rotational frame of reference and its presence causes perfect coherent pulsations with a frequency twice of the NS spin. The QPO observations of neutron binaries have established that the high QPO frequencies do not go beyond of the certain upper limit. The author explains this observational effect as a result of the density profile inversions. Also the author demonstrates that a particular problem of the gravity waves in the rotational frame of reference in the
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Source Estimation by Full Wave Form Inversion
Energy Technology Data Exchange (ETDEWEB)
Sjögreen, Björn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Petersson, N. Anders [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing
2013-08-07
Given time-dependent ground motion recordings at a number of receiver stations, we solve the inverse problem for estimating the parameters of the seismic source. The source is modeled as a point moment tensor source, characterized by its location, moment tensor components, the start time, and frequency parameter (rise time) of its source time function. In total, there are 11 unknown parameters. We use a non-linear conjugate gradient algorithm to minimize the full waveform misfit between observed and computed ground motions at the receiver stations. An important underlying assumption of the minimization problem is that the wave propagation is accurately described by the elastic wave equation in a heterogeneous isotropic material. We use a fourth order accurate finite difference method, developed in [12], to evolve the waves forwards in time. The adjoint wave equation corresponding to the discretized elastic wave equation is used to compute the gradient of the misfit, which is needed by the non-linear conjugated minimization algorithm. A new source point moment source discretization is derived that guarantees that the Hessian of the misfit is a continuous function of the source location. An efficient approach for calculating the Hessian is also presented. We show how the Hessian can be used to scale the problem to improve the convergence of the non-linear conjugated gradient algorithm. Numerical experiments are presented for estimating the source parameters from synthetic data in a layer over half-space problem (LOH.1), illustrating rapid convergence of the proposed approach.
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang
2016-09-06
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.
Rayleigh wave tomography in North-China from ambient seismic noise
Fang, Lihua
2010-01-01
2008/2009 The theory and methodology of ambient noise tomography has been studied and applied to North-China successfully. Continuous vertical-component seismograms, spanning the period from January 1, 2007 to February 28, 2008 recorded by 190 broadband stations and 10 very broadband stations, have been used. The cross correlation technique has been applied to ambient noise data recorded by North-China Seismic Array for each station pairs of the array. Rayleigh wave group ve...
Joint Inversion of Surface Waves Dispersion and Receiver Function at Cuba Seismic Stations
International Nuclear Information System (INIS)
Gonzalez, O'Leary; Moreno, Bladimir; Romanelli, Fabio; Panza, Giuliano F.
2010-06-01
Joint inversion of Rayleigh wave group velocity dispersion and receiver functions have been used to estimate the crust and upper mantle structure at eight seismic stations in Cuba. Receiver functions have been computed from teleseismic recordings of earthquakes at epicentral (angular) distances between 30 o and 90 o and Rayleigh wave group velocity dispersion have been taken from a surface-wave tomography study of the Caribbean area. The thickest crust (around 27 km) is found at Cascorro (CCC), Soroa (SOR), Moa (MOA) and Maisi (MAS) stations while the thinnest crust (around 18 km) is found at stations Rio Carpintero (RCC) and Guantanamo Bay (GTBY), in the southeastern of Cuba; this result is in agreement with the southward gradual thinning of the crust revealed by previous studies. The inversion shows a crystalline crust with S-wave velocity between 2.9 km/s and 3.9 km/s and at the crust-mantle transition zone the shear wave velocity varies from 3.9 km/s and 4.3 km/s. The lithospheric thickness varies from 74 km, in the youngest lithosphere, to 200 km in the middle of the Cuban island. Evidences of a subducted slab possibly belonging to the Caribbean plate are present below the stations Las Mercedes (LMG), RCC and GTBY and a thicker slab is present below the SOR station. (author)
High resolution Rayleigh wave group velocity tomography in North-China from ambient seismic noise
International Nuclear Information System (INIS)
Fang Lihua; Wu Jianping; Ding Zhifeng; Panza, G.F.
2009-03-01
This study presents the results of the Rayleigh wave group velocity tomography in North-China performed using ambient seismic noise observed at 190 broadband and 10 very broadband stations of the North-China Seismic Array. All available vertical component time-series for the 14 months span between January, 2007 and February, 2008 are cross-correlated to obtain empirical Rayleigh wave Green functions that are subsequently processed, with the multiple filter method, to isolate the group velocity dispersion curves of the fundamental mode of Rayleigh wave. Tomographic maps, with a grid spacing of 0.25 deg. x 0.25 deg., are computed at the periods of 4.5s, 12s, 20s, 28s. The maps at short periods reveal an evident lateral heterogeneity in the crust of North-China, quite well in agreement with known geological and tectonic features. The North China Basin is imaged as a broad low velocity area, while the Taihangshan and Yanshan uplifts and Ordos block are imaged as high velocity zones, and the Quaternary intermountain basins show up as small low-velocity anomalies. The group velocity contours at 4.5s, 12s and 20s are consistent with the Bouguer gravity anomalies measured in the area of the Taihangshan fault, that cuts through the lower crust at least. Most of the historical strong earthquakes (M≥6.0) are located where the tomographic maps show zones with moderate velocity gradient. (author)
Elastic properties of amorphous thin films studied by Rayleigh waves
International Nuclear Information System (INIS)
Schwarz, R.B.; Rubin, J.B.
1993-01-01
Physical vapor deposition in ultra-high vacuum was used to co-deposit nickel and zirconium onto quartz single crystals and grow amorphous Ni 1-x Zr x (0.1 < x < 0.87) thin film. A high-resolution surface acoustic wave technique was developed for in situ measurement of film shear moduli. The modulus has narrow maxima at x = 0. 17, 0.22, 0.43, 0.5, 0.63, and 0.72, reflecting short-range ordering and formation of aggregates in amorphous phase. It is proposed that the aggregates correspond to polytetrahedral atom arrangements limited in size by geometrical frustration
Rayleigh-wave scattering by shallow cracks using the indirect boundary element method
International Nuclear Information System (INIS)
Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J
2009-01-01
The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks
Reiter, D. T.; Rodi, W. L.
2015-12-01
Constructing 3D Earth models through the joint inversion of large geophysical data sets presents numerous theoretical and practical challenges, especially when diverse types of data and model parameters are involved. Among the challenges are the computational complexity associated with large data and model vectors and the need to unify differing model parameterizations, forward modeling methods and regularization schemes within a common inversion framework. The challenges can be addressed in part by decomposing the inverse problem into smaller, simpler inverse problems that can be solved separately, providing one knows how to merge the separate inversion results into an optimal solution of the full problem. We have formulated an approach to the decomposition of large inverse problems based on the augmented Lagrangian technique from optimization theory. As commonly done, we define a solution to the full inverse problem as the Earth model minimizing an objective function motivated, for example, by a Bayesian inference formulation. Our decomposition approach recasts the minimization problem equivalently as the minimization of component objective functions, corresponding to specified data subsets, subject to the constraints that the minimizing models be equal. A standard optimization algorithm solves the resulting constrained minimization problems by alternating between the separate solution of the component problems and the updating of Lagrange multipliers that serve to steer the individual solution models toward a common model solving the full problem. We are applying our inversion method to the reconstruction of the·crust and upper-mantle seismic velocity structure across Eurasia.· Data for the inversion comprise a large set of P and S body-wave travel times·and fundamental and first-higher mode Rayleigh-wave group velocities.
The propagation of nonlinear rayleigh waves in layered elastic half-space
International Nuclear Information System (INIS)
Ahmetolan, S.
2004-01-01
In this work, the propagation of small but finite amplitude generalized Rayleigh waves in an elastic half-space covered by a different elastic layer of uniform and finite thickness is considered. The constituent materials are assumed to be homogeneous, isotropic, compressible hyperelastic. Excluding the harmonic resonance phenomena, it is shown that the nonlinear self modulation of generalized Rayleigh waves is governed asymptotically by a nonlinear Schrodinger (NLS) equation. The stability of the solutions and the existence of solitary wave-type solutions a NLS are strongly depend on the sign of the product of the coefficients of the nonlinear and dipersion terms of the equation.Therefore the analysis continues with the examination of dependence of these coefficients on the nonlinear material parameters. Three different models have been considered which are nonlinear layer-nonlinear half space, linear layer-nonlinear half space and nonlinear layer-linear half space. The behavior of the coefficients of the NLS equation was also analyzed the limit as h(thickness of the layer) goes to zero and k(the wave number) is constant. Then conclusions are drawn about the effect of nonlinear material parameters on the wave modulation. In the numerical investigations both hypothetical and real material models are used
Rayleigh and Love Wave Phase Velocities in the Northern Gulf Coast of the United States
Li, A.; Yao, Y.
2017-12-01
The last major tectonic event in the northern Gulf Coast of the United States is Mesozoic continental rifting that formed the Gulf of Mexico. This area also experienced igneous activity and local uplifts during Cretaceous. To investigate lithosphere evolution associated with the rifting and igneous activity, we construct Rayleigh and Love wave phase velocity models at the periods of 6 s to 125 s in the northern Gulf Coast from Louisiana to Alabama including the eastern Ouachita and southern Appalachian orogeny. The phase velocities are derived from ambient noise and earthquake data recorded at the 120 USArray Transportable Array stations. At periods below 20 s, phase velocity maps are characterized by significant low velocities in the Interior Salt Basin and Gulf Coast Basin, reflecting the effects of thick sediments. The northern Louisiana and southern Arkansas are imaged as a low velocity anomaly in Rayleigh wave models but a high velocity anomaly of Love wave at the periods of 14 s to 30 s, indicating strong lower crust extension to the Ouachita front. High velocity is present in the Mississippi Valley Graben from period 20 s to 35 s, probably reflecting a thin crust or high-velocity lower crust. At longer periods, low velocities are along the Mississippi River to the Gulf Coast Basin, and high velocity anomaly mainly locates in the Black Warrior Basin between the Ouachita Belt and Appalachian Orogeny. The magnitude of anomalies in Love wave images is much smaller than that in Rayleigh wave models, which is probably due to radial anisotropy in the upper mantle. A 3-D anisotropic shear velocity model will be developed from the phase velocities and will provide more details for the crust and upper mantle structure beneath the northern Gulf of Mexico continental margin.
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang; Schuster, Gerard T.
2016-01-01
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially
International Nuclear Information System (INIS)
Kopainsky, J.
1975-01-01
In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)
Eilon, Zachary; Fischer, Karen M.; Dalton, Colleen A.
2018-04-01
We present a methodology for 1-D imaging of upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterisation based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing the recent expansion of large seismic arrays and computational power alongside sophisticated data analysis. Careful processing of P- and S-wave arrivals isolates converted phases generated at velocity gradients between the mid-crust and 300 km depth. This data is allied with ambient noise and earthquake Rayleigh wave phase velocities to obtain detailed VS and VP velocity models. Synthetic tests demonstrate that converted phases are necessary to accurately constrain velocity gradients, and S-p phases are particularly important for resolving mantle structure, while surface waves are necessary for capturing absolute velocities. We apply the method to several stations in the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles, offering robust uncertainty estimates, and revealing mid-lithospheric velocity gradients indicative of thermochemical cratonic layering. This flexible method holds promise for increasingly detailed understanding of the upper mantle.
Workman, Eli Joseph
We present a single-station method for the determination of Rayleigh wave ellipticity, or Rayleigh wave horizontal to vertical amplitude ratio (H/V) using Frequency Dependent Polarization Analysis (FDPA). This procedure uses singular value decomposition of 3-by-3 spectral covariance matrices over 1-hr time windows to determine properties of the ambient seismic noise field such as particle motion and dominant wave-type. In FPDA, if the noise is mostly dominated by a primary singular value and the phase difference is roughly 90° between the major horizontal axis and the vertical axis of the corresponding singular vector, we infer that Rayleigh waves are dominant and measure an H/V ratio for that hour and frequency bin. We perform this analysis for all available data from the Earthscope Transportable Array between 2004 and 2014. We compare the observed Rayleigh wave H/V ratios with those previously measured by multicomponent, multistation noise cross-correlation (NCC), as well as classical noise spectrum H/V ratio analysis (NSHV). At 8 sec the results from all three methods agree, suggesting that the ambient seismic noise field is Rayleigh wave dominated. Between 10 and 30 sec, while the general pattern agrees well, the results from FDPA and NSHV are persistently slightly higher ( 2%) and significantly higher (>20%), respectively, than results from the array-based NCC. This is likely caused by contamination from other wave types (i.e., Love waves, body waves, and tilt noise) in the single station methods, but it could also reflect a small, persistent error in NCC. Additionally, we find that the single station method has difficulty retrieving robust Rayleigh wave H/V ratios within major sedimentary basins, such as the Williston Basin and Mississippi Embayment, where the noise field is likely dominated by reverberating Love waves.
Degenerate RS perturbation theory. [Rayleigh-Schroedinger energies and wave functions
Hirschfelder, J. O.; Certain, P. R.
1974-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schroedinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n + 1)-th order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite-order operators which are determined by the successive resolution of the space of the zeroth-order functions.
A Numerical Method for Predicting Rayleigh Surface Wave Velocity in Anisotropic Crystals (Postprint)
2017-09-05
velocity, preventing the use of gradient-based optimization routines. The typical approach to solving this problem is to perform the inverse many times...is dependent on the wave velocity. However, the wave velocity is unknown at this point, which means p and v must be determined simultaneously . One way...defined as: Z=−iBA−1 (11) where A is the matrix formed by combining the displacement vectors, a into a single matrix. The inverse is guaranteed to exist
Directory of Open Access Journals (Sweden)
Victor M. García-Chocano
2011-12-01
Full Text Available Transmission of ultrasonic waves through a slit between two water immersed brass plates is studied for sub-wavelength plate thicknesses and slit apertures. Extraordinary high absorption is observed at discrete frequencies corresponding to resonant excitation of Rayleigh waves on the both sides of the channel. The coupling of the Rayleigh waves occurs through the fluid and the corresponding contribution to the dispersion has been theoretically derived and also experimentally confirmed. Symmetric and anti-symmetric modes are predicted but only the symmetric mode resonances have been observed. It follows from the dispersion equation that the coupled Rayleigh waves cannot be excited in a channel with apertures less than the critical one. The calculated critical aperture is in a good agreement with the measured acoustic spectra. These findings could be applied to design a broadband absorptive metamaterial.
Xu, Yanlong
2015-01-21
We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.
Thermal Aging Evaluation of Mod. 9Cr-1Mo Steel using Nonlinear Rayleigh Waves
Energy Technology Data Exchange (ETDEWEB)
Joo, Young-Sang; Kim, Hoe-Woong; Kim, Jong-Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Marino, Daniel; Kim, Jin-Yeon; Jacobs, L.J [Georgia Institute of Technology, Atlanta (United States); Ruiz, Alberto [UMSNH, Morelia (Mexico)
2014-10-15
Thermal aging can pose a high risk to decreases in the mechanical properties such as strength or creep resistance. This can lead to an unexpected failure during long term operation. Nonlinear NDE techniques are preferred over conventional NDE techniques (linear ultrasonic measurements) because nonlinear ultrasonic techniques have shown their capability to detect a microstructural damage in the structures undergoing fatigue and creep. These nonlinear ultrasonic techniques make use of the fact that the dislocation density increases, which will create a nonlinear distortion of an ultrasonic wave; this damage causes the generation of measurable higher harmonic components in an initially mono-chromatic ultrasonic signal. This study investigates the recently developed non-contact nonlinear ultrasonic technique to detect the microstructural damage of mod. 9Cr-1Mo steel based on nonlinear Rayleigh wave with varying propagation distances. Nonlinear Rayleigh surface wave measurements using a non-contact, air-coupled ultrasonic transducer have been applied for the thermal aging evaluation of modified 9Cr-1Mo ferritic-martensitic steel. Thermal aging for various heat treatment times of mod.. 9Cr-1Mo steel specimens is performed to obtain the nucleation and growth of precipitated particles in specimens. The amplitudes of the first and second harmonics are measured along the propagation distance and the relative nonlinearity parameter is obtained from these amplitudes. The relative nonlinearity parameter shows a similar trend with the Rockwell C hardness.
Rayleigh wave behavior in functionally graded magneto-electro-elastic material
Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben
2017-12-01
Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.
Crustal structure of northern Italy from the ellipticity of Rayleigh waves
Berbellini, Andrea; Morelli, Andrea; G. Ferreira, Ana M.
2017-04-01
Northern Italy is a diverse geological region, including the wide and thick Po Plain sedimentary basin, which is bounded by the Alps and the Apennines. The seismically slow shallow structure of the Po Plain is difficult to retrieve with classical seismic measurements such as surface wave dispersion, yet the detailed structure of the region greatly affects seismic wave propagation and hence seismic ground shaking. Here we invert Rayleigh wave ellipticity measurements in the period range 10-60 s for 95 stations in northern Italy using a fully non linear approach to constrain vertical vS,vP and density profiles of the crust beneath each station. The ellipticity of Rayleigh wave ground motion is primarily sensitive to shear-wave velocity beneath the recording station, which reduces along-path contamination effects. We use the 3D layering structure in MAMBo, a previous model based on a compilation of geological and geophysical information for the Po Plain and surrounding regions of northern Italy, and employ ellipticity data to constrain vS,vP and density within its layers. We show that ellipticity data from ballistic teleseismic wave trains alone constrain the crustal structure well. This leads to MAMBo-E, an updated seismic model of the region's crust that inherits information available from previous seismic prospection and geological studies, while fitting new seismic data well. MAMBo-E brings new insights into lateral heterogeneity in the region's subsurface. Compared to MAMBo, it shows overall faster seismic anomalies in the region's Quaternary, Pliocene and Oligo-Miocene layers and better delineates the seismic structures of the Po Plain at depth. Two low velocity regions are mapped in the Mesozoic layer in the western and eastern parts of the Plain, which seem to correspond to the Monferrato sedimentary basin and to the Ferrara-Romagna thrust system, respectively.
Directory of Open Access Journals (Sweden)
Sankar N. Bhattacharya
2015-11-01
Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.
Method and analysis for determining yielding of titanium alloy with nonlinear Rayleigh surface waves
Energy Technology Data Exchange (ETDEWEB)
Guo, Shifeng; Zhang, Lei; Mirshekarloo, Meysam Sharifzadeh; Chen, Shuting; Chen, Yi Fan; Wong, Zheng Zheng; Shen, Zhiyuan; Liu, Huajun; Yao, Kui, E-mail: k-yao@imre.a-star.edu.sg
2016-07-04
Methods for determining yielding of titanium (Ti) alloy material with second harmonic Rayleigh ultrasonic wave are investigated. Both piezoelectric angle beam transducers and high frequency laser scanning vibrometer (LSV) are used to detect ultrasonic signals in the Ti alloy specimens with different plastic strain levels. Technical features and outcomes with use of piezoelectric transducers and LSV are compared. The method using piezoelectric transducers, with much higher signal-to-noise ratio than LSV, has been further improved by deploying two transducers with central frequencies corresponding to the fundamental and second order harmonic signals respectively to improve the testing reliability and accuracy. Both the techniques using piezoelectric transducer and LSV demonstrate consistently that the acoustic nonlinearity increases with plastic strain, and the second harmonic Rayleigh ultrasonic wave can be utilized for effective determination of yielding in Ti alloy. Our experiments further show that the acoustic nonlinearity increases gradually with plastic strain at small plastic strain level, and there is a more significant increase of acoustic nonlinearity when the plastic strain reaches a higher level. Microscopic investigations using scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) are conducted for clarifying the relationship between the observed acoustic nonlinearity and micro-structural changes.
Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector
Kuszewski, P.; Camara, I. S.; Biarrotte, N.; Becerra, L.; von Bardeleben, J.; Savero Torres, W.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.; Thevenard, L.
2018-06-01
We show on in-plane magnetized thin films that magnetization can be switched efficiently by 180 degrees using large amplitude Rayleigh waves travelling along the hard or easy magnetic axis. Large characteristic filament-like domains are formed in the latter case. Micromagnetic simulations clearly confirm that this multi-domain configuration is compatible with a resonant precessional mechanism. The reversed domains are in both geometries several hundreds of , much larger than has been shown using spin transfer torque- or field-driven precessional switching. We show that surface acoustic waves can travel at least 1 mm before addressing a given area, and can interfere to create magnetic stripes that can be positioned with a sub-micronic precision.
International Nuclear Information System (INIS)
Liu, Y.; Ecke, R.E.
1999-01-01
We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society
Li, Peng; Thurber, Clifford
2018-06-01
We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.
Directory of Open Access Journals (Sweden)
Esteban Flores-Mendez
2012-01-01
Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.
Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave
International Nuclear Information System (INIS)
Kim, Min Soo; Lee, Ho Yong; Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon; Kwon, Sung Duck
2017-01-01
Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk
Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave
Energy Technology Data Exchange (ETDEWEB)
Kim, Min Soo; Lee, Ho Yong [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kwon, Sung Duck [Dept. of Physics, Andong National University, Andong (Korea, Republic of)
2017-02-15
Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk.
Optimized nonlinear inversion of surface-wave dispersion data
International Nuclear Information System (INIS)
Raykova, Reneta B.
2014-01-01
A new code for inversion of surface wave dispersion data is developed to obtain Earth’s crustal and upper mantle velocity structure. The author developed Optimized Non–Linear Inversion ( ONLI ) software, based on Monte-Carlo search. The values of S–wave velocity VS and thickness h for a number of horizontal homogeneous layers are parameterized. Velocity of P–wave VP and density ρ of relevant layers are calculated by empirical or theoretical relations. ONLI explores parameters space in two modes, selective and full search, and the main innovation of software is evaluation of tested models. Theoretical dispersion curves are calculated if tested model satisfied specific conditions only, reducing considerably the computation time. A number of tests explored impact of parameterization and proved the ability of ONLI approach to deal successfully with non–uniqueness of inversion problem. Key words: Earth’s structure, surface–wave dispersion, non–linear inversion, software
Inverse problems and inverse scattering of plane waves
Ghosh Roy, Dilip N
2001-01-01
The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.
Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km
Xing, Z.; Beghein, C.; Yuan, K.
2012-12-01
This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density
Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.
Baynes, Alexander B; Godin, Oleg A
2017-12-01
Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.
Deflecting Rayleigh surface acoustic waves by a meta-ridge with a gradient phase shift
Xu, Yanlong; Yang, Zhichun; Cao, Liyun
2018-05-01
We propose a non-resonant meta-ridge to deflect Rayleigh surface acoustic waves (RSAWs) according to the generalized Snell’s law with a gradient phase shift. The gradient phase shift is predicted by an analytical formula, which is related to the path length of the traveling wave. The non-resonant meta-ridge is designed based on the characteristics of the RSAW: it only propagates along the interface with a penetration depth, and it is dispersion-free with a constant phase velocity. To guarantee that the characteristics are still valid when RSAWs propagate in a three-dimensional (3D) structure, grooves are employed to construct the supercell of the meta-ridge. The horizontal length, inclined angle, and thickness of the ridge, along with the filling ratio of the groove, are parametrically examined step by step to investigate their influences on the propagation of RSAWs. The final 3D meta-ridges are designed theoretically and their capability of deflecting the incident RSAWs are validated numerically. The study presents a new method to control the trajectory of RSAWs, which will be conducive to developing innovative devices for surface acoustic waves.
Wave-equation reflection traveltime inversion
Zhang, Sanzong; Schuster, Gerard T.; Luo, Yi
2011-01-01
The main difficulty with iterative waveform inversion using a gradient optimization method is that it tends to get stuck in local minima associated within the waveform misfit function. This is because the waveform misfit function is highly nonlinear
Yoshizawa, K.; Hamada, K.
2017-12-01
A new 3-D S-wave model of the North American upper mantle is constructed from a large number of inter-station phase and amplitude measurements of surface waves. A fully nonlinear waveform fitting method by Hamada and Yoshizawa (2015, GJI) is applied to USArray for measuring inter-station phase speeds and amplitude ratios of the fundamental-mode Rayleigh and Love waves. We employed the seismic events from 2007 - 2014 with Mw 6.0 or greater, and collected a large-number of inter-station phase speed data (about 130,000 for Rayleigh and 85,000 for Love waves) and amplitude ratio data (about 75,000 for Rayleigh waves) in a period range from 30 to 130 s for fundamental-mode surface waves. Typical inter-station distances are mostly in a range between 300 and 800 km, which can be of help in enhancing the lateral resolution of a regional tomography model. We first invert Rayleigh-wave phase speeds and amplitudes simultaneously for phase speed maps as well as local amplification factors at receiver locations. The isotropic 3-D S-wave model constructed from these phase speed maps incorporating both phase and amplitude data exhibits better recovery of the strength of velocity perturbations. In particular, local tectonic features characterized by strong velocity gradients, such as Rio Grande Rift, Colorado Plateau and New Madrid Seismic Zone, are more enhanced than conventional models derived from phase information only. The results indicate that surface-wave amplitude, which is sensitive to the second derivative of phase speeds, can be of great help in retrieving small-scale heterogeneity in the upper mantle. We also obtain a radial anisotropy model from the simultaneous inversions of Rayleigh and Love waves (without amplitude information). The model has shown faster SH wave speed anomalies than SV above the depth of 100 km, particularly in tectonically active regions in the western and central U.S., representing the effects of current and former tectonic processes on
Ball, J. S.; Sheehan, A. F.; Stachnik, J. C.; Lin, F. C.; Collins, J. A.
2015-12-01
We present the first 3D shear velocity model extending well offshore of New Zealand's South Island, imaging the lithosphere beneath Campbell and Challenger plateaus. Our model is constructed via linearized inversion of both teleseismic (18 -70 s period) and ambient noise-based (8 - 25 s period) Rayleigh wave dispersion measurements. We augment an array of 29 ocean-bottom instruments deployed off the South Island's east and west coasts in 2009-2010 with 28 New Zealand land-based seismometers. The ocean-bottom seismometers and 4 of the land seismometers were part of the Marine Observations of Anisotropy Near Aotearoa (MOANA) experiment, and the remaining land seismometers are from New Zealand's permanent GeoNet array. Major features of our shear wave velocity (Vs) model include a low-velocity (Vs<4.3km/s) body extending to at least 75km depth beneath the Banks and Otago peninsulas, a high-velocity (Vs~4.7km/s) upper mantle anomaly underlying the Southern Alps to a depth of 100km, and discontinuous lithospheric velocity structure between eastern and western Challenger Plateau. Using the 4.5km/s contour as a proxy for the lithosphere-asthenosphere boundary, our model suggests that the lithospheric thickness of Challenger Plateau is substantially greater than that of Campbell Plateau. The high-velocity anomaly we resolve beneath the central South Island exhibits strong spatial correlation with subcrustal earthquake hypocenters along the Alpine Fault (Boese et al., 2013). The ~400km-long low velocity zone we image beneath eastern South Island underlies Cenozoic volcanics and mantle-derived helium observations (Hoke et al., 2000) on the surface. The NE-trending low-velocity zone dividing Challenger Plateau in our model underlies a prominent magnetic discontinuity (Sutherland et al., 1999). The latter feature has been interpreted to represent a pre-Cretaceous crustal boundary, which our results suggest may involve the entire mantle lithosphere.
Darbyshire, Fiona A.; Dahl-Jensen, Trine; Larsen, Tine B.; Voss, Peter H.; Joyal, Guillaume
2018-03-01
The Greenland landmass preserves ˜4 billion years of tectonic history, but much of the continent is inaccessible to geological study due to the extensive inland ice cap. We map out, for the first time, the 3-D crustal structure of Greenland and the NW Atlantic ocean, using Rayleigh wave anisotropic group velocity tomography, in the period range 10-80 s, from regional earthquakes and the ongoing GLATIS/GLISN seismograph networks. 1-D inversion gives a pseudo-3-D model of shear wave velocity structure to depths of ˜100 km with a horizontal resolution of ˜200 km. Crustal thickness across mainland Greenland ranges from ˜25 km to over 50 km, and the velocity structure shows considerable heterogeneity. The large sedimentary basins on the continental shelf are clearly visible as low velocities in the upper ˜5-15 km. Within the upper continental basement, velocities are systematically lower in northern Greenland than in the south, and exhibit a broadly NW-SE trend. The thinning of the crust at the continental margins is also clearly imaged. Upper-mantle velocities show a clear distinction between typical fast cratonic lithosphere (Vs ≥4.6 km s-1) beneath Greenland and its NE margin and anomalously slow oceanic mantle (Vs ˜4.3-4.4 km s-1) beneath the NW Atlantic. We do not observe any sign of pervasive lithospheric modification across Greenland in the regions associated with the presumed Iceland hotspot track, though the average crustal velocity in this region is higher than that of areas to the north and south. Crustal anisotropy beneath Greenland is strong and complex, likely reflecting numerous episodes of tectonic deformation. Beneath the North Atlantic and Baffin Bay, the dominant anisotropy directions are perpendicular to the active and extinct spreading centres. Anisotropy in the subcontinental lithosphere is weaker than that of the crust, but still significant, consistent with cratonic lithosphere worldwide.
Servali, A.; Long, M. D.; Benoit, M.
2017-12-01
The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.
Li, Jing; Schuster, Gerard T.; Zeng, Zhaofa
2017-01-01
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method
Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas
2017-04-01
We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.
Source inversion in the full-wave tomography; Full wave tomography ni okeru source inversion
Energy Technology Data Exchange (ETDEWEB)
Tsuchiya, T [DIA Consultants Co. Ltd., Tokyo (Japan)
1997-10-22
In order to consider effects of characteristics of a vibration source in the full-wave tomography (FWT), a study has been performed on a method to invert vibration source parameters together with V(p)/V(s) distribution. The study has expanded an analysis method which uses as the basic the gradient method invented by Tarantola and the partial space method invented by Sambridge, and conducted numerical experiments. The experiment No. 1 has performed inversion of only the vibration source parameters, and the experiment No. 2 has executed simultaneous inversion of the V(p)/V(s) distribution and the vibration source parameters. The result of the discussions revealed that and effective analytical procedure would be as follows: in order to predict maximum stress, the average vibration source parameters and the property parameters are first inverted simultaneously; in order to estimate each vibration source parameter at a high accuracy, the property parameters are fixed, and each vibration source parameter is inverted individually; and the derived vibration source parameters are fixed, and the property parameters are again inverted from the initial values. 5 figs., 2 tabs.
The internal waves and Rayleigh-Taylor instability in compressible quantum plasmas
International Nuclear Information System (INIS)
Lu, H. L.; Qiu, X. M.
2011-01-01
In this paper, we investigate the quantum effect on internal waves and Rayleigh-Taylor (RT) instability in compressible quantum plasmas. First of all, let us consider the case of the limit of short wavelength perturbations. In the case, the dispersion relation including quantum and compressibility effects and the RT instability growth rate can be derived using Wentzel-Kramers-Brillouin method. The results show that the internal waves can propagate along the transverse direction due to the quantum effect, which was first pointed out by Bychkov et al.[Phys. Lett. A 372, 3042 (2008)], and the coupling between it and compressibility effect, which is found out in this paper. Then, without making the approximation assumption of short wavelength limit, we examine the linearized perturbation equation following Qiu et al.'s solving process [Phys. Plasmas 10, 2956 (2003)]. It is found that the quantum effect always stabilizes the RT instability in either incompressible or compressible quantum plasmas. Moreover, in the latter case, the coupling between it and compressibility effect makes this stabilization further enhance.
Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin
2015-01-01
The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
Costanzo, M. R.; Nunziata, C.; Strollo, R.
2017-11-01
Shear wave velocities (VS) are defined in the uppermost 1-2 km of the Campi Flegrei caldera through the non-linear inversion of the group velocity dispersion curves of fundamental-mode Rayleigh waves extracted from ambient noise cross-correlations between two receivers. Noise recordings, three months long, at 12 seismic stations are cross-correlated between all couples of stations. The experiment provided successful results along 54 paths (inter-stations distance), of which 27 sampled a depth > 1 km. VS contour lines are drawn from 0.06 km b.s.l. to 1 km depth b.s.l. and show difference between the offshore (gulf of Pozzuoli and coastline) and the onshore areas. At 0.06 km b.s.l., the gulf of Pozzuoli and the coastline are characterized by VS of 0.3-0.5 km/s and of 0.5-0.7 km/s, respectively. Such velocities are typical of Neapolitan pyroclastic soils and fractured or altered tuffs. The inland shows VS in the range 0.7-0.9 km/s, typical of Neapolitan compact tuffs. Velocities increase with depth and, at 1 km depth b.s.l., velocities lower than 1.5 km/s are still present in the gulf and along the coastline while velocities higher than 1.9 km/s characterize the eastern sector (grossly coincident with the Neapolitan Yellow Tuff caldera rim), the S. Vito plain and the area between Solfatara and SW of Astroni. Such features are much more evident along two cross-sections drawn in the offshore and onshore sectors by integrating our VS models with literature data. Our models join previous noise cross-correlation studies at greater scale at depths of 0.7-0.8 km, hence the picture of the Campi Flegrei caldera is shown up to a depth of 15 km. VS of about 1.7 km/s, corresponding to compression velocities (VP) of about 3 km/s (computed by using the VP/VS ratio resulted in the inversion), are found at depths of 1.1 km, in the centre of the gulf of Pozzuoli, and at a depth of about 0.7 km b.s.l. onshore. An increment of VS velocity ( 1.9-2.0 km/s) is locally observed onshore
Palomeras, I.; Thurner, S.; Levander, A.; Liu, K.; Villasenor, A.; Carbonell, R.; Harnafi, M.
2014-01-01
We present a 3-D shear wave velocity model for the crust and upper mantle of the western Mediterranean from Rayleigh wave tomography. We analyzed the fundamental mode in the 20-167 s period band (6.0-50.0 mHz) from earthquakes recorded by a number of temporary and permanent seismograph arrays. Using the two-plane wave method, we obtained phase velocity dispersion curves that were inverted for an isotropic Vs model that extends from the southern Iberian Massif, across the Gibraltar Arc and the Atlas mountains to the Saharan Craton. The area of the western Mediterranean that we have studied has been the site of complex subduction, slab rollback, and simultaneous compression and extension during African-European convergence since the Oligocene. The shear velocity model shows high velocities beneath the Rif from 65 km depth and beneath the Granada Basin from ˜70 km depth that extend beneath the Alboran Domain to more than 250 km depth, which we interpret as a near-vertical slab dangling from beneath the western Alboran Sea. The slab appears to be attached to the crust beneath the Rif and possibly beneath the Granada Basin and Sierra Nevada where low shear velocities (3.8 km/s) are mapped to >55 km depth. The attached slab is pulling down the Gibraltar Arc crust, thickening it, and removing the continental margin lithospheric mantle beneath both Iberia and Morocco as it descends into the deeper mantle. Thin lithosphere is indicated by very low upper mantle velocities beneath the Alboran Sea, above and east of the dangling slab and beneath the Cenozoic volcanics.
International Nuclear Information System (INIS)
Otero, F A; Frontini, G L; Elicabe, G E
2011-01-01
An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.
Scholz, John-Robert; Barruol, Guilhem; Fontaine, Fabrice R.; Sigloch, Karin
2016-04-01
To image the upper mantle structure beneath La Réunion hotspot, a large-scale seismic network has been deployed on land and at sea in the frame of the RHUM-RUM project (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel). This French-German passive seismic experiment was designed to investigate and image the deep structure beneath La Réunion, from crust to core, to precise the shape and depth origin of a mantle plume, if any, and to precise the horizontal and vertical mantle flow associated to a possible plume upwelling, to its interaction with the overlying plate and with the neighboring Indian ridges. For this purpose, 57 Ocean-Bottom Seismometers (OBS) were installed around La Réunion and along the Central and Southwest Indian ridges. Broad-band instruments were deployed with the French R/V Marion Dufresne in late 2012 (cruise MD192), and recovered 13 months later by the German R/V Meteor (cruise M101). The pool of OBS was complemented by ~60 terrestrial stations, installed on different islands in the western Indian Ocean, such as La Réunion, Madagascar, Mauritius, Seychelles, Mayotte and the Îles Éparses in the Mozambique channel. The OBS installation is a free-fall down to the seafloor, where they landed in an unknown orientation. Since seismologic investigations of crustal and upper mantle structure (e.g., receiver functions) and azimuthal anisotropy (e.g., SKS-splitting and Rayleigh waves) rely on the knowledge of the correct OBS orientation with respect to the geographic reference frame, it is of importance to determine the orientations of the OBS while recording on the seafloor. In an isotropic, horizontally homogeneous and non-dipping layered globe, the misorientation of each station refers to the offset between theoretical and recorded back-azimuth angle of a passive seismic event. Using large earthquakes (MW > 5.0), it is possible to establish multiple successful measurements per station and thus to determine with good confidence the
Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves
Chen, W.; Ni, S.; Wang, Z.
2011-12-01
In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.
Inverse Schroedinger equation and the exact wave function
International Nuclear Information System (INIS)
Nakatsuji, Hiroshi
2002-01-01
Using the inverse of the Hamiltonian, we introduce the inverse Schroedinger equation (ISE) that is equivalent to the ordinary Schroedinger equation (SE). The ISE has the variational principle and the H-square group of equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations. The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction (ICI) theory is generalized to cover both the SE and ISE concepts and four different computational methods of calculating the exact wave function are presented in both analytical and matrix representations. The exact wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any singularity problem
Skeletonized wave-equation inversion for Q
Dutta, Gaurav
2016-09-06
A wave-equation gradient optimization method is presented that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ε. Here, ε is the sum of the squared differences between the observed and the predicted peak/centroid frequency shifts of the early-arrivals. The gradient is computed by migrating the observed traces weighted by the frequency-shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests show that an improved accuracy of the inverted Q model by wave-equation Q tomography (WQ) leads to a noticeable improvement in the migration image quality.
Skeletonized wave-equation inversion for Q
Dutta, Gaurav; Schuster, Gerard T.
2016-01-01
A wave-equation gradient optimization method is presented that inverts for the subsurface Q distribution by minimizing a skeletonized misfit function ε. Here, ε is the sum of the squared differences between the observed and the predicted peak/centroid frequency shifts of the early-arrivals. The gradient is computed by migrating the observed traces weighted by the frequency-shift residuals. The background Q model is perturbed until the predicted and the observed traces have the same peak frequencies or the same centroid frequencies. Numerical tests show that an improved accuracy of the inverted Q model by wave-equation Q tomography (WQ) leads to a noticeable improvement in the migration image quality.
International Nuclear Information System (INIS)
Park, Je Woong; Yang, In Young; Im, Kwang Hee; Hsu, David K.; Jung, Jong An
2012-01-01
The importance of carbon fiber reinforced plastics (CFRP) has been generally recognized, and CFRP composite laminates have become widely used. Thus, a nondestructive technique would be very useful for evaluating CF/epoxy composite laminates. A pitch catch UT signal is more sensitive than is a normal incidence backwall echo of a longitudinal wave in composites. The depth of the sampling volume where the pitch catch UT signal came from is relatively shallow, but the depth can be increased by increasing the separation distance of the transmitting and receiving probes. Moreover, a method is utilized to determine the porosity content of a composite lay up by processing micrograph images of the laminate. The porosity content of a composite structure is critical to the overall strength and performance of the structure. The image processing method developed utilizes software to process micrograph images of the test sample. The results from the image processing method are compared with existing data. Beam profile is characterized in unidirectional CFRP using pitch catch Rayleigh probes. The one sided and two sided pitch catch techniques are utilized to produce C scan images with the aid of an automatic scanner. The pitch catch ultrasonic signal corresponds with the simulated results of unidirectional CFRP composites
Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments
Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov
2017-10-01
Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Eurasian Surface Wave Phenomenology and Inversion for Crustal and Upper Mantle Structures
National Research Council Canada - National Science Library
Levshin, Anatoli
1997-01-01
Earthquake seismograms recorded by several global and regional networks between 1988 and late-1995 were used to measure the group velocity dispersion of fundamental Rayleigh and Love waves crossing Eurasia...
Eurasian Surface Wave Phenomenology and Inversion for Crustal and Upper Mantle Structures
National Research Council Canada - National Science Library
Levshin, Anatoli
1997-01-01
Earthquake seismograms recorded by several global and regional networks between 1988 and late 1995 were used to measure the group velocity dispersion of fundamental Rayleigh and Love waves crossing Eurasia...
Surface waves tomography and non-linear inversion in the southeast Carpathians
International Nuclear Information System (INIS)
Raykova, R.B.; Panza, G.F.
2005-11-01
A set of shear-wave velocity models of the lithosphere-asthenosphere system in the southeast Carpathians is determined by the non-linear inversion of surface wave group velocity data, obtained from a tomographic analysis. The local dispersion curves are assembled for the period range 7 s - 150 s, combining regional group velocity measurements and published global Rayleigh wave dispersion data. The lithosphere-asthenosphere velocity structure is reliably reconstructed to depths of about 250 km. The thickness of the lithosphere in the region varies from about 120 km to 250 km and the depth of the asthenosphere between 150 km and 250 km. Mantle seismicity concentrates where the high velocity lid is detected just below the Moho. The obtained results are in agreement with recent seismic refraction, receiver function, and travel time P-wave tomography investigations in the region. The similarity among the results obtained from different kinds of structural investigations (including the present work) highlights some new features of the lithosphere-asthenosphere system in southeast Carpathians, as the relatively thin crust under Transylvania basin and Vrancea zone. (author)
Uniqueness in inverse elastic scattering with finitely many incident waves
International Nuclear Information System (INIS)
Elschner, Johannes; Yamamoto, Masahiro
2009-01-01
We consider the third and fourth exterior boundary value problems of linear isotropic elasticity and present uniqueness results for the corresponding inverse scattering problems with polyhedral-type obstacles and a finite number of incident plane elastic waves. Our approach is based on a reflection principle for the Navier equation. (orig.)
A mathematical framework for inverse wave problems in heterogeneous media
Blazek, K.D.; Stolk, C.; Symes, W.W.
2013-01-01
This paper provides a theoretical foundation for some common formulations of inverse problems in wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded and measurable coefficients. The coefficients of these time-dependent partial differential equations
Wang, T.
2017-05-26
Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive and linearly related to the low-wavenumber model perturbation. Therefore, building initial P and S wave velocity models for EFWI by using elastic wave-equation reflections traveltime inversion (WERTI) would be effective and robust, especially for the deeper part. In order to distinguish the reflection travletimes of P or S-waves in elastic media, we decompose the surface multicomponent data into vector P- and S-wave seismogram. We utilize the dynamic image warping to extract the reflected P- or S-wave traveltimes. The P-wave velocity are first inverted using P-wave traveltime followed by the S-wave velocity inversion with S-wave traveltime, during which the wave mode decomposition is applied to the gradients calculation. Synthetic example on the Sigbee2A model proves the validity of our method for recovering the long wavelength components of the model.
Numerical Modelling of Rayleigh Wave Propagation in Course of Rapid Impulse Compaction
Herbut, Aneta; Rybak, Jarosław
2017-10-01
As the soil improvement technologies are the area of a rapid development, they require designing and implementing novel methods of control and calibration in order to ensure the safety of geotechnical works. At Wroclaw University of Science and Technology (Poland), these new methods are continually developed with the aim to provide the appropriate tools for the preliminary design of work process, as well as for the further ongoing on-site control of geotechnical works (steel sheet piling, pile driving or soil improvement technologies). The studies include preliminary numerical simulations and field tests concerning measurements and continuous histogram recording of shocks and vibrations and its ground-born dynamic impact on engineering structures. The impact of vibrations on reinforced concrete and masonry structures in the close proximity of the construction site may be destroying in both architectural and structural meaning. Those limits are juxtaposed in codes of practice, but always need an individual judgment. The results and observations make it possible to delineate specific modifications to the parameters of technology applied (e.g. hammer drop height). On the basis of numerous case studies of practical applications, already summarized and published, we were able to formulate the guidelines for work on the aforementioned sites. This work presents specific aspects of the active design (calibration of building site numerical model) by means of technology calibration, using the investigation of the impact of vibrations that occur during the Impulse Compaction on adjacent structures. A case study entails the impact of construction works on Rayleigh wave propagation in the zone of 100 m (radius) around the Compactor.
Dosso, S. E.; Molnar, S.; Cassidy, J.
2010-12-01
Bayesian inversion of microtremor array dispersion data is applied, with evaluation of data errors and model parameterization, to produce the most-probable shear-wave velocity (VS) profile together with quantitative uncertainty estimates. Generally, the most important property characterizing earthquake site response is the subsurface VS structure. The microtremor array method determines phase velocity dispersion of Rayleigh surface waves from multi-instrument recordings of urban noise. Inversion of dispersion curves for VS structure is a non-unique and nonlinear problem such that meaningful evaluation of confidence intervals is required. Quantitative uncertainty estimation requires not only a nonlinear inversion approach that samples models proportional to their probability, but also rigorous estimation of the data error statistics and an appropriate model parameterization. A Bayesian formulation represents the solution of the inverse problem in terms of the posterior probability density (PPD) of the geophysical model parameters. Markov-chain Monte Carlo methods are used with an efficient implementation of Metropolis-Hastings sampling to provide an unbiased sample from the PPD to compute parameter uncertainties and inter-relationships. Nonparametric estimation of a data error covariance matrix from residual analysis is applied with rigorous a posteriori statistical tests to validate the covariance estimate and the assumption of a Gaussian error distribution. The most appropriate model parameterization is determined using the Bayesian information criterion (BIC), which provides the simplest model consistent with the resolving power of the data. Parameter uncertainties are found to be under-estimated when data error correlations are neglected and when compressional-wave velocity and/or density (nuisance) parameters are fixed in the inversion. Bayesian inversion of microtremor array data is applied at two sites in British Columbia, the area of highest seismic risk in
Taori, Alok; Raghunath, Karnam; Jayaraman, Achuthan
We use combination of simultaneous measurements made with Rayleigh lidar and O2 airglow monitoring to improve lidar investigation capability to cover a higher altitude range. We feed instantaneous O2 airglow temperatures instead the model values at the top altitude for subsequent integration method of temperature retrieval using Rayleigh lidar back scattered signals. Using this method, errors in the lidar temperature estimates converges at higher altitudes indicating better altitude coverage compared to regular methods where model temperatures are used instead of real-time measurements. This improvement enables the measurements of short period waves at upper mesospheric altitudes (~90 km). With two case studies, we show that above 60 km the few short period wave amplitude drastically increases while, some of the short period wave show either damping or saturation. We claim that by using such combined measurements, a significant and cost effective progress can be made in the understanding of short period wave processes which are important for the coupling across the different atmospheric regions.
Energy Technology Data Exchange (ETDEWEB)
Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)
1997-05-27
Algorithm is constructed and a program developed for a full-wave inversion (FWI) method utilizing the elastic wave equation in seismic exploration. The FWI method is a method for obtaining a physical property distribution using the whole observed waveforms as the data. It is capable of high resolution which is several times smaller than the wavelength since it can handle such phenomena as wave reflection and dispersion. The method for determining the P-wave velocity structure by use of the acoustic wave equation does not provide information about the S-wave velocity since it does not consider S-waves or converted waves. In an analysis using the elastic wave equation, on the other hand, not only P-wave data but also S-wave data can be utilized. In this report, under such circumstances, an inverse analysis algorithm is constructed on the basis of the elastic wave equation, and a basic program is developed. On the basis of the methods of Mora and of Luo and Schuster, the correction factors for P-wave and S-wave velocities are formulated directly from the elastic wave equation. Computations are performed and the effects of the hypocenter frequency and vibration transmission direction are examined. 6 refs., 8 figs.
Energy Technology Data Exchange (ETDEWEB)
Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E
2009-07-06
In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations
Full-waveform inversion of surface waves in exploration geophysics
Borisov, D.; Gao, F.; Williamson, P.; Tromp, J.
2017-12-01
Full-waveform inversion (FWI) is a data fitting approach to estimate high-resolution properties of the Earth from seismic data by minimizing the misfit between observed and calculated seismograms. In land seismics, the source on the ground generates high-amplitude surface waves, which generally represent most of the energy recorded by ground sensors. Although surface waves are widely used in global seismology and engineering studies, they are typically treated as noise within the seismic exploration community since they mask deeper reflections from the intervals of exploration interest. This is mainly due to the fact that surface waves decay exponentially with depth and for a typical frequency range (≈[5-50] Hz) sample only the very shallow part of the subsurface, but also because they are much more sensitive to S-wave than P-wave velocities. In this study, we invert surface waves in the hope of using them as additional information for updating the near surface. In a heterogeneous medium, the main challenge of surface wave inversion is associated with their dispersive character, which makes it difficult to define a starting model for conventional FWI which can avoid cycle-skipping. The standard approach to dealing with this is by inverting the dispersion curves in the Fourier (f-k) domain to generate locally 1-D models, typically for the shear wavespeeds only. However this requires that the near-surface zone be more or less horizontally invariant over a sufficient distance for the spatial Fourier transform to be applicable. In regions with significant topography, such as foothills, this is not the case, so we revert to the time-space domain, but aim to minimize the differences of envelopes in the early stages of the inversion to resolve the cycle-skipping issue. Once the model is good enough, we revert to the classic waveform-difference inversion. We first present a few synthetic examples. We show that classical FWI might be trapped in a local minimum even for
Non-perturbational surface-wave inversion: A Dix-type relation for surface waves
Haney, Matt; Tsai, Victor C.
2015-01-01
We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.
Parsimonious wave-equation travel-time inversion for refraction waves
Fu, Lei; Hanafy, Sherif M.; Schuster, Gerard T.
2017-01-01
We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping
2018-01-01
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes
Inverse free electron laser beat-wave accelerator research
International Nuclear Information System (INIS)
Marshall, T.C.; Bhattacharjee, A.
1993-09-01
A calculation on the stabilization of the sideband instability in the free electron laser (FEL) and inverse FEL (IFEL) was completed. The issue arises in connection with the use of a tapered (''variable-parameter'') undulator of extended length, such as might be used in an ''enhanced efficiency'' traveling-wave FEL or an IFEL accelerator. In addition, the FEL facility at Columbia was configured as a traveling wave amplifier for a 10-kW signal from a 24-GHz magnetron. The space charge field in the bunches of the FEL was measured. Completed work has been published
The effects of core-reflected waves on finite fault inversions with teleseismic body wave data
Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han
2017-11-01
Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases
Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.
2018-01-01
A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.
Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome
2013-10-01
The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.
Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi
2018-01-01
The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40–80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150–200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove
Jiang, Chengxin; Schmandt, Brandon; Hansen, Steven M.; Dougherty, Sara L.; Clayton, Robert W.; Farrell, Jamie; Lin, Fan-Chi
2018-04-01
The crust and upper mantle structure of central California have been modified by subduction termination, growth of the San Andreas plate boundary fault system, and small-scale upper mantle convection since the early Miocene. Here we investigate the contributions of these processes to the creation of the Isabella Anomaly, which is a high seismic velocity volume in the upper mantle. There are two types of hypotheses for its origin. One is that it is the foundered mafic lower crust and mantle lithosphere of the southern Sierra Nevada batholith. The alternative suggests that it is a fossil slab connected to the Monterey microplate. A dense broadband seismic transect was deployed from the coast to the western Sierra Nevada to fill in the least sampled areas above the Isabella Anomaly, and regional-scale Rayleigh and S wave tomography are used to evaluate the two hypotheses. New shear velocity (Vs) tomography images a high-velocity anomaly beneath coastal California that is sub-horizontal at depths of ∼40-80 km. East of the San Andreas Fault a continuous extension of the high-velocity anomaly dips east and is located beneath the Sierra Nevada at ∼150-200 km depth. The western position of the Isabella Anomaly in the uppermost mantle is inconsistent with earlier interpretations that the Isabella Anomaly is connected to actively foundering foothills lower crust. Based on the new Vs images, we interpret that the Isabella Anomaly is not the dense destabilized root of the Sierra Nevada, but rather a remnant of Miocene subduction termination that is translating north beneath the central San Andreas Fault. Our results support the occurrence of localized lithospheric foundering beneath the high elevation eastern Sierra Nevada, where we find a lower crustal low Vs layer consistent with a small amount of partial melt. The high elevations relative to crust thickness and lower crustal low Vs zone are consistent with geological inferences that lithospheric foundering drove uplift
Rayleigh Wave Phase Velocities Beneath the Central and Southern East African Rift System
Adams, A. N.; Miller, J. C.
2017-12-01
This study uses the Automated Generalized Seismological Data Function (AGSDF) method to develop a model of Rayleigh wave phase velocities in the central and southern portions of the East African Rift System (EARS). These phase velocity models at periods of 20-100s lend insight into the lithospheric structures associated with surficial rifting and volcanism, as well as basement structures that pre-date and affect the course of rifting. A large dataset of >700 earthquakes is used, comprised of Mw=6.0+ events that occurred between the years 1995 and 2016. These events were recorded by a composite array of 176 stations from twelve non-contemporaneous seismic networks, each with a distinctive array geometry and station spacing. Several first-order features are resolved in this phase velocity model, confirming findings from previous studies. (1) Low velocities are observed in isolated regions along the Western Rift Branch and across the Eastern Rift Branch, corresponding to areas of active volcanism. (2) Two linear low velocity zones are imaged trending southeast and southwest from the Eastern Rift Branch in Tanzania, corresponding with areas of seismic activity and indicating possible incipient rifting. (3) High velocity regions are observed beneath both the Tanzania Craton and the Bangweulu Block. Furthermore, this model indicates several new findings. (1) High velocities beneath the Bangweulu Block extend to longer periods than those found beneath the Tanzania Craton, perhaps indicating that rifting processes have not altered the Bangweulu Block as extensively as the Tanzania Craton. (2) At long periods, the fast velocities beneath the Bangweulu Block extend eastwards beyond the surficial boundaries, to and possibly across the Malawi Rift. This may suggest the presence of older, thick blocks of lithosphere in regions where they are not exposed at the surface. (3) Finally, while the findings of this study correspond well with previous studies in regions of overlapping
Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering
Ablowitz, Mark J.
1994-12-01
Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.
Czech Academy of Sciences Publication Activity Database
Brepta, R.; Valeš, F.; Červ, Jan; Tikal, B.
1996-01-01
Roč. 58, č. 6 (1996), s. 1233-1244 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA101/93/1195 Institutional research plan: CEZ:AV0Z2076919 Keywords : thin elastic body * Rayleigh waves * grid dispersion Subject RIV: BI - Acoustics Impact factor: 0.254, year: 1996 http://apps.isiknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=U2EJknka3H@mKemE37@&page=1&doc=1&colname=WOS
International Nuclear Information System (INIS)
Boaga, J; Vignoli, G; Cassiani, G
2011-01-01
Inversion is a critical step in all geophysical techniques, and is generally fraught with ill-posedness. In the case of seismic surface wave studies, the inverse problem can lead to different equivalent subsoil models and consequently to different local seismic response analyses. This can have a large impact on an earthquake engineering design. In this paper, we discuss the consequences of non-uniqueness of surface wave inversion on seismic responses, with both numerical and experimental data. Our goal is to evaluate the consequences on common seismic response analysis in the case of different impedance contrast conditions. We verify the implications of inversion uncertainty, and consequently of data information content, on realistic local site responses. A stochastic process is used to generate a set of 1D shear wave velocity profiles from several specific subsurface models. All these profiles are characterized as being equivalent, i.e. their responses, in terms of a dispersion curve, are compatible with the uncertainty in the same surface wave data. The generated 1D shear velocity models are then subjected to a conventional one-dimensional seismic ground response analysis using a realistic input motion. While recent analyses claim that the consequences of surface wave inversion uncertainties are very limited, our test points out that a relationship exists between inversion confidence and seismic responses in different subsoils. In the case of regular and relatively smooth increase of shear wave velocities with depth, as is usual in sedimentary plains, our results show that the choice of a specific model among equivalent solutions strongly influences the seismic response. On the other hand, when the shallow subsoil is characterized by a strong impedance contrast (thus revealing a characteristic soil resonance period), as is common in the presence of a shallow bedrock, equivalent solutions provide practically the same seismic amplification, especially in the
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan); Uesaka, S [Kyoto University, Kyoto (Japan). Faculty of Engineering
1996-10-01
The effect of initial models on full-wave inversion (FWI) analysis based on acoustic wave-equation was studied for elastic wave tomography of underground structures. At present, travel time inversion using initial motion travel time is generally used, and inverse analysis is conducted using the concept `ray,` assuming very high wave frequency. Although this method can derive stable solutions relatively unaffected by initial model, it uses only the data of initial motion travel time. FWI calculates theoretical waveform at each receiver using all of observed waveforms as data by wave equation modeling where 2-D underground structure is calculated by difference calculus under the assumption that wave propagation is described by wave equation of P wave. Although it is a weak point that FWI is easily affected by noises in an initial model and data, it is featured by high resolution of solutions. This method offers very excellent convergence as a proper initial model is used, resulting in sufficient performance, however, it is strongly affected by initial model. 2 refs., 7 figs., 1 tab.
Variational structure of inverse problems in wave propagation and vibration
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
1995-03-01
Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.
Fletcher, Jon B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse
2016-04-01
If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta, then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of freshwater for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental mode, Rayleigh wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations was stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 s. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which are dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4°. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large crosscutting features like the Stockton arch. At shorter periods around 5.5 s, the model's western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries of the low
Fletcher, Jon Peter B.; Erdem, Jemile; Seats, Kevin; Lawrence, Jesse
2016-01-01
If shaking from a local or regional earthquake in the San Francisco Bay region were to rupture levees in the Sacramento/San Joaquin Delta then brackish water from San Francisco Bay would contaminate the water in the Delta: the source of fresh water for about half of California. As a prelude to a full shear-wave velocity model that can be used in computer simulations and further seismic hazard analysis, we report on the use of ambient noise tomography to build a fundamental-mode, Rayleigh-wave group velocity model for the region around the Sacramento/San Joaquin Delta in the western Central Valley, California. Recordings from the vertical component of about 31 stations were processed to compute the spatial distribution of Rayleigh wave group velocities. Complex coherency between pairs of stations were stacked over 8 months to more than a year. Dispersion curves were determined from 4 to about 18 seconds. We calculated average group velocities for each period and inverted for deviations from the average for a matrix of cells that covered the study area. Smoothing using the first difference is applied. Cells of the model were about 5.6 km in either dimension. Checkerboard tests of resolution, which is dependent on station density, suggest that the resolving ability of the array is reasonably good within the middle of the array with resolution between 0.2 and 0.4 degrees. Overall, low velocities in the middle of each image reflect the deeper sedimentary syncline in the Central Valley. In detail, the model shows several centers of low velocity that may be associated with gross geologic features such as faulting along the western margin of the Central Valley, oil and gas reservoirs, and large cross cutting features like the Stockton arch. At shorter periods around 5.5s, the model’s western boundary between low and high velocities closely follows regional fault geometry and the edge of a residual isostatic gravity low. In the eastern part of the valley, the boundaries
Ravenna, Matteo; Lebedev, Sergei
2018-04-01
Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric
Parsimonious wave-equation travel-time inversion for refraction waves
Fu, Lei
2017-02-14
We present a parsimonious wave-equation travel-time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into O(N2) refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave-equation travel-time inversion. Numerical results show that the parsimonious wave-equation travel-time tomogram has about the same accuracy as the tomogram computed by standard wave-equation travel-time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.
Han, Libo; Peng, Zhigang; Johnson, Christopher W.; Pollitz, Fred F.; Li, Lu; Wang, Baoshan; Wu, Jing; Li, Qiang; Wei, Hongmei
2017-12-01
We present a case of remotely triggered seismicity in Southwest China by the 2015/04/25 M7.8 Gorkha, Nepal earthquake. A local magnitude ML3.8 event occurred near the Qijiang district south of Chongqing city approximately 12 min after the Gorkha mainshock. Within 30 km of this ML3.8 event there are 62 earthquakes since 2009 and only 7 ML > 3 events, which corresponds to a likelihood of 0.3% for a ML > 3 on any given day by a random chance. This observation motivates us to investigate the relationship between the ML3.8 event and the Gorkha mainshock. The ML3.8 event was listed in the China Earthquake National Center (CENC) catalog and occurred at shallow depth (∼3 km). By examining high-frequency waveforms, we identify a smaller local event (∼ML 2.5) ∼ 15 s before the ML3.8 event. Both events occurred during the first two cycles of the Rayleigh waves from the Gorkha mainshock. We perform seismic event detection based on envelope function and waveform matching by using the two events as templates. Both analyses found a statistically significant rate change during the mainshock, suggesting that they were indeed dynamically triggered by the Rayleigh waves. Both events occurred during the peak normal and dilatational stress changes (∼10-30 kPa), consistent with observations of dynamic triggering in other geothermal/volcanic regions. Although other recent events (i.e., the 2011 M9.1 Tohoku-Oki earthquake) produced similar peak ground velocities, the 2015 Gorkha mainshock was the only event that produced clear dynamic triggering in this region. The triggering site is close to hydraulic fracturing wells that began production in 2013-2014. Hence we suspect that fluid injections may increase the region's susceptibility to remote dynamic triggering.
Microstrip natural wave spectrum mathematical model using partial inversion method
International Nuclear Information System (INIS)
Pogarsky, S.A.; Litvinenko, L.N.; Prosvirnin, S.L.
1995-01-01
It is generally agreed that both microstrip lines itself and different discontinuities based on microstrips are the most difficult problem for accurate electrodynamic analysis. Over the last years much has been published about principles and accurate (or full wave) methods of microstrip lines investigations. The growing interest for this problem may be explained by the microstrip application in the millimeter-wave range for purpose of realizing interconnects and a variety of passive components. At these higher operating rating frequencies accurate component modeling becomes more critical. A creation, examination and experimental verification of the accurate method for planar electrodynamical structures natural wave spectrum investigations are the objects of this manuscript. The moment method with partial inversion operator method using may be considered as a basical way for solving this problem. This method is outlook for accurate analysis of different planar discontinuities in microstrip: such as step discontinuities, microstrip turns, Y- and X-junctions and etc., substrate space steps dielectric constants and other anisotropy types
Measurement of longitudinal and rayleigh wave velocities by advanced one-sided technique in concrete
International Nuclear Information System (INIS)
Lee, Joon Hyun; Song, Won Joon; Popovics, J. S.; Achenbach, J. D.
1997-01-01
A new procedure for the advanced one-sided measurement of longitudinal wave and surface wave velocities in concrete is presented in this paper. Stress waves are generated in a consistent fashion with a DC solenoid. Two piezoelectric accelerometers are mounted on the surface of a specimen as receivers. Stress waves propagate along the surface of the specimen and are detected by the receivers. In order to reduce the large incoherent noise levels of the signals, signals are collected and manipulated by a computer program for each velocity measurement. For a known distance between the two receivers and using the measured flight times, the velocities of the longitudinal wave and the surface wave are measured. The velocities of the longitudinal wave determined by this method are compared with those measured by conventional methods on concrete, PMMA and steel.
Li, Jing
2017-12-22
A robust imaging technology is reviewed that provide subsurface information in challenging environments: wave-equation dispersion inversion (WD) of surface waves for the shear velocity model. We demonstrate the benefits and liabilities of the method with synthetic seismograms and field data. The benefits of WD are that 1) there is no layered medium assumption, as there is in conventional inversion of dispersion curves, so that the 2D or 3D S-velocity model can be reliably obtained with seismic surveys over rugged topography, and 2) WD mostly avoids getting stuck in local minima. The synthetic and field data examples demonstrate that WD can accurately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic media and the inversion of dispersion curves associated with Love wave. The liability is that is almost as expensive as FWI and only recovers the Vs distribution to a depth no deeper than about 1/2~1/3 wavelength.
Tatar, M.; Nasrabadi, A.
2013-10-01
Variations in crustal thickness in the Zagros determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group and phase velocity dispersion. The time domain iterative deconvolution procedure was employed to compute RFs from teleseismic recordings at seven broadband stations of INSN network. Rayleigh wave phase velocity dispersion curves were estimated employing two-station method. Fundamental mode Rayleigh wave group velocities for each station is taken from a regional scale surface wave tomographic imaging. The main variations in crustal thickness that we observe are between stations located in the Zagros fold and thrust belt with those located in the Sanandaj-Sirjan zone (SSZ) and Urumieh-Dokhtar magmatic assemblage (UDMA). Our results indicate that the average crustal thickness beneath the Zagros Mountain Range varies from ˜46 km in Western and Central Zagros beneath SHGR and GHIR up to ˜50 km beneath BNDS located in easternmost of the Zagros. Toward NE, we observe an increase in Moho depth where it reaches ˜58 km beneath SNGE located in the SSZ. Average crustal thickness also varies beneath the UDMA from ˜50 km in western parts below ASAO to ˜58 in central parts below NASN. The observed variation along the SSZ and UDMA may be associated to ongoing slab steepening or break off in the NW Zagros, comparing under thrusting of the Arabian plate beneath Central Zagros. The results show that in Central Iran, the crustal thickness decrease again to ˜47 km below KRBR. There is not a significant crustal thickness difference along the Zagros fold and thrust belt. We found the same crystalline crust of ˜34 km thick beneath the different parts of the Zagros fold and thrust belt. The similarity of crustal structure suggests that the crust of the Zagros fold and thrust belt was uniform before subsidence and deposition of the sediments. Our results confirm that the shortening of the western and eastern parts of the Zagros basement is small and
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface
Bernard, Simon; Cloutier, Guy
2017-10-01
Inversion methods in shear wave elastography use simplifying assumptions to recover the mechanical properties of soft tissues. Consequently, these methods suffer from artifacts when applied to media containing strong stiffness contrasts, and do not provide a map of the viscosity. In this work, the shear wave field recorded inside and around an inclusion was used to estimate the viscoelastic properties of the inclusion and surrounding medium, based on an inverse problem approach assuming local homogeneity of both media. An efficient semi-analytical method was developed to model the scattering of an elastic wave by an irregular inclusion, based on a decomposition of the field by Bessel functions and on a decomposition of the boundaries as Fourier series. This model was validated against finite element modeling. Shear waves were experimentally induced by acoustic radiation force in soft tissue phantoms containing stiff and soft inclusions, and the displacement field was imaged at a high frame rate using plane wave imaging. A nonlinear least-squares algorithm compared the model to the experimental data and adjusted the geometrical and mechanical parameters. The estimated shear storage and loss moduli were in good agreement with reference measurements, as well as the estimated inclusion shape. This approach provides an accurate estimation of geometry and viscoelastic properties for a single inclusion in a homogeneous background in the context of radiation force elastography.
Pollitz, F.F.; Snoke, J. Arthur
2010-01-01
We utilize two-and-three-quarter years of vertical-component recordings made by the Transportable Array (TA) component of Earthscope to constrain three-dimensional (3-D) seismic shear wave velocity structure in the upper 200 km of the western United States. Single-taper spectral estimation is used to compile measurements of complex spectral amplitudes from 44 317 seismograms generated by 123 teleseismic events. In the ﬁrst step employed to determine the Rayleigh-wave phase-velocity structure, we implement a new tomographic method, which is simpler and more robust than scattering-based methods (e.g. multi-plane surface wave tomography). The TA is effectively implemented as a large number of local arrays by deﬁning a horizontal Gaussian smoothing distance that weights observations near a given target point. The complex spectral-amplitude measurements are interpreted with the spherical Helmholtz equation using local observations about a succession of target points, resulting in Rayleigh-wave phase-velocity maps at periods over the range of 18–125 s. The derived maps depend on the form of local ﬁts to the Helmholtz equation, which generally involve the nonplane-wave solutions of Friederich et al. In a second step, the phase-velocity maps are used to derive 3-D shear velocity structure. The 3-D velocity images conﬁrm details witnessed in prior body-wave and surface-wave studies and reveal new structures, including a deep (>100 km deep) high-velocity lineament, of width ∼200 km, stretching from the southern Great Valley to northern Utah that may be a relic of plate subduction or, alternatively, either a remnant of the Mojave Precambrian Province or a mantle downwelling. Mantle seismic velocity is highly correlated with heat ﬂow, Holocene volcanism, elastic plate thickness and seismicity. This suggests that shallow mantle structure provides the heat source for associated magmatism, as well as thinning of the thermal lithosphere, leading to relatively high
Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.
2017-12-01
The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.
International Nuclear Information System (INIS)
Naghizadeh, M.; Javaherian, A.; Sadidkhooy, A.
2005-01-01
Surface wave amplitudes from explosion sources show less variation for a given event than body wave amplitudes, so it is natural to expect that yield estimation derived from surface waves will be more accurate than yield estimation derived from body waves. However yield estimation from surface waves is complicated by the presence of tectonic strain release, which acts like one or more earthquake sources superimposed on the explosion. Explosions on an island or near a mountain slope can exhibit anomalous surface waves similar to those caused by tectonic strain release. One of the methods in estimating the yield of nuclear explosions is to determine a relationship between the magnitude and the yield of an explosion. The kind of magnitude employed has an important role in this regard. In this paper, vertical component of long period seismograms at SRO, Mashhad from explosions occurred in semipalatinsk test site, semipalatinsk test site east of Kazakhstan) are considered. First, by using the relationships of IASPEI and Rezapour and Pearce (1998), we determined surface wave magnitude (MS) which is defined as the logarithm of the amplitude plus a distance correction. Then we derived a relation for M S versus yield for a data set which includes a 15 long period seismograms recorded at SRO Mashhad station from semipalatinsk test site nuclear explosions. Furthermore, by digitizing the vertical component of seismograms and transforming them to the frequency domain, the mean amplitude of records at frequency ranges of 0.04-0.06 Hz were calculated. Then, surface wave magnitudes in the frequency domain (M Sf ) and their corresponding yield-magnitude relationship were obtained. By comparing correlation coefficients of these two yield-magnitude relationships, following relationship M S = 1.079 log(Y) + 1.714, was chosen for estimating the yield of semipalatinsk test site nuclear explosion from seismograms of SRO
Response of a Circular Tunnel Through Rock to a Harmonic Rayleigh Wave
Kung, Chien-Lun; Wang, Tai-Tien; Chen, Cheng-Hsun; Huang, Tsan-Hwei
2018-02-01
A factor that combines tunnel depth and incident wavelength has been numerically determined to dominate the seismic responses of a tunnel in rocks that are subjected to harmonic P- and S-waves. This study applies the dynamic finite element method to investigate the seismic response of shallow overburden tunnels. Seismically induced stress increments in the lining of a circular tunnel that is subjected to an incident harmonic R-wave are examined. The determination of R-wave considers the dominant frequency of acceleration history of the 1999 Chi-Chi earthquake measured near the site with damage to two case tunnels at specifically shallow depth. An analysis reveals that the normalized seismically induced axial, shear and flexural stress increments in the lining of a tunnel reach their respective peaks at the depth h/ λ = 0.15, where the ground motion that is generated by an incident of R-wave has its maximum. The tunnel radius has a stronger effect on seismically induced stress increments than does tunnel depth. A greater tunnel radius yields higher normalized seismically induced axial stress increments and lower normalized seismically induced shear and flexural stress increments. The inertia of the thin overburden layer above the tunnel impedes the propagation of the wave and affects the motion of the ground around the tunnel. With an extremely shallow overburden, such an effect can change the envelope of the normalized seismically induced stress increments from one with a symmetric four-petal pattern into one with a non-symmetric three-petal pattern. The simulated results may partially elucidate the spatial distributions of cracks that were observed in the lining of the case tunnels.
International Nuclear Information System (INIS)
Omura, Yoshiharu; Matsumoto, Hiroshi.
1989-01-01
Past theoretical and numerical studies of the nonlinear evolution of electromagnetic cyclotron waves are reviewed. Such waves are commonly observed in space plasmas such as Alfven waves in the solar wind or VLF whistler mode waves in the magnetosphere. The use of an electromagnetic full-particle code to study an electron cyclotron wave and of an electromagnetic hybrid code to study an ion cyclotron wave is demonstrated. Recent achievements in the simulations of nonlinear revolution of electromagnetic cyclotron waves are discussed. The inverse cascading processes of finite-amplitude whistler and Alfven waves is interpreted in terms of physical elementary processes. 65 refs
Ang, Kar M; Yeo, Leslie Y; Hung, Yew M; Tan, Ming K
2016-09-21
The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method.
Rayleigh-Taylor stability for a shock wave-density discontinuity interaction
International Nuclear Information System (INIS)
Fraley, G.S.
1981-01-01
Shells in inertial fusion targets are typically accelerated and decelerated by two or three shocks followed by continuous acceleration. The analytic solution for perturbation growth of a shock wave striking a density discontinuity in an inviscid fluid is investigated. The Laplace transform of the solution results in a functional equation, which has a simple solution for weak shock waves. The solution for strong shock waves may be given by a power series. It is assumed that the equation of state is given by a gamma law. The four independent parameters of the solution are the gamma values on each side of the material interface, the density ratio at the interface, and the shock strength. The asymptotic behavior (for large distances and times) of the perturbation velocity is given. For strong shocks the decay of the perturbation away from the interface is much weaker than the exponential decay of an incompressible fluid. The asymptotic value is given by a constant term and a number of slowly decaying discreet frequencies. The number of frequencies is roughly proportional to the logarithm of the density discontinuity divided by that of the shock strength. The asymptotic velocity at the interface is tabulated for representative values of the independent parameters. For weak shocks the solution is compared with results for an incompressible fluid. The range of density ratios with possible zero asymptotic velocities is given
Phononic Crystal Made of Multilayered Ridges on a Substrate for Rayleigh Waves Manipulation
Directory of Open Access Journals (Sweden)
Mourad Oudich
2017-12-01
Full Text Available We present a phononic crystal to achieve efficient manipulation of surface acoustic waves (SAW. The structure is made of finite phononic micro-ridges arranged periodically in a substrate surface. Each ridge is constructed by staking silicon and tungsten layers so that it behaves as one-dimensional phononic crystal which exhibits band gaps for elastic waves. The band gap allows the existence of resonance modes where the elastic energy is either confined within units in the free end of the ridge or the ones in contact with the substrate. We show that SAW interaction with localized modes in the free surface of the ridge gives rise to sharp attenuation in the SAW transmission, while the modes confined within the ridge/substrate interface cause broad band attenuations of SAW. Furthermore, we demonstrate that the coupling between the two kinds of modes within the band gap gives high SAW transmission amplitude in the form of Fano-like peaks with high quality factor. The structure could provide an interesting solution for accurate SAW control for sensing applications, for instance.
Rayleigh Wave Group Velocity Tomography from Microseisms in the Acambay Graben
Valderrama Membrillo, S.; Aguirre, J.; Zuñiga-Davila, R.; Iglesias, A.
2017-12-01
The Acambay graben is one of the most outstanding structures of the Trans-Mexican Volcanic Belt. The Acambay graben has a length of 80km and 15 to 18 km wide and reaches a maximum height of 400 m in its central part. We obtained the group velocity seismic tomography for the Acamaby graben for three different frequencies (f = 0.1, 0.2 and 0.3 Hz). The graben was divided into 6x6 km cells for the tomography and covered a total area of 1008 km2. Seismic noise data from 10 broadband seismic stations near the Acambay graben were used to extract the surface wave arrival-times between all station pairs. The Green's function was recovered in each stations pair by cross-correlation technique. This technique was applied to seismic recordings collected on the vertical component of 10 broadband stations for a continuous recording period of 5 months. Data processing consisted of removing instrumental response, mean, and trend. After that, we applied time domain normalization, a spectral whitening and applied band-pas filtering of 0.1 to 1 Hz. There are shallow studies of the Acambay graben. But little is known of the distribution of deep graben structures. This study estimated the surface wave velocity deep structure. The structures at the frequency 0.3 Hz indicate a lower depth than the remaining frequencies. The result for this frequency show consistencies with previous studies of gravimetry and resistivity, also defines the fault system of Temascalcingo.
Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; mimoun, H.
2013-12-01
The complex Mesozoic-Cenozoic Alpine deformation in the western Mediterranean extends from the Pyrenees in northern Spain to the Atlas Mountains in southern Morocco. The Iberian plate was accreted to the European plate in late Cretaceous, resulting in the formation of the Pyrenees. Cenozoic African-European convergence resulted in subduction of the Tethys oceanic plate beneath Europe. Rapid Oligocene slab rollback from eastern Iberia spread eastward and southward, with the trench breaking into three segments by the time it reached the African coast. One trench segment moved southwestward and westward creating the Alboran Sea, floored by highly extended continental crust, and building the encircling Betics Rif mountains comprising the Gibraltar arc, and the Atlas mountains, which formed as the inversion of a Jurassic rift. A number of recent experiments have instrumented this region with broad-band arrays (the US PICASSO array, Spanish IberArray and Siberia arrays, the University of Munster array), which, including the Spanish, Portuguese, and Moroccan permanent networks, provide a combined array of 350 stations having an average interstation spacing of ~60 km. Taking advantage of this dense deployment, we have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). Approximately 50,000 stations pairs were used to measure the phase velocity from ambient noise and more than 160 teleseismic events to measure phase velocity for longer periods. The inversion of the phase velocity dispersion curves provides a 3D shear velocity for the crust and uppermost mantle. Our results show differences between the various tectonic regions that extend to upper mantle depths (~200 km). In Iberia we obtain, on average, higher upper mantle shear velocities in the western Variscan region than in the younger eastern part. We map high upper mantle velocities (>4.6 km/s) beneath the
Coupling of Rayleigh-like waves with zero-sound modes in normal 3He
International Nuclear Information System (INIS)
Bogacz, S.A.; Ketterson, J.B.
1985-01-01
The Landau kinetic equation is solved in the collisionless regime for a sample of normal 3 He excited by a surface perturbation of arbitrary ω and k. The boundary condition for the nonequilibrium particle distribution is determined for the case of specular reflection of the elementary excitations at the interface. Using the above solution, the energy flux through the boundary is obtained as a function of the surface wave velocity ω/k. The absorption spectrum and its frequency derivative are calculated numerically for typical values of temperature and pressure. The spectrum displays a sharp, resonant-like maximum concentrated at the longitudinal sound velocity and a sharp maximum of the derivative concentrated at the transverse sound velocity. The energy transfer is cut off discontinuously below the Fermi velocity. An experimental measurement of the energy transfer spectrum would permit a determination of both zero-sound velocities and the Fermi velocity with spectroscopic precision
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
Yu, Han
2018-02-23
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.
Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors
Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping
2018-04-01
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes the squared sum of the traveltime residuals. Even though, wave-equation traveltime inversion can partly avoid the cycle skipping problem, a good initial velocity model is required for the inversion to converge to a reasonable tomogram with different attenuation profiles. When Q model is far away from the real model, the final tomogram is very sensitive to the starting velocity model. Nevertheless, a minor or moderate perturbation of the Q model from the true one does not strongly affect the inversion if the low wavenumber information of the initial velocity model is mostly correct. These claims are validated with numerical tests on both the synthetic and field data sets.
Palomeras, Imma; Villasenor, Antonio; Thurner, Sally; Levander, Alan; Gallart, Josep; Harnafi, Mimoun
2016-04-01
The Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin, constitute the westernmost Mediterranean. From north to south this region consists of the Pyrenees, the result of interaction between the Iberian and Eurasian plates; the Iberian Massif, a region that has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes) and the Atlas Mountains, resulting from post-Oligocene subduction roll-back and Eurasian-Nubian plate convergence. In this study we analyze data from recent broad-band array deployments and permanent stations on the Iberian Peninsula and in Morocco (Spanish IberArray and Siberia arrays, the US PICASSO array, the University of Munster array, and the Spanish, Portuguese, and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km, comparable to USArray. We have calculated the Rayleigh waves phase velocities from ambient noise for short periods (4 s to 40 s) and teleseismic events for longer periods (20 s to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. The model shows differences in the crust for the different areas, where the highest shear velocities are mapped in the Iberian Massif crust. The crustal thickness is highly variable ranging from ~25 km beneath the eastern Betics to ~55km beneath the Gibraltar Strait, Internal Betics and Internal Rif. Beneath this region a unique arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas
Palomeras, I.; Villasenor, A.; Thurner, S.; Levander, A.; Gallart, J.; Harnafi, M.
2014-12-01
The westernmost Mediterranean comprises the Iberian Peninsula and Morocco, separated by the Alboran Sea and the Algerian Basin. From north to south this region consists of the Pyrenees, resulting from Iberia-Eurasia collision; the Iberian Massif, which has been undeformed since the end of the Paleozoic; the Central System and Iberian Chain, regions with intracontinental Oligocene-Miocene deformation; the Gibraltar Arc (Betics, Rif and Alboran terranes), resulting from post-Oligocene subduction roll-back; and the Atlas Mountains. We analyzed data from recent broad-band array deployments and permanent stations in the area (IberArray and Siberia arrays, the PICASSO array, the University of Munster array, and the Spanish, Portuguese and Moroccan National Networks) to characterize its lithospheric structure. The combined array of 350 stations has an average interstation spacing of ~60 km. We calculated the Rayleigh waves phase velocities from ambient noise (periods 4 to 40 s) and teleseismic events (periods 20 to 167 s). We inverted the phase velocities to obtain a shear velocity model for the lithosphere to ~200 km depth. Our results correlate well with the surface expression of the main structural units with higher crustal velocity for the Iberian Massif than for the Alpine Iberia and Atlas Mountains. The Gibraltar Arc has lower crustal shear velocities than the regional average at all crustal depths. It also shows an arc shaped anomaly with high upper mantle velocities (>4.6 km/s) at shallow depths (volcanic fields in Iberia and Morocco, indicative of high temperatures at relatively shallow depths, and suggesting that the lithosphere has been removed beneath these areas.
Zhang, Xiao-bo; Tan, Jun; Song, Peng; Li, Jin-shan; Xia, Dong-ming; Liu, Zhao-lun
2017-01-01
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy
Waveform inversion for orthorhombic anisotropy with P-waves: feasibility & resolution
Kazei, Vladimir; Alkhalifah, Tariq Ali
2018-01-01
Various parameterizations have been suggested to simplify inversions of first arrivals, or P −waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six
Full-waveform inversion with reflected waves for 2D VTI media
Pattnaik, Sonali; Tsvankin, Ilya; Wang, Hui; Alkhalifah, Tariq
2016-01-01
Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations
Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion
Zhang, Sanzong; Schuster, Gerard T.; Luo, Yi
2012-01-01
way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity
Support Minimized Inversion of Acoustic and Elastic Wave Scattering
Safaeinili, Ali
Inversion of limited data is common in many areas of NDE such as X-ray Computed Tomography (CT), Ultrasonic and eddy current flaw characterization and imaging. In many applications, it is common to have a bias toward a solution with minimum (L^2)^2 norm without any physical justification. When it is a priori known that objects are compact as, say, with cracks and voids, by choosing "Minimum Support" functional instead of the minimum (L^2)^2 norm, an image can be obtained that is equally in agreement with the available data, while it is more consistent with what is most probably seen in the real world. We have utilized a minimum support functional to find a solution with the smallest volume. This inversion algorithm is most successful in reconstructing objects that are compact like voids and cracks. To verify this idea, we first performed a variational nonlinear inversion of acoustic backscatter data using minimum support objective function. A full nonlinear forward model was used to accurately study the effectiveness of the minimized support inversion without error due to the linear (Born) approximation. After successful inversions using a full nonlinear forward model, a linearized acoustic inversion was developed to increase speed and efficiency in imaging process. The results indicate that by using minimum support functional, we can accurately size and characterize voids and/or cracks which otherwise might be uncharacterizable. An extremely important feature of support minimized inversion is its ability to compensate for unknown absolute phase (zero-of-time). Zero-of-time ambiguity is a serious problem in the inversion of the pulse-echo data. The minimum support inversion was successfully used for the inversion of acoustic backscatter data due to compact scatterers without the knowledge of the zero-of-time. The main drawback to this type of inversion is its computer intensiveness. In order to make this type of constrained inversion available for common use, work
International Nuclear Information System (INIS)
Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi
2006-01-01
We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response
Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing
2017-10-01
Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.
Apical hypertrophy associated with rapid T wave inversion on the electrocardiogram.
Yamanari, H; Saito, D; Mikio, K; Nakamura, K; Nanba, T; Morita, H; Mizuo, K; Sato, T; Ohe, T
1995-01-01
A 53-year-old man who had no chest pain and no family history of heart disease demonstrated a rapid T wave change on an electrocardiogram, from a positive T wave to a giant negative T wave, within 1 year. Echocardiography showed no left ventricular hypertrophy before or after the T wave change. Cine-magnetic resonance imaging revealed focal apical hypertrophy after the appearance of the giant negative T wave. Although T wave inversions sometimes develop within a short period in patients with hypertrophic cardiomyopathy, they are rare in a patient without hypertension or chest pain.
Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media
Wang, Tengfei
2017-08-17
Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual. Since traveltime information relates to the background model more linearly, we use the traveltime residuals as objective function to update background velocity model using wave equation reflected traveltime inversion (WERTI). The reflection kernel analysis shows that mode decomposition can suppress the artifacts in gradient calculation. We design a two-step inversion strategy, in which PP reflections are firstly used to invert P wave velocity (Vp), followed by S wave velocity (Vs) inversion with PS reflections. P/S separation of multi-component seismograms and spatial wave mode decomposition can reduce the nonlinearity of inversion effectively by selecting suitable P or S wave subsets for hierarchical inversion. Numerical example of Sigsbee2A model validates the effectiveness of the algorithms and strategies for elastic WERTI (E-WERTI).
Skeletonized Wave Equation Inversion in VTI Media without too much Math
Feng, Shihang
2017-05-17
We present a tutorial for skeletonized inversion of pseudo-acoustic anisotropic VTI data. We first invert for the anisotropic models using wave equation traveltime inversion. Here, the skeletonized data are the traveltimes of transmitted and/or reflected arrivals that lead to simpler misfit functions and more robust convergence compared to full waveform inversion. This provides a good starting model for waveform inversion. The effectiveness of this procedure is illustrated with synthetic data examples and a marine data set recorded in the Gulf of Mexico.
Skeletonized Wave Equation Inversion in VTI Media without too much Math
Feng, Shihang; Schuster, Gerard T.
2017-01-01
We present a tutorial for skeletonized inversion of pseudo-acoustic anisotropic VTI data. We first invert for the anisotropic models using wave equation traveltime inversion. Here, the skeletonized data are the traveltimes of transmitted and/or reflected arrivals that lead to simpler misfit functions and more robust convergence compared to full waveform inversion. This provides a good starting model for waveform inversion. The effectiveness of this procedure is illustrated with synthetic data examples and a marine data set recorded in the Gulf of Mexico.
Tutorial for Wave Equation Inversion of Skeletonized Data
Lu, Kai
2017-04-25
Full waveform inversion of seismic data is often plagued by cycle skipping problems so that an iterative optimization method often gets stuck in a local minimum. To avoid this problem we simplify the objective function so that the iterative solution can quickly converge to a solution in the vicinity of the global minimum. The objective function is simplified by only using parsimonious and important portions of the data, which are defined as skeletonized data. We now present a mostly non-mathematical tutorial that explains the theory of skeletonized inversion. We also show its effectiveness with examples.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
International Nuclear Information System (INIS)
Cho, Jungyeon
2011-01-01
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Francois, N; Xia, H; Punzmann, H; Shats, M
2013-05-10
We report the generation of large coherent vortices via inverse energy cascade in Faraday wave driven turbulence. The motion of floaters in the Faraday waves is three dimensional, but its horizontal velocity fluctuations show unexpected similarity with two-dimensional turbulence. The inverse cascade is detected by measuring frequency spectra of the Lagrangian velocity, and it is confirmed by computing the third moment of the horizontal velocity fluctuations. This is observed in deep water in a broad range of wavelengths and vertical accelerations. The results broaden the scope of recent findings on Faraday waves in thin layers [A. von Kameke et al., Phys. Rev. Lett. 107, 074502 (2011)].
Parameter identification in a generalized time-harmonic Rayleigh damping model for elastography.
Directory of Open Access Journals (Sweden)
Elijah E W Van Houten
Full Text Available The identifiability of the two damping components of a Generalized Rayleigh Damping model is investigated through analysis of the continuum equilibrium equations as well as a simple spring-mass system. Generalized Rayleigh Damping provides a more diversified attenuation model than pure Viscoelasticity, with two parameters to describe attenuation effects and account for the complex damping behavior found in biological tissue. For heterogeneous Rayleigh Damped materials, there is no equivalent Viscoelastic system to describe the observed motions. For homogeneous systems, the inverse problem to determine the two Rayleigh Damping components is seen to be uniquely posed, in the sense that the inverse matrix for parameter identification is full rank, with certain conditions: when either multi-frequency data is available or when both shear and dilatational wave propagation is taken into account. For the multi-frequency case, the frequency dependency of the elastic parameters adds a level of complexity to the reconstruction problem that must be addressed for reasonable solutions. For the dilatational wave case, the accuracy of compressional wave measurement in fluid saturated soft tissues becomes an issue for qualitative parameter identification. These issues can be addressed with reasonable assumptions on the negligible damping levels of dilatational waves in soft tissue. In general, the parameters of a Generalized Rayleigh Damping model are identifiable for the elastography inverse problem, although with more complex conditions than the simpler Viscoelastic damping model. The value of this approach is the additional structural information provided by the Generalized Rayleigh Damping model, which can be linked to tissue composition as well as rheological interpretations.
Utilization of multimode Love wave dispersion curve inversion for geotechnical site investigation
International Nuclear Information System (INIS)
Hamimu, La; Nawawi, Mohd; Safani, Jamhir
2011-01-01
Inversion codes based on a modified genetic algorithm (GA) have been developed to invert multimode Love wave dispersion curves. The multimode Love wave dispersion curves were synthesized from the profile representing shear-wave velocity reversal using a full SH (shear horizontal) waveform. In this study, we used a frequency–slowness transform to extract the dispersion curve from the full SH waveform. Dispersion curves overlain in dispersion images were picked manually. These curves were then inverted using the modified GA. To assess the accuracy of the inversion results, differences between the true and inverted shear-wave velocity profile were quantified in terms of shear-wave velocity and thickness errors, E S and E H . Our numerical modeling showed that the inversion of multimode dispersion curves can significantly provide the better assessment of a shear-wave velocity structure, especially with a velocity reversal profile at typical geotechnical site investigations. This approach has been applied on field data acquired at a site in Niigata prefecture, Japan. In these field data, our inversion results show good agreement between the calculated and experimental dispersion curves and accurately detect low velocity layer targets
Energy Technology Data Exchange (ETDEWEB)
Abd-Alla, A. M.; Abo-Dahab, S. M. [Taif University, Taif (Egypt); Khan, Aftab [COMSATS, Chakshahzad (Pakistan)
2015-10-15
In this paper, we investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a higher order and fraction orders of nth order including time rate of strain with voids. The general surface wave speed is derived to study the effect of rotation and voids on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. In order zero our results are well agreeing with classical results. Also by neglecting the reinforced elastic parameters and voids the results reduce to well known isotropic medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is observed that Love wave remains unaffected with respect to rotation and voids. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results are given and illustrated graphically.
International Nuclear Information System (INIS)
Abd-Alla, A. M.; Abo-Dahab, S. M.; Khan, Aftab
2015-01-01
In this paper, we investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a higher order and fraction orders of nth order including time rate of strain with voids. The general surface wave speed is derived to study the effect of rotation and voids on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. In order zero our results are well agreeing with classical results. Also by neglecting the reinforced elastic parameters and voids the results reduce to well known isotropic medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is observed that Love wave remains unaffected with respect to rotation and voids. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results are given and illustrated graphically.
Wang, T.; Cheng, J.B.; Guo, Qiang; Wang, C.L.
2017-01-01
Elastic full waveform inversion (EFWI) provides high-resolution parameter estimation of the subsurface but requires good initial guess of the true model. The traveltime inversion only minimizes traveltime misfits which are more sensitive
Background velocity inversion by phase along reflection wave paths
Yu, Han; Guo, Bowen; Schuster, Gerard T.
2014-01-01
A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.
Wave Characteristics of Temperature Inversion Process of Nighttime Radiation,
1983-12-09
CHARACTERISTICS OF TEMPERATURE INVERSION PROCESS OF NIGHTTIME RADIATION By: Zhou Mingyu and Zhang ¥i English pages: 8 Source: Kexue Tongbao, 1982, pp. 156...lJournal of Meteorology], 39 (1981), 1:70-81. 3. Drazin, P. G., J. Fluid. Mech., 4 (1958), 214-224. 4. Zhou Mingyu et al., QIXIANG XUEBAO, 38 (1980), 3: 250...258. 5. Emnanuel, C. B., B-L. Meteor., 5(1973), N(1/2)8 19-27. 6. Zhou Mingyu et al., J. Acoust. Soc., A. m., 68 (1980), 1: 303-308. 8 I iI
Background velocity inversion by phase along reflection wave paths
Yu, Han
2014-08-05
A background velocity model containing the correct lowwavenumber information is desired for both the quality of the migration image and the success of waveform inversion. We propose to invert for the low-wavenumber part of the velocity model by minimizing the phase difference between predicted and observed reflections. The velocity update is exclusively along the reflection wavepaths and, unlike conventional FWI, not along the reflection ellipses. This allows for reconstructing the smoothly varying parts of the background velocity model. Tests with synthetic data show both the benefits and limitations of this method.
Optimization method for identifying the source term in an inverse wave equation
Directory of Open Access Journals (Sweden)
Arumugam Deiveegan
2017-08-01
Full Text Available In this work, we investigate the inverse problem of identifying a space-wise dependent source term of wave equation from the measurement on the boundary. On the basis of the optimal control framework, the inverse problem is transformed into an optimization problem. The existence and necessary condition of the minimizer for the cost functional are obtained. The projected gradient method and two-parameter model function method are applied to the minimization problem and numerical results are illustrated.
Visco-elastic controlled-source full waveform inversion without surface waves
Paschke, Marco; Krause, Martin; Bleibinhaus, Florian
2016-04-01
We developed a frequency-domain visco-elastic full waveform inversion for onshore seismic experiments with topography. The forward modeling is based on a finite-difference time-domain algorithm by Robertsson that uses the image-method to ensure a stress-free condition at the surface. The time-domain data is Fourier-transformed at every point in the model space during the forward modeling for a given set of frequencies. The motivation for this approach is the reduced amount of memory when computing kernels, and the straightforward implementation of the multiscale approach. For the inversion, we calculate the Frechet derivative matrix explicitly, and we implement a Levenberg-Marquardt scheme that allows for computing the resolution matrix. To reduce the size of the Frechet derivative matrix, and to stabilize the inversion, an adapted inverse mesh is used. The node spacing is controlled by the velocity distribution and the chosen frequencies. To focus the inversion on body waves (P, P-coda, and S) we mute the surface waves from the data. Consistent spatiotemporal weighting factors are applied to the wavefields during the Fourier transform to obtain the corresponding kernels. We test our code with a synthetic study using the Marmousi model with arbitrary topography. This study also demonstrates the importance of topography and muting surface waves in controlled-source full waveform inversion.
Energy Technology Data Exchange (ETDEWEB)
Park, Y; Nyblade, A; Rodgers, A; Al-Amri, A
2007-11-09
The shear velocity structure of the shallow upper mantle beneath the Arabian Shield has been modeled by inverting new Rayleigh wave phase velocity measurements between 45 and 140 s together with previously published Rayleigh wave group velocity measurement between 10 and 45 s. For measuring phase velocities, we applied a modified array method that minimizes the distortion of raypaths by lateral heterogeneity. The new shear velocity model shows a broad low velocity region in the lithospheric mantle across the Shield and a low velocity region at depths {ge} 150 km localized along the Red Sea coast and Makkah-Madinah-Nafud (MMN) volcanic line. The velocity reduction in the upper mantle corresponds to a temperature anomaly of {approx}250-330 K. These finding, in particular the region of continuous low velocities along the Red Sea and MMN volcanic line, do not support interpretations for the origin of the Cenozoic plateau uplift and volcanism on the Shield invoking two separate plumes. When combined with images of the 410 and 660 km discontinuities beneath the southern part of the Arabian Shield, body wave tomographic models, a S-wave polarization analysis, and SKS splitting results, our new model supports an interpretation invoking a thermal upwelling of warm mantle rock originating in the lower mantle under Africa that crosses through the transition zone beneath Ethiopia and moves to the north and northwest under the eastern margin of the Red Sea and the Arabian Shield. In this interpretation, the difference in mean elevation between the Platform and Shield can be attributed to isostatic uplift caused by heating of the lithospheric mantle under the Shield, with significantly higher region along the Red Sea possibly resulting from a combination of lithosphere thinning and dynamic uplift.
Polarisation independent bi-directional four wave mixing for mid span spectral inversion
DEFF Research Database (Denmark)
Clausen, Anders; Buxens, Alvaro A.; Poulsen, Henrik Nørskov
1999-01-01
Polarisation independent Four Wave Mixing in a Semiconductor Optical Amplifier used for Mid Span Spectral Inversion (MSSI) is implemented and introduce only 0.9 dB penalty compared to polarisation dependent MSSI. The polarisation dependence in receiver sensitivity is 1 dB.......Polarisation independent Four Wave Mixing in a Semiconductor Optical Amplifier used for Mid Span Spectral Inversion (MSSI) is implemented and introduce only 0.9 dB penalty compared to polarisation dependent MSSI. The polarisation dependence in receiver sensitivity is 1 dB....
Skeletonized inversion of surface wave: Active source versus controlled noise comparison
Li, Jing; Hanafy, Sherif
2016-01-01
We have developed a skeletonized inversion method that inverts the S-wave velocity distribution from surface-wave dispersion curves. Instead of attempting to fit every wiggle in the surface waves with predicted data, it only inverts the picked dispersion curve, thereby mitigating the problem of getting stuck in a local minimum. We have applied this method to a synthetic model and seismic field data from Qademah fault, located at the western side of Saudi Arabia. For comparison, we have performed dispersion analysis for an active and controlled noise source seismic data that had some receivers in common with the passive array. The active and passive data show good agreement in the dispersive characteristics. Our results demonstrated that skeletonized inversion can obtain reliable 1D and 2D S-wave velocity models for our geologic setting. A limitation is that we need to build layered initial model to calculate the Jacobian matrix, which is time consuming.
Skeletonized inversion of surface wave: Active source versus controlled noise comparison
Li, Jing
2016-07-14
We have developed a skeletonized inversion method that inverts the S-wave velocity distribution from surface-wave dispersion curves. Instead of attempting to fit every wiggle in the surface waves with predicted data, it only inverts the picked dispersion curve, thereby mitigating the problem of getting stuck in a local minimum. We have applied this method to a synthetic model and seismic field data from Qademah fault, located at the western side of Saudi Arabia. For comparison, we have performed dispersion analysis for an active and controlled noise source seismic data that had some receivers in common with the passive array. The active and passive data show good agreement in the dispersive characteristics. Our results demonstrated that skeletonized inversion can obtain reliable 1D and 2D S-wave velocity models for our geologic setting. A limitation is that we need to build layered initial model to calculate the Jacobian matrix, which is time consuming.
Assessing ground compaction via time lapse surface wave analysis
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo; Al-Arifi, N.; Moustafa, S.S.R.
2016-01-01
Roč. 13, č. 3 (2016), s. 249-256 ISSN 1214-9705 Institutional support: RVO:67985891 Keywords : Full velocity spectrum (FVS) analysis * ground compaction * ground compaction * phase velocities * Rayleigh waves * seismic data inversion * surface wave dispersion * surface waves Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.699, year: 2016
Brown, Malcolm
2009-01-01
Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…
Waveform inversion for orthorhombic anisotropy with P-waves: feasibility & resolution
Kazei, Vladimir
2018-01-27
Various parameterizations have been suggested to simplify inversions of first arrivals, or P −waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P −waves. These parameters are different from the six parameters needed to describe the kinematics of P −waves. Reflection-based radiation patterns from the P − P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios, and data bandwidths allows us to quantify the resolution of different parameterizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P −waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic, orthorhombic) in hierarchical parameterization is the best choice. Hierarchical parametrization reduces the tradeoff between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P −wave propagation need to be retrieved simultaneously, the classic parameterization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parameterizations can be used to ascertain the set of parameters that can be resolved.
Waveform inversion for orthorhombic anisotropy with P waves: feasibility and resolution
Kazei, Vladimir; Alkhalifah, Tariq
2018-05-01
Various parametrizations have been suggested to simplify inversions of first arrivals, or P waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P waves. These parameters are different from the six parameters needed to describe the kinematics of P waves. Reflection-based radiation patterns from the P-P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios and data bandwidths allows us to quantify the resolution of different parametrizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic and orthorhombic) in hierarchical parametrization is the best choice. Hierarchical parametrization reduces the trade-off between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P-wave propagation need to be retrieved simultaneously, the classic parametrization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parametrizations can be used to ascertain the set of parameters that can be resolved.
Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean
2015-04-01
Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of
Joint inversion of high resolution S-wave velocity structure underneath North China Basin
Yang, C.; Li, G.; Niu, F.
2017-12-01
North China basin is one of earthquake prone areas in China. Many devastating earthquakes occurred in the last century and before, such as the 1937 M7.0 Heze Earthquake in Shandong province, the 1966 M7.2 Xingtai Earthquake and 1976 Tangshan Earthquake in Hebei province. Knowing the structure of the sediment cover is of great importance to predict strong ground motion caused by earthquakes. Unconsolidated sediments are loose materials, ranging from clay to sand to gravel. Earthquakes can liquefy unconsolidated sediments, thus knowing the distribution and thickness of the unconsolidated sediments has significant implication in seismic hazard analysis of the area. Quantitative estimates of the amount of extension of the North China basin is important to understand the thinning and evolution of the eastern North China craton and the underlying mechanism. In principle, the amount of lithospheric stretching can be estimated from sediment and crustal thickness. Therefore an accurate estimate of the sediment and crustal thickness of the area is also important in understanding regional tectonics. In this study, we jointly invert the Rayleigh wave phase-velocity dispersion and Z/H ratio data to construct a 3-D S-wave velocity model beneath North China area. We use 4-year ambient noise data recorded from 249 temporary stations, and 139 earthquake events to extract Rayleigh wave Z/H ratios. The Z/H ratios obtained from ambient noise data and earthquake data show a good agreement within the overlapped periods. The phase velocity dispersion curve was estimated from the same ambient noise data. The preliminary result shows a relatively low Z/H ratio and low velocity anomaly at the shallow part of sediment basins.
Full-waveform inversion with reflected waves for 2D VTI media
Pattnaik, Sonali
2016-09-06
Full-waveform inversion in anisotropic media using reflected waves suffers from the strong non-linearity of the objective function and trade-offs between model parameters. Estimating long-wavelength model components by fixing parameter perturbations, referred to as reflection-waveform inversion (RWI), can mitigate nonlinearity-related inversion issues. Here, we extend RWI to acoustic VTI (transversely isotropic with a vertical symmetry axis) media. To minimize trade-offs between the model parameters, we employ a new hierarchical two-stage approach that operates with the P-wave normal-moveout velocity and anisotropy coefficents ζ and η. First, is estimated using a fixed perturbation in ζ, and then we invert for η by fixing the updated perturbation in . The proposed 2D algorithm is tested on a horizontally layered VTI model.
Viscoacoustic wave-equation traveltime inversion with correct and incorrect attenuation profiles
Yu, Han
2017-08-17
A visco-acoustic wave-equation traveltime inversion method is presented that inverts for a shallow subsurface velocity distribution with correct and incorrect attenuation profiles. Similar to the classical wave equation traveltime inversion, this method applies the misfit functional that minimizes the first break differences between the observed and predicted data. Although, WT can partly avoid the cycle skipping problem, an initial velocity model approaches to the right or wrong velocity models under different setups of the attenuation profiles. However, with a Q model far away from the real model, the inverted tomogram is obviously different from the true velocity model while a small change of the Q model does not improve the inversion quality in a strong manner if low frequency information is not lost.
High-resolution inverse Raman and resonant-wave-mixing spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).
Taylor, G.; Rost, S.; Houseman, G. A.; Hillers, G.
2017-12-01
By utilising short period surface waves present in the noise field, we can construct images of shallow structure in the Earth's upper crust: a depth-range that is usually poorly resolved in earthquake tomography. Here, we use data from a dense seismic array (Dense Array for Northern Anatolia - DANA) deployed across the North Anatolian Fault Zone (NAFZ) in the source region of the 1999 magnitude 7.6 Izmit earthquake in western Turkey. The NAFZ is a major strike-slip system that extends 1200 km across northern Turkey and continues to pose a high level of seismic hazard, in particular to the mega-city of Istanbul. We obtain maps of group velocity variation using surface wave tomography applied to short period (1- 6 s) Rayleigh and Love waves to construct high-resolution images of SV and SH-wave velocity in the upper 5 km of a 70 km x 35 km region centred on the eastern end of the fault segment that ruptured in the 1999 Izmit earthquake. The average Rayleigh wave group velocities in the region vary between 1.8 km/s at 1.5 s period, to 2.2 km/s at 6 s period. The NAFZ bifurcates into northern and southern strands in this region; both are active but only the northern strand ruptured in the 1999 event. The signatures of both the northern and southern branches of the NAFZ are clearly associated with strong gradients in seismic velocity that also denote the boundaries of major tectonic units. This observation implies that the fault zone exploits the pre-existing structure of the Intra-Pontide suture zone. To the north of the NAFZ, we observe low S-wave velocities ( 2.0 km/s) associated with the unconsolidated sediments of the Adapazari basin, and blocks of weathered terrigenous clastic sediments. To the south of the northern branch of the NAFZ in the Armutlu block, we detect higher velocities ( 2.9 km/s) associated with a shallow crystalline basement, in particular a block of metamorphosed schists and marbles that bound the northern branch of the NAFZ.
Zhang, Xiao-bo
2017-06-01
The gradient preconditioning approach based on seismic wave energy can effectively avoid the huge storage consumption in the gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI), but the accuracy is affected by the energy of reflected waves when strong reflectors are present in velocity model. To address this problem, we propose a gradient preconditioning method, which scales the gradient based on the energy of the “approximated transmitted wavefield” simulated by the nonreflecting acoustic wave equation. The method does not require computing or storing the Hessian matrix or its inverse. Furthermore, it can effectively eliminate the effects caused by geometric diffusion and non-uniformity illumination on gradient. The results of model experiments confirm that the time-domain FWI using the gradient preconditioning based on transmitted waves energy can achieve higher inversion precision for high-velocity body and the deep strata below when compared with using the gradient preconditioning based on seismic waves energy.
Wang, K.; Gu, N.; Zhang, H.; Zhou, G.
2017-12-01
The Tanlu fault is a major fault located in the eastern China, which stretches 2400 km long from Tancheng in the north to Lujiang in the south. It is generally believed that the Tanlu fault zone was formed in Proterozoic era and underwent a series of complicated processes since then. To understand the upper crustal structure around the southern segment of the Tanlu fault zone, in 2017 we deployed 53 short period seismic stations around the fault zone to the southeast of Hefei, capital city of Anhui province. The temporary array continuously recorded the data for about one month from 17 March to 26 April 2017. The seismic array spans an area of about 30km x 30Km with an average station spacing of about 5-6km. The vertical component data were used for extracting Rayleigh wave phase and group velocity dispersion data for the period of 0.2 to 5 seconds. To improve imaging the upper crustal structure of the fault zone, we jointly inverted the surface wave dispersion data and the gravity data because they have complementary strengths. To combine surface wave dispersion data and gravity observations into a single inversion framework, we used an empirical relationship between seismic velocity and density of Maceira and Ammon (2009). By finding the optimal relative weighting between two data types, we are able to find a shear wave velocity (Vs) model that fits both data types. The joint inversion can resolve the upper crustal fault zone structure down to about 7 km in depth. The Vs model shows that in this region the Tanlu fault is associated with high velocity anomalies, corresponding well to the Feidong complex seen on the surface. This indicates that the Tanlu fault zone may provide a channel for the intrusion of hot materials.
A comparative study of surface waves inversion techniques at strong motion recording sites in Greece
Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.
2015-01-01
Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing
2017-08-17
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data, namely the amplitude spectra of the windowed Rayleigh-wave arrivals. The optimal Qs model is then found that minimizes the difference in the peak frequencies of the predicted and observed Rayleigh wave arrivals using a gradient-based wave-equation optimization method. Solutions to the viscoelastic wave-equation are used to compute the predicted Rayleigh-wave arrivals and the misfit gradient at every iteration. This procedure, denoted as wave-equation Qs tomography (WQs), does not require the assumption of a layered model and tends to have fast and robust convergence compared to Q full waveform inversion (Q-FWI). Numerical examples with synthetic and field data demonstrate that the WQs method can accurately invert for a smoothed approximation to the subsur-face Qs distribution as long as the Vs model is known with sufficient accuracy.
Angle-domain Migration Velocity Analysis using Wave-equation Reflection Traveltime Inversion
Zhang, Sanzong
2012-11-04
The main difficulty with an iterative waveform inversion is that it tends to get stuck in a local minima associated with the waveform misfit function. This is because the waveform misfit function is highly non-linear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. The residual movemout analysis in the angle-domain common image gathers provides a robust estimate of the depth residual which is converted to the reflection traveltime residual for the velocity inversion. We present numerical examples to demonstrate its efficiency in inverting seismic data for complex velocity model.
Czech Academy of Sciences Publication Activity Database
Dal Moro, Giancarlo
2015-01-01
Roč. 254, JUL 1 (2015), s. 338-349 ISSN 0019-1035 Institutional support: RVO:67985891 Keywords : moon * Regoliths * geophysics * surface- wave Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.383, year: 2015
Xu, Yanlong; Peng, Pai
2015-01-01
. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a
Venugopal, M.; Roy, D.; Rajendran, K.; Guillas, S.; Dias, F.
2017-01-01
Numerical inversions for earthquake source parameters from tsunami wave data usually incorporate subjective elements to stabilize the search. In addition, noisy and possibly insufficient data result in instability and non-uniqueness in most deterministic inversions, which are barely acknowledged. Here, we employ the satellite altimetry data for the 2004 Sumatra–Andaman tsunami event to invert the source parameters. We also include kinematic parameters that improve the description of tsunami generation and propagation, especially near the source. Using a finite fault model that represents the extent of rupture and the geometry of the trench, we perform a new type of nonlinear joint inversion of the slips, rupture velocities and rise times with minimal a priori constraints. Despite persistently good waveform fits, large uncertainties in the joint parameter distribution constitute a remarkable feature of the inversion. These uncertainties suggest that objective inversion strategies should incorporate more sophisticated physical models of seabed deformation in order to significantly improve the performance of early warning systems. PMID:28989311
Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory
Zhang, Sanzong
2015-05-26
The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.
Shot- and angle-domain wave-equation traveltime inversion of reflection data: Theory
Zhang, Sanzong; Luo, Yi; Schuster, Gerard T.
2015-01-01
The main difficulty with iterative waveform inversion is that it tends to get stuck in local minima associated with the waveform misfit function. To mitigate this problem and avoid the need to fit amplitudes in the data, we have developed a wave-equation method that inverts the traveltimes of reflection events, and so it is less prone to the local minima problem. Instead of a waveform misfit function, the penalty function was a crosscorrelation of the downgoing direct wave and the upgoing reflection wave at the trial image point. The time lag, which maximized the crosscorrelation amplitude, represented the reflection-traveltime residual (RTR) that was back projected along the reflection wavepath to update the velocity. Shot- and angle-domain crosscorrelation functions were introduced to estimate the RTR by semblance analysis and scanning. In theory, only the traveltime information was inverted and there was no need to precisely fit the amplitudes or assume a high-frequency approximation. Results with synthetic data and field records revealed the benefits and limitations of wave-equation reflection traveltime inversion.
Uncertainty principles for inverse source problems for electromagnetic and elastic waves
Griesmaier, Roland; Sylvester, John
2018-06-01
In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.
Velocity model of the Hronov-Poříčí Fault Zone from Rayleigh wave dispersion
Czech Academy of Sciences Publication Activity Database
Kolínský, Petr; Valenta, Jan; Málek, Jiří
2014-01-01
Roč. 18, č. 3 (2014), s. 617-635 ISSN 1383-4649 R&D Projects: GA ČR GA205/09/1244; GA MŠk LM2010008 Institutional support: RVO:67985891 Keywords : Bohemian Massif * surface waves * phase-velocity * dispersion curve Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.386, year: 2014
Demonstration of improved seismic source inversion method of tele-seismic body wave
Yagi, Y.; Okuwaki, R.
2017-12-01
Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.
On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs
Karve, Pranav M.
2014-12-28
© 2014, Springer International Publishing Switzerland. We discuss an optimization methodology for focusing wave energy to subterranean formations using strong motion actuators placed on the ground surface. The motivation stems from the desire to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem. The underlying wave propagation problems are abstracted in two spatial dimensions, and the semi-infinite extent of the physical domain is negotiated by a buffer of perfectly-matched-layers (PMLs) placed at the domain’s truncation boundary. We discuss two possible numerical implementations: Their utility for deciding the tempo-spatial characteristics of optimal wave sources is shown via numerical experiments. Overall, the simulations demonstrate the inverse source method’s ability to simultaneously optimize load locations and time signals leading to the maximization of energy delivery to a target formation.
Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun
2018-03-02
It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.
International Nuclear Information System (INIS)
Akhshik, Siamak; Moharrami, Rasool
2009-01-01
To achieve an acceptable safety in many industrial applications such as nuclear power plants and power generation, it is extremely important to gain an understanding of the magnitudes and distributions of the residual stresses in a pipe formed by joining two sections with a girth butt weld. Most of the methods for high-accuracy measurement of residual stress are destructive. These destructive measurement methods cannot be applied to engineering systems and structures during actual operation. In this paper, we present a method based on the measurement of ultrasonic Rayleigh wave velocity variations versus the stress state for nondestructive evaluation of residual stress in dissimilar pipe welded joint. We show some residual stress profile obtained by this method. These are then compared with other profiles determined using a semi-destructive technique (hole-drilling) that makes it possible to check our results. According to the results, we also present a new method for adjusting the ultrasonic measurements to improve the agreement with the results obtained from other techniques.
International Nuclear Information System (INIS)
Miles, A.R.; Edwards, M.J.; Greenough, J.A.
2004-01-01
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, the results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types is considered. Compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Certain aspects of the initial conditions, including the rms amplitude, are shown to have a strong effect on the time to transition to the quasi-self-similar regime
Pilz, Marco; Parolai, Stefano; Petrovic, Bojana; Silacheva, Natalya; Abakanov, Tanatkan; Orunbaev, Sagynbek; Moldobekov, Bolot
2018-04-01
During the past two centuries, several large earthquakes have caused extensive damages in the city of Almaty in Kazakhstan. Increasing the preparedness for future events, the definition of the optimal engineering designs for civil structures and the corresponding mitigation of earthquake risks involves the accomplishment of site response studies. To this regard, a temporary seismological network of 15 stations was installed in the city aiming at the accurate identification of local variations of site response at different locations. As the city is settled on a deep sediment-filled plain with laterally strongly varying thicknesses, bound to the south by the Tien-Shan mountain range, the city might face important site effects: large amplification and significant increase of shaking duration. In addition, surface waves in the low-frequency range around and slightly higher than the fundamental resonance frequency, which could be generated at the boundaries of the basin, can carry a large amount of energy. In turn, this will influence both the spatial distribution of the level of amplification and the temporal lengthening of ground motion significantly. For quantifying these effects, we apply complex trace analysis, which uses the instantaneous polarization characteristics of the seismic signal for separating waves arriving at a single site from different directions. In this way, secondary surface waves originating at various sites along the edge of the Almaty basin can be identified as well as their generation regions. After having assessed 1-D amplification effects with well-established techniques like the standard spectral ratio and the horizontal-to-vertical spectral ratio techniques, the results further indicate that thick layers of soft clay deposits and the 3-D structure of the basin give rise to lengthening of ground motion and high amplification values at low frequencies around 0.2 Hz. The steep structure of the sediment-bedrock interface at the southern edge
Iterative and range test methods for an inverse source problem for acoustic waves
International Nuclear Information System (INIS)
Alves, Carlos; Kress, Rainer; Serranho, Pedro
2009-01-01
We propose two methods for solving an inverse source problem for time-harmonic acoustic waves. Based on the reciprocity gap principle a nonlinear equation is presented for the locations and intensities of the point sources that can be solved via Newton iterations. To provide an initial guess for this iteration we suggest a range test algorithm for approximating the source locations. We give a mathematical foundation for the range test and exhibit its feasibility in connection with the iteration method by some numerical examples
An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation
Asiri, Sharefa M.; Zayane, Chadia; Laleg-Kirati, Taous-Meriem
2015-01-01
Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.
An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation
Asiri, Sharefa M.
2015-08-31
Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.
Zhan, Hanyu; Jiang, Hanwan; Jiang, Ruinian
2018-03-01
Perturbations worked as extra scatters will cause coda waveform distortions; thus, coda wave with long propagation time and traveling path are sensitive to micro-defects in strongly heterogeneous media such as concretes. In this paper, we conduct varied external loads on a life-size concrete slab which contains multiple existing micro-cracks, and a couple of sources and receivers are installed to collect coda wave signals. The waveform decorrelation coefficients (DC) at different loads are calculated for all available source-receiver pair measurements. Then inversions of the DC results are applied to estimate the associated distribution density values in three-dimensional regions through kernel sensitivity model and least-square algorithms, which leads to the images indicating the micro-cracks positions. This work provides an efficiently non-destructive approach to detect internal defects and damages of large-size concrete structures.
An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach
Asiri, Sharefa M.
2013-05-25
Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.
Cho, I.; Tada, T.; Shinozaki, Y.
2005-12-01
We have developed a Centerless Circular Array (CCA) method of microtremor exploration, an algorithm that enables to estimate phase velocities of Rayleigh waves by analyzing vertical-component records of microtremors that are obtained with an array of three or five seismic sensors placed around a circumference. Our CCA method shows a remarkably high performance in long-wavelength ranges because, unlike the frequency-wavenumber spectral method, our method does not resolve individual plane-wave components in the process of identifying phase velocities. Theoretical considerations predict that the resolving power of our CCA method in long-wavelength ranges depends upon the SN ratio, or the ratio of power of the propagating components to that of the non-propagating components (incoherent noise) contained in the records from the seismic array. The applicability of our CCA method to small-sized arrays on the order of several meters in radius has already been confirmed in our earlier work (Cho et al., 2004). We have deployed circular seismic arrays of different sizes at test sites in Japan where the underground structure is well documented through geophysical exploration, and have applied our CCA method to microtremor records to estimate phase velocities of Rayleigh waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. For arrays of 5, 25, 300 and 600 meters in radii, the estimated and model phase velocities demonstrated fine agreement within a broad wavelength range extending from a little larger than 3r (r: the array radius) up to at least 40r, 14r, 42r and 9r, respectively. This demonstrates the applicability of our CCA method to arrays on the order of several to several hundreds of meters in radii, and also illustrates, in a typical way, the markedly high performance of our CCA method in long-wavelength ranges. We have also invented a mathematical model that enables to evaluate the SN ratio in a given
Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-01-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at
Badawy, Ahmed; Hegazi, Mona; Gaber, Hanan; Korrat, Ibrahim
2018-05-01
In this study, we used a combined inversion of body wave receiver functions and surface wave dispersion measurements to provide constraints on the crustal structure of northern Egypt. The two techniques are complementary to each other: receiver functions (RFs) are sensitive to shear-wave velocity contrasts, while surface wave dispersion (SWD) measurements are sensitive to finite variations of shear-wave velocity with depth. A database of 122 teleseismic events digitally recorded by the Egyptian National Seismological Network (ENSN) stations has been used as well. To enhance the resulting RFs at each ENSN station, the H-k stacking method was applied. A joint inversion process between the resulting receiver functions and the surface wave dispersion curves was applied as well. We have produced three averaged velocity structure models for distinct geographic and tectonic provinces namely Sinai, eastern desert, and western desert from east to the west respectively. These models will deeply help in estimation the epicenter distance of earthquake, focal mechanism solutions, and earthquake hazard analysis in northern Egypt. An obvious image of the subsurface structure has been determined which shows that generally the crustal structure of northern Egypt consists of three layers covered with a sequence of sediments that differs in thickness from across the region except in the Sharm area where the sedimentary cover is absent. The obtained results indicate that crustal thickness differs from east to west and reaches its maximum value of about 36 km at Siwa station (SWA) in the western desert and its minimum value of about 28 km at Sharm station (SHR) of the southern tip of the Sinai Peninsula. The Vp/Vs ratio varies between 1.71 and 2.07 in northern Egypt. Generally, the high values (1.93) of (Vp/Vs) at SWA station may reflect the well-known rich aquifer with fully saturated sediments of the Swia Oasis in the Western Desert. Moreover, the highest value (2.07) of (Vp/Vs) at
Roecker, S.; Ebinger, C.; Tiberi, C.; Mulibo, G.; Ferdinand-Wambura, R.; Mtelela, K.; Kianji, G.; Muzuka, A.; Gautier, S.; Albaric, J.; Peyrat, S.
2017-08-01
The Eastern Rift System (ERS) of northern Tanzania and southern Kenya, where a cratonic lithosphere is in the early stages of rifting, offers an ideal venue for investigating the roles of magma and other fluids in such an environment. To illuminate these roles, we jointly invert arrival times of locally recorded P and S body waves, phase delays of ambient noise generated Rayleigh waves and Bouguer anomalies from gravity observations to generate a 3-D image of P and S wave speeds in the upper 25 km of the crust. While joint inversion of gravity and arrival times requires a relationship between density and wave speeds, the improvement in resolution obtained by the combination of these disparate data sets serves to further constrain models, and reduce uncertainties. The most significant features in the 3-D model are (1) P and S wave speeds that are 10-15 per cent lower beneath the rift zone than in the surrounding regions, (2) a relatively high wave speed tabular feature located along the western edge of the Natron and Manyara rifts, and (3) low (∼1.71) values of Vp/Vs throughout the upper crust, with the lowest ratios along the boundaries of the rift zones. The low P and S wave speeds at mid-crustal levels beneath the rift valley are an expected consequence of active volcanism, and the tabular, high-wave speed feature is interpreted to be an uplifted footwall at the western edge of the rift. Given the high levels of CO2 outgassing observed at the surface along border fault zones, and the sensitivity of Vp/Vs to pore-fluid compressibility, we infer that the low Vp/Vs values in and around the rift zone are caused by the volcanic plumbing in the upper crust being suffused by a gaseous CO2 froth on top of a deeper, crystalline mush. The repository for molten rock is likely located in the lower crust and upper mantle, where the Vp/Vs ratios are significantly higher.
Three-dimensional inverse modelling of damped elastic wave propagation in the Fourier domain
Petrov, Petr V.; Newman, Gregory A.
2014-09-01
3-D full waveform inversion (FWI) of seismic wavefields is routinely implemented with explicit time-stepping simulators. A clear advantage of explicit time stepping is the avoidance of solving large-scale implicit linear systems that arise with frequency domain formulations. However, FWI using explicit time stepping may require a very fine time step and (as a consequence) significant computational resources and run times. If the computational challenges of wavefield simulation can be effectively handled, an FWI scheme implemented within the frequency domain utilizing only a few frequencies, offers a cost effective alternative to FWI in the time domain. We have therefore implemented a 3-D FWI scheme for elastic wave propagation in the Fourier domain. To overcome the computational bottleneck in wavefield simulation, we have exploited an efficient Krylov iterative solver for the elastic wave equations approximated with second and fourth order finite differences. The solver does not exploit multilevel preconditioning for wavefield simulation, but is coupled efficiently to the inversion iteration workflow to reduce computational cost. The workflow is best described as a series of sequential inversion experiments, where in the case of seismic reflection acquisition geometries, the data has been laddered such that we first image highly damped data, followed by data where damping is systemically reduced. The key to our modelling approach is its ability to take advantage of solver efficiency when the elastic wavefields are damped. As the inversion experiment progresses, damping is significantly reduced, effectively simulating non-damped wavefields in the Fourier domain. While the cost of the forward simulation increases as damping is reduced, this is counterbalanced by the cost of the outer inversion iteration, which is reduced because of a better starting model obtained from the larger damped wavefield used in the previous inversion experiment. For cross-well data, it is
Gough, Douglas; Merryfield, William J.; Toomre, Juri
1998-01-01
A method is proposed for analyzing an almost monochromatic train of waves propagating in a single direction in an inhomogeneous medium that is not otherwise changing in time. An effective phase is defined in terms of the Hilbert transform of the wave function, which is related, via the JWKB approximation, to the spatial variation of the background state against which the wave is propagating. The contaminating effect of interference between the truly monochromatic components of the train is eliminated using its propagation properties. Measurement errors, provided they are uncorrelated, are manifest as rapidly varying noise; although that noise can dominate the raw phase-processed signal, it can largely be removed by low-pass filtering. The intended purpose of the analysis is to determine the distortion of solar oscillations induced by horizontal structural variation and material flow. It should be possible to apply the method directly to sectoral modes. The horizontal phase distortion provides a measure of longitudinally averaged properties of the Sun in the vicinity of the equator, averaged also in radius down to the depth to which the modes penetrate. By combining such averages from different modes, the two-dimensional variation can be inferred by standard inversion techniques. After taking due account of horizontal refraction, it should be possible to apply the technique also to locally sectoral modes that propagate obliquely to the equator and thereby build a network of lateral averages at each radius, from which the full three-dimensional structure of the Sun can, in principle, be determined as an inverse Radon transform.
Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping
2015-10-01
We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.
Rank deficiency and Tikhonov regularization in the inverse problem for gravitational-wave bursts
International Nuclear Information System (INIS)
Rakhmanov, M
2006-01-01
Coherent techniques for searches of gravitational-wave bursts effectively combine data from several detectors, taking into account differences in their responses. The efforts are now focused on the maximum likelihood principle as the most natural way to combine data, which can also be used without prior knowledge of the signal. Recent studies however have shown that straightforward application of the maximum likelihood method to gravitational waves with unknown waveforms can lead to inconsistencies and unphysical results such as discontinuity in the residual functional, or divergence of the variance of the estimated waveforms for some locations in the sky. So far the solutions to these problems have been based on rather different physical arguments. Following these investigations, we now find that all these inconsistencies stem from the rank deficiency of the underlying network response matrix. In this paper we show that the detection of gravitational-wave bursts with a network of interferometers belongs to the category of ill-posed problems. We then apply the method of Tikhonov regularization to resolve the rank deficiency and introduce a minimal regulator which yields a well-conditioned solution to the inverse problem for all locations on the sky
Abdelsalhin, Tiziano; Maselli, Andrea; Ferrari, Valeria
2018-04-01
The LIGO/Virgo Collaboration has recently announced the direct detection of gravitational waves emitted in the coalescence of a neutron star binary. This discovery allows, for the first time, to set new constraints on the behavior of matter at supranuclear density, complementary with those coming from astrophysical observations in the electromagnetic band. In this paper we demonstrate the feasibility of using gravitational signals to solve the relativistic inverse stellar problem, i.e., to reconstruct the parameters of the equation of state (EoS) from measurements of the stellar mass and tidal Love number. We perform Bayesian inference of mock data, based on different models of the star internal composition, modeled through piecewise polytropes. Our analysis shows that the detection of a small number of sources by a network of advanced interferometers would allow to put accurate bounds on the EoS parameters, and to perform a model selection among the realistic equations of state proposed in the literature.
Bivariate Rayleigh Distribution and its Properties
Directory of Open Access Journals (Sweden)
Ahmad Saeed Akhter
2007-01-01
Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.
CORRIGENDUM: Atoms riding Rayleigh waves Atoms riding Rayleigh waves
Benedek, G.; Echenique, P. M.; Toennies, J. P.; Traeger, F.
2010-09-01
In the original paper the affiliation list is incorrect. The correct address list is as follows: G Benedek1, 5, P M Echenique1, 2, J P Toennies3 and F Traeger4 1 Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018 Donostia—San Sebastián, Spain 2 Departamento de Física de Materiales and CFM (CSIC-UPV/EHU), Universidad del País Vasco/Euskal Herriko Unibertsitatea, E-20018 San Sebastián/Donostia, Spain 3 Max Planck-Institut für Dynamik und Selbstorganisation, Bunsenstraße 10 D-37073 Göttingen, Germany 4 Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum Universitätsstraße 150, 44801 Bochum, Germany 5 Permanent address: Dipartimento di Scienza dei Materiali, Universitá di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
Bootstrap inversion for Pn wave velocity in North-Western Italy
Directory of Open Access Journals (Sweden)
C. Eva
1997-06-01
Full Text Available An inversion of Pn arrival times from regional distance earthquakes (180-800 km, recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6% and the Western Po plain (-4% in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4% indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3% and low Pn velocities (-1.5% in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles.
Simanungkalit, R. H.; Anggono, T.; Syuhada; Amran, A.; Supriyanto
2018-03-01
Earthquake signal observations around the world allow seismologists to obtain the information of internal structure of the Earth especially the Earth’s crust. In this study, we used joint inversion of receiver functions and surface wave group velocities to investigate crustal structure beneath CBJI station in West Java, Indonesia. Receiver function were calculated from earthquakes with magnitude more than 5 and at distance 30°-90°. Surface wave group velocities were calculated using frequency time analysis from earthquakes at distance of 30°- 40°. We inverted shear wave velocity model beneath the station by conducting joint inversion from receiver functions and surface wave dispersions. We suggest that the crustal thickness beneath CBJI station, West Java, Indonesia is about 35 km.
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela, E-mail: Gabriela.Barenboim@uv.es; Park, Wan-Il, E-mail: Wanil.Park@uv.es
2016-08-10
We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
International Nuclear Information System (INIS)
Fidone, I.; Giruzzi, G.; Caron, X.; Meyer, R.L.
1991-01-01
A method for measuring the radial profile of the lower-hybrid-driven current in a low-density tokamak plasma using electron-cyclotron wave attenuation is discussed. This diagnostic scheme is reminiscent of the transmission interferometry approach, commonly used in tokamaks to measure the plasma density, but now the wave amplitude instead of the phase is measured. Wave attenuation of the ordinary mode at ω p much-lt ω c along vertical chords is measured; at these frequencies, the waves are absorbed by the superthermal tail sustained by lower-hybrid waves and the local wave absorption coefficient is proportional to the noninductive current density. The radial profile of this current is obtained from Abel inversion. An application to the Tore Supra tokamak is presented
Stroh formalism and Rayleigh waves
Tanuma, Kazumi
2008-01-01
Introduces a powerful and elegant mathematical method for the analysis of anisotropic elasticity equationsThe reader can grasp the essentials as quickly as possibleCan be used as a textbook, which presents compactly introduction and applications of the Stroh formalismAppeals to the people not only in mathematics but also in mechanics and engineering sciencePrerequisites are only basic linear algebra, calculus and fundamentals of differential equations
Fu, Lei; Hanafy, Sherif M.
2017-01-01
. This initial starting model can be obtained by inverting traveltimes with ray-tracing traveltime tomography (RT) or wave-equation traveltime (WT) inversion. We have found that WT can provide a more accurate tomogram than RT by inverting the first
Digital Repository Service at National Institute of Oceanography (India)
Dewangan, P.; Tsvankin, I.
when the symmetry axis deviates by 20 degrees-30 degrees from the vertical horizontal direction. All relevant parameters of a TTI layer can be estimated by nonlinear inversion of the NMO velocities and zero-offset traveltimes of PP- and SS-(SVSV) waves...
Karve, Pranav M.
2016-12-28
We discuss a methodology for computing the optimal spatio-temporal characteristics of surface wave sources necessary for delivering wave energy to a targeted subsurface formation. The wave stimulation is applied to the target formation to enhance the mobility of particles trapped in its pore space. We formulate the associated wave propagation problem for three-dimensional, heterogeneous, semi-infinite, elastic media. We use hybrid perfectly matched layers at the truncation boundaries of the computational domain to mimic the semi-infiniteness of the physical domain of interest. To recover the source parameters, we define an inverse source problem using the mathematical framework of constrained optimization and resolve it by employing a reduced-space approach. We report the results of our numerical experiments attesting to the methodology\\'s ability to specify the spatio-temporal description of sources that maximize wave energy delivery. Copyright © 2016 John Wiley & Sons, Ltd.
Study of Rayleigh-Love coupling from Spatial Gradient Observation
Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.
2017-12-01
We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.
Energy Technology Data Exchange (ETDEWEB)
Chen, Xiuyu, E-mail: cxy0202@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Zhao, Shihua, E-mail: zhaoshihua0202@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Zhao, Tao, E-mail: taozhao0202@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Lu, Minjie, E-mail: lmjkan@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Yin, Gang, E-mail: gangyin0202@126.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Jiang, Shiliang, E-mail: jiangsl-2011@163.com [Department of Radiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037 (China); Prasad, Sanjay, E-mail: s.prasad@rbht.nhs.uk [NIHR Biomedical Research Unit, Royal Brompton Hospital Sydney Street, London, SW3 6NP (United Kingdom)
2014-02-15
Objectives: To investigate the relationship between T-wave inversions and left ventricular (LV) segmental hypertrophy and myocardial fibrosis assessed by cardiovascular magnetic resonance (CMR) in patients with non-apical hypertrophic cardiomyopathy (HCM). Methods: 196 consecutive patients with non-apical HCM underwent late gadolinium enhancement (LGE) CMR and 12-lead electrocardiogram. The distribution and magnitude of LV segmental hypertrophy and LGE were assessed according to the AHA 17-segment model and analyzed in relation to T-wave inversions. Results: Of 196 HCM patients, 144 (73%) exhibited T-wave inversions. 144 (73%) patients had evidence of myocardial fibrosis as defined by LGE, and the prevalence of LGE was significantly higher in patients with T-wave inversions compared with those without T-wave inversions (78% vs. 59%, P = 0.008). T-wave inversions were related to basal anterior and basal anteroseptal LGE (20% vs. 10%, P = 0.04 and 68% vs. 46%, P = 0.005, respectively). In addition, T-wave inversions were associated with greater basal anteroseptal and basal inferior wall thickness (19.5 ± 4.7 mm vs. 16.7 ± 4.5 mm, P < 0.001 and 10.9 ± 3.3 mm vs. 9.6 ± 3.0 mm, P = 0.01, respectively). By logistic regression analysis, basal anteroseptal wall thickness and LGE were independent determinants of T-wave inversions (P = 0.005, P = 0.01, respectively). Conclusions: T-wave inversions in HCM are associated with LGE and wall thickness of the left ventricular basal segments. Moreover, basal anteroseptal wall thickness and LGE are independent determinants of T-wave inversions.
International Nuclear Information System (INIS)
Chen, Xiuyu; Zhao, Shihua; Zhao, Tao; Lu, Minjie; Yin, Gang; Jiang, Shiliang; Prasad, Sanjay
2014-01-01
Objectives: To investigate the relationship between T-wave inversions and left ventricular (LV) segmental hypertrophy and myocardial fibrosis assessed by cardiovascular magnetic resonance (CMR) in patients with non-apical hypertrophic cardiomyopathy (HCM). Methods: 196 consecutive patients with non-apical HCM underwent late gadolinium enhancement (LGE) CMR and 12-lead electrocardiogram. The distribution and magnitude of LV segmental hypertrophy and LGE were assessed according to the AHA 17-segment model and analyzed in relation to T-wave inversions. Results: Of 196 HCM patients, 144 (73%) exhibited T-wave inversions. 144 (73%) patients had evidence of myocardial fibrosis as defined by LGE, and the prevalence of LGE was significantly higher in patients with T-wave inversions compared with those without T-wave inversions (78% vs. 59%, P = 0.008). T-wave inversions were related to basal anterior and basal anteroseptal LGE (20% vs. 10%, P = 0.04 and 68% vs. 46%, P = 0.005, respectively). In addition, T-wave inversions were associated with greater basal anteroseptal and basal inferior wall thickness (19.5 ± 4.7 mm vs. 16.7 ± 4.5 mm, P < 0.001 and 10.9 ± 3.3 mm vs. 9.6 ± 3.0 mm, P = 0.01, respectively). By logistic regression analysis, basal anteroseptal wall thickness and LGE were independent determinants of T-wave inversions (P = 0.005, P = 0.01, respectively). Conclusions: T-wave inversions in HCM are associated with LGE and wall thickness of the left ventricular basal segments. Moreover, basal anteroseptal wall thickness and LGE are independent determinants of T-wave inversions
Rayleigh-Taylor mixing in supernova experiments
International Nuclear Information System (INIS)
Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.
2015-01-01
We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order
Isolated T Wave Inversion in Lead aVL: An ECG Survey and a Case Report
Directory of Open Access Journals (Sweden)
Getaw Worku Hassen
2015-01-01
Full Text Available Background. Computerized electrocardiogram (ECG analysis has been of tremendous help for noncardiologists, but can we rely on it? The importance of ST depression and T wave inversions in lead aVL has not been emphasized and not well recognized across all specialties. Objective. This study’s goal was to analyze if there is a discrepancy of interpretation by physicians from different specialties and a computer-generated ECG reading in regard to a TWI in lead aVL. Methods. In this multidisciplinary prospective study, a single ECG with isolated TWI in lead aVL that was interpreted by the computer as normal was given to all participants to interpret in writing. The readings by all physicians were compared by level of education and by specialty to one another and to the computer interpretation. Results. A total of 191 physicians participated in the study. Of the 191 physicians 48 (25.1% identified and 143 (74.9% did not identify the isolated TWI in lead aVL. Conclusion. Our study demonstrated that 74.9% did not recognize the abnormality. New and subtle ECG findings should be emphasized in their training so as not to miss significant findings that could cause morbidity and mortality.
Zhang, Sanzong
2015-05-26
Full-waveform inversion requires the accurate simulation of the dynamics and kinematics of wave propagation. This is difficult in practice because the amplitudes cannot be precisely reproduced for seismic waves in the earth. Wave-equation reflection traveltime tomography (WT) is proposed to avoid this problem by directly inverting the reflection-traveltime residuals without the use of the high-frequency approximation. We inverted synthetic traces and recorded seismic data for the velocity model by WT. Our results demonstrated that the wave-equation solution overcame the high-frequency approximation of ray-based tomography, was largely insensitive to the accurate modeling of amplitudes, and mitigated problems with ambiguous event identification. The synthetic examples illustrated the effectiveness of the WT method in providing a highly resolved estimate of the velocity model. A real data example from the Gulf of Mexico demonstrated these benefits of WT, but also found the limitations in traveltime residual estimation for complex models.
International Nuclear Information System (INIS)
Kim, Jung-Il; Jeon, Seok-Gy; Kim, Geun-Ju; Kim, Jaehong
2011-01-01
A terahertz (THz) Smith-Purcell (SP) backward-wave oscillator with an inverse wet-etched grating based on silicon has been proposed to enhance radiation intensity. This grating strengthens the interactions between an electron beam and the evanescent wave due to the adjacent surface structure between gratings that improves the magnitude of the electric field up to 1.7 times compared to the conventional rectangular gratings. A two-dimensional particle-in-cell (PIC) simulation shows that the radiated power is increased up to 2.3 times higher at the radiated frequency of 0.66 THz for an electron-beam energy of 30 keV.
International Nuclear Information System (INIS)
Sen, S.; Roy Chowdhury, A.
1989-06-01
The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs
3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude
Oh, Juwon
2017-08-17
We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.
3D elastic full-waveform inversion for OBC data using the P-wave excitation amplitude
Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali
2017-01-01
We suggest a fast and efficient 3D elastic full waveform inversion (FWI) algorithm based on the excitation amplitude (maximum energy arrival) of the P-wave in the source wavefield. It evaluates the gradient direction significantly faster than its conventional counterpart. In addition, it removes the long-wavelength artifacts from the gradient, which are often originated from SS correlation process. From these advantages, the excitation approach offers faster convergence not only for the S wave velocity, but also for the entire process of multi-parameter inversion, compared to the conventional FWI. The feasibility of the proposed method is demonstrated through the synthetic Marmousi and a real OBC data from North Sea.
International Nuclear Information System (INIS)
Chimera, G.; Aoudia, A.; Panza, G.F.; Sarao, A.
2002-06-01
We make a multiscale investigation of the lithosphere-asthenosphere structure and of the active tectonics along a stripe from the Tyrrhenian to the Adriatic coast, with emphasis on the Umbria-Marche area, by means of surface-wave tomography and inversion experiments for structure and seismic moment tensor retrieval. The data include: a large number of new local and regional group velocity measurements sampling the Umbria-Marche Apennines and the Adria margin respectively; new and published phase velocity measurements sampling Italy and surroundings; deep seismic soundings which, crossing the whole Peninsula from the Tyrrhenian to the Adriatic coasts, go through the Umbria-Marche area. The local group velocity maps cover the area reactivated by the 1997-1998 Umbria-Marche earthquake sequence. These maps suggest an intimate relation between the lateral variations and distribution of the active fault systems and related sedimentary basins. Such relation is confirmed by the non-linear inversion of the local dispersion curves. To image the structure of the lithosphere-asthenosphere system from the Tyrrhenian to the Adriatic coast, we fix the upper crust parameters consistently with our Umbria-Marche models and with pertinent deep seismic sounding data and invert the regional long period dispersion measurements. At a local scale, in the Umbria-Marche area, the retrieved models for the upper crust reveal the importance of the inherited compressional tectonics on the ongoing extensional deformation and related seismic activity. The lateral and in-depth structural changes in the upper crust are likely controlling fault segmentation and seismogenesis. Source inversion studies of the large crustal events of the 1997 earthquake sequence show the dominance of normal faulting mechanisms, whereas selected aftershocks between the fault segments reveal that the prevailing deformation at the step-over is of strike-slip faulting type and may control the lateral fault extent. At the
Obtaining thickness profiles from the tomographic inversion of guided wave data
Bloom, J.G.P.; Luiten, E.A.; Volker, A.W.F.
2009-01-01
Guided wave tomography is a promising technique for the monitoring of corrosion over large areas. Guided waves have a wave speed mat depends in certain frequency-thickness regimes on the local thickness of the waveguide they follow. Therefore, the travel time of the guided wave over a fixed distance
González, O'Leary; Clouard, Valerie; Tait, Stephen; Panza, Giuliano F.
2018-06-01
We present an overview of S-wave velocities (Vs) within the crust and upper mantle of the Lesser Antilles as determined with 19 seismic broadband stations. Receiver functions (RF) have been computed from teleseismic recordings of earthquakes, and Rayleigh wave group velocity dispersion relations have been taken from earlier surface wave tomographic studies in the Caribbean area. Local smoothness optimization (LSO) procedure has been applied, combined with an H-K stacking method, the spatial distribution of hypocenters of local earthquakes and of the energy they released, in order to identify an optimum 1D model of Vs below each station. Several features of the Caribbean plate and its interaction with the Atlantic subducting slab are visible in the resulting models: (a) relatively thick oceanic crust below these stations ranges from 21 km to 33 km, being slight thinner in the middle of the island arc; (b) crustal low velocity zones are present below stations SABA, SEUS, SKI, SMRT, CBE, DSD, GCMP and TDBA; (c) lithospheric thickness range from 40 km to 105 km but lithosphere-asthenosphere boundary was not straightforward to correlate between stations; (d) the aseismic mantle wedge between the Caribbean seismic lithosphere and the subducted slab varies in thickness as well as Vs values which are, in general, lower below the West of Martinique than below the West of Guadeloupe; (e) the depth of the subducted slab beneath the volcanic arc, appears to be greater to the North, and relatively shallower below some stations (e.g. DLPL, SAM, BIM and FDF) than was estimated in previous studies based on the depth-distribution of seismicity; f) the WBZ is >10-15 km deeper than the top of the slab below the Central Lesser Antilles (Martinique and Dominica) where the presence of partial melt in the mantle wedge seems also to be more evident.
Schumacher, F.; Friederich, W.
2015-12-01
We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full
International Nuclear Information System (INIS)
Dupuy, B.
2011-11-01
Seismic wave propagation in multiphasic porous media have various environmental (natural risks, geotechnics, groundwater pollutions...) and resources (aquifers, oil and gas, CO 2 storage...) issues. When seismic waves are crossing a given material, they are distorted and thus contain information on fluid and solid phases. This work focuses on the characteristics of seismic waves propagating in multiphasic media, from the physical complex description to the parameter characterisation by inversion, including 2D numerical modelling of the wave propagation. The first part consists in the description of the physics of multiphasic media (each phase and their interactions), using several up-scaling methods, in order to obtain an equivalent mesoscale medium defined by seven parameters. Thus, in simple porosity saturated media and in complex media (double porosity, patchy saturation, visco-poro-elasticity), I can compute seismic wave propagation without any approximation. Indeed, I use a frequency-space domain for the numerical method, which allows to consider all the frequency dependent terms. The spatial discretization employs a discontinuous finite elements method (discontinuous Galerkin), which allows to take into account complex interfaces.The computation of the seismic attributes (velocities and attenuations) of complex porous media shows strong variations in respect with the frequency. Waveforms, computed without approximation, are strongly different if we take into account the full description of the medium or an homogenisation by averages. The last part of this work deals with the poro-elastic parameters characterisation by inversion. For this, I develop a two-steps method: the first one consists in a classical inversion (tomography, full waveform inversion) of seismograms data to obtain macro-scale parameters (seismic attributes). The second step allows to recover, from the macro-scale parameters, the poro-elastic micro-scale properties. This down-scaling step
Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media
Wang, Tengfei; Cheng, Jiubing
2017-01-01
Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual
Li, Mengkui; Zhang, Shuangxi; Bodin, Thomas; Lin, Xu; Wu, Tengfei
2018-06-01
Inversion of receiver functions is commonly used to recover the S-wave velocity structure beneath seismic stations. Traditional approaches are based on deconvolved waveforms, where the horizontal component of P-wave seismograms is deconvolved by the vertical component. Deconvolution of noisy seismograms is a numerically unstable process that needs to be stabilized by regularization parameters. This biases noise statistics, making it difficult to estimate uncertainties in observed receiver functions for Bayesian inference. This study proposes a method to directly invert observed radial waveforms and to better account for data noise in a Bayesian formulation. We illustrate its feasibility with two synthetic tests having different types of noises added to seismograms. Then, a real site application is performed to obtain the 1-D S-wave velocity structure beneath a seismic station located in the Tengchong volcanic area, Southwestern China. Surface wave dispersion measurements spanning periods from 8 to 65 s are jointly inverted with P waveforms. The results show a complex S-wave velocity structure, as two low velocity zones are observed in the crust and uppermost mantle, suggesting the existence of magma chambers, or zones of partial melt. The upper magma chambers may be the heart source that cause the thermal activity on the surface.
3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data
Oh, Juwon; Kalita, Mahesh; Alkhalifah, Tariq Ali
2017-01-01
We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.
3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data
Oh, Juwon
2017-12-05
We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.
Sebastian, Nita; Kim, Seongryong; Tkalčić, Hrvoje; Sippl, Christian
2017-04-01
The purpose of this study is to develop an integrated inference on the lithospheric structure of NE China using three passive seismic networks comprised of 92 stations. The NE China plain consists of complex lithospheric domains characterised by the co-existence of complex geodynamic processes such as crustal thinning, active intraplate cenozoic volcanism and low velocity anomalies. To estimate lithospheric structures with greater detail, we chose to perform the joint inversion of independent data sets such as receiver functions and surface wave dispersion curves (group and phase velocity). We perform a joint inversion based on principles of Bayesian transdimensional optimisation techniques (Kim etal., 2016). Unlike in the previous studies of NE China, the complexity of the model is determined from the data in the first stage of the inversion, and the data uncertainty is computed based on Bayesian statistics in the second stage of the inversion. The computed crustal properties are retrieved from an ensemble of probable models. We obtain major structural inferences with well constrained absolute velocity estimates, which are vital for inferring properties of the lithosphere and bulk crustal Vp/Vs ratio. The Vp/Vs estimate obtained from joint inversions confirms the high Vp/Vs ratio ( 1.98) obtained using the H-Kappa method beneath some stations. Moreover, we could confirm the existence of a lower crustal velocity beneath several stations (eg: station SHS) within the NE China plain. Based on these findings we attempt to identify a plausible origin for structural complexity. We compile a high-resolution 3D image of the lithospheric architecture of the NE China plain.
A New Wave Equation Based Source Location Method with Full-waveform Inversion
Wu, Zedong
2017-05-26
Locating the source of a passively recorded seismic event is still a challenging problem, especially when the velocity is unknown. Many imaging approaches to focus the image do not address the velocity issue and result in images plagued with illumination artifacts. We develop a waveform inversion approach with an additional penalty term in the objective function to reward the focusing of the source image. This penalty term is relaxed early to allow for data fitting, and avoid cycle skipping, using an extended source. At the later stages the focusing of the image dominates the inversion allowing for high resolution source and velocity inversion. We also compute the source location explicitly and numerical tests show that we obtain good estimates of the source locations with this approach.
Wilson, M G; Sharma, S; Carré, F; Charron, P; Richard, P; O'Hanlon, R; Prasad, S K; Heidbuchel, H; Brugada, J; Salah, O; Sheppard, M; George, K P; Whyte, G; Hamilton, B; Chalabi, H
2012-11-01
Preparticipation screening programmes for underlying cardiac pathologies are now commonplace for many international sporting organisations. However, providing medical clearance for an asymptomatic athlete without a family history of sudden cardiac death (SCD) is especially challenging when the athlete demonstrates particularly abnormal repolarisation patterns, highly suggestive of an inherited cardiomyopathy or channelopathy. Deep T-wave inversions of ≥ 2 contiguous anterior or lateral leads (but not aVR, and III) are of major concern for sports cardiologists who advise referring team physicians, as these ECG alterations are a recognised manifestation of hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC). Subsequently, inverted T-waves may represent the first and only sign of an inherited heart muscle disease, in the absence of any other features and before structural changes in the heart can be detected. However, to date, there remains little evidence that deep T-wave inversions are always pathognomonic of either a cardiomyopathy or an ion channel disorder in an asymptomatic athlete following long-term follow-up. This paper aims to provide a systematic review of the prevalence of T-wave inversion in athletes and examine T-wave inversion and its relationship to structural heart disease, notably HCM and ARVC with a view to identify young athletes at risk of SCD during sport. Finally, the review proposes clinical management pathways (including genetic testing) for asymptomatic athletes demonstrating significant T-wave inversion with structurally normal hearts.
Rayleigh reciprocity relations: Applications
International Nuclear Information System (INIS)
Lin Ju; Li Xiao-Lei; Wang Ning
2016-01-01
Classical reciprocity relations have wide applications in acoustics, from field representation to generalized optical theorem. In this paper we introduce our recent results on the applications and generalization of classical Rayleigh reciprocity relation: higher derivative reciprocity relations as a generalization of the classical one and a theoretical proof on the Green’s function retrieval from volume noises. (special topic)
Directory of Open Access Journals (Sweden)
Hatem L. Farhan
2010-04-01
Full Text Available Objectives: The clinical value of T wave inversion in lead aVL in diagnosing coronary artery disease (CAD remains unclear. This study aims to investigate the correlation between aVL T wave inversion and CAD in patients with chronic stable angina.Methods: Electrocardiograms (ECGs of 257 consecutive patients undergoing coronary angiography were analyzed. All patients had chronic stable angina. All patients with secondary T wave inversion had been excluded (66 patients. The remaining 191 patients constituted the study population. Detailed ECG interpretation and coronary angiographic findings were conducted by experienced cardiologists.Results: T wave inversion in aVL was identified in 89 ECGs (46.8% with definite ischemic Q-ST-T changes in different leads in 97 ECGs (50.8%. Stand alone aVL T wave inversion was found in 27 ECGs (14.1% while ischemic changes in other leads with normal aVL were identified in 36 ECGs (18.8%. The incidence of CAD was 86.3%. Single, two- and multi-vessel CAD were found in 38.8%, 28.5% and 32.7% of cases respectively. The prevalence of left main, left anterior descending, left circumflex and right coronary arteries were 4.7%, 61.2%, 29.3% and 44.5%, respectively. T wave inversion in aVL was found to be the only ECG variable significantly predicting mid segment left anterior descending artery (LAD lesions (Odds Ratio 2.93, 95% Confidence Interval 1.59-5.37, p=0.001.Conclusion: This study provides new information relating to T wave inversion in lead aVL to mid segment LAD lesions. Implication of this simple finding may help in bedside diagnosis of CAD typically mid LAD lesions. However, further studies are needed to corroborate this finding.
Mengxuan, Zhong
2017-06-01
The gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI) are widely used now, but consume a lot of memory and do not fit the FWI of large models or actual seismic data well. To avoid the huge storage consumption, the gradient preconditioning approach based on seismic wave energy has been proposed it simulates the “approximated wave field” with the acoustic wave equation and uses the energy of the simulated wavefield to precondition the gradient. The method does not require computing and storing the Hessian matrix or its inverse and can effectively eliminate the effect caused by geometric diffusion and uneven illumination on gradient. The result of experiments in this article with field data from South China Sea confirms that the time-domain FWI using the gradient preconditioning based on seismic wave energy (GPWE) can achieve higher inversion accuracy for the deep high-velocity model and its underlying strata.
On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs
Karve, Pranav M.; Kucukcoban, Sezgin; Kallivokas, Loukas F.
2014-01-01
to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem
A New Wave Equation Based Source Location Method with Full-waveform Inversion
Wu, Zedong; Alkhalifah, Tariq Ali
2017-01-01
with illumination artifacts. We develop a waveform inversion approach with an additional penalty term in the objective function to reward the focusing of the source image. This penalty term is relaxed early to allow for data fitting, and avoid cycle skipping, using
Algorithms and Architectures for Elastic-Wave Inversion Final Report CRADA No. TC02144.0
Energy Technology Data Exchange (ETDEWEB)
Larsen, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lindtjorn, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-08-15
This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Schlumberger Technology Corporation (STC), to perform a computational feasibility study that investigates hardware platforms and software algorithms applicable to STC for Reverse Time Migration (RTM) / Reverse Time Inversion (RTI) of 3-D seismic data.
Giassi, Pedro; Okida, Sergio; Oliveira, Maurício G; Moraes, Raimes
2013-11-01
Short-term cardiovascular regulation mediated by the sympathetic and parasympathetic branches of the autonomic nervous system has been investigated by multivariate autoregressive (MVAR) modeling, providing insightful analysis. MVAR models employ, as inputs, heart rate (HR), systolic blood pressure (SBP) and respiratory waveforms. ECG (from which HR series is obtained) and respiratory flow waveform (RFW) can be easily sampled from the patients. Nevertheless, the available methods for acquisition of beat-to-beat SBP measurements during exams hamper the wider use of MVAR models in clinical research. Recent studies show an inverse correlation between pulse wave transit time (PWTT) series and SBP fluctuations. PWTT is the time interval between the ECG R-wave peak and photoplethysmography waveform (PPG) base point within the same cardiac cycle. This study investigates the feasibility of using inverse PWTT (IPWTT) series as an alternative input to SBP for MVAR modeling of the cardiovascular regulation. For that, HR, RFW, and IPWTT series acquired from volunteers during postural changes and autonomic blockade were used as input of MVAR models. Obtained results show that IPWTT series can be used as input of MVAR models, replacing SBP measurements in order to overcome practical difficulties related to the continuous sampling of the SBP during clinical exams.
O'Malley, D.; Vesselinov, V. V.
2017-12-01
Classical microprocessors have had a dramatic impact on hydrology for decades, due largely to the exponential growth in computing power predicted by Moore's law. However, this growth is not expected to continue indefinitely and has already begun to slow. Quantum computing is an emerging alternative to classical microprocessors. Here, we demonstrated cutting edge inverse model analyses utilizing some of the best available resources in both worlds: high-performance classical computing and a D-Wave quantum annealer. The classical high-performance computing resources are utilized to build an advanced numerical model that assimilates data from O(10^5) observations, including water levels, drawdowns, and contaminant concentrations. The developed model accurately reproduces the hydrologic conditions at a Los Alamos National Laboratory contamination site, and can be leveraged to inform decision-making about site remediation. We demonstrate the use of a D-Wave 2X quantum annealer to solve hydrologic inverse problems. This work can be seen as an early step in quantum-computational hydrology. We compare and contrast our results with an early inverse approach in classical-computational hydrology that is comparable to the approach we use with quantum annealing. Our results show that quantum annealing can be useful for identifying regions of high and low permeability within an aquifer. While the problems we consider are small-scale compared to the problems that can be solved with modern classical computers, they are large compared to the problems that could be solved with early classical CPUs. Further, the binary nature of the high/low permeability problem makes it well-suited to quantum annealing, but challenging for classical computers.
Sun, Yimin; Verschuur, Eric; van Borselen, Roald
2018-03-01
The Rayleigh integral solution of the acoustic Helmholtz equation in a homogeneous medium can only be applied when the integral surface is a planar surface, while in reality almost all surfaces where pressure waves are measured exhibit some curvature. In this paper we derive a theoretically rigorous way of building propagation operators for pressure waves on an arbitrarily curved surface. Our theory is still based upon the Rayleigh integral, but it resorts to matrix inversion to overcome the limitations faced by the Rayleigh integral. Three examples are used to demonstrate the correctness of our theory - propagation of pressure waves acquired on an arbitrarily curved surface to a planar surface, on an arbitrarily curved surface to another arbitrarily curved surface, and on a spherical cap to a planar surface, and results agree well with the analytical solutions. The generalization of our method for particle velocities and the calculation cost of our method are also discussed.
Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method
Verachtert, R.; Lombaert, G.; Degrande, G.
2018-03-01
This paper introduces the circle fit method for the determination of multi-modal Rayleigh dispersion and attenuation curves as part of a Multichannel Analysis of Surface Waves (MASW) experiment. The wave field is transformed to the frequency-wavenumber (fk) domain using a discretized Hankel transform. In a Nyquist plot of the fk-spectrum, displaying the imaginary part against the real part, the Rayleigh wave modes correspond to circles. The experimental Rayleigh dispersion and attenuation curves are derived from the angular sweep of the central angle of these circles. The method can also be applied to the analytical fk-spectrum of the Green's function of a layered half-space in order to compute dispersion and attenuation curves, as an alternative to solving an eigenvalue problem. A MASW experiment is subsequently simulated for a site with a regular velocity profile and a site with a soft layer trapped between two stiffer layers. The performance of the circle fit method to determine the dispersion and attenuation curves is compared with the peak picking method and the half-power bandwidth method. The circle fit method is found to be the most accurate and robust method for the determination of the dispersion curves. When determining attenuation curves, the circle fit method and half-power bandwidth method are accurate if the mode exhibits a sharp peak in the fk-spectrum. Furthermore, simulated and theoretical attenuation curves determined with the circle fit method agree very well. A similar correspondence is not obtained when using the half-power bandwidth method. Finally, the circle fit method is applied to measurement data obtained for a MASW experiment at a site in Heverlee, Belgium. In order to validate the soil profile obtained from the inversion procedure, force-velocity transfer functions were computed and found in good correspondence with the experimental transfer functions, especially in the frequency range between 5 and 80 Hz.
Eddy, C. L.; Ekstrom, G.; Nettles, M.; Gaherty, J. B.
2017-12-01
We present a three-dimensional model of the anisotropic velocity structure of the Pacific lithosphere and asthenosphere. The presence of seismic anisotropy in the oceanic upper mantle provides information about the geometry of flow in the mantle, the nature of the lithosphere-asthenosphere boundary, and the possible presence of partial melt in the asthenosphere. Our dataset consists of fundamental-mode dispersion for Rayleigh and Love waves measured between 25-250 s with paths crossing the Pacific Ocean. We invert the phase anomaly measurements directly for three-dimensional anisotropic velocity structure. Our models are radially anisotropic and include the full set of elastic parameters that describe azimuthal variations in velocity (e.g. Gc, Gs). We investigate the age dependence of seismic velocity and radial anisotropy and find that there are significant deviations from the velocities predicted by a simple oceanic plate cooling model. We observe strong radial anisotropy with vsh > vsv in the asthenosphere of the central Pacific. We investigate the radial anisotropy in the shallow lithosphere, where previous models have reported conflicting results. There is a contrast in both upper-mantle isotropic velocities and radial anisotropy between the Pacific and Nazca plates, across the East Pacific Rise. We also investigate lateral variations in azimuthal anisotropy throughout the Pacific upper mantle and find that there are large areas over which the anisotropy fast axis does not align with absolute plate motion, suggesting the presence of small-scale convection or pressure-driven flow beneath the base of the oceanic plate.
Theory of nonlinear interaction of particles and waves in an inverse plasma maser. Part 1
International Nuclear Information System (INIS)
Krivitsky, V.S.; Vladimirov, S.V.
1991-01-01
An expression is obtained for the collision integral describing the simultaneous interaction of plasma particles with resonant and non-resonant waves. It is shown that this collision integral is determined by two processes: a 'direct' nonlinear interaction of particles and waves, and the influence of the non-stationary of the system. The expression for the nonlinear collision integral is found to be quite different from the expression for a quasi-linear collision integral; in particular, the nonlinear integral contains higher-order derivatives of the distribution function with respect to momentum than the quasi-linear one. (author)
S-wave velocity below Europe from delay-time and waveform inversions
Zielhuis, A.
1992-01-01
The upper mantle of Europe has been the subject of many tomographic studies of variations in P-wave velocity (e.g., Romanowicz 1980; Hovland et al., 1981; Spakman, 1988, 1991; and Spakman et aI., in preparation). In particular the studies of Spakman (1988, 1991) and Spakman et aI. (in preparation)
S-wave velocity below Europe from delay-time and waveform inversions
Zielhuis, A.
1992-01-01
The upper mantle of Europe has been the subject of many tomographic studies of variations in P-wave velocity (e.g., Romanowicz 1980; Hovland et al., 1981; Spakman, 1988, 1991; and Spakman et aI., in preparation). In particular the studies of Spakman (1988, 1991) and Spakman et aI. (in
Ultra-Scalable Algorithms for Large-Scale Uncertainty Quantification in Inverse Wave Propagation
2016-03-04
gradient), as well as linear systems with Hessian operators that arise in the trace estimation (along with incremental forward/adjoint wave equations ...with the Elemental library [54] to enable fast and scalable randomized linear algebra . We have also been working on domain decomposition...discontinuous Petrov Galerkin method, in Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations : 2012
PS-wave moveout inversion for tilted TI media: A physical modeling study
Digital Repository Service at National Institute of Oceanography (India)
Dewangan, P.; Tsvankin, I.; Batzle, M.; Van Wijk, K.; Haney, M.
-waves can be inverted for the parameters of a horizontal TI layer with a tilted symmetry axis. The 2D multicomponent reflection data are acquired over a phenolic sample manufactured to simulate the effective medium formed by steeply dipping fracture sets...
Instantaneous Rayleigh scattering from excitons localized in monolayer islands
DEFF Research Database (Denmark)
Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis
2000-01-01
We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...
International Nuclear Information System (INIS)
Suarez Antola, R.
2002-07-01
The present work is the first of a series of three memoirs briefs, destinadas to revise the classic theoretical foundations that allow to understand the generation,la diffusion and the detection of the elastic waves in those been accustomed to from the point of view of the mechanics of the means continuos. The study is faced in the mark of the non destructive rehearsals, emphasizing aspects related with the rehearsals based on the acoustic emission of the material defects
Potential-vorticity inversion and the wave-turbulence jigsaw: some recent clarifications
Directory of Open Access Journals (Sweden)
M. E. McIntyre
2008-06-01
Full Text Available Two key ideas stand out as crucial to understanding atmosphere-ocean dynamics, and the dynamics of other planets including the gas giants. The first key idea is the invertibility principle for potential vorticity (PV. Without it, one can hardly give a coherent account of even so important and elementary a process as Rossby-wave propagation, going beyond the simplest textbook cases. Still less can one fully understand nonlinear processes like the self-sharpening or narrowing of jets – the once-mysterious "negative viscosity" phenomenon. The second key idea, also crucial to understanding jets, might be summarized in the phrase "there is no such thing as turbulence without waves", meaning Rossby waves especially. Without this idea one cannot begin to make sense of, for instance, momentum budgets and eddy momentum transports in complex large-scale flows. Like the invertibility principle the idea has long been recognized, or at least adumbrated. However, it is worth articulating explicitly if only because it can be forgotten when, in the usual way, we speak of "turbulence" and "turbulence theory" as if they were autonomous concepts. In many cases of interest, such as the well-studied terrestrial stratosphere, reality is more accurately described as a highly inhomogeneous "wave-turbulence jigsaw puzzle" in which wavelike and turbulent regions fit together and crucially affect each other's evolution. This modifies, for instance, formulae for the Rhines scale interpreted as indicating the comparable importance of wavelike and turbulent dynamics. Also, weakly inhomogeneous turbulence theory is altogether inapplicable. For instance there is no scale separation. Eddy scales are not much smaller than the sizes of the individual turbulent regions in the jigsaw. Here I review some recent progress in clarifying these ideas and their implications.
Joint Inversion of Phase and Amplitude Data of Surface Waves for North American Upper Mantle
Hamada, K.; Yoshizawa, K.
2015-12-01
For the reconstruction of the laterally heterogeneous upper-mantle structure using surface waves, we generally use phase delay information of seismograms, which represents the average phase velocity perturbation along a ray path, while the amplitude information has been rarely used in the velocity mapping. Amplitude anomalies of surface waves contain a variety of information such as anelastic attenuation, elastic focusing/defocusing, geometrical spreading, and receiver effects. The effects of elastic focusing/defocusing are dependent on the second derivative of phase velocity across the ray path, and thus, are sensitive to shorter-wavelength structure than the conventional phase data. Therefore, suitably-corrected amplitude data of surface waves can be useful for improving the lateral resolution of phase velocity models. In this study, we collect a large-number of inter-station phase velocity and amplitude ratio data for fundamental-mode surface waves with a non-linear waveform fitting between two stations of USArray. The measured inter-station phase velocity and amplitude ratios are then inverted simultaneously for phase velocity maps and local amplification factor at receiver locations in North America. The synthetic experiments suggest that, while the phase velocity maps derived from phase data only reflect large-scale tectonic features, those from phase and amplitude data tend to exhibit better recovery of the strength of velocity perturbations, which emphasizes local-scale tectonic features with larger lateral velocity gradients; e.g., slow anomalies in Snake River Plain and Rio Grande Rift, where significant local amplification due to elastic focusing are observed. Also, the spatial distribution of receiver amplification factor shows a clear correlation with the velocity structure. Our results indicate that inter-station amplitude-ratio data can be of help in reconstructing shorter-wavelength structures of the upper mantle.
International Nuclear Information System (INIS)
Zabolotskii, A.A.
1995-01-01
The inverse problem is considered for a spectral problem, which is formally equivalent to a system of Bloch equations for an inhomogeneously broadened transition interacting with the electric field. Two cases are considered to demonstrate that, for any given frequency interval, one can determine the pulse of the shape which corresponds to the interaction with only this frequency interval. In the general case, the pulse shape is described by a nonlinear periodic wave. The first example is the resonance interaction of light with a gas of two-level atoms. The second example is interaction of a linearly polarized light with the molecular J-J transition, where J much-gt 1. In the latter case, the role of inhomogeneous broadening belongs to the frequency shift induced by the applied magnetic field. 10 refs
International Nuclear Information System (INIS)
Supardiyono; Santosa, Bagus Jaya
2012-01-01
A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299° were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.
Energy Technology Data Exchange (ETDEWEB)
Supardiyono; Santosa, Bagus Jaya [Physics Department, Faculty of Mathematics and Natural Sciences, State University of Surabaya, Surabaya (Indonesia) and Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia); Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya (Indonesia)
2012-06-20
A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquake locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.
Fu, Lei
2017-05-11
Full-waveform inversion of land seismic data tends to get stuck in a local minimum associated with the waveform misfit function. This problem can be partly mitigated by using an initial velocity model that is close to the true velocity model. This initial starting model can be obtained by inverting traveltimes with ray-tracing traveltime tomography (RT) or wave-equation traveltime (WT) inversion. We have found that WT can provide a more accurate tomogram than RT by inverting the first-arrival traveltimes, and empirical tests suggest that RT is more sensitive to the additive noise in the input data than WT. We present two examples of applying WT and RT to land seismic data acquired in western Saudi Arabia. One of the seismic experiments investigated the water-table depth, and the other one attempted to detect the location of a buried fault. The seismic land data were inverted by WT and RT to generate the P-velocity tomograms, from which we can clearly identify the water table depth along the seismic survey line in the first example and the fault location in the second example.
Near optimal solution to the inverse problem for gravitational-wave bursts
International Nuclear Information System (INIS)
Guersel, Y.; Tinto, M.
1989-01-01
We develop a method for determining the source direction (θ,φ) and the two waveforms h + (t), h x (t) of a gravitational-wave burst using noisy data from three wideband gravitational-wave detectors running in coincidence. The scheme does not rely on any assumptions about the waveforms and in fact it works for gravitational-wave bursts of any kind. To improve the accuracy of the solution for (θ,φ), h + (t), h x (t), we construct a near optimal filter for the noisy data which is deduced from the data themselves. We implement the method numerically using simulated data for detectors that operate, with white Gaussian noise, in the frequency band of 500--2500 Hz. We show that for broadband signals centered around 1 kHz with a conventional signal-to-noise ratio of at least 10 in each detector we are able to locate the source within a solid angle of 1x10 -5 sr. If the signals and the detectors' band were scaled downwards in frequency by a factor ι, at fixed signal-to-noise ratio, then the solid angle of the source's error box would increase by a factor ι 2 . The simulated data are assumed to be produced by three detectors: one on the east coast of the United States of America, one on the west coast of the United States of America, and the third in Germany or Western Australia. For conventional signal-to-noise ratios significantly lower than 10 the method still converges to the correct combination of the relative time delays but it is unable to distinguish between the two mirror-image directions defined by the relative time delays. The angular spread around these points increases as the signal-to-noise ratio decreases. For conventional signal-to-noise ratios near 1 the method loses its resolution completely
Rosas-Carbajal, M.; Linde, N.; Kalscheuer, T.; Vrugt, J.A.
2014-01-01
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space
Inverse Edelstein effect induced by magnon-phonon coupling
Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika
2018-05-01
We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.
Shifman, Aaron R; Longtin, André; Lewis, John E
2015-10-30
Identifying and understanding the current sources that give rise to bioelectric fields is a fundamental problem in the biological sciences. It is very difficult, for example, to attribute the time-varying features of an electroencephalogram recorded from the head surface to the neural activity of specific brain areas; model systems can provide important insight into such problems. Some species of fish actively generate an oscillating (c. 1000 Hz) quasi-dipole electric field to communicate and sense their environment in the dark. A specialized electric organ comprises neuron-like cells whose collective signal underlies this electric field. As a step towards understanding the detailed biophysics of signal generation in these fish, we use an anatomically-detailed finite-element modelling approach to reverse-engineer the electric organ signal over one oscillation cycle. We find that the spatiotemporal profile of current along the electric organ constitutes a travelling wave that is well-described by two spatial Fourier components varying in time. The conduction velocity of this wave is faster than action potential conduction in any known neuronal axon (>200 m/s), suggesting that the spatiotemporal features of high-frequency electric organ discharges are not constrained by the conduction velocities of spinal neuron pathways.
Directory of Open Access Journals (Sweden)
Kareema Abed Al-Kadim
2017-12-01
Full Text Available In this paper Rayleigh Pareto distribution have introduced denote by( R_PD. We stated some useful functions. Therefor we give some of its properties like the entropy function, mean, mode, median , variance , the r-th moment about the mean, the rth moment about the origin, reliability, hazard functions, coefficients of variation, of sekeness and of kurtosis. Finally, we estimate the parameters so the aim of this search is to introduce a new distribution
Monsalve-Jaramillo, Hugo; Valencia-Mina, William; Cano-Saldaña, Leonardo; Vargas, Carlos A.
2018-05-01
Source parameters of four earthquakes located within the Wadati-Benioff zone of the Nazca plate subducting beneath the South American plate in Colombia were determined. The seismic moments for these events were recalculated and their approximate equivalent rupture area, slip distribution and stress drop were estimated. The source parameters for these earthquakes were obtained by deconvolving multiple events through teleseismic analysis of body waves recorded in long period stations and with simultaneous inversion of P and SH waves. The calculated source time functions for these events showed different stages that suggest that these earthquakes can reasonably be thought of being composed of two subevents. Even though two of the overall focal mechanisms obtained yielded similar results to those reported by the CMT catalogue, the two other mechanisms showed a clear difference compared to those officially reported. Despite this, it appropriate to mention that the mechanisms inverted in this work agree well with the expected orientation of faulting at that depth as well as with the wave forms they are expected to produce. In some of the solutions achieved, one of the two subevents exhibited a focal mechanism considerably different from the total earthquake mechanism; this could be interpreted as the result of a slight deviation from the overall motion due the complex stress field as well as the possibility of a combination of different sources of energy release analogous to the ones that may occur in deeper earthquakes. In those cases, the subevents with very different focal mechanism compared to the total earthquake mechanism had little contribution to the final solution and thus little contribution to the total amount of energy released.
The Measurement and Interpretation of Surface Wave Group Arrival Times
Masters, G.; Kane, D.; Morrow, J.; Zhou, Y.; Tromp, J.
2005-12-01
We have recently developed an efficient technique for measuring the relative group arrival times of surface waves by using cross-correlation and cluster analysis of waveform envelope functions. Applying the analysis to minor arc Love and Rayleigh waves in the frequency band 7 to 35 mHz for all events over magnitude 5.5 results in a dataset of over 200,000 measurements at each frequency for long period Rayleigh waves (frequency less than 25 mHz) and about 100,000 measurements at the shorter periods. Analysis of transverse components results in about half as many Love wave measurements. Simple ray theory inversions of the relative arrival times for apparent group velocity produce maps which are accurate representations of the data (often over 90% variance reduction of the relative arrival times) and which show features strongly correlated with tectonics and crustal thickness. The apparent group velocity variations can be extremely large: 30% velocity variations for 20 mHz Rayleigh waves and 40% variations for 30 mHz Rayleigh waves and can have abrupt lateral changes. This raises the concern that non-ray theory effects could be important. Indeed, a recent analysis by Dahlen and Zhou (personal communication) suggests that the group arrival times should be a functions of both the group velocity AND the phase velocity. The simplest way to test the interpretation of the measurements is to perform the analysis on synthetic seismograms computed for a realistic model of the Earth. Here, we use the SEM with a model which incorporates realistic crust and mantle structure. We are currently computing synthetics for a suite of roughly 1000 events recorded globally that extend to a period of 18 seconds. We shall present the results of applying both ray-based and finite frequency inversions to the synthetic data as well as evaluating the effects of off path propagation at short periods using surface wave ray tracing.
Meier, U.
2008-01-01
We present a neural network approach to invert surface wave data for discontinuities and velocity structure in the upper mantle. We show how such a neural network can be trained on a set of random samples to give a continuous approximation to the inverse relation in a compact and computationally
Extended Rayleigh Damping Model
Directory of Open Access Journals (Sweden)
Naohiro Nakamura
2016-07-01
Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.
A simple analytic approximation to the Rayleigh-Bénard stability threshold
Prosperetti, Andrea
2011-01-01
The Rayleigh-Bénard linear stability problem is solved by means of a Fourier series expansion. It is found that truncating the series to just the first term gives an excellent explicit approximation to the marginal stability relation between the Rayleigh number and the wave number of the
Recent results in Rayleigh scattering
International Nuclear Information System (INIS)
Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva
1997-01-01
New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)
Karve, Pranav M.; Fathi, Arash; Poursartip, Babak; Kallivokas, Loukas F.
2016-01-01
We discuss a methodology for computing the optimal spatio-temporal characteristics of surface wave sources necessary for delivering wave energy to a targeted subsurface formation. The wave stimulation is applied to the target formation to enhance
National Research Council Canada - National Science Library
Julia, Jordi; Ammon, Charles J; Herrimann, Robert B
2006-01-01
.... Receiver functions are primarily sensitive to shear-wave velocity contrasts and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...
National Research Council Canada - National Science Library
Herrmann, Robert B; Julia, Jordi; Ammon, Charles J
2007-01-01
.... Receiver functions are primarily sensitive to shear-wave velocity contrast and vertical travel times and surface-wave dispersion measurements are sensitive to vertical shear-wave velocity averages...
Kang, S. G.; Hong, J. K.; Jin, Y. K.; Jang, U.; Niessen, F.; Baranov, B.
2017-12-01
2016 IBRV ARAON Arctic Cruise Leg-2, Expedition ARA07C was a multidisciplinary undertaking carried out in the East Siberian Sea (ESS) from August 25 to September 10, 2016. The program was conducted as a collaboration between the Korea Polar Research Institute (KOPRI), P.P. Shirshov Institute of Oceanology (IORAS), and Alfred Wegener Institute (AWI). During this expedition, the multi-channel seismic (MCS) data were acquired on the continental shelf and the upper slope of the ESS, totaling 3 lines with 660 line-kilometers. The continental shelf of ESS is one of the widest shelf seas in the world and it is believed to cover the largest area of sub-sea permafrost in the Arctic. According to the present knowledge of the glacial history of the western Arctic Ocean, it is likely that during the LGM with a sea level approximately 120 m below present, the entire shelf area of the ESS was exposed to very cold air temperatures so that thick permafrost should have formed. Indeed, in water depths shallower than 80 m, sub-bottom profiles in the ESS recorded from the shelf edge to a latitude of 74°30' N in 60 m water depth exhibited acoustic facies, suggesting that at least relicts of submarine permafrost are present. In order to identify the existence and/or non-existence of subsea permafrost in our study area, we analyze the MCS data using the Laplace domain full waveform inversion (FWI). In case of the Canadian continental shelf of the Beaufort Sea, subsea permafrost has high seismic velocity values (over 2.6 km/sec) and strong refraction events were found in the MCS shotgathers. However, in the EES our proposed P-wave velocity models derived from FWI have neither found high velocity structures (over 2.6 km/sec) nor indicate strong refraction events by subsea permafrost. Instead, in 300 m depth below sea floor higher P-wave velocity structures (1.8 2.2 km/s) than normal subsea sediment layers were found, which are interpreted as cemented strata by glaciation activities.
Czech Academy of Sciences Publication Activity Database
Holub, Karel; Růžek, Bohuslav; Rušajová, Jana
2012-01-01
Roč. 60, č. 2 (2012), s. 487-497 ISSN 1895-6572 R&D Projects: GA ČR GA205/03/0999 Institutional research plan: CEZ:AV0Z30860518; CEZ:AV0Z30120515 Keywords : velocity model * tomography * waves inversion * northern Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.910, year: 2012 http://www.springerlink.com/content/fn310w4j44287134/
The Rayleigh-Taylor instability in the spherical pinch
International Nuclear Information System (INIS)
Chen, H.B.; Hilko, B.; Panarella, E.
1994-01-01
The spherical pinch (SP) concept is an outgrowth of the inertial confinement model (ICF). Unlike the ICF where instabilities, especially the Rayleigh-Taylor instability, have been studied extensively, the instability study of the spherical pinch has just begun. The Raleigh-Taylor instability is investigated for the first time in the SP in the present work. By using the simple condition for the Rayleigh-Taylor instability ∇p · ∇p < O (density and pressure gradients have opposite direction), we have qualitatively identified the regions for development of instabilities in the SP. It is found that the explosion phase (central discharge) is stable and instabilities take place in the imploding phase. However, the growth rate for the instability is not in exponential form, and the appearance of the Rayleigh-Taylor instability does not prevent the main shock wave from converging to the center of the sphere
Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.
2017-12-01
Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.
International Nuclear Information System (INIS)
Wu, Ru-Shan; Wang, Benfeng; Hu, Chunhua
2015-01-01
We derived the renormalized nonlinear sensitivity operator and the related inverse thin-slab propagator (ITSP) for nonlinear tomographic waveform inversion based on the theory of nonlinear partial derivative operator and its De Wolf approximation. The inverse propagator is based on a renormalization procedure to the forward and inverse transition matrix scattering series. The ITSP eliminates the divergence of the inverse Born series for strong perturbations by stepwise partial summation (renormalization). Numerical tests showed that the inverse Born T-series starts to diverge at moderate perturbation (20% for the given model of Gaussian ball with a radius of 5 wavelength), while the ITSP has no divergence problem for any strong perturbations (up to 100% perturbation for test model). In addition, the ITSP is a non-iterative, marching algorithm with only one sweep, and therefore very efficient in comparison with the iterative inversion based on the inverse-Born scattering series. This convergence and efficiency improvement has potential applications to the iterative procedure of waveform inversion. (paper)
Lebedev, S.; Ravenna, M.; Adam, J.
2017-12-01
Seismic anisotropy provides essential information on the deformation of the lithosphere. Knowledge of anisotropy also allows us to isolate the isotropic-average seismic velocities, relatable to the lithospheric temperature and composition. We use Rayleigh and Love-wave phase velocities and their azimuthal anisotropy measured in broad period ranges across the footprint of the Southern Africa Seismic Experiment (SASE), from the Kaapvaal Craton to the Limpopo Belt. We invert the data using our recently developed, fully non-linear Markov Chain Monte Carlo method and determine, for the first time, both the isotropic-average S velocity and its radial and azimuthal anisotropy as a function of depth from the upper crust down to the asthenosphere. The probabilistic inversion provides a way to quantify non-uniqueness, using direct parameter-space sampling, and assess model uncertainties. The high-velocity anomaly indicative of the cold cratonic lithosphere bottoms at 200-250 km beneath the central and western Kaapvaal Craton, underlain by a low-velocity zone. Beneath northern Kaapvaal and Limpopo, by contrast, high velocities extend down to 300-350 km. Although this does not require a lithosphere that has maintained this thickness over a geologically long time, the data does require the mantle to be anomalously cold down to 300-350 km. Interestingly, topography correlates with the thickness of this high-velocity layer, with lower elevations where the lid is thicker. Radial shear-wave anisotropy is in the 2-5 percent range (Vsh > Vsv) from the lower crust down to 200 km, below which depth it decreases gradually. Radial variations in the amplitude of radial anisotropy show no clear relationship with those in the amplitude of azimuthal anisotropy or isotropic-average Vs anomalies. Azimuthal anisotropy changes the fast-propagation direction near the base of the lithosphere (200-300 km depth), from the laterally varying fast azimuths in the lower lithosphere to a spatially
Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar
Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.
2017-12-01
Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater
Joint body and surface wave tomography applied to the Toba caldera complex (Indonesia)
Jaxybulatov, Kairly; Koulakov, Ivan; Shapiro, Nikolai
2016-04-01
We developed a new algorithm for a joint body and surface wave tomography. The algorithm is a modification of the existing LOTOS code (Koulakov, 2009) developed for local earthquake tomography. The input data for the new method are travel times of P and S waves and dispersion curves of Rayleigh and Love waves. The main idea is that the two data types have complementary sensitivities. The body-wave data have good resolution at depth, where we have enough crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution. The surface wave dispersion curves can be retrieved from the correlations of the ambient seismic noise and in this case the sampled path distribution does not depend on the earthquake sources. The contributions of the two data types to the inversion are controlled by the weighting of the respective equations. One of the clearest cases where such approach may be useful are volcanic systems in subduction zones with their complex magmatic feeding systems that have deep roots in the mantle and intermediate magma chambers in the crust. In these areas, the joint inversion of different types of data helps us to build a comprehensive understanding of the entire system. We apply our algorithm to data collected in the region surrounding the Toba caldera complex (north Sumatra, Indonesia) during two temporary seismic experiments (IRIS, PASSCAL, 1995, GFZ, LAKE TOBA, 2008). We invert 6644 P and 5240 S wave arrivals and ~500 group velocity dispersion curves of Rayleigh and Love waves. We present a series of synthetic tests and real data inversions which show that joint inversion approach gives more reliable results than the separate inversion of two data types. Koulakov, I., LOTOS code for local earthquake tomographic inversion. Benchmarks for testing tomographic algorithms, Bull. seism. Soc. Am., 99(1), 194-214, 2009, doi:10.1785/0120080013
De Coster, Albéric; Phuong Tran, Anh; Lambot, Sébastien
2014-05-01
Water lost through leaks can represent high percentages of the total production in water supply systems and constitutes an important issue. Leak detection can be tackled with various techniques such as the ground-penetrating radar (GPR). Based on this technology, various procedures have been elaborated to characterize a leak and its evolution. In this study, we focus on a new full-wave radar modelling approach for near-field conditions, which takes into account the antenna effects as well as the interactions between the antenna(s) and the medium through frequency-dependent global transmission and reflection coefficients. This approach is applied to layered media for which 3-D Green's functions can be calculated. The model allows for a quantitative estimation of the properties of multilayered media by using full-wave inversion. This method, however, proves to be limited to provide users with an on-demand assessment as it is generally computationally demanding and time consuming, depending on the medium configuration as well as the number of unknown parameters to retrieve. In that respect, we propose two leads in order to enhance the parameter retrieval step. The first one consists in analyzing the impact of the reduction of the number of frequencies on the information content. For both numerical and laboratory experiments, this operation has been achieved by investigating the response surface topography of objective functions arising from the comparison between measured and modelled data. The second one involves the numerical implementation of multistatic antenna configurations with constant and variable offsets in the model. These two kinds of analyses are then combined in numerical experiments to observe the conjugated effect of the number of frequencies and the offset configuration. To perform the numerical analyses, synthetic Green's functions were simulated for different multilayered medium configurations. The results show that an antenna offset increase leads
Short Rayleigh length free electron lasers
Directory of Open Access Journals (Sweden)
W. B. Colson
2006-03-01
Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.
Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir
Energy Technology Data Exchange (ETDEWEB)
Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr [Department of Geophysical Engineering, Dokuz Eylul University, Izmir (Turkey); Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr [Dokuz Eylul University Rectorate, Izmir (Turkey)
2016-04-18
Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized for deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.
Modeling and inversion of PS-wave moveout asymmetry for tilted TI media: Part 2: Dipping TTI layer
Digital Repository Service at National Institute of Oceanography (India)
Dewangan, P.; Tsvankin, I.
Dipping transversely isotropic layers with a tilted symmetry axis (TTI media) cause serious imaging problems in fold-and-thrust belts and near salt domes. The modified PP + PS = SS method introduced in Part 1 is applied to the inversion...
Rayleigh's hypothesis and the geometrical optics limit.
Elfouhaily, Tanos; Hahn, Thomas
2006-09-22
The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.
2012-05-10
Basin, China , the crust and subduction zone beneath western Colombia, and a thermally active region within Utah in the central United States...Burlacu, R., Rowe, C., and Y. Yang (2009). Joint geophysical imaging of the geothermal sites in the Utah area using seismic body waves, surface waves and
Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.
2018-02-01
We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.
International Nuclear Information System (INIS)
Pavlus, M.
1997-01-01
The entire potential and the rest of wave functions are determined in parallelepiped domain if the entire discrete spectrum and the apriori information about the wave functions on one side of parallelepiped are given. Formulation for solving the Schroedinger discrete equation in two and higher dimensions is proposed and new formulas are derived for their solution. Two examples for a 2D case and one example for a 3D case are demonstrated
Experimental demonstration of the Rayleigh acoustic viscous boundary layer theory.
Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; Tovar, R
2006-03-01
Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.
Czech Academy of Sciences Publication Activity Database
Růžek, Bohuslav; Plomerová, Jaroslava; Babuška, Vladislav
2012-01-01
Roč. 56, č. 1 (2012), s. 107-140 ISSN 0039-3169 R&D Projects: GA ČR GA205/07/1088; GA AV ČR IAA300120709; GA MŠk LM2010008 Institutional research plan: CEZ:AV0Z30120515 Keywords : receiver function * seismic noise * joint inversion * Bohemian Massif * velocity structure Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012
Kinetic simulations of Rayleigh-Taylor instabilities
International Nuclear Information System (INIS)
Sagert, Irina; Bauer, Wolfgang; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance
2014-01-01
We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is in the linear regime, we compare its position and shape to the analytic prediction. Despite the broadening of the fluid interface we see a good agreement with the analytic solution. At later times we observe the development of a mushroom like shape caused by secondary Kelvin-Helmholtz instabilities as seen in hydrodynamic simulations and consistent with experimental observations.
Acoustofluidic particle dynamics: Beyond the Rayleigh limit.
Baasch, Thierry; Dual, Jürg
2018-01-01
In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.
Direct numerical simulation of the Rayleigh-Taylor instability with the spectral element method
International Nuclear Information System (INIS)
Zhang Xu; Tan Duowang
2009-01-01
A novel method is proposed to simulate Rayleigh-Taylor instabilities using a specially-developed unsteady three-dimensional high-order spectral element method code. The numerical model used consists of Navier-Stokes equations and a transport-diffusive equation. The code is first validated with the results of linear stability perturbation theory. Then several characteristics of the Rayleigh-Taylor instabilities are studied using this three-dimensional unsteady code, including instantaneous turbulent structures and statistical turbulent mixing heights under different initial wave numbers. These results indicate that turbulent structures of Rayleigh-Taylor instabilities are strongly dependent on the initial conditions. The results also suggest that a high-order numerical method should provide the capability of simulating small scale fluctuations of Rayleigh-Taylor instabilities of turbulent flows. (authors)
International Nuclear Information System (INIS)
Coen, S.
1981-01-01
The theory given by Moses and deRidder is modified so that the derivative of the solution of the Gelfand-Levitan integral equation is not required. Based on this modification, a numerical procedure is developed which approximately constructs the dielectric profile of the layered half-space from the impulse response. Moreover, an inverse scattering theory is developed for a Goupillaud-type dielectric medium, and a fast numerical procedure based on the Berryman and Greene algorithm is presented. The performance of the numerical algorithms is examined by applying them to pecise and imprecise artificial impulse response data. 11 refs
Importance sampling the Rayleigh phase function
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall
2011-01-01
Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation....
International Nuclear Information System (INIS)
Richardson, J.M.; Fertig, K.W. Jr.
1983-01-01
In order to inspect flaws which lie too close to the surface a Fourier elastodynamic formalism is proposed which enables one to decompose the elastodynamic system into separately charterizable parts by means of planes perpendicular to the z-axis. The process can be represented by a generalized transfer function relating the near-field scattered waves to the waves incident on a slab of material containing the flaw. The Fourier elastodynamics are applied to the characterization of the total scattering process involving a flaw at various distances from a plastic-water interface. An abbreviated discussion of Fourier elastodynamics is presented, and the results specialized to the case of spherical voids and inclusions bear an interface. Finally, the computational results for several ranges of temporal frequency and for a sequence of values of the distance from the flaw center to the interface are discussed
Energy Technology Data Exchange (ETDEWEB)
Cho, I; Nakanishi, I [Kyoto University, Kyoto (Japan); Ling, S [Nihon Nessui Corp., Tokyo (Japan); Okada, H [Hokkaido University, Sapporo (Japan)
1997-10-22
Discussions were given on a genetic algorithm as a means to solve simultaneously the problems related to stability of solution and dependence on an initial model in estimating subsurface structures using the microtremor exploration method. In the study, a forking genetic algorithm (fGA) to explore solid substance groups was applied to the optimizing simulations for a velocity structure model to discuss whether the algorithm can be used practically. The simulation No. 1 was performed by making the number of layers four for both of the given velocity structure and the optimizing model. On the other hand, the simulation No. 2 was executed by making the number of layers for the given velocity structure greater than that for the optimizing model. As a result, it was verified that wide range exploration may be possible for the velocity structure model, and that a large number of candidates for the velocity structure model may be proposed. In either case, the exploration capability of the fGA exceeded that of the standard simple genetic algorithm. 8 refs., 4 figs., 2 tabs.
Kenda, Balthasar; Lognonné, Philippe; Spiga, Aymeric; Kawamura, Taichi; Kedar, Sharon; Banerdt, William Bruce; Lorenz, Ralph; Banfield, Don; Golombek, Matthew
2017-10-01
We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10-100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells' theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10-20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.
Shen, Weisen
2016-11-24
Using receiver functions, Rayleigh wave phase velocity dispersion determined from ambient noise and teleseismic earthquakes, and Rayleigh wave horizontal to vertical ground motion amplitude ratios from earthquakes observed across the PLUTONS seismic array, we construct a one-dimensional (1-D) S-wave velocity (Vs) seismic model with uncertainties for Uturuncu volcano, Bolivia, located in the central Andes and overlying the eastward-subducting Nazca plate. We find a fast upper crustal lid placed upon a low-velocity zone (LVZ) in the mid-crust. By incorporating all three types of measurements with complimentary sensitivity, we also explore the average density and Vp/Vs (ratio of P-wave to S-wave velocity) structures beneath the young silicic volcanic field. We observe slightly higher Vp/Vs and a decrease in density near the LVZ, which implies a dacitic source of the partially molten magma body. We exploit the impact of the 1-D model on full moment tensor inversion for the two largest local earthquakes recorded (both magnitude ∼3), demonstrating that the 1-D model influences the waveform fits and the estimated source type for the full moment tensor. Our 1-D model can serve as a robust starting point for future efforts to determine a three-dimensional velocity model for Uturuncu volcano.
Shen, Weisen; Alvizuri, Celso; Lin, Fan-Chi; Tape, Carl
2016-01-01
Using receiver functions, Rayleigh wave phase velocity dispersion determined from ambient noise and teleseismic earthquakes, and Rayleigh wave horizontal to vertical ground motion amplitude ratios from earthquakes observed across the PLUTONS seismic array, we construct a one-dimensional (1-D) S-wave velocity (Vs) seismic model with uncertainties for Uturuncu volcano, Bolivia, located in the central Andes and overlying the eastward-subducting Nazca plate. We find a fast upper crustal lid placed upon a low-velocity zone (LVZ) in the mid-crust. By incorporating all three types of measurements with complimentary sensitivity, we also explore the average density and Vp/Vs (ratio of P-wave to S-wave velocity) structures beneath the young silicic volcanic field. We observe slightly higher Vp/Vs and a decrease in density near the LVZ, which implies a dacitic source of the partially molten magma body. We exploit the impact of the 1-D model on full moment tensor inversion for the two largest local earthquakes recorded (both magnitude ∼3), demonstrating that the 1-D model influences the waveform fits and the estimated source type for the full moment tensor. Our 1-D model can serve as a robust starting point for future efforts to determine a three-dimensional velocity model for Uturuncu volcano.
Molina-Aguilera, A.; Mancilla, F. D. L.; Julià, J.; Morales, J.
2017-12-01
Joint inversion techniques of P-receiver functions and wave dispersion data implicitly assume an isotropic radial stratified earth. The conventional approach invert stacked radial component receiver functions from different back-azimuths to obtain a laterally homogeneous single-velocity model. However, in the presence of strong lateral heterogeneities as anisotropic layers and/or dipping interfaces, receiver functions are considerably perturbed and both the radial and transverse components exhibit back azimuthal dependences. Harmonic analysis methods exploit these azimuthal periodicities to separate the effects due to the isotropic flat-layered structure from those effects caused by lateral heterogeneities. We implement a harmonic analysis method based on radial and transverse receiver functions components and carry out a synthetic study to illuminate the capabilities of the method in isolating the isotropic flat-layered part of receiver functions and constrain the geometry and strength of lateral heterogeneities. The independent of the baz P receiver function are jointly inverted with phase and group dispersion curves using a linearized inversion procedure. We apply this approach to high dense seismic profiles ( 2 km inter-station distance, see figure) located in the central Betics (western Mediterranean region), a region which has experienced complex geodynamic processes and exhibit strong variations in Moho topography. The technique presented here is robust and can be applied systematically to construct a 3-D model of the crust and uppermost mantle across large networks.
Kawase, Hiroshi; Mori, Yuta; Nagashima, Fumiaki
2018-01-01
We have been discussing the validity of using the horizontal-to-vertical spectral ratios (HVRs) as a substitute for S-wave amplifications after Nakamura first proposed the idea in 1989. So far a formula for HVRs had not been derived that fully utilized their physical characteristics until a recent proposal based on the diffuse field concept. There is another source of confusion that comes from the mixed use of HVRs from earthquake and microtremors, although their wave fields are hardly the same. In this study, we compared HVRs from observed microtremors (MHVR) and those from observed earthquake motions (EHVR) at one hundred K-NET and KiK-net stations. We found that MHVR and EHVR share similarities, especially until their first peak frequency, but have significant differences in the higher frequency range. This is because microtremors mainly consist of surface waves so that peaks associated with higher modes would not be prominent, while seismic motions mainly consist of upwardly propagating plain body waves so that higher mode resonances can be seen in high frequency. We defined here the spectral amplitude ratio between them as EMR and calculated their average. We categorize all the sites into five bins by their fundamental peak frequencies in MHVR. Once we obtained EMRs for five categories, we back-calculated EHVRs from MHVRs, which we call pseudo-EHVRs (pEHVR). We found that pEHVR is much closer to EHVR than MHVR. Then we use our inversion code to invert the one-dimensional S-wave velocity structures from EHVRs based on the diffuse field concept. We also applied the same code to pEHVRs and MHVRs for comparison. We found that pEHVRs yield velocity structures much closer to those by EHVRs than those by MHVRs. This is natural since what we have done up to here is circular except for the average operation in EMRs. Finally, we showed independent examples of data not used in the EMR calculation, where better ground structures were successfully identified from p
Rayleigh imaging in spectral mammography
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
Measurement of the Rayleigh scattering length in liquid scintillators for JUNO
Energy Technology Data Exchange (ETDEWEB)
Hackspacher, Paul [Johannes Gutenberg-Universitaet Mainz, PRISMA Excellence Cluster (Germany); Collaboration: JUNO-Collaboration
2016-07-01
In liquid scintillator neutrino detectors such as the upcoming Jiangmen Underground Neutrino Observatory (JUNO), neutrino interactions are being detected by means of inverse beta decay and analysis of the resulting luminescent light. In order to reliably reconstruct these events from photomultiplier signals, the scattering properties of the detector materials need to be sufficiently well known. In the LAB-based liquid scintillator that has been proposed for JUNO, the primary contribution to the scattering process comes from Rayleigh scattering. The characteristic Rayleigh scattering length can be experimentally obtained in an optical laboratory setup. This talk presents the approach, the current status and the future plans of the experiment.
RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL
Directory of Open Access Journals (Sweden)
S. F. Kolomiets
2014-01-01
Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.
Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)
2001-01-01
The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.
Some results on inverse scattering
International Nuclear Information System (INIS)
Ramm, A.G.
2008-01-01
A review of some of the author's results in the area of inverse scattering is given. The following topics are discussed: (1) Property C and applications, (2) Stable inversion of fixed-energy 3D scattering data and its error estimate, (3) Inverse scattering with 'incomplete' data, (4) Inverse scattering for inhomogeneous Schroedinger equation, (5) Krein's inverse scattering method, (6) Invertibility of the steps in Gel'fand-Levitan, Marchenko, and Krein inversion methods, (7) The Newton-Sabatier and Cox-Thompson procedures are not inversion methods, (8) Resonances: existence, location, perturbation theory, (9) Born inversion as an ill-posed problem, (10) Inverse obstacle scattering with fixed-frequency data, (11) Inverse scattering with data at a fixed energy and a fixed incident direction, (12) Creating materials with a desired refraction coefficient and wave-focusing properties. (author)
Size invariance of the granular Rayleigh-Taylor instability.
Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen
2010-04-01
The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.
Wu, Pingping; Tan, Handong; Peng, Miao; Ma, Huan; Wang, Mao
2018-05-01
Magnetotellurics and seismic surface waves are two prominent geophysical methods for deep underground exploration. Joint inversion of these two datasets can help enhance the accuracy of inversion. In this paper, we describe a method for developing an improved multi-objective genetic algorithm (NSGA-SBX) and applying it to two numerical tests to verify the advantages of the algorithm. Our findings show that joint inversion with the NSGA-SBX method can improve the inversion results by strengthening structural coupling when the discontinuities of the electrical and velocity models are consistent, and in case of inconsistent discontinuities between these models, joint inversion can retain the advantages of individual inversions. By applying the algorithm to four detection points along the Longmenshan fault zone, we observe several features. The Sichuan Basin demonstrates low S-wave velocity and high conductivity in the shallow crust probably due to thick sedimentary layers. The eastern margin of the Tibetan Plateau shows high velocity and high resistivity in the shallow crust, while two low velocity layers and a high conductivity layer are observed in the middle lower crust, probably indicating the mid-crustal channel flow. Along the Longmenshan fault zone, a high conductivity layer from 8 to 20 km is observed beneath the northern segment and decreases with depth beneath the middle segment, which might be caused by the elevated fluid content of the fault zone.
Analytical evaluation of atomic form factors: Application to Rayleigh scattering
Energy Technology Data Exchange (ETDEWEB)
Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)
2015-05-15
Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.
Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser
Wu, Han; Wang, Zinan; Fan, Mengqiu; Li, Jiaqi; Meng, Qingyang; Xu, Dangpeng; Rao, Yunjiang
2018-03-01
In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.
High resolution 3-D shear wave velocity structure in South China from surface wave tomography
Ning, S.; Guo, Z.; Chen, Y. J.
2017-12-01
Using continuous data from a total of 638 seismic stations, including 484 from CEArray between 2008 and 2013 and 154 from SINOPROBE between 2014 and 2015, we perform both ambient noise and earthquake Rayleigh wave tomography across South China. Combining Rayleigh wave phase velocity between 6and 40s periods from ambient noise tomography and Rayleigh wave phase velocity between 20and 140s from teleseismic two-plane-wave tomography, we obtain phase velocity maps between 6 and140 s periods. We then invert Rayleigh wave phase velocity to construct a 3-D shear wave velocity structure of South China by Markov Chain Monte Carlo method. Similar to other inversion results, our results correspond topography well. Moreover, our results also reveal that velocity structure of the eastern South China in mantle depth is similar to eastern North China, the core of the western South China, Sichuan Block (SB),still exists thick lithosphere. However, owing to much more data employed and some data quality control techniques in this research, our results reveal more detailed structures. Along Qinling-Dabie Orogenic Belt (QDOB), North-South Gravity Lineament (NSGL) and the Sichuan-Yunnan Rhombic Block (SYRB), there are obvious high speed anomalies in depths of 10-20 km, which possibly imply ancient intrusions. Moreover, it seems that Tancheng-Lujiang Fault Zone (TLFZ) has already cut through QDOB, forming a deep fracture cutting through the crust of the whole China continent. Although SB still exists thick lithosphere, there are indications for thermal erosion. At the same time, the lithosphere of the central SYRB seems to be experiencing delamination process, obviously forming a barrier to prevent the hot Tibetan Plateau (TP) mantle material from flowing further southeast. Upwelling hot mantle material possibly triggered by this delamination process might be the cause of the Emeishan Large Igneous Province. There exists an intercontinental low velocity layer in the crust of the TP
RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES
International Nuclear Information System (INIS)
Jacquet, Emmanuel; Krumholz, Mark R.
2011-01-01
We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick a diabaticregime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.
Jonsson, Ulf; Lindahl, Olof; Andersson, Britt
2014-12-01
To gain an understanding of the high-frequency elastic properties of silicone rubber, a finite element model of a cylindrical piezoelectric element, in contact with a silicone rubber disk, was constructed. The frequency-dependent elastic modulus of the silicone rubber was modeled by a fourparameter fractional derivative viscoelastic model in the 100 to 250 kHz frequency range. The calculations were carried out in the range of the first radial resonance frequency of the sensor. At the resonance, the hyperelastic effect of the silicone rubber was modeled by a hyperelastic compensating function. The calculated response was matched to the measured response by using the transitional peaks in the impedance spectrum that originates from the switching of standing Lamb wave modes in the silicone rubber. To validate the results, the impedance responses of three 5-mm-thick silicone rubber disks, with different radial lengths, were measured. The calculated and measured transitional frequencies have been compared in detail. The comparison showed very good agreement, with average relative differences of 0.7%, 0.6%, and 0.7% for the silicone rubber samples with radial lengths of 38.0, 21.4, and 11.0 mm, respectively. The average complex elastic moduli of the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 0.005i) GPa at 250 kHz.
Influence of yielding base and rigid base on propagation of Rayleigh ...
Indian Academy of Sciences (India)
The present study aims to study the propagation of Rayleigh-type wave in a layer, composed of isotropic viscoelastic material of Voigt type, with the effect of yielding base and rigid base in two distinct cases.With the aid of an analytical treatment, closed-form expressions of phase velocity and damped velocity for both the ...
What is the contribution of scattering to the Love-to-Rayleigh ratio in ambient microseismic noise?
Ziane, D.; Hadziioannou, C.
2015-12-01
Several observations show the existence of both Rayleigh and Love waves in the secondary microseism. While the Rayleigh wave excitation is well described by Longuet-Higgins, the process responsible for Love wave generation still needs further investigation. Several different mechanisms could excite Love waves in this frequency band: broadly speaking, we can differentiate between source effects, like pressure variations on the oblique sea floor, or internal effects in the medium along the propagation path, such as scattering and conversions. Here we will focus on the internal effects. We perform single scattering tests in 2D and 3D to gain a better understanding of the scattering radiation pattern and the conversion between P, S, Rayleigh and Love waves. Furthermore, we use random media with continuous variations of the elastic parameters to create a scattering regime similar to the Earths interior, e.g. Gaussian or von Karmann correlation functions. The aim is to explore the contribution of scattering along the propagation path to the observed Love to Rayleigh wave energy ratios, assuming a purely vertical force source mechanism. We use finite different solvers to calculate the synthetic seismograms, and to separate the different wave types we measure the rotational and divergent components of the wave field.
Xiao, X.; Wen, L.
2017-12-01
As a typical active intracontinental mountain range in Central Asia, Tian Shan Mt serves as the prototype in studying geodynamic processes and mechanism of intracontinental mountain building. We study 3D crust and the uppermost mantle structure beneath Tian Shan region using ambient noise and earthquake surface waves. Our dataset includes vertical component records of 62 permanent broadband seismic stations operated by the Earthquake Administration of China. Firstly, we calculate two-year stacked Cross-Correlation Functions (CCFs) of ambient noise records between the stations. The CCFs are treated as the Empirical Green's Functions (EGFs) of each station pair, from which we measured phase velocities of fundamental-mode Rayleigh wave in the period of 3-40 s using a frequency-time analysis method. Secondly, we collect surface wave data from tele-seismic events with Mw > 5.5 and depth shallower than 200 km and measure phase velocities of the fundamental-mode of Rayleigh wave in the period of 30-150 s using a two-station method. Finally, we combine the phase velocity measurements from ambient noise and earthquake surface waves, obtain lateral isotropic phase velocity maps at different periods based on tomography and invert a 3D Vsv model of crust and uppermost mantle down to about 150 km using a Monte Carlo Inversion method. We will discuss our inversion results in detail, as well as their implications to the tectonics in the region.
Seismic Wave Propagation in Layered Viscoelastic Media
Borcherdt, R. D.
2008-12-01
Advances in the general theory of wave propagation in layered viscoelastic media reveal new insights regarding seismic waves in the Earth. For example, the theory predicts: 1) P and S waves are predominantly inhomogeneous in a layered anelastic Earth with seismic travel times, particle-motion orbits, energy speeds, Q, and amplitude characteristics that vary with angle of incidence and hence, travel path through the layers, 2) two types of shear waves exist, one with linear and the other with elliptical particle motions each with different absorption coefficients, and 3) surface waves with amplitude and particle motion characteristics not predicted by elasticity, such as Rayleigh-Type waves with tilted elliptical particle motion orbits and Love-Type waves with superimposed sinusoidal amplitude dependencies that decay exponentially with depth. The general theory provides closed-form analytic solutions for body waves, reflection-refraction problems, response of multiple layers, and surface wave problems valid for any material with a viscoelastic response, including the infinite number of models, derivable from various configurations of springs and dashpots, such as elastic, Voight, Maxwell, and Standard Linear. The theory provides solutions independent of the amount of intrinsic absorption and explicit analytic expressions for physical characteristics of body waves in low-loss media such as the deep Earth. The results explain laboratory and seismic observations, such as travel-time and wide-angle reflection amplitude anomalies, not explained by elasticity or one dimensional Q models. They have important implications for some forward modeling and inverse problems. Theoretical advances and corresponding numerical results as recently compiled (Borcherdt, 2008, Viscoelastic Waves in Layered Media, Cambridge University Press) will be reviewed.
Djebbi, Ramzi
2014-08-05
Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data, provide additional information capable of resolving anisotropic parameters under the acoustic approximation assumption. Based on Born scattering approximation, we develop formulas capable of characterizing the radiation patterns for the acoustic pseudo-pure mode P-waves. Though commonly reserved for the elastic fields, we use displacement fields to constrain the acoustic vertical transverse isotropic (VTI) representation of the medium. Using the asymptotic Green\\'s functions and a horizontal reflector we derive the radiation patterns for perturbations in the anisotropic media. The radiation pattern for the anellipticity parameter η is identically zero for the horizontal displacement. This allows us to dedicate this component to invert for velocity and δ. Computing the traveltime sensitivity kernels based on the unwrapped phase confirms the radiation patterns observations, and provide the model wavenumber behavior of the update.
Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.
2018-04-01
The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.
Ultimate regime of high Rayleigh number convection in a porous medium.
Hewitt, Duncan R; Neufeld, Jerome A; Lister, John R
2012-06-01
Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10(4) which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu~Ra, is attained asymptotically. The flow dynamics are analyzed, and the interior of the vigorously convecting system is shown to be increasingly well described as Ra→∞ by a simple columnar "heat-exchanger" model with a single horizontal wave number k and a linear background temperature field. The numerical results are approximately fitted by k~Ra(0.4).
Measurement of the Rayleigh-Taylor instability in targets driven by optically smoothed laser beams
International Nuclear Information System (INIS)
Desselberger, M.; Willi, O.; Savage, M.; Lamb, M.J.
1990-01-01
Growth rates of the Rayleigh-Taylor instability were measured in targets with imposed sinusoidal modulations irradiated by optically smoothed 0.53-μm laser beams. A hybrid optical smoothing technique utilizing induced-spatial-incoherence and random-phase-plate technology was used for the first time. The wave-number dependence and the nonlinear behavior of Rayleigh-Taylor growth were investigated by using targets with a range of modulation periodicities and depths. The results are compared to 2D hydrodynamic-code simulations
Short Rayleigh Length Free Electron Lasers
Crooker, P P; Armstead, R L; Blau, J
2004-01-01
Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.
Chemical Applications of Second Harmonic Rayleigh Scattering ...
Indian Academy of Sciences (India)
Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.
Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group
2018-05-01
Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.
Observation of Rayleigh - Taylor growth to short wavelengths on Nike
International Nuclear Information System (INIS)
Pawley, C.J.; Bodner, S.E.; Dahlburg, J.P.; Obenschain, S.P.; Schmitt, A.J.; Sethian, J.D.; Sullivan, C.A.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Lehecka, T.
1999-01-01
The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to ablatively accelerate 40 μm thick polystyrene planar targets with pulse shaping to minimize shock heating of the compressed material. The foils had imposed small-amplitude sinusoidal wave perturbations of 60, 30, 20, and 12.5 μm wavelength. The shortest wavelength is near the ablative stabilization cutoff for Rayleigh - Taylor growth. Modification of the saturated wave structure due to random laser imprint was observed. Excellent agreement was found between the two-dimensional simulations and experimental data for most cases where the laser imprint was not dominant. copyright 1999 American Institute of Physics
Hyper-Rayleigh scattering in centrosymmetric systems
Energy Technology Data Exchange (ETDEWEB)
Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)
2015-09-28
Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.
Directory of Open Access Journals (Sweden)
Wang Ling
2009-08-01
Full Text Available The interdendritic segregation along the mushy zone of directionally solidifi ed superalloy Inconel 718 has been measured by scanning electron microscope (SEM and energy dispersion analysis spectrometry (EDAXtechniques and the corresponding liquid composition profile was presented. The liquid density and Rayleigh number (Ra profi les along the mushy zone were calculated as well. It was found that the liquid density difference increased from top to bottom in the mushy zone and there was no density inversion due to the segregation of Nb and Mo. However carbide formation in the freezing range and the preferred angle of the orientated dendrite array could prompt the fl uid fl ow in the mushy zone although there was no liquid density inversion. The largest relative Rayleigh number appeared at 1,326 篊 for Inconel 718 where the fl uid fl ow most easily occurred.
Stability of an expanding cylindrical plasma envelope: Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Han, S.J.
1982-01-01
The stability of a cylindrically symmetric plasma envelope driven outward by blast waves is considered. The plasma fluid is assumed to be a compressible, isentropic gas describable as an ideal gas ( p = arho/sup γ/, γ>1). The stability problem of such an envelope undergoing self-similar motion is solved by considering the initial-value problem. It is shown that in the early phase of an expansion, the envelope is unstable to Rayleigh--Taylor modes which develop at the inner surface. In the later phase of the expansion, the Rayleigh--Taylor modes are weakened due to the geometrical divergence effect. The implications of the time-dependent behavior of the Rayleigh--Taylor instability for plasma switches are discussed
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas
International Nuclear Information System (INIS)
Keskinen, M. J.; Schmitt, A.
2007-01-01
A model for the nonlinear spectrum of the ablative Rayleigh-Taylor instability in laser-accelerated planar plasmas has been developed for a wide range of Froude numbers and scale sizes. It is found that the spectrum can be characterized by an inverse power law with spectral index of approximately 2 in the limit of small-wavenumber spectrum cutoffs and small-scale density gradient scale lengths. Comparison of the model spectrum with recent experimental observations is made with good agreement
Talukdar, Karabi; Behera, Laxmidhar
2018-03-01
Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.
Parameterization analysis and inversion for orthorhombic media
Masmoudi, Nabil
2018-01-01
Accounting for azimuthal anisotropy is necessary for the processing and inversion of wide-azimuth and wide-aperture seismic data because wave speeds naturally depend on the wave propagation direction. Orthorhombic anisotropy is considered the most
Rayleigh-Taylor mixing with time-dependent acceleration
Abarzhi, Snezhana
2016-10-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.
Rayleigh-Taylor mixing with space-dependent acceleration
Abarzhi, Snezhana
2016-11-01
We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.
Nonlinear interaction of Rayleigh--Taylor and shear instabilities
International Nuclear Information System (INIS)
Finn, J.M.
1993-01-01
Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed
Rayleigh scattering from ions near threshold
International Nuclear Information System (INIS)
Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.
1988-01-01
Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt
Chromo-Rayleigh interactions of dark matter
International Nuclear Information System (INIS)
Bai, Yang; Osborne, James
2015-01-01
For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.
Attractors of the periodically forced Rayleigh system
Directory of Open Access Journals (Sweden)
Petre Bazavan
2011-07-01
Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.
Radial anisotropy of Northeast Asia inferred from Bayesian inversions of ambient noise data
Lee, S. J.; Kim, S.; Rhie, J.
2017-12-01
The eastern margin of the Eurasia plate exhibits complex tectonic settings due to interactions with the subducting Pacific and Philippine Sea plates and the colliding India plate. Distributed extensional basins and intraplate volcanoes, and their heterogeneous features in the region are not easily explained with a simple mechanism. Observations of radial anisotropy in the entire lithosphere and the part of the asthenosphere provide the most effective evidence for the deformation of the lithosphere and the associated variation of the lithosphere-asthenosphere boundary (LAB). To infer anisotropic structures of crustal and upper-mantle in this region, radial anisotropy is measured using ambient noise data. In a continuation of previous Rayleigh wave tomography study in Northeast Asia, we conduct Love wave tomography to determine radial anisotropy using the Bayesian inversion techniques. Continuous seismic noise recordings of 237 broad-band seismic stations are used and more than 55,000 group and phase velocities of fundamental mode are measured for periods of 5-60 s. Total 8 different types of dispersion maps of Love wave from this study (period 10-60 s), Rayleigh wave from previous tomographic study (Kim et al., 2016; period 8-70 s) and longer period data (period 70-200 s) from a global model (Ekstrom, 2011) are jointly inverted using a hierarchical and transdimensional Bayesian technique. For each grid-node, boundary depths, velocities and anisotropy parameters of layers are sampled simultaneously on the assumption of the layered half-space model. The constructed 3-D radial anisotropy model provides much more details about the crust and upper mantle anisotropic structures, and about the complex undulation of the LAB.
International Nuclear Information System (INIS)
Namatame, Hirofumi; Taniguchi, Masaki
1994-01-01
Photoelectron spectroscopy is regarded as the most powerful means since it can measure almost perfectly the occupied electron state. On the other hand, inverse photoelectron spectroscopy is the technique for measuring unoccupied electron state by using the inverse process of photoelectron spectroscopy, and in principle, the similar experiment to photoelectron spectroscopy becomes feasible. The development of the experimental technology for inverse photoelectron spectroscopy has been carried out energetically by many research groups so far. At present, the heightening of resolution of inverse photoelectron spectroscopy, the development of inverse photoelectron spectroscope in which light energy is variable and so on are carried out. But the inverse photoelectron spectroscope for vacuum ultraviolet region is not on the market. In this report, the principle of inverse photoelectron spectroscopy and the present state of the spectroscope are described, and the direction of the development hereafter is groped. As the experimental equipment, electron guns, light detectors and so on are explained. As the examples of the experiment, the inverse photoelectron spectroscopy of semimagnetic semiconductors and resonance inverse photoelectron spectroscopy are reported. (K.I.)
Directory of Open Access Journals (Sweden)
M.M. Mohie El-Din
2011-10-01
Full Text Available In this paper, two sample Bayesian prediction intervals for order statistics (OS are obtained. This prediction is based on a certain class of the inverse exponential-type distributions using a right censored sample. A general class of prior density functions is used and the predictive cumulative function is obtained in the two samples case. The class of the inverse exponential-type distributions includes several important distributions such the inverse Weibull distribution, the inverse Burr distribution, the loglogistic distribution, the inverse Pareto distribution and the inverse paralogistic distribution. Special cases of the inverse Weibull model such as the inverse exponential model and the inverse Rayleigh model are considered.
From the Somigliana waves to the evanescent waves
Directory of Open Access Journals (Sweden)
Pietro Caloi
2010-02-01
Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.
Ramadan, Islam A; Bailliet, Hélène; Valière, Jean-Christophe
2018-01-01
The influence of both the natural convection and end-effects on Rayleigh streaming pattern in a simple standing-wave thermoacoustic engine is investigated experimentally at different acoustic levels. The axial mean velocity inside the engine is measured using both Laser Doppler Velocimetry and Particle Image Velocimetry. The mean flow patterns are categorized in three different regions referred to as "cold streaming" region, "hot streaming" region, and "end-effects" region. In the cold streaming region, the dominant phenomenon is Rayleigh streaming and the mean velocity measurements correspond well with the theoretical expectations of Rayleigh streaming at low acoustic levels. At higher acoustic levels, the measurements deviate from the theoretical expectations which complies with the literature. In the hot streaming region, temperature measurements reveal that the non-uniformity of the resonator wall temperature is the origin of natural convection flow. Velocity measurements show that natural convection flow superimposes on the Rayleigh streaming flow so that the measured mean velocity deviates from the theoretical expectations of Rayleigh streaming. In the last region, the measured mean velocity is very different from Rayleigh streaming due to the combined effects of both the flow disturbances generated near the extremity of the stack and the natural convection flow.
Bayesian inversion of microtremor array dispersion data in southwestern British Columbia
Molnar, Sheri; Dosso, Stan E.; Cassidy, John F.
2010-11-01
This paper applies Bayesian inversion, with evaluation of data errors and model parametrization, to produce the most-probable shear-wave velocity profile together with quantitative uncertainty estimates from microtremor array dispersion data. Generally, the most important property for characterizing earthquake site response is the shear-wave velocity (VS) profile. The microtremor array method determines phase velocity dispersion of Rayleigh surface waves from multi-instrument recordings of urban noise. Inversion of dispersion curves for VS structure is a non-unique and non-linear problem such that meaningful evaluation of confidence intervals is required. Quantitative uncertainty estimation requires not only a non-linear inversion approach that samples models proportional to their probability, but also rigorous estimation of the data error statistics and an appropriate model parametrization. This paper applies a Bayesian formulation that represents the solution of the inverse problem in terms of the posterior probability density (PPD) of the geophysical model parameters. Markov-chain Monte Carlo methods are used with an efficient implementation of Metropolis-Hastings sampling to provide an unbiased sample from the PPD to compute parameter uncertainties and inter-relationships. Nonparametric estimation of a data error covariance matrix from residual analysis is applied with rigorous a posteriori statistical tests to validate the covariance estimate and the assumption of a Gaussian error distribution. The most appropriate model parametrization is determined using the Bayesian information criterion, which provides the simplest model consistent with the resolving power of the data. Parametrizations considered vary in the number of layers, and include layers with uniform, linear and power-law gradients. Parameter uncertainties are found to be underestimated when data error correlations are neglected and when compressional-wave velocity and/or density (nuisance
Mode coupling in nonlinear Rayleigh--Taylor instability
International Nuclear Information System (INIS)
Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.
1992-01-01
This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase
Three caveats for linear stability theory: Rayleigh-Benard convection
International Nuclear Information System (INIS)
Greenside, H.S.
1984-06-01
Recent theories and experiments challenge the applicability of linear stability theory near the onset of buoyancy-driven (Rayleigh-Benard) convection. This stability theory, based on small perturbations of infinite parallel rolls, is found to miss several important features of the convective flow. The reason is that the lateral boundaries have a profound influence on the possible wave numbers and flow patterns even for the largest cells studied. Also, the nonlinear growth of incoherent unstable modes distorts the rolls, leading to a spatially disordered and sometimes temporally nonperiodic flow. Finally, the relation of the skewed varicose instability to the onset of turbulence (nonperiodic time dependence) is examined. Linear stability theory may not suffice to predict the onset of time dependence in large cells close to threshold
Stability of a short Rayleigh length laser resonator
Directory of Open Access Journals (Sweden)
P. P. Crooker
2005-04-01
Full Text Available Motivated by the prospect of constructing a short Rayleigh length free-electron laser in a high-vibration environment, we demonstrate the use of a collection of rays to study the effect of mirror vibration and distortion on the behavior of the fundamental optical mode of a cold-cavity resonator. We find that the ray collection accurately describes both on-axis and off-axis optical beams. We show that a tilt or transverse shift of a mirror causes the optical mode to rock about the original resonator axis, while a longitudinal mirror shift or a change in the mirror’s radius of curvature causes the beam diameter at a mirror to successively dilate and contract on the mirror. Results are in excellent agreement with analytic calculations and wave front propagation simulations as long as the mirrors remain large with respect to the beam diameter.
First measurement of the Rayleigh cross section
Naus, H.; Ubachs, W.
2000-01-01
Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of
Rayleigh scattering in coupled microcavities: theory.
Vörös, Zoltán; Weihs, Gregor
2014-12-03
In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.
Djebbi, Ramzi; Alkhalifah, Tariq Ali
2014-01-01
Multi-parameter inversion in anisotropic media suffers from the inherent trade-off between the anisotropic parameters, even under the acoustic assumption. Multi-component data, often acquired nowadays in ocean bottom acquisition and land data
Size Effects on Surface Elastic Waves in a Semi-Infinite Medium with Atomic Defect Generation
Directory of Open Access Journals (Sweden)
F. Mirzade
2013-01-01
Full Text Available The paper investigates small-scale effects on the Rayleigh-type surface wave propagation in an isotopic elastic half-space upon laser irradiation. Based on Eringen’s theory of nonlocal continuum mechanics, the basic equations of wave motion and laser-induced atomic defect dynamics are derived. Dispersion equation that governs the Rayleigh surface waves in the considered medium is derived and analyzed. Explicit expressions for phase velocity and attenuation (amplification coefficients which characterize surface waves are obtained. It is shown that if the generation rate is above the critical value, due to concentration-elastic instability, nanometer sized ordered concentration-strain structures on the surface or volume of solids arise. The spatial scale of these structures is proportional to the characteristic length of defect-atom interaction and increases with the increase of the temperature of the medium. The critical value of the pump parameter is directly proportional to recombination rate and inversely proportional to deformational potentials of defects.
Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV
International Nuclear Information System (INIS)
Parker, J.C.; Reynaud, G.W.; Botto, D.J.; Pratt, R.H.
1979-01-01
An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references
Analytical approach to the investigation of Rayleigh-Taylor structures of the equatorial F region
International Nuclear Information System (INIS)
Komarov, V.N.; Sazonov, S.V.
1991-01-01
On the basis of approximation of a strong vertical extension the nonlinear dynamics of Rayleigh-Taylor structures in the equatorial F region is analytically studied. The successive approximation method, proposed herein, is true for structures having longitudinal symmetry. Using this method it is managed to describe the mushroom-shaped bubble with a shock wave profile in its head part. The nonlinearity leads to bubble formation under conditions with aggravation, limiting the growth of positive disturbances at the same time
Borcherdt, R. D.
2007-12-01
General theoretical solutions for Rayleigh- and Love-Type surface waves in viscoelastic media describe physical characteristics of the surface waves in elastic as well as anelastic media with arbitrary amounts of intrinsic absorption. In contrast to corresponding physical characteristics for Rayleigh waves in elastic media, Rayleigh- Type surface waves in anelastic media demonstrate; 1) tilt of the particle motion orbit that varies with depth, and 2) amplitude and volumetric strain distributions with superimposed sinusoidal variations that decay exponentially with depth. Each characteristic is dependent on the amount of intrinsic absorption and the chosen model of viscoelasticity. Distinguishing characteristics of anelastic Love-Type surface waves include: 1) dependencies of the wave speed and absorption coefficient on the chosen model and amount of intrinsic absorption and frequency, and 2) superimposed sinusoidal amplitude variations with an exponential decay with depth. Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physical characteristics of both types of viscoelastic surface waves appropriate for interpretations pertinent to models of earth materials ranging from low-loss in the crust to moderate- and high-loss in water-saturated soils.
Bayesian seismic AVO inversion
Energy Technology Data Exchange (ETDEWEB)
Buland, Arild
2002-07-01
A new linearized AVO inversion technique is developed in a Bayesian framework. The objective is to obtain posterior distributions for P-wave velocity, S-wave velocity and density. Distributions for other elastic parameters can also be assessed, for example acoustic impedance, shear impedance and P-wave to S-wave velocity ratio. The inversion algorithm is based on the convolutional model and a linearized weak contrast approximation of the Zoeppritz equation. The solution is represented by a Gaussian posterior distribution with explicit expressions for the posterior expectation and covariance, hence exact prediction intervals for the inverted parameters can be computed under the specified model. The explicit analytical form of the posterior distribution provides a computationally fast inversion method. Tests on synthetic data show that all inverted parameters were almost perfectly retrieved when the noise approached zero. With realistic noise levels, acoustic impedance was the best determined parameter, while the inversion provided practically no information about the density. The inversion algorithm has also been tested on a real 3-D dataset from the Sleipner Field. The results show good agreement with well logs but the uncertainty is high. The stochastic model includes uncertainties of both the elastic parameters, the wavelet and the seismic and well log data. The posterior distribution is explored by Markov chain Monte Carlo simulation using the Gibbs sampler algorithm. The inversion algorithm has been tested on a seismic line from the Heidrun Field with two wells located on the line. The uncertainty of the estimated wavelet is low. In the Heidrun examples the effect of including uncertainty of the wavelet and the noise level was marginal with respect to the AVO inversion results. We have developed a 3-D linearized AVO inversion method with spatially coupled model parameters where the objective is to obtain posterior distributions for P-wave velocity, S-wave
Ingram, WT
2012-01-01
Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen
International Nuclear Information System (INIS)
Sugimoto, Yoshihiro
2014-01-01
A restricted stripe-like zone suffered major damage due to the 1995 Hyogo-ken Nanbu earthquake, and ground motion of the south side of the Kashiwazaki NPP site was much greater than that of the north side in the 2007 Niigata-ken Chuetsu-oki earthquake. One reason for these phenomena is thought to be the focusing effect due to irregularly shaped sedimentary basins (e.g., basin-edge structure, fold structure, etc.) This indicates that precise evaluation of S-wave velocity structure is important. A calculation program that was developed to make S-wave velocity models using the joint inversion method was presented. This program unifies various geophysical and geological data and can make a complex structure model for evaluating strong ground motion with high precision. (author)
Design Aspects of the Rayleigh Convection Code
Featherstone, N. A.
2017-12-01
Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.
Seismic Response to Sonic Boom-Coupled Rayleigh Waves
1990-06-28
side slopes and moderately deep well-drained, gently sloping to moderately steep soils on terraces; Ann. Rainfall--10" to 16") Cath-Timpahute- Jarab ...slopes less than 15%, and Alluvial land) Jarab Series (cobbley loam, gravelly loam, gravelly clay loam, pan fragments, hardpan with silica laminae...weakly and strongly cemented with lime, soft, calcareous gravelly loam: al!-aline, calcareous) Jarab cobbley loam, 2 to 15% slopes, (JCD) (moderately
Chemical Applications of Second Harmonic Rayleigh Scattering ...
Indian Academy of Sciences (India)
Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13.
Centrifugally Driven Rayleigh-Taylor Instability
Scase, Matthew; Hill, Richard
2017-11-01
The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.
Mengxuan, Zhong; Jun, Tan; Peng, Song; Xiao-bo, Zhang; Chuang, Xie; Zhao-lun, Liu
2017-01-01
The gradient preconditioning algorithms based on Hessian matrices in time-domain full waveform inversion (FWI) are widely used now, but consume a lot of memory and do not fit the FWI of large models or actual seismic data well. To avoid the huge
Experimental investigation of turbulent mixing by Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Youngs, D.L.
1992-01-01
A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations
Ablation front rayleigh taylor dispersion curve in indirect drive
International Nuclear Information System (INIS)
Budil, K.S.; Lasinski, B.; Edwards, M.J.; Wan, A.S.; Remington, B.A.; Weber, S.V.; Glendinning, S.G.; Suter, L.; Stry, P.
2000-01-01
The Rayleigh-Taylor (RT) instability, which occurs when a lower-density fluid accelerates a higher-density layer, is common in nature. At an ablation front a sharp reduction in the growth rate of the instability at short wave-lengths can occur, in marked contrast to the classical case where growth rates are highest at the shortest wavelengths. Theoretical and numerical investigations of the ablative RT instability are numerous and differ considerably on the level of stabilization expected. We present here the results of a series of laser experiments designed to probe the roll-over and cutoff region of the ablation-front RT dispersion curve in indirect drive. Aluminum foils with imposed sinusoidal perturbations ranging in wavelength from 10 to 70 pm were ablatively accelerated with a radiation drive generated in a gold cylindrical hohlraum. A strong shock wave compresses the package followed by an ∼2 ns period of roughly constant acceleration and the experiment is diagnosed via face-on radiography. Perturbations with wavelengths (ge) 20 (micro)m experienced substantial growth during the acceleration phase while shorter wavelengths showed a sharp drop off in overall growth. These experimental results compared favorably to calculations with a 2-D radiation-hydrodynamics code, however, the growth is significantly affected by the rippled shock launched by the drive. We performed numerical simulations to elucidate the influence of the rippled shock wave on the eventual growth of the perturbations, allowing comparisons to the analytic model developed by Betti et al. This combination of experiments, simulations and analytic modeling illustrates the qualitative simplicity yet quantitative complexity of the compressible RT instability. We have measured the Rayleigh-Taylor (RT) dispersion curve for a radiatively-driven sample in a series of experiments on the Nova laser facility. Planar aluminum foils were ablatively-accelerated and the subsequent perturbation growth was
Effect of resistivity on the Rayleigh-Taylor instability in an accelerated plasma
International Nuclear Information System (INIS)
Castillo, J.L.; Huerta, M.A.
1993-01-01
We study the Rayleigh-Taylor instability in finite-conductivity accelerated plasma arcs of the type found in electromagnetic rail launchers. For a plasma of length l, acceleration a, and thermal speed v T we consider the case where v T 2 /al much-gt 1, which is valid when the projectile mass is large compared to the plasma mass. The conductivity σ enters via a magnetic Reynolds number R=σμ(al 3 ) 1/2 . The fourth-order mode equation is solved analytically using an asymptotic WKB expansion in 1/R. We find the first-order 1/R correction to the classical Rayleigh-Taylor dispersion relation for large wave number K but with K much-lt R 2 /l. The analytical results show good agreement with previous numerical calculations
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
North American Crust and Upper Mantle Structure Imaged Using an Adaptive Bayesian Inversion
Eilon, Z.; Fischer, K. M.; Dalton, C. A.
2017-12-01
We present a methodology for imaging upper mantle structure using a Bayesian approach that incorporates a novel combination of seismic data types and an adaptive parameterization based on piecewise discontinuous splines. Our inversion algorithm lays the groundwork for improved seismic velocity models of the lithosphere and asthenosphere by harnessing increased computing power alongside sophisticated data analysis, with the flexibility to include multiple datatypes with complementary resolution. Our new method has been designed to simultaneously fit P-s and S-p converted phases and Rayleigh wave phase velocities measured from ambient noise (periods 6-40 s) and earthquake sources (periods 30-170s). Careful processing of the body wave data isolates the signals from velocity gradients between the mid-crust and 250 km depth. We jointly invert the body and surface wave data to obtain detailed 1-D velocity models that include robustly imaged mantle discontinuities. Synthetic tests demonstrate that S-p phases are particularly important for resolving mantle structure, while surface waves capture absolute velocities with resolution better than 0.1 km/s. By treating data noise as an unknown parameter, and by generating posterior parameter distributions, model trade offs and uncertainties are fully captured by the inversion. We apply the method to stations across the northwest and north-central United States, finding that the imaged structure improves upon existing models by sharpening the vertical resolution of absolute velocity profiles and offering robust uncertainty estimates. In the tectonically active northwestern US, a strong velocity drop immediately beneath the Moho connotes thin (<70 km) lithosphere and a sharp lithosphere-asthenosphere transition; the asthenospheric velocity profile here matches observations at mid-ocean ridges. Within the Wyoming and Superior cratons, our models reveal mid-lithospheric velocity gradients indicative of thermochemical cratonic
Turbulence Nature and the Inverse Problem
Pyatnitsky, L. N
2009-01-01
Hydrodynamic equations well describe averaged parameters of turbulent steady flows, at least in pipes where boundary conditions can be estimated. The equations might outline the parameters fluctuations as well, if entry conditions at current boundaries were known. This raises, in addition, the more comprehensive problem of the primary perturbation nature, noted by H.A. Lorentz, which still remains unsolved. Generally, any flow steadiness should be supported by pressure waves emitted by some external source, e.g. a piston or a receiver. The wave plane front in channels quickly takes convex configuration owing to Rayleigh's law of diffraction divergence. The Schlieren technique and pressure wave registration were employed to investigate the wave interaction with boundary layer, while reflecting from the channel wall. The reflection induces boundary-layer local separation and following pressure rapid increase within the perturbation zone. It propagates as an acoustic wave packet of spherical shape, bearing oscil...
Modal model for the nonlinear multimode Rayleigh endash Taylor instability
International Nuclear Information System (INIS)
Ofer, D.; Alon, U.; Shvarts, D.; McCrory, R.L.; Verdon, C.P.
1996-01-01
A modal model for the Rayleigh endash Taylor (RT) instability, applicable at all stages of the flow, is introduced. The model includes a description of nonlinear low-order mode coupling, mode growth saturation, and post-saturation mode coupling. It is shown to significantly extend the range of applicability of a previous model proposed by Haan, to cases where nonlinear mode generation is important. Using the new modal model, we study the relative importance of mode coupling at late nonlinear stages and resolve the difference between cases in which mode generation assumes a dominant role, leading to the late time inverse cascade of modes and loss of memory of initial conditions, and cases where mode generation is not important and memory of initial conditions is retained. Effects of finite density ratios (Atwood number A<1) are also included in the model and the difference between various measures of the mixing zone penetration depth for A<1 is discussed. copyright 1996 American Institute of Physics
Simulating Seismic Wave Propagation in Viscoelastic Media with an Irregular Free Surface
Liu, Xiaobo; Chen, Jingyi; Zhao, Zhencong; Lan, Haiqiang; Liu, Fuping
2018-05-01
In seismic numerical simulations of wave propagation, it is very important for us to consider surface topography and attenuation, which both have large effects (e.g., wave diffractions, conversion, amplitude/phase change) on seismic imaging and inversion. An irregular free surface provides significant information for interpreting the characteristics of seismic wave propagation in areas with rugged or rapidly varying topography, and viscoelastic media are a better representation of the earth's properties than acoustic/elastic media. In this study, we develop an approach for seismic wavefield simulation in 2D viscoelastic isotropic media with an irregular free surface. Based on the boundary-conforming grid method, the 2D time-domain second-order viscoelastic isotropic equations and irregular free surface boundary conditions are transferred from a Cartesian coordinate system to a curvilinear coordinate system. Finite difference operators with second-order accuracy are applied to discretize the viscoelastic wave equations and the irregular free surface in the curvilinear coordinate system. In addition, we select the convolutional perfectly matched layer boundary condition in order to effectively suppress artificial reflections from the edges of the model. The snapshot and seismogram results from numerical tests show that our algorithm successfully simulates seismic wavefields (e.g., P-wave, Rayleigh wave and converted waves) in viscoelastic isotropic media with an irregular free surface.
Performance comparison of Rayleigh and STW modes on quartz crystal for strain sensor application
Energy Technology Data Exchange (ETDEWEB)
Fu, Chen; Lee, Ki Jung; Lee, Keekeun; Yang, Sang Sik, E-mail: ssyang@ajou.ac.kr [Department of Electrical and Computer Engineering, Ajou University, Suwon 442-749 (Korea, Republic of); Eun, Kyongtae; Choa, Sung-Hoon [Nano-IT Fusion Program, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)
2016-07-14
In this study, we compare two kinds of strain sensors based on Rayleigh wave and surface transverse wave (STW) modes, respectively. First, we perform a strain-and-stress analysis using the finite element method, and we consider the contribution to a surface acoustic wave (SAW) velocity shift. Prior to fabrication, we use a coupling-of-modes model to simulate and optimize two-port SAW resonators for both modes. We use a network analyzer to measure and characterize the two devices. Further, we perform an experiment using a strain-testing system with a tapered cross-section cantilever beam. The experimental results show that the ratio of the frequency shift to the strain for the Rayleigh wave mode is −1.124 ppm/με in the parallel direction and 0.109 ppm/με in the perpendicular direction, while the corresponding values for the STW mode are 0.680 ppm/με and 0.189 ppm/με, respectively.
Predictability of Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Viecelli, J.A.
1986-01-01
Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs
A simple proposal for Rayleigh's scaterring experiment
Directory of Open Access Journals (Sweden)
Adriano José Ortiz
2010-03-01
Full Text Available This work presents an alternative proposal for Rayleigh's scattering experiment presented and discussed in Krapas and Santos (2002 in this journal. Besides being simple and low-cost, the proposal suggested here is also proposing to demonstrate experimentally other physical phenomena such as polarization of light from the sky, the rainbow and reflection on non-conductive surfaces, as well as determine the direction of these biases. The polarization will be observed with the aid of Polaroid obtained from liquid crystal displays taken from damaged electronic devices and the Polaroid polarization direction will be established by the observation of Brewester's angle in reflection experiment.
Bayesian Predictive Models for Rayleigh Wind Speed
DEFF Research Database (Denmark)
Shahirinia, Amir; Hajizadeh, Amin; Yu, David C
2017-01-01
predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....
Nonlinear saturation of the Rayleigh Taylor instability
International Nuclear Information System (INIS)
Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.
1997-01-01
The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)
Directory of Open Access Journals (Sweden)
Joel Sereno
2010-01-01
Full Text Available Inverse kinematics is the process of converting a Cartesian point in space into a set of joint angles to more efficiently move the end effector of a robot to a desired orientation. This project investigates the inverse kinematics of a robotic hand with fingers under various scenarios. Assuming the parameters of a provided robot, a general equation for the end effector point was calculated and used to plot the region of space that it can reach. Further, the benefits obtained from the addition of a prismatic joint versus an extra variable angle joint were considered. The results confirmed that having more movable parts, such as prismatic points and changing angles, increases the effective reach of a robotic hand.
Energy Technology Data Exchange (ETDEWEB)
Andrei, A. Ivanov
2001-06-15
In this thesis we're studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words - two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability. These results can be applied to a wide range of systems, starting from classic hydrodynamics and up to astrophysical plasmas. The scheme of wire arrays has become recently a very popular method to obtain a high power X-radiation or for a high quality implosion in Z-pinches. The experimental studies have demonstrated that the results of implosion are much better for the case of multiple thin wires situated cylindrically than in a usual liner scheme. We have examined the problem modeling the stabilization of Rayleigh-Taylor instability for a wire array system. The reason for instability suppression is the regular spatial modulation of
International Nuclear Information System (INIS)
Desesquelles, P.
1997-01-01
Computer Monte Carlo simulations occupy an increasingly important place between theory and experiment. This paper introduces a global protocol for the comparison of model simulations with experimental results. The correlated distributions of the model parameters are determined using an original recursive inversion procedure. Multivariate analysis techniques are used in order to optimally synthesize the experimental information with a minimum number of variables. This protocol is relevant in all fields if physics dealing with event generators and multi-parametric experiments. (authors)
Skeletonized wave-equation Qs tomography using surface waves
Li, Jing; Dutta, Gaurav; Schuster, Gerard T.
2017-01-01
We present a skeletonized inversion method that inverts surface-wave data for the Qs quality factor. Similar to the inversion of dispersion curves for the S-wave velocity model, the complicated surface-wave arrivals are skeletonized as simpler data
Directory of Open Access Journals (Sweden)
Sri Atmaja P. Rosidi
2007-01-01
Full Text Available The Spectral Analysis of Surface Wave (SASW method is a non-destructive in situ seismic technique used to assess and evaluate the material stiffness (dynamic elastic modulus and thickness of pavement layers at low strains. These values can be used analytically to calculate load capacities in order to predict the performance of pavement system. The SASW method is based on the dispersion phenomena of Rayleigh waves in layered media. In order to get the actual shear wave velocities, 2-D and 3-D models are used in the simulation of the inversion process for best fitting between theoretical and empirical dispersion curves. The objective of this study is to simulate and compare the 2-D and 3-D model of SASW analysis in the construction of the theoretical dispersion curve for pavement structure evaluation. The result showed that the dispersion curve from the 3-D model was similar with the dispersion curve of the actual pavement profile compared to the 2-D model. The wave velocity profiles also showed that the 3-D model used in the SASW analysis is able to detect all the distinct layers of flexible pavement units.
DEFF Research Database (Denmark)
Khan, A.; Zunino, Andrea; Deschamps, F.
2013-01-01
Here we discuss the nature of velocity heterogeneities seen in seismic tomography images of Earth's mantle whose origins and relation to thermochemical variations are yet to be understood. We illustrate this by inverting fundamental-mode and higher-order surface-wave phase velocities for radial....../Fe and Mg/Si values relative to surrounding mantle. Correlated herewith are thermal variations that closely follow surface tectonics. We also observe a strong contribution to lateral variations in structure and topography across the “410 km” seismic discontinuity from thermochemically induced phase......-wave tomography models with other regional models is encouraging. Radial anisotropy is strongest at 150/200 km depth beneath oceanic/continental areas, respectively, and appears weak and homogeneous below. Finally, geoid anomalies are computed for a subset of sampled model and compared to observations....
Universality in quasiperiodic Rayleigh-Benard convection
International Nuclear Information System (INIS)
Ecke, R.E.; Mainieri, R.; Sullivan, T.S.
1991-01-01
We study universal scaling properties of quasiperiodic Rayleigh-Benard convection in a 3 He--superfluid- 4 He mixture. The critical line is located in a parameter space of Rayleigh and Prandtl numbers using a transient-Poincare-section technique to identify transitions from nodal periodic points to spiral periodic points within resonance horns. We measure the radial and angular contraction rates and extract the linear-stability eigenvalues (Flouquet multipliers) of the periodic point. At the crossings of the critical line with the lines of fixed golden-mean-tail winding number we determine the universality class of our experimental dynamics using f(α) and trajectory-scaling-function analyses. A technique is used to obtain a robust five-scale approximation to the universal trajectory scaling function. Different methods of multifractal analysis are employed and an understanding of statistical and systematic errors in these procedures is developed. The power law of the inflection point of the map, determined for three golden-mean-tail winding numbers, is 2.9±0.3, corresponding to the universality class of the sine map
Penetrative convection at high Rayleigh numbers
Toppaladoddi, Srikanth; Wettlaufer, John S.
2018-04-01
We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.
Rogue waves generated through quantum chaos
Liu, Changxu
2013-05-01
Rouge waves, or freak waves, are extreme events that manifest themselves with the formation of waves with giant amplitude. One of the distinctive features of their appearance is an anomalous amplitude probability distribution, which shows significant deviations from the classical Rayleigh statistics [1]. Initially observed in the context of oceanography, rogue waves have been extensively studied in Optics where their observation has been reported in nonlinear optical fibers [2] and laser systems [3]. © 2013 IEEE.
Rogue waves generated through quantum chaos
Liu, Changxu; Di Falco, Andrea; Krauss, Thomas F.; Fratalocchi, Andrea
2013-01-01
Rouge waves, or freak waves, are extreme events that manifest themselves with the formation of waves with giant amplitude. One of the distinctive features of their appearance is an anomalous amplitude probability distribution, which shows significant deviations from the classical Rayleigh statistics [1]. Initially observed in the context of oceanography, rogue waves have been extensively studied in Optics where their observation has been reported in nonlinear optical fibers [2] and laser systems [3]. © 2013 IEEE.
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
Boyadzhiev, G.; Brandmayr, E.; Pinat, T.; Panza, G.F.
2007-06-01
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
Energy Technology Data Exchange (ETDEWEB)
Ivanov, A.A
2001-06-01
The instabilities of Rayleigh-Taylor type are considered in the thesis. The topic of the thesis was inspired by recent advances in the physics of plasma compression, especially with the aid of systems like Z-pinch. Rayleigh-Taylor instability (RTI) plays an important role in the evolution of magnetized plasmas in these experiments, as well as in stellar plasmas and classic fluids. For the phenomena concerning the nuclear fusion the RTI is very often the factor limiting the possibility of compression. In the current work we try to examine in detail the characteristic features of the instabilities of this type in order to eliminate their detrimental influence. In this thesis we are studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words, two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external &apos
Surface Acoustic Waves in ferroelectrics
Czech Academy of Sciences Publication Activity Database
Tarasenko A., Nataliya; Jastrabík, Lubomír; Tarasenko, Alexander
2004-01-01
Roč. 298, - (2004), s. 325-333 ISSN 0015-0193 R&D Projects: GA AV ČR IBS1010203 Keywords : Rayleigh waves * ferroelectric films * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004
Jaffe, Lionel F
2008-04-12
Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.
International Nuclear Information System (INIS)
Skigin, Diana C; Lester, Marcelo
2014-01-01
We analyze the enhanced transmission phenomenon in subwavelength slit structures near a dielectric interface. In particular, we investigate the influence of Rayleigh anomalies in the spectral position as well as in the bandwidth of Fabry–Perot resonances excited on such structures. We consider the cases of propagating and evanescent incidence, i.e., when the metallic structure is illuminated from the dielectric medium side with an incidence angle larger than the critical angle. We show that Rayleigh anomalies strongly interact with Fabry–Perot resonances, and make them deviate from the spectral positions predicted by the infinitely thin slit model. To get physical insight into this problem, we develop a simplified electromagnetic model and show that there is a close correspondence between the transmitted response of the structure and the behavior of certain function that depends on the geometrical and the illumination parameters. Our results suggest that Rayleigh anomalies strongly modify the electromagnetic response of the structure due to the existence of surface waves that modify the coupling condition between the fields inside and outside the slits. Besides, we show that even in absence of Fabry–Perot resonances, it is possible to produce enhanced transmission by taking advantage of the pseudoperiodicity condition of the fields. (paper)
Modeling of Non-WSSUS Double-Rayleigh Fading Channels for Vehicular Communications
Directory of Open Access Journals (Sweden)
Carlos A. Gutiérrez
2017-01-01
Full Text Available This paper deals with the modeling of nonstationary time-frequency (TF dispersive multipath fading channels for vehicle-to-vehicle (V2V communication systems. As a main contribution, the paper presents a novel geometry-based statistical channel model that facilitates the analysis of the nonstationarities of V2V fading channels arising at a small-scale level due to the time-varying nature of the propagation delays. This new geometrical channel model has been formulated following the principles of plane wave propagation (PWP and assuming that the transmitted signal reaches the receiver antenna through double interactions with multiple interfering objects (IOs randomly located in the propagation area. As a consequence of such interactions, the first-order statistics of the channel model’s envelope are shown to follow a worse-than-Rayleigh distribution; specifically, they follow a double-Rayleigh distribution. General expressions are derived for the envelope and phase distributions, four-dimensional (4D TF correlation function (TF-CF, and TF-dependent delay and Doppler profiles of the proposed channel model. Such expressions are valid regardless of the underlying geometry of the propagation area. Furthermore, a closed-form solution of the 4D TF-CF is presented for the particular case of the geometrical two-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of small-scale nonstationary V2V double-Rayleigh fading channels.
Large-scale patterns in Rayleigh-Benard convection
International Nuclear Information System (INIS)
Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.
2008-01-01
Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied
Nonlinear Rayleigh-Taylor instability in partially ionized plasma and the equatorial spread - F
International Nuclear Information System (INIS)
Jain, R.K.; Das, A.C.
1978-01-01
The nonlinear evolution of the collisional gravitation induced Rayleigh-Taylor (R-T) instability in the equatorial F region is investigated taking into account the finite Larmor radius (FLR) effects and the complete ion inertial term in ion equation of motion. A special class of coherent weakly nonlinear modes as solutions to the wave equation describing R-T instability driven modes is obtained. The leading nonlinear effects in the wave equation are found to appear through Vsub(L), the ion diamagnetic drift which essentially gives the FLR corrections. It is shown that the R-T modes in the equatorial F region can evolve into coherent, nonlinear, almost sinusoidal, stationary wave structures. These structures are found to travel with a constant phase velocity and to have slightly distorted sinusoidal shapes. These results seem to have a good agreement with many of the recent rocket and satellite observations of the equatorial spread F irregularities. (author)
Collisional Rayleigh-Taylor instability and shear-flow in equatorial Spread-F plasma
Directory of Open Access Journals (Sweden)
N. Chakrabarti
2003-05-01
Full Text Available Collisional Rayleigh-Taylor (RT instability is considered in the bottom side of the equatorial F-region. By a novel nonmodal calculation it is shown that for an applied shear flow in equilibrium, the growth of the instability is considerably reduced. Finite but small amounts of diffusion enhances the stabilization process. The results may be relevant to the observations of long-lived irregularities at the bottom-side of the F-layer.Key words. Ionosphere (ionospheric irregularities, equatorial ionosphere, plasma waves and instabilities
Rayleigh-Bénard convection instability in the presence of temperature variation at the lower wall
Directory of Open Access Journals (Sweden)
Jovanović Miloš M.
2012-01-01
Full Text Available This paper analyzes the two-dimensional viscous fluid flow between two parallel plates, where the lower plate is heated and the upper one is cooled. The temperature difference between the plates is gradually increased during a certain time period, and afterwards it is temporarily constant. The temperature distribution on the lower plate is not constant in x-direction, and there is longitudinal sinusoidal temperature variation imposed on the mean temperature. We investigate the wave number and amplitude influence of this variation on the stability of Rayleigh-Benard convective cells, by direct numerical simulation of 2-D Navier-Stokes and energy equation.
Intersections, ideals, and inversion
International Nuclear Information System (INIS)
Vasco, D.W.
1998-01-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly one dimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons
Intersections, ideals, and inversion
Energy Technology Data Exchange (ETDEWEB)
Vasco, D.W.
1998-10-01
Techniques from computational algebra provide a framework for treating large classes of inverse problems. In particular, the discretization of many types of integral equations and of partial differential equations with undetermined coefficients lead to systems of polynomial equations. The structure of the solution set of such equations may be examined using algebraic techniques.. For example, the existence and dimensionality of the solution set may be determined. Furthermore, it is possible to bound the total number of solutions. The approach is illustrated by a numerical application to the inverse problem associated with the Helmholtz equation. The algebraic methods are used in the inversion of a set of transverse electric (TE) mode magnetotelluric data from Antarctica. The existence of solutions is demonstrated and the number of solutions is found to be finite, bounded from above at 50. The best fitting structure is dominantly onedimensional with a low crustal resistivity of about 2 ohm-m. Such a low value is compatible with studies suggesting lower surface wave velocities than found in typical stable cratons.
Hamada, K.; Yoshizawa, K.
2015-09-01
A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit
Rayleigh-type parametric chemical oscillation
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Agrawal, M.; Pulliam, J.; Sen, M. K.
2013-12-01
The seismic structure beneath Texas Gulf Coast Plain (GCP) is determined via velocity analysis of stacked common conversion point (CCP) Ps and Sp receiver functions and surface wave dispersion. The GCP is a portion of a ocean-continental transition zone, or 'passive margin', where seismic imaging of lithospheric Earth structure via passive seismic techniques has been rare. Seismic data from a temporary array of 22 broadband stations, spaced 16-20 km apart, on a ~380-km-long profile from Matagorda Island, a barrier island in the Gulf of Mexico, to Johnson City, Texas were employed to construct a coherent image of the crust and uppermost mantle. CCP stacking was applied to data from teleseismic earthquakes to enhance the signal-to-noise ratios of converted phases, such as Ps phases. An inaccurate velocity model, used for time-to-depth conversion in CCP stacking, may produce higher errors, especially in a region of substantial lateral velocity variations. An accurate velocity model is therefore essential to constructing high quality depth-domain images. To find accurate velocity P- and S-wave models, we applied a joint modeling approach that searches for best-fitting models via simulated annealing. This joint inversion approach, which we call 'multi objective optimization in seismology' (MOOS), simultaneously models Ps receiver functions, Sp receiver functions and group velocity surface wave dispersion curves after assigning relative weights for each objective function. Weights are computed from the standard deviations of the data. Statistical tools such as the posterior parameter correlation matrix and posterior probability density (PPD) function are used to evaluate the constraints that each data type places on model parameters. They allow us to identify portions of the model that are well or poorly constrained.
Surface waves in fibre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45
Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the ... (1924) and Jeffreys (1959), regarding surface waves in classical elasticity. Sengupta and his research collaborators have also studied surface waves (Acharya & Sengupta 1978;.
QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.
Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy
We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.
Surface-wave potential for triggering tectonic (nonvolcanic) tremor
Hill, D.P.
2010-01-01
Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.
Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Liu, J.
2010-01-01
Love-wave propagation has been a topic of interest to crustal, earthquake, and engineering seismologists for many years because it is independent of Poisson's ratio and more sensitive to shear (S)-wave velocity changes and layer thickness changes than are Rayleigh waves. It is well known that Love-wave generation requires the existence of a low S-wave velocity layer in a multilayered earth model. In order to study numerically the propagation of Love waves in a layered earth model and dispersion characteristics for near-surface applications, we simulate high-frequency (>5 Hz) Love waves by the staggered-grid finite-difference (FD) method. The air-earth boundary (the shear stress above the free surface) is treated using the stress-imaging technique. We use a two-layer model to demonstrate the accuracy of the staggered-grid modeling scheme. We also simulate four-layer models including a low-velocity layer (LVL) or a high-velocity layer (HVL) to analyze dispersive energy characteristics for near-surface applications. Results demonstrate that: (1) the staggered-grid FD code and stress-imaging technique are suitable for treating the free-surface boundary conditions for Love-wave modeling, (2) Love-wave inversion should be treated with extra care when a LVL exists because of a lack of LVL information in dispersions aggravating uncertainties in the inversion procedure, and (3) energy of high modes in a low-frequency range is very weak, so that it is difficult to estimate the cutoff frequency accurately, and "mode-crossing" occurs between the second higher and third higher modes when a HVL exists. ?? 2010 Birkh??user / Springer Basel AG.
Theoretical and numerical study of Rayleigh-Taylor instabilities in magnetized plasmas
International Nuclear Information System (INIS)
Andrei, A. Ivanov
2001-06-01
In this thesis we're studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words - two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability. These results can be applied to a wide range of systems, starting from classic hydrodynamics and up to astrophysical plasmas. The scheme of wire arrays has become recently a very popular method to obtain a high power X-radiation or for a high quality implosion in Z-pinches. The experimental studies have demonstrated that the results of implosion are much better for the case of multiple thin wires situated cylindrically than in a usual liner scheme. We have examined the problem modeling the stabilization of Rayleigh-Taylor instability for a wire array system. The reason for instability suppression is the regular spatial modulation of the surface plasma
Oda, Hitoshi
2005-02-01
We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the
Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey
2015-10-01
Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.
Roecker, S. W.; Ebinger, C. J.; Tiberi, C.; Mulibo, G. D.; Ferdinand-Wambura, R.; Muzuka, A.; Khalfan, M.; Kianji, G.; Gautier, S.; Albaric, J.; Peyrat, S.
2015-12-01
With several rift segments at different stages of the rifting cycle, and the last orogenic episode more than 500 Mya, the young (Ngorongoro caldera appears to be physically cut off from the magma beneath the main part of the rift zone by a relatively thin (< 10 km) wide zone of higher shear wave speeds that lies along the western edge of the fault-bounded rift. The narrow ridge of higher velocity lower crustal material may be a consequence of flexural uplift of the rift flank in response to stretching of strong, cratonic lithosphere.
International Nuclear Information System (INIS)
Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Oh, J.; Metzler, N.
2012-01-01
Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. At sub-megabar shock pressure, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory rippled expansion wave is observed, followed by the “feedout” of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.
Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field
National Research Council Canada - National Science Library
Meents, Steven M
2008-01-01
Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images...
Rayleigh scattering and depolarization ratio in linear alkylbenzene
International Nuclear Information System (INIS)
Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang
2015-01-01
It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm
Variation with age of anisotropy under oceans, from great circle surface waves
International Nuclear Information System (INIS)
Journet, B.; Jobert, N.
1982-01-01
Global great circle measurements of regionalized mantle Love wave phase velocities are interpreted in terms of regional models. The same study had been made by J. J. Leveque (1980) for Rayleigh waves, and the resulting models for the two oceanic regions of different ages are used as a basis for comparison: the observed Love wave dispersion cannot be explained with these models if isotropic. The models obtained by inversion of Love wave data are compared with the models mentioned; the discrepancy appearing in the 250 km depth range between the velocities β/sub H/ and β/sub V/ of respectively SH and SV waves is indicative of polarization anisotropy. Moreover, we put forward a significant variation from young to old oceans: the difference between β/sub H/, and β/sub V/ is of the order of 1% for the former, compared to 3% for the latter. This variation can bring information about the behaviour of upper mantle materials in connection with the motion of oceanic plates
Rayleigh scattering under light-atom coherent interaction
Takamizawa, Akifumi; Shimoda, Koichi
2012-01-01
Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...
Some problems in generalized electromagnetic thermoelasticity and wave propagation
International Nuclear Information System (INIS)
Mohamed, S.E.S.
2012-01-01
Fourier transform techniques are used to derive the solution using the variation of parameters method. The inverse transforms are obtained by using the inversion formula of the exponential Fourier transform together with a numerical method to invert the Laplace transform. Numerical results are computed and represented graphically. In chapter five, we study the propagation of Rayleigh surface waves in a thermoelastic half space permeated by a uniform magnetic field. Numerical results are computed for attenuation coefficient, phase velocity, amplitude of temperature, displacement, stress, induced magnetic field and the induced electric field. Numerical results are represented graphically.
Theoretical and numerical studies of Rayleigh-Taylor instabilities in magnetized plasmas
International Nuclear Information System (INIS)
Ivanov, A.A.
2001-06-01
The instabilities of Rayleigh-Taylor type are considered in the thesis. The topic of the thesis was inspired by recent advances in the physics of plasma compression, especially with the aid of systems like Z-pinch. Rayleigh-Taylor instability (RTI) plays an important role in the evolution of magnetized plasmas in these experiments, as well as in stellar plasmas and classic fluids. For the phenomena concerning the nuclear fusion the RTI is very often the factor limiting the possibility of compression. In the current work we try to examine in detail the characteristic features of the instabilities of this type in order to eliminate their detrimental influence. In this thesis we are studying both the general case of the 'classic' Rayleigh-Taylor instability (in incompressible fluids) and more specific cases of the instabilities of Rayleigh-Taylor type in magnetized plasmas, in the liners or wire array implosions etc. We have studied the influence of the Hall diffusion of magnetic field on the growth rate of the instability. We have obtained in this work a self-similar solution for the widening of the initial profile of the magnetic field and for the wave of the penetration of magnetic field. After that the subsequent evolution of the magnetic field in plasma opening switches (POS) has been examined. We have shown the possibility of the existence of a strong rarefaction wave for collisional and non-collisional cases. This wave can explain the phenomenon of the opening of POS. The effect of the suppression of Rayleigh-Taylor instability by forced oscillations of the boundary between two fluids permits us to propose some ideas for the experiments of inertial fusion. We have considered the general case of the instability, in other words, two incompressible viscous superposed fluids in a gravitational field. We have obtained an exact analytical expression for the growth rate and then we have analyzed the influence of the parameters of external 'pumping' on the instability
Manipulating Rayleigh-Taylor Growth Using Adjoints
Kord, Ali; Capecelatro, Jesse
2017-11-01
It has been observed that initial interfacial perturbations affect the growth of Rayleigh-Taylor (RT) instabilities. However, it remains to be seen to what extent the perturbations alter the RT growth rate. Direct numerical simulations (DNS) provide a powerful means for studying the effects of initial conditions (IC) on the growth rate. However, a brute-force approach for identifying optimal initial perturbations is not practical via DNS. In addition, identifying sensitivity of the RT growth to the large number of parameters used in defining the IC is computationally expensive. A discrete adjoint is formulated to measure sensitivities of multi-mode RT growth to ICs in a high-order finite difference framework. The sensitivity is used as a search direction for adjusting the initial perturbations to both maximize and suppress the RT growth rate during its non-linear regime. The modes that contribute the greatest sensitivity are identified, and optimized perturbation energy spectrum are reported. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
Nonlinear vortex structures and Rayleigh instability condition in shear flow plasmas
International Nuclear Information System (INIS)
Haque, Q.; Saleem, H.; Mirza, A.M.
2009-01-01
Full text: It is shown that the shear flow produced by externally applied electric field can unstable the drift waves. Due to shear flow, the Rayleigh instability condition is modified, which is obtained for both electron-ion and electron-positron-ion plasmas. These shear flow driven drift waves can be responsible for large amplitude electrostatic fluctuations in tokamak edges. In the nonlinear regime, the stationary structures may appear in electron-positron-ion plasmas similar to electron-ion plasmas. The nonlinear vortex structures like counter rotating dipole vortices and vortex chains can be formed with the aid of special type of shear flows. The positrons can be used as a probe in laboratory plasmas, which make it a multi-component plasma. The presence of positrons in electron-ion plasma system can affect the speed and amplitude of the nonlinear vortex structures. This investigation can have application in both laboratory and astrophysical plasmas. (author)
International Nuclear Information System (INIS)
Sharma, R.C.; Kumar, Pardeep
1998-01-01
The Rayleigh-Taylor instability of two superposed electrically conducting Walters elastico-viscous fluids (Model B') of uniform densities when the whole system is immersed in a uniform horizontal magnetic field has been studied. The stability analysis has been carried out, for mathematical simplicity, for two highly viscoelastic fluids of equal kinematic viscosities and equal kinematic viscoelasticities. For the stable configuration as in hydrodynamic case, the system is found to be stable or unstable for the wave-number range k (2v') -12 depending on kinematic viscoelasticity v'. For the unstable configuration, the magnetic field has got stabilizing effect and completely stabilizes certain wave-number range which was always unstable in the absence of magnetic field. The behaviour of growth rates with respect kinematic viscosity and kinematic viscoelasticity parameters are examined analytically. (author)
Rayleigh-Taylor instability in inertial confinement fusion
International Nuclear Information System (INIS)
Gupta, N.K.
1987-01-01
This report summarises the main results of theoretical analysis on the problem of Rayleigh-Tylor instability in inertial confinement fusion (ICF). Work presented in this report essentially covers four basic problems. Firstly, an analytical formulation to analyse the effects of plasma density inhomogeneities on the growth of the instability in plane geometry is presented. As a result of this analysis it is concluded that, for minimizing the growth rate of the instability, it may be advantageous to use the driver laser beams of higher irradiance and an optimum wave length in an ICF experiment. Secondly, a new formulation for the analysis of the instability in curved (cylindrical and spherical) geometries is presented. A general eigenvalue equation for the growth rate of the instability which is applicable for both plane and curved geometries is derived. A comparative study is made between the plane, cylindrical and spherical geometries. Also analytical expressions for the growth rates are obtained in the cases of spherical and cylindrical shell targets and their variations with respect to the aspect ratios of the shells are discussed. Thirdly, a semi-analytical analysis of the instability where the growth rate is obtained by solving numerically a (2N-1)x(2N-1) determinantal equation is presented. The semi-analytical analysis developed is applicable for the study of the growth of the instability in the present day multi-structured spherical shell targets. Finally, a dynamic analysis of the growth of the instability for a representative spherical solid target driven by laser beams symmetrically from all the sides is carried out numerically using a computer code developed for this purpose. This study confirms analytical predictions. Further, it is observed that an approximate analytical analysis with time independent density profile gives conservative estimates for the growth rate. In passing, the computer code is also used to estimate the pellet gain for spin
3D shear wave velocity structure revealed with ambient noise tomography on a DAS array
Zeng, X.; Thurber, C. H.; Wang, H. F.; Fratta, D.
2017-12-01
An 8700-m Distributed Acoustic Sensing (DAS) cable was deployed at Brady's Hot Springs, Nevada in March 2016 in a 1.5 by 0.5 km study area. The layout of the DAS array was designed with a zig-zag geometry to obtain relatively uniform areal and varied angular coverage, providing very dense coverage with a one-meter channel spacing. This array continuously recorded signals of a vibroseis truck, earthquakes, and traffic noise during the 15-day deployment. As shown in a previous study (Zeng et al., 2017), ambient noise tomography can be applied to DAS continuous records to image shear wave velocity structure in the near surface. To avoid effects of the vibroseis truck operation, only continuous data recorded during the nighttime was used to compute noise cross-correlation functions for channel pairs within a given linear segment. The frequency band of whitening was set at 5 to 15 Hz and the length of the cross-correlation time window was set to 60 second. The phase velocities were determined using the multichannel analysis of surface waves (MASW) methodology. The phase velocity dispersion curve was then used to invert for shear wave velocity profiles. A preliminarily velocity model at Brady's Hot Springs (Lawrence Livermore National Laboratory, 2015) was used as the starting model and the sensitivity kernels of Rayleigh wave group and phase velocities were computed with this model. As the sensitivity kernel shows, shear wave velocity in the top 200 m can be constrained with Rayleigh wave group and phase velocities in our frequency band. With the picked phase velocity data, the shear wave velocity structure can be obtained via Occam's inversion (Constable et al., 1987; Lai 1998). Shear wave velocity gradually increases with depth and it is generally faster than the Lawrence Livermore National Laboratory (2015) model. Furthermore, that model has limiting constraints at shallow depth. The strong spatial variation is interpreted to reflect the different sediments and
Inverse source problems in elastodynamics
Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao
2018-04-01
We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, H; Yoshioka, M; Saito, T [Iwate University, Iwate (Japan). Faculty of Engineering
1996-05-01
Studies were conducted about the method of estimating the underground S-wave velocity structure by inversion making use of the horizontal/vertical motion spectral ratio of microtremors. For this purpose, a dynamo-electric velocity type seismograph was used, capable of processing the east-west, north-south, and vertical components integratedly. For the purpose of sampling the Rayleigh wave spectral ratio, one out of all the azimuths was chosen, whose horizontal motion had a high Fourier frequency component coherency with the vertical motions. For the estimation of the underground S-wave velocity structure, parameters (P-wave velocity, S-wave velocity, density, and layer thickness) were determined from the minimum residual sum of squares involving the observed microtremor spectral ratio and the theoretical value calculated by use of a model structure. The known boring data was utilized for the study of the S-wave velocity in the top layer, and it was determined using an S-wave velocity estimation formula for the Morioka area constructed using the N-value, depth, and geological classification. It was found that the optimum S-wave velocity structure even below the top layer well reflects the S-wave velocity obtained by the estimation formula. 5 refs., 6 figs.
Linking source region and ocean wave parameters with the observed primary microseismic noise
Juretzek, C.; Hadziioannou, C.
2017-12-01
In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.
Directory of Open Access Journals (Sweden)
K. A. Shapovalov
2015-01-01
Full Text Available The paper concerns the light scattering problem of biological objects of complicated structure.It considers optically “soft” (having a refractive index close to that of a surrounding medium homogeneous cylindrical capsules, composed of three parts: central one that is cylindrical and two symmetrical rounding end caps. Such capsules can model more broad class of biological objects than the ordinary shapes of a spheroid or sphere. But, unfortunately, if a particle has other than a regular geometrical shape, then it is very difficult or impossible to solve the scattering problem analytically in its most general form that oblige us to use numerical and approximate analytical methods. The one of such approximate analytical method is the Rayleigh-Gans-Debye approximation (or the first Born approximation.So, the Rayleigh-Gans-Debye approximation is valid for different objects having size from nanometer to millimeter and depending on wave length and refractive index of an object under small phase shift of central ray.The formulas for light scattering amplitude of cylindrical capsule with arbitrary end caps in the Rayleigh-Gans-Debye approximation in scalar form are obtained. Then the light scattering phase function [or element of scattering matrix f11] for natural incident light (unpolarized or arbitrary polarized light is calculated.Numerical results for light scattering phase functions of cylindrical capsule with conical, spheroidal, paraboloidal ends in the Rayleigh-Gans-Debye approximation are compared. Also numerical results for light scattering phase function of cylindrical capsule with conical ends in the Rayleigh-Gans-Debye approximation and in the method of Purcell-Pennypacker (or Discrete Dipole method are compared. The good agreement within an application range of the RayleighGans-Debye approximation is obtained.Further continuation of the work, perhaps, is a consideration of multilayer cylindrical capsule in the Rayleigh
Inversion of GPS meteorology data
Directory of Open Access Journals (Sweden)
K. Hocke
Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically