WorldWideScience

Sample records for rayleigh scattering cross

  1. Direct measurement of the Rayleigh scattering cross section in various gases

    International Nuclear Information System (INIS)

    Sneep, Maarten; Ubachs, Wim

    2005-01-01

    Using the laser-based technique of cavity ring-down spectroscopy extinction measurements have been performed in various gases straightforwardly resulting in cross sections for Rayleigh scattering. For Ar and N 2 measurements are performed in the range 470-490nm, while for CO 2 cross sections are determined in the wider range 470-570nm. In addition to these gases also for N 2 O, CH 4 , CO, and SF 6 the scattering cross section is determined at 532nm, a wavelength of importance for lidar applications and combustion laser diagnostics. In O 2 the cross section at 532nm is found to depend on pressure due to collision-induced light absorption. The obtained cross sections validate the cross sections for Rayleigh scattering as derived from refractive indices and depolarization ratios through Rayleigh's theory at the few %-level, although somewhat larger discrepancies are found for CO, N 2 O and CH 4

  2. Recent results in Rayleigh scattering

    International Nuclear Information System (INIS)

    Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva

    1997-01-01

    New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)

  3. Rayleigh scattering from ions near threshold

    International Nuclear Information System (INIS)

    Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.

    1988-01-01

    Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt

  4. Dispersion corrections to the forward Rayleigh scattering amplitudes of tantalum, mercury and lead derived using photon interaction cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Appaji Gowda, S.B. [Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore 570006 (India); Umesh, T.K. [Department of Studies in Physics, Manasagangothri, University of Mysore, Mysore 570006 (India)]. E-mail: tku@physics.uni-mysore.ac.in

    2006-01-15

    Dispersion corrections to the forward Rayleigh scattering amplitudes of tantalum, mercury and lead in the photon energy range 24-136 keV have been determined by a numerical evaluation of the dispersion integral that relates them through optical theorem to the photo effect cross sections. The photo effect cross sections have been extracted by subtracting the coherent and incoherent scattering contribution from the measured total attenuation cross section, using high-resolution high-purity germanium detector in a narrow beam good geometry set up. The real part of the dispersion correction to which the relativistic corrections calculated by Kissel and Pratt (S-matrix approach) or Creagh and McAuley (multipole corrections) have been included are in better agreement with the available theoretical values.

  5. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  6. Measurements of Atomic Rayleigh Scattering Cross-Sections: A New Approach Based on Solid Angle Approximation and Geometrical Efficiency

    Science.gov (United States)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.

  7. RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL

    Directory of Open Access Journals (Sweden)

    S. F. Kolomiets

    2014-01-01

    Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.

  8. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.

  9. Rayleigh scattering in coupled microcavities: theory.

    Science.gov (United States)

    Vörös, Zoltán; Weihs, Gregor

    2014-12-03

    In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.

  10. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13.

  11. Resonance scattering of Rayleigh waves by a mass defect

    International Nuclear Information System (INIS)

    Croitoru, M.; Grecu, D.

    1978-06-01

    The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)

  12. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  13. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  14. Hyper-Rayleigh scattering in centrosymmetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2015-09-28

    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.

  15. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    National Research Council Canada - National Science Library

    Meents, Steven M

    2008-01-01

    Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images...

  16. Rayleigh scattering and depolarization ratio in linear alkylbenzene

    International Nuclear Information System (INIS)

    Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-01-01

    It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm

  17. Depolarization Rayleigh scattering as a means of molecular concentration determination in plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Schram, D.C.; Jaegers, L.J.M.; Sanden, van de M.C.M.

    1992-01-01

    The difference in polarization for Rayleigh scattered radiation on spherically and nonspherically symmetric scattering objects has been used to obtain molecular species concentrations in plasmas of simple composition. Using a Rayleigh scattering diagnostic, the depolarized component of the scattered

  18. Rayleigh scattering under light-atom coherent interaction

    OpenAIRE

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  19. Rayleigh scattering in an emitter-nanofiber-coupling system

    Science.gov (United States)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  20. Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV

    International Nuclear Information System (INIS)

    Parker, J.C.; Reynaud, G.W.; Botto, D.J.; Pratt, R.H.

    1979-01-01

    An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references

  1. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  2. Nd:YAG Laser-Based Dual-Line Detection Rayleigh Scattering and Current Efforts on UV, Filtered Rayleigh Scattering

    Science.gov (United States)

    Otugen, M. Volkan; Popovic, Svetozar

    1996-01-01

    Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.

  3. Instantaneous Rayleigh scattering from excitons localized in monolayer islands

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis

    2000-01-01

    We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...

  4. Measurement of the stimulated thermal Rayleigh scattering instability

    International Nuclear Information System (INIS)

    Karr, T.J.; Rushford, M.C.; Murray, J.R.; Morris, J.R.

    1989-04-01

    Growth of perturbations due to stimulated thermal Rayleigh scattering was observed on a laser beam propagating in a 1 meter cell of CC14. Initial sinusoidal irradiance perturbations were seeded onto the laser leam, and their amplification in the cell was recorded by a near field camera. The perturbation growth rate is in agreement with analytical predictions of linearized propagation theory

  5. Experimental investigation of quantum effects in time-resolved resonance Rayleigh scattering from quantum well excitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Shchegrov, Andrei V.

    2000-01-01

    Resonant Rayleigh scattering from quantum well excitons is investigated using ultrafast spectral interferometry. We isolate the coherent Rayleigh scattering from incoherent luminescence in a single speckle. Averaging the resonant Rayleigh intensity over several speckles allows us to identify...... features in support of quantum corrections to the classical description of the underlying scattering process....

  6. Size estimates of nobel gas clusters by Rayleigh scattering experiments

    Institute of Scientific and Technical Information of China (English)

    Pinpin Zhu (朱频频); Guoquan Ni (倪国权); Zhizhan Xu (徐至展)

    2003-01-01

    Noble gases (argon, krypton, and xenon) are puffed into vacuum through a nozzle to produce clusters for studying laser-cluster interactions. Good estimates of the average size of the argon, krypton and xenon clusters are made by carrying out a series of Rayleigh scattering experiments. In the experiments, we have found that the scattered signal intensity varied greatly with the opening area of the pulsed valve. A new method is put forward to choose the appropriate scattered signal and measure the size of Kr cluster.

  7. Measurement of molecular polarizability on Rayleigh light scattering

    International Nuclear Information System (INIS)

    Nerushev, O.A.; Novopashin, S.A.

    1994-01-01

    The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs

  8. Dynamics of globular molecules: moisture effect on the Rayleigh scattering spectrum of the Moessbauer radiation

    International Nuclear Information System (INIS)

    Chesskaya, T.Yu.

    1998-01-01

    The Rayleigh scattering spectrum of the Moessbauer radiation is plotted on the model simulating globular macromolecules. The modeling results are compared with experimental data on the spectra of the Rayleigh scattering of the Moessbauer radiation for various moisture content and hydratation dependence of the elastic scattering portion

  9. Absorption and scattering properties of arbitrarily shaped particles in the Rayleigh domain

    International Nuclear Information System (INIS)

    Min, M.; Hovenier, J.W.; Dominik, C.; Koter, A. de; Yurkin, M.A.

    2006-01-01

    We provide a theoretical foundation for the statistical approach for computing the absorption properties of particles in the Rayleigh domain. We present a general method based on the discrete dipole approximation to compute the absorption and scattering properties of particles in the Rayleigh domain. The method allows to separate the geometrical aspects of a particle from its material properties. Doing the computation of the optical properties of a particle once, provides them for any set of refractive indices, wavelengths and orientations. This allows for fast computations of e.g. absorption spectra of arbitrarily shaped particles. Other practical applications of the method are in the interpretation of atmospheric and radar measurements as well as computations of the scattering matrix of small particles as a function of the scattering angle. In the statistical approach, the optical properties of irregularly shaped particles are represented by the average properties of an ensemble of particles with simple shapes. We show that the absorption cross section of an ensemble of arbitrarily shaped particles with arbitrary orientations can always be uniquely represented by the average absorption cross section of an ensemble of spheroidal particles with the same composition and fixed orientation. This proves for the first time that the statistical approach is generally viable in the Rayleigh domain

  10. Computational study of the Rayleigh light scattering properties of atmospheric pre-nucleation clusters

    DEFF Research Database (Denmark)

    Elm, Jonas; Norman, Patrick; Bilde, Merete

    2014-01-01

    The Rayleigh and hyper Rayleigh scattering properties of the binary (H 2SO4)(H2O)n and ternary (H 2SO4)(NH3)(H2O)n clusters are investigated using a quantum mechanical response theory approach. The molecular Rayleigh scattering intensities are expressed using the dipole polarizability α...... and hyperpolarizability β tensors. Using density functional theory, we elucidate the effect of cluster morphology on the scattering properties using a combinatorial sampling approach. We find that the Rayleigh scattering intensity depends quadratically on the number of water molecules in the cluster and that a single...... ammonia molecule is able to induce a high anisotropy, which further increases the scattering intensity. The hyper Rayleigh scattering activities are found to be extremely low. This study presents the first attempt to map the scattering of atmospheric molecular clusters using a bottom-up approach...

  11. Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles.

    Science.gov (United States)

    Flegg, M B; Poole, C M; Whittaker, A K; Keen, I; Langton, C M

    2010-06-07

    We present a novel modified theory based upon Rayleigh scattering of ultrasound from composite nanoparticles with a liquid core and solid shell. We derive closed form solutions to the scattering cross-section and have applied this model to an ultrasound contrast agent consisting of a liquid-filled core (perfluorooctyl bromide, PFOB) encapsulated by a polymer shell (poly-caprolactone, PCL). Sensitivity analysis was performed to predict the dependence of the scattering cross-section upon material and dimensional parameters. A rapid increase in the scattering cross-section was achieved by increasing the compressibility of the core, validating the incorporation of high compressibility PFOB; the compressibility of the shell had little impact on the overall scattering cross-section although a more compressible shell is desirable. Changes in the density of the shell and the core result in predicted local minima in the scattering cross-section, approximately corresponding to the PFOB-PCL contrast agent considered; hence, incorporation of a lower shell density could potentially significantly improve the scattering cross-section. A 50% reduction in shell thickness relative to external radius increased the predicted scattering cross-section by 50%. Although it has often been considered that the shell has a negative effect on the echogeneity due to its low compressibility, we have shown that it can potentially play an important role in the echogeneity of the contrast agent. The challenge for the future is to identify suitable shell and core materials that meet the predicted characteristics in order to achieve optimal echogenity.

  12. Experimental study of Rayleigh scattering with a ruby laser beam: relative variation of scattered light with the number of scattering center and the gases nature

    International Nuclear Information System (INIS)

    Bayer, Charles

    1973-06-01

    The experimental variation of the scattered light with the number of scattering centers and with the refraction index of gases is in agreement with the theoretical Rayleigh scattering. A direct calibration System gives the absolute value of the Rayleigh ratio. The experimental value appears to be half of the theoretical one. (author) [fr

  13. Influence of a variable Rayleigh scattering-loss coefficient on the light backscattering in multimode optical fibers.

    Science.gov (United States)

    Bisyarin, M A; Kotov, O I; Hartog, A H; Liokumovich, L B; Ushakov, N A

    2017-06-01

    The recently developed diffraction technique of analytical investigation of the Rayleigh backscattering produced by an incident fundamental mode in a multimode optical fiber with an arbitrary refractive index profile is supplemented by taking into account the Rayleigh scattering-loss coefficient, which could be variable within the fiber cross section. The relative changes in various radial and azimuthal modes' excitation levels, due to some typical radial dependences of this coefficient, are computed for the quadratic- and step-index fibers. It is stated that the excitation efficiency could either rise or decay for different modes. The effect of the variable Rayleigh scattering-loss coefficient is shown to be more noticeable in the fibers with a quadratic refractive index profile, whereas it is negligible in actual multimode step-index fibers.

  14. Cross plane scattering correction

    International Nuclear Information System (INIS)

    Shao, L.; Karp, J.S.

    1990-01-01

    Most previous scattering correction techniques for PET are based on assumptions made for a single transaxial plane and are independent of axial variations. These techniques will incorrectly estimate the scattering fraction for volumetric PET imaging systems since they do not take the cross-plane scattering into account. In this paper, the authors propose a new point source scattering deconvolution method (2-D). The cross-plane scattering is incorporated into the algorithm by modeling a scattering point source function. In the model, the scattering dependence both on axial and transaxial directions is reflected in the exponential fitting parameters and these parameters are directly estimated from a limited number of measured point response functions. The authors' results comparing the standard in-plane point source deconvolution to the authors' cross-plane source deconvolution show that for a small source, the former technique overestimates the scatter fraction in the plane of the source and underestimate the scatter fraction in adjacent planes. In addition, the authors also propose a simple approximation technique for deconvolution

  15. Rayleigh scattering for a magnetized cold plasma sphere

    International Nuclear Information System (INIS)

    Li Yingle; Wang Mingjun; Tang Gaofeng; Li Jin

    2010-01-01

    The transformation of parameter tensors for anisotropic medium in different coordinate systems is derived. The electric field for a magnetized cold plasma sphere and the general expression of scattering field from anisotropic target are obtained. The functional relations of differential scattering cross section and the radar cross section for the magnetized plasma sphere are presented. Simulation results agree with that in the literatures, which shows the method used is correct and therefore the results may provide a theoretical base for anisotropic target identification. (authors)

  16. On the intensity and polarization of radiation emerging from a thick Rayleigh scattering atmosphere

    Directory of Open Access Journals (Sweden)

    V. Natraj

    2011-09-01

    Full Text Available We compute the intensity and polarization of reflected and transmitted light in optically thick Rayleigh scattering atmospheres. We obtain results accurate to seven decimal places. The results have been validated using a variety of methods.

  17. Ultraviolet Rayleigh Scatter Imaging for Spatial Temperature Profiles in Atmospheric Microdischarges

    Science.gov (United States)

    2014-09-01

    approximation of Rayleigh scattering for atomic gases, such as helium and argon . 13 Approved for public release; distribution unlimited. Figure 3... polarizability tensor , as [13] = + + = + + ...22�. (25) 16 Approved for public release; distribution unlimited. To further define the polarizability

  18. Dynamical narrowing of the Rayleigh scattering ring from a semiconductor microcavity

    DEFF Research Database (Denmark)

    Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    In resonant secondary emission of light (SE), scattering by static disorder leads to coherent resonant Rayleigh scattering (RRS), while the scattering with other quasi-particles (e.g. phonons) leads to an incoherent emission called photoluminescence (PL). For a bare quantum well (QW) the SE does...

  19. Measurement of the Rayleigh scattering length in liquid scintillators for JUNO

    Energy Technology Data Exchange (ETDEWEB)

    Hackspacher, Paul [Johannes Gutenberg-Universitaet Mainz, PRISMA Excellence Cluster (Germany); Collaboration: JUNO-Collaboration

    2016-07-01

    In liquid scintillator neutrino detectors such as the upcoming Jiangmen Underground Neutrino Observatory (JUNO), neutrino interactions are being detected by means of inverse beta decay and analysis of the resulting luminescent light. In order to reliably reconstruct these events from photomultiplier signals, the scattering properties of the detector materials need to be sufficiently well known. In the LAB-based liquid scintillator that has been proposed for JUNO, the primary contribution to the scattering process comes from Rayleigh scattering. The characteristic Rayleigh scattering length can be experimentally obtained in an optical laboratory setup. This talk presents the approach, the current status and the future plans of the experiment.

  20. Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering

    Science.gov (United States)

    Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.

    1999-01-01

    The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.

  1. In situ nanoparticle diagnostics by multi-wavelength Rayleigh-Mie scattering ellipsometry

    CERN Document Server

    Gebauer, G

    2003-01-01

    We present and discuss the method of multiple-wavelength Rayleigh-Mie scattering ellipsometry for the in situ analysis of nanoparticles. It is applied to the problem of nanoparticles suspended in low-pressure plasmas. We discuss experimental results demonstrating that the size distribution and the complex refractive index can be determined with high accuracy and present a study on the in situ analysis of etching of melamine-formaldehyde nanoparticles suspended in an oxygen plasma. It is also shown that particles with a shell structure (core plus mantle) can be analysed by Rayleigh-Mie scattering ellipsometry. Rayleigh-Mie scattering ellipsometry is also applicable to in situ analysis of nanoparticles under high gas pressures and in liquids.

  2. Propagation and attenuation of sound waves as well as spectrally resolved Rayleigh scattering in weakly ionized plasmas

    International Nuclear Information System (INIS)

    Kopainsky, J.

    1975-01-01

    In weakly ionized plasmas the scattering of electromagnetic waves on free electrons (Thompson scattering) can be neglected as compared with the scattering on bound electrons (Rayleigh scattering). If the scattering process can be described by a fluid dynamical model it is caused by sound waves which are generated or annihilated by the incident electromagnetic wave. The propagation of sound waves results in a shift of the scattered line whereas their absorption within the plasma produces the broadening of the scattered line. The theory of propagation of sound in weakly ionized plasmas is developed and extended to Rayleigh scattering. The results are applied to laser scattering in a weakly ionized hydrogen plasma. (Auth.)

  3. The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen

    Science.gov (United States)

    Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao

    2018-05-01

    In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.

  4. Solution of the radiative transfer equation for Rayleigh scattering using the infinite medium Green's function

    Science.gov (United States)

    Biçer, M.; Kaşkaş, A.

    2018-03-01

    The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.

  5. A fully computerized multi-pass Fabry-Perot interferometer for Rayleigh-Brillouin scattering experiments

    International Nuclear Information System (INIS)

    Bohidar, H.; Berland, T.; Boger, F.; Joessang, T.; Feder, J.

    1987-01-01

    The development of a Multipass Fabry-Perot interforometer assembly for use in Rayleigh-Brillouin scattering experiments is reported. The optical alignment and the scattered signal data acquisition have been completely computerized. Digital scanning and alignment strategies of the Fabry-Perot resonator have been incorporated, which makes this instrument quite unique in this respect. The high contrast (∼10 10 ) and finesse (∼50) offered by this instrument makes it possible to detect Brillouin peaks from samples that have a small Brillouin scattering cross-section. As part of this system a compatible and precision sample chamber has been constructed, which has been designed to operate in the pressure and temperature ranges of 1-1000B and 20-150 o C, respectively. The cell has been constructed to be small and compact, but it still has a large heat capacity (∼250J/K) which ensures easy and stable temperature control of the liquid sample volume which has a size of 40 mm 3 . The achievable temperature stability is +-1mK and +-2mK for operating temperatures below and above 100 o C, respectively. The pressure stability is in the range of +-0.05B of the set pressure for pressures below 100B and it is +-0.05% for higher pressures up to 1000B. Both pressure and temperature are remotely monitored and controlled by a ND/100 computer. Special care has been taken in designing the optics of the pressure cell to ensure that both the primary and secondary reflections from the entrance window, as well as the main beam, go out of the scattering region in order to achieve higher signal-to-noise ratio in actual experiments

  6. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    OpenAIRE

    Poludniowski, G; Evans, PM; Webb, S

    2009-01-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'inte...

  7. Rayleigh-wave scattering by shallow cracks using the indirect boundary element method

    International Nuclear Information System (INIS)

    Ávila-Carrera, R; Rodríguez-Castellanos, A; Ortiz-Alemán, C; Sánchez-Sesma, F J

    2009-01-01

    The scattering and diffraction of Rayleigh waves by shallow cracks using the indirect boundary element method (IBEM) are investigated. The detection of cracks is of interest because their presence may compromise structural elements, put technological devices at risk or represent economical potential in reservoir engineering. Shallow cracks may give rise to scattered body and surface waves. These waves are sensitive to the crack's geometry, size and orientation. Under certain conditions, amplitude spectra clearly show conspicuous resonances that are associated with trapped waves. Several applications based on the scattering of surface waves (e.g. Rayleigh and Stoneley waves), such as non-destructive testing or oil well exploration, have shown that the scattered fields may provide useful information to detect cracks and other heterogeneities. The subject is not new and several analytical and numerical techniques have been applied for the last 50 years to understand the basis of multiple scattering phenomena. In this work, we use the IBEM to calculate the scattered fields produced by single or multiple cracks near a free surface. This method is based upon an integral representation of the scattered displacement fields, which is derived from Somigliana's identity. Results are given in both frequency and time domains. The analyses of the displacement field using synthetic seismograms and snapshots reveal some important effects from various configurations of cracks. The study of these simple cases may provide an archetype to geoscientists and engineers to understand the fundamental aspects of multiple scattering and diffraction by cracks

  8. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Directory of Open Access Journals (Sweden)

    Antoun Ayman

    2004-01-01

    Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.

  9. Spontaneous Rayleigh-Brillouin scattering spectral analysis based on the Wiener filter

    Directory of Open Access Journals (Sweden)

    Tao Wu

    2018-01-01

    Full Text Available In this paper, a spontaneous Rayleigh-Brillouin scattering spectrometer is developed to measure the gaseous spontaneous Rayleigh-Brillouin scattering profiles over the pressure range from 1 to 5 atm for a wavelength of 532nm at a constant room temperature of 296K and a 90o scattering angle. In order to make a direct comparison between the experimentally obtained spectrum and the theoretical spectrum calculated from the Tenti S6 model, the measured spontaneous Rayleigh-Brillouin scattering signal is deconvolved by the Wiener filtering. The purpose is to remove the effect on the spectrum by the transmission function of the Fabry-Perrot scanning interferometer. The results of the comparison show that the deconvolved spectra are consistent with the theoretical spectra calculated from the Tenti S6 model, and thus confirm that the deconvolution based on the Wiener filter is able to process the measured spectra and improve the spectral resolution. Some factors that influence the accuracy of deconvolution are analyzed and discussed. At the same time, another comparison between the raw experimentally obtained spectra and the theoretical spectra calculated by convolving the Tenti S6 model with instrument function of the measurement system is performed in the same experimental condition. The results of the two comparisons show that, compared with the raw experimentally obtained spectrum, the deconvolved spectrum matches the theoretically calculated spectrum more accurately under lower pressure (≤2atm than under relative higher pressure (>2atm.

  10. RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir, Diana [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive Suite 102, Goleta, CA 93117 (United States); Benneke, Björn [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Pearson, Kyle A. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86001 (United States); Crossfield, Ian J. M.; Barman, Travis [Department of Planetary Sciences, Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Eastman, Jason [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Biddle, Lauren I., E-mail: diana@oddjob.uchicago.edu [Gemini Observatory, Northern Operations Center, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2015-12-01

    GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes.

  11. RAYLEIGH SCATTERING IN THE ATMOSPHERE OF THE WARM EXO-NEPTUNE GJ 3470B

    International Nuclear Information System (INIS)

    Dragomir, Diana; Benneke, Björn; Pearson, Kyle A.; Crossfield, Ian J. M.; Barman, Travis; Eastman, Jason; Biddle, Lauren I.

    2015-01-01

    GJ 3470b is a warm Neptune-size planet transiting an M dwarf star. Like the handful of other small exoplanets for which transmission spectroscopy has been obtained, GJ 3470b exhibits a flat spectrum in the near- and mid-infrared. Recently, a tentative detection of Rayleigh scattering in its atmosphere has been reported. This signal manifests itself as an observed increase of the planetary radius as a function of decreasing wavelength in the visible. We set out to verify this detection and observed several transits of this planet with the LCOGT network and the Kuiper telescope in four different bands (Sloan g, Sloan i, Harris B, and Harris V). Our analysis reveals a strong Rayleigh scattering slope, thus confirming previous results. This makes GJ 3470b the smallest known exoplanet with a detection of Rayleigh scattering. We find that the most plausible scenario is a hydrogen/helium-dominated atmosphere covered by clouds which obscure absorption features in the infrared and hazes which give rise to scattering in the visible. Our results demonstrate the feasibility of exoplanet atmospheric characterization from the ground, even with meter-class telescopes

  12. Rayleigh scattering in the atmospheres of hot stars

    Czech Academy of Sciences Publication Activity Database

    Fišák, J.; Krtička, J.; Munzar, D.; Kubát, Jiří

    2016-01-01

    Roč. 590, June (2016), A95/1-A95/6 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GA14-02385S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : atomic processes * scattering * stars: chemically peculiar Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  13. In-Flight Calibration of GF-1/WFV Visible Channels Using Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xingfeng Chen

    2017-05-01

    Full Text Available China is planning to launch more and more optical remote-sensing satellites with high spatial resolution and multistep gains. Field calibration, the current operational method of satellite in-flight radiometric calibration, still does not have enough capacity to meet these demands. Gaofen-1 (GF-1, as the first satellite of the Chinese High-resolution Earth Observation System, has been specially arranged to obtain 22 images over clean ocean areas using the Wide Field Viewing camera. Following this, Rayleigh scattering calibration was carried out for the visible channels with these images after the appropriate data processing steps. To guarantee a high calibration precision, uncertainty was analyzed in advance taking into account ozone, aerosol optical depth (AOD, seawater salinity, chlorophyll concentration, wind speed and solar zenith angle. AOD and wind speed were found to be the biggest error sources, which were also closely coupled to the solar zenith angle. Therefore, the best sample data for Rayleigh scattering calibration were selected at the following solar zenith angle of 19–22° and wind speed of 5–13 m/s to reduce the reflection contributed by the water surface. The total Rayleigh scattering calibration uncertainties of visible bands are 2.44% (blue, 3.86% (green, and 4.63% (red respectively. Compared with the recent field calibration results, the errors are −1.69% (blue, 1.83% (green, and −0.79% (red. Therefore, the Rayleigh scattering calibration can become an operational in-flight calibration method for the high spatial resolution satellites.

  14. Rayleigh-Brillouin scattering in SF6 in the kinetic regime

    NARCIS (Netherlands)

    Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim

    2017-01-01

    Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2–5 bar and for a wavelength of λ=403.0 nm. The

  15. Rayleigh to Compton ratio scatter tomography applied to breast cancer diagnosis: A preliminary computational study

    International Nuclear Information System (INIS)

    Antoniassi, M.; Conceição, A.L.C.; Poletti, M.E.

    2014-01-01

    In the present work, a tomographic technique based on Rayleigh to Compton scattering ratio (R/C) was studied using computational simulation in order to assess its application to breast cancer diagnosis. In this preliminary study, some parameters that affect the image quality were evaluated, such as: (i) energy beam, (ii) size and glandularity of the breast, and (iii) statistical count noise. The results showed that the R/C contrast increases with increasing photon energy and decreases with increasing glandularity of the sample. The statistical noise showed to be a significant parameter, although the quality of the obtained images was acceptable for a considerable range of noise level. The preliminary results suggest that the R/C tomographic technique has a potential of being applied as a complementary tool in the breast cancer diagnostic. - Highlights: ► A tomographic technique based on Rayleigh to Compton scattering ratio is proposed in order to study breast tissues. ► The Rayleigh to Compton scattering ratio technique is compared with conventional transmission technique. ► The influence of experimental parameters (energy, sample, detection system) is studied

  16. Resonant Rayleigh scattering of exciton-polaritons in multiple quantum wells

    DEFF Research Database (Denmark)

    Malpuech, Guillaume; Kavokin, Alexey; Langbein, Wolfgang Werner

    2000-01-01

    A theoretical concept of resonant Rayleigh scattering (RRS) of exciton-polaritons in multiple quantum wells (QWs) is presented. The optical coupling between excitons in different QWs can strongly affect the RRS dynamics, giving rise to characteristic temporal oscillations on a picosecond scale....... Bragg and anti-Bragg arranged QW structures with the same excitonic parameters are predicted to have drastically different RRS spectra. Experimental data on the RRS from multiple QWs show the predicted strong temporal oscillations at small scattering angles, which are well explained by the presented...

  17. Study on the Interaction between Cadmium Sulphide Nanoparticles and Proteins by Resonance Rayleigh Scattering Spectra

    Directory of Open Access Journals (Sweden)

    Weiwei Zhu

    2013-01-01

    Full Text Available The interaction of cadmium sulphide nanoparticles [(CdSn] with proteins has been studied by resonance Rayleigh scattering spectra (RRS. Below the isoelectric point, proteins such as bovine serum albumin (BSA, human serum albumin (HSA, lysozyme (Lys, hemoglobin (HGB, and ovalbumin (OVA can bind with CdSn to form macromolecules by virtue of electrostatic attraction and hydrophobic force. It can result in the enhancement of resonance Rayleigh scattering spectra (RRS intensity. Their maximum scattering peaks were 280 nm, and there was a smaller peak at 370 nm. The scattering enhancement (ΔIRRS is directly proportional to the concentration of proteins. A new RRS method for the determination of trace proteins using uncapped CdSn nanoparticles probe has been developed. The detection limits are 19.6 ng/mL for HSA, 16.7 ng/mL for BSA, 18.5 ng/mL for OVA, 80.2 ng/mL for HGB, and 67.4 ng/mL for Lys, separately. In this work, the optimum condition of reaction, the effect of foreign, and the analytical application had been investigated.

  18. Rayleigh-Brillouin scattering in NH4Cl under hydrostatic pressure

    International Nuclear Information System (INIS)

    Hikita, Tomoyuki; Kitabatake, Makoto; Ikeda, Takuro

    1981-01-01

    Rayleigh-Brillouin scattering in NH 4 Cl has been studied under hydrostatic pressure. Brillouin shifts of the longitudinal phonons propagating along the and directions and of the transverse phonons propagating along the direction are measured as a function of temperature at four fixed pressures up to 2.3 kbar. All components increase almost linearly with decreasing temperature in the disordered phase and show incremental increases similar to the temperature dependence of the long range order parameter in the ordered phase. It was found that the longitudinal modes exhibit large despersion effect even at high pressures. On the other hand, the transverse mode appears to give no dispersion effect. The intensity of the Rayleigh component in the VV polarization condition increases as the temperature approaches the transition point, while that in the VH polarization does not show such anomalous increase. (author)

  19. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  20. Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes

    Directory of Open Access Journals (Sweden)

    M. Sekeráš

    2015-02-01

    Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.

  1. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    Science.gov (United States)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  2. Measurements of the initial density distribution of gas puff liners by using Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Yu G; Shashkov, A Yu [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Rayleigh scattering of a laser beam in a gas jet is proposed for the measurements of initial density distribution of gas-puff liners. The scattering method has several advantages when compared with interferometry. In particular, it provides information on the local gas density, it is more sensitive, and the output data can be absolutely calibrated. Theoretical background of the method is briefly discussed in the paper and the optical setup used in real experiments is described. Imaging of the scattering object make it possible to detect detailed profiles of the investigated gas jet, as illustrated by several examples taken from the experiment. In some cases even the gas jet stratification has been observed. (J.U.). 1 tab., 3 figs., 1 ref.

  3. Rayleigh scatter in kilovoltage x-ray imaging: is the independent atom approximation good enough?

    Science.gov (United States)

    Poludniowski, G.; Evans, P. M.; Webb, S.

    2009-11-01

    Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.

  4. Comparison of the GHSSmooth and the Rayleigh-Rice surface scatter theories

    Science.gov (United States)

    Harvey, James E.; Pfisterer, Richard N.

    2016-09-01

    The scalar-based GHSSmooth surface scatter theory results in an expression for the BRDF in terms of the surface PSD that is very similar to that provided by the rigorous Rayleigh-Rice (RR) vector perturbation theory. However it contains correction factors for two extreme situations not shared by the RR theory: (i) large incident or scattered angles that result in some portion of the scattered radiance distribution falling outside of the unit circle in direction cosine space, and (ii) the situation where the relevant rms surface roughness, σrel, is less than the total intrinsic rms roughness of the scattering surface. Also, the RR obliquity factor has been discovered to be an approximation of the more general GHSSmooth obliquity factor due to a little-known (or long-forgotten) implicit assumption in the RR theory that the surface autocovariance length is longer than the wavelength of the scattered radiation. This assumption allowed retaining only quadratic terms and lower in the series expansion for the cosine function, and results in reducing the validity of RR predictions for scattering angles greater than 60°. This inaccurate obliquity factor in the RR theory is also the cause of a complementary unrealistic "hook" at the high spatial frequency end of the predicted surface PSD when performing the inverse scattering problem. Furthermore, if we empirically substitute the polarization reflectance, Q, from the RR expression for the scalar reflectance, R, in the GHSSmooth expression, it inherits all of the polarization capabilities of the rigorous RR vector perturbation theory.

  5. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  6. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    Science.gov (United States)

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Amplitude of Light Scattering by a Truncated Pyramid and Cone in the Rayleigh-Gans-Debye Approximation

    Directory of Open Access Journals (Sweden)

    Konstantin A. Shapovalov

    2013-01-01

    Full Text Available The article considers general approach to structured particle and particle system form factor calculation in the Rayleigh-Gans-Debye (RGD approximation. Using this approach, amplitude of light scattering by a truncated pyramid and cone formulas in RGD approximation are obtained. Light scattering indicator by a truncated pyramid and cone in the RGD approximation are calculated.

  8. Initial stage of cavitation in liquids and its observation by Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pekker, M [Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052, United States of America (United States); Shneider, M N, E-mail: m.n.shneider@gmail.com [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America (United States)

    2017-06-15

    A theory is developed for the initial stage of cavitation in the framework of Zel’dovich–Fisher theory of nucleation in the field of negative pressure, while taking into account the surface tension dependence on the nanopore radius. A saturation mechanism is proposed that limits the exponential dependence of the nucleation rate on the energy required to create nanopores. An estimate of the saturated density of nanopores at the nucleation stage is obtained. It is shown that Rayleigh scattering can detect nanopores arising at the initial stage of cavitation development. (paper)

  9. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation.

    Science.gov (United States)

    El-Taher, A E; Harper, P; Babin, S A; Churkin, D V; Podivilov, E V; Ania-Castanon, J D; Turitsyn, S K

    2011-01-15

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating reflectors and distributed feedback via Rayleigh scattering in an ~22-km-long optical fiber. Twenty-two lasing lines with spacing of ~100 GHz (close to International Telecommunication Union grid) in the C band are generated at the watt level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution, which is almost independent on power.

  10. Scattering cross-sections of common calibration gases measured by IBBCEAS technique

    Directory of Open Access Journals (Sweden)

    S.I. Issac

    Full Text Available In this study, incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS was used to measure scattering cross-sections of a few common gases in the 650–670 nm spectral range relative to that of dry air. Precise measurements of scattering cross-sections of these calibration gases in the visible spectral range are important. The IBBCEAS system developed in the laboratory was calibrated with a low-loss optical window. The measurements made at 660 nm were compared with previously measured cross-section values and found to be in good agreement with the existing measurements. Keywords: IBBCEAS, Rayleigh scattering, Scattering cross section

  11. Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner

    Science.gov (United States)

    Gordon, Howard R.; Brown, James W.; Evans, Robert H.

    1988-01-01

    The radiance reflected from a plane-parallel atmosphere and flat sea surface in the absence of aerosols has been determined with an exact multiple scattering code to improve the analysis of Nimbus-7 CZCS imagery. It is shown that the single scattering approximation normally used to compute this radiance can result in errors of up to 5 percent for small and moderate solar zenith angles. A scheme to include the effect of variations in the surface pressure in the exact computation of the Rayleigh radiance is discussed. The results of an application of these computations to CZCS imagery suggest that accurate atmospheric corrections can be obtained for solar zenith angles at least as large as 65 deg.

  12. Calibration and Process of Signal of Photomultiplier Tube in Rayleigh Scattering of Supersonic Jet Clusters

    International Nuclear Information System (INIS)

    Lu Jianfeng; Liu Meng; Han Jifeng; Li Jia; Luo Xiaobing; Miao Jingwei; Yang Chaowen

    2009-01-01

    In the experiments of Rayleigh scattering of gas-jet clusters, the signal amplitude of PMT is not only affected by duster itself, but also by the intensity of light source and work voltage of PMT. When the back pressure of cluster source varies from 10 atm to about 100atm, the signal amplitude of PMT may be from linear to nonlinear. In order to solve the problem, signal calibration of PMT under different intensifies of light and voltage of PMT has been done. The relationship between the amplitude of signal and intensities of light as well as voltage of PMT has been obtained. The function of scatter factor of Ar clusters with the back pressure of cluster source is gotten experimentally, and agrees with related experimental and theoretical results. (authors)

  13. Elucidating the contribution of Rayleigh scattering to the bluish appearance of veins

    Science.gov (United States)

    Van Leeuwen, Spencer R.; Baranoski, Gladimir V. G.

    2018-02-01

    The bluish appearance of veins located immediately beneath the skin has long been a topic of interest for biomedical optics researchers. Despite this interest, a thorough identification of the specific optical processes responsible for this phenomenon remains to be achieved. We employ controlled in silico experiments to address this enduring open problem. Our experiments, which are supported by measured data available in the scientific literature, are performed using first-principles models of light interaction with human skin and blood. Using this investigation approach, we quantitatively demonstrate that Rayleigh scattering caused by collagen fibrils present in the papillary dermis, a sublayer of the skin, can play a pivotal role in the bluish appearance of veins as suggested by previous works in this area. Moreover, also taking color perception aspects into account, we systematically assess the effects of variations in fibril radius and papillary dermis thickness on the coloration of veins under different illuminants. Notably, this assessment indicates that Rayleigh scattering elicited by reticulin fibrils, another type of fibril found in the papillary dermis, is unlikely to significantly contribute to the bluish appearance of veins. By strengthening the current understanding of light attenuation mechanisms affecting the appearance of skin and blood, our investigation contributes to the development of more effective technologies aimed at the noninvasive measurement of the physiological properties of these tissues.

  14. Ultrafast spectral interferometry of resonant secondary emission from quantum wells: From Rayleigh scattering to coherent emission from biexcitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Pfeiffer, L. N.

    1999-01-01

    Recent investigations of secondary emission from quantum well excitons following ultrafast resonant excitation have demonstrated an intricate interplay of coherent Rayleigh scattering and incoherent luminescence. We have very recently demonstrated that it is possible to isolate and time resolve...... the coherent field associated with Rayleigh component using ultrafast spectral interferometry or Tadpole, thus, obtaining substantial and new information of the nature of resonant secondary emission. Our observation demonstrates that Rayleigh scattering from static disorder is inherently a non-ergodic process...... invalidating the use of current theories using ensemble averages to describe our observations. Furthermore, we report here a new and hitherto unknown coherent scattering mechanism involving the two-photon coherence associated with the biexciton transition. The process leaves an exciton behind taking up...

  15. Rayleigh scattering of a cylindrical sound wave by an infinite cylinder.

    Science.gov (United States)

    Baynes, Alexander B; Godin, Oleg A

    2017-12-01

    Rayleigh scattering, in which the wavelength is large compared to the scattering object, is usually studied assuming plane incident waves. However, full Green's functions are required in a number of problems, e.g., when a scatterer is located close to the ocean surface or the seafloor. This paper considers the Green's function of the two-dimensional problem that corresponds to scattering of a cylindrical wave by an infinite cylinder embedded in a homogeneous fluid. Soft, hard, and impedance cylinders are considered. Exact solutions of the problem involve infinite series of products of Bessel functions. Here, simple, closed-form asymptotic solutions are derived, which are valid for arbitrary source and receiver locations outside the cylinder as long as its diameter is small relative to the wavelength. The scattered wave is given by the sum of fields of three linear image sources. The viability of the image source method was anticipated from known solutions of classical electrostatic problems involving a conducting cylinder. The asymptotic acoustic Green's functions are employed to investigate reception of low-frequency sound by sensors mounted on cylindrical bodies.

  16. Threshold and maximum power evolution of stimulated Brillouin scattering and Rayleigh backscattering in a single mode fiber segment

    International Nuclear Information System (INIS)

    Sanchez-Lara, R; Alvarez-Chavez, J A; Mendez-Martinez, F; De la Cruz-May, L; Perez-Sanchez, G G

    2015-01-01

    The behavior of stimulated Brillouin scattering (SBS) and Rayleigh backscattering phenomena, which limit the forward transmission power in modern, ultra-long haul optical communication systems such as dense wavelength division multiplexing systems is analyzed via simulation and experimental investigation of threshold and maximum power. Evolution of SBS, Rayleigh scattering and forward powers are experimentally investigated with a 25 km segment of single mode fiber. Also, a simple algorithm to predict the generation of SBS is proposed where two criteria of power thresholds was used for comparison with experimental data. (paper)

  17. Laser scattering on an atmospheric pressure plasma jet : disentangling Rayleigh, Raman and Thomson scattering

    NARCIS (Netherlands)

    Gessel, van A.F.H.; Carbone, E.A.D.; Bruggeman, P.J.; Mullen, van der J.J.A.M.

    2012-01-01

    Laser scattering provides a very direct method for measuring the local densities and temperatures inside a plasma. We present new experimental results of laser scattering on an argon atmospheric pressure microwave plasma jet operating in an air environment. The plasma is very small so a high spatial

  18. Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity

    Science.gov (United States)

    Loranger, Sébastien; Parent, François; Lambin-Iezzi, Victor; Kashyap, Raman

    2016-02-01

    Rayleigh scatter in optical fiber communication systems has long been considered a nuisance as a loss mechanism, although applications have used such scatter to probe the fiber for faults and propagation loss using time domain reflectometry (OTDR). It is however only with the development of Frequency domain reflectometry (OFDR) and coherent-phase OTDR that Rayleigh scatter has been probed to its deepest and can now be used to measure strain and temperature along a fiber, leading to the first distributed sensing applications. However, Rayleigh scatter remains very weak giving rise to very small signals which limits the technique for sensing. We show here a new technique to significantly enhance the Rayleigh scatter signal by at least two orders of magnitude, in a standard optical fiber with simple UV exposure of the core. A study of various exposures with different types of fibers has been conducted and a phenomenological description developed. We demonstrate that such an increase in signal can enhance the temperature and strain sensitivity by an order of magnitude for distributed sensing with an OFDR technique. Such improved performance can lead to temperature/strain RMS noise levels of 6 mK and 50 nɛ for 1 cm spatial resolution in UV exposed SMF-28, compared to the typical noise level of 100 mK for the same spatial resolution in the similar unexposed fiber.

  19. What is the contribution of scattering to the Love-to-Rayleigh ratio in ambient microseismic noise?

    Science.gov (United States)

    Ziane, D.; Hadziioannou, C.

    2015-12-01

    Several observations show the existence of both Rayleigh and Love waves in the secondary microseism. While the Rayleigh wave excitation is well described by Longuet-Higgins, the process responsible for Love wave generation still needs further investigation. Several different mechanisms could excite Love waves in this frequency band: broadly speaking, we can differentiate between source effects, like pressure variations on the oblique sea floor, or internal effects in the medium along the propagation path, such as scattering and conversions. Here we will focus on the internal effects. We perform single scattering tests in 2D and 3D to gain a better understanding of the scattering radiation pattern and the conversion between P, S, Rayleigh and Love waves. Furthermore, we use random media with continuous variations of the elastic parameters to create a scattering regime similar to the Earths interior, e.g. Gaussian or von Karmann correlation functions. The aim is to explore the contribution of scattering along the propagation path to the observed Love to Rayleigh wave energy ratios, assuming a purely vertical force source mechanism. We use finite different solvers to calculate the synthetic seismograms, and to separate the different wave types we measure the rotational and divergent components of the wave field.

  20. Scattering Light by а Cylindrical Capsule with Arbitrary End Caps in the Rayleigh-Gans-Debye Approximation

    Directory of Open Access Journals (Sweden)

    K. A. Shapovalov

    2015-01-01

    Full Text Available The paper concerns the light scattering problem of biological objects of complicated structure.It considers optically “soft” (having a refractive index close to that of a surrounding medium homogeneous cylindrical capsules, composed of three parts: central one that is cylindrical and two symmetrical rounding end caps. Such capsules can model more broad class of biological objects than the ordinary shapes of a spheroid or sphere. But, unfortunately, if a particle has other than a regular geometrical shape, then it is very difficult or impossible to solve the scattering problem analytically in its most general form that oblige us to use numerical and approximate analytical methods. The one of such approximate analytical method is the Rayleigh-Gans-Debye approximation (or the first Born approximation.So, the Rayleigh-Gans-Debye approximation is valid for different objects having size from nanometer to millimeter and depending on wave length and refractive index of an object under small phase shift of central ray.The formulas for light scattering amplitude of cylindrical capsule with arbitrary end caps in the Rayleigh-Gans-Debye approximation in scalar form are obtained. Then the light scattering phase function [or element of scattering matrix f11] for natural incident light (unpolarized or arbitrary polarized light is calculated.Numerical results for light scattering phase functions of cylindrical capsule with conical, spheroidal, paraboloidal ends in the Rayleigh-Gans-Debye approximation are compared. Also numerical results for light scattering phase function of cylindrical capsule with conical ends in the Rayleigh-Gans-Debye approximation and in the method of Purcell-Pennypacker (or Discrete Dipole method are compared. The good agreement within an application range of the RayleighGans-Debye approximation is obtained.Further continuation of the work, perhaps, is a consideration of multilayer cylindrical capsule in the Rayleigh

  1. Selective Rayleigh light scattering determination of trace quercetin with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Usoltseva, Liliya O.; Samarina, Tatiana O. [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Abramchuk, Sergei S. [Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Prokhorova, Aleksandra F. [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Beklemishev, Mikhail K., E-mail: mkb@analyt.chem.msu.ru [Department of Chemistry, M.V.Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation)

    2016-11-15

    Rayleigh light scattering (RLS) is a simple technique with a high potential of sensitive determination of small organic molecules. We have found that ppb amounts of quercetin (Qu) greatly enhance the RLS of the solution of silver nanoparticles (AgNPs) stabilized with cetyltrimethylammonium bromide (CTAB) or sodium n-dodecyl sulfate (SDS). Enhancement of light scattering is observed only in the presence of an excess of AgNO{sub 3}, which implies that it is a result of nanoparticle growth; another reason for the enhanced scattering is the aggregation of AgNPs by the analyte that was confirmed by dynamic light scattering technique. The conditions were chosen for the determination of Qu in aqueous solution with the detection limits of 0.01 and 0.03 μmol L{sup −1} and linear ranges of 0.1–1.3 and 0.1–2.0 μmol L{sup −1} for SDS- and CTAB-stabilized AgNPs, respectively; the intra-day RSDs did not exceed 7%. Unexpectedly, other bioflavonoids (rutin, dihydroquercetin, and naringenin) did not change the signal of Qu and did not interfere with its determination in 1:1 M ratio (0.5 μmol L{sup −1} each). Other compounds (asparagin, uric acid, urea and some inorganic ions) were also tolerated in high amounts. - Highlights: • Low concentrations of quercetin enhance the light scattering by silver nanoparticles. • Main processes are aggregation, nanoparticle growth and formation of new particles. • Other compounds exert a weaker effect on the light scattering signal.

  2. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg4I5

    International Nuclear Information System (INIS)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V.

    1984-01-01

    The dynamical properties of RbAg 4 I 5 has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag + ion oscillatory motion and diffusion in RbAg 4 I 5 depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg 4 I 5 the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincides. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction

  3. A method of atmospheric density measurements during Shuttle entry using UV laser Rayleigh scattering

    Science.gov (United States)

    Mckenzie, Robert L.

    1987-01-01

    A detailed study is described of the performance capabilities and the hardware requirements for a method in which ambient density is measured along the Space Shuttle flight path using on-board optical instrumentation. The technique relies on Rayleigh scattering of light from a pulsed, ultraviolet, ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing direct measurements of ambient density with an uncertainty of less than 1 percent and with a spatial resolution of 1 km, over an altitude range from 50 to 90 km. In addition, extensions of this concept are discussed that allow measurements of the shock wave location and the density profile within the shock layer. Two approaches are identified that appear to be feasible, in which the same laser system is used for the extended measurements as that required for the ambient density measurements.

  4. Rayleigh scattering of x-ray and {gamma}-ray by 1s and 2s electrons in ions and neutral atoms

    Energy Technology Data Exchange (ETDEWEB)

    Costescu, A; Karim, K; Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 077125 (Romania); Moldovan, M [Department of Physics, UMF Targu Mures, Targu Mures 540142 (Romania); Spanulescu, S, E-mail: severspa2004@yahoo.com [Department of Physics, Hyperion University of Bucharest, Bucharest 030629 (Romania)

    2011-02-28

    Using the Coulomb-Green function method and considering the nonrelativistic limit for the two-photon S-matrix element, the right nonrelativistic 2s Rayleigh scattering amplitudes are obtained. Our result takes into account all multipoles, retardation and relativistic kinematics contributions, and the old dipole approximation result of Costescu is retrieved as a limit case. The total photoeffect cross-section which is related to the imaginary part of the Rayleigh forward scattering amplitude through the optical theorem is also obtained. Our Coulombian formulae are used in the more realistic case of elastic scattering of photons by bound 1s and 2s electrons in ions and neutral atoms. Screening effects are considered in the independent particle approximation through the Hartree-Fock method. The effective charge Z{sub eff} is obtained by fitting the Hartree-Fock charge distribution by a Coulombian one. Good agreement (within 10%) is found when comparing the numerical predictions given by our nonrelativistic formulae with the full relativistic numerical results of Kissel in the case of elastic scattering of photons by 1s and 2s electrons and Scofield [3] in the case of K-shell and 2s subshell photoionization for neutral atoms with 18 {<=} Z {<=} 92 and photon energies {omega} {<=} {alpha}Zm.

  5. Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser

    International Nuclear Information System (INIS)

    Itoh, Tamitake; Ozaki, Yukihiro; Yoshikawa, Hiroyuki; Ihama, Takashi; Masuhara, Hiroshi

    2006-01-01

    We report that hyper-Rayleigh scattering, surface-enhanced hyper-Raman scattering, and two-photon excited luminescence occur intermittently by focusing a continuous-wave near-infrared (cw-NIR) laser into a colloidal silver solution including rhodamine 6G (R6G) and sodium chloride (NaCl). On the other hand, continuous hyper-Rayleigh scattering is observed from colloidal silver free from R6G and NaCl, demonstrating that hyper-Raman scattering and two-photon excited luminescence are attributed to R6G and their intermittent features are dependent on the colloidal dispersion. These results suggest that the cw-NIR laser has three roles; the source of the nonlinear response, optical trapping of nanoparticles, and making nanoparticle aggregates possessing the high activity for the nonlinear response

  6. Rayleigh-Brillouin scattering in SF6 in the kinetic regime

    Science.gov (United States)

    Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim

    2017-02-01

    Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2-5 bar and for a wavelength of λ = 403.0 nm. The high quality data are compared to a number of light scattering models in order to address the effects of rotational and vibrational relaxation. While the vibrational relaxation rate is so slow that vibration degrees of freedom remain frozen, rotations relax on time scales comparable to those of the density fluctuations. Therefore, the heat capacity, the thermal conductivity and the bulk viscosity are all frequency-dependent transport coefficients. This is relevant for the Tenti model that depends on the values chosen for these transport coefficients. This is not the case for the other two models considered: a kinetic model based on rough-sphere interactions, and a model based on fluctuating hydrodynamics. The deviations with the experiment are similar between the three different models, except for the hydrodynamic model at pressures p≲ 2bar . As all models are in line with the ideal gas law, we hypothesize the presence of real gas effects in the measured spectra.

  7. Dirac Coulomb Green's function and its application to relativistic Rayleigh scattering

    International Nuclear Information System (INIS)

    Wong, M.K.F.; Yeh, E.H.Y.

    1985-01-01

    The Dirac Coulomb Green's function is obtained in both coordinate and momentum space. The Green's function in coordinate space is obtained by the eigenfunction expansion method in terms of the wave functions obtained by Wong and Yeh. The result is simpler than those obtained previously by other authors, in that the radial part for each component contains one term only instead of four terms. Our Green's function reduces to the Schroedinger Green's function upon some simple conditions, chiefly by neglecting the spin and replacing lambda by l. The Green's function in momentum space is obtained as the Fourier transform of the coordinate space Green's function, and is expressed in terms of basically three types of functions: (1) F/sub A/ (α; β 1 β 2 β 3 ; γ 1 γ 2 γ 3 ; z 1 z 2 z 3 ), (2) the hypergeometric function, and (3) spherical harmonics. The matrix element for Rayleigh scattering, or elastic Compton scattering, from relativistically bound electrons is then obtained in analytically closed form. The matrix element is written basically in terms of the coordinate space Dirac Coulomb Green's function. The technique used in the evaluation of the matrix element is based on the calculation of the momentum space Dirac Coulomb Green's function. Finally the relativistic result is compared with the nonrelativistic result

  8. Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering

    Directory of Open Access Journals (Sweden)

    M. Alpers

    2004-01-01

    Full Text Available For the first time, three different temperature lidar methods are combined to obtain time-resolved complete temperature profiles with high altitude resolution over an altitude range from the planetary boundary layer up to the lower thermosphere (about 1–105 km. The Leibniz-Institute of Atmospheric Physics (IAP at Kühlungsborn, Germany (54° N, 12° E operates two lidar instruments, using three different temperature measurement methods, optimized for three altitude ranges: (1 Probing the spectral Doppler broadening of the potassium D1 resonance lines with a tunable narrow-band laser allows atmospheric temperature profiles to be determined at metal layer altitudes (80–105 km. (2 Between about 20 and 90 km, temperatures were calculated from Rayleigh backscattering by air molecules, where the upper start values for the calculation algorithm were taken from the potassium lidar results. Correction methods have been applied to account for, e.g. Rayleigh extinction or Mie scattering of aerosols below about 32 km. (3 At altitudes below about 25 km, backscattering in the Rotational Raman lines is strong enough to obtain temperatures by measuring the temperature dependent spectral shape of the Rotational Raman spectrum. This method works well down to about 1 km. The instrumental configurations of the IAP lidars were optimized for a 3–6 km overlap of the temperature profiles at the method transition altitudes. We present two night-long measurements with clear wave structures propagating from the lower stratosphere up to the lower thermosphere.

  9. Possibilities for direct optical observation of negative hydrogen ions in ion beam plasma sources via Rayleigh or Thomson scattering

    International Nuclear Information System (INIS)

    Burgess, D.D.

    1985-01-01

    The possibilities of applying optical scattering techniques to the determination of H - concentrations in plasma sources relevant to negative ion beam generation are considered. Rayleigh scattering measurements for incident wavelengths just below the H - photoionization limit appear to be only just feasible experimentally. A more promising possibility is observation of the modification in a plasma containing negative ions of the collective ion-feature in Thomson scattering. Numerical predictions of the effects of H - concentration on the spectral distribution of the ion-feature are presented. (author)

  10. Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations

    Science.gov (United States)

    Mielke, Amy F.; Elam, Kristie A.

    2005-01-01

    A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.

  11. A diode laser-based velocimeter providing point measurements in unseeded flows using modulated filtered Rayleigh scattering (MFRS)

    Science.gov (United States)

    Jagodzinski, Jeremy James

    2007-12-01

    The development to date of a diode-laser based velocimeter providing point-velocity-measurements in unseeded flows using molecular Rayleigh scattering is discussed. The velocimeter is based on modulated filtered Rayleigh scattering (MFRS), a novel variation of filtered Rayleigh scattering (FRS), utilizing modulated absorption spectroscopy techniques to detect a strong absorption of a relatively weak Rayleigh scattered signal. A rubidium (Rb) vapor filter is used to provide the relatively strong absorption; alkali metal vapors have a high optical depth at modest vapor pressures, and their narrow linewidth is ideally suited for high-resolution velocimetry. Semiconductor diode lasers are used to generate the relatively weak Rayleigh scattered signal; due to their compact, rugged construction diode lasers are ideally suited for the environmental extremes encountered in many experiments. The MFRS technique utilizes the frequency-tuning capability of diode lasers to implement a homodyne detection scheme using lock-in amplifiers. The optical frequency of the diode-based laser system used to interrogate the flow is rapidly modulated about a reference frequency in the D2-line of Rb. The frequency modulation is imposed on the Rayleigh scattered light that is collected from the probe volume in the flow under investigation. The collected frequency modulating Rayleigh scattered light is transmitted through a Rb vapor filter before being detected. The detected modulated absorption signal is fed to two lock-in amplifers synchronized with the modulation frequency of the source laser. High levels of background rejection are attained since the lock-ins are both frequency and phase selective. The two lock-in amplifiers extract different Fourier components of the detected modulated absorption signal, which are ratioed to provide an intensity normalized frequency dependent signal from a single detector. A Doppler frequency shift in the collected Rayleigh scattered light due to a change

  12. Unusual features of long-range density fluctuations in glass-forming organic liquids: A Rayleigh and Rayleigh-Brillouin light scattering study

    International Nuclear Information System (INIS)

    Patkowski, A.; Fischer, E. W.; Steffen, W.; Glaser, H.; Baumann, M.; Ruths, T.; Meier, G.

    2001-01-01

    A new feature of glass-forming liquids, i.e., long-range density fluctuations of the order of 100 nm, has been extensively characterized by means of static light scattering, photon correlation spectroscopy and Rayleigh-Brillouin spectroscopy in orthoterphenyl (OTP) and 1,1-di(4 # prime#-methoxy-5 # prime#methyl-phenyl)-cyclohexane (BMMPC). These long-range density fluctuations result in the following unusual features observed in a light scattering experiment, which are not described by the existing theories: (i) strong q-dependent isotropic excess Rayleigh intensity, (ii) additional slow component in the polarized photon correlation function, and (iii) high Landau-Placzek ratio. These unusual features are equilibrium properties of the glass-forming liquids and depend only on temperature, provided that the sample has been equilibrated long enough. The temperature-dependent equilibration times were measured for BMMPC and are about 11 orders of magnitude longer than the α process. It was found that the glass-forming liquid OTP may occur in two states: with and without long-range density fluctuations ('clusters'). We have characterized the two states by static and dynamic light scattering in the temperature range from T g to T g +200 K. The relaxation times of the α process as well as the parameters of the Brillouin line are identical in both OTP with and without clusters. The α process (density fluctuations) in OTP was characterized by measuring either the polarized (VV) or depolarized (VH) correlation function, which are practically identical and q-independent. This feature, which is commonly observed in glass-forming liquids, is not fully explained by the existing theories

  13. Rayleigh Scattering Density Measurements, Cluster Theory, and Nucleation Calculations at Mach 10

    Science.gov (United States)

    Balla, R. Jeffrey; Everhart, Joel L.

    2012-01-01

    In an exploratory investigation, quantitative unclustered laser Rayleigh scattering measurements of density were performed in the air in the NASA Langley Research Center's 31 in. Mach 10 wind tunnel. A review of 20 previous years of data in supersonic and Mach 6 hypersonic flows is presented where clustered signals typically overwhelmed molecular signals. A review of nucleation theory and accompanying nucleation calculations are also provided to interpret the current observed lack of clustering. Data were acquired at a fixed stagnation temperature near 990Kat five stagnation pressures spanning 2.41 to 10.0 MPa (350 to 1454 psi) using a pulsed argon fluoride excimer laser and double-intensified charge-coupled device camera. Data averaged over 371 images and 210 pixels along a 36.7mmline measured freestream densities that agree with computed isentropic-expansion densities to less than 2% and less than 6% at the highest and lowest densities, respectively. Cluster-free Mach 10 results are compared with previous clustered Mach 6 and condensation-free Mach 14 results. Evidence is presented indicating vibrationally excited oxygen and nitrogen molecules are absorbed as the clusters form, release their excess energy, and inhibit or possibly reverse the clustering process. Implications for delaying clustering and condensation onset in hypersonic and hypervelocity facilities are discussed.

  14. What is measured by hyper-Rayleigh scattering from a liquid?

    Science.gov (United States)

    Rodriquez, Micheal B.; Shelton, David P.

    2018-04-01

    Polarization and angle dependence of hyper-Rayleigh scattering (HRS) measured for liquid acetonitrile and dimethyl sulfoxide (DMSO) is analyzed in terms of contributions from randomly oriented molecules and additional contributions produced during intermolecular collisions and induced by the electric field of dissolved ions. All three contributions show the effect of long-range correlation, and the correlation functions are determined using the HRS observations combined with the results of molecular dynamics simulations. HRS from acetonitrile is polarized transverse to the scattering vector. This is due to long-range molecular orientation correlation produced by the dipole-dipole interaction, and correlation at distances r > 100 nm must be included to account for the HRS observations. Analysis of the HRS measurements for acetonitrile determines the length scale a = 0.185 nm for the long-range longitudinal and transverse orientation correlation functions BL=-2 BT=a3/r3. Transverse polarized collision-induced HRS is also observed for acetonitrile, indicating long-range correlation of intermolecular modes. Strong longitudinal HRS is induced by the radial electric field of dissolved ions in acetonitrile. For DMSO, the angle between the molecular dipole and the vector part of the first hyperpolarizability tensor is about 100°. As a result, HRS from the randomly oriented molecules in DMSO is nearly unaffected by dipole correlation, and ion-induced HRS is weak. The strong longitudinal polarized HRS observed for DMSO is due to the collision-induced contribution, indicating long-range correlation of intermolecular modes. The HRS observations require correlation that has r-3 long-range asymptotic form, for molecular orientation and for intermolecular vibration and libration, for both acetonitrile and DMSO.

  15. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    Science.gov (United States)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  16. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  17. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  18. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    Science.gov (United States)

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. From Leonardo to the graser: light scattering in historical perspective. Pt. 5. The fourth Baron Rayleigh

    Energy Technology Data Exchange (ETDEWEB)

    Hey, J D

    1986-07-01

    The optical research of Robert John Strutt, fourth Baron Rayleigh, on the transparency of the terrestrial atmosphere as determined by the distribution of ozone, is reviewed in relation to the studies of Hartley, Cornu, Fabry and Buisson, and Fowler on this subject. It is shown that the basis of Rayleigh's work is now incorporated in the modern optical techniques for atmospheric monitoring.

  20. SEARCH FOR RAYLEIGH SCATTERING IN THE ATMOSPHERE OF GJ1214b

    International Nuclear Information System (INIS)

    De Mooij, E. J. W.; Jayawardhana, R.; Brogi, M.; Snellen, I. A. G.; Hoekstra, H.; Otten, G. P. P. L.; Bekkers, D. H.; Haffert, S. Y.; Van Houdt, J. J.; De Kok, R. J.; Croll, B.

    2013-01-01

    We investigate the atmosphere of GJ1214b, a transiting super-Earth planet with a low mean density, by measuring its transit depth as a function of wavelength in the blue optical portion of the spectrum. It is thought that this planet is either a mini-Neptune, consisting of a rocky core with a thick, hydrogen-rich atmosphere, or a planet with a composition dominated by water. Most observations favor a water-dominated atmosphere with a small scale-height, however, some observations indicate that GJ1214b could have an extended atmosphere with a cloud layer muting the molecular features. In an atmosphere with a large scale-height, Rayleigh scattering at blue wavelengths is likely to cause a measurable increase in the apparent size of the planet toward the blue. We observed the transit of GJ1214b in the B band with the FOcal Reducing Spectrograph at the Very Large Telescope and in the g band with both ACAM on the William Herschel Telescope (WHT) and the Wide Field Camera at the Isaac Newton Telescope (INT). We find a planet-to-star radius ratio in the B band of 0.1162 ± 0.0017, and in the g band 0.1180 ± 0.0009 and 0.1174 ± 0.0017 for the WHT and INT observations, respectively. These optical data do not show significant deviations from previous measurements at longer wavelengths. In fact, a flat transmission spectrum across all wavelengths best describes the combined observations. When atmospheric models are considered, a small scale-height water-dominated model fits the data best.

  1. Effects of Major Sudden Stratospheric Warmings Identified in Midlatitude Mesospheric Rayleigh-Scatter Lidar Temperatures

    Science.gov (United States)

    Sox, L.; Wickwar, V. B.; Fish, C. S.; Herron, J. P.

    2014-12-01

    Mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions. However, observations of these anomalies at midlatitudes are sparse. The very dense 11-year data set, collected between 1993-2004, with the Rayleigh-scatter lidar at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) at the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), has been carefully examined for such anomalies. The temperatures derived from these data extend over the mesosphere, from 45 to 90 km. During this period extensive data were acquired during seven major SSW events. In this work we aim to determine the characteristics of the midlatitude mesospheric temperatures during these seven major SSWs. To do this, comparisons were made between the temperature profiles on individual nights before, during, and after the SSW events and the corresponding derived climatological temperature profiles (31-day by 11-year average) for those nights. A consistent disturbance pattern was observed in the mesospheric temperatures during these SSWs. A distinct shift from the nominal winter temperature pattern to a pattern more characteristic of summer temperatures was seen in the midlatitude mesosphere close to when the zonal winds in the polar stratosphere (at 10 hPa, 60° N) reversed from eastward to westward. This shift lasted for several days. This change in pattern included coolings in the upper mesosphere, comparable to those seen in the polar regions, and warmings in the lower mesosphere.

  2. Numerical Simulations of Scattering of Light from Two-Dimensional Rough Surfaces Using the Reduced Rayleigh Equation

    Directory of Open Access Journals (Sweden)

    Tor eNordam

    2013-09-01

    Full Text Available A formalism is introduced for the non-perturbative, purely numerical, solution of the reduced Rayleigh equation for the scattering of light from two-dimensional penetrable rough surfaces. Implementation and performance issues of the method, and various consistency checks of it, are presented and discussed. The proposed method is found, within the validity of the Rayleigh hypothesis, to give reliable results. For a non-absorbing metal surface the conservation of energy was explicitly checked, and found to be satisfied to within 0.03%, or better, for the parameters assumed. This testifies to the accuracy of the approach and a satisfactory discretization. As an illustration, we calculate the full angular distribution of the mean differential reflection coefficient for the scattering of p- or s-polarized light incident on two-dimensional dielectric or metallic randomly rough surfaces defined by (isotropic or anisotropic Gaussian and cylindrical power spectra. Simulation results obtained by the proposed method agree well with experimentally measured scattering data taken from similar well-characterized, rough metal samples, or to results obtained by other numerical methods.

  3. Time-dependent radiation transfer with rayleigh scattering in finite plane-parallel media using pomraning-eddington approximation

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Sallah, M.; Degheidy, A.R.

    2005-01-01

    The time-dependent radiation transfer equation in plane geometry with Rayleigh scattering is studied. The traveling wave transformation is used to obtain the corresponding stationary-like equation. Pomraning-Eddington approximation is then used to calculate the radiation intensity in finite plane-parallel media. Numerical results and shielding calculations are shown for reflectivity and transmissivity at different times. The medium is assumed to have specular-reflecting boundaries. For the sake of comparison, two different weight functions are introduced and to force the boundary conditions to be fulfilled

  4. Scattering of atoms by a stationary sinusoidal hard wall: Rigorous treatment in (n+1) dimensions and comparison with the Rayleigh method

    International Nuclear Information System (INIS)

    Goodman, F.O.

    1977-01-01

    A rigorous treatment of the scattering of atoms by a stationary sinusoidal hard wall in (n+1) dimensions is presented, a previous treatment by Masel, Merrill, and Miller for n=1 being contained as a special case. Numerical comparisons are made with the GR method of Garcia, which incorporates the Rayleigh hypothesis. Advantages and disadvantages of both methods are discussed, and it is concluded that the Rayleigh GR method, if handled properly, will probably work satisfactorily in physically realistic cases

  5. A new MesosphEO dataset of temperature profiles from 35 to 85 km using Rayleigh scattering at limb from GOMOS/ENVISAT daytime observations

    Science.gov (United States)

    Hauchecorne, A.; Blanot, L.; Wing, R., Jr.; Keckhut, P.; Khaykin, S. M.

    2017-12-01

    The scattering of sunlight by the Earth atmosphere above the top of the stratospheric layer, about 30-35 km altitude, is only due to Rayleigh scattering by atmospheric molecules. Its intensity is then directly proportional to the atmospheric density. It is then possible to retrieve a temperature profile in absolute value using the hydrostatic equation and the perfect gas law, assuming that the temperature is known from a climatological model at the top of the density profile. This technique is applied to Rayleigh lidar observations since more than 35 years (Hauchecorne and Chanin, 1980). The GOMOS star occultation spectrometer observed the sunlight scattering at limb during daytime to remove it from the star spectrum. In the frame of the ESA funded MesosphEO project, GOMOS Rayleigh scattering profiles in the spectral range 400-460 nm have been used to retrieve temperature profiles from 35 to 85 km with a 2-km vertical resolution. A dataset of more than 310 thousands profiles from 2002 to 2012 is available for climatology and atmospheric dynamics studies. The validation of this dataset using NDACC Rayleigh lidars and MLS-AURA and SABER-TIMED will be presented. Preliminary results on the variability of the upper stratosphere and the mesosphere will be shown. We propose to apply this technique in the future to ALTIUS observations. The Rayleigh scattering technique can be applied to any sounder observing the day-time limb on the near-UV and visible spectrum.

  6. A dual-wavelength overlapping resonance Rayleigh scattering method for the determination of chondroitin sulfate with nile blue sulfate

    Science.gov (United States)

    Cui, Zhiping; Hu, Xiaoli; Liu, Shaopu; Liu, Zhongfang

    2011-12-01

    A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed to detect chondroitin sulfate (CS) with nile blue sulfate (NBS). At pH 3.0-4.0 Britton-Robinson (BR) buffer medium, CS interacted with NBS to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequence doubling scattering (FDS) appeared and their intensities were enhanced greatly. Their maximum wavelengths were located at 303 nm (RRS), 362 nm (RRS), 588 nm (SOS) and 350 nm (FDS), respectively. The scattering intensities of the three methods were proportional to the concentration of CS in certain ranges. The methods had high sensitivity and the detection limits were between 1.5 and 7.1 ng mL -1. The DWO-RRS method had the highest sensitivity with the detection limit being 1.5 ng mL -1. The characteristics of the spectra and optimal reaction conditions of RRS method were investigated. The effects of coexistent substances on the determination of CS were evaluated. Owing to the high sensitivity, RRS method had been applied to the determination of CS in eye drops with satisfactory results. The recovery range was between 99.4% and 104.6% and the relative standard deviation (RSD) was between 0.4% and 0.8%. In addition, the reasons for RRS enhancement were discussed and the shape of ion-association complex was characterized by atomic force microscopy (AFM).

  7. Adaptive handling of Rayleigh and Raman scatter of fluorescence data based on evaluation of the degree of spectral overlap

    Science.gov (United States)

    Hu, Yingtian; Liu, Chao; Wang, Xiaoping; Zhao, Dongdong

    2018-06-01

    At present the general scatter handling methods are unsatisfactory when scatter and fluorescence seriously overlap in excitation emission matrix. In this study, an adaptive method for scatter handling of fluorescence data is proposed. Firstly, the Raman scatter was corrected by subtracting the baseline of deionized water which was collected in each experiment to adapt to the intensity fluctuations. Then, the degrees of spectral overlap between Rayleigh scatter and fluorescence were classified into three categories based on the distance between the spectral peaks. The corresponding algorithms, including setting to zero, fitting on single or both sides, were implemented after the evaluation of the degree of overlap for individual emission spectra. The proposed method minimized the number of fitting and interpolation processes, which reduced complexity, saved time, avoided overfitting, and most importantly assured the authenticity of data. Furthermore, the effectiveness of this procedure on the subsequent PARAFAC analysis was assessed and compared to Delaunay interpolation by conducting experiments with four typical organic chemicals and real water samples. Using this method, we conducted long-term monitoring of tap water and river water near a dyeing and printing plant. This method can be used for improving adaptability and accuracy in the scatter handling of fluorescence data.

  8. Filtered Rayleigh scattering mixing measurements of merging and non-merging streamwise vortex interactions in supersonic flow

    Science.gov (United States)

    Ground, Cody R.; Gopal, Vijay; Maddalena, Luca

    2018-04-01

    By introducing large-scale streamwise vortices into a supersonic flow it is possible to enhance the rate of mixing between two fluid streams. However, increased vorticity content alone does not explicitly serve as a predictor of mixing enhancement. Additional factors, particularly the mutual interactions occurring between neighboring vortical structures, affect the underlying fundamental physics that influence the rate at which the fluids mix. As part of a larger systematic study on supersonic streamwise vortex interactions, this work experimentally quantifies the average rate of mixing of helium and air in the presence of two separate modes of vortex interaction, the merging and non-merging of a pair of co-rotating vortices. In these experiments vortex-generating expansion ramps are placed on a strut injector. The freestream Mach number is set at 2.5 and helium is injected as a passive scalar. Average injectant mole fractions at selected flow planes downstream of the injector are measured utilizing the filtered Rayleigh scattering technique. The filtered Rayleigh scattering measurements reveal that, in the domain surveyed, the merging vortex interaction strongly displaces the plume from its initial horizontal orientation while the non-merging vortex interaction more rapidly mixes the helium and air. The results of the current experiments are consistent with associated knowledge derived from previous analyses of the two studied configurations which have included the detailed experimental characterization of entrainment, turbulent kinetic energy, and vorticity of both modes of vortex interaction.

  9. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  10. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Science.gov (United States)

    Conti, C. C.; Anjos, M. J.; Salgado, C. M.

    2014-09-01

    X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.

  11. Study on the ternary mixed ligand complex of palladium(II)-aminophylline-fluorescein sodium by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum and its analytical application.

    Science.gov (United States)

    Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2011-01-01

    The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  12. Atomic form factors, incoherent scattering functions, and photon scattering cross sections

    International Nuclear Information System (INIS)

    Hubbell, J.H.; Veigele, W.J.; Briggs, E.A.; Brown, R.T.; Cromer, D.T.; Howerton, R.J.

    1975-01-01

    Tabulations are presented of the atomic form factor, F (α,Z), and the incoherent scattering function, S (x,Z), for values of x (=sin theta/2)/lambda) from 0.005 A -1 to 10 9 A -1 , for all elements A=1 to 100. These tables are constructed from available state-of-the-art theoretical data, including the Pirenne formulas for Z=1, configuration-into action results by Brown using Brown-Fontana and Weiss correlated wavefunctions for Z=2 to 6 non-relativistic Hartree-Fock results by Cromer for Z=7 to 100 and a relativistic K-shell analytic expression for F (x,Z) by Bethe Levinger for x>10 A -1 for all elements Z=2 to 100. These tabulated values are graphically compared with available photon scattering angular distribution measurements. Tables of coherent (Rayleigh) and incoherent (Compton) total scattering cross sections obtained by nummerical integration over combinations of F 2 (x,Z) with the Thomson formula and S (x,Z) with the Klum-Nishina Formual, respectively, are presented for all elements Z=1 to 100, for photon energies 100 eV (lambda=124 A) to 100 MeV (0.000124 A). The incoherent scattering cross sections also include the radiative and double-Compton corrections as given by Mork. Similar tables are presented for the special cases of terminally-bonded hydrogen and for the H 2 molecule, interpolated and extrapolated from values calculated by Stewart et al., and by Bentley and Stewart using Kolos-Roothaan wavefunctions

  13. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)

    2014-09-15

    Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)

  14. Precise relative cross sections for np scattering

    International Nuclear Information System (INIS)

    Goetz, J.; Brogli-Gysin, C.; Hammans, M.; Haffter, P.; Henneck, R.; Jourdan, J.; Masson, G.; Qin, L.M.; Robinson, S.; Sick, I.; Tuccillo, M.

    1994-01-01

    We present data on the differential cross section for neutron-proton scattering for an incident neutron energy of 67 MeV. These data allow a precise determination of the 1 P 1 phase which, in phase-shift analyses, is strongly correlated with the S-D amplitude which we are measuring via different observables. ((orig.))

  15. Violation of a Bell-like inequality by a combination of Rayleigh scattering with a Mach–Zehnder setup

    International Nuclear Information System (INIS)

    Rother, Tom

    2016-01-01

    In this paper I propose a classical optics experiment that results in a maximum violation of a Bell-like inequality. The first part is concerned with the Bell-like inequality (the so-called CHSH-inequality) itself. Its importance and its maximum violation in Quantum Mechanics (QM) are discussed in detail by employing an abstract probability state concept in a 4-dim. but classical event space. A T-matrix that represents the integral part of a corresponding Green's function as well as a statistical operator that contains a negative quasi-probability can be related to the corresponding quantum mechanical experiment. It is demonstrated that the derivation and usage of the T-matrix and the Green's function is equivalent to what is known from classical scattering theory. It is shown moreover that the negative quasi-probability of the statistical operator may be interpreted as a sink of probabilities related to two single events of the considered 4-dim. event space. A necessary condition for the violation of the CHSH-inequality is derived and discussed afterwards. In the second part of this paper I discuss a modification of the 4-dim. event space considered in the first part. It is shown that a combination of conventional Rayleigh scattering with a Mach–Zehnder setup would be able to put this modification into practice. Thus it becomes possible to achieve a maximum violation of the CHSH-inequality, if formulated in terms of intensities, on a pure classical way. The combination of classical light scattering with correlation experiments such as proposed in this paper may open new ways to study and to use the violation of Bell-like inequalities in modern optics. - Highlights: • Consistent Green's function formulation of the quantum mechanical Bell's experiment and its classical counterpart. This description is closely related to what is known from electromagnetic wave scattering. This is achieved by introducing an abstract probability state concept. • Discussion of a

  16. Study of the relationship between peaks scattering Rayleigh to Compton ratio and effective atomic number in biological samples

    International Nuclear Information System (INIS)

    Pereira, Marcelo O.; Conti, Claudio de Carvalho; Anjos, Marcelino J.; Lopes, Ricardo T.

    2011-01-01

    The aim of this work was to develop a new method to correct the absorbed radiation (the mass attenuation coefficient curve) in low energy (E B O 3 , Na 2 CO 3 , CaCO 3 , Al 2 O 3 , K 2 SO 4 and MgO) of radiation produced by a gamma-ray source of Am-241(59.54 keV) also applied to certified biological samples of milk powder, hay powder and bovine liver (NIST 155 7B). In addition, six methods of effective atomic number determination were used as described in literature to determinate the Rayleigh to Compton scattering ratio (R/C) , in order to calculate the mass attenuation coefficient. The results obtained by the proposed method were compared with those obtained using the transmission method. The experimental results were in good agreement with transmission values suggesting that the method to correct radiation absorption presented in this paper is adequate for biological samples. (author)

  17. Rayleigh scattering of Moessbauer radiation in superionic conductor RbAg/sub 4/I/sub 5/

    Energy Technology Data Exchange (ETDEWEB)

    Ovanesyan, N.S.; Goffman, V.G.; Sokolov, V.B.; Tkachev, V.V. (AN SSSR, Chernogolovka. Otdelenie Inst. Khimicheskoj Fiziki)

    1984-04-01

    The dynamical properties of RbAg/sub 4/I/sub 5/ has been investiaated by Rayleigh scattering of Moessbauer radiation (RSMR) with wave-length lambda = 0.86 A. The character of Ag/sup +/ ion oscillatory motion and diffusion in RbAg/sub 4/I/sub 5/ depending on temperature including the phase transitions region is studied. It is shown that in the superionic crystal RbAg/sub 4/I/sub 5/ the diffusion process is strongly correlated, i.e. a great number of initial and final states at diffusion jumps coincide. The observed broadening can be less than the expected one by value orders. Diffusion correlation can strongly reduce the activation barrier and lead to anomalously high ionic conduction.

  18. Measurement of time series variation of thermal diffusivity of magnetic fluid under magnetic field by forced Rayleigh scattering method

    Energy Technology Data Exchange (ETDEWEB)

    Motozawa, Masaaki, E-mail: motozawa.masaaki@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Muraoka, Takashi [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan); Motosuke, Masahiro, E-mail: mot@rs.tus.ac.jp [Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Fukuta, Mitsuhiro, E-mail: fukuta.mitsuhiro@shizuoka.ac.jp [Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, Shizuoka 432-8561 (Japan)

    2017-04-15

    It can be expected that the thermal diffusivity of a magnetic fluid varies from time to time after applying a magnetic field because of the growth of the inner structure of a magnetic fluid such as chain-like clusters. In this study, time series variation of the thermal diffusivity of a magnetic fluid caused by applying a magnetic field was investigated experimentally. For the measurement of time series variation of thermal diffusivity, we attempted to apply the forced Rayleigh scattering method (FRSM), which has high temporal and high spatial resolution. We set up an optical system for the FRSM and measured the thermal diffusivity. A magnetic field was applied to a magnetic fluid in parallel and perpendicular to the heat flux direction, and the magnetic field intensity was 70 mT. The FRSM was successfully applied to measurement of the time series variation of the magnetic fluid from applying a magnetic field. The results show that a characteristic configuration in the time series variation of the thermal diffusivity of magnetic fluid was obtained in the case of applying a magnetic field parallel to the heat flux direction. In contrast, in the case of applying a magnetic field perpendicular to the heat flux, the thermal diffusivity of the magnetic fluid hardly changed during measurement. - Highlights: • Thermal diffusivity was measured by forced Rayleigh scattering method (FRSM). • FRSM has high temporal and high spatial resolutions for measurement. • We attempted to apply FRSM to magnetic fluid (MF). • Time series variation of thermal diffusivity of MF was successfully measured by FRSM. • Anisotropic thermal diffusivity of magnetic fluid was also successfully confirmed.

  19. SFERXS, Photoabsorption, Coherent, Incoherent Scattering Cross-Sections Function for Shielding

    International Nuclear Information System (INIS)

    Legarda, F.; Mtz de la Fuente, O.; Herranz, M.

    2002-01-01

    Description of program or function: The use of electromagnetic radiation cross-sections in radiation shielding calculations and more generally in transport theory applications actually requires an interpolation between values which are tabulated for certain values of the energy. In order to facilitate this process and to reduce the computer memory requirements, we have developed, by a least squares method, a set of functions which represents the cross-sections for the photoelectric absorption, the coherent (Rayleigh) and the incoherent (Compton) scattering (1). For this purpose we have accepted as true values the ones tabulated by Storm and Israel (2) for the photoeffect, by Hubbell et Al. (3) for the incoherent scattering and by Hubbell and Overbo (4) for the coherent scattering

  20. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air and moist air,

    NARCIS (Netherlands)

    Witschas, B.; Vieitez, M.O.; Duijn, van E.-J.; Reitebuch, O.; Water, van de W.; Ubachs, W.

    2010-01-01

    Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. We report on spontaneous Rayleigh–Brillouin scattering measurements in the ultraviolet at a

  1. Crossed-Plane Imaging of Premixed Turbulent Combustion Processes

    National Research Council Canada - National Science Library

    Gouldin, F

    2003-01-01

    .... Rayleigh scattering from premixed flames can be used for temperature imaging, and we have developed crossed-plane Rayleigh imaging in order to measure with high-resolution instantaneous temperature...

  2. Distributed Temperature and Strain Discrimination with Stimulated Brillouin Scattering and Rayleigh Backscatter in an Optical Fiber

    Directory of Open Access Journals (Sweden)

    Xiaoyi Bao

    2013-01-01

    Full Text Available A distributed optical fiber sensor with the capability of simultaneously measuring temperature and strain is proposed using a large effective area non-zero dispersion shifted fiber (LEAF with sub-meter spatial resolution. The Brillouin frequency shift is measured using Brillouin optical time-domain analysis (BOTDA with differential pulse-width pair technique, while the spectrum shift of the Rayleigh backscatter is measured using optical frequency-domain reflectometry (OFDR. These shifts are the functions of both temperature and strain, and can be used as two independent parameters for the discrimination of temperature and strain. A 92 m measurable range with the spatial resolution of 50 cm is demonstrated experimentally, and accuracies of ±1.2 °C in temperature and ±15 με in strain could be achieved.

  3. Scattering of particles with inclusions. Modeling and inverse problem solution in the Rayleigh-Gans approximation

    International Nuclear Information System (INIS)

    Otero, F A; Frontini, G L; Elicabe, G E

    2011-01-01

    An analytic model for the scattering of a spherical particle with spherical inclusions has been proposed under the RG approximation. The model can be used without limitations to describe an X-ray scattering experiment. However, for light scattering several conditions must be fulfilled. Based on this model an inverse methodology is proposed to estimate the radii of host particle and inclusions, the number of inclusions and the Distance Distribution Functions (DDF's) of the distances between inclusions and the distances between inclusions and the origin of coordinates. The methodology is numerically tested in a light scattering example in which the host particle is eliminated by matching the refractive indices of host particle and medium. The results obtained for this cluster particle are very satisfactory.

  4. Double-wavelength overlapping resonance Rayleigh scattering technique for the simultaneous quantitative analysis of three β-adrenergic blockade

    Science.gov (United States)

    Tan, Xuanping; Yang, Jidong; Li, Qin; Yang, Qiong; Shen, Yizhong

    2016-05-01

    Four simple and accurate spectrophotometric methods were proposed for the simultaneous determination of three β-adrenergic blockade, e.g. atenolol, metoprolol and propranolol. The methods were based on the reaction of the three drugs with erythrosine B (EB) in a Britton-Robinson buffer solution at pH 4.6. EB could combine with the drugs to form three ion-association complexes, which resulted in the resonance Rayleigh scattering (RRS) intensity that is enhanced significantly with new RRS peaks that appeared at 337 nm and 370 nm, respectively. In addition, the fluorescence intensity of EB was also quenched. The enhanced scattering intensities of the two peaks and the fluorescence quenched intensity of EB were proportional to the concentrations of the drugs, respectively. What is more, the RRS intensity overlapped with the double-wavelength of 337 nm and 370 nm (so short for DW-RRS) was also proportional to the drugs concentrations. So, a new method with highly sensitive for simultaneous determination of three bisoprolol drugs was established. Finally, the optimum reaction conditions, influencing factors and spectral enhanced mechanism were investigated. The new DW-RRS method has been applied to simultaneously detect the three β-blockers in fresh serum with satisfactory results.

  5. Study on Brilliant Blue-chitosan System by Dual-wavelength Overlapping Resonance Rayleigh Scattering Method and its Analytical Applications

    Science.gov (United States)

    Ma, Caijuan; Sun, Zijun; Liu, Guihua; Su, Zhengquan; Bai, Yan

    2018-02-01

    The method was presented for the sensitive and selective determination of chitosan (CTS) in health products with Brilliant Blue (BB) as a probe, based on dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS). In weakly acidic buffer solution, the binding of CTS and BB could result in the RRS intensities getting enhanced significantly at RRS peaks of 344 nm and 452 nm, and the scattering intensities of the two peaks were proportional to the concentration of CTS within a certain range. When the RRS intensities of the two wavelengths were superposed, the results showed higher sensitivity. Under the optimum experimental conditions, the total of the two increased RRS intensities was linear to the CTS concentration in the range of 0.02-1.80 μg/mL and the limit of detection (LOD) was 7.45 ng/mL. In this work, the optimum conditions and the effects of some foreign substances were studied. Accordingly, the new method based on DWO-RRS for the determination of CTS was developed. In addition, the effect of the molecular weight and the deacetylation degree between different chitosan molecules was discussed. Finally, this assay was applied to determine the concentration of CTS in health products with satisfactory results.

  6. Effective response and scattering cross section of spherical inclusions in a medium

    Energy Technology Data Exchange (ETDEWEB)

    Alexopoulos, A., E-mail: Aris.Alexopoulos@dsto.defence.gov.a [Electronic Warfare and Radar Division, Defence Science and Technology Organisation (DSTO), PO Box 1500, Edinburgh 5111 (Australia)

    2009-08-24

    The Maxwell-Garnett theory for a right-handed homogeneous system is extended in order to investigate the effective response of a medium consisting of low density distributed 3-dimensional inclusions. The polarisability factor is modified to account for inclusions with binary layered volumes and it is shown that such a configuration can yield doubly negative effective permittivity and permeability. Terms representing second-order scattering interactions between binary inclusions in the medium are derived and are used to reformulate conventional effective medium theory. In the appropriate limit, the one-body theory of Maxwell-Garnett is recovered. The scattering cross section of the spherical inclusions is determined and comparison is made to homogeneous dielectric scatterers in the Rayleigh limit. It is found that the scattering resonances can be manipulated using the inclusion parameters. Furthermore, the effect that two-interacting spherical inclusions in a medium have on the scattering cross section is investigated via higher order dipole moments while the issue of reducing the scattering cross section to zero is also examined.

  7. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  8. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  9. Rayleigh light scattering in fullerene covered by a spherical argon film - a molecular dynamics study

    CERN Document Server

    Dawid, A

    2003-01-01

    We have calculated (by a molecular dynamics method) the interaction-induced polarizability correlation functions and spectra of the depolarized light scattering from fullerene C sub 6 sub 0 molecules surrounded by an argon 'atmosphere' (layer). The calculated correlation functions and spectra of (C sub 6 sub 0)Ar sub n (n = 32, 40, 46) clusters show a substantial dependence on the number n of atoms in the layer.

  10. Study on the interaction between albendazole and eosin Y by fluorescence, resonance Rayleigh scattering and frequency doubling scattering spectra and their analytical applications

    Science.gov (United States)

    Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin

    In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356 nm. The detection limit for ABZ were 21.51 ng mL-1 for the fluorophotometry, 6.93 ng mL-1 for the RRS method and 12.89 ng mL-1 for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed.

  11. Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods

    Science.gov (United States)

    Casamayou-Boucau, Yannick; Ryder, Alan G.

    2017-09-01

    Anisotropy resolved multidimensional emission spectroscopy (ARMES) provides valuable insights into multi-fluorophore proteins (Groza et al 2015 Anal. Chim. Acta 886 133-42). Fluorescence anisotropy adds to the multidimensional fluorescence dataset information about the physical size of the fluorophores and/or the rigidity of the surrounding micro-environment. The first ARMES studies used standard thin film polarizers (TFP) that had negligible transmission between 250 and 290 nm, preventing accurate measurement of intrinsic protein fluorescence from tyrosine and tryptophan. Replacing TFP with pairs of broadband wire grid polarizers enabled standard fluorescence spectrometers to accurately measure anisotropies between 250 and 300 nm, which was validated with solutions of perylene in the UV and Erythrosin B and Phloxine B in the visible. In all cases, anisotropies were accurate to better than ±1% when compared to literature measurements made with Glan Thompson or TFP polarizers. Better dual wire grid polarizer UV transmittance and the use of excitation-emission matrix measurements for ARMES required complete Rayleigh scatter elimination. This was achieved by chemometric modelling rather than classical interpolation, which enabled the acquisition of pure anisotropy patterns over wider spectral ranges. In combination, these three improvements permit the accurate implementation of ARMES for studying intrinsic protein fluorescence.

  12. Application of artificial neural networks for the determination of proteins with CPA-pI by rayleigh light scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Dong Lijun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)]. E-mail: chenxg@lzu.edu.cn; Hu Zhide [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2007-05-15

    The determination of proteins with 2-(4-chloro-2-phosphonophenylazo)-7-(4-iodophenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid (CPA-pI) by Rayleigh light scattering (RLS) was studied in this paper. The weak RLS of CPA-pI and BSA can be enhanced greatly by the addition of Al{sup 3+} at the pH 5.6 and an enhanced RLS signal was produced at 365-385 nm. Based on the reaction of CPA-pI, Al{sup 3+} and proteins, a new quantitative determination method for proteins has been developed. The effect of three variables for the determination of proteins was optimized by means of artificial neural networks (ANNs) using extended delta-bar-delta (EDBD) algorithms with the optimal network structure of 3-5-1. This method is very sensitive (2.5-35.4 {mu}g/ml for bovine serum albumin (BSA)), rapid (<2 min), simple (one step) and tolerance of most interfering substances. Six samples of protein in human serum were determined and the maximum relative error is no more than 2% and the recovery is between 95% and 105%.

  13. Localization and Poincaré catastrophe in the problem of a photon scattering on a pair of Rayleigh particles

    Science.gov (United States)

    Maksimenko, V. V.; Zagaynov, V. A.; Agranovski, I. E.

    2013-11-01

    It is shown that complexities in a problem of elastic scattering of a photon on a pair of Rayleigh particles (two small metallic spheres) are similar to the complexities of the classic problem of three bodies in celestial mechanics. In the latter problem, as is well known, the phase trajectory of a system becomes a nonanalytical function of its variables. In our problem, the trajectory of a virtual photon at some frequency could be considered such as the well-known Antoine set (Antoine's necklace) or a chain with interlaced sections having zero topological dimension and fractal structure. Such a virtual “zero-dimensional” photon could be localized between the particles of the pair. The topology suppresses the photon's exit to the real world with dimensional equal-to-or-greater-than units. The physical reason for this type of photon localization is related to the “mechanical rigidity” of interlaced sections of the photon trajectory due to a singularity of energy density along these sections. Within the approximations used in this paper, the effect is possible if the frequency of the incident radiation is equal to double the frequency of the dipole surface plasmon in an isolated particle, which is the only character frequency in the problem. This condition and transformation of the photon trajectory to the zero-dimensional Antoine set reminds of some of the simplest variants of Poincaré's catastrophe in the dynamics of some nonintegrable systems. The influence of the localization on elastic light scattering by the pair is investigated.

  14. Highly sensitive determination of poly(hexamethylene guanidine) by Rayleigh scattering using aggregation of silver nanoparticles

    International Nuclear Information System (INIS)

    Artemyeva, Anastasia A.; Sharov, Andrei V.; Beklemishev, Mikhail K.; Samarina, Tatyana O.; Abramchuk, Sergei S.; Ovcharenko, Elena O.; Dityuk, Alexander I.; Efimov, Konstantin M.

    2015-01-01

    We have found that low concentrations of the polycationic disinfectant poly(hexamethylene guanidine) hydrochloride (PHMG) induce the aggregation of citrate-stabilized silver nanoparticles (AgNPs) in aqueous solution. Based on this finding, we have worked out a method to the determination of PHMG. The protocol includes the steps of (a) centrifuging the water sample, (b) addition of an aliquot of the colloidal solution of the AgNPs, and (c) measurement of the intensity of scattered light. The method is surprisingly selective in that comparable concentrations of surfactants, humic acids and protein do not interfere. Besides, an up to 50 mM concentration NaCl, and up to 5 mM of Mg(II) or Ca(II) are tolerated. Other cationic polyelectrolytes, polyethyleneimine and poly(dimethyldiallyammonium chloride), also cause aggregation of AgNPs but to a lesser extent. The determination of PHMG was performed in spiked samples (run-off, tap and swimming pool waters) with detection limits of 2·10 −8 , 4·10 −7 , and 6·10 −6 M (by monomer unit), respectively. The linear ranges are wider and the detection limits are lower than those of known spectrophotometric methods. It is necessary, however, to correct the calibration plot for background scattering by the sample and to establish a calibration plot for each kind of water sample. Notwithstanding this, the approach is attractive because it is sensitive, rapid, and simple. (author)

  15. Neutron scattering cross sections of uranium-238

    International Nuclear Information System (INIS)

    Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.

    1979-01-01

    The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures

  16. Scattering cross-section of an inhomogeneous plasma cylinder

    International Nuclear Information System (INIS)

    Jiaming Shi; Lijian Qiu; Ling, Y.

    1995-01-01

    Scattering of em waves by the plasma cylinder is of significance in radar target detection, plasma diagnosis, etc. This paper discusses the general method to calculate the scattering cross-section of em waves from a plasma cylinder which is radially inhomogeneous and infinitely long. Numerical results are also provided for several plasma density profiles. The effect of the electron density distribution on the scattering cross-section is investigated

  17. Passive retrieval of Rayleigh waves in disordered elastic media

    International Nuclear Information System (INIS)

    Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel

    2005-01-01

    When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime

  18. Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout

    International Nuclear Information System (INIS)

    Lu, Yao; Huang, Xiangyi; Ren, Jicun

    2013-01-01

    We describe a sensitive sandwich immunoassay for alpha-fetoprotein (AFP). It is making use of gold nanoparticles (GNPs) and magnetic beads (MBs) as labels, and of resonance Rayleigh scattering for detection. Two antibodies were labeled with GNPs and MBs, respectively, and MB-antigen-GNP complexes were formed in the presence of antigens. The MB labels also serve as solid phase carriers that can be used to magnetically separate the immuno complex. The GNP labels are used as optical probes, and Rayleigh scattering was used to determine the concentration of free GNPs-antibody after separation of the MB-antigen-GNP complexes. The concentration of AFP is related to the intensity of light scattered by free GNPs in the 13.6 pM to 436 pM concentration range, and the limit of detection is 13.6 pM. The method was applied to the determination of AFP in sera of cancer patients, and the results agree well with those obtained by conventional ELISA. (author)

  19. Measuring techniques for Compton, Rayleigh and fluorescence cross-sections excited by keV photons. Potential use for various applications

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji [University of Tsukuba, Institute of Clinical Medicine, Tsukuba, Ibaraki (Japan); Akatsuka, Takao [Yamagata University, Faculty of Engineering, Yonezawa, Yamagata (Japan); Seltzer, Stephen M.; Hubbell, John H. [National Institute of Standards and Technology, Ionizing Radiation Division, Photon and Charged Particle Data Center, Gaithersburg, MD (United States); Cesareo, Roberto; Brunetti, Antonio [Universita di Sassari, Istituto di Matematica e Fisica, Sassari (Italy); Gigante, Giovanni E. [Universita di Rome, Dipartimento di Fisica, ' La Sapienza' , Roma (Italy)

    2002-08-01

    Compton, Rayleigh and fluorescence cross-sections for low, medium and high Z atoms are measured at low photon energies (<100 keV) using an X-ray tube with secondary target. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target as excitation source. Using this arrangement basic interaction cross-section measurements are performed in vacuum and reasonable monochromacy is achieved. Our motivation is mainly based on fundamental radiation interactions and radiology in mind. The present X-ray system considering the geometrical effects of the measuring system is more advantageous as far as the reduction of incoherently scattered background and improvement of monochromacy is concerned. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The experimental system is very simple in design, compact and economical. Experimental results based on these systems are compared with theoretical estimates and good agreement is observed in between them. (author)

  20. Spatial and temporal resolution requirements for quench detection in (RE)Ba2Cu3Ox magnets using Rayleigh-scattering-based fiber optic distributed sensing

    International Nuclear Information System (INIS)

    Chan, W K; Schwartz, J; Flanagan, G

    2013-01-01

    One of the key remaining challenges to safe and reliable operation of large, high temperature superconductor (HTS)-based magnet systems is quench detection and protection. Due to the slow quench propagation in HTS systems, the conventional discrete voltage-tap approach developed for NbTi and Nb 3 Sn magnets may not be sufficient. In contrast, a distributed temperature profile, generated by a distributed temperature sensor and facilitating continuous monitoring of the temperature at any monitored locations within a magnet with high spatial resolution, may be required. One such distributed temperature sensing option is the use of Rayleigh-based fiber optic sensors (FOS), which are immune to electromagnetic interference. The detection of a quench via Rayleigh-based FOS relies on converting the spectral shifts in the Rayleigh scattering spectra into temperature variations. As a result, the higher the spatial sampling resolution the larger the data processing volume, and thus the lower the temporal sampling resolution. So, for effective quench detection, which requires the quick and accurate identification of a hot spot, it is important to find a balance between the spatial and temporal resolutions executable on a given data acquisition and processing (DAQ) system. This paper discusses a method for finding an appropriate DAQ technology that matches the characteristic of a superconducting coil, and determining the acceptable resolutions for efficient and safe quench detection. A quench detection algorithm based on distributed temperature sensing is proposed and its implementation challenges are discussed. (paper)

  1. Surface roughness considerations for atmospheric correction of ocean color sensors. I - The Rayleigh-scattering component. II - Error in the retrieved water-leaving radiance

    Science.gov (United States)

    Gordon, Howard R.; Wang, Menghua

    1992-01-01

    The first step in the Coastal Zone Color Scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering (RS) contribution, L sub r, to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm, L sub r is computed by assuming that the ocean surface is flat. Calculations of the radiance leaving an RS atmosphere overlying a rough Fresnel-reflecting ocean are presented to evaluate the radiance error caused by the flat-ocean assumption. Simulations are carried out to evaluate the error incurred when the CZCS-type algorithm is applied to a realistic ocean in which the surface is roughened by the wind. In situations where there is no direct sun glitter, it is concluded that the error induced by ignoring the Rayleigh-aerosol interaction is usually larger than that caused by ignoring the surface roughness. This suggests that, in refining algorithms for future sensors, more effort should be focused on dealing with the Rayleigh-aerosol interaction than on the roughness of the sea surface.

  2. Multi-property isotropic intermolecular potentials and predicted spectral lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) for H2sbnd Ne, -Kr and -Xe

    Science.gov (United States)

    El-Kader, M. S. A.; Godet, J.-L.; Gustafsson, M.; Maroulis, G.

    2018-04-01

    Quantum mechanical lineshapes of collision-induced absorption (CIA), collision-induced light scattering (CILS) and collision-induced hyper-Rayleigh scattering (CIHR) at room temperature (295 K) are computed for gaseous mixtures of molecular hydrogen with neon, krypton and xenon. The induced spectra are detected using theoretical values for induced dipole moment, pair-polarizability trace and anisotropy, hyper-polarizability and updated intermolecular potentials. Good agreement is observed for all spectra when the literature and the present potentials which are constructed from the transport and thermo-physical properties are used.

  3. Total cross sections for electron scattering by He

    International Nuclear Information System (INIS)

    De Heer, F.J.; Jansen, R.H.J.

    1977-01-01

    A set of total cross sections for scattering of electrons by He has been evaluated over the energy range of zero to 3000 eV by means of the analysis of experiments and theories on total cross sections for elastic scattering, ionisation and excitation, and on differential cross sections for elastic and inelastic scattering. Between 0 and 19.8 eV, where no inelastic processes occur, the total cross sections for scattering are equal to those for elastic scattering. Above 19.8 eV total cross sections for scattering of electrons have been evaluated by adding those for ionisation, excitation and elastic scattering. The total cross sections thus obtained are probably accurate to about 5% over a large part of the energy range. They appear to be in very good agreement with the recent experimental results of Blaauw et al. (J. Phys. B.; 10:L299 (1977)). The present results have already proved useful for application in the dispersion relation for forward scattering in electron-helium collisions. (author)

  4. Scattering kernels and cross sections working group

    International Nuclear Information System (INIS)

    Russell, G.; MacFarlane, B.; Brun, T.

    1998-01-01

    Topics addressed by this working group are: (1) immediate needs of the cold-moderator community and how to fill them; (2) synthetic scattering kernels; (3) very simple synthetic scattering functions; (4) measurements of interest; and (5) general issues. Brief summaries are given for each of these topics

  5. Study on interaction between palladium(ІІ)-Linezolid chelate with eosin by resonance Rayleigh scattering, second order of scattering and frequency doubling scattering methods using Taguchi orthogonal array design

    Science.gov (United States)

    Thakkar, Disha; Gevriya, Bhavesh; Mashru, R. C.

    2014-03-01

    Linezolid reacted with palladium to form 1:1 binary cationic chelate which further reacted with eosin dye to form 1:1 ternary ion association complex at pH 4 of Walpole's acetate buffer in the presence of methyl cellulose. As a result not only absorption spectra were changed but Resonance Rayleigh Scattering (RRS), Second-order Scattering (SOS) and Frequency Doubling Scattering (FDS) intensities were greatly enhanced. The analytical wavelengths of RRS, SOS and FDS (λex/λem) of ternary complex were located at 538 nm/538 nm, 240 nm/480 nm and 660 nm/330 nm, respectively. The linearity range for RRS, SOS and FDS methods were 0.01-0.5 μg mL-1, 0.1-2 μg mL-1 and 0.2-1.8 μg mL-1, respectively. The sensitivity order of three methods was as RRS > SOS > FDS. Accuracy of all methods were determined by recovery studies and showed recovery between 98% and 102%. Intraday and inter day precision were checked for all methods and %RSD was found to be less than 2 for all methods. The effects of foreign substances were tested on RRS method and it showed the method had good selectivity. For optimization of process parameter, Taguchi orthogonal array design L8(24) was used and ANOVA was adopted to determine the statistically significant control factors that affect the scattering intensities of methods. The reaction mechanism, composition of ternary ion association complex and reasons for scattering intensity enhancement was discussed in this work.

  6. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  7. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  8. Scattering and absorption differential cross sections for double ...

    Indian Academy of Sciences (India)

    The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent final photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin ...

  9. Differential cross sections for neutrino scattering on 12C

    International Nuclear Information System (INIS)

    Kolbe, E.

    1996-01-01

    Differential cross sections for neutrino scattering on 12 C are calculated within the (continuum) random phase approximation model. The charged current (ν e ,e - ) and (ν μ ,μ - ) capture reactions on 12 C are measured by the LSND Collaboration at LAMPF. We investigate and discuss the merits of such studies, especially the information that can be extracted from data for differential neutrino scattering cross sections. copyright 1996 The American Physical Society

  10. Positive Scattering Cross Sections using Constrained Least Squares

    International Nuclear Information System (INIS)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-01-01

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented

  11. Spin wave scattering and interference in ferromagnetic cross

    Energy Technology Data Exchange (ETDEWEB)

    Nanayakkara, Kasuni; Kozhanov, Alexander [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Center for Nano Optics, Georgia State University, Atlanta, Georgia 30303 (United States); Jacob, Ajey P. [Exploratory Research Device and Integration, GLOBALFOUNDRIES, Albany, New York 12203 (United States)

    2015-10-28

    Magnetostatic spin wave scattering and interference across a CoTaZr ferromagnetic spin wave waveguide cross junction were investigated experimentally and by micromagnetic simulations. It is observed that the phase of the scattered waves is dependent on the wavelength, geometry of the junction, and scattering direction. It is found that destructive and constructive interference of the spin waves generates switching characteristics modulated by the input phase of the spin waves. Micromagnetic simulations are used to analyze experimental data and simulate the spin wave scattering and interference.

  12. Fast-neutron total and scattering cross sections of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V.

  13. Fast-neutron total and scattering cross sections of niobium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V

  14. Neutron Scattering Differential Cross Sections for 12C

    Science.gov (United States)

    Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2016-09-01

    Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).

  15. A simple and selective resonance Rayleigh scattering-energy transfer spectral method for determination of trace neomycin sulfate using Cu2O particle as probe

    Science.gov (United States)

    Ouyang, Huixiang; Liang, Aihui; Jiang, Zhiliang

    2018-02-01

    The stable Cu2O nanocubic (Cu2ONC) sol was prepared, based on graphene oxide (GO) catalysis of glucose-Fehling's reagent reaction, and its absorption and resonance Rayleigh scattering (RRS) spectra, transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were examined. Using the as-prepared Cu2ONC as RRS probe, and coupling with the neomycin sulfate (NEO) complex reaction, a new, simple, sensitive and selective RRS-energy transfer (RRS-ET) method was established for detection of neomycin sulfate, with a linear range of 1.4-112 μM and a detection limit of 0.4 μM. The method has been applied to the detection of neomycin sulfate in samples with satisfactory results.

  16. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish.

    Science.gov (United States)

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-15

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach.

    Science.gov (United States)

    Hu, Zhongwei; Autschbach, Jochen; Jensen, Lasse

    2014-09-28

    Resonance hyper-Rayleigh scattering (HRS) of molecules and metal clusters have been simulated based on a time-dependent density functional theory approach. The resonance first-order hyperpolarizability (β) is obtained by implementing damped quadratic response theory using the (2n + 1) rule. To test this implementation, the prototypical dipolar molecule para-nitroaniline (p-NA) and the octupolar molecule crystal violet are used as benchmark systems. Moreover, small silver clusters Ag 8 and Ag 20 are tested with a focus on determining the two-photon resonant enhancement arising from the strong metal transition. Our results show that, on a per atom basis, the small silver clusters possess two-photon enhanced HRS comparable to that of larger nanoparticles. This finding indicates the potential interest of using small metal clusters for designing new nonlinear optical materials.

  18. Importance sampling the Rayleigh phase function

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2011-01-01

    Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation....

  19. Transport cross section for small-angle scattering

    International Nuclear Information System (INIS)

    D'yakonov, M.I.; Khaetskii, A.V.

    1991-01-01

    Classical mechanics is valid for describing potential scattering under the conditions (1) λ much-lt α and (2) U much-gt ℎυ/α, where λ is the de Broglie wavelength, α is the characteristic size of the scatterer, U is the characteristic value of the potential energy, and υ is the velocity of the scattered particle. The second of these conditions means that the typical value of the classical scattering angle is far larger than the diffraction angle λ/α. In this paper the authors show that this second condition need not hold in a derivation of the transport cross section. In other words, provided that the condition λ much-lt α holds, it is always possible to calculate the transport cross section from the expressions of classical mechanics, even in the region U approx-lt ℎυ/α, where the scattering is diffractive,and the differential cross section is greatly different from the classical cross section. The transport cross section is found from the classical expression even in the anticlassical case U much-lt ℎυ/α, where the Born approximation can be used

  20. Scattering cross section of unequal length dipole arrays

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a detailed and systematic analytical treatment of scattering by an arbitrary dipole array configuration with unequal-length dipoles, different inter-element spacing and load impedance. It provides a physical interpretation of the scattering phenomena within the phased array system. The antenna radar cross section (RCS) depends on the field scattered by the antenna towards the receiver. It has two components, viz. structural RCS and antenna mode RCS. The latter component dominates the former, especially if the antenna is mounted on a low observable platform. The reduction in the scattering due to the presence of antennas on the surface is one of the concerns towards stealth technology. In order to achieve this objective, a detailed and accurate analysis of antenna mode scattering is required. In practical phased array, one cannot ignore the finite dimensions of antenna elements, coupling effect and the role of feed network while estimating the antenna RCS. This book presents the RCS estimati...

  1. Classical scattering cross section in sputtering transport theory

    International Nuclear Information System (INIS)

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  2. Fast-neutron scattering cross sections of elemental zirconium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-12-01

    Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V

  3. Thermal neutron scattering cross sections of beryllium and magnesium oxides

    International Nuclear Information System (INIS)

    Al-Qasir, Iyad; Jisrawi, Najeh; Gillette, Victor; Qteish, Abdallah

    2016-01-01

    Highlights: • Neutron thermalization in BeO and MgO was studied using Ab initio lattice dynamics. • The BeO phonon density of states used to generate the current ENDF library has issues. • The BeO cross sections can provide a more accurate ENDF library than the current one. • For MgO an ENDF library is lacking: a new accurate one can be built from our results. • BeO is a better filter than MgO, especially when cooled down to 77 K. - Abstract: Alkaline-earth beryllium and magnesium oxides are fundamental materials in nuclear industry and thermal neutron scattering applications. The calculation of the thermal neutron scattering cross sections requires a detailed knowledge of the lattice dynamics of the scattering medium. The vibrational properties of BeO and MgO are studied using first-principles calculations within the frame work of the density functional perturbation theory. Excellent agreement between the calculated phonon dispersion relations and the experimental data have been obtained. The phonon densities of states are utilized to calculate the scattering laws using the incoherent approximation. For BeO, there are concerns about the accuracy of the phonon density of states used to generate the current ENDF/B-VII.1 libraries. These concerns are identified, and their influences on the scattering law and inelastic scattering cross section are analyzed. For MgO, no up to date thermal neutron scattering cross section ENDF library is available, and our results represent a potential one for use in different applications. Moreover, the BeO and MgO efficiencies as neutron filters at different temperatures are investigated. BeO is found to be a better filter than MgO, especially when cooled down, and cooling MgO below 77 K does not significantly improve the filter’s efficiency.

  4. Total cross sections for positron and electron scattering from pyrimidine

    International Nuclear Information System (INIS)

    Zecca, A; Chiari, L; Trainotti, E; GarcIa, G; Blanco, F; Brunger, M J

    2010-01-01

    In this paper we report original measurements of total cross sections for positron scattering from the important biomolecule pyrimidine. The energy range of these measurements was 0.3-45 eV, while the energy resolution was ∼260 meV. In addition, we report theoretical results, calculated within the independent atom-screened additivity rule (IAM-SCAR) formalism, for the corresponding electron impact total cross sections. In that case the energy range is 1-10 000 eV. Total cross sections are very important input data for codes that seek to simulate charged-particle tracks in matter, as they define the mean-free path between collisions. As the present data and computations are to the best of our knowledge the first total cross sections to be reported for either positron or electron scattering from pyrimidine, they fill an important void in our available knowledge in the literature.

  5. Nonelastic-scattering cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1980-06-01

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  6. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Perrett, G.M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Maxwell, J.A. [3A 47 Surrey St. East, Guelph, Ontario, Canada N1H 3P6 (Canada); Nield, E.; Gellert, R. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); King, P.L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Lee, M.; O’Meara, J.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2013-05-01

    Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument’s {sup 244}Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light “invisible” constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.

  7. Absolute elastic cross sections for electron scattering from SF6

    International Nuclear Information System (INIS)

    Gulley, R.J.; Uhlmann, L.J.; Dedman, C.J.; Buckman, S.J.; Cho, H.; Trantham, K.W.

    2000-01-01

    Full text: Absolute differential cross sections for vibrationally elastic scattering of electrons from sulphur hexafluoride (SF 6 ) have been measured at fixed angles of 60 deg, 90 deg and 120 deg over the energy range of 5 to 15 eV, and also at 11 fixed energies between 2.7 and 75 eV for scattering angles between 10 deg and 180 deg. These measurements employ the magnetic angle-changing technique of Read and Channing in combination with the relative flow technique to obtain absolute elastic scattering cross sections at backward angles (135 deg to 180 deg) for incident energies below 15 eV. The results reveal some substantial differences with several previous determinations and a reasonably good level of agreement with a recent close coupling calculation

  8. Fast-neutron scattering cross sections of elemental silver

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-05-01

    Differential neutron elastic- and inelastic-scattering cross sections of elemental silver are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV and at 10 to 20 scattering angles distributed between 20 and 160 0 . Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at; 328 +- 13, 419 +- 50, 748 +- 25, 908 +- 26, 1150 +- 38, 1286 +- 25, 1507 +- 20, 1623 +- 30, 1835 +- 20 and 1944 +- 26 keV. The experimental results are used to derive an optical-statistical model that provides a good description of the observed cross sections. The measured values are compared with corresponding quantities given in ENDF/B-V

  9. Measurement of proton inelastic scattering cross sections on fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, M., E-mail: chiari@fi.infn.it [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Caciolli, A. [Department of Physics and Astronomy, University of Padua and INFN Padua, Padova (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy); Climent-Font, A. [CMAM, Universidad Autonoma de Madrid, Madrid (Spain); Lucarelli, F.; Nava, S. [Department of Physics and Astronomy, University of Florence and INFN Florence, Sesto Fiorentino (Italy)

    2016-10-01

    Differential cross-sections for proton inelastic scattering on fluorine, {sup 19}F(p,p’){sup 19}F, from the first five excited levels of {sup 19}F at 110, 197, 1346, 1459 and 1554 keV were measured for beam energies from 3 to 7 MeV at a scattering angle of 150° using a LiF thin target (50 μg/cm{sup 2}) evaporated on a self-supporting C thin film (30 μg/cm{sup 2}). Absolute differential cross-sections were calculated with a method not dependent on the absolute values of collected beam charge and detector solid angle. The validity of the measured inelastic scattering cross sections was then tested by successfully reproducing EBS spectra collected from a thick Teflon (CF{sub 2}) target. As a practical application of these measured inelastic scattering cross sections in elastic backscattering spectroscopy (EBS), the feasibility of quantitative light element (C, N and O) analysis in aerosol particulate matter samples collected on Teflon by EBS measurements and spectra simulation is demonstrated.

  10. TOTEM Results on Elastic Scattering and Total Cross-Section

    CERN Document Server

    Kašpar, Jan

    2015-01-01

    TOTEM is an LHC experiment dedicated to forward hadronic physics. In this contribution, two main parts of its physics programme - proton-proton elastic scattering and total cross-section - are discussed. The analysis procedures are outlined and their status is reviewed.

  11. Electron scattering cross sections pertinent to electron microscopy

    International Nuclear Information System (INIS)

    Inokuti, M.

    1978-01-01

    Some elements of the physics that determine cross sections are discussed, and various sources of data are indicated that should be useful for analytical microscopy. Atoms, molecules, and to some extent, solids are considered. Inelastic and elastic scattering of electrons and some solid-state effects are treated. 30 references

  12. Generation of neutron scattering cross sections for silicon dioxide

    International Nuclear Information System (INIS)

    Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F

    2009-01-01

    A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es

  13. Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror

    Science.gov (United States)

    Fotiadi, Andrei A.; Mégret, Patrice; Blondel, Michel

    2004-05-01

    Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.

  14. Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory

    NARCIS (Netherlands)

    Meijer, A.S.; Wijn, de A.S.; Peters, M.F.E.; Dam, N.J.; Water, van de W.

    2010-01-01

    We investigate coherent Rayleigh–Brillouin spectroscopy as an efficient process to measure the bulk viscosity of gases at gigahertz frequencies. Scattered spectral distributions are measured using a Fizeau spectrometer. We discuss the statistical error due to the fluctuating mode structure of the

  15. Study on the interactions of antiemetic drugs and 12-tungstophosphoric acid by absorption and resonance Rayleigh scattering spectra and their analytical applications

    Science.gov (United States)

    Wang, Yaqiong; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2013-03-01

    In 0.1 mol L-1 HCl medium, antiemetic drugs (ATM), such as granisetron hydrochloride (GS) and tropisetron hydrochloride (TS), reacted with H3PW12O40·nH2O and formed 3:1 ion-association complex of [(ATM)3PW12O40], then self-aggregated into nanoparticles-[(ATM)3PW12O40]n with an average size of 100 nm. The reaction resulted in the enhancement of resonance Rayleigh scattering (RRS) and the absorption spectra. The increments of scattering intensity (ΔIRRS) and the change of absorbance (ΔA) were both directly proportional to the concentrations of ATM in certain ranges. Accordingly, two new RRS and spectrophotometric methods were proposed for ATM detection. The detection limits (3σ) of GS and TS were 3.2 ng mL-1 and 4.0 ng mL-1(RRS method), 112.5 ng mL-1 and 100.0 ng mL-1(spectrophotometric method). These two methods were applied to determine GS in orally disintegrating tablets and the results were in good agreement with the official method. The ground-state geometries and electronic structures of GS and TS were optimized by the hybrid density functional theory (DFT) method and the shape of [(ATM)3PW12O40]n was characterized by atomic force microscopy (AFM). Take the RRS method with higher sensitivity as an example, the reaction mechanism and the reasons for enhancement of scattering were discussed.

  16. Development of High Spectral Resolution Technique for Registration Quasielastic Light Scattering Spectra Including Rayleigh and Brillouin Scattering as a Diagnostic Tool in Materials Characterization

    National Research Council Canada - National Science Library

    Bairamov, Bakhysh

    2004-01-01

    ...: As detailed in an on-line proposal the contractor will: 1) develop and build an optical device, fitted to a Fabry-Perot interferometer, to perform high-resolution quasieleastic light scattering spectroscopy; 2...

  17. Elastic scattering and total cross section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.; Sanguinetti, G.

    1985-01-01

    The aim of this review is to summarize the recent progress in the field of elastic scattering and total cross section in this new energy domain. In Section 2 a survey of the experimental situation is outlined. The most significant data are presented, with emphasis on the interpretation, not the specific details or technicalities. This section is therefore intended to give a self-contained look at the field, especially for the nonspecialist. In Section 3, hadron scattering at high energy is described in an impact parameter picture, which provides a model-independent intuitive geometrical representation. The diffractive character of elastic scattering, seen as the shadow of inelastic absorption, is presented as a consequence of unitarity in the s-channel. Spins are neglected throughout this review, inasmuch as the asymptotic behavior in the very high-energy limit is the main concern here. In Section 4 some relevant theorems are recalled on the limiting behavior of hadron-scattering amplitudes at infinite energy. There is also a brief discussion on how asymptotically rising total cross sections imply scaling properties in the elastic differential cross sections. A quick survey of eikonal models is presented and their predictions are compared with ISR and SPS Collider data

  18. The effects of surface roughness on the scattering properties of hexagonal columns with sizes from the Rayleigh to the geometric optics regimes

    International Nuclear Information System (INIS)

    Liu, Chao; Lee Panetta, R.; Yang, Ping

    2013-01-01

    Effects of surface roughness on the optical scattering properties of ice crystals are investigated using a random wave superposition model of roughness that is a simplification of models used in studies of scattering by surface water waves. Unlike previous work with models of rough surfaces applicable only in limited size ranges, such as surface perturbation methods in the small particle regime or the tilted-facet (TF) method in the large particle regime, ours uses a single roughness model to cover a range in sizes extending from the Rayleigh to the geometric optics regimes. The basic crystal shape we examine is the hexagonal column but our roughening model can be used for a wide variety of particle geometries. To compute scattering properties over the range of sizes we use the pseudo-spectral time domain method (PSTD) for small to moderate sized particles and the improved geometric optics method (IGOM) for large ones. Use of the PSTD with our roughness model is straightforward. By discretizing the roughened surface with triangular sub-elements, we adapt the IGOM to give full consideration of shadow effects, multiple reflections/refractions at the surface, and possible reentrance of the scattered beams. We measure the degree of roughness of a surface by the variance (σ 2 ) of surface slopes occurring on the surfaces. For moderately roughened surfaces (σ 2 ≤0.1) in the large particle regime, the scattering properties given by the TF and IGOM agree well, but differences in results obtained with the two methods become noticeable as the surface becomes increasingly roughened. Having a definite, albeit idealized, roughness model we are able to use the combination of the PSTD and IGOM to examine how a fixed degree of surface roughness affects the scattering properties of a particle as the size parameter of the particle changes. We find that for moderately rough surfaces in our model, as particle size parameter increases beyond about 20 the influence of surface

  19. Internal magnetic turbulence measurement in plasma by cross polarization scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X L; Colas, L; Paume, M; Chareau, J M; Laurent, L; Devynck, P; Gresillon, D

    1994-09-01

    For the first time, the internal magnetic turbulence is measured by a new cross polarization scattering diagnostic in Tore Supra tokamak. The principle of this experiment is presented. It is based on the polarization change or mode conversion of the e.m. wave scattering by magnetic fluctuations. The role of different physical processes on the signal formation are investigated. From the Observation, a rough estimate for the relative magnetic fluctuations of about 10{sup -4} is obtained. A strong correlation of the measured signal with additional heating is observed. (author). 14 refs., 4 figs.

  20. The possibility of applying spectral redundancy in DWDM systems on existing long-distance FOCLs for increasing the data transmission rate and decreasing nonlinear effects and double Rayleigh scattering without changes in the communication channel

    Science.gov (United States)

    Nekuchaev, A. O.; Shuteev, S. A.

    2014-04-01

    A new method of data transmission in DWDM systems along existing long-distance fiber-optic communication lines is proposed. The existing method, e.g., uses 32 wavelengths in the NRZ code with an average power of 16 conventional units (16 units and 16 zeros on the average) and transmission of 32 bits/cycle. In the new method, one of 124 wavelengths with a duration of one cycle each (at any time instant, no more than 16 obligatory different wavelengths) and capacity of 4 bits with an average power of 15 conventional units and rate of 64 bits/cycle is transmitted at every instant of a 1/16 cycle. The cross modulation and double Rayleigh scattering are significantly decreased owing to uniform distribution of power over time at different wavelengths. The time redundancy (forward error correction (FEC)) is about 7% and allows one to achieve a coding enhancement of about 6 dB by detecting and removing deletions and errors simultaneously.

  1. Collision, scattering and absorption differential cross-sections in double-photon Compton scattering

    International Nuclear Information System (INIS)

    Dewan, R.; Saddi, M.B.; Sandhu, B.S.; Singh, B.; Ghumman, B.S.

    2005-01-01

    The collision, scattering and absorption differential cross-sections of double-photon Compton scattering are measured experimentally for 0.662 MeV incident gamma photons. Two simultaneously emitted gamma quanta are investigated using a slow-fast coincidence technique having 25 ns resolving time. The coincidence spectra for different energy windows of one of the two final photons are recorded using HPGe detector. The experimental data do not suffer from inherent energy resolution of gamma detector and provide more faithful reproduction of the distribution under the full energy peak of recorded coincidence spectra. The present results are in agreement with the currently acceptable theory of this higher order process

  2. Highly sensitive and selective determination of fluorine ion by graphene oxide/nanogold resonance Rayleigh scattering-energy transfer analytical platform.

    Science.gov (United States)

    Liang, Aihui; Peng, Jing; Liu, Qingye; Wen, Guiqing; Lu, Zhujun; Jiang, Zhiliang

    2015-08-15

    In pH 4.0 acetate buffer solution, fluorine ions react with fluorine reagent (FR) and La(III) to generate blue ternary complex that exhibited strong absorption at about 370 nm. Upon addition of graphene oxide/nanogold (GO/NG) as resonance Rayleigh scattering (RRS) spectral probe with strong RRS peak at 370 nm, the color changed to gray, and the RRS intensity decreased with the increase of fluorine ion concentration due to the RRS energy transfer (RRSET) from GO/NG to the complex. Under the selected condition, the decreased RRS peak ΔI370 nm was linear to fluorine ion concentration in the range of 6.0 × 10(-8)-1.3 × 10(-5)mol/L, with a detection limit of 3.0 × 10(-8)mol/L F(-). This RRSET method was applied to the analysis of fluorine in toothpaste and water samples, with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A simple and sensitive resonance Rayleigh scattering-energy transfer method for amino acids coupling its Ruhemann's purple and graphene oxide probe

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yanghe [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Li, Chongnin; Qin, Aimian [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Liang, Aihui, E-mail: ahliang2008@163.com [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Jiang, Zhiliang, E-mail: zljiang@mailbox.gxnu.edu.cn [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China)

    2017-05-15

    In pH 7.2 KH{sub 2}PO{sub 4}-NaOH buffer solution, graphene oxide (GO) has strong resonance Rayleigh scattering (RRS) effect at 400 nm, and amino acid reacted with ninhydrin to form blue-violet complex Ruhemann's purple (RP) with a absorption peak at 400 nm. RPs can strongly adsorbed on the surface of GO, and the RRS donor of GO probes coupled with the receptor of RP that reduced the RRS intensity at 400 nm due to the RRS-energy transfer (RRS-ET) from the GO to RP. With the increase of amino acid concentration, the RRS intensity quenched linearly at 400 nm due to the RRS-ET enhancing. The quenched intensity responds linearly with glutamic acid concentration in the range of 0.2–200 μmol L{sup −1}, with a detection limit of 0.08 µmol L{sup −1}. This simple and sensitive RRS-ET method was used to detect the content of amino acid in oral liquid, with satisfactory results.

  4. The resonance Rayleigh light scattering spectral investigation on the interaction of DNA with camellia sinensis in the presence of CPC and its analytical application

    Science.gov (United States)

    Bi, Shuyun; Wang, Tianjiao; Zhao, Tingting; Wang, Yu

    2014-06-01

    A novel method with high sensitivity was designed for the determination of trace nucleic acids by using cationic surfactant cetylpyridinium chloride (CPC) and camellia sinensis (CS) as resonance Rayleigh light scattering (RLS) probes. It was found DNA could combine with CS and CPC in Tris-HCl buffer (pH = 7.4). Under optimum conditions, the RLS intensity of DNA can be enhanced by CPC-CS obviously at 294 nm, and the enhanced RLS intensity was directly proportional to DNA concentration in the range from 0.024 to 3.48 μg mL-1 with a good linear relationship (r = 0.9940). The limit of detection (LOD) was 1.49 ng mL-1 (S/N = 3). In addition, the effects of some interferences including K+, Na+, Mg2+, Zn2+, Cu2+, Ca2+ and glucose on the determination were studied. The developed RLS assay was successfully applied to three synthetic samples to measure DNA, the recovery was 94.7-106.3% and RSD was 0.58-3.33%.

  5. Resonance Rayleigh Scattering Spectra of an Ion-Association Complex of Naphthol Green B–Chitosan System and Its Application in the Highly Sensitive Determination of Chitosan

    Directory of Open Access Journals (Sweden)

    Weiai Zhang

    2016-04-01

    Full Text Available This work describes a highly-sensitive and accurate approach for the determination of chitosan (CTS using Naphthol Green B (NGB as a probe in the Resonance Rayleigh scattering (RRS method. The interaction between CTS and NGB leads to notable enhancement of RRS, and the enhancement is proportional to the concentration of CTS over a certain range. Under optimum conditions, the calibration curve of ΔI against CTS concentration was ΔI = 1860.5c + 86.125 (c, µg/mL, R2 = 0.9999, and the linear range and detection limit (DL were 0.01–5.5 µg/mL and 8.87 ng/mL. Moreover, the effect of the molecular weight of CTS on the accurate quantification of CTS was studied. The experimental data were analyzed through linear regression analysis using SPSS20.0, and the molecular weight was found to have no statistical significance. This method has been applied to assay two CTS samples and obtained good recovery and reproducibility.

  6. Interaction between insulin and calf thymus DNA, and quantification of insulin and calf thymus DNA by a resonance Rayleigh scattering method

    International Nuclear Information System (INIS)

    Kong, L.; Liu, Z.; Hu, X.; Liu, S.; Li, W.

    2012-01-01

    The interaction of insulin with calf thymus deoxyribonucleic acid (ctDNA) leads to a complex that displays remarkably enhanced resonance Rayleigh scattering (RRS). The complex and its formation were investigated by atomic force microscopy and by absorption, fluorescence and circular dichroism spectroscopies. We show that the Tyr B16, Tyr B26 and Phe B24 amino acids near the active center (Phe B25) were influenced by the interaction, whereas Tyr A14, Tyr A19 and Phe B1 (which are located far away from the active center) were less influenced. The interaction provide a way in the quantitation of both ctDNA and insulin with high sensitivity. When ctDNA is used as a probe to quantify insulin, the detection limit (3σ) is 6.0 ng mL -1 . If, inversely, insulin is used as a probe to quantify ctDNA, the detection limit (3σ) is 7.2 ng mL -1 . The analysis of synthetic DNA samples and an insulin infection sample provided satisfactory results. (author)

  7. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy

    Science.gov (United States)

    Paolantoni, Marco; Sassi, Paola; Morresi, Assunta; Santini, Sergio

    2007-07-01

    The effect of glucose on the relaxation process of water at picosecond time scales has been investigated by depolarized Rayleigh scattering (DRS) experiments. The process is assigned to the fast hydrogen bonding dynamics of the water network. In DRS spectra this contribution can be safely separated from the slower relaxation process due to the sugar. The detected relaxation time is studied at different glucose concentrations and modeled considering bulk and hydrating water contributions. As a result, it is found that in diluted conditions the hydrogen bond lifetime of proximal water molecules becomes about three times slower than that of the bulk. The effect of the sugar on the hydrogen bond water structure is investigated by analyzing the low-frequency Raman (LFR) spectrum sensitive to intermolecular modes. The addition of glucose strongly reduces the intensity of the band at 170cm-1 assigned to a collective stretching mode of water molecules arranged in cooperative tetrahedral domains. These findings indicate that proximal water molecules partially lose the tetrahedral ordering typical of the bulk leading to the formation of high density environments around the sugar. Thus the glucose imposes a new local order among water molecules localized in its hydration shell in which the hydrogen bond breaking dynamics is sensitively retarded. This work provides new experimental evidences that support recent molecular dynamics simulation and thermodynamics results.

  8. Differential cross sections for e-bar CO elastic scattering

    International Nuclear Information System (INIS)

    Raj, Deo; Meetu

    2005-01-01

    In a recent investigation, Raj and Kumar modified the absorption potential of Staszewska el at al in such a way that it yielded the best agreement between theory and experiment for elastic cross sections when applied to e-bar - O 2 scattering over a wide incident energy range. In the present investigation, the same modified absorption potential of Raj and Kumar has been employed to obtain the elastic differential cross sections (EDCS) for electron scattering by CO molecules at intermediate energies (100-800 eV). The independent atom model alongwith partial waves has been used for these calculations.The present results of EDCS are in fairly good agreement with the experimental data. (author)

  9. SCATTER

    International Nuclear Information System (INIS)

    Broome, J.

    1965-11-01

    The programme SCATTER is a KDF9 programme in the Egtran dialect of Fortran to generate normalized angular distributions for elastically scattered neutrons from data input as the coefficients of a Legendre polynomial series, or from differential cross-section data. Also, differential cross-section data may be analysed to produce Legendre polynomial coefficients. Output on cards punched in the format of the U.K. A. E. A. Nuclear Data Library is optional. (author)

  10. Effective temperatures and scattering cross sections in water mixtures determined by Deep Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Dawidowski, J.; Rodríguez Palomino, L.A.; Márquez Damián, J.I.; Blostein, J.J.; Cuello, G.J.

    2016-01-01

    Highlights: • Effective temperatures of atoms can be determined by the DINS technique. • This is the first time that such application of this experimental technique is made. • This technique is able to measure the known cross sections of the atoms. • No anomalous cross section was found, at variance with Dreissmann’s et al. claims. - Abstract: The present work shows a series of results of Deep Inelastic Neutron Scattering (DINS) experiments on light and heavy water mixtures performed at the spectrometer VESUVIO (Rutherford Appleton Laboratory, UK) employing an analysis method based on the information provided by individual detectors in forward and backward scattering positions. We investigated the effective temperatures of the different atoms composing the samples, a magnitude of considerable interest for Nuclear Engineering. The peak intensities and their relation with the bound-atom cross sections is analyzed, showing a good agreement with tabulated values which supports the use of this technique as non-destructive mass spectrometry. Previous results in the determination of scattering cross sections by this technique (known in the literature) that were at variance with the present findings are commented.

  11. Total cross sections and elastic scattering at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Foley, K.J.

    1985-12-05

    The need is discussed of a special purpose detector for the measurement of elastic scattering at the SSC. The detector would cover as small a solid angle as is practical. Two techniques are described briefly to measure total cross sections at hadron storage rings. The direct method is to measure the interaction rate in an IR of known luminosity - a method that gets more difficult increasing energy. A second method is to use the optical theorem. 6 refs., 1 fig. (LEW)

  12. Crossing statistics of laser light scattered through a nanofluid.

    Science.gov (United States)

    Arshadi Pirlar, M; Movahed, S M S; Razzaghi, D; Karimzadeh, R

    2017-09-01

    In this paper, we investigate the crossing statistics of speckle patterns formed in the Fresnel diffraction region by a laser beam scattering through a nanofluid. We extend zero-crossing statistics to assess the dynamical properties of the nanofluid. According to the joint probability density function of laser beam fluctuation and its time derivative, the theoretical frameworks for Gaussian and non-Gaussian regimes are revisited. We count the number of crossings not only at zero level but also for all available thresholds to determine the average speed of moving particles. Using a probabilistic framework in determining crossing statistics, a priori Gaussianity is not essentially considered; therefore, even in the presence of deviation from Gaussian fluctuation, this modified approach is capable of computing relevant quantities, such as mean value of speed, more precisely. Generalized total crossing, which represents the weighted summation of crossings for all thresholds to quantify small deviation from Gaussian statistics, is introduced. This criterion can also manipulate the contribution of noises and trends to infer reliable physical quantities. The characteristic time scale for having successive crossings at a given threshold is defined. In our experimental setup, we find that increasing sample temperature leads to more consistency between Gaussian and perturbative non-Gaussian predictions. The maximum number of crossings does not necessarily occur at mean level, indicating that we should take into account other levels in addition to zero level to achieve more accurate assessments.

  13. Exact solutions and numerical simulation of longitudinal vibration of the Rayleigh-Love rods with variable cross-sections

    CSIR Research Space (South Africa)

    Shatalov, M

    2012-09-01

    Full Text Available Exact solutions of equations of longitudinal vibration of conical and exponential rod are analyzed for the Rayleigh-Love model. These solutions are used as reference results for checking accuracy of the method of lines. It is shown that the method...

  14. Total cross sections for electron scattering with halocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Naghma, Rahla; Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    2014-03-01

    Highlights: • A quantum mechanical model to find elastic, inelastic and total CS by e{sup −} impact. • Spherical complex optical potential formalism is used to find total CS. • Result shows consistency and good agreement with previous data wherever available. • Maiden attempt to find CS for CH{sub 2}Br{sub 2}, CHBr{sub 3}, CBr{sub 4} and C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules. • Interesting correlation observed between total CS and polarizability of the molecule. - Abstract: A theoretical study on electron collision with chlorinated methanes: CH{sub 2}Cl{sub 2} and CHCl{sub 3}, brominated methanes: CH{sub 2}Br{sub 2}, CHBr{sub 3} and CBr{sub 4} and some mono chloroalkanes: C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules in gaseous ground state is undertaken to report elastic, inelastic and total cross sections in the 20–5000 eV energy range. The target molecule is represented as a sum of various scattering centres, which are assumed to scatter electrons independently. The spherical complex optical potential (SCOP) is formulated to represent the interaction dynamics between the electron and the constituent scattering centres. Using SCOP, the quantum mechanical scattering problem is solved through partial wave analysis. The results obtained for CH{sub 2}Cl{sub 2} and CHCl{sub 3} are compared with the available experimental and theoretical values. The elastic cross section for CBr{sub 4} shows satisfactory agreement with the previous available data. The cross sections for CH{sub 2}Br{sub 2}, CHBr{sub 3}, and C{sub n}H{sub 2n+1}Cl (n = 2–4) molecules presented in this work are reported for the first time.

  15. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    Science.gov (United States)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  16. Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots.

    Science.gov (United States)

    Zou, Wen-Sheng; Sheng, Dong; Ge, Xin; Qiao, Jun-Qin; Lian, Hong-Zhen

    2011-01-01

    Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  17. Optical model calculation of neutron-nucleus scattering cross sections

    International Nuclear Information System (INIS)

    Smith, M.E.; Camarda, H.S.

    1980-01-01

    A program to calculate the total, elastic, reaction, and differential cross section of a neutron interacting with a nucleus is described. The interaction between the neutron and the nucleus is represented by a spherically symmetric complex potential that includes spin-orbit coupling. This optical model problem is solved numerically, and is treated with the partial-wave formalism of scattering theory. The necessary scattering theory required to solve this problem is briefly stated. Then, the numerical methods used to integrate the Schroedinger equation, calculate derivatives, etc., are described, and the results of various programming tests performed are presented. Finally, the program is discussed from a user's point of view, and it is pointed out how and where the program (OPTICAL) can be changed to satisfy particular needs

  18. The fluorescence and resonance Rayleigh scattering spectra study on the interactions of palladium (II)-Nootropic chelate with Congo red and their analytical applications

    Science.gov (United States)

    Chen, Fang; Peng, Jingdong; Liu, Shaopu; Peng, Huanjun; Pan, Ziyu; Bu, Lingli; Xiao, Huan; Zhang, Ruiwen

    2017-04-01

    A highly sensitive detection approach of resonance Rayleigh scattering spectra (RRS) is firstly applied to analyzing nootropic drugs including piracetam (PIR) and oxiracetam (OXI). In HCl-NaAc buffer solution (pH = 3.0), the OXI chelated with palladium (II) to form the chelate cation [Pd2·OXI]2 +, and then reacted with Congo red (CGR) by virtue of electrostatic attraction and hydrophobic force to form binary complex [Pd2·OXI]. CGR2, which could result in the great enhancement of RRS. The resonance Rayleigh scattering signal was recorded at λex = λem = 375 nm. This mixture complex not only has higher RRS, but also makes contribution to significant increase of fluorescence, and the same phenomena also were discovered in PIR. The enhanced RRS intensity is in proportion to the PIR and OXI concentration in the range of 0.03-3.0 μg mL- 1, and the detection limit (DL) of RRS method for PIR and OXI is 2.3 ng mL- 1 and 9.7 ng mL- 1. In addition, the DL of fluorescence method for PIR and OXI is 8.4 μg mL- 1 and 19.5 μg mL- 1. Obviously, the RRS is the highly sensitive method, and the recoveries of the two kinds of nootropic drugs were range from 100.4% to 101.8.0% with RSD (n = 5) from 1.1% to 3.1% by RRS method. This paper not only investigated the optimum conditions for detecting nootropics with using RRS method, but also focused on the reasons for enhancing RRS intensity and the reaction mechanism, which in order to firm and contract the resultant. Finally, The RRS method has been applied to detect nootropic drugs in human urine samples with satisfactory results. Fig. S2. The effect of ionic strength: Pd (II)-CGR system (curve a); Pd (II)-OXI-CGR system (curve b); Pd (II)-PIR- CGR system (curve c). Pd (II): 2.0 × 10- 4 mol L- 1; CGR: 1.0 × 10- 5 mol L- 1; OXI: 1.5 μg mL- 1; PIR: 2 μg mL- 1; NaCl: 1 mol L- 1. Fig. S3. The effect of time: Pd (II)-OXI-CGR system (curve a); Pd (II)-PIR-CGR system (curve b). Pd (II): 2.0 × 10- 4 mol L- 1; CGR: 1.0 × 10- 5 mol L- 1

  19. A reversed-phase high performance liquid chromatography coupled with resonance Rayleigh scattering detection for the determination of four tetracycline antibiotics

    International Nuclear Information System (INIS)

    Wang Lifeng; Peng Jingdong; Liu Limin

    2008-01-01

    A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm x 4.6 mm; 4 μm) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min -1 . Column temperature was 30 deg. C. The RRS signal was detected at λ ex = λ em = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 μg mL -1 was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 μg mL -1 for oxytetracycline (OTC), 12.11-605.5 μg mL -1 for tetracycline (TC), 11.79-589.5 μg mL -1 for chlortetracycline (CTC) and 10.32-516.0 μg mL -1 for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability

  20. A reversed-phase high performance liquid chromatography coupled with resonance Rayleigh scattering detection for the determination of four tetracycline antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Lifeng, Wang [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Peng Jingdong [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)], E-mail: hxpengjd@swu.edu.cn; Limin, Liu [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2008-12-07

    A new reversed-phase high performance liquid chromatography with resonance Rayleigh scattering detection (HPLC-RRS) was developed for simultaneous separation and determination of four tetracycline antibiotics (TCs). A good chromatographic separation among the compounds was achieved using a Synergi Fusion-RP column (150 mm x 4.6 mm; 4 {mu}m) and a mobile phase consisting of methanol-acetonitrile-oxalic acid (5 mM) at the flow rate of 0.8 mL min{sup -1}. Column temperature was 30 deg. C. The RRS signal was detected at {lambda}{sub ex} = {lambda}{sub em} = 370 nm. The recoveries of sample added standard ranged from 95.3% to 103.5%, and the relative standard deviation was below 2.79%. A detection limit of 2.12-5.12 {mu}g mL{sup -1} was reached and a linear range was found between peak height and concentration in the range of 10.36-518.0 {mu}g mL{sup -1} for oxytetracycline (OTC), 12.11-605.5 {mu}g mL{sup -1} for tetracycline (TC), 11.79-589.5 {mu}g mL{sup -1} for chlortetracycline (CTC) and 10.32-516.0 {mu}g mL{sup -1} for doxycycline (DC). The linear regression coefficients were all above 0.999. The method has been applied successfully to the determination of OTC, TC, CTC, DC in pharmaceutical formulations and in honey. The method was simple, rapid and showed a better linear relation and high repeatability.

  1. Rayleigh wave ellipticity across the Iberian Peninsula and Morocco

    Science.gov (United States)

    Gómez García, Clara; Villaseñor, Antonio

    2015-04-01

    Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared

  2. Database for 238U inelastic scattering cross section evaluation

    International Nuclear Information System (INIS)

    Kanda, Yukinori; Fujikawa, Noboru; Kawano, Toshihiko

    1993-10-01

    There are discrepancies among evaluated neutron inelastic scattering cross sections for 238 U in the evaluated nuclear data files, JENDL-3, ENDF/B-VI, JEF-2, BROND-2 and CENDL-2. Re-evaluating them is internationally being discussed to obtain the best outcome which can be accepted in common at the present by experts in the world. This report has been compiled to review the discrepancies among the evaluations in the present data files and to provide a common database for the re-evaluation work (author)

  3. Ions cross-B collisional diffusion and electromagnetic wave scattering

    International Nuclear Information System (INIS)

    Tomchuk, B.P.; Gresillon, D.

    2000-01-01

    The calculation is presented of the averaged quadratic displacement of a collisional charged particle in a magnetic field. This calculation is used to obtain the statistical presentation of the electromagnetic field scattered by these particles. These results extend the previous calculations that were restricted to non-magnetized particles (Ornstein equation, Einstein diffusion, etc.). In addition this calculation foresees effects that are absent of the Ornstein equation: a modulation of the averaged quadratic displacement function at the cyclotron frequency and a maximum of the Cross-B diffusion coefficient when the cyclotron frequency is equal to the collision frequency (Bohm diffusion)

  4. Cross-channel coupling in positron-atom scattering

    International Nuclear Information System (INIS)

    McAlinden, M.T.; Kernoghan, A.A.; Walters, H.R.J.

    1994-01-01

    Coupled-state calculations including positronium channels are reported for positron scattering by atomic hydrogen, lithium and sodium. Integrated cross sections and total cross sections are presented for all three atoms. For lithium differential cross sections are also given. Throughout, comparison is made between results calculated with and without inclusion of the positronium channels. S-wave cross sections for positron scattering by atomic hydrogen in the Ps(1s, 2s, 2p) + H(1s, 2s, 2p) approximation show the high energy resonance first observed by Higgins and Burke in the coupled-static approximation. This resonance has now moved up to 51.05 eV and narrowed in width to 2.92 eV. Other pronounced structure is seen in the S-wave cross sections between 10 and 20 eV; it is tentatively suggested that this structure may be due to the formation of a temporary pseudo-molecular collision complex. Results calculated in the Ps(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) + H(1s, 2s, anti 3 anti s, anti 4 anti s, 2p, anti 3 anti p, anti 4 anti p, anti 3 anti d, anti 4 anti d) approximation show convergence towards accurate values in the energy region below and in the Ore gap. Contrary to previous work on lithium using only an atomic basis, it is found that coupling to the 3d state of lithium is not so important when positronium channels are included; this is because a mixed basis of atom and positronium states gives a more rapidly convergent approximation than an expansion based on atom states alone. The threshold behaviour of the elastic cross section and the Ps(1s) formation cross section for lithium is investigated. Results in the Ps(1s, 2s, 2p) + Na(3s, 3p) approximation for sodium show good agreement with the total cross section measurements of Kwan et al. (orig.)

  5. Electron and positron atomic elastic scattering cross sections

    International Nuclear Information System (INIS)

    Stepanek, Jiri

    2003-01-01

    A method was developed to calculate the total and differential elastic-scattering cross sections for incident electrons and positrons in the energy range from 0.01 eV to 1 MeV for atoms of Z=1-100. For electrons, hydrogen, helium, nitrogen, oxygen, krypton, and xenon, and for positrons, helium, neon, and argon atoms were considered for comparison with experimental data. First, the variationally optimized atomic static potentials were calculated for each atom by solving the Dirac equations for bound electron states. Second, the Dirac equations for a free electron or positron are solved for an atom using the previously calculated static potential accomplished (in the case of electrons) by 'adjusted' Hara's exchange potential for a free-state particle. Additional to the exchange effects, the charge cloud polarization effects are considered applying the correlation-polarization potential of O'Connell and Lane (with correction of Padial and Norcross) for incident electrons, and of Jain for incident positrons. The total, cutoff and differential elastic-scattering cross sections are calculated for incident electrons and positrons with the help of the relativistic partial wave analysis. The solid state effects for scattering in solids are described by means of a muffin-tin model, i.e. the potentials of neighboring atoms are superpositioned in such a way that the resulting potential and its derivative are zero in the middle distance between the atoms. The potential of isolated atom is calculated up to the radius at which the long-range polarization potential becomes a value of -10 -8

  6. Positron total scattering cross-sections for alkali atoms

    Science.gov (United States)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  7. Crossed-molecular-beams reactive scattering of oxygen atoms

    International Nuclear Information System (INIS)

    Baseman, R.J.

    1982-11-01

    The reactions of O( 3 P) with six prototypical unsaturated hydrocarbons, and the reaction of O( 1 D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O( 3 P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively

  8. Crossed-molecular-beams reactive scattering of oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Baseman, R.J.

    1982-11-01

    The reactions of O(/sup 3/P) with six prototypical unsaturated hydrocarbons, and the reaction of O(/sup 1/D) with HD, have been studied in high-resolution crossed-molecular-beams scattering experiments with mass-spectrometric detection. The observed laboratory-product angular and velocity distributions unambiguously identify parent-daughter ion pairs, distinguish different neutral sources of the same ion, and have been used to identify the primary products of the reactions. The derived center-of-mass product angular and translational energy distributions have been used to elucidate the detailed reaction dynamics. These results demonstrate that O(/sup 3/P)-unsaturated hydrocarbon chemistry is dominated by single bond cleavages, leading to radical products exclusively.

  9. Delbrueck scattering of monoenergetic photons

    International Nuclear Information System (INIS)

    Kahane, S.

    1978-05-01

    The Delbrueck effect was experimentally investigated in high Z nuclei with monoenergetic photons in the range 6.8-11.4 MeV. Two different methods were used for measurements of the differential scattering cross-section, in the 25-140 deg range and in the forward direction (theta = 1.5 deg), respectively. The known Compton scattering cross-section was used in a new and unique way for the determination of the elastic scattering cross-section. Isolation of the contribution of the real Delbrueck amplitudes to the cross-section was crried out successfully. Experimental confirmation of the theoretical calculations of Papatzacos and Mork and measurement, for the first time, of the Rayleigh scattering in the 10 MeV region are also reported. One of the most interesting findings is the presence of Coulomb corrections in Delbrueck scattering at these energies. More theoretical effort is needed in this last direction. (author)

  10. Measurement of the diffractive cross section in deep inelastic scattering

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-02-01

    Diffractive scattering of γ*p→X+N, where N is either a proton or a nucleonic system with M N X of the system X up to 15 GeV at average Q 2 values of 14 and 31 GeV 2 . The diffractive cross section dσ diff /dM X is, within errors, found to rise linearly with W. Parameterizing the W dependence by the form dσ diff /dM X ∝(W 2 )sup((2 anti α IP -2)) the DIS data yield for the pomeron trajectory anti α IP =1.23±0.02(stat)±0.04(syst) averaged over t in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than anti α IP extracted from soft interactions. The value of anti α IP measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates form processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton F 2 D(3) (β, Q 2 , x IP ) has been determined, where β is the momentum fraction of the struck quark in the pomeron. The form F 2 D(3) =constant. (1/x IP ) a gives a good fit to the data in all β and Q 2 intervals with a=1.46±0.04(stat)±0.08(syst). (orig.)

  11. Ab initio calculation of scattering length and cross sections at very low energies for electron-helium scattering

    International Nuclear Information System (INIS)

    Saha, H.P.

    1993-01-01

    The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)

  12. Elastic scattering of gamma radiation in solids

    International Nuclear Information System (INIS)

    Goncalves, O.D.

    1987-01-01

    The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)

  13. Double Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition

    Science.gov (United States)

    Hong, Sang-Hoon; Wdowinski, Shimon

    2013-08-01

    Common vegetation scattering theories assume that the Synthetic Aperture Radar (SAR) cross-polarization (cross-pol) signal represents solely volume scattering. We found this assumption incorrect based on SAR phase measurements acquired over the south Florida Everglades wetlands indicating that the cross-pol radar signal often samples the water surface beneath the vegetation. Based on these new observations, we propose that the cross-pol measurement consists of both volume scattering and double bounce components. The simplest multi-bounce scattering mechanism that generates cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism with probability density function to revise some of the vegetation scattering theories and develop a three- component decomposition algorithm with single bounce, double bounce from both co-pol and cross-pol, and volume scattering components. We applied the new decomposition analysis to both urban and rural environments using Radarsat-2 quad-pol datasets. The decomposition of the San Francisco's urban area shows higher double bounce scattering and reduced volume scattering compared to other common three-component decomposition. The decomposition of the rural Everglades area shows that the relations between volume and cross-pol double bounce depend on the vegetation density. The new decomposition can be useful to better understand vegetation scattering behavior over the various surfaces and the estimation of above ground biomass using SAR observations.

  14. Bound coherent and incoherent thermal neutron scattering cross sections of the elements

    International Nuclear Information System (INIS)

    Sears, V.F.

    1982-12-01

    An up-to-date table of bound coherent and incoherent thermal neutron scattering cross sections of the elements is presented. Values from two different data sources are calculated and compared. These sources are: (1) the free-atom cross sections listed in the Σbarn bookΣ and (2) the Julich scattering length tables. We also call attention to, and clarify, the confusion that exists in the literature concerning the sign of the imaginary part of the complex scattering length

  15. Low energy positron interactions with uracil—Total scattering, positronium formation, and differential elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P. [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Chiari, L. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Buckman, S. J., E-mail: Stephen.buckman@anu.edu.au [ARC Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Brunger, M. J. [ARC Centre for Antimatter-Matter Studies, Flinders University, GPO Box 2100, Adelaide, 5001 SA (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Garcia, G. [Instituto de Fısica Fundamental, Consejo Superior de Investigationes Cientıficas (CSIC), Serrano 113-bis, E-28006 Madrid (Spain); Blanco, F. [Departamento de Fısica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Ingolfsson, O. [Department of Chemistry, Science Institute, University of Iceland, Reykjavík 107 (Iceland)

    2014-07-21

    Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.

  16. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Directory of Open Access Journals (Sweden)

    Heusch M.

    2010-10-01

    Full Text Available A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2. This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo calculations was applied to extract naturalC, 19F and 7Li elastic scattering cross sections.

  17. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  18. Anomalous neutron Compton scattering cross section in zirconium hydride

    International Nuclear Information System (INIS)

    Abdul-Redah, T.; Krzystyniak, M.; Mayers, J.; Chatzidimitriou-Dreismann, C.A.

    2005-01-01

    In the last few years we observed a shortfall of intensity of neutrons scattered from protons in various materials including metal hydrogen systems using neutron Compton scattering (NCS) on the VESUVIO instrument (ISIS, UK). This anomaly has been attributed to the existence of short-lived quantum entangled states of protons in these materials. Here we report on results of very recent NCS measurements on ZrH 2 at room temperature. Also here an anomalous shortfall of scattering intensity due to protons is observed. In contrast to previous experiments on NbH 0.8 , the anomalies found in ZrH 2 are independent of the scattering angle (or momentum transfer). These different results are discussed in the light of recent criticisms and experimental tests related to the data analysis procedure on VESUVIO

  19. Absolute measurement of the critical scattering cross section in cobalt

    International Nuclear Information System (INIS)

    Glinka, C.J.; Minkiewicz, V.J.; Passell, L.

    1975-01-01

    Small-angle neutron scattering techniques have been used to study the angular distribution of the critical scattering from cobalt above T/sub c/. These measurements have been put on an absolute scale by calibrating the critical scattering directly against the nuclear incoherent scattering from cobalt. In this way the interaction range r 1 , which appears in the classical and modified Ornstein--Zernike expressions for the asymptotic form of the spin pair correlation function and is related to the strength of the spin correlations, has been determined. We obtain r 1 /a = 0.46 +- 0.03 for the ratio of the interaction range to the nearest-neighbor distance in cobalt. This result is in good agreement with theoretical predictions. Lack of agreement among previous determinations of the ratio r 1 /a made in iron failed to provide a definitive comparison with theory

  20. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    Science.gov (United States)

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  1. Scaling relations in elastic scattering cross sections between multiply charged ions and hydrogen

    International Nuclear Information System (INIS)

    Rodriguez, V.D.

    1991-01-01

    Differential elastic scattering cross sections of bare ions from hydrogen are calculated using the eikonal approximation. The results satisfy a scaling relation involving the scattering angle, the ion charge and a factor related to the ion mass. A semiclassical explanation in terms of a distant collision hypothesis for small scattering angle is proposed. A unified picture of related scaling rules found in direct processes is discussed. (author)

  2. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    Science.gov (United States)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  3. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com [Atomic and Molecular Physics Lab, Department of Applied Physics, Indian School of Mines, Dhanbad (India)

    2016-07-21

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  4. Homogenization of linearly anisotropic scattering cross sections in a consistent B1 heterogeneous leakage model

    International Nuclear Information System (INIS)

    Marleau, G.; Debos, E.

    1998-01-01

    One of the main problems encountered in cell calculations is that of spatial homogenization where one associates to an heterogeneous cell an homogeneous set of cross sections. The homogenization process is in fact trivial when a totally reflected cell without leakage is fully homogenized since it involved only a flux-volume weighting of the isotropic cross sections. When anisotropic leakages models are considered, in addition to homogenizing isotropic cross sections, the anisotropic scattering cross section must also be considered. The simple option, which consists of using the same homogenization procedure for both the isotropic and anisotropic components of the scattering cross section, leads to inconsistencies between the homogeneous and homogenized transport equation. Here we will present a method for homogenizing the anisotropic scattering cross sections that will resolve these inconsistencies. (author)

  5. Hydrogen scattering cross section, 1H(n,n)1H

    International Nuclear Information System (INIS)

    Stewart, L.

    1979-07-01

    The status of the hydrogen scattering cross section is reviewed with particular emphasis on standards applications. The ENDF/B-V evaluation is described in detail and compared with experimental data. 58 references

  6. Progress on calculation of direct inelastic scattering cross section of neutron

    Energy Technology Data Exchange (ETDEWEB)

    Zhenpeng, Chen [Qinghua Univ., Beijing, BJ (China). Dept. of Physics

    1996-06-01

    For n+ {sup 238}U inelastic scattering cross, there exist discrepancies among the available evaluations in various libraries. This is partly duo to the difference of direct inelastic scattering cross section calculated with coupled channel optical model (CCOM). The research on the level frame used in CCOM calculation, the research on used parameters of spherical optical model in CCOM calculation and the research on the amplitude of octupole phonon {beta}{sub 3} were presented. (2 figs.).

  7. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  8. Model of homogeneous nucleus. Total and inelastic cross sections of nucleon-nucleus scattering

    International Nuclear Information System (INIS)

    Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1985-01-01

    It is shown that the nucleon-nuckleus scattering amplitude at high energy can be easily calculated by generalization of the nucleon-nucleon scattering amplitude and satisfies a simple factorization relation. As distinct from the Glauber model, the suggested approach makes no use of the nucleonic structure of the nucleus and the hadron-nucleus scattering amplitude is not expressed in terms of hadron-nucleon scattering amplitudes. The energy dependence of total and inelastic cross sections is successfully described for a number of nuclei

  9. Inversion of the total cross sections for electron-molecule and electron-atom scattering

    International Nuclear Information System (INIS)

    Lun, D.R.; Amos, K.; Allen, L.J.

    1994-01-01

    Inverse scattering theory has been applied to construct the interaction potentials from total cross sections as a function of energy for electrons scattered off of atoms and molecules. The underlying potentials are assumed to be real and energy independent and are evaluated using the Eikonal approximation and with real phase shifts determined from the total cross sections. The inversion potentials have been determined using either a high energy limit approximation or by using a fixed energy inversion method at select energies. These procedures have been used to analyse e - - CH 4 , e - - SiH 4 , e - -Kr and e - -Xe scattering data in particular. 14 refs., 1 tabs., 3 figs

  10. Self-scattering cross-section of molecules in a beam

    International Nuclear Information System (INIS)

    Lou, Y.S.

    1974-01-01

    Molecular collision cross-section has always been measured by the beam scattering method, or by the measurements of thermal conductivity and/or viscosity coefficient, etc. The cross-section thus obtained has been found to be different, qualitatively, from that of the self-scattering of the molecules moving within a molecular beam. By perturbing the zeroth order solution of the Boltzmann equation with a B-G-K kinetic model for the gas upstream to the orifice, and performing particle scattering calculation for molecules within the beam downstream to the orifice, such self-scattering collision cross-section can be determined from the experimental data of velocity distribution functions of molecules in the beam

  11. Measurement of Scattering Cross Section with a Spectrophotometer with an Integrating Sphere Detector.

    Science.gov (United States)

    Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven

    2012-01-01

    A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.

  12. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer: II – Extraction of invisible element content

    Energy Technology Data Exchange (ETDEWEB)

    Perrett, Glynis M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Campbell, John L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Gellert, Ralf [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); King, Penelope L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Nield, Emily; O’Meara, Joanne M.; Pradler, Irina [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2016-02-01

    The intensity ratio C/R between Compton and Rayleigh scatter peaks of the exciting Pu L X-rays in the alpha particle X-ray spectrometer (APXS) is strongly affected by the presence of very light elements such as oxygen which cannot be detected directly by the APXS. C/R values are determined along with element concentrations by fitting APXS spectra of geochemical reference materials (GRMs) with the GUAPX code. A quantity K is defined as the ratio between the C/R value determined by Monte Carlo simulation based on the measured element concentrations and the fitted C/R value from the spectrum. To ensure optimally accurate K values, the choice of appropriate GRMs is explored in detail, with attention paid to Rb and Sr, whose characteristic Kα X-ray peaks overlap the Pu Lα scatter peaks. The resulting relationship between the ratio K and the overall oxygen fraction is linear. This provides a calibration from which the concentration of additional light invisible constituents (ALICs) such as water may be estimated in unknown rock and conglomerate samples. Several GRMs are used as ‘unknowns’ in order to evaluate the accuracy of ALIC concentrations derived in this manner.

  13. Low energy neutron scattering for energy dependent cross sections. General considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rothenstein, W; Dagan, R [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    We consider in this paper some aspects related to neutron scattering at low energies by nuclei which are subject to thermal agitation. The scattering is determined by a temperature dependent joint scattering kernel, or the corresponding joint probability density, which is a function of two variables, the neutron energy after scattering, and the cosine of the angle of scattering, for a specified energy and direction of motion of the neutron, before the interaction takes place. This joint probability density is easy to calculate, when the nucleus which causes the scattering of the neutron is at rest. It can be expressed by a delta function, since there is a one to one correspondence between the neutron energy change, and the cosine of the scattering angle. If the thermal motion of the target nucleus is taken into account, the calculation is rather more complicated. The delta function relation between the cosine of the angle of scattering and the neutron energy change is now averaged over the spectrum of velocities of the target nucleus, and becomes a joint kernel depending on both these variables. This function has a simple form, if the target nucleus behaves as an ideal gas, which has a scattering cross section independent of energy. An energy dependent scattering cross section complicates the treatment further. An analytic expression is no longer obtained for the ideal gas temperature dependent joint scattering kernel as a function of the neutron energy after the interaction and the cosine of the scattering angle. Instead the kernel is expressed by an inverse Fourier Transform of a complex integrand, which is averaged over the velocity spectrum of the target nucleus. (Abstract Truncated)

  14. Measurement of Z dependence of elastic scattering cross-sections of 0. 145 MeV gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-11-01

    The Z dependence of elastic scattering cross-sections of 0.145 MeV gamma rays is investigated at large scattering angles. Measurements are made with scatterers of Pb, W, Sn, Ag, Mo, Zn, Cu, Fe and Al at scattering angles from 75 deg to 150 deg. The experimental results are compared with the available theoretical and experimental data.

  15. Endpoint behavior of high-energy scattering cross sections

    International Nuclear Information System (INIS)

    Chay, Junegone; Kim, Chul

    2010-01-01

    In high-energy processes near the endpoint, there emerge new contributions associated with spectator interactions. Away from the endpoint region, these new contributions are suppressed compared to the leading contribution, but the leading contribution becomes suppressed as we approach the endpoint and the new contributions become comparable. We present how the new contributions scale as we reach the endpoint and show that they are comparable to the suppressed leading contributions in deep inelastic scattering by employing a power-counting analysis. The hadronic tensor in deep inelastic scattering is shown to factorize including the spectator interactions, and it can be expressed in terms of the light cone distribution amplitudes of initial hadrons. We also consider the contribution of the spectator contributions in Drell-Yan processes. Here the spectator interactions are suppressed compared to double parton annihilation according to the power counting.

  16. On calculating phase shifts and performing fits to scattering cross sections or transport properties

    International Nuclear Information System (INIS)

    Hepburn, J.W.; Roy, R.J. Le

    1978-01-01

    Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)

  17. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1998-02-01

    The authors are describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 50 GeV to √s = 500 GeV in two kinematical regions. In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , they will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|-region, |t| 2 , they plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin states Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied. The relation of pp elastic scattering to the beam polarization measurement at RHIC is also discussed

  18. On the classical and quantum scattering cross-sections on the impenetrable sphere

    International Nuclear Information System (INIS)

    Afanasiev, G.N.; Dobromyslov, M.B.; Schpakov, V.P.

    1980-01-01

    The problem of the difference of particle scattering cross sections on the impenetrable sphere is considered in the frame of quantum mechanics and classical mechanics. Using plane waves for the incident particles and the solutions of the Schroedinger equation with the definite energy and momenta for the wave functions quantum and classical cross sections are compared. It is shown that these cross sections are the same if the incident flow is defined similarly in both cases and if the measuring apparatus is ideal

  19. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    Science.gov (United States)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  20. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)

    2011-07-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  1. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.

    2011-01-01

    This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

  2. Total scattering cross sections and interatomic potentials for neutral hydrogen and helium on some noble gases

    International Nuclear Information System (INIS)

    Ruzic, D.N.; Cohen, S.A.

    1985-04-01

    Measurements of energy-dependent scattering cross sections for 30 to 1800 eV D incident on He, Ne, Ar, and Kr, and for 40 to 850 eV He incident on He, Ar, and Kr are presented. They are determined by using the charge-exchange efflux from the Princeton Large Torus tokamak as a source of D or He. These neutrals are passed through a gas-filled scattering cell and detected by a time-of-flight spectrometer. The cross section for scattering greater than the effective angle of the apparatus (approx. =20 mrad) is found by measuring the energy-dependent attenuation of D or He as a function of pressure in the scattering cell. The interatomic potential is extracted from the data

  3. Absolute cross sections from the ''boomerang model'' for resonant electron-molecule scattering

    International Nuclear Information System (INIS)

    Dube, L.; Herzenberg, A.

    1979-01-01

    The boomerang model is used to calculate absolute cross sections near the 2 Pi/sub g/ shape resonance in e-N 2 scattering. The calculated cross sections are shown to satisfy detailed balancing. The exchange of electrons is taken into account. A parametrized complex-potential curve for the intermediate N 2 /sup ts-/ ion is determined from a small part of the experimental data, and then used to calculate other properties. The calculations are in good agreement with the absolute cross sections for vibrational excitation from the ground state, the absolute cross section v = 1 → 2, and the absolute total cross section

  4. Quantal inversion of cross-section for the elastic scattering of 200 MeV protons from 12C

    International Nuclear Information System (INIS)

    Allen, L.J.; Amos, K.; Dortmans, P.J.

    1994-01-01

    Fixed energy quantal inverse scattering theory has been used to analyse the differential cross-section from the elastic scattering of 200 MeV protons from 12 C. Ambiguities in obtaining the scattering function from the differential cross-section are discussed and by means of example it is illustrated that not all scattering functions lead to physically reasonable potentials. 8 refs., 2 tabs., 4 figs

  5. Some remarks on the neutron elastic- and enelastic-scattering cross sections of palladium

    International Nuclear Information System (INIS)

    Chiba, S.; Guenther, P.T.; Smith, A.B.

    1989-05-01

    The cross sections for the elastic-scattering of 5.9, 7.1 and 8.0 MeV neutrons from elemental palladium were measured at forty scattering angles distributed between ∼15/degree/ and 160/degree/. The inelastic-scattering cross sections for the excitation of palladium levels at energies of 260 keV to 560 keV were measured with high resolution at the same energies, and at a scattering angle of 80/degree/. The experimental results were combined with lower-energy values previously obtained by this group to provide a comprehensive data base extending from near the inelastic-scattering threshold to 8 MeV. That data base was interpreted in terms of a coupled-channel model, including the inelastic excitation of one- and two-phonon vibrational levels of the even isotopes of palladium. It was concluded that the palladium inelastic-scattering cross section, at the low energies of interest in assessment of fast-fission-reactor performance, are large (∼50% greater than given in widely used evaluated fission-product data files). They primarily involve compound-nucleus processes, with only a small direct-reaction component attributable to the excitation of the one-phonon, 2 + , vibrational levels of the even isotopes of palladium. 24 refs., 6 figs

  6. Scattering chamber facility for double-differential cross-section

    Indian Academy of Sciences (India)

    inducedcharged-particle productions is very important for estimating the nuclear heating and radiation damage of a fusion reactor. Only a few experimental data are available even though the nuclear reaction cross-section data of structural materials are ...

  7. Scattering and absorption differential cross sections for double ...

    Indian Academy of Sciences (India)

    degraded gamma quanta at the same time as the recoil electron. ... [2–4] are confined to energy, angular distribution, collision differential cross section and ... The positions of the two detectors are adjusted in such a way that they do not ... the energy values weighted in proportion to the probability for occurrence of this ...

  8. Collective scattering of electromagnetic waves and cross-B plasma diffusion

    International Nuclear Information System (INIS)

    Gresillon, D.; Cabrit, B.; Truc, A.

    1992-01-01

    Magnetized plasmas occuring in nature as well as in fusion laboratories are oftenly irregularly shaked by magnetic field fluctuations. The so-called ''coherent scattering'' of electromagnetic wave from nonuniform, irregularly moving plasmas is investigated in the case where the scattering wavelength is large compared to the Debye length, but of the order of the irregularities correlation length. The scattered signal frequency spectrum is shown to be a transform of the plasma motion statistical characteristics. When the scattering wavelength is larger than the plasma motion correlation length, the frequency spectrum is shown to be of a lorentzian shape, with a frequency width that provides a direct measurement of the cross-B particle diffusion coefficient. This is illustrated by two series of recently obtained experimental results: radar coherent backscattering observations of the auroral plasma, and far infrared scattering from tokamak fusion plasma. Radar coherent backscattering shows the transition from Gauss to Lorentz scattered frequency spectra. In infrared Laser coherent scattering experiments from the Tore-Supra tokamak, a particular frequency line is observed to present a Lorentzian shape, that directly provides an electron cross-field diffusion coefficient. This diffusion coefficient agrees with the electron heat conductivity coefficient that is obtained from the observation of temperature profiles and energy balance. (Author)

  9. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    Science.gov (United States)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  10. New type of cross section singularity in backward scattering: the Coulomb glory

    International Nuclear Information System (INIS)

    Demkov, Y.N.; Ostrovskii, V.N.; Tel'nov, D.A.

    1984-01-01

    For classical scattering by a central potential that exhibits Coulomb behavior (i.e., that is attractive) at small distances, the scattering angle theta tends to π as the orbital angular momentum L decreases. The differential cross section for scattering through angles close to π can be characterized by the power series expansion of the difference theta(L)--π in small L, only odd powers of L being present in this expansion. Expressions are found for the coefficients in the linear (c 1 ) and cubic (c 3 ): in L: terms. It is shown that, for a broad class of screened Coulomb potentials, the coefficient c 1 vanishes at some value of the collision energy E 0 . At the energy E = E 0 the classical cross section diverges in the case of backward scattering (the Coulomb glory); in wave mechanics the cross section possesses a maximum. The behavior of the cross section for energies close to E 0 is computed. The application of the theory to electron scattering by atoms, in which the Coulomb interaction at small distances is determined by the interaction with the nucleus (charge Z) and E 0 = 0.0103Z 4 /sup // 3 keV, is discussed

  11. Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison.

    Science.gov (United States)

    Kumar, Santosh; Dietz, Barbara; Guhr, Thomas; Richter, Achim

    2017-12-15

    The recently derived distributions for the scattering-matrix elements in quantum chaotic systems are not accessible in the majority of experiments, whereas the cross sections are. We analytically compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is applicable to a wide range of quantum chaotic systems. Thus, eventually, we fully solve a problem that already arose more than half a century ago in compound-nucleus scattering. We compare our results with data from microwave and compound-nucleus experiments, particularly addressing the transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

  12. Fast-neutron total and elastic-scattering cross sections of elemental indium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Broad-resolution neutron total cross sections of elemental indium were measured from 0.8 to 4.5 MeV. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 3.8 MeV at intervals of approx. = 50 to 200 keV and at scattering angles in the range 20 to 160 degrees. The experimental results are interpreted in terms of the optical-statistical model and are compared with respective values given in ENDF/B-V

  13. MUTIL, Asymmetry Factor of Mott Cross-Sections for Electron, Positron Scattering

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    2002-01-01

    1 - Description of program or function: The asymmetry factor S of Mott's differential cross section for the scattering of electrons and positrons by point nuclei without screening is calculated for any energy, atomic number and angle of scattering. 2 - Method of solution: We have summed the conditionally convergent series, F and G, appearing in the asymmetry factor using two consecutive transformations: The one of Yennie, Ravenhall and Wilson and that of Euler till we have seven times six significant figures repeated in the factor S. 3 - Restrictions on the complexity of the problem: Those appearing in the use of Mott's cross section for unscreened point nuclei

  14. Elastic scattering and total reaction cross section for the 6He + 27Al system

    International Nuclear Information System (INIS)

    Benjamim, E.A.; Lepine-Szily, A.; Mendes Junior, D.R.; Lichtenthaeler, R.; Guimaraes, V.; Gomes, P.R.S.; Chamon, L.C.; Hussein, M.S.; Moro, A.M.; Arazi, A.; Padron, I.; Alcantara Nunez, J.; Assuncao, M.; Barioni, A.; Camargo, O.; Denke, R.Z.; Faria, P.N. de; Pires, K.C.C.

    2007-01-01

    The elastic scattering of the radioactive halo nucleus 6 He on 27 Al target was measured at four energies close to the Coulomb barrier using the RIBRAS (Radioactive Ion Beams in Brazil) facility. The Sao Paulo Potential (SPP) was used and its diffuseness and imaginary strength were adjusted to fit the elastic scattering angular distributions. Reaction cross-sections were extracted from the optical model fits. The reduced reaction cross-sections of 6 He on 27 Al are similar to those for stable, weakly bound projectiles as 6,7 Li, 9 Be and larger than stable, tightly bound projectile as 16 O on 27 Al

  15. Modified automatic term selection v2: A faster algorithm to calculate inelastic scattering cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Rusz, Ján, E-mail: jan.rusz@fysik.uu.se

    2017-06-15

    Highlights: • New algorithm for calculating double differential scattering cross-section. • Shown good convergence properties. • Outperforms older MATS algorithm, particularly in zone axis calculations. - Abstract: We present a new algorithm for calculating inelastic scattering cross-section for fast electrons. Compared to the previous Modified Automatic Term Selection (MATS) algorithm (Rusz et al. [18]), it has far better convergence properties in zone axis calculations and it allows to identify contributions of individual atoms. One can think of it as a blend of MATS algorithm and a method described by Weickenmeier and Kohl [10].

  16. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    International Nuclear Information System (INIS)

    Guryn, W.

    1995-01-01

    The author is describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from √s = 60 GeV to √s = 500 GeV in two kinematical regions .In the Coulomb Nuclear Interference (CNI) region, 0.0005 2 , we will measure and study the s dependence of the total and elastic cross sections, σ tot and σ el ; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, ρ; and the nuclear slope parameter of the pp elastic scattering, b. In the medium |t|, |t| ≤ 1.5 (GeV/c) 2 , we plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, dσ el /dt, and the s and |t| dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin stated Δσ T , the analyzing power, A N , and the transverse spin correlation parameter A NN . The behavior of the analyzing power A N at RHIC energies in the dip region of dσ el /dt, where a pronounced structure was found at fixed-target experiments will be studied

  17. The Glauber model and heavy ion reaction and elastic scattering cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Mehndiratta, Ajay [Physics Department, Indian Institute of Technology, Guwahati (India); Shukla, Prashant, E-mail: pshukla@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094 (India)

    2017-05-15

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon–nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  18. Absolute differential cross sections for elastic scattering of electrons by helium, neon, argon and molecular nitrogen

    International Nuclear Information System (INIS)

    Jansen, R.H.J.; De Heer, F.J.; Luyken, H.J.; Van Wingerden, B.

    1976-01-01

    An electron spectrometer has been constructed for the study of elastic and inelastic electron scattering processes. Up to now the apparatus has been used to measure differential cross sections of electrons elastically scattered by He, Ne, Ar and N 2 . Direct absolute cross section measurements were performed on N 2 at 500 eV impact energy and at scattering angles between 5 0 and 9 0 . Relative cross section measurements were done on He, Ne, Ar and N 2 at impact energies between 100 and 3000 eV and scattering angles between 5 0 and 55 0 . The relative cross sections were put on an absolute scale by means of the apparatus calibration factor derived from the absolute measurements on N 2 . The experimental apparatus and procedure are described in detail. The results are discussed and compared with those of other experimental and theoretical groups. Analysis of the exponential behaviour of the differential cross section as a function of momentum transfer yielded apparent polarizabilities of the target. (author)

  19. Impurity scattering in unconventional density waves: non-crossing approximation for arbitrary scattering rate

    International Nuclear Information System (INIS)

    Vanyolos, Andras; Dora, Balazs; Maki, Kazumi; Virosztek, Attila

    2007-01-01

    We present a detailed theoretical study on the thermodynamic properties of impure quasi-one-dimensional unconventional charge and spin density waves in the framework of mean-field theory. The impurities are of the ordinary non-magnetic type. Making use of the full self-energy that takes into account all ladder- and rainbow-type diagrams, we are able to calculate the relevant low temperature quantities for arbitrary scattering rates. These are the density of states, specific heat and the shift in the chemical potential. Our results therefore cover the whole parameter space: they include both the self-consistent Born and the resonant unitary limits, and most importantly give exact results in between

  20. The investigation of the elastic photon scattering cross sections by copper atoms and ions

    International Nuclear Information System (INIS)

    Kuplyauskene, A.B.

    1976-01-01

    The differential cross sections of coherent scattering of photons on a copper atom and ions Cu + and Cu 2+ and also on ions Zn + and Ga 2+ in their ground states have been studied theoretically. The energy of an incident photon has varied in the range from 0.5 keV to 200 keV, and the scattering cross sections are given for angles of 30 deg, 60 deg, 90 deg, 120 deg, 150 deg. The calculations are performed in the formfactor approximation with the use of generalized hydrogen-like analytical radial orbitals. To clarify the contribution from individual shells the cross sections of photon scattering on individual electron of shells are calculated. It follows from the calculations that when the energies of the incident photon are less than 4 keV, the main contribution into the differential cross section is made by external electrons. Then, alongside with the increase of the energy, the contribution of the electrons decreases, and the inner shells begin to play a more important role. Therefore the photon cross sections for the energies greater than 50 keV practically coincide for atoms and ions of copper. The general regularities of the cross section variation accompanying the increase of the photon energy are similar for all the elements under study. The angular dependences of cross sections are such that they decrease first and after reaching the minimum at angles of 90 deg - 120 deg increase again

  1. Neutron total and scattering cross sections of 6Li in the few MeV region

    International Nuclear Information System (INIS)

    Smith, A.; Guenther, P.; Whalen, J.

    1980-02-01

    Neutron total cross sections of 6 Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;α)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file

  2. A semi-empirical formula for total cross sections of electron scattering from diatomic molecules

    International Nuclear Information System (INIS)

    Liu Yufang; Sun Jinfeng; Henan Normal Univ., Xinxiang

    1996-01-01

    A fitting formula based on the Born approximation is used to fit the total cross sections for electron scattering by diatomic molecules (CO, N 2 , NO, O 2 and HCl) in the intermediate- and high-energy range. By analyzing the fitted parameters and the total cross sections, we found that the internuclear distance of the constituent atoms plays an important role in the e-diatomic molecule collision process. Thus a new semi-empirical formula has been obtained. There is no free parameter in the formula, and the dependence of the total cross sections on the internuclear distance has been reflected clearly. The total cross sections for electron scattering by CO, N 2 , NO, O 2 and HCl have been calculated over an incident energy range of 10-4000 eV. The results agree well with other available experimental and calculation data. (orig.)

  3. State-to-state differential cross sections for rotationally inelastic scattering of Na2 by He

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Witt, J.

    1980-01-01

    State-to-state differential cross sections for rotational transitions of Na 2 in collisions with He are measured in the electronic and vibrational ground state at thermal collision energies using a new laser technique. Single rotational levels j/sub i/ are labelled by modulation of their population via laser optical pumping using a dye laser. The modulation of the fluorescence induced by an Ar + laser tuned to the level j/sub f/=28 is proportional to the cross section for collisional transfer j/sub i/→j/sub f/ and is detected at the scattering angle theta. A single optical fiber and a fiber bundle provide a flexible connection between the detector and the laser and photomultiplier, respectively. Transitions as large as Δj=20 are observed. At small angles elastic scattering is dominant, but rotationally inelastic processes become increasingly important at larger scattering angles. Rotational rainbow structure causing a steep onset of the cross section with the scattering angle theta (at fixed Δj) or a sharp cutoff with Δj (at fixed theta) is found. Preliminary results on rotational energy transfer in v=1 indicates that vibrational motion of the molecule favors larger rotational quantum jumps. semiclassical picture for the scattering of a hard ellipsoid gives a

  4. A new modelling of the multigroup scattering cross section in deterministic codes for neutron transport

    International Nuclear Information System (INIS)

    Calloo, A.A.

    2012-01-01

    In reactor physics, calculation schemes with deterministic codes are validated with respect to a reference Monte Carlo code. The remaining biases are attributed to the approximations and models induced by the multigroup theory (self-shielding models and expansion of the scattering law using Legendre polynomials) to represent physical phenomena (resonant absorption and scattering anisotropy respectively). This work focuses on the relevance of a polynomial expansion to model the scattering law. Since the outset of reactor physics, the latter has been expanded on a truncated Legendre polynomial basis. However, the transfer cross sections are highly anisotropic, with non-zero values for a very small range of the cosine of the scattering angle. Besides, the finer the energy mesh and the lighter the scattering nucleus, the more exacerbated is the peaked shape of this cross section. As such, the Legendre expansion is less suited to represent the scattering law. Furthermore, this model induces negative values which are non-physical. In this work, various scattering laws are briefly described and the limitations of the existing model are pointed out. Hence, piecewise-constant functions have been used to represent the multigroup scattering cross section. This representation requires a different model for the diffusion source. The discrete ordinates method which is widely employed to solve the transport equation has been adapted. Thus, the finite volume method for angular discretization has been developed and implemented in Paris environment which hosts the S n solver, Snatch. The angular finite volume method has been compared to the collocation method with Legendre moments to ensure its proper performance. Moreover, unlike the latter, this method is adapted for both the Legendre moments and the piecewise-constant functions representations of the scattering cross section. This hybrid-source method has been validated for different cases: fuel cell in infinite lattice

  5. The effect of background absorption on the compound cross-section in resonance scattering

    International Nuclear Information System (INIS)

    Frenkel, A.

    1976-01-01

    The effect of channel-channel correlations in the compound cross-section is studied in a model of a resonance above a compound background characterized by equal absorption in all open channels. A general rule which cannot be derived from unitarity alone is proved for the fluctuating cross-section. It provides new understanding of level-level correlations in scattering through compound nucleus states. (author)

  6. Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport

    International Nuclear Information System (INIS)

    Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.

    2015-01-01

    Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.

  7. SCATLAW: a code of scattering law and cross sections calculation for liquids and solids

    International Nuclear Information System (INIS)

    Padureanu, I.; Rapeanu, S.; Rotarascu, G.; Craciun, C.

    1978-11-01

    A code for calculation of the scattering law S(Q,ω), differential and double differential cross sections and scattering kernels in the energy range E(0 - 683 meV) and wave-vector transfer Q(0 - 40 A -1 ) is presented. The code can be used both for solids and liquids which are coherent or incoherent scatterer. For liquids the calculations are based on the most recent theoretical models involving the correlation functions and generalized field approach. The phonon expansion model and the free gas model are also analysed in term of frequency spectra obtained from inelastic neutron scattering using time-of-flight technique. Several results on liquid sodium at T = 233 deg C and on liquid bismuth at T = 286 deg C and T = 402 deg C are presented. (author)

  8. Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory.

    Science.gov (United States)

    Semenov, Alexander; Babikov, Dmitri

    2014-01-16

    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.

  9. Fast-neutron total and scattering cross sections of 103Rh

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-07-01

    Fast-neutron total cross sections of 103 Rh are measured with 30 to 50 keV resolutions from 0.7 to 4.5 MeV. Differential elastic- and inelastic-scattering cross sections are measured from 1.45 to 3.85 MeV. Scattered-neutron groups corresponding to excited levels at 334 +- 13, 536 +- 7, 648 +- 25, 796 +- 20, 864 +- 22, 1120 +- 22, 1279 +- 50, 1481 +- 27, 1683 +- 39, 1840 +- 79, 1991 +- 71 and 2050 (tentative) keV are observed. An optical-statistical model is derived from the elastic-scattering results. The experimental values are compared with comparable quantities given in the ENDF/B-V evaluation

  10. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Science.gov (United States)

    Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia

    2017-09-01

    The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  11. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    Directory of Open Access Journals (Sweden)

    Nyman Markus

    2017-01-01

    Full Text Available The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC method. Experiments for studying neutrinoless double-β decay (2β0ν or other very rare processes require greatly reducing the background radiation level (both intrinsic and external. Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  12. Characteristics of angular cross correlations studied by light scattering from two-dimensional microsphere films

    Science.gov (United States)

    Schroer, M. A.; Gutt, C.; Grübel, G.

    2014-07-01

    Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.

  13. Integral cross sections for π+p scattering between 52 and 126 MeV

    International Nuclear Information System (INIS)

    Friedman, E.; Goldring, A.; Wagner, G.J.; Altman, A.; Johnson, R.R.; Meirav, O.; Hanna, M.; Jennings, B.K.

    1989-06-01

    Integral cross-sections for the elastic scattering of π + on p from 20 degrees and 30 degrees to 180 degrees were measured at seven energies between 52 and 126 MeV. These integrals are found to be in good agreement with predictions made with currently accepted phase-shifts. (Author) 15 refs., tab., 2 figs

  14. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory.

    Science.gov (United States)

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180(∘) at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X̃(2)A2, Ã(2)B1, and B̃(2)B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B̃(2)B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.

  15. 14N + 10B fusion and elastic scattering cross section measurements near the interaction barrier

    International Nuclear Information System (INIS)

    Wu, S.C.; Overley, J.C.; Barnes, C.A.; Switkowski, Z.E.

    1979-01-01

    The 14 N + 10 B fusion reactions were studied at c.m. energies between 2.9 and 7.5 MeV by measuring the yields of γ-rays from the residual nuclei formed by particle evaporation from the compound system. Cross sections for formation of the evaporation residues 16 O, 19 F, 19 Ne, 20 Ne, 21 Ne, 22 Ne, 22 Na, 23 Na and 23 Mg, as well as the total cross section, were deduced from these yields with the aid of statistical model calculations. 14 N + 10 B elastic scattering differential cross sections were measured from 4.3 to 9.1 MeV at THETA 74.4 degrees, and from 3.3 to 8.3 MeV at THETA = 90.0 degrees. The elastic scattering cross sections were analyzed within the framework of the incoming-wave boundary condition (IWBC) model. The fusion cross sections calculated for the real ion-ion potential deduced from the IWBC model fit to the elastic scattering are in good agreement with the measured values

  16. Elastic and inelastic vibrational cross sections for positron scattering by carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Tenfen, W. [Departamento de Física, Universidade Federal da Fronteira Sul, 85770-000, Realeza, Paraná (Brazil); Arretche, F., E-mail: fartch@gmail.com [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil); Michelin, S.E.; Mazon, K.T. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil)

    2015-11-01

    The vibrational cross sections of the CO molecule induced by positron impact is the focus of this work. The positron–molecule interaction is represented by the static potential plus a model potential designed to take into account the positron–target correlations. To calculate the vibrational cross sections, we applied the multichannel version of the continued fractions method in the close-coupling scheme. We present vibrational excitation cross sections and elastic ones, for the ground and excited vibrational states. The results are interpreted in terms of the vibrational coupling-scheme used in the scattering model.

  17. Compton Scattering Cross Section on the Proton at High Momentum Transfer

    International Nuclear Information System (INIS)

    A. Danagoulian; V.H. Mamyan; M. Roedelbronn; K.A. Aniol; J.R.M. Annand; P.Y. Bertin; L. Bimbot; P. Bosted; J.R. Calarco; A. Camsonne; C.C. Chang; T.-H. Chang; J.-P. Chen; Seonho Choi; E. Chudakov; P. Degtyarenko; C.W. de Jager; A. Deur; D. Dutta; K. Egiyan; H. Gao; F. Garibaldi; O. Gayou; R. Gilman; A. Glamazdin; C. Glashausser; J. Gomez; D.J. Hamilton; J.-O. Hansen; D. Hayes; D.W. Higinbotham; W. Hinton; T. Horn; C. Howell; T. Hunyady; C.E. Hyde-Wright; X. Jiang; M.K. Jones; M. Khandaker; A. Ketikyan; V. Koubarovski; K. Kramer; G. Kumbartzki; G. Laveissiere; J. LeRose; R.A. Lindgren; D.J. Margaziotis; P. Markowitz; K. McCormick; Z.-E. Meziani; R. Michaels; P. Moussiegt; S. Nanda; A.M. Nathan; D.M. Nikolenko; V. Nelyubin; B.E. Norum; K. Paschke; L. Pentchev; C.F. Perdrisat; E. Piasetzky; R. Pomatsalyuk; V.A. Punjabi; I. Rachek; A. Radyushkin; B. Reitz; R. Roche; G. Ron; F. Sabatie; A. Saha; N. Savvinov; A. Shahinyan; Y. Shestakov; S. Sirca; K. Slifer; P. Solvignon; P. Stoler; S. Tajima; V. Sulkosky; L. Todor; B. Vlahovic; L.B. Weinstein; K. Wang; B. Wojtsekhowski; H. Voskanyan; H. Xiang; X. Zheng; L. Zhu

    2007-01-01

    Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/- 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark

  18. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<cross section is valid irrespective of the magnitudes of ..omega.. and ..omega..sub(c); the forward scattering in the direction of the magnetic field by an electron in the ground state.

  19. Fast-neutron total and scattering cross sections of sup 58 Ni and nuclear models

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F. (Argonne National Lab., IL (United States)); Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1991-07-01

    The neutron total cross sections of {sup 58}Ni were measured from {approx} 1 to > 10 MeV using white-source techniques. Differential neutron elastic-scattering cross sections were measured from {approx} 4.5 to 10 MeV at {approx} 0.5 MeV intervals with {ge} 75 differential values per distribution. Differential neutron inelastic-scattering cross sections were measured, corresponding to fourteen levels with excitations up to 4.8 MeV. The measured results, combined with relevant values available in the literature, were interpreted in terms of optical-statistical and coupled-channels model using both vibrational and rotational coupling schemes. The physical implications of the experimental results nd their interpretation are discussed in the contexts of optical-statistical, dispersive-optical, and coupled-channels models. 61 refs.

  20. X-ray resonant Raman scattering cross sections of Mn, Fe, Cu and Zn

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Valentinuzzi, MarIa Cecilia; Perez, Carlos

    2006-01-01

    X-ray fluorescence spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. It constitutes an important contribution to the background of the fluorescent line. The resonant Raman scattering must be taken into account in the determination of low concentration contaminants, especially when the elements have proximate atomic numbers. The values of the mass attenuation coefficients experimentally obtained when materials are analysed with monochromatic x-ray beams under resonant conditions differ from the theoretical values (between 5% and 10%). This difference is due, in part, to the resonant Raman scattering. Monochromatic synchrotron radiation was used to study the Raman effect on pure samples of Mn, Fe, Cu and Zn. Energy scans were carried out in different ranges of energy near the absorption edge of the target element. As the Raman peak has a non-symmetric shape, theoretical models for the differential cross section, convoluted with the instrument function, were used to determine the RRS cross section as a function of the incident energy

  1. Measurement of angular differential cross sections at the SSL Atomic Scattering Facility

    International Nuclear Information System (INIS)

    Kvale, T.J.

    1988-01-01

    The design of the SSL Atomic Scattering Facility (ASF) located at the NASA/Marshall Space Flight Center as well as some of the initial experiments to be performed with it, are covered. The goal is to develop an apparatus capable of measuring angular differential cross sections (ADCS) for the scattering of 2 to 14 eV atomic oxygen from various gaseous targets. At present little is known about atomic oxygen scattering with kinetic energies of a few eV. This apparatus is designed to increase the understanding of collisions in this energy region. Atomic oxygen scattering processes are of vital interest to NASA because the space shuttle as well as other low earth orbit satellites will be subjected to a flux of 5 eV atomic oxygen on the ram surfaces while in orbit. The primary experiments will involve the measurements of ADCS for atomic oxygen scattering from gaseous targets (in particular, molecular nitrogen). These, as well as the related initial experiments involving thermal He scattering from N2 and O2 targets will be described

  2. New relations between lN-scattering cross sections and neutral current parameters

    International Nuclear Information System (INIS)

    Bednyakov, V.A.; Kovalenko, S.G.

    1989-01-01

    New relations which connect cross sections with neutral current parameters have been obtained in deep inelastic and (quasi-)elastic ν(ν-bar)N, e ± (μ ± )N scattering. The relations are independent of the structure functions and formfactors of the nucleon. A known example is the Paschos-Wolfenstein relation in ν(ν-bar)N scattering. The relations have been obtained with allowance for the contribution of the extra Z' bozon which makes it possible to use them both for extractions of the standard model parameters (ρ, sin 2 Θ W ) and for the search for some manifestations of new physics. 21 refs.; 1 tab

  3. Fast-neutron elastic-scattering cross sections of elemental tin

    International Nuclear Information System (INIS)

    Budtz-Jorgensen, C.; Guenther, P.T.; Smith, A.

    1982-07-01

    Broad-resolution neutron-elastic-scattering cross sections of elemental tin are measured from 1.5 to 4.0 MeV. Incident-energy intervals are approx. 50 keV below 3.0 MeV and approx. 200 keV at higher energies. Ten to twenty scattering angles are used, distributed between approx. 20 and 160 0 . The experimental results are used to deduce the parameters of a spherical optical-statistical model and they are also compared with corresponding values given in ENDF/B-V

  4. Neutron scattering differential cross sections of carbon and bismuth at 37 MeV

    International Nuclear Information System (INIS)

    Zhou Zuying; Tang Hongqing; Qi Bujia; Zhou Chenwei; Du Yanfeng; Xia Haihong; Walter, R.L.; Tornow, W.; Howell, C.; Braun, R.; Roper, C.; Chen Zemin; Chen Zhengpeng; Chen Yingtang

    1997-01-01

    Elastic differential cross sections of 37 MeV neutrons scattered from carbon and bismuth were measured in the angular range 11 to 160 degrees by means of the multi-detector TOF facility. The 37 MeV neutrons were produced via the T(d,n) 4 He reaction in a tritium gas target. The pulsed 20 MeV deuteron beam was provided by the HI-13 tandem accelerator. The angular distribution of scattered neutrons from carbon and bismuth were measured in the angular range 11 degree to 145 degree and 11 degree to 160 degree respectively in steps of about 3 degree

  5. Cross-correlation time-of-flight analysis of molecular beam scattering

    International Nuclear Information System (INIS)

    Nowikow, C.V.; Grice, R.

    1979-01-01

    The theory of the cross-correlation method of time-of-flight analysis is presented in a form which highlights its formal similarity to the conventional method. A time-of-flight system for the analysis of crossed molecular beam scattering is described, which is based on a minicomputer interface and can operate in both the cross-correlation and conventional modes. The interface maintains the synchronisation of chopper disc rotation and channel advance indefinitely in the cross-correlation method and can acquire data in phase with the beam modulation in both methods. The shutter function of the cross-correlation method is determined and the deconvolution analysis of the data is discussed. (author)

  6. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    International Nuclear Information System (INIS)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.; Rimpault, G.

    2012-01-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, which better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)

  7. Observational constraints on dark matter-dark energy scattering cross section

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suresh [BITS Pilani, Department of Mathematics, Rajasthan (India); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)

    2017-11-15

    In this letter, we report precise and robust observational constraints on the dark matter-dark energy scattering cross section, using the latest data from cosmic microwave background (CMB) Planck temperature and polarization, baryon acoustic oscillations (BAO) measurements and weak gravitational lensing data from Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). The scattering scenario consists of a pure momentum exchange between the dark components, and we find σ{sub d} < 10{sup -29} cm{sup 2} (m{sub dm}c{sup 2}/GeV) at 95% CL from the joint analysis (CMB + BAO + CFHTLenS), where m{sub dm} is a typical dark matter particle mass. We notice that the scattering among the dark components may influence the growth of large scale structure in the Universe, leaving the background cosmology unaltered. (orig.)

  8. Coherent photon scattering cross sections for helium near the delta resonance

    International Nuclear Information System (INIS)

    Delli Carpini, D.; Booth, E.C.; Miller, J.P.; Igarashi, R.; Bergstrom, J.; Caplan, H.; Doss, M.; Hallin, E.; Rangacharyulu, C.; Skopik, D.; Lucas, M.A.; Nathan, A.M.; Wells, D.P.

    1991-01-01

    The angular distributions for coherent photon scattering from 4 He were measured at average laboratory bremsstrahlung energies of 187, 235, and 280 MeV. The experiment was performed at the Saskatchewan Accelerator Laboratory using the new high duty factor electron beam. The scattered photons were observed with a high-resolution NaI(Tl) total absorption scintillation detector. These measurements are intended to investigate modification of the Δ properties inside the nuclear medium and the treatment of nonresonant contributions to the scattering cross sections. The results are compared to theoretical calculations in the isobar-hole model. Clear deviations from the theory are evident at all energies, especially at 187 MeV

  9. Measurement of x-ray scattering cross sections of hydrogen and helium with synchrotron radiation

    International Nuclear Information System (INIS)

    Ice, G.E.

    1977-01-01

    Total x-ray scattering is a two-electron expectation value. The prominence of the electron correlation effect was demonstrated in recent theoretical work. Only one measurement of x-ray scattering from H 2 has been reported heretofore, nearly fifty years ago. New measurements were carried out using the virtually monochromatic, intense flux of synchrotron radiation in the SSRP EXAFS line. The targets, at 1 atm pressure, were UHP He and ultrapure H 2 that had been passed through a hot Pd--Ag alloy diffusion purifier. The scattered-photon spectra were measured with a Xe-filled proportional counter and fast multichannel analyzer. The incident flux was monitored with a parallel-plate ion chamber, calibrated by direct counting of the absorber-attenuated beam. Measurements were performed at 5, 6, and 7 keV photon energy, as a function of scattering angle (60, 90, and 135 deg) and azimuthal angle (i.e., polarization). The relative total differential photon scattering cross sections for H 2 over the range 3.0 less than or equal to x = 4πsin (theta/2)lambda less than or equal to 5.6 A -1 agree to within approx. 1% with the correlated calculations of Bentley and Stewart. The ratios of measured cross sections for H 2 to those for He at x = 3.0 and 5.6 A -1 agree to within 1% with the ratios of the Bentley--Stewart H 2 cross sections to the correlated wave-function calculations of Brown for He

  10. Fast-neutron total and scattering cross sections of elemental palladium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-06-01

    Neutron total cross sections of palladium are measured from approx. = 0.6 to 4.5 MeV with resolutions of approx. = 30 to 70 keV at intervals of less than or equal to 50 keV. Differential neutron elastic- and inelastic-scattering cross sections are measured from 1.4 to 3.85 MeV at intervals of 50 to 100 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160/sup 0/. The experimental results are compared with respective quantities given in ENDF/B-V and used to deduce an optical potential that provides a good description of the measured values.

  11. Measurement of the Raman scattering cross section of the breathing mode in KDP and DKDP crystals.

    Science.gov (United States)

    Demos, Stavros G; Raman, Rajesh N; Yang, Steven T; Negres, Raluca A; Schaffers, Kathleen I; Henesian, Mark A

    2011-10-10

    The spontaneous Raman scattering cross sections of the main peaks (related to the A1 vibrational mode) in rapid and conventional grown potassium dihydrogen phosphate and deuterated crystals are measured at 532 nm, 355 nm, and 266 nm. The measurement involves the use of the Raman line of water centered at 3400 cm-1 as a reference to obtain relative values of the cross sections which are subsequently normalized against the known absolute value for water as a function of excitation wavelength. This measurement enables the estimation of the transverse stimulated Raman scattering gain of these nonlinear optical materials in various configurations suitable for frequency conversion and beam control in high-power, large-aperture laser systems.

  12. Fast-neutron total and scattering cross sections of elemental palladium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-06-01

    Neutron total cross sections of palladium are measured from approx. = 0.6 to 4.5 MeV with resolutions of approx. = 30 to 70 keV at intervals of less than or equal to 50 keV. Differential neutron elastic- and inelastic-scattering cross sections are measured from 1.4 to 3.85 MeV at intervals of 50 to 100 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 0 . The experimental results are compared with respective quantities given in ENDF/B-V and used to deduce an optical potential that provides a good description of the measured values

  13. Measurement of the inclusive ep scattering cross section at low Q2 and x at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Aplin, S.; Bartel, W.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Asmone, A.; Stella, B.; Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Behnke, O.; Behrendt, O.; South, D.; Wegener, D.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Gouzevitch, M.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Del Degan, M.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Dodonov, V.; Lytkin, L.; Povh, B.; Eckstein, D.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Lastovicka, T.; Lobodzinska, E.; Naumann, T.; Piec, S.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Hansson, M.; Joensson, L.; Osman, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Meier, K.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Schoening, A.; Tsakov, I.

    2009-01-01

    A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV 2 ≤Q 2 ≤12 GeV 2 , and low Bjorken x, 5.10 -6 ≤x≤0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q 2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering. (orig.)

  14. Measurement of the Inclusive ep Scattering Cross Section at Low Q^2 and x at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lastovicka, T.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Naroska, B.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.

  15. Total and elastic electron scattering cross sections from Xe at intermediate and high energies

    International Nuclear Information System (INIS)

    Garcia, G; Pablos, J L de; Blanco, F; Williart, A

    2002-01-01

    Experimental total electron scattering cross sections from Xe in the energy range 300-5000 eV have been obtained with experimental errors of about 3%. The method was based on the measurement of the attenuation of a linear electron beam through a Xe gas cell in combination with an electron spectroscopy technique to analyse the energy of the transmitted electrons. Differential and integral elastic cross sections have been calculated using a scattering potential method which includes relativistic effects. The consistency of our theoretical and experimental results is also discussed in the paper. Finally, analytical formulae depending on two parameters, namely the number of target electrons and the atomic polarizability, are given to reproduce the experimental data for Ne, Ar, Kr and Xe in the energy range 500-10 000 eV

  16. Rayleigh reciprocity relations: Applications

    International Nuclear Information System (INIS)

    Lin Ju; Li Xiao-Lei; Wang Ning

    2016-01-01

    Classical reciprocity relations have wide applications in acoustics, from field representation to generalized optical theorem. In this paper we introduce our recent results on the applications and generalization of classical Rayleigh reciprocity relation: higher derivative reciprocity relations as a generalization of the classical one and a theoretical proof on the Green’s function retrieval from volume noises. (special topic)

  17. Intrinsic acoustical cross sections in the multiple scattering by a pair of rigid cylindrical particles in 2D

    Science.gov (United States)

    Mitri, F. G.

    2017-08-01

    The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the

  18. Intrinsic acoustical cross sections in the multiple scattering by a pair of rigid cylindrical particles in 2D

    International Nuclear Information System (INIS)

    Mitri, F G

    2017-01-01

    The multiple scattering effects occurring between two scatterers are described based upon the multipole expansion formalism as well as the addition theorem of cylindrical wave functions. An original approach is presented in which an effective incident acoustic field on a particular object, which includes both the primary and re-scattered waves from the other particle is determined first, and then used with the scattered field to derive closed-form analytical expressions for the inherent (i.e. intrinsic) cross-sections based on the far-field scattering. This method does not introduce any approximation in the calculation of the intrinsic cross-sections since the procedure is reduced to the one-body problem. The mathematical expressions for the intrinsic cross-sections are formulated in partial-wave series expansions (PWSEs) in cylindrical coordinates involving the angle of incidence, the addition theorem for the cylindrical wave functions, and the expansion coefficients of the scatterers. Numerical examples illustrate the analysis for two rigid circular cylindrical cross-sections with different radii immersed in a non-viscous fluid. Computations for the dimensionless extrinsic and intrinsic extinction cross-section factors are evaluated with particular emphasis on varying the angle of incidence, the interparticle distance, as well as the sizes of the particles. A symmetric behavior is observed for the dimensionless extrinsic extinction cross-section, while asymmetry arises for the intrinsic extinction cross-section of each particle with respect to the angle of incidence. The present analysis provides a complete analytical and computational method for the prediction of the intrinsic (local) scattering, absorption and extinction cross-sections in the multiple acoustic scatterings of plane progressive waves of arbitrary incidence by a pair of scatterers. The results and computational analyses can be used as a priori information for future applications to guide the

  19. Effective inelastic scattering cross-sections for background analysis in HAXPES of deeply buried layers

    Energy Technology Data Exchange (ETDEWEB)

    Risterucci, P., E-mail: paul.risterucci@gmail.com [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Renault, O., E-mail: olivier.renault@cea.fr [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Zborowski, C. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark); Bertrand, D.; Torres, A. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Rueff, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Sorbonne Universités, UPMC Univ. Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris (France); Ceolin, D. [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, BP 48 91192, Gif-sur-Yvette Cedex (France); Grenet, G. [Université de Lyon, Institut des Nanotechnologies de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2017-04-30

    Highlights: • An effective approach for quantitative background analysis in HAXPES spectra of buried layer underneath complex overlayer structures is proposed. • The approach relies on using a weighted sum of inelastic scattering cross section of the pure layers. • The method is validated by the study of an advanced power transistor stack after successive annealing steps. • The depth distribution of crucial elements (Ti, Ga) is determined reliably at depths up to nearly 50 nm. - Abstract: Inelastic background analysis of HAXPES spectra was recently introduced as a powerful method to get access to the elemental distribution in deeply buried layers or interfaces, at depth up to 60 nm below the surface. However the accuracy of the analysis highly relies on suitable scattering cross-sections able to describe effectively the transport of photoelectrons through overlayer structures consisting of individual layers with potentially very different scattering properties. Here, we show that within Tougaard’s practical framework as implemented in the Quases-Analyze software, the photoelectron transport through thick (25–40 nm) multi-layer structures with widely different cross-sections can be reliably described with an effective cross-section in the form of a weighted sum of the individual cross-section of each layer. The high-resolution core-level analysis partly provides a guide for determining the nature of the individual cross-sections to be used. We illustrate this novel approach with the practical case of a top Al/Ti bilayer structure in an AlGaN/GaN power transistor device stack before and after sucessive annealing treatments. The analysis provides reliable insights on the Ti and Ga depth distributions up to nearly 50 nm below the surface.

  20. Analytical calculation of the average scattering cross sections using fourier series

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2009-01-01

    The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)

  1. Analytical calculation of the average scattering cross sections using fourier series

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [Instituto Federal do Rio de Janeiro, Nilopolis, RJ (Brazil)], e-mail: dpalmaster@gmail.com; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: asilva@con.ufrj.br, e-mail: agoncalves@con.ufrj.br, e-mail: aquilino@lmp.ufrj.br, e-mail: fernando@con.ufrj.br

    2009-07-01

    The precise determination of the Doppler broadening functions is very important in different applications of reactors physics, mainly in the processing of nuclear data. Analytical approximations are obtained in this paper for average scattering cross section using expansions in Fourier series, generating an approximation that is simple and precise. The results have shown to be satisfactory from the point-of-view of accuracy and do not depend on the type of resonance considered. (author)

  2. A critical comparison of electron scattering cross sections measured by single collision and swarm techniques

    International Nuclear Information System (INIS)

    Buckman, S.J.; Brunger, M.J.

    1996-07-01

    Electron scattering cross sections (elastic, rotational and vibrational excitation) for a number of atomic and (relatively) single molecular systems are examined. Particular reference is made to the level of agreement which is obtained from the application of the completely different measurement philosophies embodied in 'beam' and 'swarm' techniques. The range of energies considered is generally restricted to the region below 5 eV. 142 refs., 1 tab., 12 figs

  3. Revision of the inelastic scattering cross section evaluation of 238U for CENDL-2.1

    International Nuclear Information System (INIS)

    Tang Guoyou; Zhang Guohui; Shi Zhaomin; Chen Jinxiang

    1995-11-01

    Revised evaluated data for the inelastic neutron scattering cross-section and the secondary neutron spectrum are presented for U-238 in graphical form, compared with the earlier data that exist in the evaluated nuclear data libraries ENDF/B-6 and JENDL-3. The new data will be included in the Chinese evaluated nuclear data library CENDL-2.1. (author). 14 refs, 9 figs

  4. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    International Nuclear Information System (INIS)

    Silva, D G M; Tejo, T; Lopes, M C A; Muse, J; Romero, D; Khakoo, M A

    2010-01-01

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  5. Comparison of inelastic electron and positron scattering cross sections on 12C and 27Al

    International Nuclear Information System (INIS)

    Hartwig, S.; Heimlich, F.H.; Huber, G.; Roessle, E.; Koebberling, M.; Moritz, J.; Schmidt, K.H.; Wegener, D.; Zeller, D.; Bleckwenn, J.

    1977-06-01

    The +/- ratio R of the cross sections for inelastic positron and electron scattering on 12 C and 27 Al has been measured for four momentum transfers (0.08 - 0.45) GeV 2 /c 2 of the virtual photon and invariant masses 0.95 GeV +- 0.0007), no q 2 respectively W dependence of the ratio is observed. (orig.) [de

  6. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Cvach, Jaroslav; Ferencei, Jozef; Hladký, Jan; Reimer, Petr

    2017-01-01

    Roč. 77, č. 4 (2017), s. 1-41, č. článku 215. ISSN 1434-6044 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : jet cross sections * neutral current deep-inelastic scattering * perturbative QCD Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  7. Jet cross sections in γ*γ-scattering at e+e- colliders in NLO QCD

    International Nuclear Information System (INIS)

    Poetter, B.

    1999-01-01

    Recent results from NLO QCD calculations for inclusive jet cross sections in γ*γ-scattering at e + e - colliders, especially for LEP, are reported. The virtuality Q 2 of the virtual photon is non-zero and can be unlimited large. The virtuality of the second photon is zero and the spectrum is calculated with the Weizsaecker-Williams approximation. Four components of the cross sections have to be distinguished, involving direct and resolved real and virtual photon contributions. Since Q 2 is non-zero, the virtual photon structure function is needed to calculate the contributions involving a resolved virtual photon

  8. The effective cross section for double parton scattering within a holographic AdS/QCD approach

    Energy Technology Data Exchange (ETDEWEB)

    Traini, Marco, E-mail: marcoclaudio.traini@unitn.it [Institut de Physique Théorique, Université Paris Saclay, CEA, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento, Via Sommarive 14, I-38123 Povo, Trento (Italy); Rinaldi, Matteo [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain); Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via A. Pascoli, I-06123 (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Vento, Vicente [Departament de Fisica Teòrica, Universitat de València and Institut de Fisica Corpuscular, Consejo Superior de Investigaciones Científicas, 46100 Burjassot, València (Spain)

    2017-05-10

    A first attempt to apply the AdS/QCD framework for a bottom–up approach to the evaluation of the effective cross section for double parton scattering in proton–proton collisions is presented. The main goal is the analytic evaluation of the dependence of the effective cross section on the longitudinal momenta of the involved partons, obtained within the holographic Soft-Wall model. If measured in high-energy processes at hadron colliders, this momentum dependence could open a new window on 2-parton correlations in a proton.

  9. Differential cross sections for the elastic scattering of intermediate energy electrons from sodium

    International Nuclear Information System (INIS)

    Teubner, P.J.O.; Buckner, S.J.; Noble, C.J.

    1977-11-01

    Differential cross sections for the elastic scattering of electrons from sodium have been measured with high angular resolution for incident energies of 54.4, 75, 100 and 150 eV and over an angular range of 12 0 to 140 0 . The experimental data are compared with calculations based on the First Born approximation, the Glauber approximation and a close coupling impact parameter calculation. Calculations have been carried out for an optical model using the prescription of Vanderpoorten for localizing the absorptive part of the potential. Of the theoretical calculations the optical model is found to best reproduce the general features of the cross section at all energies. (Author)

  10. Potentials and scattering cross sections for collisions of He atoms with adsorbed CO

    International Nuclear Information System (INIS)

    Liu, W.K.; Gumhalter, B.

    1986-05-01

    Ab initio calculations of the total scattering cross section for the collision system He → CO/Pt(111) within the renormalized distorted wave Born approximation are reported. The interaction potential for this atom-adsorbate system consists of the usual two-body gas phase-like potential as well as two additional substrate mediated van de Waals contributions, all with similar long range behaviour. Comparison of the calculated cross sections for various incident velocities and angles with available experimental data is made without using any adjustable parameters to fit the data, and the importance of including the substrate-mediated forces is emphasized. (author)

  11. Topological cross sections in hadron-nucleus collisions and multiple scattering theory

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1987-01-01

    The multiple scattering theory supplemented with cutting rules of Abramovsky, V.A., Gribov, V.N., Kancheli, O.V. is applied to calculation of the hadron-nucleus interaction cross sections. In contrast to standard Glauber approach neither smalness of the interaction radius compared to the nuclear radii nor Gaussian form of the hN-interaction profile function are assumed. The theory of the supercritical pomeron are used. However all the results are more general and do not depend on the parametrization of the pomeron pole amplitude. The region of validity of the widely used approximate formulae for topological and total hA-interaction cross sections are discussed

  12. Covariance Matrix of a Double-Differential Doppler-Broadened Elastic Scattering Cross Section

    Science.gov (United States)

    Arbanas, G.; Becker, B.; Dagan, R.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Williams, M. L.

    2012-05-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on 238U are computed near the 6.67 eV resonance at temperature T = 103 K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  13. Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet

    DEFF Research Database (Denmark)

    Lefmann, K.; Hedegård, P.

    1994-01-01

    In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...

  14. Cross Sections of Charged Current Neutrino Scattering off 132Xe for the Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2013-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off 132Xe isotope at neutrino energies Ev<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest or on low-energy beta-beams.

  15. Multi-jet cross sections in charged current e{sup {+-}}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-02-15

    Jet cross sections were measured in charged current deep inelastic e{sup {+-}}p scattering at high boson virtualities Q{sup 2} with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb{sup -1}. Differential cross sections are presented for inclusive-jet production as functions of Q{sup 2}, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e{sup {+-}}p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  16. Multi-jet cross sections in charged current e±p scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-02-01

    Jet cross sections were measured in charged current deep inelastic e ± p scattering at high boson virtualities Q 2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb -1 . Differential cross sections are presented for inclusive-jet production as functions of Q 2 , Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e ± p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  17. Code implementation of partial-range angular scattering cross sections: GAMMER and MORSE

    International Nuclear Information System (INIS)

    Ward, J.T. Jr.

    1978-01-01

    A partial-range (finite-element) method has been previously developed for representing multigroup angular scattering in Monte Carlo photon transport. Computer application of the method, with preliminary quantitative results is discussed here. A multigroup photon cross section processing code, GAMMER, was written which utilized ENDF File 23 point data and the Klein--Nishina formula for Compton scattering. The cross section module of MORSE, along with several execution routines, were rewritten to permit use of the method with photon transport. Both conventional and partial-range techniques were applied for comparison to calculating angular and spectral penetration of 6-MeV photons through a six-inch iron slab. GAMMER was found to run 90% faster than SMUG, with further improvement evident for multiple-media situations; MORSE cross section storage was reduced by one-third; cross section processing, greatly simplified; and execution time, reduced by 15%. Particle penetration was clearly more forward peaked, as moment accuracy is retained to extremly high order. This method of cross section treatment offers potential savings in both storage and handling, as well as improved accuracy and running time in the actual execution phase. 3 figures, 4 tables

  18. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Science.gov (United States)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  19. Medium modified two-body scattering amplitude from proton-nucleus total cross-sections

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    Recently (R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 145 (1998) 277; R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, NASA-TP-1998-208438), we have extracted nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. Here, we investigate the ratio of real to imaginary part of the two-body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate total proton-nucleus cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2001 Elsevier Science B.V. All rights reserved.

  20. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Departamento de Física, Universidade Federal do Espírito Santo, 29075-910, Vitória, Espírito Santo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  1. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    International Nuclear Information System (INIS)

    Jones, D. B.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-01-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20–250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron–furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  2. 54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV

    Science.gov (United States)

    Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.

    2018-04-01

    Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.

  3. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  4. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  5. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  6. Total cross sections for slow-electron (1--20 eV) scattering in solid H2O

    International Nuclear Information System (INIS)

    Michaud, M.; Sanche, L.

    1987-01-01

    An analytical method is proposed to determine absolute total cross sections per scatterer and related mean free paths for low-energy electron scattering in disordered molecular solid films. The procedure is based on a two-stream multiple-scattering model of the thickness dependence of the film reflectivity for elastic electrons. The expected analytical behavior and accuracy are tested on a model sample whose scattering properties are generated by a Monte Carlo simulation from initially known parameters. The effects of multiple scattering inside the film and at its interfaces are taken into account and discussed. The thickness dependence of the elastic electron reflectivity of H 2 O film condensed at 14 K is reported between 1 and 20 eV incident energy with a spectrometer resolution of 10 MeV. The proposed method is applied to extract from these measurements the energy dependence of the total effective and total inelastic cross sections for electron scattering in amorphous ice

  7. Decoherence due to elastic rayleigh scattering

    CSIR Research Space (South Africa)

    Uys, H

    2010-11-01

    Full Text Available . acknowledges support from Georgia Tech and IARPA. D.M. is supported by NSF. This work was supported by the DARPA OLE program and by IARPA. This manuscript is the contribution of NIST and is not subject to U.S. copyright. *huys@csir.co.za †john...

  8. Cross sections and spin polarizations of electrons elastically scattered from oriented molecules (CH3I)

    International Nuclear Information System (INIS)

    Fink, M.; Ross, A.W.; Fink, R.J.

    1989-01-01

    Elastic differential cross sections and spin polarizations for electrons elastically scattered from CH 3 I are calculated using the independent atom model. Three molecular orientations with respect to the incident electron wavevector are considered - first, the molecule is oriented randomly, second, the electron wave front and molecular bond are parallel, and third, the wavefront and the bond axis are perpendicular. It will be seen to what extent orientational averaging weakens features of the cross section and spin polarization. The calculations show that cross section and spin polarization measurements are a possible tool for determining the degree of molecular orientation. There is no degeneracy between I-C and C-I in cross section and spin polarization measurements. The results presented here for 200 eV and 600 eV electrons scattered by CH 3 I should be considered as a case study and it should be possible to find molecules and electron energies for which even more dramatic differences between the various orientations between the molecules and the electrons can be expected. (orig.)

  9. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    Science.gov (United States)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  10. Study of the elastic scattering differential cross sections of a proton beam by a cesium target

    International Nuclear Information System (INIS)

    El Maddarsi, Mohamed.

    1978-01-01

    The elastic differential cross section of H + on Cs is studied experimentally and theoretically. The experimental device is described, after which the differential cross-section values obtained as a function of the laboratory angle are given for four incident energies: 13.4 eV, 15.1 eV, 17.7 eV and 24.2 eV. By means of an interaction potential of the quasi-molecule H + Cs the differential cross sections are calculated for the same incident energies; this calculation uses the semi-classical method of stationary phases which shows clearly the limits of conventional description and the changes introduced by quantum effects. Very good agreement is obtained between theoretical and experimental results, which shows that elastic scattering is very little perturbed by inelastic channels in this energy range. The estimated inelastic cross section at 24 eV is about 1.9 10 -15 cm 2 , corresponding to 1.6% of the scattering process [fr

  11. Atlas cross section for scattering of muonic hydrogen atoms on hydrogen isotope molecules

    International Nuclear Information System (INIS)

    Adamczak, A.; Faifman, M.P.; Ponomarev, L.I.

    1996-01-01

    The total cross sections of the elastic, spin-flip, and charge-exchange processes for the scattering of muonic hydrogen isotope atoms (pμ, dμ, tμ) in the ground state on the hydrogen isotope molecules (H 2 , D 2 , T 2 , HD, HT, DT) are calculated. The scattering cross sections of muonic hydrogen isotope atoms on hydrogen isotope nuclei obtained earlier in the multichannel adiabatic approach are used in the calculations. Molecular effects (electron screening, rotational and vibrational excitations of target molecules, etc.) are taken into account. The spin effects of the target molecules and of the incident muonic atoms are included. the cross sections are averaged over the Boltzmann distribution of the molecule rotational states and the Maxwellian distribution of the target molecule kinetic energies for temperatures 30, 100, 300, and 1000 K. The cross sections are given for kinetic energies of the incident muonic atoms ranging from 0.001 to 100 eV in the laboratory frame. 45 refs., 6 tabs

  12. Measurements of Positronium Formation Cross Sections for Positron-Kr, Xe Scattering

    Science.gov (United States)

    Kauppila, W. E.; Kwan, C. K.; Li, H.; Stein, T. S.; Zhou, S.

    1997-04-01

    Our experimental approach(S. Zhou et al., Phys. Rev. Lett. 73, 236 (1994).) for measuring Ps formation cross sections (Q_Ps) involves passing a variable energy positron beam through a gas scattering cell and detecting the 511 keV annihilation gamma rays resulting from the decay of para-Ps and from the interaction of ortho-Ps with the walls of the scattering cell. It is found that the Q_Ps curves for both Kr and Xe rise rapidly from their formation threshold energies of 7.2 and 5.3 eV, reach maxima within about 10 eV of their thresholds and then decrease to become rather small (less than 10% of the peak heights) above 100 eV. At the maxima Q_Ps accounts for more than 50% of the total scattering cross sections. There is some evidence of possible small scale structure in the Q_Ps curves between 10 and 100 eV. The present results are consistent with the prior measurements of Diana et al.( L.M. Diana et al., in "Atomic Physics with Positrons", edited by J.W. Humberston and E.A.G. Armour (Plenum, New York and London, 1987), p. 55; and in "Positron Annihilation", edited by L. Dorikens-Vanpraet et al. (World Scientific, Singapore, 1989), p. 311.) from near threshold to 70 eV for Kr and from 15 to 100 eV for Xe.

  13. Cross sections for inelastic scattering of electrons by atoms: selected topics related to electron microscopy

    International Nuclear Information System (INIS)

    Inokuti, M.; Manson, S.T.

    1982-01-01

    We begin with a resume of the Bethe theory, which provides a general framework for discussing the inelastic scattering of fast electrons and leads to powerful criteria for judging the reliability of cross-section data. The central notion of the theory is the generalized oscillator strength as a function of both the energy transfer and the momentum transfer, and is the only non-trivial factor in the inelastic-scattering cross section. Although the Bethe theory was initially conceived for free atoms, its basic ideas apply to solids, with suitable generalizations; in this respect, the notion of the dielectric response function is the most fundamental. Topics selected for discussion include the generalized oscillator strengths for the K-shell and L-shell ionization for all atoms with Z less than or equal to 30, evaluated by use of the Hartree-Slater potential. As a function of the energy transfer, the generalized oscillator strength most often shows a non-monotonic structure near the K-shell and L-shell thresholds, which has been interpreted as manifestations of electron-wave propagation through atomic fields. For molecules and solids, there are additional structures due to the scattering of ejected electrons by the fields of other atoms

  14. PELINSCA, Elastic Scattering and Total Cross-Sections and Polarization by Hauser-Feshbach

    International Nuclear Information System (INIS)

    Engelbrecht, C.A.; Fiedeldey, H.; Tepel, J.W.

    1979-01-01

    1 - Nature of the physical problem solved: Calculates differential and total Cross sections as well as polarization for nuclear elastic scattering of spin 0 or spin 1/2 particles. Calculates Cross sections (differential and total) and decay gamma ray angular correlation for inelastic processes by means of standard Hauser-Feshbach (HF) theory or with modified HF theory including width fluctuation corrections. In elastic scattering optical model parameters may be optimized in a least squares procedure involving experimental measurements. 2 - Method of solution: Schroedinger equation for complex potentials is solved according to Fox-Goodwin method of numerical integration. Coulomb wave functions are calculated by using recurrence relations depending on range of Coulomb and energy parameters. Least squares fits are made using parameter grid and direction of steepest descent. Statistical model calculations are made using closed mathematical expressions. 3 - Restrictions on the complexity of the problem: Elastic scattering calculations limited to spin 0 or spin 1/2 particles. Number of partial waves limited to 51. Statistical model calculations on targets with spin less or equal to 5 and with partial waves up to l=6. Not suitable for heavy-ion Hauser- Feshbach calculations without first removing dimensional limitations. Program handles up to 3 reaction types simultaneously, e.g. (p,p), (p,n) and (p,alpha), each reaction channel having up to 33 final nuclear states

  15. A New Scaling Law of Resonance in Total Scattering Cross Section in Gases

    Science.gov (United States)

    Raju, Gorur Govinda

    2009-10-01

    Electrical discharges in gases continue to be an active area of research because of industrial applications such as power systems, environmental clean up, laser technology, semiconductor fabrication etc. A fundamental knowledge of electron-gas neutral interaction is indispensable and, the total scattering cross section is one of the quantities that have been measured extensively. The energy dependence of the total cross sections shows peaks or resonance processes that are operative in the collision process. These peaks and the energies at which they occur are shown to satisfy a broad relationship involving the polarizability and the dipole moment of the target particle. Data on 62 target particles belonging to the following species are analyzed. (Eq 1) Rare gas atoms (Eq 2) Di-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties Poly-atomic molecules with combinations of polar, non-polar, attaching, and non-attaching properties. Methods of improving the newly identified scaling law and possible application have been identified. 1 INTRODUCTION: Data on electron-neutral interactions are one of the most fundamental in the study of gaseous electronics and an immense literature, both experimental and theoretical, has become available since about the year 1920. [1-5]. In view of the central role which these data play in all facets of gas discharges and plasma science, it is felt that a critical review of available data is timely, mainly for the community of high voltage engineers and industries connected with plasma science in general. The electron-neutral interaction, often referred to as scattering in the scientific literature, is quantified by using the quantity called the total scattering cross section (QT, m^2). In the literature on cross section, total cross section and total scattering cross section are terms used synonymously and we follow the same practice. A definition may be found in reference [1]. This paper concerns

  16. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Science.gov (United States)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-01

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  17. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    Science.gov (United States)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  18. Multiphoton effects in electron-ion scattering: A limitation of the cross-section treatment

    International Nuclear Information System (INIS)

    Torres Silva, H.; Sakanaka, P.H.; Braga, L.C.

    1991-07-01

    The differential cross-section for inelastic scattering in the presence of an intense laser field, when applied to the calculation of energy balance and heating by multiphoton process, is a problem which is not completely solved yet. One of the main difficulties is the calculation of the absorption coefficients α-bar for a monoenergetic beam of electrons scattered by a static potential. There are contradictory results shown by different authors. Here we have derived α-bar starting under the framework of quantum mechanics and then making the classical correspondence (h/2π → 0) according to the kinetic theory, and show that the absorption coefficient is always positive for all values of the particle incoming velocity, v-vector i . Furthermore, we show that in the calculation of α-bar we recover the Coulomb logarithm term. (author). 18 refs, 5 figs, 2 tabs

  19. Time-Dependent Wave Packet Dynamics Calculations of Cross Sections for Ultracold Scattering of Molecules

    Science.gov (United States)

    Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.

    2018-04-01

    Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.

  20. The LXCat project: Electron scattering cross sections and swarm parameters for low temperature plasma modeling

    International Nuclear Information System (INIS)

    Pancheshnyi, S.; Biagi, S.; Bordage, M.C.; Hagelaar, G.J.M.; Morgan, W.L.; Phelps, A.V.; Pitchford, L.C.

    2012-01-01

    Graphical abstract: LXCat is an open-access website containing data needed for low temperature plasma modeling as well as on-line tools useful for their manipulation. Highlights: ► LXCat: an open-access website with data for low temperature plasma modeling. ► Contains compilations of electron scattering cross sections and transport data. ► Data from different contributors for many neutral, ground-state species. ► On-line tools for browsing, plotting, up/downloading data. ► On-line Boltzmann solver for calculating electron swarm parameters. - Abstract: LXCat is a dynamic, open-access, website for collecting, displaying, and downloading ELECtron SCATtering cross sections and swarm parameters (mobility, diffusion coefficient, reaction rates, etc.) required for modeling low temperature, non-equilibrium plasmas. Contributors set up individual databases, and the available databases, indicated by the contributor’s chosen title, include mainly complete sets of electron-neutral scattering cross sections, although the option for introducing partial sets of cross sections exists. A database for measured swarm parameters is also part of LXCat, and this is a growing activity. On-line tools include options for browsing, plotting, and downloading cross section data. The electron energy distribution functions (edfs) in low temperature plasmas are in general non-Maxwellian, and LXCat provides an option for execution of an on-line Boltzmann equation solver to calculate the edf in homogeneous electric fields. Thus, the user can obtain electron transport and rate coefficients (averages over the edfs) in pure gases or gas mixtures over a range of values of the reduced electric fields strength, E/N, the ratio of the electric field strength to the neutral density, using cross sections from the available databases. New contributors are welcome and anyone wishing to create a database and upload data can request a username and password. LXCat is part of a larger, community

  1. ZZ ELAST2, Database of Cross Sections for the Elastic Scattering of Electrons and Positrons by Atoms

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Historical background and information: This database is an extension of the earlier database, 'Elastic Scattering of Electrons and Positrons by Atoms: Database ELAST', Report NISTIR 5188, 1993. Cross sections for the elastic scattering of electrons and positrons by atoms were calculated at energies from 1 KeV to 100 MeV. Up to 10 MeV the RELEL code of Riley was used. Above 10 MeV the ELSCAT code was used, which calculated the factored cross sections and evaluates the screening factor Kscr in WKB approximation. 2 - Application of the data: This database was developed to provide input for the transport codes, such as ETRAN, and includes differential cross sections, the total cross section, and the transport cross sections. In addition, a code TRANSX is provided that generates transport cross section of arbitrary order needed as input for the calculation of Goudsmit-Saunderson multiple-scattering angular distribution 3 - Source and scope of data: The database includes cross sections at 61 energies for electrons and 41 energies from positrons, covering the energy region from 1 KeV to 100 MeV. The number of deflection angles included in the database is 314 angles. Total and transport cross sections are also included in this package. The data files have an extension (jjj) that represents the atomic number of the target atom. The database includes auxiliary data files that enable the ELASTIC code to include the following optional modifications: (i) the inclusion of the exchange correction for electrons scattering; (ii) the conversion of the cross sections for scattering by free atoms to cross sections for scattering by atoms in solids; (iii) ti reduction of the cross sections at large angles and at high energies when the nucleus is treated as an extended rather than a point charge

  2. γ production and neutron inelastic scattering cross sections for 76Ge

    Science.gov (United States)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  3. Measurement of the diffractive deep-inelastic scattering cross section with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2010-06-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P} < 0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4cross section is measured four-fold differentially in t, x{sub P},Q{sup 2} and {beta}=x/x{sub P}, where x is the Bjorken scaling variable. The t and x{sub P} dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared to perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2}, {beta} and x{sub P}. (orig.)

  4. Measurement and QCD analysis of diffractive jet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Mozer, M.U.

    2006-07-24

    Differential cross sections for the production of two jets in diffractive deep inelastic scattering (DIS) at HERA are presented. The process studied is of the type ep{yields}eXY, where the central hadronic system X contains at least two jets and is separated from the system Y by a gap in rapidity. The forward system Y consists of an elastically scattered proton or a low mass dissociation system. The data were taken with the H1 detector during the years of 1999 and 2000 and correspond to an integrated luminosity of 51.5 pb{sup -1}. The measured cross sections are compared to fixed order NLO QCD predictions, that use diffractive parton densities which have previously been determined by a NLO QCD analysis of inclusive diffractive DIS at H1. The prediction and the data show significant differences. However, the dijet cross section is dominated by the diffractive gluon density, which can be extracted by the above mentioned analysis only with considerable uncertainty. Hence a combined QCD analysis of the previously published inclusive diffractive data and the dijet data is performed. This combined fit analysis allows the determination of diffractive quark and gluon densities with comparable precision. The common description of inclusive diffractive data and the dijet data confirms QCD factorization. (orig.)

  5. Multichannel analysis of He*(21S)+Ne elastic and inelastic scattering in crossed atomic beams

    International Nuclear Information System (INIS)

    Martin, D.W.; Fukuyama, T.; Siska, P.E.

    1990-01-01

    State-to-state elastic and inelastic angular distribution and time-of-flight measurements are reported for the scattering of He*(2 1 S) by Ne in crossed supersonic atom beams at four collision energies in the range 0.6--2.8 kcal/mol. The inelastic collision products He+Ne*(nl), where nl=3d', 4p, 4p', 5s, 5s', and 4d, are scattered predominantly forward with respect to the direction of incidence, except for endothermic states near threshold. The data are analyzed with a numerically exact multichannel curve-crossing model that yields good agreement with experimental cross section branching fractions and total quenching and state-to-state rate constants as well as the angular measurements. The model suggests the importance of intermediate ''chaperone'' states, in which the excited electron is temporarily trapped in a d or f Rydberg Ne orbital, in channeling flux into the 4s' and 5s' upper laser states of Ne by energy transfer from He*(2s 1,3 S)

  6. Measurement of differential incoherent scattering cross-sections of 145 keV photons from K-shell electrons

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, V B; Ghumman, B S [Punjabi Univ., Patiala (India). Dept. of Physics

    1980-06-01

    Differential cross-sections for incoherent scattering of 145 keV photons from K-shell electrons of tin, silver and molybdenum have been measured at 110deg to investigate the effect of electron binding on differential cross-sections in the low energy region. The incoherent scattered photons are selected in coincidence with X-rays which follow the vacancies caused by the ejection of the electrons. NaI(Tl) scintillators are used for the detection of scattered photons and emitted X-rays. The experimental results are compared with the available theoretical data.

  7. Rayleigh's hypothesis and the geometrical optics limit.

    Science.gov (United States)

    Elfouhaily, Tanos; Hahn, Thomas

    2006-09-22

    The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.

  8. Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves

    International Nuclear Information System (INIS)

    Katsuragawa, Naoki; Hojo, Hitoshi; Mase, Atushi

    1996-11-01

    Simulation study on cross polarization scattering of ultrashort-pulse electromagnetic waves due to magnetic fluctuations is presented. One-dimensional coupled wave equations for the ordinary and extraordinary modes are solved for incident unipolar sub-cycle pulses in an inhomogeneous magnetized plasma. It is shown that the peak frequencies in the frequency-spectral signals of the mode-converted reflected waves are determined from the Bragg resonance condition in the wave numbers of the ordinary mode, the extraordinary mode and the magnetic fluctuations for relatively short-wavelength localized magnetic fluctuations. (author)

  9. Calculation of total cross sections for electron and positron scattering on sodium and potassium

    International Nuclear Information System (INIS)

    McCarthy, I.E.; Ratnavelu, K.; Zhou, Y.

    1993-02-01

    Total cross sections for electron and positron scattering on sodium and potassium are calculated at various energies and compared with experiment. The method use is the coupled-channels-optical method with the equivalent-local polarisation potential, which takes all channels into account. For electrons the calculations are checked by comparison with coupled-channels-optical calculations using a detailed polarisation potential that makes only one approximation, that of weak coupling in the ionisation space. The polarisation potential for positrons includes effects of ionisation and positronium formation. 13 refs., 2 tabs

  10. Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA

    CERN Document Server

    Andreev, Vladimir; Begzsuren, Khurelbaatar; Belousov, Anatoli; Bolz, Arthur; Boudry, Vincent; Brandt, Gerhard; Brisson, Violette; Britzger, Daniel; Buniatyan, Armen; Bylinkin, Alexander; Bystritskaya, Lena; Campbell, Alan; Cantun Avila, Karla Beatriz; Cerny, Karel; Chekelian, Vladimir; Contreras, Guillermo; Cvach, Jaroslav; Dainton, John; Daum, Karin; Diaconu, Cristinel; Dobre, Monica; Dodonov, Vitaliy; Eckerlin, Guenter; Egli, Stephan; Elsen, Eckhard; Favart, Laurent; Fedotov, Alexandre; Feltesse, Joel; Ferencei, Jozef; Fleischer, Manfred; Fomenko, Alexander; Gabathuler, Erwin; Gayler, Joerg; Ghazaryan, Samvel; Goerlich, Lidia; Gogitidze, Nelly; Gouzevitch, Maxime; Grab, Christoph; Grebenyuk, Anastasia; Greenshaw, Timothy; Grindhammer, Guenter; Haidt, Dieter; Henderson, Rob~CW; Hladky, Jan; Hoffmann, Dirk; Horisberger, Roland; Hreus, Tomas; Huber, Florian; Jacquet, Marie; Janssen, Xavier; Jung, Hannes; Kapichine, Mikhail; Katzy, Judith; Kiesling, Christian; Klein, Max; Kleinwort, Claus; Kogler, Roman; Kostka, Peter; Kretzschmar, Jan; Kruecker, Dirk; Krueger, Katja; Landon, Murrough; Lange, Wolfgang; Laycock, Paul; Lebedev, Andrei; Levonian, Sergey; Lipka, Katerina; List, Benno; List, Jenny; Lobodzinski, Bogdan; Malinovski, Evgenij; Martyn, Hans-Ulrich; Maxfield, Steve~J; Mehta, Andrew; Meyer, Andreas; Meyer, Hinrich; Meyer, Joachim; Mikocki, Stanislav; Morozov, Anatoly; Mueller, Katharina; Naumann, Thomas; Newman, Paul~R; Niebuhr, Carsten; Nowak, Grazyna; Olsson, Jan~Erik; Ozerov, Dmitri; Pascaud, Christian; Patel, Girish; Perez, Emmanuelle; Petrukhin, Alexey; Picuric, Ivana; Pirumov, Hayk; Pitzl, Daniel; Placakyte, Ringaile; Polifka, Richard; Radescu, Voica; Raicevic, Natasa; Ravdandorj, Togoo; Reimer, Petr; Rizvi, Eram; Robmann, Peter; Roosen, Robert; Rostovtsev, Andrei; Rotaru, Marina; Salek, David; Sankey, Dave~PC; Sauter, Michel; Sauvan, Emmanuel; Schmitt, Stefan; Schoeffel, Laurent; Schoening, Andre; Sefkow, Felix; Shushkevich, Stanislav; Soloviev, Yuri; Sopicki, Pawel; South, David; Spaskov, Vladimir; Specka, Arnd; Steder, Michael; Stella, Bruno; Straumann, Ulrich; Sykora, Tomas; Thompson, Paul; Traynor, Daniel; Truoel, Peter; Tsakov, Ivan; Tseepeldorj, Baatar; Valkarova, Alice; Vallee, Claude; VanMechelen, Pierre; Vazdik, Iakov; Wegener, Dietrich; Wuensch, Eberhard; Zacek, Jozef; Zhang, Zhiqing; Zlebcik, Radek; Zohrabyan, Hamlet

    2017-04-04

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of $Q^2$. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective $Q^2$-interval are also determined. Previous results of inclusive jet cross sections in the range $150

  11. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Vazdik, Y.; Baghdasaryan, A.; Zohrabyan, H.; Begzsuren, K.; Ravdandorj, T.; Bolz, A.; Huber, F.; Sauter, M.; Schoening, A.; Boudry, V.; Specka, A.; Brandt, G.; Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F.; Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E.; Buniatyan, A.; Newman, P.R.; Thompson, P.D.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Avila, K.B.C.; Contreras, J.G.; Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B.; Cvach, J.; Hladky, J.; Reimer, P.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Vallee, C.; Dobre, M.; Rotaru, M.; Egli, S.; Horisberger, R.; Ozerov, D.; Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van; Feltesse, J.; Schoeffel, L.; Ferencei, J.; Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P.; Gouzevitch, M.; Petrukhin, A.; Grab, C.; Henderson, R.C.W.; Jung, H.; Kapichine, M.; Morozov, A.; Spaskov, V.; Kogler, R.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Lange, W.; Naumann, T.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Perez, E.; Picuric, I.; Raicevic, N.; Polifka, R.; Radescu, V.; Rostovtsev, A.; Sankey, D.P.C.; Sauvan, E.; Shushkevich, S.; Soloviev, Y.; Stella, B.; Sykora, T.; Tsakov, I.; Tseepeldorj, B.; Wegener, D.

    2017-01-01

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5 < Q"2 < 80 GeV"2 and inelasticities 0.2 < y < 0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb"-"1. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q"2. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q"2-interval are also determined. Previous results of inclusive jet cross sections in the range 150 < Q"2 < 15,000 GeV"2 are extended to low transverse jet momenta 5 < P_T"j"e"t < 7 GeV. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q"2, the strong coupling constant α_s(M_Z) is determined in next-to-leading order. (orig.)

  12. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (Mongolia); Bolz, A.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Avila, K.B.C.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Praha (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Ferencei, J. [Nuclear Physics Institute of the CAS, Rez (Czech Republic); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C. [Institut fuer Teilchenphysik, ETH, Zurich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics (United Kingdom); Jung, H. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); DESY, Hamburg (Germany); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [University of London, School of Physics and Astronomy, Queen Mary, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (CA); Radescu, V. [Oxford University, Department of Physics, Oxford (GB); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (RU); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (GB); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (FR); Universite de Savoie, LAPP, Annecy-le-Vieux (FR); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (RU); Soloviev, Y. [DESY, Hamburg (DE); Lebedev Physical Institute, Moscow (RU); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (IT); INFN Roma 3, Rome (IT); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (BE); Charles University, Faculty of Mathematics and Physics, Praha (CZ); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (BG); Tseepeldorj, B. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (MN); Ulaanbaatar University, Ulaanbaatar (MN); Wegener, D. [Institut fuer Physik, TU Dortmund, Dortmund (DE); Collaboration: H1 Collaboration

    2017-04-15

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5 < Q{sup 2} < 80 GeV{sup 2} and inelasticities 0.2 < y < 0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb{sup -1}. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q{sup 2}. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q{sup 2}-interval are also determined. Previous results of inclusive jet cross sections in the range 150 < Q{sup 2} < 15,000 GeV{sup 2} are extended to low transverse jet momenta 5 < P{sub T}{sup jet} < 7 GeV. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q{sup 2}, the strong coupling constant α{sub s}(M{sub Z}) is determined in next-to-leading order. (orig.)

  13. Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Brookman, M. W., E-mail: brookmanmw@fusion.gat.com [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Austin, M. E.; McLean, A. G. [Lawrence Livermore National Lab, Livermore, California 94500 (United States); Carlstrom, T. N.; Hyatt, A. W.; Lohr, J. [General Atomics, San Diego, California 92122 (United States)

    2016-11-15

    Thomson scattering produces n{sub e} profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n{sub e} ∝ I{sub TS}, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n{sub e} calibration is adjusted against an absolute n{sub e} from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n{sub e} from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as “ECH pump-out” generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff.

  14. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    International Nuclear Information System (INIS)

    Zhao, Hui; Chou, Dean-Yi

    2016-01-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc , the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.

  15. MEASUREMENTS OF THE ABSORPTION AND SCATTERING CROSS SECTIONS FOR THE INTERACTION OF SOLAR ACOUSTIC WAVES WITH SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui [National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 200012 (China); Chou, Dean-Yi, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2016-05-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ {sub ab} and the scattering cross section σ {sub sc} for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ {sub ab} and σ {sub sc}, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n . The ratio of σ {sub ab} of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n , while the ratio of σ {sub sc} of the two sunspots is greater than the ratio of sunspot radii and increases with n . This suggests that σ {sub ab} is approximately proportional to the sunspot radius, while the dependence of σ {sub sc} on radius is faster than the linear increase.

  16. Rosetta Mission: Electron Scattering Cross Sections—Data Needs and Coverage in BEAMDB Database

    Directory of Open Access Journals (Sweden)

    Bratislav P. Marinković

    2017-11-01

    Full Text Available The emission of [O I] lines in the coma of Comet 67P/Churyumov-Gerasimenko during the Rosetta mission have been explained by electron impact dissociation of water rather than the process of photodissociation. This is the direct evidence for the role of electron induced processing has been seen on such a body. Analysis of other emission features is handicapped by a lack of detailed knowledge of electron impact cross sections which highlights the need for a broad range of electron scattering data from the molecular systems detected on the comet. In this paper, we present an overview of the needs for electron scattering data relevant for the understanding of observations in coma, the tenuous atmosphere and on the surface of 67P/Churyumov-Gerasimenko during the Rosetta mission. The relevant observations for elucidating the role of electrons come from optical spectra, particle analysis using the ion and electron sensors and mass spectrometry measurements. To model these processes electron impact data should be collated and reviewed in an electron scattering database and an example is given in the BEAMD, which is a part of a larger consortium of Virtual Atomic and Molecular Data Centre—VAMDC.

  17. Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-08-15

    Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q{sup 2}>125 GeV{sup 2} with the ZEUS detector at HERA using an integrated luminosity of 82 pb{sup -1}. Jets were identified in the Breit frame using the k{sub T} cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q{sup 2}. Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions. (orig.)

  18. Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-08-01

    Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q 2 >125 GeV 2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb -1 . Jets were identified in the Breit frame using the k T cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q 2 . Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions. (orig.)

  19. Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Adamczyk, L.

    2010-10-01

    Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb -1 . The measurement was performed at large values of the photon virtuality, Q 2 , between 125 and 20 000 GeV 2 . The jets were reconstructed with the k T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E jet T,B , to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M jj , was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD. (orig.)

  20. Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Univ. College London (United Kingdom); Cracow Univ. of Technology (Poland). Faculty of Physics, Mathematics and Applied Computer Science; Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-10-15

    Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb{sup -1}. The measurement was performed at large values of the photon virtuality, Q{sup 2}, between 125 and 20 000 GeV{sup 2}. The jets were reconstructed with the k{sub T} cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E{sup jet}{sub T,B}, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M{sub jj}, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD. (orig.)

  1. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    Science.gov (United States)

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  2. Rayleigh Pareto Distribution

    Directory of Open Access Journals (Sweden)

    Kareema ‎ Abed Al-Kadim

    2017-12-01

    Full Text Available In this paper Rayleigh Pareto distribution have  introduced denote by( R_PD. We stated some  useful functions. Therefor  we  give some of its properties like the entropy function, mean, mode, median , variance , the r-th moment about the mean, the rth moment about the origin, reliability, hazard functions, coefficients of variation, of sekeness and of kurtosis. Finally, we estimate the parameters  so the aim of this search  is to introduce a new distribution

  3. A simple proposal for Rayleigh's scaterring experiment

    Directory of Open Access Journals (Sweden)

    Adriano José Ortiz

    2010-03-01

    Full Text Available This work presents an alternative proposal for Rayleigh's scattering experiment presented and discussed in Krapas and Santos (2002 in this journal. Besides being simple and low-cost, the proposal suggested here is also proposing to demonstrate experimentally other physical phenomena such as polarization of light from the sky, the rainbow and reflection on non-conductive surfaces, as well as determine the direction of these biases. The polarization will be observed with the aid of Polaroid obtained from liquid crystal displays taken from damaged electronic devices and the Polaroid polarization direction will be established by the observation of Brewester's angle in reflection experiment.

  4. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L [Department of Mathematics, Aveiro University, Aveiro 3810 (Portugal)], E-mail: lakshtanov@rambler.ru

    2008-06-27

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus.

  5. Determination of the potential scattering parameter and parameterization of neutron cross-sections in the low-energy region

    International Nuclear Information System (INIS)

    Novoselov, G.M.; Litvinskij, L.L

    2001-01-01

    Different cross-section parameterization methods in the low-energy region are considered. It is shown that the potential scattering parameter value derived from analysis of experimental cross-section data is dependent essentially on the method used to take account of the nearest resonances. A formula describing this dependence is obtained. The results are verified by numerical model calculations. (author)

  6. High-frequency limit of the transport cross section in scattering by an obstacle with impedance boundary conditions

    International Nuclear Information System (INIS)

    Aleksenko, A I; Cruz, J P; Lakshtanov, E L

    2008-01-01

    The scalar scattering of a plane wave by a strictly convex obstacle with impedance boundary conditions is considered. A uniform bound of the total cross section for all values of the frequency is presented. The high-frequency limit of the transport cross section is calculated and presented as a classical functional of the variational calculus

  7. Moments of the Bethe surface and total inelastic x-ray scattering cross sections for H2

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1987-01-01

    Moments, S(j,K), of the generalized oscillator strength distribution are global properties of the Bethe surface. Apart from S(-1,K) which is related to the Waller-Hartree incoherent scattering factor, little is known about these moments for nonzero K. This paper describes high-accuracy calculations of S(1,K) and S(2,K) for molecular hydrogen. Comparison with experiment is made, and the utility of simple asymptotic approximations is confirmed. The moments are used to calculate differential cross sections for the inelastic scattering of x rays using the constant-momentum-transfer and constant-angle theories of Bonham. These cross sections differ from the Waller-Hartree cross sections at large angles thus demonstrating the importance of making corrections to the Waller-Hartree theory if the incoherent scattering factor S(K) is to be extracted from experimental inelastic cross sections. Total cross sections for scattering of 6- and 7-keV photons from H 2 are compared with synchrotron radiation scattering experiments. The calculations suggest that the Bonham constant-angle cross sections agree best with experiment. However, further experimental and theoretical work is needed to obtain firm conclusions about the limitations of Waller-Hartree theory

  8. Differential cross sections for elastic scattering of electrons by atoms and solids

    International Nuclear Information System (INIS)

    Jablonski, A.; Salvat, F.; Powell, C.J.

    2004-01-01

    Differential cross sections (DCSs) for elastic scattering of electrons by neutral atoms are extensively used in studies of electron transport in solids and liquids. A new NIST database has recently been released with DCSs calculated from a relativistic Dirac partial-wave analysis in which the potentials were obtained from Dirac-Hartree-Fock electron densities computed self-consistently for free atoms. We have compared calculated DCSs with measured DCSs for argon for electron energies between 50 eV and 3 keV, and found good agreement for electron energies above about 1 keV but with increasing deviations as the energy is reduced. These deviations are due to the neglect of absorption and polarizability effects in the calculations. Nevertheless, DCSs for neutral atoms have been successfully used in simulations of elastic backscattering of electrons by solid surfaces with energies down to 300 eV as well as for many other applications. It is suggested that this success might be due at least partially to the smaller absorption correction for the DCSs in solids on account of the smaller total inelastic scattering cross sections than for the corresponding free atoms

  9. The importance of fast neutron scattering cross sections for neutron dosimetry in soft tissues

    International Nuclear Information System (INIS)

    Jahr, R.; Brede, H.J.

    1979-05-01

    Tissue equivalent plastic materials are used for the construction of accurate neutron dosemeters. As compared to real tissue, in materials most of the oxygen content is replaced by carbon. In order to determine the dose to human tissue a kerma correction factor has to be used. It is shown that the uncertainty (corresponding to 1 delta) of the correction factor at E = 14.5 MeV amounts to at least 5.2%. An important contribution to the uncertainties results from the lack of experimental data of the 12 C(n, n' 3α), 16 O(n,n'p) and 16 O(n,n'α)-cross-sections. These data are to be calculated by subtracting all other cross sections from the total cross section of ( 16 O + n) and ( 12 C + n). It is shown that the uncertainties of the kerma correction factor can be considerably reduced by an accurate measurement of the scattering cross sections of carbon and oxygen. (orig.) [de

  10. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-12-01

    Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q 2 >125 GeV 2 with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb -1 . Jets were identified in the Breit frame using the k T cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q 2 and the jet transverse energy, E T,B jet . The dependence on R of the inclusive-jet cross section has been measured for Q 2 > 125 and 500 GeV 2 and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5 s (M Z ) has been extracted from the measurements of the inclusive-jet cross-section dσ/dQ 2 with R=1 for Q 2 > 500 GeV 2 : α s (M Z )=0.1207±0.0014(stat.) -0.0028 +0.0030 (exp.) -0.0 023 +0.0022 (th.). The variation of α s with E T,B jet is in good agreement with the running of α s as predicted by QCD. (orig.)

  11. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    International Nuclear Information System (INIS)

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV

  12. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  13. Proof of the formula for the ideal gas scattering kernel for nuclides with strongly energy dependent scattering cross sections

    International Nuclear Information System (INIS)

    Rothenstein, W.

    2004-01-01

    The current study is a sequel to a paper by Rothenstein and Dagan [Ann. Nucl. Energy 25 (1998) 209] where the ideal gas based kernel for scatterers with internal structure was introduced. This double differential kernel includes the neutron energy after scattering as well as the cosine of the scattering angle for isotopes with strong scattering resonances. A new mathematical formalism enables the inclusion of the new kernel in NJOY [MacFarlane, R.E., Muir, D.W., 1994. The NJOY Nuclear Data Processing System Version 91 (LA-12740-m)]. Moreover the computational time of the new kernel is reduced significantly, feasible for practical application. The completeness of the new kernel is proven mathematically and demonstrated numerically. Modifications necessary to remove the existing inconsistency of the secondary energy distribution in NJOY are presented

  14. Inclusive diffractive cross sections in deep inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Sola, Valentina

    2012-04-01

    Diffractive deep-inelastic scattering events in ep collisions at HERA are the subject of this thesis. The cross sections for inclusive diffraction, ep → eXp, measured by the H1 and ZEUS Collaborations were combined, providing a model-independent check of the data consistency and a cross calibration between the two experiments, and resulting in single data sets with improved accuracy and precision. Two sets of combined results were obtained. The cross sections measured using the proton-spectrometer data were combined, both in the range of t, the squared four-momentum transfer at the proton vertex, common to the two experiments (0.09 2 ) and in the extended t-range vertical stroke t vertical stroke 2 . The resulting cross sections cover the region 2.5≤ Q 2 ≤200 GeV 2 in photon virtualities, 0.0003≤x P ≤0.09 in the proton fractional momentum losses and 0.0018≤ β ≤0.816 in β=x/x P , where x is the Bjorken scaling variable. The cross sections obtained from data with the large rapidity gap signature were also combined in the kinematic range 2.5≤ Q 2 ≤1600 GeV 2 , 0.0003≤x P ≤0.03 and 0.0017≤ β ≤0.8, for masses of the hadronic final state M X >4 GeV. The inclusive diffractive reduced cross section σ r D(3) was measured with data collected by the ZEUS detector, at two different centre-of-mass energies, 318 and 225 GeV. The diffractive data were selected with the large rapidity gap method in the kinematic region 20 2 2 , 0.05 P or similar 0.55), the inelasticity of the interaction.

  15. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  16. Finite-difference time-domain analysis on radar cross section of conducting cube scatterer covered with plasmas

    International Nuclear Information System (INIS)

    Liu Shaobin; Zhang Guangfu; Yuan Naichang

    2004-01-01

    A PLJERC-FDTD algorithm is applied to the study of the scattering of perfectly conducting cube covered with homogeneous isotropic plasmas. The effects of plasma thickness, density and collision frequency on the radar cross section (RCS) of the conducting cube scatterer have been obtained. The results illustrate that the plasma cloaking can greatly reduce the RCS of radar targets, and the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness when the plasma frequency is greatly less than the electromagnetic (EM) wave frequency; the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness and plasma collision frequency when the plasma frequency is almost half as much as the EM wave frequency; the effects of plasma thickness and collision frequency on the RCS of the perfectly conducting cube scatterer is small when the plasma frequency is close to the EM wave frequency

  17. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, Mark Edward [Univ. College London, Bloomsbury (United Kingdom)

    2008-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

  18. Fast-neutron total and scattering cross sections of 58Ni

    International Nuclear Information System (INIS)

    Jorgensen, C.B.; Guenther, P.T.; Smith, A.B.; Whalen, J.F.

    1981-09-01

    Neutron total cross sections of 58 Ni were measured at 25 keV intervals from 0.9 to 4.5 MeV with 50 to 100 keV resolutions. Attention was given to self-shielding corrections to the observed total cross sections. Differential elastic- and inelastic-scattering cross sections were measured at 50 keV intervals from 1.35 to 4.0 MeV with 50 to 100 keV resolutions. Inelastic excitation of levels at 1.458 +- 0.009, 2.462 +- 0.010, 2.791 +- 0.015, 2.927 +- 0.012 and 3.059 +- 0.025 MeV was observed. The experimental results were interpreted in terms of optical-statistical and coupled-channels models. A spherical optical-statistical model was found generally descriptive of an energy-average of the experimental results. However, detailed considerations suggested significant contributions from direct-vibrational interactions, particularly associated with the excitation of the first 2+ level

  19. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    International Nuclear Information System (INIS)

    Dorman, Mark Edward

    2008-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented

  20. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    Science.gov (United States)

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  1. Accurate calculation of the differential cross section of compton scattering with electron mixed chain propagator in SM

    International Nuclear Information System (INIS)

    Chen Xuewen; Fang Zhenyun; Shi Chengye

    2012-01-01

    By using the electroweak standard model (SM), we analyzed the framework of electron mixed chain propagator which composed of serious of different physical loops participating in electroweak interaction and completed the relevant analytical calculation. Then, we obtained the analytical result of electron mixed chain propagator. By applying our result to Compton scattering, the differential cross section of Compton scattering dσ SM (chain) /dcosθ is counted accurately. This result is compared with the lowest order differential cross section dσ (tree) /dcosθ and the electronic chain propagator Compton scattering differential cross section dσ QED (chain) /dcosθ in quantum electrodynamics (QED). It can be seen that dσ SM (chain ) /dcosθ can show the radiation correction more subtly than dσ QED (chain) /dcosθ. (authors)

  2. Anomalous diffraction approximation for light scattering cross section: Case of random clusters of non-absorbent spheres

    Energy Technology Data Exchange (ETDEWEB)

    Jacquier, Sandra [Ecole Nationale Superieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 F-St. Etienne (France); Gruy, Frederic [Ecole Nationale Superieure des Mines de Saint-Etienne, 158 Cours Fauriel, 42023 F-St. Etienne (France)], E-mail: fgruy@emse.fr

    2008-11-15

    We previously [Jacquier S, Gruy F. Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles. JQSRT 2008;109:789-810] reformulated the anomalous diffraction (AD) approximation to calculate the light scattering cross section of aggregates by introducing their chord length distribution (CLD). It was applied to several ordered aggregates. This new method is entitled ADr, with the r for rapid because this one is at least 100 times faster than the standard AD method. In this article, we are searching for an approximated expression for CLD suitable all at once for ordered and disordered aggregates. The corresponding scattering cross-section values are compared to the ones coming from the standard AD approximation.

  3. Anomalous diffraction approximation for light scattering cross section: Case of random clusters of non-absorbent spheres

    International Nuclear Information System (INIS)

    Jacquier, Sandra; Gruy, Frederic

    2008-01-01

    We previously [Jacquier S, Gruy F. Approximation of the light scattering cross-section for aggregated spherical non-absorbent particles. JQSRT 2008;109:789-810] reformulated the anomalous diffraction (AD) approximation to calculate the light scattering cross section of aggregates by introducing their chord length distribution (CLD). It was applied to several ordered aggregates. This new method is entitled ADr, with the r for rapid because this one is at least 100 times faster than the standard AD method. In this article, we are searching for an approximated expression for CLD suitable all at once for ordered and disordered aggregates. The corresponding scattering cross-section values are compared to the ones coming from the standard AD approximation

  4. Cross section measurements of the elastic electron - deuteron scattering at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Yvonne [Universitaet Mainz, Institut fuer Kernphysik (Germany); Collaboration: A1-Collaboration

    2015-07-01

    The electromagnetic form factors of light nuclei provide a sensitive test of our understanding of nuclei. Because the deuteron has spin one, three form factors are needed to fully describe the electromagnetic structure of the deuteron. Especially the deuteron charge radius is a favourite observable to compare experiment and calculation. Recently, an extensive measurement campaign has been performed at MAMI (Mainzer Microtron) to determine the deuteron charge radius using elastic electron scattering - with the aim to halve the error compared to previous such experiments. The experiment took place at the 3-spectrometer facility of the A1-collaboration. Cross section measurements of the elastic electron-deuteron scattering have been performed for 180 different kinematic settings in the low momentum transfer region. From these, the charge form factor can precisely be determined. Fitting the form factor with an appropiate fit function, the radius can then be determined from the slope at zero momentum transfer. The determined radius could then be used as a counterweight to the value obtained from the advanced atomic Lamb shift measurements, thus providing additional insight to the proton radius puzzle.

  5. Exotic behavior of elastic scattering differential cross-sections of weakly bound nucleus 17F at small angles

    International Nuclear Information System (INIS)

    Han Jianlong; Hu Zhengguo; Zhang Xueyin; Yuan Xiaohua; Xu Huagen; Qi Huirong; Wang Yue; Jia Fei; Wu Lijie; Ding Xianli; Gao Qi; Gao Hui; Bai Zhen

    2006-01-01

    The differential cross-sections for elastic scattering of 17 F and 17 O on 208 Pb have been measured at Radioactive Ion Beam Line at Lanzhou (RIBLL). The variation of the logarithms of differential cross-sections with the square of scattering angles shows clearly that there exists a turning point in the range of small scattering angles (6 degree-20 degree) for 17 F having exotic structure, while no turning point was observed in the 17 O elastic scattering. The experimental results have been compared with previous data. Systematical analysis on the available data seems to conclude that there is an exotic behavior of elastic scattering differential cross-sections of weakly bound nuclei with halo or skin structure as compared with that of the ordinary nuclei near stable line. Therefore the fact that the turning point of the logarithms of differential cross-sections appears at small angle for weakly bound nuclei could be used as a new probe to investigate the halo and skin phenomenon. (authors)

  6. Proton-proton elastic scattering excitation functions at intermediate energies: Cross sections and analyzing powers

    CERN Document Server

    Hinterberger, F; Altmeier, M; Bauer, F; Bisplinghoff, J; Büsser, K; Busch, M; Colberg, T; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jonas, E; Krause, H; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuk, T; Meinerzhagen, A; Naehle, O; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Trelle, H J; Weise, E; Wellinghausen, A; Woller, K; Ziegler, R

    2000-01-01

    The EDDA experiment at the cooler synchrotron COSY measures proton-proton elastic scattering excitation functions in the momentum range 0.8 - 3.4 GeV/c. In phase 1 of the experiment, spin-averaged differential cross sections were measured continuously during acceleration with an internal polypropylene (CH sub 2) fiber target, taking particular care to monitor luminosity as a function of beam momentum. In phase 2, excitation functions of the analyzing power A sub N and the polarization correlation parameters A sub N sub N , A sub S sub S and A sub S sub L are measured using a polarized proton beam and a polarized atomic hydrogen beam target. The paper presents recent d sigma/d OMEGA and A sub N data. The results provide excitation functions and angular distributions of high precision and internal consistency. No evidence for narrow structures was found. The data are compared to recent phase shift solutions.

  7. A precision measurement of the inclusive ep scattering cross section at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Alimujiang, K. [DESY Hamburg (DE)] (and others)

    2009-03-15

    A measurement of the inclusive deep-inelastic neutral current e{sup +}p scattering cross section is reported in the region of four-momentum transfer squared, 12 GeV{sup 2} {<=} Q{sup 2} {<=} 150 GeV{sup 2}, and Bjorken x, 2. 10{sup -4} {<=} x {<=}0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E{sub e}=27.6 GeV and E{sub p}=920 GeV, respectively. The data are combined with previously published data, taken at E{sub p} = 820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data. (orig.)

  8. Measurement and QCD Interpretation of the Inclusive Deep-Inelastic Scattering Cross Section by H1

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Deep inelastic electron proton collisions are a straightforward tool to study the QCD dynamics between quarks and gluons in the proton. A recent measurement and QCD analysis of the deep inelastic scattering cross section by the H1 experiment at HERA are presented. In a NLO QCD analysis of H1 structure function data, the gluon distribution in the proton is extracted to typically 3% experimental accuracy at low Bjorken x.. In a combined analysis of H1 and high precision µp data by the CERN muon experiment BCDMS, the gluon distribution at low x and the strong coupling constant as were for the first time extracted simultaneously.The strong coupling constant is determined with about 1% experimental accuracy, and QCD at NLO is confirmed over 5 orders of magnitude of Bjorken x at a new level of precision.

  9. A Precision Measurement of the Inclusive ep Scattering Cross Section at HERA

    CERN Document Server

    Aaron, F.D.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Asmone, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naroska, B.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wallny, R.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.

    2009-01-01

    A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12<=Q^2<=150 GeV^2, and Bjorken x, 2x10^-4<=x<=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.

  10. Elastic scattering and total reaction cross section for the 6He +58Ni system

    Science.gov (United States)

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Mendes, D. R., Jr.; Pires, K. C. C.; de Faria, P. N.; Barioni, A.; Gasques, L.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.

    2014-11-01

    Elastic scattering measurements of 6He + 58Ni system have been performed at the laboratory energy of 21.7 MeV. The 6He secondary beam was produced by a transfer reaction 9Be (7Li , 6He ) and impinged on 58Ni and 197Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  11. A Time of flight spectrometer for measurements of double differential neutron scattering cross sections

    International Nuclear Information System (INIS)

    Padron, I.; Dominguez, O.; Sarria, P. Sandin, C.

    1996-01-01

    The time -of-Flight neutron spectrometry technique by associated particle method was improved using a D-T neutron generator at Laboratory of Nuclear Analysis. This technique was implemented for double differential cross section measurements and supported by the IAEA Project CUB/01/005. An stilbene scintillation detector (dia=100 mm, length=50 mm) was used as principal neutron detector detector and was situated outside a hole in the concrete wall. This way the fligth path was extended and the scattered neutron cone accurate collimated throught the 2 m concrete wall. For the associated particle α detection a thin plastic NE-102 scint illator was used, as well as, two scintilation detectors and a long counter for the neutron flux monitoring. In this TOF neutron spectrometer (3.40 m flight path) a 1.7 nseg. temporal resolution was obtained

  12. Combined Measurement and QCD Analysis of the Inclusive ep Scattering Cross Sections at HERA

    CERN Document Server

    Aaron, F.D.; Abt, I.; Adamczyk, L.; Adamus, M.; Aldaya Martin, M.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Antunovic, B.; Arneodo, M.; Aushev, V.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J.C.; Blohm, C.; Bold, T.; Boos, E.G.; Borodin, M.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Boutle, S.K.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Brock, I.; Brownson, E.; Brugnera, R.; Brummer, N.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Buschhorn, G.; Bussey, P.J.; Butterworth, J.M.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Carlin, R.; Catterall, C.D.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Cholewa, A.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J.G.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; D'Agostini, G.; Dainton, J.B.; Dal Corso, F.; Daum, K.; Deak, M.; de Favereau, J.; Delcourt, B.; del Peso, J.; Delvax, J.; Dementiev, R.K.; De Pasquale, S.; Derrick, M.; Devenish, R.C.E.; De Wolf, E.A.; Diaconu, C.; Dobur, D.; Dodonov, V.; Dolgoshein, B.A.; Dossanov, A.; Doyle, A.T.; Drugakov, V.; Dubak, A.; Durkin, L.S.; Dusini, S.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P.F.; Eskreys, A.; Falkiewicz, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Fourletov, S.; Gabathuler, E.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu.A.; Gottlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grell, B.R.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K.H.; Hochman, D.; Hoffmann, D.; Holm, U.; Hori, R.; Horisberger, R.; Horton, K.; Hreus, T.; Huttmann, A.; Iacobucci, G.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.P.; Janssen, X.; Januschek, F.; Jimenez, M.; Jones, T.W.; Jonsson, L.; Jung, A.W.; Jung, H.; Jungst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I.I.; Katzy, J.; Kaur, M.; Kaur, P.; Kenyon, I.R.; Keramidas, A.; Khein, L.A.; Kiesling, C.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Koffeman, E.; Kogler, R.; Kollar, D.; Kooijman, P.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kowalski, H.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kulinski, P.; Kuprash, O.; Kutak, K.; Kuze, M.; Kuzmin, V.A.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B.B.; Levonian, S.; Levy, A.; Li, G.; Libov, V.; Limentani, S.; Ling, T.Y.; Lipka, K.; Liptaj, A.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Loizides, J.H.; Loktionova, N.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukasik, J.; Lukina, O.Yu.; Luzniak, P.; Maeda, J.; Magill, S.; Makankine, A.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Marage, P.; Margotti, A.; Marini, G.; Marti, Ll.; Martin, J.F.; Martyn, H.U.; Mastroberardino, A.; Matsumoto, T.; Mattingly, M.C.K.; Maxfield, S.J.; Mehta, A.; Melzer-Pellmann, I.A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J.D.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Newman, P.R.; Nicholass, D.; Niebuhr, C.; Nigro, A.; Nikiforov, A.; Nikitin, D.; Ning, Y.; Noor, U.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R.J.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Olsson, J.E.; Onishchuk, Yu.; Osman, S.; Ota, O.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G.D.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pejchal, O.; Pelfer, P.G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piec, S.; Piotrzkowski, K.; Pitzl, D.; Placakyte, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A.S.; Przybycien, M.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Raval, A.; Ravdandorj, T.; Reeder, D.D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roland, B.; Roloff, P.; Ron, E.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J.E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Salii, A.; Samson, U.; Sankey, D.P.C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schonberg, V.; Schoning, A.; Schorner-Sadenius, T.; Schultz-Coulon, H.C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shaw-West, R.N.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L.N.; Shushkevich, S.; Singh, I.; Skillicorn, I.O.; Sloan, T.; Slominski, W.; Smiljanic, I.; Smith, W.H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sorokin, Iu.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stella, B.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Sunar, D.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk, J.; Szuba, D.; Szuba, J.; Tapper, A.D.; Tassi, E.; Tchoulakov, V.; Terron, J.; Theedt, T.; Thompson, G.; Thompson, P.D.; Tiecke, H.; Tokushuku, K.; Toll, T.; Tomasz, F.; Tomaszewska, J.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turnau, J.; Tymieniecka, T.; Urban, K.; Uribe-Estrada, C.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vazquez, M.; Verbytskyi, A.; Viazlo, V.; Vinokurova, S.; Vlasov, N.N.; Volchinski, V.; Volynets, O.; von den Driesch, M.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Whitmore, J.J.; Whyte, J.; Wiggers, L.; Wing, M.; Wissing, Ch.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wunsch, E.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zacek, J.; Zalesak, J.; Zarnecki, A.F.; Zawiejski, L.; Zeniaev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B.O.; Zhokin, A.; Zhou, C.; Zichichi, A.; Zimmermann, T.; Zohrabyan, H.; Zolko, M.; Zomer, F.; Zotkin, D.S.

    2010-01-01

    A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised ep scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.

  13. A precision measurement of the inclusive ep scattering cross section at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Stoicea, G.; Zus, R.; Alimujiang, K.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Asmone, A.; Stella, B.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Pokorny, B.; Toll, T.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Degan, M. del; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Dodonov, V.; Lytkin, L.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Joensson, L.; Osman, S.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Wallny, R.; Schoening, A.; South, D.; Wegener, D.; Tsakov, I.

    2009-01-01

    A measurement of the inclusive deep inelastic neutral current e + p scattering cross section is reported in the region of four-momentum transfer squared, 12 GeV 2 ≤Q 2 ≤150 GeV 2 , and Bjorken x, 2 x 10 -4 ≤x≤0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E e =27.6 GeV and E p =920 GeV, respectively. The data are combined with previously published data, taken at E p =820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data. (orig.)

  14. Forward elastic scattering and total cross-section at very high energies

    International Nuclear Information System (INIS)

    Castaldi, R.

    1985-01-01

    The successful cooling technique of antiproton beams at CERN has recently allowed the acceleration of proton and antiproton bunches simultaneously circulating in opposite directions in the SPS. Hadron-hadron collisions could so be produced at a centre-of-mass energy one order of magnitude higher than previously available, thus opening a new wide range of energies to experimentation. This technique also made it possible to replace one of the two proton beams in the ISR by a beam of antiprotons, allowing a direct precise comparison, by the same detectors, of pp and anti pp processes at the same energies. The recent results are summarized of the forward elastic scattering and total cross-section in this new energy domain. (Mori, K.)

  15. Laser resolution of unpolarized-electron scattering cross sections into spin-conserved and spin-flip components

    International Nuclear Information System (INIS)

    Ritchie, B.

    1981-01-01

    The theory is presented for one-photon free-free absorption by electrons scattering from high-Z atoms. The absorption cross section provides sufficient information to resolve the unpolarized-electron total cross section, Vertical Barf(theta)Vertical Bar 2 +Vertical Barg(theta)Vertical Bar 2 , into its individual components for spin-nonflip, Vertical Barf(theta)Vertical Bar 2 , and spin-flip, Vertical Barg(theta)Vertical Bar 2 , scattering. The observation of a spin-polarization effect for a spin-independent process (free-free absorption) is analogous to the Fano effect for bound-free absorption

  16. Program POD; A computer code to calculate nuclear elastic scattering cross sections with the optical model and neutron inelastic scattering cross sections by the distorted-wave born approximation

    International Nuclear Information System (INIS)

    Ichihara, Akira; Kunieda, Satoshi; Chiba, Satoshi; Iwamoto, Osamu; Shibata, Keiichi; Nakagawa, Tsuneo; Fukahori, Tokio; Katakura, Jun-ichi

    2005-07-01

    The computer code, POD, was developed to calculate angle-differential cross sections and analyzing powers for shape-elastic scattering for collisions of neutron or light ions with target nucleus. The cross sections are computed with the optical model. Angle-differential cross sections for neutron inelastic scattering can also be calculated with the distorted-wave Born approximation. The optical model potential parameters are the most essential inputs for those model computations. In this program, the cross sections and analyzing powers are obtained by using the existing local or global parameters. The parameters can also be inputted by users. In this report, the theoretical formulas, the computational methods, and the input parameters are explained. The sample inputs and outputs are also presented. (author)

  17. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-12-15

    Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q{sup 2}>125 GeV{sup 2} with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb{sup -1}. Jets were identified in the Breit frame using the k{sub T} cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q{sup 2} and the jet transverse energy, E{sub T,B}{sup jet}. The dependence on R of the inclusive-jet cross section has been measured for Q{sup 2} > 125 and 500 GeV{sup 2} and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5<=R<=1. A value of {alpha}{sub s}(M{sub Z}) has been extracted from the measurements of the inclusive-jet cross-section d{sigma}/dQ{sup 2} with R=1 for Q{sup 2} > 500 GeV{sup 2}: {alpha}{sub s}(M{sub Z})=0.1207{+-}0.0014(stat.){sub -0.0028}{sup +0.0030}(exp.){sub -0.0023}{sup +0.0022}(th.). The variation of {alpha}{sub s} with E{sub T,B}{sup jet} is in good agreement with the running of {alpha}{sub s} as predicted by QCD. (orig.)

  18. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, T.

    2006-05-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-x P >0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies t 2 . Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5 ≤Q 2 ≤1600 GeV 2 , triple differentially in x P , Q 2 and β=x/x P , where x is the Bjorken scaling variable. At low x P , the data are consistent with a factorisable x P dependence, which can be described by the exchange of an effective pomeron trajectory with intercept α P (0)=1.118 ±0.008(exp.) +0.029 -0.010 (model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q 2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q 2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e + p → anti ν e XY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q 2 at fixed x P and x or on x at fixed Q 2 and β. (Orig.)

  19. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-12-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-xIP>0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t|<1 GeV2. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5≤Q2≤1600 GeV2, triple differentially in xIP, Q2 and β=x/xIP, where x is the Bjorken scaling variable. At low xIP, the data are consistent with a factorisable xIP dependence, which can be described by the exchange of an effective pomeron trajectory with intercept αIP(0)=1.118±0.008(exp.)+0.029 -0.010(model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e+p→ν¯eXY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q2 at fixed xIP and x or on x at fixed Q2 and β.

  20. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R.L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.; Katz, U.F.; Mari, S.M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, C.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G.P.; Heath, H.F.; Llewellyn, T.J.; Morgado, C.J.S.; Norman, D.J.P.; O'Mara, J.A.; Tapper, R.J.; Wilson, S.S.; Yoshida, R.; Rau, R.R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J.A.; Ritz, S.; Sciulli, F.; Straub, P.B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarebska, E.; Suszycki, L.; Zajac, J.; Kotanski, A.; Przybycien, M.; Bauerdick, L.A.T.; Behrens, U.; Beier, H.; Bienlein, J.K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasinski, M.; Gilkinson, D.J.; Glasman, C.; Goettlicher, P.; Grosse-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Hessling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Koepke, L.; Koetz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Loehr, B.; Loewe, M.; Lueke, D.; Manczak, O.; Ng, J.S.T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.

    1995-01-01

    Deep inelastic e - p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q 2 above 400GeV 2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ 2 are presented. From the Q 2 dependence of the CC cross section, the mass term in the CC propagator is determined to be M W =76±16±13 GeV

  1. Inclusive diffractive cross sections in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Sola, Valentina

    2012-04-15

    Diffractive deep-inelastic scattering events in ep collisions at HERA are the subject of this thesis. The cross sections for inclusive diffraction, ep {yields} eXp, measured by the H1 and ZEUS Collaborations were combined, providing a model-independent check of the data consistency and a cross calibration between the two experiments, and resulting in single data sets with improved accuracy and precision. Two sets of combined results were obtained. The cross sections measured using the proton-spectrometer data were combined, both in the range of t, the squared four-momentum transfer at the proton vertex, common to the two experiments (0.09< vertical stroke t vertical stroke <0.55 GeV{sup 2}) and in the extended t-range vertical stroke t vertical stroke <1 GeV{sup 2}. The resulting cross sections cover the region 2.5{<=} Q{sup 2} {<=}200 GeV{sup 2} in photon virtualities, 0.0003{<=}x{sub P}{<=}0.09 in the proton fractional momentum losses and 0.0018{<=} {beta} {<=}0.816 in {beta}=x/x{sub P}, where x is the Bjorken scaling variable. The cross sections obtained from data with the large rapidity gap signature were also combined in the kinematic range 2.5{<=} Q{sup 2} {<=}1600 GeV{sup 2}, 0.0003{<=}x{sub P}{<=}0.03 and 0.0017{<=} {beta} {<=}0.8, for masses of the hadronic final state M{sub X}>4 GeV. The inclusive diffractive reduced cross section {sigma}{sub r}{sup D(3)} was measured with data collected by the ZEUS detector, at two different centre-of-mass energies, 318 and 225 GeV. The diffractive data were selected with the large rapidity gap method in the kinematic region 20< Q{sup 2} <130 GeV{sup 2}, 0.05< {beta} <0.85 and 0.00063or similar 0.55), the inelasticity of the interaction.

  2. Elastic scattering of low energy γ-rays

    International Nuclear Information System (INIS)

    Whittingham, I.B.

    1978-05-01

    Theoretical cross sections for the elastic scattering of 245, 334, 444, 779, 1086, 1112 and 1408 keV γ-rays by Pb are obtained for scattering angles up to 150 degrees. Three sets of Rayleigh scattering amplitudes have been computed using (1) the calculations of Johnson and Cheng, (2) the K shell calculations of Brown and co-workers supplemented by form factors amplitudes for higher shells, and (3) form factor amplitudes for all shells. Nuclear Thomson amplitudes have been included for all energies and, for 1408 keV, Delbruck scattering based upon the calculations of Papatzacos and Mork has been included. Nuclear resonance scattering is show to be negligble for all energies

  3. Measurement of the inelastic neutron scattering cross section of 56Fe

    Directory of Open Access Journals (Sweden)

    Nolte R.

    2010-10-01

    Full Text Available At the superconducting electron linear accelerator ELBE at Forschungszentrum Dresden-Rossendorf the neutron time-of-flight facility nELBE has become operational. Fast neutrons in the energy range from 200 keV to 10 MeV are produced by the pulsed electron beam from ELBE impinging on a liquid lead circuit as a radiator. The short beam pulses of 10 ps provide the basis for an excellent time resolution for neutron time-of-flight experiments, giving an energy resolution of about <1% at 1 MeV with a short flight path of 5 m. By means of a “double-time-of-flight” setup the (n,nâγ cross section to the first excited state of 56Fe has been measured over the whole energy range without knowledge about cross sections of higher-lying levels. Plastic scintillators were used to detect the inelastically scattered neutron and BaF2 detectors to detect the correlated γ-ray.

  4. Measurement and QCD Analysis of the Diffractive Deep-Inelastic Scattering Cross Section at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Coppens, Y.R.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.L.; Johnson, D.P.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schilling, F.P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \\xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \\leq Q^2 \\leq 1600 \\rm GeV^2$, triple differentially in $\\xpom$, $Q^2$ and $\\beta = x / \\xpom$, where $x$ is the Bjorken scaling variable. At low $\\xpom$, the data are consistent with a factorisable $\\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\\alphapom(0)= 1.118 \\pm 0.008 {\\rm (exp.)} ^{+0.029}_{-0.010} {\\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\\beta$ dependences of the cross section. The res...

  5. Differential elastic electron scattering cross sections for CCl4 by 1.5-100 eV energy electron impact

    Science.gov (United States)

    Limão-Vieira, P.; Horie, M.; Kato, H.; Hoshino, M.; Blanco, F.; García, G.; Buckman, S. J.; Tanaka, H.

    2011-12-01

    We report absolute elastic differential, integral and momentum transfer cross sections for electron interactions with CCl4. The incident electron energy range is 1.5-100 eV, and the scattered electron angular range for the differential measurements varies from 15°-130°. The absolute scale of the differential cross section was set using the relative flow technique with helium as the reference species. Comparison with previous total cross sections shows good agreement. Atomic-like behaviour in this scattering system is shown here for the first time, and is further investigated by comparing the CCl4 elastic cross sections to recent results on the halomethanes and atomic chlorine at higher impact energies [H. Kato, T. Asahina, H. Masui, M. Hoshino, H. Tanaka, H. Cho, O. Ingólfsson, F. Blanco, G. Garcia, S. J. Buckman, and M. J. Brunger, J. Chem. Phys. 132, 074309 (2010)], 10.1063/1.3319761.

  6. Measurement of high-Q2 charged current cross sections in e+p deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Rautenberg, J.

    2004-06-01

    Cross sections for charged current deep inelastic scattering have been measured in e + p collisions at a center-of-mass energy of 318 GeV. The data collected with the ZEUS detector at HERA in the running periods 1999 and 2000 correspond to an integrated luminosity of 61 pb -1 . Single differential cross sections dσ/dQ 2 , dσ/dx and dσ/dy have been measured for Q 2 >200 GeV 2 , as well as the double differential reduced cross section d 2 σ/dxdQ 2 in the kinematic range 280 GeV 2 2 2 and 0.008 - p charged current deep inelastic scattering cross sections. The helicity structure is investigated in particular. The mass of the space-like W boson propagator has been determined from a fit to dσ/dQ 2 . (orig.)

  7. Neutron inelastic-scattering cross sections of 232Th, 233U, 235U, 238U, 239Pu and 240Pu

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-01-01

    Differential-neutron-emission cross sections of 232 Th, 233 U, 235 U, 238 U, 239 Pu and 240 Pu are measured between approx. = 1.0 and 3.5 MeV with the angle and magnitude detail needed to provide angle-integrated emission cross sections to approx. 232 Th, 233 U, 235 U and 238 U inelastic-scattering values, poor agreement is observed for 240 Pu, and a serious discrepancy exists in the case of 239 Pu

  8. STAX-2, Neutron Scattering Cross-Sections by Optical Model and Moldauer Theory with Hauser-Feshbach

    International Nuclear Information System (INIS)

    Tomita, Y.

    1972-01-01

    1 - Nature of physical problem solved: The program calculates neutron scattering cross sections by means of the optical model and Moldauer's theory, and can search for potential parameters which reproduce measured cross sections. The Hauser-Feshbach calculation is also possible. 2 - Restrictions on the complexity of the problem: The maximum number of levels is 25. The largest value of the orbital angular momentum is 10

  9. Measurement of dijet cross sections in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Theedt, Thorben

    2009-11-15

    Dijet cross sections have been measured in deep inelastic neutral current electron-proton scattering at HERA. Cross sections have been measured differentially as functions of the photon virtuality, Q{sup 2}, the scaling variable, Bjorken x, the mean transverse jet energy, E{sub T}, the invariant dijet mass, M{sub jj}, the difference in jet pseudorapidity, {eta}'= vertical stroke {eta}{sup jet{sub 1}}-{eta}{sup jet{sub 2}} vertical stroke and the momentum fraction, {xi}. Cross sections as function of {xi} have also been measured in different regions of the photon virtuality. The analysed data were recorded at a centre-of-mass energy of 318 GeV with the ZEUS detector in the years 1998, 1999, and 2000 and correspond to an integrated luminosity of 81.74 pb{sup -1}. The phase space of the analysis is defined by 125

  10. Prediction of e± elastic scattering cross-section ratio based on phenomenological two-photon exchange corrections

    Science.gov (United States)

    Qattan, I. A.

    2017-06-01

    I present a prediction of the e± elastic scattering cross-section ratio, Re+e-, as determined using a new parametrization of the two-photon exchange (TPE) corrections to electron-proton elastic scattering cross section σR. The extracted ratio is compared to several previous phenomenological extractions, TPE hadronic calculations, and direct measurements from the comparison of electron and positron scattering. The TPE corrections and the ratio Re+e- show a clear change of sign at low Q2, which is necessary to explain the high-Q2 form factors discrepancy while being consistent with the known Q2→0 limit. While my predictions are in generally good agreement with previous extractions, TPE hadronic calculations, and existing world data including the recent two measurements from the CLAS and VEPP-3 Novosibirsk experiments, they are larger than the new OLYMPUS measurements at larger Q2 values.

  11. Shell-model computed cross sections for charged-current scattering of astrophysical neutrinos off 40Ar

    Science.gov (United States)

    Kostensalo, Joel; Suhonen, Jouni; Zuber, K.

    2018-03-01

    Charged-current (anti)neutrino-40Ar cross sections for astrophysical neutrinos have been calculated. The initial and final nuclear states were calculated using the nuclear shell model. The folded solar-neutrino scattering cross section was found to be 1.78 (23 ) ×10-42cm2 , which is higher than what the previous papers have reported. The contributions from the 1- and 2- multipoles were found to be significant at supernova-neutrino energies, confirming the random-phase approximation (RPA) result of a previous study. The effects of neutrino flavor conversions in dense stellar matter (matter oscillations) were found to enhance the neutrino-scattering cross sections significantly for both the normal and inverted mass hierarchies. For the antineutrino scattering, only a small difference between the nonoscillating and inverted-hierarchy cross sections was found, while the normal-hierarchy cross section was 2-3 times larger than that of the nonoscillating cross section, depending on the adopted parametrization of the Fermi-Dirac distribution. This property of the supernova-antineutrino signal could probably be used to distinguish between the two hierarchies in megaton LAr detectors.

  12. Measurement of high-Q2 deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Kooijman, P.

    2006-01-01

    The cross sections for charged and neutral current deep inelastic scattering in e+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb−1 at , are given for both

  13. Maxima of the scattering cross section, the wave vector being quasi orthogonal to the confining magnetic field

    International Nuclear Information System (INIS)

    Meyer, R.-L.

    1975-01-01

    The evolution of the scattering cross section maximas of an electromagnetic wave by a magnetoplasma, the angle between the wave vector and the confining magnetic field approaching π/2 were computed. It is shown that the maximas are shifted toward the roots of the electrostatic dispersion relation in perpendicular propagation. These roots are not exactly the electron cyclotron harmonics [fr

  14. The difference between the classical and quantum mechanical definitions of scattering cross sections and the problem of the classical limit

    International Nuclear Information System (INIS)

    Sen, D.; Basu, A.N.; Sengupta, S.

    1994-01-01

    A critical analysis of the difference between the classical and quantum mechanical definitions of scattering cross sections for particles is presented. This leads to a clarification of the classical limit problem and suggests precise criteria for its validity. In particular these criteria are derived for both finite and infinite range potentials. (orig.)

  15. Hauser-Feshbach cross-section calculations for elastic and inelastic scattering of alpha particles-program CORA

    International Nuclear Information System (INIS)

    Hartman, A.; Siemaszko, M.; Zipper, W.

    1975-01-01

    The program CORA was prepared on the basis of Hauser and Feshbach compound reaction formalism. It allows the differential cross-section distributions for the elastic and inelastic scattering of alpha particles (via compound nucleus state) to be calculated. The transmission coefficients are calculated on the basis of a four parameter optical model. The search procedure is also included. (author)

  16. Direct measurement of the cross section of neutron-neutron scattering at the YAGUAR reactor. Substantiation of the experiment technique

    International Nuclear Information System (INIS)

    Chernukhin, Yu.G.; Kandiev, Ya.Z.; Lartsev, V.D.; Levakov, B.G.; Modestov, D.G.; Simonenko, V.A.; Streltsov, S.I.; Khmel'nitskij, D.V.

    2006-01-01

    The main stage of experiment for direct measurement of cross section of neutron-neutron scattering σ nn at low energies (E nn determination. It was shown, that for achieving the criterion ε ∼ 4% it will be necessary to have 40-50 pulses of a reactor [ru

  17. Intermolecular potential for Ar + D2O from differential scattering cross sections, and its implications for the water pair potential

    International Nuclear Information System (INIS)

    Brooks, R.; Porter, R.A.R.; Kalos, F.; Grosser, A.E.

    1975-01-01

    A velocity selected molecular beam of D 2 O was crossed with a nozzle beam of Ar and the angular distribution of the scattered D 2 O was measured mass spectrometrically. By varying the velocity of the D 2 O beam, the differential cross section was measured at two collision energies. The experimental results were compared with synthetic differential cross sections calculated from Lennard-Jones and Kihara-Stockmayer trial potentials to determine potential parameters. Implications for the H 2 O pair potential are discussed

  18. Total cross sections for electron scattering by CO2 molecules in the energy range 400 endash 5000 eV

    International Nuclear Information System (INIS)

    Garcia, G.; Manero, F.

    1996-01-01

    Total cross sections for electron scattering by CO 2 molecules in the energy range 400 endash 5000 eV have been measured with experimental errors of ∼3%. The present results have been compared with available experimental and theoretical data. The dependence of the total cross sections on electron energy shows an asymptotic behavior with increasing energies, in agreement with the Born-Bethe approximation. In addition, an analytical formula is provided to extrapolate total cross sections to higher energies. copyright 1996 The American Physical Society

  19. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    Science.gov (United States)

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  20. Measure of back angle cross sections of antiproton-nucleus elastic scattering at 48 and 180 MeV

    International Nuclear Information System (INIS)

    Berrada, M.

    1986-04-01

    Antiproton-nucleus elastic scattering was studied in the LEAR ring at CERN. The scattering cross section at back angles (θ LAB = 142 to 164 deg inclusive) was measured using plastic scintillation detectors. Analysis of experimental data at 47 MeV for a CH target and at 182 MeV for CH, C12, 016, and 018 targets produces differential cross sections for back angles less than or equal to a few dozen microbarns. These results agree with theoretical microscopic predictions. The analysis improves understanding of antiproton-nucleus interaction and introduces a constraint on the construction of optical potentials. The antiproton-nucleus potential is shown to be highly absorbing, thereby excluding S type potentials, and removing the ambiguity arising from the analysis of antiprotonic atoms. The results also show that there is no attractive pocket in the real potential likely to lead to an increase of the back angle cross sections [fr

  1. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; List, B.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Osman, S.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.

    2011-01-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The cross section is measured four-fold differentially in t,x P ,Q 2 and β=x/x P , where x is the Bjorken scaling variable. The t and x P dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared with perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q 2 ,β and x P . (orig.)

  2. Re-evaluation of the neutron scattering dynamics in heavy water, generation of multigroup cross sections for THERM-126

    International Nuclear Information System (INIS)

    Keinert, J.

    1982-06-01

    In providing THERM-126 with cross section matrices for deuterium bound in heavy water the IKE phonon spectrum was reevaluated. The changes are modifications in the acoustic part and in the frequency of the second oscillator. Contrary to the phonon spectrum model for D in D 2 O in ENDF/B-IV the broad band of hindered rotations is assumed to be temperature dependent taking into account the diffusive motion of the molecule. With the new model scattering law data S (α, β) are generated in the temperature range 293.6 K-673.6 K. The THERM-126 scattering cross section matrices are calculated up to P 3 . As a validity check a lot of differential and integral cross sections are compared to experiments and benchmarks are recalculated. (orig.) [de

  3. Incoherent scattering of gamma rays by K-shell electrons. [Differential cross sections, 145 to 662 KeV

    Energy Technology Data Exchange (ETDEWEB)

    Spitale, G.C.; Bloom, S.D.

    1976-05-12

    Differential cross sections for incoherent scattering by K-shell electrons were measured, using coincidence techniques, for incident photons having energies of 662 keV, 320 keV, and 145 keV. The spectral distributions of the scattered photons emerging at scattering angles from 20/sup 0/ to about 140/sup 0/ are reported. Target materials were iron, tin, holmium, and gold at 320 keV; tin and gold at 662 keV; and iron and tin at 145 keV. A typical energy spectrum consists of a scattered peak that is much narrower than would be expected from the bound state electron motion. The peak also, typically, reaches a broad maximum width for scattering angles between 45/sup 0/ and 60/sup 0/. Rather than monotonically increasing with atomic number the peak width reaches a broad maximum, generally, between Z = 50 and Z = 67, and then decreases with increasing atomic number. No Compton defect appears in any of the peaks to within +- 20 keV. A discussion of the expected magnitude of the Compton defect is included. The peak is superimposed on a continuum that diverges at the low end of the scattered photon spectrum for the following cases: gold, holmium, and tin targets for 320-keV incident photons; gold and possibly tin targets for 662-keV photons incident. This infrared divergence is expected on theoretical grounds and has been predicted. It is very nearly isotropic.

  4. Validity of the independent-processes approximation for resonance structures in electron-ion scattering cross sections

    International Nuclear Information System (INIS)

    Badnell, N.R.; Pindzola, M.S.; Griffin, D.C.

    1991-01-01

    The total inelastic cross section for electron-ion scattering may be found in the independent-processes approximation by adding the resonant cross section to the nonresonant background cross section. We study the validity of this approximation for electron excitation of multiply charged ions. The resonant-excitation cross section is calculated independently using distorted waves for various Li-like and Na-like ions using (N+1)-electron atomic-structure methods previously developed for the calculation of dielectronic-recombination cross sections. To check the effects of interference between the two scattering processes, we also carry out detailed close-coupling calculations for the same atomic ions using the R-matrix method. For low ionization stages, interference effects manifest themselves sometimes as strong window features in the close-coupling cross section, which are not present in the independent-processes cross section. For higher ionization stages, however, the resonance features found in the independent-processes approximation are found to be in good agreement with the close-coupling results

  5. On measurement of cross sections for scattering of pμ - and d μ -atoms in hydrogen and deuterium

    International Nuclear Information System (INIS)

    Bystritskij, V.M.

    1993-01-01

    The paper is a brief review of all experiments on measurement of cross sections for scattering of pμ - atoms in hydrogen and dμ - atoms in hydrogen and deuterium. The experimental results are analysed and compared both with one another and with calculated results. A program for further investigation of scattering of muonic atoms of hydrogen isotopes is proposed in order to clarify the nature of discrepancies between some experimental results and to get more precise information about the above processes. (author.). 24 refs.; 4 figs.; 3 tabs

  6. Neutron total, scattering and inelastic gamma-ray cross sections of yttrium at few MeV energies

    International Nuclear Information System (INIS)

    Budtz-Joergensen, C.; Guenther, P.; Smith, A.; Whalen, J.; McMurray, W.R.; Renan, M.J.; Heerden, I.J. van

    1984-01-01

    Neutron total, scattering and (n; n', γ) cross sections of elemental yttrium ( 89 Y) were measured in the few-MeV region. The neutron total-cross-section measurements were made with broad resolutions from approx.=0.5 to 4.2 MeV in steps of < or approx.0.1 MeV. Neutron elastic- and inelastic-scattering cross sections were measured from approx.=1.5 to 4.0 MeV, at incident-neutron energy intervals of approx.=50 keV and at ten or more scattering angles distributed between 20 and 160 degrees using neutron detection. Inelastic-scattering cross sections were also determined using the (n; n', γ) reaction at incident energies from 1.6 to 3.8 MeV at intervals of 0.1 MeV. Gamma-rays and/or inelastically-scattered neutrons were observed corresponding to the excitation of levels at: 909.0+-0.5, 1,507.4+-0.3, 1,744.5+-0.3, 2,222.6+-0.5, 2,530+-0.8, 2,566.4+-1.0, 2,622.5+-1.0, 2,871.9+-1.5, 2,880.6+-2.0, 3,067.0+-2.0, 3,107.0+-2.0, 3,140.0+-2.0, 3,410.0+-2.0, 3,450.0+-2.0, 3,504.0+-1.5, 3,514.0+-2.0, 3,556.0+-2.0, 3,619.0+-3.0, 3,629.0+-3.0 and 3,715.0+-3.0 keV. The experimental results are discussed in terms of the spherical-optical-statistical, coupled-channels, and core-coupling models, and in the context of previously reported excited-level structure. (orig.)

  7. The second-order S-matrix element for the elastic scattering of photons by K-shell bound electrons: the nonrelativistic limit

    Energy Technology Data Exchange (ETDEWEB)

    Costescu, A [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Spanulescu, S [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania); Stoica, C [Department of Physics, University of Bucharest, MG11, Bucharest-Magurele 76900 (Romania)

    2007-08-14

    The right expressions of the nonrelativistic K-shell Rayleigh scattering amplitudes and cross-sections are obtained by using the Coulomb Green's function method. Our analytical result does not have the spurious poles that occur in the old nonrelativistic result with retardation (Gavrila and Costescu 1970 Phys. Rev. A 2 1752). Starting from the expression of the second-order S-matrix element for the case of the elastic scattering of photons by K-shell bound electrons, we obtain the correct nonrelativistic Rayleigh angular distribution (valid for photon energies {omega} up to {alpha}Zm) by removing the relativistic higher order terms in {alpha}Z and {omega}/m. The imaginary part of the Rayleigh amplitudes is obtained for any scattering angles in a closed form in terms of elementary functions. Thereby a simple formula for the exact nonrelativistic photoeffect total cross-section is obtained via the optical theorem, giving significantly better predictions than Fischer's nonrelativistic photoeffect formula. Comparing the predictions given by our formulae with the full relativistic numerical calculations of Kissel et al (Phys. Rev. 1980 A 22 1970), and with experimental results, a fairly good agreement within 10% is found for the angular distribution of Rayleigh scattering for photon energies up to 200 keV and both below and above the first resonance.

  8. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    Science.gov (United States)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  9. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-12-01

    Measurements of the cross sections for charged current deep inelastic scattering in e - p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb -1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dσ/dQ 2 , dσ/dx and dσ/dy are presented for Q 2 >200 GeV 2 . The double-differential cross-section d 2 σ/dxdQ 2 is presented in the kinematic range 280 2 and 0.015< x<0.65. The measured cross sections are compared with the predictions of the Standard Model. (orig.)

  10. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    Deep inelastic e - p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared, Q 2 , between 400 GeV 2 and the kinematic limit of 87500 GeV 2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, dσ/dQ 2 , are presented. For Q 2 ∝M W 2 , where M W is the mass of the W boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high Q 2 . The Q 2 dependence of the CC cross section determines the mass term in the CC propagator to be M W =76±16±13 GeV. (orig.)

  11. Differential cross sections of proton Compton scattering at photon laboratory energies between 700 and 1000 MeV

    International Nuclear Information System (INIS)

    Jung, M.; Kattein, J.; Kueck, H.; Leu, P.; Marne, K.D. de; Wedemeyer, R.; Wermes, N.

    1981-05-01

    Differential cross sections of proton Compton scattering have been measured at the Bonn 2.5 GeV synchrotron. 78 data points are presented as angular distributions at photon lab energies of 700, 750, 800, 850, 900, and 950 MeV. The c.m. scattering angle ranges from 40 0 to 130 0 , corresponding to a variation of the four momentum transfer squared between t = -0.10 to t = -0.96 GeV 2 at 700 and 950 MeV, respectively. Two additional differential cross sections have been measured at 1000 MeV, 35.6 0 and 47.4 0 . The angular distributions show forward peaks whose extrapolations to 0 0 are consistent with calculated forward cross sections taken from literature. The small angle data ( vertical stroke t vertical stroke approx. 2 ) together with the calculated cross sections at 0 0 are also consistent with the assumption of a slope parameter B of 5 GeV -2 . For the first time a re-rise of the angular distributions towards backward angles has been observed. It becomes less steep with increasing energy. The most interesting feature of the angular distributions is a sharp structure which appears between t = -0.55 GeV 2 at 700 MeV and t = -0.72 GeV 2 at 950 MeV. Such a rapid variation of the differential cross section with t has never been observed in elastic hadron-hadron scattering or photoproduction processes. It indicates the existence of a dynamical mechanism which could be a peculiarity of Compton scattering. (orig.)

  12. Neutron scattering cross sections for 232Th and 238U inferred from proton scattering and charge exchange measurements

    International Nuclear Information System (INIS)

    Hansen, L.F.; Grimes, S.M.; Pohl, B.A.; Poppe, C.H.; Wong, C.

    1980-01-01

    Differential cross sections for the (p,n) reactions to the isobaric analog states (IAS) of 232 Th and 238 U targets were measured at 26 and 27 MeV. The analysis of the data was done in conjunction with the proton elastic and inelastic (2 + , 4 + , 6 + ) differential cross sections measured at 26 MeV. Because collective effects are important in this mass region, deformed coupled-channels calculations were carried out for the simultaneous analysis of the proton and neutron outgoing channels. The sensitivity of the calculations was studied with respect to the optical model parameters used in the calculations, the shape of the nuclear charge distribution, the type of coupling scheme assumed among the levels, the magnitude of the deformation parameters, and the magnitude of the isovector potentials, V 1 and W 1 . A Lane model-consistent analysis of the data was used to infer optical potential parameters for 6- to 7-MeV neutrons. The neutron elastic differential cross sections obtained from these calculations are compared with measurements available in the literature, and with results obtained using neutron parameters from global sets reported at these energies. 7 figures, 3 tables

  13. Signatures of projectile-nucleus scattering in three-dimensional (e,2e) cross sections for argon

    Energy Technology Data Exchange (ETDEWEB)

    Ren Xueguang; Senftleben, Arne; Pflueger, Thomas; Dorn, Alexander; Ullrich, Joachim [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Bartschat, Klaus, E-mail: Xueguang.Ren@mpi-hd.mpg.d, E-mail: Alexander.Dorn@mpi-hd.mpg.d [Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311 (United States)

    2010-02-14

    Electron impact ionization (E{sub 0} = 195 eV) of the 3p-orbital in argon is investigated experimentally and theoretically. The triple-differential cross sections (TDCS) obtained using a multi-particle momentum spectrometer (reaction microscope) cover more than 80% of the full solid angle for the slow emitted electron up to an energy of 25 eV and a range of projectile scattering angles from -5 deg. to -15 deg. Inside the projectile scattering plane the TDCS shape is in rather good agreement with a hybrid distorted-wave plus R-matrix (DWBA-RM) calculation. Outside the scattering plane relatively strong electron emission is observed which is reproduced by theory in magnitude but not in shape. A systematic study of the TDCS behaviour and structure in this region indicates that its origin lies in high-order projectile-target interaction.

  14. Description of nuclear structure and cross sections for nucleon-nucleus scattering on the basis of effective Skyrme forces

    International Nuclear Information System (INIS)

    Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.

    2009-01-01

    The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.

  15. FAIR-DDX, Double Diffusion Cross-Sections Scattering Matrix Generated from ENDF/B-4 or JENDL-2

    International Nuclear Information System (INIS)

    Minami, Kazuyoshi; Yamano, Naoki

    2001-01-01

    1 - Description of program or function: FAIR-DDX produces double differential (energy and angle) cross sections (DDX) in the form of group-to-group scattering matrices using the evaluated nuclear data libraries JENDL-2 or ENDF/B-IV. The DDX form is useful for verification of the evaluated data, such as the inelastic scattering, through comparison with the experimental DDX values. 2 - Method of solution: DDX uses the file 4 data (angular distribution of secondary neutrons) and the energy and momentum conservation laws. For continuum region reactions, file 5 (energy spectrum of secondary neutrons) is used. To express the angular distribution of secondary neutrons in group-to-group scattering matrices FAIR-DDX adopts a direct angular representation method. 3 - Restrictions on the complexity of the problem: The maximum number of energy groups is 200

  16. Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2

    International Nuclear Information System (INIS)

    Tkáč, Ondřej; Orr-Ewing, Andrew J.; Ma, Qianli; Dagdigian, Paul J.; Rusher, Cassandra A.; Greaves, Stuart J.

    2014-01-01

    Comparisons are presented of experimental and theoretical studies of the rotationally inelastic scattering of CD 3 radicals with H 2 and D 2 collision partners at respective collision energies of 680 ± 75 and 640 ± 60 cm −1 . Close-coupling quantum-mechanical calculations performed using a newly constructed ab initio potential energy surface (PES) provide initial-to-final CD 3 rotational level (n, k → n′, k′) integral and differential cross sections (ICSs and DCSs). The DCSs are compared with crossed molecular beam and velocity map imaging measurements of angular scattering distributions, which serve as a critical test of the accuracy of the new PES. In general, there is very good agreement between the experimental measurements and the calculations. The DCSs for CD 3 scattering from both H 2 and D 2 peak in the forward hemisphere for n′ = 2–4 and shift more to sideways and backward scattering for n′ = 5. For n′ = 6–8, the DCSs are dominated by backward scattering. DCSs for a particular CD 3 n → n′ transition have a similar angular dependence with either D 2 or H 2 as collision partner. Any differences between DCSs or ICSs can be attributed to mass effects because the PES is unchanged for CD 3 −H 2 and CD 3 –D 2 collisions. Further comparisons are drawn between the CD 3 –D 2 scattering and results for CD 3 –He presented in our recent paper [O. Tkáč, A. G. Sage, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Q. Ma, and M. H. Alexander, Chem. Sci. 4, 4199 (2013)]. These systems have the same reduced mass, but are governed by different PESs

  17. Total electron scattering cross section from pyridine molecules in the energy range 10-1000 eV

    Science.gov (United States)

    Dubuis, A. Traoré; Costa, F.; da Silva, F. Ferreira; Limão-Vieira, P.; Oller, J. C.; Blanco, F.; García, G.

    2018-05-01

    We report on experimental total electron scattering cross-section (TCS) from pyridine (C5H5N) for incident electron energies between 10 and 1000 eV, with experimental uncertainties within 5-10%, as measured with a double electrostatic analyser apparatus. The experimental results are compared with our theoretical calculations performed within the independent atom model complemented with a screening corrected additivity rule (IAM-SCAR) procedure which has been updated by including interference effects. A good level of agreement is found between both data sources within the experimental uncertainties. The present TCS results for electron impact energy under study contribute, together with other scattering data available in the literature, to achieve a consistent set of cross section data for modelling purposes.

  18. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    International Nuclear Information System (INIS)

    Bernnat, W.; Keinert, J.; Mattes, M.

    2004-01-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H 2 O, liquid He, liquid D 2 O, liquid and solid H 2 and D 2 , solid CH 4 and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S N -transport codes and the Monte Carlo Code MCNP. (orig.)

  19. Evaluation of scattering laws and cross sections for calculation of production and transport of cold and ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, W.; Keinert, J.; Mattes, M. [Inst. for Nuclear Energy and Energy Systems, Univ. of Stuttgart, Stuttgart (Germany)

    2004-03-01

    For the calculation of neutron spectra in cold and super thermal sources scattering laws for a variety of liquid and solid cyrogenic materials were evaluated and prepared for use in deterministic and Monte Carlo transport calculations. For moderator materials like liquid and solid H{sub 2}O, liquid He, liquid D{sub 2}O, liquid and solid H{sub 2} and D{sub 2}, solid CH{sub 4} and structure materials such as Al, Bi, Pb, ZrHx, and graphite scattering law data and cross sections are available. The evaluated data were validated by comparison with measured cross sections and comparison of measured and calculated neutron spectra as far as available. Further applications are the calculation of production and transport and storing of ultra cold neutrons (UCN) in different UCN sources. The data structures of the evaluated data are prepared for the common S{sub N}-transport codes and the Monte Carlo Code MCNP. (orig.)

  20. Measurement of the inclusive ep scattering cross section at low Q{sup 2} and x at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev (P.N.) Physical Inst., Moscow (RU)] (and others)

    2009-02-15

    A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV{sup 2}{<=}Q{sup 2}{<=}12 GeV{sup 2}, and low Bjorken x, 5.10{sup -6}cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q{sup 2} and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering. (orig.)

  1. Scattering-angle dependence of doubly differential cross sections for fragmentation of H2 by proton impact

    International Nuclear Information System (INIS)

    Egodapitiya, K. N.; Sharma, S.; Laforge, A. C.; Schulz, M.

    2011-01-01

    We have measured double differential cross sections (DDCS) for proton fragment formation for fixed projectile energy losses as a function of projectile scattering angle in 75 keV p + H 2 collisions. An oscillating pattern was observed in the angular dependence of the DDCS with a frequency about twice as large as what we found earlier for nondissociative ionization. Possible origins for this frequency doubling are discussed.

  2. Dispersion relation for the 3. -->. 3 forward scattering amplitude and the generalized optical theorem. [Crossing properties, dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Logunov, A A; Medvedev, B V; Mestvirishvili, M A; Pavlov, V P; Polivanov, M K; Sukhanov, A D [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov. Inst. Fiziki Vysokikh Ehnergij

    1977-11-01

    Investigation of analytical structure of the three-particle forward scattering amplitude with respect to energy variable of one of particles is performed. The results obtained make it possible to draw the conclusions on crossing properties of the amplitude and to derive the generalized optical theorem relating the discontinuity of the amplitude to the distribution function of an inclusive process. For a special case when two of three particles are of zero mass, a dispersion relation is proved.

  3. Measurement of neutral current deep inelastic e+p scattering cross sections with longitudinally polarized positrons with ZEUS at HERA

    International Nuclear Information System (INIS)

    Wlasenko, Michal

    2009-05-01

    Measurements of neutral current deep inelastic scattering of protons colliding with longitudinally polarized positrons, performed with data recorded in years 2006 and 2007 with the ZEUS detector, corresponding to an integrated luminosity of L=113.3 pb -1 , are presented. The single-differential cross sections dσ/dQ 2 , dσ/dx, dσ/dy and the double-differential reduced cross section σ were measured in the kinematic region of 185 2 2 and y + and the generalized structure function x F 3 were extracted. All measurements agree well with the predictions of the Standard Model. (orig.)

  4. Combination of Differential D^{*\\pm} Cross-Section Measurements in Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Abramowicz, H.; Adamczyk, L.; Adamus, M.; Andreev, V.; Antonelli, S.; Aushev, V.; Aushev, Y.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Boos, E.G.; Borras, K.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N.H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P.J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Catterall, C.D.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J.G.; Cooper-Sarkar, A.M.; Corradi, M.; Corriveau, F.; Cvach, J.; Dainton, J.B.; Daum, K.; Dementiev, R.K.; Devenish, R.C.E.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dolinska, G.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Figiel, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gizhko, A.; Gladilin, L.K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Haidt, D.; Hain, W.; Henderson, R.C.W.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z.A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Jacquet, M.; Janssen, X.; Januschek, F.; Jomhari, N.Z.; Jung, A.W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Kaur, M.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Kruger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B.B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O.Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Mergelmeyer, S.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F.Mohamad; Morozov, A.; Nasir, N.Muhammad; Muller, K.; Myronenko, V.; Nagano, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, R.J.; Olsson, J.E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Paul, E.; Perez, E.; Perlanski, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Przybycien, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Rusakov, S.; Ruspa, M.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Saxon, D.H.; Schioppa, M.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schoning, A.; Schorner-Sadenius, T.; Sefkow, F.; Shcheglova, L.M.; Shevchenko, R.; Shkola, O.; Shushkevich, S.; Shyrma, Yu.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stern, A.; Stopa, P.; Straumann, U.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Thompson, P.D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Trofymov, A.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Wichmann, K.; Wing, M.; Wolf, G.; Wunsch, E.; Yamada, S.; Yamazaki, Y.; Zacek, J.; Zakharchuk, N.; Zarnecki, A.F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B.O.; Zhmak, N.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.; Zotkin, D.S.

    2015-01-01

    H1 and ZEUS have published single-differential cross sections for inclusive D^{*\\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 1.5 GeV and pseudorapidity |eta(D^*)| 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.

  5. Absolute values of inelastic neutron scattering cross-sections calculated with account taken of the pre-equilibrium mechanism

    International Nuclear Information System (INIS)

    Jahn, H.

    1980-01-01

    Absolute values of secondary energy-dependent inelastic neutron scattering cross sections can be calculated either with the master equation pre-equilibrium formalism of Cline and Blann or with Blann's more recent geometry-dependent hybrid model. The master equation formalism was used at Dubna and Dresden to reproduce experimental results for 14 MeV incident energy. The geometry-dependent hybrid model was used at Karlsruhe to cover for a number of materials the whole range from 5 to 14 MeV incident energy and to reproduce smoothed experimental spectra at 7.45 and 14 MeV. Only the geometry-dependent hybrid model accounts for scattering in the diffuse nuclear surface and thus for a certain average over the direct interaction. It is also free of any fit parameters other than those of the usual optical model. The master equation calculations, on the other hand, are based on nucleon-nucleon scattering cross sections inserted into the high-energy approximation of Kikuchi and Kawai for the intranuclear transition rate. Other approaches require either mass- or energy-dependent or more global fit parameters for a satisfactory reproduction of experimental results, but a genuine prediction of the incident-energy dependence of the inelastic neutron cross section, especially below 14 MeV, is needed for transport and shielding calculations for instance in connection with fusion reactor design studies. (author)

  6. Absolute total electronically elastic differential e--H2 scattering cross-section measurements from 1 to 19 eV

    International Nuclear Information System (INIS)

    Furst, J.; Mahgerefteh, M.; Golden, D.E.

    1984-01-01

    Absolute e - -H 2 total electronically elastic differential scattering cross sections have been determined from relative scattered-electron angular distribution measurements in the energy range from 1 to 19 eV by comparison to absolute e - -He elastic differential scattering cross sections measured in the same apparatus. Integrated total cross sections have been determined as well. Absolute differences as large as 50% between the present results and some previous results have been found, although the agreement as to shape is quite good in many cases. The present results are generally in excellent agreement with recent full rovibrational laboratory-frame close-coupling calculations

  7. Quantitative use of Rayleigh waves to locate and size subsurface holes

    International Nuclear Information System (INIS)

    Zachary, L.W.

    1982-01-01

    An ultrasonic inspection method is used to obtain the circumference of a subsurface hole and the depth of the hole below the surface. A pitch-catch Rayleigh wave transducer set-up was used to launch a Rayleigh surface wave at the flaw and to capture and record the scattered waves. The frequency spectrum of the scattered waves can be used to obtain the depth of the hole. The ligament of material between the hole and the surface is sent into resonance, and this feature can be extracted from the scattered waves' frequency spectrum. The frequency is a function of the ligament length; thus the hole depth can be obtained. The circumference of the hole is found from a time of flight measurement. A Rayleigh wave is formed that travels around the hole's surface. The length of time required for the wave to travel around the hole is a measure of the circumference

  8. Universality in quasiperiodic Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Ecke, R.E.; Mainieri, R.; Sullivan, T.S.

    1991-01-01

    We study universal scaling properties of quasiperiodic Rayleigh-Benard convection in a 3 He--superfluid- 4 He mixture. The critical line is located in a parameter space of Rayleigh and Prandtl numbers using a transient-Poincare-section technique to identify transitions from nodal periodic points to spiral periodic points within resonance horns. We measure the radial and angular contraction rates and extract the linear-stability eigenvalues (Flouquet multipliers) of the periodic point. At the crossings of the critical line with the lines of fixed golden-mean-tail winding number we determine the universality class of our experimental dynamics using f(α) and trajectory-scaling-function analyses. A technique is used to obtain a robust five-scale approximation to the universal trajectory scaling function. Different methods of multifractal analysis are employed and an understanding of statistical and systematic errors in these procedures is developed. The power law of the inflection point of the map, determined for three golden-mean-tail winding numbers, is 2.9±0.3, corresponding to the universality class of the sine map

  9. The effect of the new nucleon-nucleus elastic scattering data in LAHET trademark Version 2.8 on neutron displacement cross section calculations

    International Nuclear Information System (INIS)

    Pitcher, E.J.; Ferguson, P.D.; Russell, G.J.; Prael, R.E.; Madland, D.G.; Court, J.D.; Daemen, L.L.; Wechsler, M.S.

    1997-01-01

    The latest release of the medium-energy Monte Carlo transport code LAHET includes a new nucleon-nucleus elastic scattering treatment based on a global medium-energy phenomenological optical-model potential. Implementation of this new model in LAHET allows nuclear elastic scattering for neutrons with energies greater than 15 MeV and for protons with energies greater than 50 MeV. Previous investigations on the impact of the new elastic scattering data revealed that the addition of the proton elastic scattering channel can lead to a significant increase in the calculated damage energy under certain conditions. The authors report here results on the impact of the new elastic scattering data on calculated displacement cross sections in various elements for neutrons with energies in the range 16 to 3,160 MeV. Calculated displacement cross sections at 20 MeV in low-mass materials are in better agreement with SPECTER-calculated cross sections

  10. Real part of amplitude and hadron scattering cross section at superhigh energies

    International Nuclear Information System (INIS)

    Troshin, S.M.; Tyurin, N.E.

    1987-01-01

    New data on measuring the ratio of the real to imaginary part of the forward scattering amplitude: ρ pp-bar (√s=546 GeV)=0.24±0.04 have been considered. This result is shown to agree with the behaviour of σ tot (s), predicted by the U-matrix model. A possibility of transition to antishadow scattering mode at superhigh energies is stated

  11. Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: H1 and ZEUS Collaboration

    2012-10-15

    Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections {sigma}{sup c} {sup anti} {sup c}{sub red} for charm production are obtained in the kinematic range of photon virtuality 2.5 {<=} Q{sup 2} {<=} 2000 GeV{sup 2} and Bjorken scaling variable 3.10{sup -5}{<=}x{<=}5.10{sup -2}. The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deepinelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W{sup {+-}} and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.

  12. Acoustofluidic particle dynamics: Beyond the Rayleigh limit.

    Science.gov (United States)

    Baasch, Thierry; Dual, Jürg

    2018-01-01

    In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.

  13. Schwinger–Keldysh canonical formalism for electronic Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuehua, E-mail: suyh@ytu.edu.cn

    2016-03-01

    Inelastic low-energy Raman and high-energy X-ray scatterings have made great progress in instrumentation to investigate the strong electronic correlations in matter. However, theoretical study of the relevant scattering spectrum is still a challenge. In this paper, we present a Schwinger–Keldysh canonical perturbation formalism for the electronic Raman scattering, where all the resonant, non-resonant and mixed responses are considered uniformly. We show how to use this formalism to evaluate the cross section of the electronic Raman scattering off an one-band superconductor. All the two-photon scattering processes from electrons, the non-resonant charge density response, the elastic Rayleigh scattering, the fluorescence, the intrinsic energy-shift Raman scattering and the mixed response, are included. In the mean-field superconducting state, Cooper pairs contribute only to the non-resonant response. All the other responses are dominated by the single-particle excitations and are strongly suppressed due to the opening of the superconducting gap. Our formalism for the electronic Raman scattering can be easily extended to study the high-energy resonant inelastic X-ray scattering.

  14. Taking account of sample finite dimensions in processing measurements of double differential cross sections of slow neutron scattering

    International Nuclear Information System (INIS)

    Lisichkin, Yu.V.; Dovbenko, A.G.; Efimenko, B.A.; Novikov, A.G.; Smirenkina, L.D.; Tikhonova, S.I.

    1979-01-01

    Described is a method of taking account of finite sample dimensions in processing measurement results of double differential cross sections (DDCS) of slow neutron scattering. A necessity of corrective approach to the account taken of the effect of sample finite dimensions is shown, and, in particular, the necessity to conduct preliminary processing of DDCS, the account being taken of attenuation coefficients of single scattered neutrons (SSN) for measurements on the sample with a container, and on the container. Correction for multiple scattering (MS) calculated on the base of the dynamic model should be obtained, the account being taken of resolution effects. To minimize the effect of the dynamic model used in calculations it is preferred to make absolute measurements of DDCS and to use the subraction method. The above method was realized in the set of programs for the BESM-5 computer. The FISC program computes the coefficients of SSN attenuation and correction for MS. The DDS program serves to compute a model DDCS averaged as per the resolution function of an instrument. The SCATL program is intended to prepare initial information necessary for the FISC program, and permits to compute the scattering law for all materials. Presented are the results of using the above method while processing experimental data on measuring DDCS of water by the DIN-1M spectrometer

  15. Measurement of the cross-section of electron-positron scattering at high energy and quantum electrodynamics testing

    International Nuclear Information System (INIS)

    Lalanne, D.

    1970-01-01

    The experiment we have performed on the ACO (Orsay Collider Ring) is one of the most accurate tests of quantum electrodynamics over very short interaction distances (10 -14 cm). We have studied the electron-positron elastic scattering at very wide angle. This work is divided into 4 parts. The first part reviews recent tests of quantum electrodynamics and presents the electron-positron elastic scattering. The second part describes the measurement of brightness: the experimental device, data analysis and accuracy. The measurement of brightness has been performed by detecting the photons emitted in the double Bremsstrahlung reaction: e + e - → e + e - γγ. The third part deals with the measurement of the number of Bhabha events. The last part compares the experimental value of the Bhabha scattering with the theoretically expected value. We have got the following results: the number of Bhabha events: 757 events, the experimental value for Bhabha scattering cross-section: [1.97 ± 0.09 (stat.) ± 0.10 (syst.)]*10 -31 cm 2 . The comparison of this experimental value with the expected value has allowed us to set the lower limit of the cutting parameter Λ: Λ > 2 GeV

  16. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    Science.gov (United States)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  17. Measurement of Elastic Scattering and of Total Cross-Section at the CERN $\\bar{p}p$ Collider

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure elastic scattering and the total cross-section at the $\\bar{p}p$ collider. \\\\ \\\\ Up to 1983 the experimental apparatus was composed of two parts : \\item 1) Telescopes of high accuracy drift and proportional chambers and counters inserted into vertically moveable sections of the vacuum chamber ('Roman pots'), detect elastic scattering in the angular region from .5 mrad up to about 3 mrad. \\item 2) The total inelastic rate is measured with a forward/backward system of drift chambers and counter hodoscopes and the UA2 central detector covering together @= 4@p solid angle. \\end{enumerate}\\\\ \\\\ With these two set-ups, the measured value of the total cross-section confirms extrapolation with (ln s)|2 behaviour. Elastic scattering and diffraction dissociation were measured in the range .03~$<$~-t~$<$~1.6~GeV|2. \\\\ \\\\ From 1984 on, six horizontally moveable ``Roman Pots'' have been installed farther away from the intersection region (up to 100~m). Using an especially desi...

  18. Combination of differential D*± cross-section measurements in deep-inelastc ep scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2015-03-01

    H1 and ZEUS have published single-differential cross sections for inclusive D *± -meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q 2 >5 GeV 2 , electron inelasticity 0.021.5 GeV and pseudorapidity vertical stroke η(D * ) vertical stroke <1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d 2 σ/dQ 2 dy are combined with earlier D *± data, extending the kinematic range down to Q 2 >1.5 GeV 2 . Perturbative next-to-leadingorder QCD predictions are compared to the results.

  19. Helium Atom Scattering from C2H6, F2HCCH3, F3CCH2F and C2F6 in Crossed Molecular Beams

    Science.gov (United States)

    Hammer, Markus; Seidel, Wolfhart

    1997-10-01

    Rotationally unresolved differential cross sections were measured in crossed molecular beam experiments by scattering Helium atoms from Ethane, 1,1-Difluoroethane, 1,1,1,2-Tetrafluoroethane and Hexafluoroethane. The damping of observed diffraction oscillations was used to extract anisotropic interaction potentials for these scattering systems applying the infinite order sudden approximation (IOSA). Binary macroscopic parameters such as second heterogeneous virial coefficients and the coefficients of diffusion and viscosity were computed from these potentials and compared to results from macroscopic experiments.

  20. Paramagnetic scattering cross-sections of Nd and Dy at neutron wavelength between 0.5 A0 - 4 A0

    International Nuclear Information System (INIS)

    Maayouf, R.M.A.; Abdelkawy, A.; Adib, M.; Hamouda, I.

    1984-01-01

    The paramagnetic scattering cross-sections of Nd and Dy are calculated, for neutron wavelengths between 0.5-4 A, theoretically and deduced from available experimental data. The theoretical calculations are carried out using magnetic form factors deduced from Hartree-Fock radial wave functions for the 4 f electrons. The resulting theoretical curves of the paragnetic scattering cross-sections are compared with those deduced from data obtained using the transmission measurements. Both theoretical and experimental values found to be consistant

  1. Determination of the potential and coherent scattering cross-sections of the elements Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Hamouda, I.

    1976-01-01

    The potential scattering cross-sections for slow neutrons have been measured for Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta in order to determine the nuclear potential radius and to investigate the prediction of nuclear optical model. The coherent scattering cross-sections for these elements have been measured from the obtained values of the Bragg cut-offs observed in the behaviour of the total cross-sections at cold neutron energies. The measurements were based on the total neutron cross-sections resulting from transmission experiments performed with the neutron chopper at ET-RR-1 reactor

  2. Measurement of proton-proton inelastic scattering cross-section at $\\sqrt{s}$= 7 TeV

    CERN Document Server

    Antchev, G; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bossini, E.; Bozzo, M.; Brogi, P.; Brücken, E.; Buzzo, A.; Cafagna, F.S.; Calicchio, M.; Catanesi, M.G.; Covault, C.; Csanad, M.; Csörgö, T.; Deile, M.; Doubek, M.; Eggert, K.; Eremin, V.; Ferretti, R.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Intonti, R.A.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Mäki, T.; Mercadante, A.; Minafra, N.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Palazzi, P.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Smajek, J.; Snoeys, W.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vitek, M.; Welti, J.; Whitmore, J.; Wyszkowski, P.

    2013-01-01

    The TOTEM experiment at the LHC has measured the inelastic proton-proton cross-section at $\\sqrt{s}$ = 7 TeV in a β* = 90 m run with low inelastic pile-up. The measurement was based on events with at least one charged particle in the T2 telescope acceptance of 5.3 < |η| < 6.5 in pseudorapidity. Combined with data from the T1 telescope, covering 3.1 < |η| < 4.7, the cross-section for inelastic events with at least one |η| < 6.5 final state particle was determined to be 70.5 2.9 mb. Based on models for low mass diffraction, the total inelastic cross-section was deduced to be 73.7 3.4 mb. An upper limit of 6.31 mb at 95 % confidence level on the cross-section for events with diffractive masses below 3.4 GeV was obtained from the difference between the overall inelastic cross-section obtained by TOTEM using elastic scattering and the cross-section for inelastic events with at least one |η| < 6.5 final state particle.

  3. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Universite Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham, Birmingham (United Kingdom)

    2011-03-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P}<0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4cross section is measured four-fold differentially in t,x{sub P},Q {sup 2} and {beta}=x/x{sub P}, where x is the Bjorken scaling variable. The t and x{sub P} dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared with perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2},{beta} and x{sub P}. (orig.)

  4. The Crossed-Beam Scattering Method in Studies of Ion-Molecule Reaction Dynamics

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2001-01-01

    Roč. 212, - (2001), s. 413-443 ISSN 1387-3806 R&D Projects: GA ČR GA203/00/0632 Institutional research plan: CEZ:AV0Z4040901 Keywords : ion-molecule reaction dynamics * ion scattering * experimental methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.176, year: 2001

  5. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, IL (US)] (and others)

    2008-12-15

    Measurements of the cross sections for charged current deep inelastic scattering in e{sup -}p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb{sup -1} collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy are presented for Q{sup 2}>200 GeV{sup 2}. The double-differential cross-section d{sup 2}{sigma}/dxdQ{sup 2} is presented in the kinematic range 280cross sections are compared with the predictions of the Standard Model. (orig.)

  6. Importance of Cross-redistribution in Scattering Polarization of Spectral Lines: The Cases of {sup 3}P−{sup 3}S Triplets of Mg i and Ca i

    Energy Technology Data Exchange (ETDEWEB)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bengaluru 560 034 (India)

    2017-04-01

    Scattering on a multi-level atomic system has dominant contributions from resonance and Raman scattering. While initial and final levels are the same for resonance scattering, they are different for Raman scattering. The frequency redistribution for resonance scattering is described by the usual partial frequency redistribution functions of Hummer, while that for Raman scattering is described by cross-redistribution (XRD) function. In the present paper, we investigate the importance of XRD on linear polarization profiles of {sup 3}P−{sup 3}S triplets of Mg i and Ca i formed in an isothermal one-dimensional atmosphere. We show that XRD produces significant effects on the linear polarization profiles when the wavelength separations between the line components of the multiplet are small, like in the cases of Mg i b and Ca i triplets.

  7. Scattering of thermal He beams by crossed atomic and molecular beams. I. Sensitivity of the elastic differential cross section to the interatomic potential

    International Nuclear Information System (INIS)

    Keil, M.; Kuppermann, A.

    1978-01-01

    The ability of diffraction oscillations in atomic beam scattering experiments to uniquely determine interatomic potentials for highly quantal systems is examined. Assumed but realistic potentials are used to generate, by scattering calculations and incorporation of random errors, differential cross sections which are then treated as if they were ''experimental'' data. From these, attempts are made to recover the initial potential by varying the parameters of assumed mathematical forms different from the original one, until a best fit to the ''experimental'' results is obtained. It is found that the region of the interaction potential around the van der Waals minimum is accurately determined by the ''measured'' differential cross sections over a range of interatomic separations significantly wider than would be expected classically. It is also found, for collision energies at which the weakly repulsive wall is appreciably sampled, that the SPF--Dunham and double Morse--van der Waals types of potentials lead to accurate determinations of the interatomic potential, whereas many other mathematical forms do not. Analytical parameterizations most appropriate for obtaining accurate interatomic potentials from thermal DCS experiments, for a given highly quantal system, may depend on the collision energy used

  8. Measurement of local, internal magnetic fluctuations via cross-polarization scattering in the DIII-D tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Barada, K., E-mail: kshitish@ucla.edu; Rhodes, T. L.; Crocker, N. A.; Peebles, W. A. [University of California-Los Angeles, P.O. Box 957099, Los Angeles, California 90095 (United States)

    2016-11-15

    We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, these measurements provide a new ability to challenge and test linear and nonlinear simulations and basic theory. The CPS method, based upon the scattering of an incident microwave beam into the opposite polarization by magnetic fluctuations, has been significantly extended and improved over the method as originally developed on the Tore Supra tokamak. A new scattering geometry, provided by a unique probe beam, is utilized to improve the spatial localization and wavenumber range. Remotely controllable polarizer and mirror angles allow polarization matching and wavenumber selection for a range of plasma conditions. The quasi-optical system design, its advantages and challenges, as well as important physics validation tests are presented and discussed. Effect of plasma beta (ratio of kinetic to magnetic pressure) on both density and magnetic fluctuations is studied and it is observed that internal magnetic fluctuations increase with beta. During certain quiescent high confinement operational regimes, coherent low frequency modes not detected by magnetic probes are detected locally by CPS diagnostics.

  9. Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA

    CERN Document Server

    Aaron, F.D.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J.C.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E.G.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bold, T.; Brummer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P.J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Carlin, R.; Catterall, C.D.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J.G.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J.A.; Cvach, J.; D'Agostini, G.; Dainton, J.B.; Dal Corso, F.; Daum, K.; Delcourt, B.; Delvax, J.; Dementiev, R.K.; Derrick, M.; Devenish, R.C.E.; De Pasquale, S.; De Wolf, E.A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B.A.; Dolinska, G.; Dossanov, A.; Doyle, A.T.; Drugakov, V.; Dubak, A.; Durkin, L.S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P.F.; Eskreys, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Yu.A.; Gottlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Huttmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K.H.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.P.; Janssen, X.; Januschek, F.; Jones, T.W.; Jonsson, L.; Jungst, M.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I.I.; Kaur, P.; Kaur, M.; Kenyon, I.R.; Keramidas, A.; Khein, L.A.; Kiesling, C.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Koffeman, E.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kowalski, H.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Kuprash, O.; Kuze, M.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B.B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Ling, T.Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukina, O.Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J.F.; Martyn, H.U.; Mastroberardino, A.; Mattingly, M.C.K.; Maxfield, S.J.; Mehta, A.; Melzer-Pellmann, I.A.; Mergelmeyer, S.; Meyer, A.B.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Idris, F.Mohamad; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Morris, J.D.; Mujkic, K.; Muller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R.J.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J.E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G.D.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pelfer, P.G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A.S.; Przybycien, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D.D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J.E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Samson, U.; Sankey, D.P.C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schonberg, V.; Schoning, A.; Schorner-Sadenius, T.; Schultz-Coulon, H.C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L.N.; Shushkevich, S.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Sloan, T.; Smith, W.H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A.D.; Tassi, E.; Terron, J.; Theedt, T.; Thompson, P.D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Tran, T.H.; Traynor, D.; Truol, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vazquez, M.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N.N.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Whitmore, J.J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wunsch, E.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Zacek, J.; Zalesak, J.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B.O.; Zhmak, N.; Zhokin, A.; Zichichi, A.; Zlebcik, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D.S.; Zarnecki, A.F.

    2012-10-10

    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy sqrt(s) = 318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6% for the most precise points. The combined data cover the range 2.5 < Q2 < 200 GeV2 in photon virtuality, 0.00035 < xIP < 0.09 in proton fractional momentum loss, 0.09 < |t| < 0.55 GeV2 in squared four-momentum transfer at the proton vertex and 0.0018 < beta < 0.816 in beta = x/xIP, where x is the Bjorken scaling variable.

  10. Absolute differential cross sections for π±p elastic scattering at 30 ≤ Tπ ≤ 67 MeV

    International Nuclear Information System (INIS)

    Brack, J.T.; Ristinen, R.A.; Kraushaar, J.J.

    1989-11-01

    Absolute π±p differential cross sections have been measured at incident pion energies of 30.0, 45.0, and 66.8 MeV, using active targets of scintillator plastic (CH 1.1 ) to detect recoil protons in coincidence with scattered pions. Statistical uncertainties are typically ±3%; systematic uncertainties are ±2%. The results are consistent with two earlier measurements by this group employing different experimental techniques at 67 MeV and higher incident pion energies. The π - p cross sections are in good agreement with currently accepted phase-shift analyses, but the corresponding π + p predictions are typically 15% higher at large angles than the π + p data reported here

  11. Effect of different electron elastic-scattering cross sections on inelastic mean free paths obtained from elastic-backscattering experiments

    International Nuclear Information System (INIS)

    Jablonskiz, A.; Salvatz, F.; Powellz, C.J.

    2004-01-01

    Inelastic mean free paths (IMFPs) of electrons with energies between 100 eV and 5,000 eV have been frequently obtained from measurements of elastic-backscattering probabilities for different specimen materials. A calculation of these probabilities is also required to determine IMFPs. We report calculations of elastic-backscattering probabilities for gold at energies of 100 eV and 500 eV with differential elastic-scattering cross sections obtained from the Thomas-Fermi-Dirac potential and the more reliable Dirac-Hartree-Fock potential. For two representative experimental configurations, the average deviation between IMFPs obtained with cross sections from the two potentials was 11.4 %. (author)

  12. The measurement of antiproton-proton total cross sections and small-angle elastic scattering at low momentum

    International Nuclear Information System (INIS)

    Linssen, L.H.A.J.

    1986-01-01

    In this thesis two low-momentum antiproton-proton (anti pp) experiments are described. The first one is a set of 24 high statistics anti pp total cross section measurements as a function of the incoming antiproton momentum between p=388 MeV/c and p=599 MeV/c. These measurements simultaneously yield the charge exchange cross section (anti pp → anti nn). The second one comprises two high statistics anti pp small-angle elastic scattering measurements at p=233 MeV/c and p=272 MeV/c. The measurements were carried out using the high quality antiproton beam extracted from the Low Energy Antiproton Ring (LEAR) at CERN. The physics motivation for these experiments is a search for anti pp resonances or bound states on one hand, and a detailed study of the anti pp interaction on the other hand. (orig.)

  13. Concentric layered Hermite scatterers

    Science.gov (United States)

    Astheimer, Jeffrey P.; Parker, Kevin J.

    2018-05-01

    The long wavelength limit of scattering from spheres has a rich history in optics, electromagnetics, and acoustics. Recently it was shown that a common integral kernel pertains to formulations of weak spherical scatterers in both acoustics and electromagnetic regimes. Furthermore, the relationship between backscattered amplitude and wavenumber k was shown to follow power laws higher than the Rayleigh scattering k2 power law, when the inhomogeneity had a material composition that conformed to a Gaussian weighted Hermite polynomial. Although this class of scatterers, called Hermite scatterers, are plausible, it may be simpler to manufacture scatterers with a core surrounded by one or more layers. In this case the inhomogeneous material property conforms to a piecewise continuous constant function. We demonstrate that the necessary and sufficient conditions for supra-Rayleigh scattering power laws in this case can be stated simply by considering moments of the inhomogeneous function and its spatial transform. This development opens an additional path for construction of, and use of scatterers with unique power law behavior.

  14. Experimental and theoretical total neutron scattering cross-section of water confined in silica microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Muhrer, G., E-mail: muhrer@lanl.gov [Los Alamos National Laboratory, Los Alamos, 87545 NM (United States); Hartl, M.; Mocko, M.; Tovesson, F.; Daemen, L. [Los Alamos National Laboratory, Los Alamos, 87545 NM (United States)

    2012-07-21

    In the search for moderator materials encapsulated materials have been discussed, but very little is known regarding the effect of encapsulation on neutron moderation properties. As a first step toward a better understanding, we present the measured total neutron cross-section of water confined in silica microspheres and compare the measured data to the predicted theoretical cross-section.

  15. Measurement of neutron inelastic scattering cross section of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Takako; Baba, Mamoru; Ibaraki, Masanobu; Sanami, Toshiya; Win, Than; Hirasawa, Yoshitaka; Matsuyama, Shigeo; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    Neutron scattering from the 0{sup +}, 2{sup +} (1-st) and 4{sup +} (2nd) levels of {sup 238}U was measured for incident energies between 0.4 and 0.85 MeV at the Tohoku University 4.5 MV Dynamitron facility, using the time-of-flight (TOF) method with monoenergetic pulsed neutrons by the {sup 7}Li(p,n) reaction. The results are presented in comparison with other experimental data and evaluated data. (author)

  16. Scattering of thermal He beams by crossed atomic and molecular beams. II. The He--Ar van der Waals potential

    International Nuclear Information System (INIS)

    Keilb, M.; Slankas, J.T.; Kuppermann, A.

    1979-01-01

    Differential cross sections for He--Ar scattering at room temperature have been measured. The experimental consistency of these measurements with others performed in different laboratories is demonstrated. Despite this consistency, the present van der Waals well depth of 1.78 meV, accurate to 10%, is smaller by 20% to 50% than the experimental values obtained previously. These discrepancies are caused by differences between the assumed mathematical forms or between the assumed dispersion coefficients of the potentials used in the present paper and those of previous studies. Independent investigations have shown that the previous assumptions are inappropriate for providing accurate potentials from fits to experimental differential cross section data for He--Ar. We use two forms free of this inadequacy in the present analysis: a modified version of the Simons--Parr--Finlan--Dunham (SPFD) potential, and a double Morse--van der Waals (M 2 SV) type of parameterization. The resulting He--Ar potentials are shown to be equal to with experimental error, throughout the range of interatomic distances to which the scattering data are sensitive. The SPFD or M 2 SV potentials are combined with a repulsive potential previously determined exclusively from fits to gas phase bulk properties. The resulting potentials, valid over the extended range of interatomic distances r> or approx. =2.4 A, are able to reproduce all these bulk properties quite well, without adversely affecting the quality of the fits to the DCS

  17. Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: Application to capture cross sections

    Science.gov (United States)

    Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.

    2015-12-01

    Inelastic scattering and carrier capture by defects in semiconductors are the primary causes of hot-electron-mediated degradation of power devices, which holds up their commercial development. At the same time, carrier capture is a major issue in the performance of solar cells and light-emitting diodes. A theory of nonradiative (multiphonon) inelastic scattering by defects, however, is nonexistent, while the theory for carrier capture by defects has had a long and arduous history. Here we report the construction of a comprehensive theory of inelastic scattering by defects, with carrier capture being a special case. We distinguish between capture under thermal equilibrium conditions and capture under nonequilibrium conditions, e.g., in the presence of an electrical current or hot carriers where carriers undergo scattering by defects and are described by a mean free path. In the thermal-equilibrium case, capture is mediated by a nonadiabatic perturbation Hamiltonian, originally identified by Huang and Rhys and by Kubo, which is equal to linear electron-phonon coupling to first order. In the nonequilibrium case, we demonstrate that the primary capture mechanism is within the Born-Oppenheimer approximation (adiabatic transitions), with coupling to the defect potential inducing Franck-Condon electronic transitions, followed by multiphonon dissipation of the transition energy, while the nonadiabatic terms are of secondary importance (they scale with the inverse of the mass of typical atoms in the defect complex). We report first-principles density-functional-theory calculations of the capture cross section for a prototype defect using the projector-augmented wave, which allows us to employ all-electron wave functions. We adopt a Monte Carlo scheme to sample multiphonon configurations and obtain converged results. The theory and the results represent a foundation upon which to build engineering-level models for hot-electron degradation of power devices and the performance

  18. Non-Rutherford cross-sections for alpha elastic scattering off Z = 28-38 elements in the energy range up to 10 MeV

    Science.gov (United States)

    Gurbich, A. F.; Bokhovko, M. V.

    2018-04-01

    The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.

  19. The total cross section as a function of energy for elastic scattering of noble gas atoms

    International Nuclear Information System (INIS)

    Linse, C.A.

    1978-01-01

    Precise relative measurements of the total cross-sections as a function of velocity is presented for the systems Ar-Ar, Ar-Kr, Kr-Ar, Ar-Xe, Ne-Ar, Ne-Kr, and Ne-Xe, the primary beam particle being mentioned first. A discription of the apparatus is given. Then the method for extracting total cross-sections from the measured beam attenuation is analyzed. A comparison is made with total cross-sections calculated from various potentials that have been proposed in the literature

  20. The Measurement of the Quasi-Elastic Neutrino-Nucleon Scattering Cross Section at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Suwonjandee, Narumon [Cincinnati U.

    2004-01-01

    The quasi-elastic neutrino nucleon cross section measurement has been measured in the low energy region less than 100 Ge V. The data agree well with the model proposed by C. H. Llewellyn Smith. This model predicts that the quasi-elastic cross section should be constant in the high enery region. The NuTeV experiment at Fermilab provides data which allows us to measure the quasi-elastic cross section for both neutrinos and anti-neutrinos at high energy. We find that $\\sigma^{Neucleon}_{qe}(v) = 0.94 \\pm 0.03(stat.) \\pm 0.07(syst.)$, and $\\sigma^{Neucleon}_{qe}(\\bar\

  1. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  2. Analytic amplitudes for hadronic forward scattering and the Heisenberg ln{sup 2} s behaviour of total cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Nicolescu, Basarab [LPNHE, Unite de Recherche des Universites Paris 6 et Paris 7, associee au CNRS, Theory Group, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)

    2004-07-01

    We consider several classes of analytic parametrizations of hadronic scattering amplitudes (the COMPETE analysis), and compare their predictions to all available forward data (pp, {pi}p, Kp, {gamma}p, {gamma}{gamma}, {sigma}p). Although these parametrizations are very close for {radical}s {>=} 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term {approx} ln{sup 2} s enables one to extend the fit down to {radical}s = 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude ({rho} parameter) for present and future pp colliders, and on total cross sections for {gamma}p {yields} hadrons at cosmic-ray energies and for it{gamma}{gamma} {yields} hadrons up to {radical}s = 1 TeV. The ln{sup 2} s behaviour of total cross sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. We present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-sections data, in agreement with the COMPETE analysis.

  3. Database of Nucleon-Nucleon Scattering Cross Sections by Stochastic Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A database of nucleon-nucleon elastic differential and total cross sections will be generated by stochastic simulation of the quantum Liouville equation in the...

  4. High-energy behaviour of e--H scattering cross section

    International Nuclear Information System (INIS)

    Saha, B.C.; Chaudhuri, J.; Ghosh, A.S.

    1976-01-01

    An integral form of the close coupling equation has been employed to investigate the high energy behaviour of the elastic and 2s excitation cross sections of hydrogen atom by electron impact retaining the 1s and 2s states. The results, with and without exchange, for both the total and the differential cross sections are presented. The effects of exchange as well as of couplings to the 1s-2s states on the elastic cross section have been studied. The FBA results for the elastic cross section differ from the present results appreciably in the energy range 100 to 200 eV where FBA is considered to be valid. On the other hand, the present 1s-2s excitation results are very close to the corresponding FBA results in the said energy region. (auth.)

  5. Investigation of magnon dispersion relations and neutron scattering cross sections with special attention to anisotropy effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Kowalska, A.; Laut, Peter

    1967-01-01

    curves are suggested. The magnon cross section for unpolarized neutrons is calculated and shown to be dependent on the anisotropy in the spin interaction. Thus in principle it allows the detection of anisotropy in the exchange interaction. Some remarks are made concerning antiferromagnetic and plane...... for the exchange interaction seem to be necessary for agreement with experimental dispersion curves be obtained. The effect of the anisotropy in the cross section is estimated and shown to be important for small magnon energies....

  6. Argon intermolecular potential from a measurement of the total scattering cross-section

    International Nuclear Information System (INIS)

    Wong, Y.W.

    1975-01-01

    An inversion method to obtain accurate intermolecular potentials from experimental total cross section measurements is presented. This method is based on the high energy Massey--Smith approximation. The attractive portion of the potential is represented by a multi-parameter spline function and the repulsive part by a Morse function. The best fit potential is obtained by a least squares minimization based on comparison of experimental cross sections with those obtained by a Fourier transform of the reduced Massey--Smith phase shift curve. An experimental method was developed to obtain the total cross sections needed for the above inversion procedure. In this technique, integral cross sections are measured at various resolutions and the total cross section is obtained by extrapolating to infinite resolution. Experimental results obtained for the Ar--Ar system are in excellent agreement with total cross sections calculated using the Barker-Fisher-Watts potential. Inversion of the data to obtain a potential distinguishable from the BFW-potential requires an extension of the method based on the Massey--Smith approximation to permit use of JWKB phase shifts and was not attempted

  7. Role of Shape and Numbers of Ridges and Valleys in the Insulating Effects of Topography on the Rayleigh Wave Characteristics

    Science.gov (United States)

    Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu

    2018-03-01

    This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.

  8. Dependence of radar auroral scattering cross section on the ambient electron density and the destabilizing electric field

    International Nuclear Information System (INIS)

    Haldoupis, C.; Nielsen, E.; Schlegel, K.

    1990-01-01

    By using a data set that includes simultaneous STARE and EISCAT measurements made at a common magnetic flux tube E region in the ionosphere, we investigate the dependence of relative scattering cross section of 1-meter auroral irregularities on the destabilizing E x B electron drift, or alternatively the electric field, and the E region ambient electron density. The analysis showed that both, the E field and mean electron density are the decisive factors in determining the strength of radar auroral echoes at magnetic aspect angles near perpendicularity. We have found that at instability threshold, i.e., when the E field strength is in the 15 to 20 mV/m range, the backscatter power level is affected strongly by the mean electron density. Above threshold, the wave saturation amplitudes are determined mainly by the combined action of electron drift velocity magnitude, V d , and mean electron density, N e , in a way that the scattering cross section, or the electron density fluctuation level, increases with electric field magnitude but at a rate which is larger when the ambient electron density is lower. The analysis enabled us to infer an empirical functional relationship which is capable of predicting reasonably well the intensity of STARE echoes from EISCAT E field and electron density data. In this functional relationship, the received power at threshold depends on N e 2 whereas, from threshold to perhaps more than 50 mV/m, the power increases nonlinearly with drift velocity as V d n where the exponent n is approximately proportional to N e -1/2 . The results support the Farley-Bunemann instability as the primary instability mechanism, but the existing nonlinear treatment of the theory, which includes wave-induced cross field diffusion, cannot account for the observed role of electron density in the saturation of irregularity amplitudes

  9. Scattering of polarized electrons from polarized targets: Coincidence reactions and prescriptions for polarized half-off-shell single-nucleon cross sections

    International Nuclear Information System (INIS)

    Caballero, J.A.; Massachusetts Inst. of Tech., Cambridge, MA; Donnelly, T.W.; Massachusetts Inst. of Tech., Cambridge, MA; Poulis, G.I.; Massachusetts Inst. of Tech., Cambridge, MA

    1993-01-01

    Coincidence reactions of the type vector A( vector e, e'N)B involving the scattering of polarized electrons from polarized targets are discussed within the context of the plane-wave impulse approximation. Prescriptions are developed for polarized half-off single-nucleon cross sections; the different prescriptions are compared for typical quasi-free kinematics. Illustrative results are presented for coincidence polarized electron scattering from typical polarized nuclei. (orig.)

  10. Review and calculation of Mott scattering cross section by unscreened point nuclei

    International Nuclear Information System (INIS)

    Idoeta, R.; Legarda, F.

    1992-01-01

    A new tabulation of the ratio of the ''exact'' Mott cross section for unscreened point nuclei to the classical Rutherford cross section for electrons and positions has been made. Because of the infinite slowly converging series appearing in this ratio we have made two series transformations. With this evaluation the ratio reached convergence within six significant figures after less than a hundred terms and very low computing time. So the ratios evaluated have less relative error than those in the literature and covers a greater range of energy and atomic number. (orig.)

  11. Combination of differential D{sup *±} cross-section measurements in deep-inelastc ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science; Collaboration: The H1 and ZEUS Collaborations; and others

    2015-03-15

    H1 and ZEUS have published single-differential cross sections for inclusive D{sup *±}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q{sup 2}>5 GeV{sup 2}, electron inelasticity 0.021.5 GeV and pseudorapidity vertical stroke η(D{sup *}) vertical stroke <1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d{sup 2}σ/dQ{sup 2}dy are combined with earlier D{sup *±} data, extending the kinematic range down to Q{sup 2}>1.5 GeV{sup 2}. Perturbative next-to-leadingorder QCD predictions are compared to the results.

  12. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  13. Improved treatment for determining the group cross section for elastic down-scattering into the adjacent group

    International Nuclear Information System (INIS)

    Woll, D.

    1985-04-01

    In the group cross section libraries usually applied for reactor calculations, the energy dependent probabilities of interactions between neutrons and the materials existing in the reactor are represented by weighted average values over certain energy ranges with a neutron energy spectrum regarded as representative. The influence of the resonance structure of the cross sections via the neutron spectrum and the resultant effect on the averaged group cross sections is taken into account in an approximate way by so-called resonance self-shielding factors. The approximations indicated are of considerable importance for the elastic down scattering. They can be improved by the so-called REMO correction, which takes into account the neutron energy distribution existing in the reactor model. Because such detailed neutron distributions are very expensive to prepare, especially in multi-dimensional models, automatic program runs were established which, in some cases by simplifications of the model, allow collision densities to be made available at relatively little expenditure which permit many nuclear quantities to be calculated with a sufficient degree of accuracy. This report describes the program runs set up and the experience acquired in testing them by the examples of the MASURCA 3B experiment and the SNEAK 11B2 assembly. This report deals especially with the influence of the collision density used for the REMO correction on the ksub(eff) value and other parameters of the reactor models considered. (orig.) [de

  14. On the application of the theory of the translational Brownian movement to the calculation of the differential cross-sections for the incoherent scattering of slow neutrons

    International Nuclear Information System (INIS)

    Coffey, W.T.

    1978-01-01

    It is shown how three models (based on the theory of the Brownian movement) for the translational motion of an atom in a fluid may be used to calculate explicitly the intermediate scattering functions and differential cross-sections for the incoherent scattering of slow neutrons. In the first model the translational motion of the atom is represented by the motion of a particle in space subjected to no forces other than those arising from the thermal motion of its surroundings. The differential scattering cross-section for this model is then obtained as a continued fraction similar to that given by Sack (Proc. Phys. Soc.; B70:402 and 414 (1957)) for the electric polarisability in his investigation of the role of inertial effects in dielectric relaxation. The second model is a corrected version of the itinerant oscillator model of Sears (Proc. Phys. Soc.; 86:953 (1965)). Here the differential cross-section is obtained in the form of a series and a closed-form expression is found for the intermediate scattering function. The last model to be considered is the harmonically bound particle where again a closed form expression is obtained for the intermediate scattering function. In each case the intermediate scattering function has a mathematical form which is similar to the after-effect function describing the decay of electric polarisation for the rotational versions of the models. (author)

  15. Improved surface-roughness scattering and mobility models for multi-gate FETs with arbitrary cross-section and biasing scheme

    Science.gov (United States)

    Lizzit, D.; Badami, O.; Specogna, R.; Esseni, D.

    2017-06-01

    We present a new model for surface roughness (SR) scattering in n-type multi-gate FETs (MuGFETs) and gate-all-around nanowire FETs with fairly arbitrary cross-sections, its implementation in a complete device simulator, and the validation against experimental electron mobility data. The model describes the SR scattering matrix elements as non-linear transformations of interface fluctuations, which strongly influences the root mean square value of the roughness required to reproduce experimental mobility data. Mobility simulations are performed via the deterministic solution of the Boltzmann transport equation for a 1D-electron gas and including the most relevant scattering mechanisms for electronic transport, such as acoustic, polar, and non-polar optical phonon scattering, Coulomb scattering, and SR scattering. Simulation results show the importance of accounting for arbitrary cross-sections and biasing conditions when compared to experimental data. We also discuss how mobility is affected by the shape of the cross-section as well as by its area in gate-all-around and tri-gate MuGFETs.

  16. Acoustic scattering behavior of a 2D flame with heat exchanger in cross-flow

    NARCIS (Netherlands)

    Chen, L.S.; Polifke, W.; Hosseini, N.; Teerling, O. J.; Arteaga, I.L.; Kornilov, V.; De Goey, P.

    2016-01-01

    In practical heat production systems, premixed flames with cold heat exchanger in cross-flow is a widely used configuration. Self-excited thermoacoustic instabilities often occur in such systems. A practical way to predict the presence of the instabilities is the network model approach. In the

  17. New approximations of the differential electron-atom elastic scattering cross-sections

    International Nuclear Information System (INIS)

    Niculescu, V.I.R.; Catana, D.

    1994-01-01

    In the present note concerning the electron-atom interaction a cubic Spline method was used to obtain approximations of the differential cross-sections. These approximations gave a 20 times reduction of the computing time preserving also the accuracy (2%). The example is for Al in the 1-256 keV electron energy range. (Author) 2 Tabs., 3 Refs

  18. Comparison of neutron scattering cross sections with the JLM microscopic optical model

    International Nuclear Information System (INIS)

    Kailas, S.; Gupta, S.K.

    Recently Jeukenne et al have determined microscopically the nucleon-nucleus optical potential from Reid's nucleon-nucleon interaction. Microscopic neutron-nucleus optical potentials are constructed using accurate matter densities. Reasonable success has been obtained in describing the total and elastic cross section and angular distributions at Esub(n)=8.05 MeV without modifying the microscopically calculated potentials. (auth.)

  19. Observations of short period seismic scattered waves by small seismic arrays

    Directory of Open Access Journals (Sweden)

    M. Simini

    1997-06-01

    Full Text Available The most recent observations of well correlated seismic phases in the high frequency coda of local earthquakes recorded throughout the world are reported. In particular the main results, obtained on two active volcanoes, Teide and Deception, using small array are described. The ZLC (Zero Lag Cross-correlation method and polarization analysis have been applied to the data in order to distinguish the main phases in the recorded seismograms and their azimuths and apparent velocities. The results obtained at the Teide volcano demonstrate that the uncorrelated part of the seismograms may be produced by multiple scattering from randomly distributed heterogeneity, while the well correlated part, showing SH type polarization or the possible presence of Rayleigh surface waves, may be generated by single scattering by strong scatterers. At the Deception Volcano strong scattering, strongly focused in a precise direction, is deduced from the data. In that case, all the coda radiation is composed of surface waves.

  20. Precise tests of x-ray scattering theories in the Compton regime

    International Nuclear Information System (INIS)

    Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Southworth, S. H.; Young, L.

    1999-01-01

    The authors report two experiments intended to test the accuracy of state-of-the-art theoretical predictions for x-ray scattering from low-Z atoms. The first one deals with the differential x-ray scattering cross sections in Ne and He from 11-22 keV and the Ne Compton-to-Rayleigh scattering ratio in this energy range. It was found that, in order to be consistent with the experimental results, an accurate description at low Z must include nonlocal exchange, electron correlation, and dynamic effects. The second experiment concerns the ratio of helium double-to-single ionization for Compton scattering in the 8-28 keV energy range where published experimental and theoretical results so far fail to give a consistent picture. The progress of the experiment and the data analysis is reported