Universality of energy spectrum in turbulent Rayleigh-Benard convection
Bai, Kunlun; Hoeller, Judith; Brown, Eric
2016-11-01
We present study of energy spectrum in turbulent Rayleigh-Benard convection, in both cylindrical and cubic containers, tilting and non-tilting conditions, and with Rayleigh number ranging from 0 . 5 ×109 to 1 ×1010 . For these different conditions of geometry, tilt, and Rayleigh number, the temperature spectra measured on the system side walls are significantly different from each other. Even for the same condition, the spectrum varies depending on whether the sensors locate in the path of large-scale circulations. However, quite interestingly, once the signals of large-scale circulations are subtracted from the raw temperature, all spectra display a universal shape, regardless of system geometry, tilt, Rayleigh number, and location of sensors. It suggests that one could model the large-scale circulations and small-scale fluctuations separately in turbulent Rayleigh-Benard convection.
Superstructures in Rayleigh-Benard convection
Stevens, Richard; Verzicco, Roberto; Lohse, Detlef
2016-11-01
We study the heat transfer and the flow structures in Rayleigh-Bénard convection as function of the Rayleigh number Ra and the aspect ratio. We consider three-dimensional direct numerical simulations (DNS) in a laterally periodic geometry with aspect ratios up to Γ =Lx /Lz =Ly /Lz = 64 at Ra =108 , where Lx and Ly indicate the horizontal domain sizes and Lz the height. We find that the heat transport convergences relatively quickly with increasing aspect ratio. In contrast, we find that the large scale flow structures change significantly with increasing aspect ratio due to the formation of superstructures. For example, at Ra =108 we find the formation of basically only one large scale circulation roll in boxes with an aspect ratio up to 8. For larger boxes we find the formation of multiple of these extremely large convection rolls. We illustrate this by movies of horizontal cross-section of the bulk and the boundary layer and analyze them by using spectra in the boundary layer and the bulk. In addition, we study the effect of the large scale flow structures on the mean and higher order temperature and velocity statistics in the boundary layer and the bulk by comparing the simulation results obtained in different aspect ratio boxes. Foundation for fundamental Research on Matter (FOM), Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), SURFsara, Gauss Large Scale project.
Phenomenological Theory for Spatiotemporal Chaos in Rayleigh-Benard Convection
Li, Xiao-jun; Xi, Hao-wen; Gunton, J. D.
1997-01-01
We present a phenomenological theory for spatiotemporal chaos (STC) in Rayleigh-Benard convection, based on the generalized Swift-Hohenberg model. We apply a random phase approximation to STC and conjecture a scaling form for the structure factor $S(k)$ with respect to the correlation length $\\xi_2$. We hence obtain analytical results for the time-averaged convective current $J$ and the time-averaged vorticity current $\\Omega$. We also define power-law behaviors such as $J \\sim \\epsilon^\\mu$,...
Remarks on the Rayleigh-Benard Convection on Spherical Shells
Wang, Shouhong
2011-01-01
The main objective of this article is to study the effect of spherical geometry on dynamic transitions and pattern formation for the Rayleigh-Benard convection. The study is mainly motivated by the importance of spherical geometry and convection in geophysical flows. It is shown in particular that the system always undergoes a continuous (Type-I) transition to a $2l_c$-dimensional sphere $S^{2lc}$, where lc is the critical wave length corresponding to the critical Rayleigh number. Furthermore, it has shown in [12] that it is critical to add nonisotropic turbulent friction terms in the momentum equation to capture the large-scale atmospheric and oceanic circulation patterns. We show in particular that the system with turbulent friction terms added undergoes the same type of dynamic transition, and obtain an explicit formula linking the critical wave number (pattern selection), the aspect ratio, and the ratio between the horizontal and vertical turbulent friction coefficients.
Boundary layer structure in turbulent Rayleigh-Benard convection
Shi, Nan; Schumacher, Joerg
2012-01-01
The structure of the boundary layers in turbulent Rayleigh-Benard convection is studied by means of three-dimensional direct numerical simulations. We consider convection in a cylindrical cell at an aspect ratio one for Rayleigh numbers of Ra=3e+9 and 3e+10 at fixed Prandtl number Pr=0.7. Similar to the experimental results in the same setup and for the same Prandtl number, the structure of the laminar boundary layers of the velocity and temperature fields is found to deviate from the prediction of the Prandtl-Blasius-Pohlhausen theory. Deviations decrease when a dynamical rescaling of the data with an instantaneously defined boundary layer thickness is performed and the analysis plane is aligned with the instantaneous direction of the large-scale circulation in the closed cell. Our numerical results demonstrate that important assumptions which enter existing classical laminar boundary layer theories for forced and natural convection are violated, such as the strict two-dimensionality of the dynamics or the s...
Rotating non-Boussinesq Rayleigh-Benard convection
Moroz, Vadim Vladimir
This thesis makes quantitative predictions about the formation and stability of hexagonal and roll patterns in convecting system unbounded in horizontal direction. Starting from the Navier-Stokes, heat and continuity equations, the convection problem is then reduced to normal form equations using equivariant bifurcation theory. The relative stabilities of patterns lying on a hexagonal lattice in Fourier space are then determined using appropriate amplitude equations, with coefficients obtained via asymptotic expansion of the governing partial differential equations, with the conducting state being the base state, and the control parameter and the non-Boussinesq effects being small. The software package Mathematica was used to calculate amplitude coefficients of the appropriate coupled Ginzburg-Landau equations for the rigid-rigid and free-free case. A Galerkin code (initial version of which was written by W. Pesch et al.) is used to determine pattern stability further from onset and for strongly non-Boussinesq fluids. Specific predictions about the stability of hexagon and roll patterns for realistic experimental conditions are made. The dependence of the stability of the convective patterns on the Rayleigh number, planform wavenumber and the rotation rate is studied. Long- and shortwave instabilities, both steady and oscillatory, are identified. For small Prandtl numbers oscillatory sideband instabilities are found already very close to onset. A resonant mode interaction in hexagonal patterns arising in non-Boussinesq Rayleigh-Benard convection is studied using symmetry group methods. The lowest-order coupling terms for interacting patterns are identified. A bifurcation analysis of the resulting system of equations shows that the bifurcation is transcritical. Stability properties of resulting patterns are discussed. It is found that for some fluid properties the traditional hexagon convection solution does not exist. Analytical results are supported by numerical
Heat transport measurements in turbulent rotating Rayleigh-Benard convection
Ecke, Robert E [Los Alamos National Laboratory; Liu, Yuanming [Los Alamos National Laboratory
2008-01-01
We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.
Critical phenomena employed in hydrodynamic problems A case study of Rayleigh-Benard convection
Assenheimer, M; Assenheimer, Michel; Steinberg, Victor
1996-01-01
By virtue of Rayleigh-Benard convection, we illustrate the advantages of combining a hydrodynamic pattern forming instability with a thermodynamic critical point. This has already lead to many novel unexpected observations and is further shown to possess opportunities for the study of exciting fundamental problems in nonequilibrium systems.
Moist turbulent Rayleigh-Benard convection with Neumann and Dirichlet boundary conditions
Weidauer, Thomas
2012-01-01
Turbulent Rayleigh-Benard convection with phase changes in an extended layer between two parallel impermeable planes is studied by means of three-dimensional direct numerical simulations for Rayleigh numbers between 10^4 and 1.5\\times 10^7 and for Prandtl number Pr=0.7. Two different sets of boundary conditions of temperature and total water content are compared: imposed constant amplitudes which translate into Dirichlet boundary conditions for the scalar field fluctuations about the quiescent diffusive equilibrium and constant imposed flux boundary conditions that result in Neumann boundary conditions. Moist turbulent convection is in the conditionally unstable regime throughout this study for which unsaturated air parcels are stably and saturated air parcels unstably stratified. A direct comparison of both sets of boundary conditions with the same parameters requires to start the turbulence simulations out of differently saturated equilibrium states. Similar to dry Rayleigh-Benard convection the differences...
Dynamics and Selection of Giant Spirals in Rayleigh-Benard Convection
Plapp, B B; Bodenschatz, E; Pesch, W; Plapp, Brendan B.; Egolf, David A.; Bodenschatz, Eberhard; Pesch, Werner
1998-01-01
For Rayleigh-Benard convection of a fluid with Prandtl number \\sigma \\approx 1, we report experimental and theoretical results on a pattern selection mechanism for cell-filling, giant, rotating spirals. We show that the pattern selection in a certain limit can be explained quantitatively by a phase-diffusion mechanism. This mechanism for pattern selection is very different from that for spirals in excitable media.
A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection
Buell, Jeffrey C.
1988-01-01
A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.
Whitehead, Jared P
2011-01-01
Rigorous upper limits on the vertical heat transport in two dimensional Rayleigh-Benard convection between stress-free isothermal boundaries are derived from the Boussinesq approximation of the Navier-Stokes equations. The Nusselt number Nu is bounded in terms of the Rayleigh number Ra according to $Nu \\leq 0.2295 Ra^{5/12}$ uniformly in the Prandtl number Pr. This Nusselt number scaling challenges some theoretical arguments regarding the asymptotic high Rayleigh number heat transport by turbulent convection.
Large-Scale Flow and Spiral Core Instability in Rayleigh-Benard Convection
Aranson, I S; Steinberg, V; Tsimring, L S; Aranson, Igor; Assenheimer, Michel; Steinberg, Victor; Tsimring, Lev S.
1996-01-01
The spiral core instability, observed in large aspect ratio Rayleigh-Benard convection, is studied numerically in the framework of the Swift-Hohenberg equation coupled to a large-scale flow. It is shown that the instability leads to non-trivial core dynamics and is driven by the self-generated vorticity. Moreover, the recently reported transition from spirals to hexagons near the core is shown to occur only in the presence of a non-variational nonlinearity, and is triggered by the spiral core instability. Qualitative agreement between the simulations and the experiments is demonstrated.
Cloud patterns and mixing properties in shallow moist Rayleigh-Benard convection
Weidauer, Thomas; Schumacher, Joerg [Institut fuer Thermo- und Fluiddynamik, Postfach 100565, Technische Universitaet Ilmenau, D-98684 Ilmenau (Germany); Pauluis, Olivier, E-mail: thomas.weidauer@tu-ilmenau.d, E-mail: pauluis@cims.nyu.ed, E-mail: joerg.schumacher@tu-ilmenau.d [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185 (United States)
2010-10-15
Three-dimensional direct numerical simulations of idealized moist turbulent Rayleigh-Benard convection are presented. The thermodynamics of moist air is linearized close to the phase boundary between water vapor and liquid water. This formulation allows for a simplified saturation condition for the cloud formation, but omits supersaturation and rain. The sensitivity of this problem to changes of the Rayleigh number, the aspect ratio of the convection layer and the water vapor concentration is studied. The Rayleigh number is found to impact the behavior of the system in multiple ways. First, the relaxation time toward a well-mixed turbulent state increases with the Rayleigh number. Similarly, the flow exhibits a higher spatial and temporal intermittency at higher Rayleigh number. This is in line with an enhanced intermittency of the upward buoyancy flux, which we quantify by a multifractal analysis. In addition, phase transition introduces an asymmetry in the distribution of the thermodynamic properties of the well-mixed state. This asymmetry is most pronounced in layers where clouds are partially present. Furthermore, the geometrical properties of the cloud formations averaged with respect to the height of the layer are studied. Similar to isocontours in scalar mixing, the boundaries of isolated clouds show no strict (mono-)fractal behavior. The results of the perimeter-area analysis of the largest isolated clouds agree well with those of large eddy simulations of cumulus convection. This perimeter-area scaling is also similar to that of percolation processes in a plane.
Wheeler, A. A.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.
1991-01-01
The effect of vertical, sinusoidal, time-dependent gravitational acceleration on the onset of solutal convection during directional solidification is analyzed in the limit of large modulation frequency. When the unmodulated state is unstable, the modulation amplitude required to stabilize the system is determined by the method of averaging. When the unmodulated state is stable, resonant modes of instability occur at large modulation amplitude. These are analyzed using matched asymptotic expansions to elucidate the boundary-layer structure for both the Rayleigh-Benard and directional solidification configurations. Based on these analyses, a thorough examination of the dependence of the stability criteria on the unmodulated Rayleigh number, Schmidt number, and distribution coefficient, is carried out.
Optimal Prandtl number for heat transfer in rotating Rayleigh-Benard convection
Stevens, Richard J A M; Lohse, Detlef
2009-01-01
Numerical data for the heat transfer as a function of the Prandtl (Pr) and Rossby (Ro) numbers in turbulent rotating Rayleigh-Benard convection are presented for Rayleigh number Ra = 10^8. When Ro is fixed the heat transfer enhancement with respect to the non-rotating value shows a maximum as function of Pr. This maximum is due to the reduced efficiency of Ekman pumping when Pr becomes too small or too large. When Pr becomes small, i.e. for large thermal diffusivity, the heat that is carried by the vertical vortices spreads out in the middle of the cell, and Ekman pumping thus becomes less efficient. For higher Pr the thermal boundary layers (BLs) are thinner than the kinetic BLs and therefore the Ekman vortices do not reach the thermal BL. This means that the fluid that is sucked into the vertical vortices is colder than for lower Pr which limits the efficiency of the upwards heat transfer.
Borońska, Katarzyna
2009-01-01
A large number of flows with distinctive patterns have been observed in experiments and simulations of Rayleigh-Benard convection in a water-filled cylinder whose radius is twice the height. We have adapted a time-dependent pseudospectral code, first, to carry out Newton's method and branch continuation and, second, to carry out the exponential power method and Arnoldi iteration to calculate leading eigenpairs and determine the stability of the steady states. The resulting bifurcation diagram contains 17 branches of stable and unstable steady states. These can be classified geometrically as roll states containing two, three, and four rolls; axisymmetric patterns with one or two tori; three-fold symmetric patterns called mercedes, mitubishi, marigold and cloverleaf; trigonometric patterns called dipole and pizza; and asymmetric patterns called CO and asymmetric three-rolls. The convective branches are connected to the conductive state and to each other by 16 primary and secondary pitchfork bifurcations and tur...
The effects of Ekman pumping on quasi-geostrophic Rayleigh-Benard convection
Plumley, Meredith; Marti, Philippe; Stellmach, Stephan
2016-01-01
Numerical simulations of 3D, rapidly rotating Rayleigh-Benard convection are performed using an asymptotic quasi-geostrophic model that incorporates the effects of no-slip boundaries through (i) parameterized Ekman pumping boundary conditions, and (ii) a thermal wind boundary layer that regularizes the enhanced thermal fluctuations induced by pumping. The fidelity of the model, obtained by an asymptotic reduction of the Navier-Stokes equations that implicitly enforces a pointwise geostrophic balance, is explored for the first time by comparisons of simulations against the findings of direct numerical simulations and laboratory experiments. Results from these methods have established Ekman pumping as the mechanism responsible for significantly enhancing the vertical heat transport. This asymptotic model demonstrates excellent agreement over a range of thermal forcing for Pr ~1 when compared with results from experiments and DNS at maximal values of their attainable rotation rates, as measured by the Ekman numb...
Introductory Analysis of Benard-Marangoni Convection
Maroto, J. A.; Perez-Munuzuri, V.; Romero-Cano, M. S.
2007-01-01
We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and…
Martinand, D.
2003-01-15
This analytical study deals with the spatio-temporal evolution of linear thermo-convective instabilities in a horizontal fluid layer heated from below (the Rayleigh--Benard system) and subject to a horizontal pressure gradient (Poiseuille flow). The novelty consists of a spatially inhomogeneous temperature, in the form of a two-dimensional bump imposed on the lower plate, while the upper plate is kept at a constant temperature. The inhomogeneous boundary temperature and the mean flow of the Rayleigh--Benard--Poiseuille system break the symmetries of the classical Rayleigh--Benard system. The instabilities of interest are therefore spatially localised packets of convection rolls. If a mode of this type is synchronized, it is called a global mode. Assuming that the characteristic scale of the spatial variation of the lower plate temperature is large compared to the wavelength of the rolls, global modes are sought in the form of Eigenmodes in the confined vertical direction, modulated by a two-dimensional WKBJ expansion in the slowly-varying horizontal directions. Such an expansion breaks down at points where the group velocity of the instability vanishes, i.e. at WKBJ turning points. In the neighbourhood of one such point, located at the top of the temperature bump, the boundedness of the solution imposes a selection criterion for the global modes which provides the growth rate (or equivalently the critical threshold), the frequency and the wave vector of the most amplified global mode. This study thus generalizes to two-dimensional cases the methods used and the results obtained for one-dimensional inhomogeneities. The analysis is first applied to a simplified governing equation obtained by an envelope formalism and the analytical results are compared with numerical solutions of the amplitude equation. The formalism is finally applied to the Rayleigh--Benard--Poiseuille system described by the Navier--Stokes equations with the Boussinesq approximation. (author)
Brauckmann, Hannes; Schumacher, Joerg
2016-01-01
Rayleigh-Benard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Benard convection in air at Rayleigh number Ra=1e7 and Taylor-Couette flow at shear Reynolds number Re_S=2e4 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angula...
Sterl, Sebastian; Zhong, Jin-Qiang
2016-01-01
In this paper, we present results from an experimental study into turbulent Rayleigh-Benard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity $\\dot{\\theta}$(t) and thermal amplitude $\\delta$(t) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of $\\dot{\\theta}$(t). We also focus on the influence of modulated rotation rates on the frequency of occurrence $\\eta$ of stochastic cessation/reorientation events, and on the interplay between such events and the periodically modulated response of $\\dot{\\theta}$(t). Here we identify a mechanism by which $\\eta$ can be amplfied by the modulated response and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and extend this approach to make predictions for the occurrence ...
Introductory analysis of Benard-Marangoni convection
Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)
2007-03-15
We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.
Low-dimensional model of turbulent Rayleigh-Benard convection in a Cartesian cell with square domain
Bailon-Cuba, Jorge
2011-01-01
A low-dimensional model (LDM) for turbulent Rayleigh-Benard convection in a Cartesian cell with square domain, based on the Galerkin projection of the Boussinesq equations onto a finite set of empirical eigenfunctions, is presented. The empirical eigenfunctions are obtained from a joint Proper Orthogonal Decomposition (POD) of the velocity and temperature fields using the Snapshot Method on the basis of a direct numerical simulation (DNS). The resulting LDM is a quadratic inhomogeneous system of coupled ordinary differential equations which we use to describe the long-time temporal evolution of the large-scale mode amplitudes for a Rayleigh number of 1e5 and a Prandtl number of 0.7. The truncation to a finite number of degrees of freedom, that does not exceed a number of 310 for the present, requires the additional implementation of an eddy viscosity-diffusivity to capture the missing dissipation of the small-scale modes. The magnitude of this additional dissipation mechanism is determined by requiring statis...
Spiral defect chaos in a model of Rayleigh-Benard convection
Xi, H; Viñals, J; Xi, Hao-wen; Vinals., Jorge
1993-01-01
A numerical solution of a generalized Swift-Hohenberg equation in two dimensions reveals the existence of a spatio-temporal chaotic state comprised of a large number of rotating spirals. This state is observed for a reduced Rayleigh number $\\epsilon=0.25$. The power spectrum of the state is isotropic, and the spatial correlation function decays exponentially, with an estimated decay length $\\xi \\approx 2.5 \\lambda_{c}$, where $\\lambda_{c}$ is the critical wavelength near the onset of convection. Our study suggests that this spiral defect state occurs for low Prandtl numbers and large aspect ratios.
Absolute scaling law for temperature data in Rayleigh-Benard convection
无
2009-01-01
In addition to the hierarchical-structure (H-S) model, this paper further explores the most intensive intermittent structure of Rayleigh-Bénard convection at the high Ra numbers proportional to temperature. With respect to the discovery and by means of the scale, both of Bolgiano, there are two regions of the structure holding the absolute scaling law given by Ching’s paper. Through theoretic analysis of data, this paper indicates that the regions act as two local intensive intermittent structures, by which the statistical absolute scaling performance of region is induced, rather than the statistical result of the entire time series in belief since 1941. In terms of statistical theory, the local structure in fluid, therefore, is the essence governing the absolute scaling performance of region, especially in high intensity.
Instability onset and mixing by diffusive Rayleigh-Benard Convection in a Hele-Shaw Cell
Ehyaei, Dana; Kiger, Ken
2012-11-01
The injection and eventual dissolution of carbon dioxide in deep saline aquifers has suggested as an effective means of carbon sequestration. Typical injection conditions produce a buoyantly stable source of CO2 layered on top of the brine, whose dissolution is greatly accelerated by the onset of dissolution-driven, negatively buoyant, convective plumes that develop at the interface. The current work is a study conducted within a Hele-shaw cell, as an analogue for porous media, using working fluids that are mixtures of methanol and ethylene glycol diffusing in water, imitating the convective behavior of CO2 in the brine. The underlying physics of the flow are examined by measuring the velocity field directly via PIV, using appropriate methods to allow quantitative measurement in this thin-gap flow. This technique allows for detailed measurement of the entire evolution of the velocity and vorticity field during onset, growth and saturation of the instabilities. Features of the flow, the mechanisms that govern it and accurate time scales form onset time to later time mixings would be discussed for different Rayleigh numbers ranging from 2000 to 15000.
无
2001-01-01
Wavelet transform is used to analyze the scaling rule convection flow from two aspects. By utilizing the method of extended self similarity (ESS), one can find the obtained scaling exponent agrees well with the one obtained from the temperature data in a experiment of wind tunnel. And then we propose a newly defined formula based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data. The obtained results demonstrate that we can correctly extract ξ(q) by using the method which is named as wavelet transform maximum modulus (WTMM).``
Ridouane, El Hassan; Hasnaoui, Mohammed; Campo, Antonio
2006-01-01
Coupled laminar natural convection with radiation in air-filled square enclosure heated from below and cooled from above is studied numerically for a wide variety of radiative boundary conditions at the sidewalls. A numerical model based on the finite difference method was used for the solution of mass, momentum and energy equations. The surface-to-surface method was used to calculate the radiative heat transfer. Simulations were performed for two values of the emissivities of the active and insulated walls (ɛ1=0.05 or 0.85, ɛ2=0.05 or 0.85) and Rayleigh numbers ranging from 103 to 2.3×106 . The influence of those parameters on the flow and temperature patterns and heat transfer rates are analyzed and discussed for different steady-state solutions. The existing ranges of these solutions are reported for the four different cases considered. It is founded that, for a fixed Ra, the global heat transfer across the enclosure depends only on the magnitude of the emissivity of the active walls. The oscillatory behavior, characterizing the unsteady-state solutions during the transitions from bicellular flows to the unicellular flow are observed and discussed.
Numerical simulation of 3-dimensional Rayleigh-Benard system by particle method
Watanabe, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-05-01
As one of representative non-equilibrium thermal fluid system, there is a fluid system maintained at lower and higher temperatures at upper and lower faces, respectively, and Rayleigh-Benard (RB) system. On temperature difference between both faces smaller than a critical value, flow into the system is not developed to realize a thermal conductive state, while on that larger than a critical value, macroscopic convection vortex forms to realize a conventional thermal conductive state. A transition process from thermal conduction to convection is well-known for RB unstability and also the convection state is done for RB convection. In this paper, a transition process from thermal conduction to convection was simulated systematically by changing temperature difference at both faces using DSMC method known for one of statistical methods, to investigate the critical Rayleigh number in response to temperature difference at beginning point of the convection, variations and correlative function at proximity of the critical Rayleigh number, pattern formation of the convection and so forth. (G.K.)
On the origin of intrinsic randomness of Rayleigh-Benard turbulence
Lin, Zhiliang; Liao, Shijun
2016-01-01
It is of broad interest to understand how the evolution of non-equilibrium systems can be triggered and the role played by external perturbations. A famous example is the origin of randomness in the laminar-turbulence transition, which is raised in the pipe flow experiment by Reynolds as a century old unresolved problem. Although there exist different hypotheses, it is widely believed that the randomness is "intrinsic", which, however, remains as an open question to be verified. Simulating the modeled Rayleigh-Benard convection system by means of the so-called clean numerical simulation (CNS) with negligible numerical noises that are smaller even than thermal fluctuation, we verify that turbulence can be self-excited from the inherent thermal fluctuation, without any external disturbances, i.e. out of nothing. This reveals a relationship between microscopic physical uncertainty and macroscopic randomness. It is found that in physics the system nonlinearity functions as a channel for randomness information, an...
Alboussiere, Thierry
2016-01-01
The linear stability threshold of the Rayleigh-Benard configuration is analyzed with compressible effects taken into account. It is assumed that the fluid obeys a Newtonian rheology and Fourier's law of thermal transport with constant, uniform (dynamic) viscosity and thermal conductivity in a uniform gravity field. Top and bottom boundaries are maintained at different constant temperatures and we consider here boundary conditions of zero tangential stress and impermeable walls. Under these conditions, and with the Boussinesq approximation, Rayleigh (1916) first obtained analytically the critical value 27pi^4/4 for a dimensionless parameter, now known as the Rayleigh number, at the onset of convection. This manuscript describes the changes of the critical Rayleigh number due to the compressibility of the fluid, measured by the dimensionless dissipation parameter D and due to a finite temperature difference between the hot and cold boundaries, measured by a dimensionless temperature gradient a. Different equati...
Benard convection in the presence of micro particles
Hadji, Layachi
2009-11-01
We study Benard convection in water containing a small volume fraction of micro particles. The investigation is motivated by recent experiments of natural convection of aqueous suspensions [1] conducted at an average temperature of 20 degrees C in which the authors report a decrease in Nusselt number compared to pure water. This effect has been attributed to density inversion in the base state taking place near the lower boundary caused by the sedimentation of the aluminum oxide particles, the density of which is greater than that of water. We attempt to elucidate these findings by carrying a stability analysis on a model of convection for a liquid suspension having a nonlinear equation of state. The model accounts for the coupled effects of Brownian motion, sedimentation and thermophoresis. The balance of the latter yields a nonlinear base profile for the concentration of particles. Density inversion occurs near either the lower or the top boundary depending on the balance between sedimentation and thermophoresis and on the size and density of the particles. Parameter range for the onset and stability of the resulting double layer convection is given and the implications the results may have on the heat transfer in nanofluids are discussed.[4pt] [1] B. H. Chang, A.F. Mills, E. Hernandez, Int. J. Heat Mass Transfer, 51 (2008) 1332-1341.
Gonzalez, C. M.; Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.
2010-12-01
As computational modeling became prolific throughout the physical sciences community, newer and more efficient ways of processing large amounts of data needed to be devised. One particular method for processing such large amounts of data arose in the form of using a graphics processing unit (GPU) for calculations. Computational scientists were attracted to the GPU as a computational tool as the performance, growth, and availability of GPUs over the past decade increased. Scientists began to utilize the GPU as the sole workhorse for their brute force calculations and modeling. The GPUs, however, were not originally designed for this style of use. As a result, difficulty arose when trying to find a use for the GPU from a scientific standpoint. A lack of parallel programming routines was the main culprit behind the difficulty in programming with a GPU, but with time and a rise in popularity, NVIDIA released a proprietary architecture named Fermi. The Fermi architecture, when used in conjunction with development tools such as CUDA, allowed the programmer easier access to routines that made parallel programming with the NVIDIA GPUs an ease. This new architecture enabled the programmer full access to faster memory, double-precision support, and large amounts of global memory at their fingertips. Our model was based on using a second-order, spatially correct finite difference method and a third order Runge-Kutta time-stepping scheme for studying the 2D Rayleigh-Benard code. The code extensively used the CUBLAS routines to do the heavy linear algebra calculations. The calculations themselves were completed using a single GPU, the NVDIA C2070 Fermi, which boasts 6 GB of global memory. The overall scientific goal of our work was to apply the Tesla C2070's computing potential to achieve an onset of flow reversals as a function of increasing large Rayleigh numbers. Previous investigations were successful using a smaller grid size of 1000x1999 and a Rayleigh number of 10^9. The
Comparison between rough and smooth plates within the same Rayleigh-Benard cell
Rusaouen, Eleonore; Salort, Julien; Seychelles, Fanny; Tisserand, Jean-Christophe; Creyssels, Matthieu; Liot, Olivier; Castaing, Bernard; Chilla, Francesca
2012-11-01
A Rayleigh-Benard cell consist in a tank filled of a fluid on which a temperature difference is imposed thanks to a cold plate at top and a hot at bottom. Movement is induced by the buoyancy force. Considering most of experimental apparatus previously used all around the world, both plates are smooth. Recently, the effect of roughness on thermal transfer had become a subject of interest. The present experiment is an asymetrical rough Rayleigh-Benard cell. Indeed the hot plate is rough whereas the cold plate is still smooth. Previously, tests conducted with 2 mm high roughness showed independence of the two plates and a heat flux enhancement on the rough plate, which appeared to be greater than expected from the surface increase. This regime was caracterized by a Nu ~ Ra 1 / 2 law. New results obtained with a 4mm high roughness also show this flux enhancement and the independent behaviour of the plates. But a transition appears at high Rayleigh from the 1/2 power law regime to a 1/3 one. Former results obtained in the same symetrical smooth/smooth cell also showed a 1/3 law. But the rough 1/3 regime reveals a multiplier coefficient of 1.6 with the smooth one.
Parallel Finite Element Solution of 3D Rayleigh-Benard-Marangoni Flows
Carey, G. F.; McLay, R.; Bicken, G.; Barth, B.; Pehlivanov, A.
1999-01-01
A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.
High Rayleigh number convection numerical experiments
Verzicco, Roberto
2002-03-01
temperature variance dissipations. The achieved results seem to support the idea that the observed transitional behaviors have to be attributed to the change in the topology of the mean flow rather than to a transition from a laminar to a turbulent state of the viscous boundary layers. Other issues accomplished by the simulation concern the study of the scaling properties of the turbulent quantities and length scales in terms of Ra. Finally, further details on the turbulence dynamics are obtained by the analysis of the power spectra and low order structure functions of both the temperature and the velocity components, computed from the numerical probes both within the bulk region and close to the walls. References Roche, PE; Castaing, B; Chabaud, B; Hebral, B. ``Observation of the 1/2 power law in Rayleigh-Benard convection'' Phys. Rev. E, 2001, 6304(4), p. 5303. Niemela, J.J.; Skrbek, L.; Sreenivasan, K.R. and Donnelly, R.J. ``Turbulent convection at very high Rayleigh numbers'' Nature, 405, 243-253 (11 May 2000). Verzicco, R. and Camussi, R. ``Prandtl number effects in convective turbulence'' J. of Fluid Mech., 383, (1999), 55-73.
Multiphase Rayleigh-Bénard convection
Oresta, P.; Fornarelli, F.; Prosperetti, Andrea
2014-01-01
Numerical simulations of two-phase Rayleigh-Bénard convection in a cylindrical cell with particles or vapor bubbles suspended in the fluid are described. The particles or bubbles are modeled as points, the Rayleigh number is 2×106 and the fluids considered are air, for the particle case, and
Long-Wavelength Rupturing Instability in Surface-Tension-Driven Benard Convection
Swift, J. B.; Hook, Stephen J. Van; Becerril, Ricardo; McCormick, W. D.; Swinney, H. L.; Schatz, Michael F.
1999-01-01
A liquid layer with a free upper surface and heated from below is subject to thermocapillary-induced convective instabilities. We use very thin liquid layers (0.01 cm) to significantly reduce buoyancy effects and simulate Marangoni convection in microgravity. We observe thermocapillary-driven convection in two qualitatively different modes, short-wavelength Benard hexagonal convection cells and a long-wavelength interfacial rupturing mode. We focus on the long-wavelength mode and present experimental observations and theoretical analyses of the long-wavelength instability. Depending on the depths and thermal conductivities of the liquid and the gas above it, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. Linear stability theory gives good agreement to the experimental measurements of onset as long as sidewall effects are taken into account. Nonlinear theory correctly predicts the subcritical nature of the bifurcation and the selection between the dry spot and high spots.
Rayleigh-Bénard convection instability in the presence of temperature variation at the lower wall
Jovanović Miloš M.
2012-01-01
Full Text Available This paper analyzes the two-dimensional viscous fluid flow between two parallel plates, where the lower plate is heated and the upper one is cooled. The temperature difference between the plates is gradually increased during a certain time period, and afterwards it is temporarily constant. The temperature distribution on the lower plate is not constant in x-direction, and there is longitudinal sinusoidal temperature variation imposed on the mean temperature. We investigate the wave number and amplitude influence of this variation on the stability of Rayleigh-Benard convective cells, by direct numerical simulation of 2-D Navier-Stokes and energy equation.
Lyapunov exponents for small aspect ratio Rayleigh-Bénard convection.
Scheel, J D; Cross, M C
2006-12-01
Leading order Lyapunov exponents and their corresponding eigenvectors have been computed numerically for small aspect ratio, three-dimensional Rayleigh-Benard convection cells with no-slip boundary conditions. The parameters are the same as those used by Ahlers and Behringer [Phys. Rev. Lett. 40, 712 (1978)] and Gollub and Benson [J. Fluid Mech. 100, 449 (1980)] in their work on a periodic time dependence in Rayleigh-Benard convection cells. Our work confirms that the dynamics in these cells truly are chaotic as defined by a positive Lyapunov exponent. The time evolution of the leading order Lyapunov eigenvector in the chaotic regime will also be discussed. In addition we study the contributions to the leading order Lyapunov exponent for both time periodic and aperiodic states and find that while repeated dynamical events such as dislocation creation/annihilation and roll compression do contribute to the short time Lyapunov exponent dynamics, they do not contribute to the long time Lyapunov exponent. We find instead that nonrepeated events provide the most significant contribution to the long time leading order Lyapunov exponent.
Internally heated convection and Rayleigh-Bénard convection
Goluskin, David
2016-01-01
This Brief describes six basic models of buoyancy-driven convection in a fluid layer: three configurations of internally heated convection and three configurations of Rayleigh-Bénard convection. The author discusses the main quantities that characterize heat transport in each model, along with the constraints on these quantities. This presentation is the first to place the various models in a unified framework, and similarities and differences between the cases are highlighted. Necessary and sufficient conditions for convective motion are given. For the internally heated cases only, parameter-dependent lower bounds on the mean fluid temperature are proven, and results of past simulations and laboratory experiments are summarized and reanalyzed. The author poses several open questions for future study.
Distributed chaos and Rayleigh-Benard turbulence at very high Ra
Bershadskii, A
2016-01-01
It is shown, by the means of distributed chaos approach and using the experimental data, that at very large Rayleigh number $Ra > 10^{14}$ and Prandtl number $Pr \\sim 1$ the Rayleigh-B\\'{e}nard turbulence can undergo a transition related to spontaneous breaking of the fundamental Lagrangian relabeling symmetry. Due to the Noether's theorem helicity plays central role in this process. After the transition the temperature spectrum has a stretched exponential form $E (k) \\propto \\exp(-k/k_{\\beta})^{\\beta}$ with $\\beta =2/5$ both at the cell midplain and at the near-wall (low boundary) regions. There is a similarity between this phenomenon and the effects of polymer additives.
New subgrid-scale models for large-eddy simulation of Rayleigh-Bénard convection
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2016-09-01
At the crossroad between flow topology analysis and the theory of turbulence, a new eddy-viscosity model for Large-eddy simulation has been recently proposed by Trias et al.[PoF, 27, 065103 (2015)]. The S3PQR-model has the proper cubic near-wall behaviour and no intrinsic limitations for statistically inhomogeneous flows. In this work, the new model has been tested for an air turbulent Rayleigh-Benard convection in a rectangular cell of aspect ratio unity and n span-wise open-ended distance. To do so, direct numerical simulation has been carried out at two Rayleigh numbers Ra = 108 and 1010, to assess the model performance and investigate a priori the effect of the turbulent Prandtl number. Using an approximate formula based on the Taylor series expansion, the turbulent Prandtl number has been calculated and revealed a constant and Ra-independent value across the bulk region equals to 0.55. It is found that the turbulent components of eddy-viscosity and eddy-diffusivity are positively prevalent to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. On the other hand, the new eddy-viscosity model is preliminary tested for the case of Ra = 108 and showed overestimation of heat flux within the boundary layer but fairly good prediction of turbulent kinetics at this moderate turbulent flow.
High Prandtl number effect on Rayleigh-Bénard convection heat transfer at high Rayleigh number
Ma, Li; Li, Jing; Ji, Shui; Chang, Huajian
2017-02-01
This paper represents results of the Rayleigh-Bénard convection heat transfer in silicon oil confined by two horizontal plates, heated from below, and cooled from above. The Prandtl numbers considered as 100-10,000 corresponding to three types of silicon oil. The experiments covered a range of Rayleigh numbers from 2.14·109 to 2.27·1013. The data points that the Nusselt number dependents on the Rayleigh number, which is asymptotic to a 0.248 power. Furthermore, the experiment results can fit the data in low Rayleigh number well.
Farhat, Aseel; Titi, Edriss S
2015-01-01
In this paper we propose a continuous data assimilation (downscaling) algorithm for the B\\'enard convection in porous medium using only coarse mesh measurements of the temperature field. In this algorithm, we incorporate the observables as a feedback (nudging) term in the evolution equation of the temperature. We show that under an appropriate choice of the nudging parameter and the size of the mesh, and under the assumption that the observed data is error free, the solution of the proposed algorithm approaches at an exponential rate asymptotically in time to the unique exact unknown reference solution of the original system, associated with the observed (finite dimensional projection of) temperature data. Moreover, in the case where the observational measurements are not error free, one can estimate the error between the solution of the algorithm and the exact reference solution of the system in terms of the error in the measurements.
Heat transfer mechanisms in bubbly Rayleigh-Bénard convection
Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Presperetti, Andrea
2009-01-01
The heat transfer mechanism in Rayleigh-Bénard convection in a liquid with a mean temperature close to its boiling point is studied through numerical simulations with pointlike vapor bubbles, which are allowed to grow or shrink through evaporation and condensation and which act back on the flow both
2013-01-01
The lattice Boltzmann method is used to simulate the thermal field and flow field of nanofluid Raleigh-Benard convection in a rectangular cavity. The heat transfer characteristics of nanofluid are compared under different Raleigh numbers, volume fractions of nanoparticles and particle sizes. The results show that under the same Raleigh number and volume fraction, the convection heat transfer of nanofluid becomes weakened by increasing the particle size. Under the same Raleigh number and particle size, the convection heat transfer of nanofluid becomes strengthened by increasing the volume fraction of nanoparticles.% 利用格子Boltzmann方法模拟矩形腔内纳米流体Rayleigh-Benard对流，得到温度场和流线分布，比较分析不同Ra数、体积分数、粒径下纳米流体对流换热的变化情况。结果表明：在相同的Ra数和体积分数下，纳米流体的对流换热随着粒径的增大而减弱；在相同的Ra数和粒径下，纳米流体的对流换热随着体积分数增大而增强。
Covariant Lyapunov vectors of chaotic Rayleigh-Bénard convection.
Xu, M; Paul, M R
2016-06-01
We explore numerically the high-dimensional spatiotemporal chaos of Rayleigh-Bénard convection using covariant Lyapunov vectors. We integrate the three-dimensional and time-dependent Boussinesq equations for a convection layer in a shallow square box geometry with an aspect ratio of 16 for very long times and for a range of Rayleigh numbers. We simultaneously integrate many copies of the tangent space equations in order to compute the covariant Lyapunov vectors. The dynamics explored has fractal dimensions of 20≲D_{λ}≲50, and we compute on the order of 150 covariant Lyapunov vectors. We use the covariant Lyapunov vectors to quantify the degree of hyperbolicity of the dynamics and the degree of Oseledets splitting and to explore the temporal and spatial dynamics of the Lyapunov vectors. Our results indicate that the chaotic dynamics of Rayleigh-Bénard convection is nonhyperbolic for all of the Rayleigh numbers we have explored. Our results yield that the entire spectrum of covariant Lyapunov vectors that we have computed are tangled as indicated by near tangencies with neighboring vectors. A closer look at the spatiotemporal features of the Lyapunov vectors suggests contributions from structures at two different length scales with differing amounts of localization.
Nonlinear Laplacian spectral analysis of Rayleigh-Bénard convection
Brenowitz, N. D.; Giannakis, D.; Majda, A. J.
2016-06-01
The analysis of physical datasets using modern methods developed in machine learning presents unique challenges and opportunities. These datasets typically feature many degrees of freedom, which tends to increase the computational cost of statistical methods and complicate interpretation. In addition, physical systems frequently exhibit a high degree of symmetry that should be exploited by any data analysis technique. The classic problem of Rayleigh Benárd convection in a periodic domain is an example of such a physical system with trivial symmetries. This article presents a technique for analyzing the time variability of numerical simulations of two-dimensional Rayleigh-Bénard convection at large aspect ratio and intermediate Rayleigh number. The simulated dynamics are highly unsteady and consist of several convective rolls that are distributed across the domain and oscillate with a preferred frequency. Intermittent extreme events in the net heat transfer, as quantified by the time-weighted probability distribution function of the Nusselt number, are a hallmark of these simulations. Nonlinear Laplacian Spectral Analysis (NLSA) is a data-driven method which is ideally suited for the study of such highly nonlinear and intermittent dynamics, but the trivial symmetries of the Rayleigh-Bénard problem such as horizontal shift-invariance can mask the interesting dynamics. To overcome this issue, the vertical velocity is averaged over parcels of similar temperature and height, which substantially compresses the size of the dataset and removes trivial horizontal symmetries. This isothermally averaged dataset, which is shown to preserve the net convective heat-flux across horizontal surfaces, is then used as an input to NLSA. The analysis generates a small number of orthogonal modes which describe the spatiotemporal variability of the heat transfer. A regression analysis shows that the extreme events of the net heat transfer are primarily associated with a family of
Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions.
Yoshikawa, H N; Tadie Fogaing, M; Crumeyrolle, O; Mutabazi, I
2013-04-01
Thermal convection in a dielectric fluid layer between two parallel plates subjected to an alternating electric field and a temperature gradient is investigated under microgravity conditions. A thermoelectric coupling resulting from the thermal variation of the electric permittivity of the fluid produces the dielectrophoretic (DEP) body force, which can be regarded as thermal buoyancy due to an effective gravity. This electric gravity can destabilize a stationary conductive state of the fluid to develop convection. The similarity of the DEP thermal convection with the Rayleigh-Bénard (RB) convection is examined by considering its behavior in detail by a linear stability theory and a two-dimensional direct numerical simulation. The results are analyzed from an energetic viewpoint and in the framework of the Ginzburg-Landau (GL) equation. The stabilizing effects of a thermoelectric feedback make the critical parameters different from those in the RB instability. The nonuniformity of the electric gravity arising from the finite variation of permittivity also affects the critical parameters. The characteristic constants of the GL equation are comparable with those for the RB convection. The heat transfer in the DEP convection is weaker than in the RB convection as a consequence of the feedback that impedes the convection.
Rotating thermal convection at very large Rayleigh numbers
Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard
2016-11-01
The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.
Absolute scaling law for temperature data in Rayleigh-Benard convection
FU Qiang
2009-01-01
In addition to the hierarchical-structure (H-S) model, this paper further explores the most intensive in-With respect to the discovery and by means of the scale, both of Bolgiano, there are two regions of the structure holding the absolute scaling law given by Ching's paper. Through theoretic analysis of data, this paper indicates that the regions act as two local intensive intermittent structures, by which the statistical absolute scaling performance of region is induced, rather than the statistical result of the entire time series in belief since 1941. In terms of statistical theory, the local structure in fluid, therefore, is the essence governing the absolute scaling performance of region, especially in high intensity.
Statistics and scaling in turbulent Rayleigh-Bénard convection
Ching, Emily SC
2013-01-01
This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for
Transitions in turbulent rotating Rayleigh-B\\'enard convection
Schmitz, S
2010-01-01
Numerical simulations of rotating Rayleigh-B\\'enard convection are presented for both no slip and free slip boundaries. The goal is to find a criterion distinguishing convective flows dominated by the Coriolis force from those nearly unaffected by rotation. If one uses heat transport as an indicator of which regime the flow is in, one finds that the transition between the flow regimes always occurs at the same value of a certain combination of Reynolds, Prandtl and Ekman numbers for both boundary conditions. If on the other hand one uses the helicity of the velocity field to identify flows nearly independent of rotation, one finds the transition at a different location in parameter space.
Flow structure in turbulent rotating Rayleigh-Bénard convection
Kunnen, Rudie; Corre, Yoann; Clercx, Herman
2012-11-01
Turbulent Rayleigh-Bénard convection is usually studied in an upright cylinder. The addition of axial rotation has profound effects on the flow structuring. The well-known large-scale circulation (LSC) of the non-rotating case is still found at low rotation rates but is replaced by an irregular array of vertically aligned vortical plumes at higher rotation rates. We report PIV measurements of turbulent rotating convection in a cylindrical cell of diameter-to-height aspect ratio Γ = 1 / 2 at Rayleigh number Ra = 4 . 5 ×109 and at many rotation rates covering both the LSC and the vortical-plume regime. We focus on: (i) the azimuthal precession of the LSC, (ii) collective motions of the vortical plumes, and (iii) the sidewall boundary layers. With these results we can clarify remarkable differences between the Γ = 1 and Γ = 1 / 2 cases reported recently in the literature. Traineeship project carried out in Eindhoven as part of Master's Degree at Université Paris-Sud, France.
Ahlers, Guenter; He, Xiaozhou
2014-01-01
We report on experimental determinations of the temperature field in the interior (bulk) of turbulent Rayleigh-Benard convection for a cylindrical sample with aspect ratio (diameter over height) of 0.50, both in the classical and in the ultimate state. The Prandtl number was close to 0.8. We find a "logarithmic layer" in which the temperature varies as A*ln(z/L) + B with the distance z from the bottom plate of the sample. The amplitude A varies with radial position r. In the classical state these results are in good agreement with direct numerical simulations (DNS); in the ultimate state there are as yet no DNS. A close analogy between the temperature field in the classical state and the "Law of the Wall" for the time-averaged down-stream velocity in shear flow is discussed.
Convection in an ideal gas at high Rayleigh numbers.
Tilgner, A
2011-08-01
Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.
Ergodicity in randomly forced Rayleigh-Bénard convection
Földes, J.; Glatt-Holtz, N. E.; Richards, G.; Whitehead, J. P.
2016-11-01
We consider the Boussinesq approximation for Rayleigh-Bénard convection perturbed by an additive noise and with boundary conditions corresponding to heating from below. In two space dimensions, with sufficient stochastic forcing in the temperature component and large Prandtl number Pr > 0, we establish the existence of a unique ergodic invariant measure. In three space dimensions, we prove the existence of a statistically invariant state, and establish unique ergodicity for the infinite Prandtl Boussinesq system. Throughout this work we provide streamlined proofs of unique ergodicity which invoke an asymptotic coupling argument, a delicate usage of the maximum principle, and exponential martingale inequalities. Lastly, we show that the background method of Constantin and Doering (1996 Nonlinearity 9 1049-60) can be applied in our stochastic setting, and prove bounds on the Nusselt number relative to the unique invariant measure.
Transient growth in Rayleigh-B\\'enard-Poiseuille/Couette convection
Jerome, J John Soundar; Huerre, Patrick
2016-01-01
An investigation of the effect of a destabilizing cross-stream temperature gradient on the transient growth phenomenon of plane Poiseuille flow and plane Couette flow is presented. Only the streamwise-uniform and nearly streamwise-uniform disturbances are highly influenced by the Rayleigh number Ra and Prandtl number Pr. The maximum optimal transient growth G max of streamwise-uniform disturbances increases slowly with increasing Ra and decreasing Pr. For all Ra and Pr, at moderately large Reynolds numbersRe, the supremum of G max is always attained for streamwise-uniform perturbations (or nearly streamwise-uniform perturbations, in the case of plane Couette flow) which produce large streamwise streaks and Rayleigh-B\\'enard convection rolls (RB). The optimal growth curves retain the same large-Reynolds-number scaling as in pure shear flow. A 3D vector model of the governing equations demonstrates that the short-time behavior is governed by the classical lift-up mechanism and that the influence of Ra on this m...
Sidewall effects in Rayleigh-B\\'enard convection
Stevens, Richard J A M; Verzicco, Roberto
2014-01-01
We investigate the influence of the temperature boundary conditions at the sidewall on the heat transport in Rayleigh-B\\'enard (RB) convection using direct numerical simulations. For relatively low Rayleigh numbers Ra the heat transport is higher when the sidewall is isothermal, kept at a temperature $T_c+\\Delta/2$ (where $\\Delta$ is the temperature difference between the horizontal plates and $T_c$ the temperature of the cold plate), than when the sidewall is adiabatic. The reason is that in the former case part of the heat current avoids the thermal resistance of the fluid layer by escaping through the sidewall that acts as a short-circuit. For higher Ra the bulk becomes more isothermal and this reduces the heat current through the sidewall. Therefore the heat flux in a cell with an isothermal sidewall converges to the value obtained with an adiabatic sidewall for high enough Ra ($\\simeq 10^{10}$). However, when the sidewall temperature deviates from $T_c+\\Delta/2$ the heat transport at the bottom and top p...
Optimal Heat Transport in Rayleigh-B\\'enard Convection
Sondak, David; Waleffe, Fabian
2015-01-01
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-B\\'enard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Ra\\sim 10^9$. Power law scalings of $Nu\\sim Ra^{\\gamma}$ are observed with $\\gamma\\approx 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr \\lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a...
Transient growth in Rayleigh-Bénard-Poiseuille/Couette convection
John Soundar Jerome, J.; Chomaz, Jean-Marc; Huerre, Patrick
2012-04-01
An investigation of the effect of a destabilizing cross-stream temperature gradient on the transient growth phenomenon of plane Poiseuille flow and plane Couette flow is presented. Only the streamwise-uniform and nearly streamwise-uniform disturbances are highly influenced by the Rayleigh number Ra and Prandtl number Pr. The maximum optimal transient growth Gmax of streamwise-uniform disturbances increases slowly with increasing Ra and decreasing Pr. For all Ra and Pr, at moderately large Reynolds numbers Re, the supremum of Gmax is always attained for streamwise-uniform perturbations (or nearly streamwise-uniform perturbations, in the case of plane Couette flow) which produce large streamwise streaks and Rayleigh-Bénard convection rolls (RB). The optimal growth curves retain the same large-Reynolds-number scaling as in pure shear flow. A 3D vector model of the governing equations demonstrates that the short-time behavior is governed by the classical lift-up mechanism and that the influence of Ra on this mechanism is secondary and negligible. The optimal input for the largest long-time response is given by the adjoint of the dominant eigenmode with respect to the energy scalar product: the RB eigenmode without its streamwise velocity component. These short-time and long-time responses depict, to leading order, the optimal transient growth G(t). At moderately large Ra (or small Pr at a fixed Ra), the dominant adjoint mode is a good approximation to the optimal initial condition for all time. Over a general class of norms that can be considered as growth functions, the results remain qualitatively similar, for example, the dominant adjoint eigenmode still approximates the maximum optimal response.
Simulation of Rayleigh-Bénard convection using lattice Boltzmann method
Shan, X
1996-01-01
Rayleigh-Bénard convection is numerically simulated in two- and three-dimensions using a recently developed two-component lattice Boltzmann equation (LBE) method. The density field of the second component, which evolves according to the advection-diffusion equation of a passive-scalar, is used to simulate the temperature field. A body force proportional to the temperature is applied, and the system satisfies the Boussinesq equation except for a slight compressibility. A no-slip, isothermal boundary condition is imposed in the vertical direction, and periodic boundary conditions are used in horizontal directions. The critical Rayleigh number for the onset of the Rayleigh-Bénard convection agrees with the theoretical prediction. As the Rayleigh number is increased higher, the steady two-dimensional convection rolls become unstable. The wavy instability and aperiodic motion observed, as well as the Nusselt number as a function of the Rayleigh number, are in good agreement with experimental observations and the...
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
Ahlers, Guenter; Grossmann, Siegfried; Lohse, Detlef
2009-01-01
The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinet
Tuning transitions in rotating Rayleigh-Bénard convection
Joshi, Pranav; Kunnen, Rudie; Clercx, Herman
2015-11-01
Turbulent rotating Rayleigh-Bénard convection, depending on the system parameters, exhibits multiple flow states and transitions between them. The present experimental study aims to control the transitions between the flow regimes, and hence the system heat transfer characteristics, by introducing particles in the flow. We inject near-neutrally buoyant silver coated hollow ceramic spheres (~100 micron diameter) and measure the system response, i.e. the Nusselt number, at different particle concentrations and rotation rates. Both for rotating and non-rotating cases, most of the particles settle on the top and bottom plates in a few hours following injection. This rapid settling may be a result of ``trapping'' of particles in the laminar boundary layers at the horizontal walls. These particle layers on the heat-transfer surfaces reduce their effective conductivity, and consequently, lower the heat transfer rate. We calculate the effective system parameters by estimating, and accounting for, the temperature drop across the particle layers. Preliminary analysis suggests that the thermal resistance of the particle layers may affect the flow structure and delay the transition to the ``geostrophic'' regime. Financial support from Foundation for Fundamental Research on Matter.
Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell
Vial, M.; Hernández, R. H.
2017-07-01
We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.
Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)
1995-12-31
Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.
Multiplicity of steady states in cylindrical Rayleigh-Bénard convection.
Ma, Dong-Jun; Sun, De-Jun; Yin, Xie-Yuan
2006-09-01
Three-dimensional steady Rayleigh-Bénard convection in a vertical cylinder is investigated by numerical simulation and bifurcation analysis. The complex pattern formation beyond the onset of the convection is presented by a bifurcation diagram. The coexistence of multiple stable states is observed near the threshold of the first bifurcation and two group symmetries are summarized for the corresponding primary branches. The first stable target pattern originates through a subcritical bifurcation. A multiplicity of flow states for the Rayleigh number of 14200 is validated numerically in comparison with the experiment, and a four-spoke pattern is observed.
Ramos, I C
2015-01-01
We present the adaptation to non--free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck--Boussinesq equations in a Rayleigh--B\\'enard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number ($R\\sim10^9$). These results are the basis for the later study, by the same method, of wet convection in a solar still.
Large-scale vortices in rapidly rotating Rayleigh-B\\'enard convection
Guervilly, Céline; Jones, Chris A
2014-01-01
Using numerical simulations of rapidly rotating Boussinesq convection in a Cartesian box, we study the formation of long-lived, large-scale, depth-invariant coherent structures. These structures, which consist of concentrated cyclones, grow to the horizontal size of the box, with velocities significantly larger than the convective motions. We vary the rotation rate, the thermal driving and the aspect ratio in order to determine the domain of existence of these large-scale vortices (LSV). We find that two conditions are required for their formation. First, the Rayleigh number, a meaure of the thermal driving, must be several times its value at the linear onset of convection; this corresponds to Reynolds numbers, based on the convective velocity and the box depth, $\\gtrsim 100$. Second, the rotational constraint on the convection structures must be strong. This requires that the local Rossby number, based on the convective velocity and the horizontal convective scale, $\\lesssim 0.15$. Simulations in which certa...
Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection.
King, Eric M; Aurnou, Jonathan M
2012-01-01
We investigate flow structures in rotating Rayleigh-Bénard convection experiments in water using thermal measurements. We focus on correlations between time series measurements of temperature in the top and bottom boundaries. Distinct anticorrelations are observed for rapidly rotating convection, which are argued to attest to heat transport by convective Taylor columns. In support of this argument, these quasigeostrophic flow structures are directly observed in flow visualizations, and their thermal signature is qualitatively reproduced by a simple model of heat transport by columnar flow. Weakly rotating and nonrotating convection produces positively correlated temperature changes across the layer, indicative of heat transport by large-scale circulation. We separate these regimes using a transition parameter that depends on the Rayleigh and Ekman numbers, RaE3/2.
Italia, Matteo; Croccolo, Fabrizio; Scheffold, Frank; Vailati, Alberto
2014-10-01
Convection in an inclined layer of fluid is affected by the presence of a component of the acceleration of gravity perpendicular to the density gradient that drives the convective motion. In this work we investigate the solutal convection of a colloidal suspension characterized by a negative Soret coefficient. Convection is induced by heating the suspension from above, and at large solutal Rayleigh numbers (of the order of 10(7)-10(8)) convective spoke patterns form. We show that in the presence of a marginal inclination of the cell as small as 19 mrad the isotropy of the spoke pattern is broken and the convective patterns tend to align in the direction of the inclination. At intermediate inclinations of the order of 33 mrad ordered square patterns are obtained, while at inclination of the order of 67 mrad the strong shear flow determined by the inclination gives rise to ascending and descending sheets of fluid aligned parallel to the direction of inclination.
Effect of plumes on measuring the large scale circulation in turbulent Rayleigh-Bénard convection
Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef
2011-01-01
We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a
Prime modes of fluid circulation in large-aspect-ratio turbulent Rayleigh-Bénard convection
Verdoold, J.; Tummers, M.J.; Hanjalić, K.
2009-01-01
Based on a detailed experimental investigation in an aspect-ratio-4 rectangular cell in the range 3.7×107≤Ra≤3.7×109, we present evidence of possible scenarios of the long-term dynamics of large-scale circulations (LSC) in bounded large-aspect-ratio turbulent Rayleigh-Bénard convection. Karhunen-Loè
Optimal Prandtl number for heat transfer in rotating Rayleigh-Bénard convection
Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef
2010-01-01
Numerical data for the heat transfer as a function of the Prandtl (Pr)and Rossby (Ro) numbers in turbulent rotating Rayleigh–Bénard convection are presented for Rayleigh number Ra = 10 8 When Ro is xed, the heat transfer enhancement with respect to the non-rotating value shows a maximum as a functi
Energy budget in Rayleigh-Bénard convection.
Kerr, R M
2001-12-10
It is shown using three series of Rayleigh number simulations of varying aspect ratio AR and Prandtl number Pr that the normalized dissipation at the wall, while significantly greater than 1, approaches a constant dependent upon AR and Pr. It is also found that the peak velocity, not the mean square velocity, obeys the experimental scaling of Ra(0.5). The scaling of the mean square velocity is closer to Ra(0.46), which is shown to be consistent with experimental measurements and the numerical results for the scaling of Nu and the temperature if there are strong correlations between the velocity and temperature.
Johnston, Stephen; Fonda, Enrico; Sreenivasan, Katepalli R.; Ranjan, Devesh
2016-11-01
Both experiments and simulations on Rayleigh-Bénard convection with fluids of Prandtl numbers 5 and below have shown that the container shape influences the flow structure. Here, we investigate similar dependences of convection of fluids with Prandtl numbers of up to 104. The convection cells have aspect ratio of order unity, and we use cubic and cylindrical shapes. Visual analysis using a noninvasive photochromic dye technique indicates the distinct large-scale flow patterns in both square and cylindrical test cells. The stability of these flow patterns is explored. Also presented are results on the Nusselt-Rayleigh scaling for moderate Rayleigh numbers.
Spectra and probability distributions of thermal flux in turbulent Rayleigh-B\\'{e}nard convection
Pharasi, Hirdesh K; Kumar, Krishna; Bhattacharjee, Jayanta K
2016-01-01
The spectra of turbulent heat flux $\\mathrm{H}(k)$ in Rayleigh-B\\'{e}nard convection with and without uniform rotation are presented. The spectrum $\\mathrm{H}(k)$ scales with wave number $k$ as $\\sim k^{-2}$. The scaling exponent is almost independent of the Taylor number $\\mathrm{Ta}$ and Prandtl number $\\mathrm{Pr}$ for higher values of the reduced Rayleigh number $r$ ($ > 10^3$). The exponent, however, depends on $\\mathrm{Ta}$ and $\\mathrm{Pr}$ for smaller values of $r$ ($<10^3$). The probability distribution functions of the local heat fluxes are non-Gaussian and have exponential tails.
Boundary layers in turbulent Rayleigh-B\\'enard convection in air
Puits, Ronald du; Resagk, Christian; Thess, André
2012-01-01
The boundary layer flow in a Rayleigh-B\\'enard convection cell of rectangular shape has been visualized in this fluid dynamics video. The experiment has been undertaken in air at a Rayleigh number $Ra=1.3\\times 10^{10}$ and a Prandtl number $Pr=0.7$. Various sequences captured at selected positions of the heating plate show that the boundary layer is a very transient flow region characterized by coherent structures that permanently evolve. It becomes fully turbulent in the areas where the large-scale circulation impinge or leave the bottom plate.
The Spectral Amplitude of Stellar Convection and Its Scaling in the High-Rayleigh-number Regime
Featherstone, Nicholas A.; Hindman, Bradley W.
2016-02-01
Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique test bed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation owing to this apparent overestimation. We present a series of three-dimensional stellar convection simulations designed to examine how the amplitude and spectral distribution of convective flows are established within a star’s interior. While these simulations are nonmagnetic and nonrotating in nature, they demonstrate two robust phenomena. When run with sufficiently high Rayleigh number, the integrated kinetic energy of the convection becomes effectively independent of thermal diffusion, but the spectral distribution of that kinetic energy remains sensitive to both of these quantities. A simulation that has converged to a diffusion-independent value of kinetic energy will divide that energy between spatial scales such that low-wavenumber power is overestimated and high-wavenumber power is underestimated relative to a comparable system possessing higher Rayleigh number. We discuss the implications of these results in light of the current inconsistencies between models and observations.
Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model
Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg
2017-05-01
The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.
I. C. Ramos
2015-10-01
Full Text Available We present the adaptation to non-free boundary conditions of a pseudospectral method based on the (complex Fourier transform. The method is applied to the numerical integration of the Oberbeck-Boussinesq equations in a Rayleigh-Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (. These results are the basis for the later study, by the same method, of wet convection in a solar still. Received: 20 Novembre 2014, Accepted: 15 September 2015; Edited by: C. A. Condat, G. J. Sibona; DOI:http://dx.doi.org/10.4279/PIP.070015 Cite as: I C Ramos, C B Briozzo, Papers in Physics 7, 070015 (2015
Heat transport in the geostrophic regime of rotating Rayleigh-B{\\'e}nard convection
Ecke, Robert E
2013-01-01
We report experimental measurements of heat transport in rotating Rayleigh-B{\\'e}nard convection in a cylindrical convection cell with aspect ratio $\\Gamma = 1/2$. The fluid was helium gas with Prandtl number Pr = 0.7. The range of control parameters was Rayleigh number $4 \\times 10^9 < {\\rm Ra} < 4 \\times 10^{11}$ and Ekman number $2 \\times 10^{-7} < {\\rm Ek} < 3 \\times 10^{-5}$(corresponding to Taylor number $4 \\times 10^9 < {\\rm Ta} < 1 \\times 10^{14}$ and convective Rossby number $0.07 < {\\rm Ro} < 5$). We determine the crossover from weakly rotating turbulent convection to rotation dominated geostrophic convection through experimental measurements of the normalized heat transport Nu. The heat transport for the rotating state in the geostrophic regime, normalized by the zero-rotation heat transport, is consistent with scaling of $({\\rm RaEk}^{-7/4})^\\beta$ with $\\beta \\approx 1$. A phase diagram is presented that encapsulates measurements on the potential geostrophic turbulence reg...
Heat Transport by Coherent Rayleigh-B\\'enard Convection
Waleffe, Fabian; Smith, Leslie M
2015-01-01
Steady but generally unstable solutions of the 2D Boussinesq equations are obtained for no-slip boundary conditions and Prandtl number 7. The primary solution that bifurcates from the conduction state at Rayleigh number $Ra \\approx 1708$ has been calculated up to $Ra\\approx 5. 10^6$ and shows heat flux $Nu \\sim 0.143\\, Ra^{0.28}$ with a delicate spiral structure in the temperature field. Another solution that maximizes $Nu$ over the horizontal wavenumber has been calculated up to $Ra=10^9$ and its heat flux scales as $Nu \\sim 0.115\\, Ra^{0.31}$ for $10^7 < Ra \\le 10^9$, quite similar to 3D turbulent data. The latter is a simple yet multi-scale coherent solution whose horizontal wavenumber scales as $0.133 \\, Ra^{0.217}$ in that range. That optimum solution is unstable to larger scale perturbations and in particular to mean shear flows, yet it appears to be relevant as a backbone for turbulent solutions, possibly setting the scale, strength and spacing of elemental plumes.
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation
Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2016-07-01
The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ . The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q , three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q =6.4 . An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.
Stability analysis of Rayleigh-Bénard convection in a cylinder with internal heat generation.
Wang, Bo-Fu; Zhou, Lin; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2016-07-01
The flow instabilities of Rayleigh-Bénard convection in a cylinder with effect of uniform internal heat source are investigated numerically. The instabilities of the static state and of axisymmetric flows are investigated by linear stability analysis. The convection threshold depends on the strength of internal heat source q and the aspect ratio of the cylinder Γ. The stability of axisymmetric flows is strongly affected by these two parameters, as well as the Prandtl number Pr. Depending on the value of q, three regimes are identified: weak internal heating, moderate internal heating, and strong internal heating regime. In a weak internal heating regime, the instability characteristics are similar to Rayleigh-Bénard convection. In a moderate internal heating regime, intense interaction of buoyancy instability and hydrodynamic instability result in complex instability curves. When q is large enough, the internal heating effect overwhelms the boundary heating effect. Specifically, the influence of Pr on instability is studied at a moderate internal heat strength q=6.4. An extremely multivalued stability curve is observed. At most five critical Rayleigh numbers can be determined for the axisymmetry-breaking instability at a certain Prandtl number. An axisymmetric unsteady instability mode is observed as well. By nonlinear simulation, the oscillatory flow patterns are obtained, and the axisymmetry-breaking bifurcation of the unsteady toroidal flow is studied.
Experimental study of 3D Rayleigh-Taylor convection between miscible fluids in a porous medium
Nakanishi, Yuji; Hyodo, Akimitsu; Wang, Lei; Suekane, Tetsuya
2016-11-01
The natural convection of miscible fluids in porous media has applications in several fields, such as geoscience and geoengineering, and can be employed for the geological storage of CO2. In this study, we used X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appeared at the interface. As the wavelength and amplitude increased, descending fingers formed on the interface and extended vertically downward; in addition, ascending and highly symmetric fingers formed. The adjacent fingers were cylindrical in shape and coalesced to form large fingers. The fingers appearing on the interface tended to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. When the Péclet number exceeded 10, transverse dispersion increased the finger diameter and enhanced the finger coalescence, strongly impacting the decrease in finger number density. When mechanical dispersion was negligible, the finger-extension velocity and the dimensionless mass-transfer rate scaled with the characteristic velocity and the Rayleigh number with an appropriate length scale. Mechanical dispersion not only reduced the onset time but also enhanced the mass transport.
Conjugate Heat Transfer in Rayleigh-Bénard Convection in a Square Enclosure
Habibis Saleh
2014-01-01
Full Text Available Conjugate natural convection-conduction heat transfer in a square enclosure with a finite wall thickness is studied numerically in the present paper. The governing parameters considered are the Rayleigh number 5×103≤Ra≤106, the wall-to-fluid thermal conductivity ratio 0.5≤Kr≤10, and the ratio of wall thickness to its height 0.2≤D≤0.4. The staggered grid arrangement together with MAC method was employed to solve the governing equations. It is found that the fluid flow and the heat transfer can be controlled by the thickness of the bottom wall, the thermal conductivity ratio, and the Rayleigh number.
Conjugate heat transfer in Rayleigh-Bénard convection in a square enclosure.
Saleh, Habibis; Hashim, Ishak
2014-01-01
Conjugate natural convection-conduction heat transfer in a square enclosure with a finite wall thickness is studied numerically in the present paper. The governing parameters considered are the Rayleigh number (5 × 10(3) ≤ Ra ≤ 10(6)), the wall-to-fluid thermal conductivity ratio (0.5 ≤ Kr ≤ 10), and the ratio of wall thickness to its height (0.2 ≤ D ≤ 0.4). The staggered grid arrangement together with MAC method was employed to solve the governing equations. It is found that the fluid flow and the heat transfer can be controlled by the thickness of the bottom wall, the thermal conductivity ratio, and the Rayleigh number.
Dynamics of large-scale quantities in Rayleigh-B\\'enard convection
Pandey, Ambrish; Chatterjee, Anando G; Verma, Mahendra K
2016-01-01
In this paper we estimate the relative strengths of various terms of the Rayleigh-B\\'enard equations. Based on these estimates and scaling analysis, we derive a general formula for the large-scale velocity, $U$, or the P\\'eclet number that is applicable for arbitrary Rayleigh number $\\mathrm{Ra}$ and Prandtl number $\\mathrm{Pr}$. Our formula fits reasonably well with the earlier simulation and experimental results. Our analysis also shows that the wall-bounded convection has enhanced viscous force compared to free turbulence. We also demonstrate how correlations deviate the Nusselt number scaling from the theoretical prediction of $\\mathrm{Ra}^{1/2}$ to the experimentally observed scaling of nearly $\\mathrm{Ra}^{0.3}$.
Rayleigh-Taylor finger instability mixing in hydrodynamic shell convection models
Mocak, Miroslav
2010-01-01
Mixing processes in stars driven by composition gradients as a result of the Rayleigh-Taylor instability are not anticipated. They are supported only by hydrodynamic studies of stellar convection. We find that such mixing occurs below the bottom edge of convection zones in our multidimensional hydrodynamic shell convection models. It operates at interfaces created by off-center nuclear burning, where less dense gas with higher mean molecular weight is located above denser gas with a lower mean molecular weight. We discuss the mixing under various conditions with hydrodynamic convection models based on stellar evolutionary calculations of the core helium flash in a 1.25 Msun star, the core carbon flash in a 9.3 Msun star, and of oxygen burning shell in a star with a mass of 23 Msun. We simulate the hydrodynamic behavior of shell convection during various phases of stellar evolution with the Eulerian hydrodynamics code HERAKLES in two and three spatial dimensions. Initial models for this purpose are obtained by...
Length scale of a chaotic element in Rayleigh-Bénard convection.
Karimi, A; Paul, M R
2012-12-01
We describe an approach to quantify the length scale of a chaotic element of a Rayleigh-Bénard convection layer exhibiting spatiotemporal chaos. The length scale of a chaotic element is determined by simultaneously evolving the dynamics of two convection layers with a unidirectional coupling that involves only the time-varying values of the fluid velocity and temperature on the lateral boundaries of the domain. In our results we numerically simulate the full Boussinesq equations for the precise conditions of experiment. By varying the size of the boundary used for the coupling we identify a length scale that describes the size of a chaotic element. The length scale of the chaotic element is of the same order of magnitude, and exhibits similar trends, as the natural chaotic length scale that is based upon the fractal dimension.
Grooms, Ian
2014-01-01
The non-hydrostatic, quasigeostrophic approximation for rapidly rotating Rayleigh-B\\'enard convection admits a class of exact `single mode' solutions. These solutions correspond to steady laminar convection with a separable structure consisting of a horizontal planform characterized by a single wavenumber multiplied by a vertical amplitude profile, with the latter given as the solution of a nonlinear boundary value problem. The heat transport associated with these solutions is studied in the regime of strong thermal forcing (large reduced Rayleigh number $\\widetilde{Ra}$). It is shown that the Nusselt number $Nu$, a nondimensional measure of the efficiency of heat transport by convection, for this class of solutions is bounded below by $Nu\\gtrsim \\widetilde{Ra}^{3/2}$, independent of the Prandtl number, in the limit of large reduced Rayleigh number. Matching upper bounds include only logarithmic corrections, showing the accuracy of the estimate. Numerical solutions of the nonlinear boundary value problem for ...
Rayleigh-Bénard convection in a vertical annular container near the convection threshold.
Wang, Bo-Fu; Wan, Zhen-Hua; Ma, Dong-Jun; Sun, De-Jun
2014-04-01
The instabilities and transitions of flow in an annular container with a heated bottom, a cooled top, and insulated sidewalls are studied numerically. The instabilities of the static diffusive state and of axisymmetric flows are investigated by linear stability analysis. The onset of convection is independent of the Prandtl number but determined by the geometry of the annulus, i.e., the aspect ratio Γ (outer radius to height) and radius ratio δ (inner radius to outer radius). The stability curves for onset of convection are presented for 0.001≤δ≤0.8 at six fixed aspect ratios: Γ=1, 1.2, 1.6, 1.75, 2.5, and 3.2. The instability of convective flow (secondary instability), which depends on both the annular geometry and the Prandtl number, is studied for axisymmetric convection. Two pairs of geometric control parameters are chosen to perform the secondary instability analysis-Γ=1.2, δ=0.08 and Γ=1.6, δ=0.2-and the Prandtl number ranges from 0.02 to 6.7. The secondary instability exhibits some similarities to that for convection in a cylinder. A hysteresis stability loop is found for Γ=1.2, δ=0.08 and frequent changes of critical mode with Prandtl number are found for Γ=1.6, δ=0.2. The three-dimensional flows beyond the axisymmetry-breaking bifurcations are obtained by direct numerical simulation for Γ=1.2, δ=0.08.
Zhou, Quan
2010-01-01
We present a systematic experimental study of geometric and statistical properties of thermal plumes in turbulent Rayleigh-B\\'{e}nard convection using the thermochromic-liquid-crystal (TLC) technique. The experiments were performed in three water-filled cylindrical convection cells with aspect ratios 2, 1, and 0.5 and over the Rayleigh-number range $5\\times10^7 \\leq Ra \\leq 10^{11}$. TLC thermal images of horizontal plane cuts at various depths below the top plate were acquired. Three-dimensional images of thermal plumes were then reconstructed from the two-dimensional slices of the temperature field. The results show that the often-called sheetlike plumes are really one-dimensional structures and may be called rodlike plumes. We find that the number densities for both sheetlike/rodlike and mushroomlike plumes have power-law dependence on $Ra$ with scaling exponents of $\\sim 0.3$, which is close to that between the Nusselt number $Nu$ and $Ra$. This result suggests that it is the plume number that primarily d...
Heat transport in boiling turbulent Rayleigh-B\\'{e}nard convection
Lakkaraju, Rajaram; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea
2014-01-01
Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to several mechanisms many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubbles compounds with that of the liquid to give rise to a much enhanced natural convection. In this paper we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-B\\'enard convection process. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. We consider a cylindrical cell with a diameter equal to its height. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping the temperature difference constant and changing the liquid pressure we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between $2\\times10^6$ and $5\\times10^9$. We find a...
Statistics of velocity and temperature fluctuations in two-dimensional Rayleigh-Bénard convection
Zhang, Yang; Huang, Yong-Xiang; Jiang, Nan; Liu, Yu-Lu; Lu, Zhi-Ming; Qiu, Xiang; Zhou, Quan
2017-08-01
We investigate fluctuations of the velocity and temperature fields in two-dimensional (2D) Rayleigh-Bénard (RB) convection by means of direct numerical simulations (DNS) over the Rayleigh number range 106≤Ra≤1010 and for a fixed Prandtl number Pr=5.3 and aspect ratio Γ =1 . Our results show that there exists a counter-gradient turbulent transport of energy from fluctuations to the mean flow both locally and globally, implying that the Reynolds stress is one of the driving mechanisms of the large-scale circulation in 2D turbulent RB convection besides the buoyancy of thermal plumes. We also find that the viscous boundary layer (BL) thicknesses near the horizontal conducting plates and near the vertical sidewalls, δu and δv, are almost the same for a given Ra, and they scale with the Rayleigh and Reynolds numbers as ˜Ra-0.26±0.03 and ˜Re-0.43±0.04 . Furthermore, the thermal BL thickness δθ defined based on the root-mean-square (rms) temperature profiles is found to agree with Prandtl-Blasius predictions from the scaling point of view. In addition, the probability density functions of turbulent energy ɛu' and thermal ɛθ' dissipation rates, calculated, respectively, within the viscous and thermal BLs, are found to be always non-log-normal and obey approximately a Bramwell-Holdsworth-Pinton distribution first introduced to characterize rare fluctuations in a confined turbulent flow and critical phenomena.
Gopalakrishnan, S. S.; Carballido-Landeira, J.; De Wit, A.; Knaepen, B.
2017-01-01
The relative role of convection and diffusion is characterized both numerically and experimentally for porous media flows due to a Rayleigh-Taylor instability of a horizontal interface between two miscible solutions in the gravity field. We show that, though globally convection dominates over diffusion during the nonlinear regime, diffusion can locally be as important as convection and even dominates over lateral convection far away from the fingertips. Our experimental and numerical computations of the temporal evolution of the mixing length, the width of the fingers, and their wavelength are in good agreement and show that the lateral evolution of fingers is governed by diffusion.
Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers
Hanjalić, K.; Hrebtov, M.
2016-07-01
We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.
Magnetic field generation by intermittent convection
Chertovskih, R; Chimanski, E V
2016-01-01
Magnetic field generation by convective flows in transition to weak turbulence is studied numerically. By fixing the Prandtl number at P=0.3 and varying the Rayleigh number (Ra) as a control parameter in three-dimensional Rayleigh-Benard convection of an electrically conducting fluid, a recently reported route to hyperchaos involving quasiperiodic regimes, crises and chaotic intermittent attractors is followed, and the critical magnetic Prandtl number ($P_m^c$) for dynamo action is determined as a function of Ra. A mechanism for the onset of on-off intermittency in the magnetic energy is described, the most beneficial convective regimes for dynamo action are identified, and how intermittency affects the dependence of $P_m^c$ on Ra is discussed.
Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection
G. V. Levina
2006-01-01
Full Text Available A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.
Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection
Kuehn, Kerry, K.
2008-10-28
We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii
Measured Instantaneous Viscous Boundary Layer in Turbulent Rayleigh-B\\'{e}nard Convection
Zhou, Quan
2009-01-01
We report measurements of the instantaneous viscous boundary layer (BL) thickness $\\delta_v(t)$ in turbulent Rayleigh-B\\'{e}nard convection. It is found that $\\delta_v(t)$ obtained from the measured instantaneous two-dimensional velocity field exhibits intermittent fluctuations. For small values, $\\delta_v(t)$ obeys a lognormal distribution, whereas for large values the distribution of $\\delta_v(t)$ exhibits an exponential tail. The variation of $\\delta_v(t)$ with time is found to be driven by the fluctuations of the large-scale mean flow velocity, as expected, and the local horizontal velocities close to the plate can be used as an instant measure of this variation. It is further found that the mean velocity profile measured in the laboratory frame can now be brought into coincidence with the theoretical Blasius laminar BL profile, if it is resampled relative to the time-dependent frame of $\\delta_v(t)$.
de Valença, Joeri C.; Kurniawan, Aziz; Wagterveld, R. Martijn; Wood, Jeffery A.; Lammertink, Rob G. H.
2017-03-01
We investigate the influence of buoyancy on electroconvection at an ion-exchange membrane in an aqueous electrolyte solution. Electrokinetic instabilities (EKIs) and Rayleigh-Bénard (RB) convection are both known to mix the appearing concentration gradient layer and overcome the limiting current arising from diffusional limitations. The different physics, as well as the interplay between them, are investigated by electrical, flow, and concentration characterization. In the buoyancy stable orientation, an EKI mixing layer, having a low concentration, grows till saturated size. In the buoyancy unstable orientation, RB occurs and dominates the advective transport due to the large system size. When current density i 5 ilim EKI starts before RB and hastens the onset of RB. Upon onset of RB, EKI is suppressed while the overall resistance is still decreased. The onset times of EKI and RB could be predicted using a simple diffusion-migration model based on Fick's second law.
Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection
Emran, Mohammad; Shishkina, Olga
2016-11-01
We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.
Temperature variance profiles of turbulent thermal convection at high Rayleigh numbers
He, Xiaozhou; Bodenschatz, Eberhard; Ahlers, Guenter
2016-11-01
We present measurements of the Nusselt number Nu , and of the temperature variance σ2 as a function of vertical position z, in turbulent Rayleigh-Bénard convection of two cylindrical samples with aspect ratios (diameter D/height L) Γ = 0 . 50 and 0 . 33 . Both samples had D = 1 . 12 m but different L. We used compressed SF6 gas at pressures up to 19 bars as the fluid. The measurements covered the Rayleigh-number range 1013 < Ra < 5 ×1015 at a Prandtl number Pr = 0 . 80 . Near the side wall we found that σ2 is independent of Ra when plotted as a function of z / λ where λ ≡ L / (2 Nu) is a thermal boundary-layer thickness. The profiles σ2 (z / λ) for the two Γ values overlapped and followed a logarithmic function for 20 z / λ 120 . With the observed "-1"-scaling of the temperature power spectra and on the basis of the Perry-Townsend similarity hypothesis, we derived a fitting function σ2 =p1 ln (z / λ) +p2 +p3(z / λ) - 0 . 5 which describes the σ2 data up to z / λ = 1500 . Supported by the Max Planck Society, the Volkswagenstiftung, the DFD Sonderforschungsbereich SFB963, and NSF Grant DMR11-58514.
Bounds on Heat Transport in Rapidly Rotating Rayleigh-B\\'{e}nard Convection
Grooms, Ian
2014-01-01
The heat transport in rotating Rayleigh-B\\'enard convection is considered in the limit of rapid rotation (small Ekman number $E$) and strong thermal forcing (large Rayleigh number $Ra$). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is $Ra \\lesssim E^{-8/5}$. A rigorous bound on heat transport of $Nu \\le 20.56Ra^3E^4$ is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. $Nu \\lesssim Ra^3$ is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer.
Turbulent Rayleigh-Bénard convection with polymers: Understanding how heat flux is modified
Benzi, Roberto; Ching, Emily S. C.; De Angelis, Elisabetta
2016-12-01
We study how polymers affect the heat flux in turbulent Rayleigh-Bénard convection at moderate Rayleigh numbers using direct numerical simulations with polymers of different relaxation times. We find that heat flux is enhanced by polymers and the amount of heat enhancement first increases and then decreases with the Weissenberg number, which is the ratio of the polymer relaxation time to the typical time scale of the flow. We show that this nonmonotonic behavior of the heat flux enhancement is the combined effect of the decrease in the viscous energy dissipation rate due to the viscosity of the Newtonian fluid and the increase in the energy dissipation rate due to polymers when Weissenberg number is increased. We explain why the viscous energy dissipation rate decreases with the Weissenberg number. Then by carrying out a generalized boundary layer analysis supplemented by a space-dependent effective viscosity from the numerical simulations, we provide a theoretical understanding of the change of the heat flux when the viscous energy dissipation rate is held constant. Our analysis thus provides a physical way to understand the numerical results.
The sensitivity of rotating Rayleigh-Bénard convection to the Ekman number
Plumley, Meredith; Julien, Keith; Marti, Philippe; Stellmach, Stephan; Aurnou, Jonathan; Hawkins, Emily
2016-11-01
Many geophysical and astrophysical applications of rotating Rayleigh-Bénard convection require no-slip boundaries. These boundaries lead to Ekman pumping, which has a dominant impact on the heat transport and affects the transfer of energy within the system. Here I present the 2D surface of the Nusselt number as a function of the Rayleigh number (Ra) and the Ekman number (E) for no-slip boundaries, generated through a combination of results from experiments, DNS, rescaled DNS, and asymptotic simulations. The Ra - E space is mapped from the transition of the weakly-rotating into the rotation-dominated regime (E 10-7) to lower E in the rapidly-rotating regime (E 10-11). This exploration provides insight into the sensitivity of the flow to the Ekman number, specifically the effect of the boundaries on the types and ranges of flow structures and the difference between stress-free and no-slip boundaries at low E, a regime of interest for modeling planetary interiors.
Search for the ``ultimate state" in turbulent Rayleigh-B'enard convection
Ahlers, Guenter; Funfschilling, Denis; Bodenschatz, Eberhard
2009-11-01
Measurements of the Nusselt number Nu will be reported for turbulent Rayleigh-B'enard convection of a cylindrical sample. They cover the Rayleigh-number range 10^11 Ra 2x10^15 using N2 (Pr = 0.72) and SF6 (Pr = 0.79 to 0.84) at pressures up to 19 bars and near-ambient temperatures. The sample had a height L=2.24m and diameter D = 1.12m and utilized the high-pressure vessel known as the ``Uboot of G"ottingen" at the Max Planck Institute for Dynamics and Self-Organization in G"ottingen, Germany. For Ra 4x10^13 the data yielded Nu Ra^γeff with γeff= 0.308 and did not show the transition near Ra = 10^11 to an ``ultimate regime" that was reported by Chavanne et al. At Ra = 4x10^13 there is a well defined but continuous transition to a regime where γeff is smaller than 0.30.
Using Persistent Homology to Identify Localised Defects in Rayleigh Bénard Convection
Suri, Balachandra; Tithof, Jeffrey; Schatz, Michael; Levanger, Rachel; Cyranka, Jacek; Mischaikow, Konstantin; Xu, Mu; Paul, Mark; Kramar, Miroslav
2016-11-01
Complex spatiotemporal convective roll patterns are observed when a sufficiently large temperature gradient is created across a thin layer of fluid. These roll patterns are often characterized by the presence of localised defects such as centers, spirals, disclinations, grain boundaries, which play a crucial dynamical role. Our research focuses on using persistent homology (a branch of algebraic topology) to identify these defects in an experimental realization of the Rayleigh Bénard convection in a cylindrical container. Persistent homology provides a powerful mathematical formalism in which the topological characteristics of a pattern (shadowgraph image in our case) are encoded in a so-called persistence diagram. By identifying several instants in the experiment that correspond to the appearance of a certain type of defect and computing the persistence diagrams for the corresponding shadowgraph images, we extract signatures in the persistence diagram which characterize the defect. Then, for a spatiotemporally resolved series of shadowgraph images we show that using signatures from the persistence diagrams one can automate identifying the instants when localized defects appear. NSF Grants DMS-1125302, CMMI-234436.
Wright, G. B.; Barnett, G. A.; Yuen, D. A.
2009-12-01
We present an efficient method based on fourth order compact finite-differences for simulating three dimensional mantle convection (i.e. Rayleigh-Bénard convection in the infinite Prandtl number limit) with constant viscosity in a rectangular box. In the high Rayleigh number regime, this thermal convection model has recently been shown to exhibit many of the features of turbulent flow that are typically identified with high Reynolds number flow [1]. High order compact finite schemes are known to be particularly good for simulating turbulent flows because of their spectral like resolution [2], which ameliorates dispersion and anisotropy errors. They have also been shown to be much less susceptible than second order schemes to spurious oscillations for transient convection diffusion equations at large Péclet number (as occurs for the temperature equation in the mantle convection model at high Rayleigh number). Finally, high order schemes have been shown to be more efficient than low order methods in terms of degrees of freedom required to attain a specified error level, which is important for reducing memory requirements so simulations can be performed on emerging low-cost high performance computational platforms like graphics processing units (GPUs). We demonstrate the capabilities of our compact fourth order scheme at accurately capturing such phenomena as transient periods of double layered convection[3] (see Figure 1) and flow reversals using far fewer degrees of freedom than required for traditional second order methods. Finally, we discuss the computational cost of the scheme and its efficient implementation on GPUs. References: [1] M. Breuer and U. Hansen, Turbulent convection in the zero Reynolds number limit, EPL, 86, 24004, 2009. [2] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16, 1992. [3] A. P. Boss and I. S. Sacks, Time-dependent models of single- and double-layer mantle convection, Nature, 308
Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy
Ma, Li, E-mail: mali@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Li, Jing, E-mail: lijing@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Ji, Shui, E-mail: jishui@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Chang, Huajian, E-mail: changhuajian@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)
2015-10-15
Highlights: • The facility reached high Ra number at 10{sup 12} of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra{sup 0.315} was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10{sup 5} to 6.8 × 10{sup 8} in G–D correlation and less than 10{sup 12} in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10{sup 11} for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra{sup 0.315} in the range 3.93 × 10{sup 8} < Ra < 3.57
Rayleigh-Bénard convection in binary mixtures with separation ratios near zero
Dominguez-Lerma, Marco A.; Ahlers, Guenter; Cannell, David S.
1995-12-01
We present an experimental study of convection in binary mixtures with separation ratios Ψ close to zero. Measurements of the Hopf frequency for Ψmass concentration x with high precision. These results are consistent with but more precise than earlier measurements by conventional techniques. For Ψ>0, we found that the pattern close to onset consisted of squares. Our data give the threshold of convection rc≡Rc/Rc0 (Rc is the critical Rayleigh number of the mixture and Rc0 that of the pure fluid) from measurements of the refractive-index power of the pattern as revealed by a very sensitive quantitative shadowgraph method. Over the range Ψ~0.2, these results are in good agreement with linear stability analysis. The measured refractive-index power varies by six orders of magnitude as a function of r and for r>~0.55 is in reasonable agreement with predictions based on the ten-mode Lorenz-like Galerkin truncation of Müller and Lücke [H. W. Müller and M. Lücke, Phys. Rev. A 38, 2965 (1988)]. For smaller r, the model predicts a cancellation between contributions to the refractive index from concentration and temperature variations, which does not seem to occur in the physical system. Determinations of the wave numbers of the patterns near onset are consistent with the theoretically predicted small critical wave numbers at positive Ψ. As r approaches one, we find that q approaches the critical wave number qc0~=3 of the pure fluid. (c) 1995 The American Physical Society
Kassemi, Siavash A.
1988-01-01
High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.
Brauckmann, Hannes J.; Eckhardt, Bruno; Schumacher, Jörg
2017-03-01
Rayleigh-Bénard convection and Taylor-Couette flow are two canonical flows that have many properties in common. We here compare the two flows in detail for parameter values where the Nusselt numbers, i.e. the thermal transport and the angular momentum transport normalized by the corresponding laminar values, coincide. We study turbulent Rayleigh-Bénard convection in air at Rayleigh number Ra=107 and Taylor-Couette flow at shear Reynolds number ReS=2×104 for two different mean rotation rates but the same Nusselt numbers. For individual pairwise related fields and convective currents, we compare the probability density functions normalized by the corresponding root mean square values and taken at different distances from the wall. We find one rotation number for which there is very good agreement between the mean profiles of the two corresponding quantities temperature and angular momentum. Similarly, there is good agreement between the fluctuations in temperature and velocity components. For the heat and angular momentum currents, there are differences in the fluctuations outside the boundary layers that increase with overall rotation and can be related to differences in the flow structures in the boundary layer and in the bulk. The study extends the similarities between the two flows from global quantities to local quantities and reveals the effects of rotation on the transport.
Wen, Baole
Buoyancy-driven convection in fluid-saturated porous media is a key environmental and technological process, with applications ranging from carbon dioxide storage in terrestrial aquifers to the design of compact heat exchangers. Porous medium convection is also a paradigm for forced-dissipative infinite-dimensional dynamical systems, exhibiting spatiotemporally chaotic dynamics if not "true" turbulence. The objective of this dissertation research is to quantitatively characterize the dynamics and heat transport in two-dimensional horizontal and inclined porous medium convection between isothermal plane parallel boundaries at asymptotically large values of the Rayleigh number Ra by investigating the emergent, quasi-coherent flow. This investigation employs a complement of direct numerical simulations (DNS), secondary stability and dynamical systems theory, and variational analysis. The DNS confirm the remarkable tendency for the interior flow to self-organize into closely-spaced columnar plumes at sufficiently large Ra (up to Ra ≃ 105), with more complex spatiotemporal features being confined to boundary layers near the heated and cooled walls. The relatively simple form of the interior flow motivates investigation of unstable steady and time-periodic convective states at large Ra as a function of the domain aspect ratio L. To gain insight into the development of spatiotemporally chaotic convection, the (secondary) stability of these fully nonlinear states to small-amplitude disturbances is investigated using a spatial Floquet analysis. The results indicate that there exist two distinct modes of instability at large Ra: a bulk instability mode and a wall instability mode. The former usually is excited by long-wavelength disturbances and is generally much weaker than the latter. DNS, strategically initialized to investigate the fully nonlinear evolution of the most dangerous secondary instability modes, suggest that the (long time) mean inter-plume spacing in
Effect of Plumes on Measuring the Large Scale Circulation in Turbulent Rayleigh-B\\'enard Convection
Stevens, Richard J A M; Lohse, Detlef
2011-01-01
We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-B\\'enard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a polynomial fit to the azimuthal temperature or azimuthal vertical velocity profile measured with the probes. We study the LSC in \\Gamma=D/L=1/2 and \\Gamma=1 samples, where D is the diameter and L the height. For Pr=6.4 in an aspect ratio \\Gamma=1 sample at $Ra=1\\times10^8$ and $5\\times10^8$ the obtained LSC orientation is the same, irrespective of whether the data of only 8 or all 64 probes per horizontal plane are considered. In a \\Gamma=1/2 sample with $Pr=0.7$ at $Ra=1\\times10^8$ the influence of plumes on the azimuthal temperature and azimuthal vertical velocity profiles is stronger. Due to passing plumes and/or the corner flow the apparent LSC orientation obtained using a cosine fit can result in a misinterpretati...
The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-B\\'enard convection
Kunnen, Rudie P J; Overkamp, Jim; Sun, Chao; van Heijst, GertJan F; Clercx, Herman J H
2011-01-01
When the classical Rayleigh-B\\'enard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the large scale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned vortices. Regime III (strong rotation) is characterized by suppression of the vertical velocity fluctuations. Using results from experiments and direct numerical simulations of RB convection for a cell with a diameter-to-height aspect ratio equal to one at $Ra \\sim 10^8-10^9$ ($Pr=4-6$) and $0 \\lesssim 1/Ro \\lesssim 25$ we identified the characteristics of the azimuthal temperature profiles at the sidewall in the different regimes. In regime I the azimuthal wall temperature profile shows a cosine shape and a vertical temperature gradient due to plumes that travel with the LSC close to the sidewall. In regime II and III this cosine profile disappears, but the vertical wall temperature gradient is still observed. It t...
The Göttingen rotating turbulent Rayleigh-Bénard convection facility
Bodenschatz, Eberhard; van Gils, Dennis; He, Xiaozhou; Ahlers, Guenter; International CollaborationTurbulence Research, EuHIT Collaboration
2015-11-01
This presentation will focus on the newly commissioned rotating RBC facility at the Max Planck Institute for Dynamics and Self-Organization (MPIDS). The MPIDS has a pressure vessel, called the Uboot of Göttingen, which can house different RBC cells. By pressurizing the Uboot with sulfur hexafluoride, nitrogen, or helium up to 19 bars one can obtain Rayleigh numbers spanning 109 Uboot, on top of which the current RBC cell of aspect ratio 0.50 can be installed. The accessible parameter space is 0 . 02 < Ro-1 < 20 for the inverse Rossby number and 10-8 < Ek <10-3 for the Ekman number. At strong rotation (small Ek) but still turbulently convective (large Ra) one enters the geostrophic turbulent regime. Recent experiments involve measuring in and near this regime of which preliminary results will be shown and discussed. We thank the Max Planck Society, the German Science Foundation SFB 963, the NSF grant DMR11-58514, and EuHIT for generous support.
Nandukumar, Yada
2015-01-01
We investigate oscillatory instability and routes to chaos in Rayleigh-B\\'enard convection of electrically conducting fluids in presence of external horizontal magnetic field. Three dimensional direct numerical simulations (DNS) of the governing equations are performed for the investigation. DNS shows that oscillatory instability is inhibited by the magnetic field. The supercritical Rayleigh number for the onset of oscillation is found to scale with the Chandrasekhar number $\\mathrm{Q}$ as $\\mathrm{Q}^{\\alpha}$ in DNS with $\\alpha = 1.8$ for low Prandtl numbers ($\\mathrm{Pr}$). Most interestingly, DNS shows $\\mathrm{Q}$ dependent routes to chaos for low Prandtl number fluids like mercury ($\\mathrm{Pr} = 0.025$). For low $\\mathrm{Q}$, period doubling routes are observed, while, quasiperiodic routes are observed for high $\\mathrm{Q}$. The bifurcation structure associated with $\\mathrm{Q}$ dependent routes to chaos is then understood by constructing a low dimensional model from the DNS data. The model also shows...
Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.
2016-12-01
Some numerical results for the two- and three-dimensional de Vahl Davis benchmark are presented. This benchmark describes thermal convection in a square (cubic) cavity with vertical heated walls in a wide range of Rayleigh numbers (104 to 1014), which covers both laminar and highly turbulent f lows. Turbulent f lows are usually described using a turbulence model with parameters that depend on the Rayleigh number and require adjustment. An alternative is Direct Numerical Simulation (DNS) methods, but they demand extremely large computational grids. Recently, there has been an increasing interest in DNS methods with an incomplete resolution, which, in some cases, are able to provide acceptable results without resolving Kolmogorov scales. On the basis of this approach, the so-called parameter-free computational techniques have been developed. These methods cover a wide range of Rayleigh numbers and allow computing various integral properties of heat transport on relatively coarse computational grids. In this paper, a new numerical method based on the CABARET scheme is proposed for solving the Navier-Stokes equations in the Boussinesq approximation. This technique does not involve a turbulence model or any tuning parameters and has a second-order approximation scheme in time and space on uniform and nonuniform grids with a minimal computational stencil. Testing the technique on the de Vahl Davis benchmark and a sequence of refined grids shows that the method yields integral heat f luxes with a high degree of accuracy for both laminar and highly turbulent f lows. For Rayleigh numbers up to 1014, a several percent accuracy is achieved on an extremely coarse grid consisting of 20 × 20 cells refined toward the boundary. No definite or comprehensive explanation of this computational phenomenon has been given. Cautious optimism is expressed regarding the perspectives of using the new method for thermal convection computations at low Prandtl numbers typical of liquid metals.
On the evolution of flow topology in turbulent Rayleigh-Bénard convection
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2016-11-01
Small-scale dynamics is the spirit of turbulence physics. It implicates many attributes of flow topology evolution, coherent structures, hairpin vorticity dynamics, and mechanism of the kinetic energy cascade. In this work, several dynamical aspects of the small-scale motions have been numerically studied in a framework of Rayleigh-Bénard convection (RBC). To do so, direct numerical simulations have been carried out at two Rayleigh numbers Ra = 108 and 1010, inside an air-filled rectangular cell of aspect ratio unity and π span-wise open-ended distance. As a main feature, the average rate of the invariants of the velocity gradient tensor (QG, RG) has displayed the so-called "teardrop" spiraling shape through the bulk region. Therein, the mean trajectories are swirling inwards revealing a periodic spin around the converging origin of a constant period that is found to be proportional to the plumes lifetime. This suggests that the thermal plumes participate in the coherent large-scale circulation and the turbulent wind created in the bulk. Particularly, it happens when the plumes elongate substantially to contribute to the large-scale eddies at the lower turbulent state. Supplementary small-scale properties, which are widely common in many turbulent flows have been observed in RBC. For example, the strong preferential alignment of vorticity with the intermediate eigenstrain vector, and the asymmetric alignment between vorticity and the vortex-stretching vector. It has been deduced that in a hard turbulent flow regime, local self-amplifications of straining regions aid in contracting the vorticity worms, and enhance the local interactions vorticity/strain to support the linear vortex-stretching contributions. On the other hand, the evolution of invariants pertained to the traceless part of velocity-times-temperature gradient tensor has also been considered in order to determine the role of thermals in the fine-scale dynamics. These new invariants show an
Heat-transport enhancement in rotating turbulent Rayleigh-Bénard convection
Weiss, Stephan; Wei, Ping; Ahlers, Guenter
2016-04-01
We present new Nusselt-number (Nu) measurements for slowly rotating turbulent thermal convection in cylindrical samples with aspect ratio Γ =1.00 and provide a comprehensive correlation of all available data for that Γ . In the experiment compressed gasses (nitrogen and sulfur hexafluride) as well as the fluorocarbon C6F14 (3M Fluorinert FC72) and isopropanol were used as the convecting fluids. The data span the Prandtl-number (Pr) range 0.74
The Spectral Amplitude of Stellar Convection and its Scaling in the High-Rayleigh-Number Regime
Featherstone, Nicholas A
2015-01-01
Convection plays a central role in the dynamics of any stellar interior, and yet its operation remains largely-hidden from direct observation. As a result, much of our understanding concerning stellar convection necessarily derives from theoretical and computational models. The Sun is, however, exceptional in that regard. The wealth of observational data afforded by its proximity provides a unique testbed for comparing convection models against observations. When such comparisons are carried out, surprising inconsistencies between those models and observations become apparent. Both photospheric and helioseismic measurements suggest that convection simulations may overestimate convective flow speeds on large spatial scales. Moreover, many solar convection simulations have difficulty reproducing the observed solar differential rotation due to this apparent overestimation. We present a series of 3-dimensional (3-D) stellar convection simulations designed to examine how the amplitude and spectral distribution of ...
Spatial correlation of temperature in turbulent Rayleigh-Bénard convection.
Haramina, T; Tilgner, A
2006-12-01
A cubic Rayleigh-Bénard cell is operated at a Rayleigh number of 1.5x10(9) and a Prandtl number of 6.1. The cell is equipped with thermistors placed along the vertical line through the center of the cell. The spatial correlation of temperature is deduced from simultaneous temperature recordings from these thermistors. The correlation function is well fitted by the sum of two exponentials. There is no cascade in the temperature field as only two characteristic length scales appear. The direct measurement of spatial correlations allows us to test the validity of Taylor's hypothesis in this flow.
Influence of inlet and bulk noise on Rayleigh-Bénard convection with lateral flow.
Jung, D; Lücke, M; Szprynger, A
2001-05-01
Spatiotemporal properties of convective fluctuations and of their correlations are investigated theoretically in the vicinity of the threshold for onset of convection in the presence of a lateral through-flow using the full linearized equations of fluctuating hydrodynamics. The effect of external forcing by inlet boundary conditions on the downstream evolution of convective fields is separated from the effect of internal bulk thermal forcing with the use of spatial Laplace transformations. They show how the spatial variation of fluctuations and of their correlations are governed by the six spatial characteristic exponents of the field equations.
Thermal boundary layer profiles in turbulent Rayleigh-B\\'enard convection in a cylindrical sample
Stevens, Richard J A M; Grossmann, Siegfried; Verzicco, Roberto; Xia, Ke-Qing; Lohse, Detlef
2011-01-01
We numerically investigate the structures of the near-plate temperature profiles close to the bottom and top plates of turbulent Rayleigh-B\\'{e}nard flow in a cylindrical sample at Rayleigh numbers $Ra=10^8$ to $Ra=2\\times10^{12}$ and Prandtl numbers Pr=6.4 and Pr=0.7 thus extending previous results for quasi-2-dimensional systems to 3D systems for the first time. The results show that the instantaneous temperature profiles scaled by the dynamical frame method [Q. Zhou and K.-Q. Xia, Phys. Rev. Lett. 104, 104301 (2010)] agree well with the classical Prandtl-Blasius laminar boundary layer (BL) profiles, especially for low Ra and high Pr. The agreement is slightly less, but still good, for lower Pr, where the thermal BL is more exposed to the bulk fluctuations due to the thinner kinetic BL, and higher Ra, where more plumes are passing the measurement location.
The onset of nonpenetrative convection in a suddenly cooled layer of fluid
Ihle, Christian F. [Program in Fluid Dynamics, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Blanco Encalada 2002 Of. 327, Santiago (Chile); Nino, Yarko [Departamento de Ingenieria Civil, Division de Recursos Hidricos y Medio Ambiente, Universidad de Chile, Av. Blanco Encalada 2002, Santiago (Chile)
2006-04-15
Conditions for the onset of nonpenetrative convection in a horizontal Boussinesq fluid layer subject to a step change in temperature are studied using propagation theory. A wide range of Prandtl numbers and two different kinematic boundary conditions are considered. It is shown that for high Rayleigh numbers, critical conditions for the onset of convective motion reproduce exactly those for the unsteady Rayleigh-Benard instability. Present results extend those of previous research and show a tendency of the rigid-rigid and free-rigid critical curves to converge for low Prandtl numbers. Comparison between present and previously reported results on critical conditions for the onset of instabilities and onset time using different methods yields good agreement on a middle to high Prandtl number range. A ratio of 10 between experimentally measured and theoretically predicted onset times is suggested for stress-free bounded systems. (author)
Zhou, Quan; Lu, Zhi-Ming; Liu, Yu-Lu
2010-01-01
We report an experimental investigation of the longitudinal space-time cross-correlation function of the velocity field, $C(r,\\tau)$, in a cylindrical turbulent Rayleigh-B\\'{e}nard convection cell using the particle image velocimetry (PIV) technique. We show that while the Taylor's frozen-flow hypothesis does not hold in turbulent thermal convection, the recent elliptic model advanced for turbulent shear flows [He & Zhang, \\emph{Phys. Rev. E} \\textbf{73}, 055303(R) (2006)] is valid for the present velocity field for all over the cell, i.e., the isocorrelation contours of the measured $C(r,\\tau)$ have a shape of elliptical curves and hence $C(r,\\tau)$ can be related to $C(r_E,0)$ via $r_E^2=(r-\\beta\\tau)^2+\\gamma^2\\tau^2$ with $\\beta$ and $\\gamma$ being two characteristic velocities. We further show that the fitted $\\beta$ is proportional to the mean velocity of the flow, but the values of $\\gamma$ are larger than the theoretical predictions. Specifically, we focus on two representative regions in the cell...
Analysis of Solidification in the Presence of High Rayleigh Number Convection in an Enclosure
无
1994-01-01
A simple and convenient analysis of the process of time-dependent solidification in an enclosed liquid cooled from the side in the presence of natural convection is presented.the influence of each parameter on the process of solidification is carried out systematically,The accuracy of this model is justified by comparing its predicting values with the previous results.
Homoclinic bifurcations in low-Prandtl-number Rayleigh-B\\'{e}nard convection with uniform rotation
Maity, P; Pal, P
2014-01-01
We present results of direct numerical simulations on homoclinic gluing and ungluing bifurcations in low-Prandtl-number ($ 0 \\leq Pr \\leq 0.025 $) Rayleigh-B\\'{e}nard system rotating slowly and uniformly about a vertical axis. We have performed simulations with \\textit{stress-free} top and bottom boundaries for several values of Taylor number ($5 \\leq Ta \\leq 50$) near the instability onset. We observe a single homoclinic ungluing bifurcation, marked by the spontaneous breaking of a larger limit cycle into two limit cycles with the variation of the reduced Rayleigh number $r$ for smaller values of $Ta (< 25)$. A pair of homoclinic bifurcations, instead of one bifurcation, is observed with variation of $r$ for slightly higher values of $Ta$ ($25 \\leq Ta \\leq 50$) in the same fluid dynamical system. The variation of the bifurcation threshold with $Ta$ is also investigated. We have also constructed a low-dimensional model which qualitatively captures the dynamics of the system near the homoclinic bifurcations...
Mixed insulating and conducting boundary conditions in Rayleigh-Bénard convection
Bakhuis, Dennis; Ostilla Mónico, Rodolfo; van der Poel, Erwin; Verzicco, Roberto; Lohse, Detlef
2015-11-01
We report the results of 3D direct numerical simulations of a rectangular doubly periodic Rayleigh-Bénard system. These results are an extension of earlier 2D work by Ripesi et al. (Journal of Fluid Mechanics 742, 636, 2014). The Rayleigh number is between 107 and 109 and the Prandtl number is set to unity. The bottom plate is homogeneously heated and the cold top plate of this setup has been split into conducting and insulating regions. While keeping both areas equal the pattern has been varied and multiple characteristics like the Nusselt number and bulk temperature have been recorded. When the top plate was divided into one conducting and insulating halves, we see that the Nusselt number is about two thirds of the fully conducting case. However, when we now increase the number of divisions, the Nusselt number slowly approaches that of the fully conducting case. This is a surprising result, as even though only half of the effective area can conduct heat, the same heat transport as a fully conducting cold plate is achieved.
Arabi, Pouria; Jafarpur, Khosrow
2016-08-01
In the present study, effect of different flow regimes on free convection heat transfer has been examined. In the light of this, a novel analytical method is developed to calculate free convection heat transfer from isothermal convex bodies with arbitrary shape over all range of Rayleigh number in fluids with any Prandtl number. The crux of this method is based on the concept of dynamic behaviors existing in natural convection flow. In the previous models the Body Gravity Function (BGF) and Turbulent Function (TF) have been taken as constant values. In this study, BGF accounts for the effect of body shape and orientation with respect to gravity vector in laminar free convection. Besides, TF accounts for the impact of Prandtl number, body shape and orientation with regard to gravity vector in turbulent free convection. By contrast, it is shown that these two parameters undergo a change through the variation of Rayleigh number and cannot be considered as a constant. These two parameters are modeled based upon the thermal resistance concept. Moreover, two transition criteria happening in free convection heat transfer will be obtained according to this new analytical method (conduction-laminar and laminar-turbulent transitions). Finally, three models (models 1, 2 and 3) are proposed for calculation free convection heat transfer and present results for ten isothermal convex bodies with various aspect ratios (0.298 ≤ √ A /P ≤ 2.470) have been compared with the available experimental and numerical data. Here, the results of model 2 are almost equal to those of model 3. Also, the results of model 1 are more precise than those of model 3 while the parameters computation of model 1 is more intricate in comparison with model 3. On the one hand, the model 1 has an average difference <6 % vis-à-vis numerical data in entire range of Rayleigh number (laminar and turbulent). On the other hand, the average difference of model 1 is not more than 8 % versus experimental data
He, Xiaozhou; van Gils, Dennis P M; Bodenschatz, Eberhard; Ahlers, Guenter
2014-05-02
We report measurements of the temperature variance σ(2)(z,r) and frequency power spectrum P(f,z,r) (z is the distance from the sample bottom and r the radial coordinate) in turbulent Rayleigh-Bénard convection (RBC) for Rayleigh numbers Ra = 1.6 × 10(13) and 1.1 × 10(15) and for a Prandtl number Pr ≃ 0.8 for a sample with a height L = 224 cm and aspect ratio D/L=0.50 (D is the diameter). For z/L ≲ 0.1 σ(2)(z,r) was consistent with a logarithmic dependence on z, and there was a universal (independent of Ra, r, and z) normalized spectrum which, for 0.02 ≲ fτ(0) ≲ 0.2, had the form P(fτ(0)) = P(0)(fτ(0))(-1) with P(0) = 0.208 ± 0.008 a universal constant. Here τ(0) = sqrt[2R] where R is the radius of curvature of the temperature autocorrelation function C(τ) at τ = 0. For z/L ≃ 0.5 the measurements yielded P(fτ(0))∼(fτ(0))(-α) with α in the range from 3/2 to 5/3. All the results are similar to those for velocity fluctuations in shear flows at sufficiently large Reynolds numbers, suggesting the possibility of an analogy between the flows that is yet to be determined in detail.
Test of steady-state fluctuation theorem in turbulent Rayleigh-Bénard convection
Shang, X.-D.; Tong, P.; Xia, K.-Q.
2005-07-01
The local entropy production rate σ(r,t) in turbulent thermal convection is obtained from simultaneous velocity and temperature measurements in an aspect-ratio-one cell filled with water. The statistical properties of the time-averaged σ(r,t) are analyzed and the results are compared with the predictions of the steady-state fluctuation theorem (SSFT) of Gallavotti and Cohen. The experiment reveals that the SSFT can indeed be extended to the local variables, but further development is needed in order to incorporate the common dynamic complexities of far-from-equilibrium systems into the theory.
Scaling of large-scale quantities in Rayleigh-B\\'enard convection
Pandey, Ambrish
2016-01-01
We derive a formula for the P\\'eclet number ($\\mathrm{Pe}$) by estimating the relative strengths of various terms of the momentum equation. Using direct numerical simulations in three dimensions we show that in the turbulent regime, the fluid acceleration is dominated by the pressure gradient, with relatively small contributions arising from the buoyancy and the viscous term, in the viscous regime, acceleration is very small due to a balance between the buoyancy and the viscous term. Our formula for $\\mathrm{Pe}$ describes the past experiments and numerical data quite well. We also show that the ratio of the nonlinear term and the viscous term is $\\mathrm{Re} \\mathrm{Ra}^{-0.14}$, where $\\mathrm{Re}$ and $\\mathrm{Ra}$ are Reynolds and Rayleigh numbers respectively, and that the viscous dissipation rate $\\epsilon_u = (U^3/d) \\mathrm{Ra}^{-0.21}$, where $U$ is the root mean square velocity and $d$ is the distance between the two horizontal plates. The aforementioned decrease in nonlinearity compared to free tur...
Cheng, Jian-Ping; Zhang, Hong-Na; Cai, Wei-Hua; Li, Si-Ning; Li, Feng-Chen
2017-07-01
The present paper presents direct numerical simulations of Rayleigh-Bénard convection (RBC) in an enclosed cell filled with the polymer solution in order to investigate the viscoelastic effect on the characteristics of heat transport and large-scale circulation (LSC) of RBC. To overcome the difficulties in numerically solving a high Weissenberg number (Wi) problem of viscoelastic fluid flow with strong elastic effect, the log-conformation reformulation method was implemented. Numerical results showed that the addition of polymers reduced the heat flux and the amount of heat transfer reduction (HTR) behaves nonmonotonically, which firstly increases but then decreases with Wi. The maximum HTR reaches around 8.7 % at the critical Wi. The nonmonotonic behavior of HTR as a function of Wi was then corroborated with the modifications of the period of LSC and turbulent energy as well as viscous boundary layer thickness. Finally, a standard turbulent kinetic energy (TKE) budget analysis was done for the whole domain, the boundary layer region, and the bulk region. It showed that the role change of elastic stress contributions to TKE is mainly responsible for this nonmonotonic behavior of HTR.
Weiss, Stephan; Zhong, Jin-Qiang; Clercx, Herman J H; Lohse, Detlef; Ahlers, Guenter; 10.1103/PhysRevLett.105.224501
2011-01-01
In turbulent thermal convection in cylindrical samples of aspect ratio \\Gamma = D/L (D is the diameter and L the height) the Nusselt number Nu is enhanced when the sample is rotated about its vertical axis, because of the formation of Ekman vortices that extract additional fluid out of thermal boundary layers at the top and bottom. We show from experiments and direct numerical simulations that the enhancement occurs only above a bifurcation point at a critical inverse Rossby number $1/\\Ro_c$, with $1/\\Ro_c \\propto 1/\\Gamma$. We present a Ginzburg-Landau like model that explains the existence of a bifurcation at finite $1/\\Ro_c$ as a finite-size effect. The model yields the proportionality between $1/\\Ro_c$ and $1/\\Gamma$ and is consistent with several other measured or computed system properties.
Test of the steady-state fluctuation theorem in turbulent Rayleigh-B'enard convection
Tong, Penger; Shang, Xiaodong
2005-11-01
Local entropy production rate σ(r,t) in turbulent thermal convection is obtained from simultaneous velocity and temperature measurements in an aspect-ratio-one cell filled with water. The statistical properties of the time-averaged σ(r,t) are analyzed and the results are compared with the predictions of the steady state fluctuation theorem (SSFT) of Gallavotti and Cohen. The experiment reveals that the SSFT can indeed be extended to the local variables, but further development is needed in order to incorporate the common dynamic complexities of far-from-equilibrium systems into the theory. *Work supported by the Research Grants Council of Hong Kong SAR under Grant Nos. HKUST603504 (P.T.) and CUHK403003 (K.Q.X.).
Rayleigh-Bénard convection in a homeotropically aligned nematic liquid crystal
Thomas, L; Ahlers, G; Thomas, Leif; Pesch, Werner; Ahlers, Guenter
1998-01-01
We report experimental results for convection near onset in a thin layer of a homeotropically aligned nematic liquid crystal heated from below as a function of the temperature difference $\\Delta T$ and the applied vertical magnetic field $H$ and compare them with theoretical calculations. The experiments cover the field range $8 \\alt h \\equiv H/ H_{F} \\alt 80$ ($H_F =$ is the Fréedericksz field). For $h$ less than a codimension-two field $h_{ct} \\simeq 46$ the bifurcation is subcritical and oscillatory, with travelling- and standing-wave transients. Beyond $h_{ct}$ the bifurcation is stationary and subcritical until a tricritical field $h_t= 57.2$ is reached, beyond which it is supercritical. The bifurcation sequence as a function of $h$ found in the experiment confirms the qualitative aspects of the theoretical predictions. However, the value of $h_{ct}$ is about 10% higher than the predicted value and the results for $k_c$ are systematically below the theory by about 2% at small $h$ and by as much as 7% ne...
van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef
2014-07-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.
M. Wolstencroft
2011-12-01
Full Text Available We investigate the influence on mantle convection of the negative Clapeyron slope ringwoodite to perovskite and ferro-periclase mantle phase transition, which is correlated with the seismic discontinuity at 660 km depth. In particular, we focus on understanding the influence of the magnitude of the Clapeyron slope (as measured by the Phase Buoyancy parameter, P and the vigour of convection (as measured by the Rayleigh number, Ra on mantle convection. We have undertaken 76 simulations of isoviscous mantle convection in spherical geometry, varying Ra and P. Three domains of behaviour were found: layered convection for high Ra and more negative P, whole mantle convection for low Ra and less negative P, and transitional behaviour in an intervening domain. The boundary between the layered and transitional domain was fit by a curve P = α Ra^{β} where α = −1.05, and β = −0.1, and the fit for the boundary between the transitional and whole mantle convection domain was α = −4.8, and β = −0.25. These two curves converge at Ra ≈ 2.5 × 10^{4} (well below Earth mantle vigour and P ≈ −0.38. Extrapolating to high Ra, which is likely earlier in Earth history, this work suggests a large transitional domain. It is therefore likely that convection in the Archean would have been influenced by this phase change, with Earth being at least in the transitional domain, if not the layered domain.
M. Wolstencroft
2011-08-01
Full Text Available We investigate the influence on mantle convection of the negative Clapeyron slope ringwoodite to perovskite and ferro-periclase mantle phase transition, which is correlated with the seismic discontinuity at 660 km depth. In particular, we focus on understanding the influence of the magnitude of the Clapeyron slope (as measured by the Phase Buoyancy parameter, P and the vigour of convection (as measured by the Rayleigh number, Ra on mantle convection. We have undertaken 76 simulations of isoviscous mantle convection in spherical geometry varying Ra and P. Three domains of behaviour were found: layered convection for high Ra and more negative P, whole mantle convection for low Ra and less negative P and transitional behaviour in an intervening domain. The boundary between the layered and transitional domain was fit by a curve P = αRa^{β} where α = −1.05, and β = −0.1, and the fit for the boundary between the transitional and whole mantle convection domain was α = −4.8, and β = −0.25. These two curves converge at Ra≈2.5×10^{4} and P≈−0.38. Extrapolating to high Ra, which is likely earlier in Earth history, this work suggests a large transitional domain. It is therefore likely that convection in the Archean would have been influenced by this phase change, with Earth being at least in the transitional domain, if not the layered domain.
Global and local statistics in turbulent convection at low Prandtl numbers
Scheel, Janet D
2016-01-01
Statistical properties of turbulent Rayleigh-Benard convection at low Prandtl numbers (Pr), which are typical for liquid metals such as mercury, gallium or liquid sodium, are investigated in high-resolution three-dimensional spectral element simulations in a closed cylindrical cell with an aspect ratio of one and are compared to previous turbulent convection simulations in air. We compare the scaling of global momentum and heat transfer. The scaling exponents are found to be in agreement with experiments. Mean profiles of the root-mean-square velocity as well as the thermal and kinetic energy dissipation rates have growing amplitudes with decreasing Prandtl number which underlies a more vigorous bulk turbulence in the low-Pr regime. The skin-friction coefficient displays a Reynolds-number dependence that is close to that of an isothermal, intermittently turbulent velocity boundary layer. The thermal boundary layer thicknesses are larger as Pr decreases and conversely the velocity boundary layer thicknesses be...
Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection
Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F
2015-01-01
We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...
Sakievich, Philip; Peet, Yulia; Adrian, Ronald
2016-11-01
At high Rayleigh numbers in moderate aspect-ratio cylindrical domains turbulent Rayleigh-Bénard convection (RBC) exhibits coherent large-scale motions with patterns like some of those found in laminar flow. In this work we show how the patterns of the largest scales in turbulent RBC affect the bias and convergence of the flow statistics at aspect-ratio 6.3 (diameter/ height). Large scale motions influence two of the finite-time statistical mean's inherent properties: 1) the orientation of the patterns changes so slowly that it may appear almost fixed during a finite averaging time interval, thereby imbedding a preferred azimuthal direction in the sampled data; 2) they also have at least two states associated with the occurrence of up and down motions near the center of the convection cell. We will present a novel technique for triggering additional states of RBC in DNS simulations that are targeted for improving the statistical convergence of the flow. This technique gently perturbs the flow so that the new variations of the large scale patterns can be sampled. Funding through U. S. National Science Foundation Grants CBET-1335731, CMMI-1250124 and XSEDE research allocation TG-CTS150039.
Oscillatory Instability in a Two-Fluid Benard Problem.
1984-04-01
1963-A ( MRC Technical Summary Report #2681 OSCILLATORY INSTABILITY IN Ar TWO-FLUID BENARD PROBLEM CV Yuriko Renardy and Daniel D. Joseph 4.o...MATHEMATICS RESEARCH CENTER OSCILLATORY INSTABILITY IN A TWO-FLUID BENARD PROBLEM Yuriko Renardy I and Daniel D. Joseph * ’ 2 Technical Summary Report #2681...C. ° * .* * .* • * . -t . . . . .. . . . " -".- ." . o ,- OSCILLATORY INSTABILITY IN A WO-FLUID BENARD PROBLEM Yuriko RenardyI and Daniel D
van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef
2015-01-01
The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...
Urban, Pavel; Hanzelka, Pavel; Musilová, Věra; Králík, Tomáš; La Mantia, Marco; Srnka, Aleš; Skrbek, Ladislav
2014-05-01
We present experimental results on the heat transfer efficiency of cryogenic turbulent Rayleigh-Bénard convection (RBC) in a cylindrical cell 0.3 m in both diameter and height which has improvements with respect to various corrections connected with finite thermal conductivity of sidewalls and plates. The heat transfer efficiency described by the Nusselt number {\\rm{Nu}}={\\rm{Nu}}({\\rm{Ra}},Pr ) is investigated for the range of Rayleigh number {{10}^{6}}account. In contrast, if the mean temperature is determined as an arithmetic mean of the bottom and top plate temperatures, {\\rm{Nu}}({\\rm{Ra}})\\propto {\\rm{R}}{{{\\rm{a}}}^{\\gamma }} displays spurious crossover to higher γ that might be misinterpreted as a transition to the ultimate Kraichnan regime. The second step of our analysis, reported here for the first time, is to ignore the NOB effects affecting the top half of the RBC cell. We replace it by the inverted nearly OB bottom half in order to eliminate the boundary layer asymmetry. This leads to the effective temperature difference \\Delta {{T}_{{\\rm{eff}}}}=2({{T}_{{\\rm{b}}}}-{{T}_{{\\rm{c}}}}), where {{T}_{{\\rm{b}}}} denotes the bottom plate temperature, and to effective {\\rm{N}}{{{\\rm{u}}}_{{\\rm{eff}}}} and {\\rm{R}}{{{\\rm{a}}}_{{\\rm{eff}}}} values. The effective heat transfer efficiency obtained, showing no tendency of crossover to the ultimate regime up to 2\\times {{10}^{15}} in {\\rm{R}}{{{\\rm{a}}}_{{\\rm{eff}}}}, is reported and discussed.
Direct numerical simulation and statistical analysis of turbulent convection in lead-bismuth
Otic, I.; Grotzbach, G. [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern-und Energietechnik (Germany)
2003-07-01
Improved turbulent heat flux models are required to develop and analyze the reactor concept of an lead-bismuth cooled Accelerator-Driven-System. Because of specific properties of many liquid metals we have still no sensors for accurate measurements of the high frequency velocity fluctuations. So, the development of the turbulent heat transfer models which are required in our CFD (computational fluid dynamics) tools needs also data from direct numerical simulations of turbulent flows. We use new simulation results for the model problem of Rayleigh-Benard convection to show some peculiarities of the turbulent natural convection in lead-bismuth (Pr = 0.025). Simulations for this flow at sufficiently large turbulence levels became only recently feasible because this flow requires the resolution of very small velocity scales with the need for recording long-wave structures for the slow changes in the convective temperature field. The results are analyzed regarding the principle convection and heat transfer features. They are also used to perform statistical analysis to show that the currently available modeling is indeed not adequate for these fluids. Basing on the knowledge of the details of the statistical features of turbulence in this convection type and using the two-point correlation technique, a proposal for an improved statistical turbulence model is developed which is expected to account better for the peculiarities of the heat transfer in the turbulent convection in low Prandtl number fluids. (authors)
Studying Vortex Dynamics of Rotating Convection with High-resolution PIV Measurement
Fu, Hao; Sun, Shiwei; Wang, Yu; Zhou, Bowen; Wang, Yuan
2016-11-01
A novel experimental setup for studying vortex dynamics in rotating Rayleigh-Benard convection has been made in School of Atmospheric Sciences, Nanjing University. With water as the working fluid, three lasers with different frequencies and the corresponding three CCDs have been placed to complete 2D2C (two dimensions, two components) PIV measurement. The lasers are fixed on two crossing guiding ways and can move up and down to scan the flow field. An algorithm has been made to reconstruct 3D velocity field based on multiple 2D2C PIV data. This time, we are going to present the details of this new machine and algorithm, as well as some scientific understanding of vortex dynamics owing to this high-resolution velocity measurement system. This work was supported by "LMSWE Lab Funding No. 14380001".
Verdoold, J.
2010-01-01
This dissertation focuses on turbulent thermal convection, which occurs in a wide range of (geo)physical situations, like in the atmosphere, the oceans, the interior of stars or planets, and engineering applications, like metal casting or crystal growth processes. In this work, a special type of th
Bouteraa, Mondher; Nouar, Chérif
2015-12-01
Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates of finite thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach to investigate nonlinear effects. The rheological behavior of the fluid is described by the Carreau model. As a first step, the critical conditions for the onset of convection are computed as a function of the ratio ξ of the thermal conductivity of the plates to the thermal conductivity of the fluid. In agreement with the literature, the critical Rayleigh number Ra(c) and the critical wave number k(c) decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from infinity to zero. In the second step, the critical value α(c) of the shear-thinning degree above which the bifurcation becomes subcritical is determined. It is shown that α(c) increases with decreasing ξ. The stability of rolls and squares is then investigated as a function of ξ and the rheological parameters. The limit value ξ(c), below which squares are stable, decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [M. Bouteraa et al., J. Fluid Mech. 767, 696 (2015)]. For a significant deviation from the critical conditions, nonlinear convection terms and nonlinear viscous terms become stronger, leading to a further diminution of ξ(c). The dependency of the heat transfer on ξ and the rheological parameters is reported. It is consistent with the maximum heat transfer principle. Finally, the flow structure and the viscosity field are represented for weakly and highly conducting plates.
Interfacial Stability in a Two-Layer Benard Problem.
1985-04-01
STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy Technical Summary Report #2814 April 1985 I cti- Work Unit Number 2 - Physical Mathematics...34•"• -••’-’• ^ ••’••• VI , •• W -•- • •- ’•"• INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy I. INTRODUCTION Two layers of fluids are...Subtltl») INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM 7. AUTMORf.; Yuriko Renardy »• PERFORMING ORGANIZATION NAME AND ADDRESS
Parker, E. N.
1987-01-01
The dynamics of thermal shadows which develop in the convective zone of a star around an insulating obstacle such as a horizontal band in intense magnetic field are studied. The depth of the shadow on the cool side of the obstacle is found to depend largely on the width of the obstacle multiplied by the temperature gradient. Thermal shadows pressing fields up to 10,000 G downward against the bottom of the convective zone are produced by the broad bands of the azimuthal field in the sun's convective zone. In the third part, the time-dependent accumulation of heat beneath a thermal barrier simulating such a band in the lower convective zone of the sun is considered. The resulting Rayleigh-Taylor instability is shown to cause tongues of heated gas to penetrate upward through the field, providing the emerging magnetic fields that give rise to the activity of the sun.
Steady convection in MHD Benard problem with Hall effects
Lidia Palese
2017-10-01
Full Text Available In this paper we apply some variants of the classical energy method to study the nonlinear Lyapunov stability of the thermodiffusive equilibrium for a viscous thermoelectroconducting fully ionized fluid in a horizontal layer heated from below. The classical L^2 norm, too weak to highlight some stabilizing or unstabilizing effects, can be used to dominate the nonlinear terms. A more fine Lyapunov function is obtained by reformulating the initial perturbation evolution problem, in terms of some independent scalar fields. In such a way, if the principle of exchange of stabilities holds, we obtain the coincidence of linear and nonlinear stability bounds.
1987-01-01
studies, in general, have been much more limited. This thesis concentrates on the high Rayleigh number/small- gap flow regime. It has been found that...just prior to it. Analytical approaches, especially with regard to the high Rayleigh number/small- gap flow regime, have been virtually unexplored. To
Gibert, M
2007-10-15
In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)
Maki, Syou; Tanaka, Keito; Morimoto, Shotaro
2017-02-01
We examined, by three-dimensional numerical computations, the magnetothermal convection of air (a paramagnetic substance) enclosed in a cylindrical vessel with a Rayleigh-Benard model under the application of an axisymmetric magnetic force at the center of a solenoidal superconducting magnet. Axisymmetric steady convective flows were induced when the magnitude of the radial component of the magnetic force (fmR) was 1.0 and 5.0 times that of the gravitational force at the vessel sidewall; e.g., the hot air was concentrated at the vessel center and the cold air was driven to the vicinity of the vessel sidewall. This flow pattern was similar to the case of water (a diamagnetic substance), although the axisymmetric arrangements of hot and cold water were the reverse of the present convection of air. When fmR was 0.5 times that of the gravitational force, the axisymmetric flows appeared only in the vicinity of the vessel sidewall. Unsteady convective rolls simultaneously occurred in the vessel center, and they repeatedly combined and separated from each other. When fmR was 0.1 times that of the gravitational force, there were barely any axisymmetric flows in the close vicinity of the vessel sidewall, while the initial convective flows remained in most other parts of the vessel. Thus, we varied the magnitude of fmR and clarified the transitional processes of isothermal and velocity distributions of magnetothermal convection. We discuss those convective flows with the magnitude and direction of fmR.
戴传山; 王珏
2015-01-01
采用铂丝自测流体温度的实验方法，利用50×10−6 m2·s−1硅油对低Rayleigh数下水平与竖直热线外自然对流传热的机理进行了研究，对比实验测得的实验数据和Tsubouchi、Fand的实验数据发现，实验结果与Tsubouchi的拟合曲线吻合度较高，低Ra下水平热线外的Nu高于竖直热线，但均远高于数值模拟的预测值。为了解释该现象，进行了低振动Re下的自然对流数值模拟，发现在低于某一振动Re下，Nu将与Re无关，但此时Nu与实验测的Nu基本一致，与Tsubouchi的数据偏差也在5%以内，说明微尺度铂丝外自然对流可能存在振动的作用机理。%The mechanism of natural convection around horizontal and vertical heated microwires in silicon oil is studied by using the wire itself for temperature measurement. The comparison between present measured Nusselt numbers and those in literature shows that the present data agreed better with those of Tsubouchi than those of Fand. The horizontal microwire presents a larger Nu than the vertical one at low Rayleigh number. However, all of these experimental Nu are much larger than the numerically simulated values. In order to give a theoretical explanation on this phenomenon, heated microwire with weak vibration was used in the numerical simulations. The simulated Nu shows a perfect match with the measured data and are in agreement with the correlation of Tsubouchi with a deviation less than 5%. Therefore, an enhanced heat transfer mode due to weak wire vibration is proposed, to fill the gap between simulated and experimental results.
The scaling transition between Nu number and boundary thickness in RB convection
Zou, Hong-Yue; Chen, Xi; She, Zhen-Su
2016-11-01
A quantitative theory is developed for the vertical mean temperature profile (MTP) and mean velocity profile (MVP) in turbulent Rayleigh-Benard convection(RBC), which explains the experimental and numerical observations of logarithmic law in MTP and the coefficient A varying along the Ra. Based on a new mean-field approach via symmetry analysis to wall-bounded turbulent flows it yields accurate scaling of the sub-layer buffer layer and log-layer over a wide range of Rayleigh number and gives an explanation of their physical mechanism. In particular, based on the scaling of multi-layer thickness for mean temperature and velocity, we first prove that the coefficient A follows a -0.121 scaling, which agrees well with the experimental data, and the scaling transition of Nu from 1/3 to 0.38 is due to the thickness variation of the multi-layer. The new explanation of mean temperature logarithmic law is that the effect of inverse pressure gradient (LSC) driving the plume to side wall, which yields the similarity between vertical temperature transport and vertical momentum.
Thomas, L P; Marino, B M [Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pinto 399, B 7000 GHG Tandil (Argentina); Tovar, R; Castillo, J A, E-mail: lthomas@exa.unicen.edu.ar [Centro de Investigacion en EnergIa, Universidad Nacional Autonoma de Mexico Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos (Mexico)
2011-05-01
The flow generated by a linear heat source inside a thermally insulated box with the upper boundary maintained at constant temperature is analyzed by means of a series of experiments. The attention is focused on the steady state during which the heat provided by the source is absorbed by the upper boundary giving place to a particular convective process in two well defined zones. One of them occupies most part of the box from the lower boundary and is characterized by a turbulent convective flow; the other is the thermal boundary layer developed below the cooled top contour where strong fluctuations are detected. Special interest is found in the analogies with the results obtained employing a configuration similar to that used to research the Rayleigh-Benard convection with lower and upper boundaries at constant temperatures but without internal sources. This study has particular relevance to understanding and predicting the use of the cooled-ceiling systems in buildings as a passive solution to enhance the comfort of its inhabitants during hot days with the consequential energy savings.
Dynamics and flow-coupling in two-layer turbulent thermal convection
Xie, Yi-Chao
2015-01-01
We present an experimental investigation of the dynamics and flow-coupling of convective turbulent flows in a cylindrical Rayleigh-Benard convection cell with two immiscible fluids, water and fluorinert FC-77 electronic liquid (FC77). It is found that one large-scale circulation (LSC) roll exists in each of the fluid layers, and that their circulation planes have two preferred azimuthal orientations separated by $\\sim\\pi$. A surprising finding of the study is that cessations/reversals of the LSC in FC77 of the two-layer system occur much more frequently than they do in single-layer turbulent RBC, and that a cessation is most likely to result in a flow reversal of the LSC, which is in sharp contrast with the uniform distribution of the orientational angular change of the LSC before and after cessations in single-layer turbulent RBC. This implies that the dynamics governing cessations and reversals in the two systems are very different. Two coupling modes, thermal coupling (flow directions of the two LSCs are o...
KEARNEY,SEAN P.; REYES,FELIPE V.
2000-12-13
In this paper, an acetone planar laser-induced fluorescence (PLIF) technique for nonintrusive, temperature imaging is demonstrated in gas-phase (Pr = 0.72) turbulent Rayleigh-Benard convection at Rayleigh number, Ra = 1.3 x 10{sup 5}. The PLIF technique provides quantitative, spatially correlated temperature data without the flow intrusion or time lag associated with physical probes and without the significant path averaging that plagues most optical heat-transfer diagnostic tools, such as the Mach-Zehnder interferometer, thus making PLIF an attractive choice for quantitative thermal imaging in easily perturbed, complex three-dimensional flow fields. The instantaneous (20-ns integration time) thermal images presented have a spatial resolution of 176 x 176 x 500 {micro}m and a single-pulse temperature measurement precision of {+-}5.5 K, or 5.4 % of the total temperature difference. These images represent a 2-D slice through a complex, 3-D flow allowing for the thermal structure of the turbulence to be quantified. Statistics such as the horizontally averaged temperature profile, rms temperature fluctuation, two-point spatial correlations, and conditionally averaged plume structures are computed from an ensemble of 100 temperature images. The profiles of the mean temperature and rms temperature fluctuation are in good agreement with previously published data, and the results obtained from the two-point spatial correlations and conditionally averaged temperature fields show the importance of large-scale coherent structures in this turbulent flow.
He, Xiaozhou; Bodenschatz, Eberhard; Ahlers, Guenter
2012-01-01
We report experimental results for heat-transport measurements by turbulent Rayleigh-B\\'enard convection in a cylindrical sample of aspect ratio $\\Gamma \\equiv D/L = 1.00$ ($D = 1.12$ m is the diameter and $L = 1.12$ m the height). They are for the Rayleigh-number range $4\\times10^{11} \\alt \\Ra \\alt 2\\times10^{14}$ and for Prandtl numbers \\Pra\\ between 0.79 and 0.86. For $\\Ra \\Ra_1^*$ the data rise above the classical-state power-law and show greater scatter. In analogy to similar behavior observed for $\\Gamma = 0.50$, we interpret this observation as the onset of the transition to the ultimate state. Within our resolution this onset occurs at nearly the same value of $\\Ra_1^*$ as it does for $\\Gamma = 0.50$. This differs from an earlier estimate by Roche {\\it et al.} which yielded a transition at $\\Ra_U \\simeq 1.3\\times 10^{11} \\Gamma^{-2.5\\pm 0.5}$. A $\\Gamma$-independent $\\Ra^*_1$ would suggest that the boundary-layer shear transition is induced by fluctuations on a scale less than the sample dimensions r...
He, Xiaozhou; Ahlers, Guenter
2016-01-01
We present measurements of the orientation $\\theta_0$ and temperature amplitude $\\delta$ of the large-scale circulation in a cylindrical sample of turbulent Rayleigh-Benard convection (RBC) with aspect ratio $\\Gamma \\equiv D/L = 1.00$ ($D$ and $L$ are the diameter and height respectively) and for the Prandtl number $Pr \\simeq 0.8$. Results for $\\theta_0$ revealed a preferred orientation with upflow in the West, consistent with a broken azimuthal invariance due to Earth's Coriolis force [see \\cite{BA06b}]. They yielded the azimuthal diffusivity $D_\\theta$ and a corresponding Reynolds number $Re_{\\theta}$ for Rayleigh numbers over the range $2\\times 10^{12} < Ra < 1.5\\times 10^{14}$. In the classical state ($Ra < 2\\times 10^{13}$) the results were consistent with the measurements by \\cite{BA06a} for $Ra < 10^{11}$ and $Pr = 4.38$ which gave $Re_{\\theta} \\propto Ra^{0.28}$, and with the Prandtl-number dependence $Re_{\\theta} \\propto Pr^{-1.2}$ as found previously also for the velocity-fluctuation Rey...
Ciofalo, M.; Signorino, M.; Simiano, M.
2003-02-01
Steady-state flow and temperature fields in shallow rectangular enclosures heated from below were visualized and quantitatively characterized by using glycerol as the working fluid and suspended thermochromic liquid crystals as tracers. Couples of photographs taken on 120 transparency film for two orthogonal sets of vertical plane sections were digitized by a 1,200-dpi flatbed scanner and split into HSL (hue-saturation-lightness) components by using commercial general-purpose image processing software. Two-dimensional velocity fields were obtained from the lightness component by a two-frame cross-correlation technique using a commercial particle-image velocimetry (PIV) package. Temperature fields were obtained from the hue component on the basis of an in situ calibration procedure, conducted under conditions of stable thermal stratification. Finally, 2D flow and temperature distributions were interpolated by a purpose-written Fortran program to give 3D flow and thermal fields in the enclosure. Results are presented here for the case of a 1:2:4 aspect ratio cavity at a Rayleigh number of ˜ 14,500, for which a complex 3D flow and temperature distribution was observed.
Mohamed A. Teamah
2011-12-01
Full Text Available Double-diffusive convective flow in an inclined rectangular enclosure with the shortest sides being insulated and impermeable is investigated numerically. Constant temperatures and concentration are imposed along the longest sides of the enclosure. In addition, a uniform magnetic field is applied in a horizontal direction. Laminar regime is considered under steady state condition. The transport equations for continuity, momentum, energy and species transfer are solved using the finite volume technique. The validity of the numerical code used is ascertained and good agreement was found with published results. The numerical results are reported for the effect of thermal Rayleigh number on the contours of streamline, temperature, and concentration. In addition, results for the average Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. This study was done for constant Prandtl number, Pr = 0.7, aspect ratio, A = 2, Lewis number, Le = 2, the buoyancy ratio, N = 1, Hartmann number, Ha = 10 and the dimensionless heat generation, Φ = 1. Computations are carried out for RaT ranging from 103 to 5 * 105 and inclination angle range of 0° ⩽ γ ⩽ 180°.
Subcritical convection in an internally heated layer
Xiang, Linyan; Zikanov, Oleg
2017-06-01
Thermal convection in a horizontal layer with uniform internal heating and stress-free constant-temperature boundaries is analyzed numerically. The work is motivated by the questions arising in the development of liquid metal batteries, in which convection is induced by the Joule heating of electrolyte. It is demonstrated that three-dimensional convection cells exist at subcritical Rayleigh numbers.
Boiling turbulent Rayleigh-Bénard convection
Lakkaraju, R.
2013-01-01
A fundamental understanding of liquid-vapor phase transitions, mainly boiling phenomenon, is essential due to its omnipresence in science and technology. In industries, many empirical correlations exist on the heat transport to get an optimized and efficient thermal design of the boiling equipment.
Boiling turbulent Rayleigh-Bénard convection
Lakkaraju, R.
2013-01-01
A fundamental understanding of liquid-vapor phase transitions, mainly boiling phenomenon, is essential due to its omnipresence in science and technology. In industries, many empirical correlations exist on the heat transport to get an optimized and efficient thermal design of the boiling equipment.
Haddad, Zoubida [Department of Mechanical Engineering, Technology Faculty, Firat University, TR-23119, Elazig (Turkey); Department of Fluid Mechanics, Faculty of Physics, University of Sciences and Technology-Houari Boumediene, Algiers (Algeria); Abu-Nada, Eiyad [Department of Mechanical Engineering, King Faisal University, Al-Ahsa 31982 (Saudi Arabia); Oztop, Hakan F. [Department of Mechanical Engineering, Technology Faculty, Firat University, TR-23119, Elazig (Turkey); Mataoui, Amina [Department of Fluid Mechanics, Faculty of Physics, University of Sciences and Technology-Houari Boumediene, Algiers (Algeria)
2012-07-15
Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)
Analysis of natural convection in a low gravity environment
Mattor, Ethan E.; Durgin, William W.; Bloznalis, Peter; Schoenberg, Richard
1992-01-01
Natural convection inside a spherical container was studied experimentally with two apparatuses at low buoyancy levels. The data generated by these experiments, plotted nondimensionally as the Nusselt versus Rayleigh numbers, give correlations for Rayleigh numbers between 1000 and 10 exp 8, a range previously untested. These results show that natural convection has significant effects at a Rayleigh number of 1000 and higher, although the behavior of the Nusselt number as the conduction limit is approached is still unknown for a spherical geometry.
Vortex statistics in turbulent rotating convection
Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, B.J.
2010-01-01
The vortices emerging in rotating turbulent Rayleigh-Bénard convection in water at Rayleigh number Ra=6.0×108 are investigated using stereoscopic particle image velocimetry and by direct numerical simulation. The so-called Q criterion is used to detect the vortices from velocity fields. This criter
Nonlinear diffusion model for Rayleigh-Taylor mixing.
Boffetta, G; De Lillo, F; Musacchio, S
2010-01-22
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows us to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Nonlinear diffusion model for Rayleigh-Taylor mixing
Boffetta, G; Musacchio, S
2010-01-01
The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusiviy models for the mean temperature profile. It is found that a non-linear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
Perturbation of a Multiple Eigenvalue in the Benard Problem for Two Fluid Layers.
1984-12-01
EIGENVAWUE IN THlE BENARtD PROBLEM FOR TWO FLUID LAYERS Ca O~ Yuriko Renardy and Michael Renardy MUathematics Research Center University of Wisconsin...OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER PERTUBBATION OF A MULTIPLE EIGENVALUE IN THE BENARD PROBLEM FOR TWO FLUID LAYERS Yuriko Renardy and...PROBLEM FOR TWO FLUID LAYERS Yuriko Renardy and Michael Renardy 1. INTRODUCTION In the B6nard problem for one fluid, "exchange of stabilities" holds
Tornado funnel-shaped cloud as convection in a cloudy layer
M. V. Zavolgenskiy
2009-04-01
Full Text Available Analytical model of convection in a thick horizontal cloud layer with free upper and lower boundaries is constructed. The cloud layer is supposed to be subjected to the Coriolis force due to the cloud rotation, which is a typical condition for tornado formation. It is obtained that convection in such system can look as just one rotating cell in contrast to the usual many-cells Benard convection. The tornado-type vortex is different from spatially periodic convective cells because their amplitudes vanish with distance from the vortex axis. The lower boundary at this convection can substantially move out of the initially horizontal cloud layer forming a single vertical vortex with intense upward and downward flows. The results are also applicable to convection in water layer with negative temperature gradient.
Andersen, Kurt Munk
1997-01-01
Rayleigh's principle expresses that the smallest eigenvalue of a regular Sturm-Liouville problem with regular boundary conditions is the minimum value of a certain functional, the so called Rayleigh's quotient, and that this value is attained at the corresponding eigenfunctions only. This can...... be proved by means of more advanced methods. However, it turns out that there is an elementary proof, which is presented in the report....
Convection in stellar envelopes a changing paradigm
Spruit, H C
1996-01-01
Progress in the theory of stellar convection over the past decade is reviewed. The similarities and differences between convection in stellar envelopes and laboratory convection at high Rayleigh numbers are discussed. Direct numerical simulation of the solar surface layers, with no other input than atomic physics, the equations of hydrodynamics and radiative transfer is now capable of reproducing the observed heat flux, convection velocities, granulation patterns and line profiles with remarkably accuracy. These results show that convection in stellar envelopes is an essentially non-local process, being driven by cooling at the surface. This differs distinctly from the traditional view of stellar convection in terms of local concepts such as cascades of eddies in a mean superadiabatic gradient. The consequences this has for our physical picture of processes in the convective envelope are illustrated with the problems of sunspot heat flux blocking, the eruption of magnetic flux from the base of the convection ...
Bounds on double-diffusive convection
Balmforth, Neil J.; Ghadge, Shilpa A.; Kettapun, Atichart; Mandre, Shreyas D.
2006-12-01
We consider double-diffusive convection between two parallel plates and compute bounds on the flux of the unstably stratified species using the background method. The bound on the heat flux for Rayleigh Bénard convection also serves as a bound on the double-diffusive problem (with the thermal Rayleigh number equal to that of the unstably stratified component). In order to incorporate a dependence of the bound on the stably stratified component, an additional constraint must be included, like that used by Joseph (Stability of Fluid Motion, 1976, Springer) to improve the energy stability analysis of this system. Our bound extends Joseph's result beyond his energy stability boundary. At large Rayleigh number, the bound is found to behave like R_T(1/2) for fixed ratio R_S/R_T, where R_T and R_S are the Rayleigh numbers of the unstably and stably stratified components, respectively.
Convective stability analysis of a micropolar fluid layer by variational method
无
2011-01-01
This paper studies Rayleigh-B'enard convection of micropolar fluid layer heated from below with realistic boundary conditions.A specific approach for stability analysis of a convective problem based on variational principle is applied to characterize the Rayleigh number for quite general nature of bounding surfaces.The analysis consists of replacing the set of field equations by a variational principle and the expressions for Rayleigh number are then obtained by using trial function satisfying the essential...
Numerical study of plume patterns in the chemotaxis-diffusion-convection coupling system
Deleuze, Yannick; Thiriet, Marc; Sheu, Tony W H
2015-01-01
A chemotaxis-diffusion-convection coupling system for describing a form of buoyant convection in which the fluid develops convection cells and plume patterns will be investigated numerically in this study. Based on the two-dimensional convective chemotaxis-fluid model proposed in the literature, we developed an upwind finite element method to investigate the pattern formation and the hydrodynamical stability of the system. The numerical simulations illustrate different predicted physical regimes in the system. In the convective regime, the predicted plumes resemble B\\'enard instabilities. Our numerical results show how structured layers of bacteria are formed before bacterium rich plumes fall in the fluid. The plumes have a well defined spectrum of wavelengths and have an exponential growth rate, yet their position can only be predicted in very simple examples. In the chemotactic and diffusive regimes, the effects of chemotaxis are investigated. Our results indicate that the chemotaxis can stabilize the overa...
Li, Zheng; Zhang, Yuwen
2016-01-01
The purposes of this paper are testing an efficiency algorithm based on LBM and using it to analyze two-dimensional natural convection with low Prandtl number. Steady state or oscillatory results are obtained using double multiple-relaxation-time thermal lattice Boltzmann method. The velocity and temperature fields are solved using D2Q9 and D2Q5 models, respectively. With different Rayleigh number, the tested natural convection can either achieve to steady state or oscillatory. With fixed Rayleigh number, lower Prandtl number leads to a weaker convection effect, longer oscillation period and higher oscillation amplitude for the cases reaching oscillatory solutions. At fixed Prandtl number, higher Rayleigh number leads to a more notable convection effect and longer oscillation period. Double multiple-relaxation-time thermal lattice Boltzmann method is applied to simulate the low Prandtl number fluid natural convection. Rayleigh number and Prandtl number effects are also investigated when the natural convection...
Penetrative internally heated convection in two and three dimensions
Goluskin, David
2015-01-01
Convection of an internally heated fluid, confined between top and bottom plates of equal temperature, is studied by direct numerical simulation in two and three dimensions. The unstably stratified upper region drives convection that penetrates into the stably stratified lower region. The fraction of produced heat escaping across the bottom plate, which is one half without convection, initially decreases as convection strengthens. Entering the turbulent regime, this decrease reverses in two dimensions but continues monotonically in three dimensions. The mean fluid temperature, which grows proportionally to the heating rate ($H$) without convection, grows like $H^{4/5}$ when convection is strong in both two and three dimensions. The ratio of the heating rate to the fluid temperature is likened to the Nusselt number of Rayleigh-B\\'enard convection. Simulations are reported for Prandtl numbers between 0.1 and 10 and for Rayleigh numbers (defined in terms of the heating rate) up to $5\\times10^{10}$.
Natural convection between concentric spheres
Garg, Vijay K.
1992-01-01
A finite-difference solution for steady natural convective flow in a concentric spherical annulus with isothermal walls has been obtained. The stream function-vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second-order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous experimental and numerical data is obtained.
Bifurcations of rotating waves in rotating spherical shell convection.
Feudel, F; Tuckerman, L S; Gellert, M; Seehafer, N
2015-11-01
The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.
Breuer, D.; Futterer, B.; Plesa, A.; Krebs, A.; Zaussinger, F.; Egbers, C.
2013-12-01
In mantle dynamics research, experiments, usually performed in rectangular geometries in Earth-based laboratories, have the character of ';exploring new physics and testing theories' [1]. In this work, we introduce our spherical geometry experiments on electro-hydrodynamical driven Rayleigh-Benard convection that have been performed for both temperature-independent (`GeoFlow I'), and temperature-dependent fluid viscosity properties (`GeoFlow II') with a measured viscosity contrast up to 1.5. To set up a self-gravitating force field, we use a high voltage potential between the inner and outer boundaries and a dielectric insulating liquid and perform the experiment under microgravity conditions at the ISS [2, 3]. Further, numerical simulations in 3D spherical geometry have been used to reproduce the results obtained in the `GeoFlow' experiments. For flow visualisation, we use Wollaston prism shearing interferometry which is an optical method producing fringe pattern images. Flow pattern differ between our two experiments (Fig. 1). In `GeoFlow I', we see a sheet-like thermal flow. In this case convection patterns have been successfully reproduced by 3D numerical simulations using two different and independently developed codes. In contrast, in `GeoFlow II' we obtain plume-like structures. Interestingly, numerical simulations do not yield this type of solution for the low viscosity contrast realised in the experiment. However, using a viscosity contrast of two orders of magnitude or higher, we can reproduce the patterns obtained in the `GeoFlow II' experiment, from which we conclude that non-linear effects shift the effective viscosity ratio [4]. References [1] A. Davaille and A. Limare (2009). In: Schubert, G., Bercovici, D. (Eds.), Treatise on Geophysics - Mantle Dynamics. [2] B. Futterer, C. Egbers, N. Dahley, S. Koch, L. Jehring (2010). Acta Astronautica 66, 193-100. [3] B. Futterer, N. Dahley, S. Koch, N. Scurtu, C. Egbers (2012). Acta Astronautica 71, 11-19. [4
Natural convection in eccentric spherical annuli
Gallegos, A D
2015-01-01
A fluid between two spheres, concentric or not, at different temperatures will flow in the presence of a constant gravitational force. Although there is no possible hydrostatic state, energy transport is dominated by diffusion if temperature difference between the spheres is small enough. In this conductive regime the average Nusselt number remains approximately constant for all Rayleigh numbers below some critical value. Above the critical Rayleigh number, plumes appear and thermal convection takes place. We study this phenomenon, in particular the case where the inner sphere is displaced from the centre, using a two-component thermal lattice Boltzmann method to characterize the convective instability, the evolution of the flow patterns and the dependence of the Nusselt number on the Rayleigh number beyond the transition.
Rosenblatt, Heather
2011-01-01
Through Borel summation methods, we analyze two different variations of the Navier-Stokes equation --the Boussinesq equation and the magnetic Benard equation. This method has previously been applied to the Navier-Stokes equation. We prove that an equivalent system of integral equations in each case has a unique solution, which is exponentially bounded for p in R^{+}, p being the Laplace dual variable of 1/t. This implies the local existence of a classical solution in a complex t-region that includes a real positive time (t)-axis segment. In this formalism, global existence of PDE solutions becomes a problem of asymptotics in the dual variable. Further, it is shown that within the time interval of existence, for analytic initial data and forcing, the solution remains analytic and has the same analyticity strip width. Under these conditions, the solution is Borel summable, implying that the formal series in time is Gevrey-1 asymptotic for small t.
Entropy Production in Convective Hydrothermal Systems
Boersing, Nele; Wellmann, Florian; Niederau, Jan
2016-04-01
Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate
Convective Regimes in Crystallizing Basaltic Magma Chambers
Gilbert, A. J.; Neufeld, J. A.; Holness, M. B.
2015-12-01
Cooling through the chamber walls drives crystallisation in crustal magma chambers, resulting in a cumulate pile on the floor and mushy regions at the walls and roof. The liquid in many magma chambers, either the bulk magma or the interstitial liquid in the mushy regions, may convect, driven either thermally, due to cooling, or compositionally, due to fractional crystallization. We have constructed a regime diagram of the possible convective modes in a system containing a basal mushy layer. These modes depend on the large-scale buoyancy forcing characterised by a global Rayleigh number and the proportion of the chamber height constituting the basal mushy region. We have tested this regime diagram using an analogue experimental system composed of a fluid layer overlying a pile of almost neutrally buoyant inert particles. Convection in this system is driven thermally, simulating magma convection above and within a porous cumulate pile. We observe a range of possible convective regimes, enabling us to produce a regime diagram. In addition to modes characterised by convection of the bulk and interstitial fluid, we also observe a series of regimes where the crystal pile is mobilised by fluid motions. These regimes feature saltation and scouring of the crystal pile by convection in the bulk fluid at moderate Rayleigh numbers, and large crystal-rich fountains at high Rayleigh numbers. For even larger Rayleigh numbers the entire crystal pile is mobilised in what we call the snowglobe regime. The observed mobilisation regimes may be applicable to basaltic magma chambers. Plagioclase in basal cumulates crystallised from a dense magma may be a result of crystal mobilisation from a plagioclase-rich roof mush. Compositional convection within such a mush could result in disaggregation, enabling the buoyant plagioclase to be entrained in relatively dense descending liquid plumes and brought to the floor. The phenocryst load in porphyritic lavas is often interpreted as a
Transitions in turbulent rotating convection
Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team
2015-11-01
This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.
Vertical Slot Convection: A linear study
McAllister, A. [Tokyo Univ. (Japan); Steinolfson, R. [Southwest Research Inst., San Antonio, TX (United States); Tajima, T. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies
1992-11-01
The linear stability properties of fluid convection in a vertical slot were studied. We use a Fourier-Chebychev decomposition was used to set up the linear eigenvalue problems for the Vertical Slot Convection and Benard problems. The eigenvalues, neutral stability curves, and critical point values of the Grashof number, G, and the wavenumber were determined. Plots of the real and imaginary parts of the eigenvalues as functions of G and {alpha} are given for a wide range of the Prandtl number, Pr, and special note is made of the complex mode that becomes linearly unstable above Pr {approximately} 12.5. A discussion comparing different special cases facilitates the physical understanding of the VSC equations, especially the interaction of the shear-flow and buoyancy induced physics. Making use of the real and imaginary eigenvalues and the phase properties of the eigenmodes, the eigenmodes were characterized. One finds that the mode structure becomes progressively simpler with increasing Pr, with the greatest complexity in the mid ranges where the terms in the heat equation are of roughly the same size.
Vertical Slot Convection: A linear study
McAllister, A. (Tokyo Univ. (Japan)); Steinolfson, R. (Southwest Research Inst., San Antonio, TX (United States)); Tajima, T. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies)
1992-11-01
The linear stability properties of fluid convection in a vertical slot were studied. We use a Fourier-Chebychev decomposition was used to set up the linear eigenvalue problems for the Vertical Slot Convection and Benard problems. The eigenvalues, neutral stability curves, and critical point values of the Grashof number, G, and the wavenumber were determined. Plots of the real and imaginary parts of the eigenvalues as functions of G and [alpha] are given for a wide range of the Prandtl number, Pr, and special note is made of the complex mode that becomes linearly unstable above Pr [approximately] 12.5. A discussion comparing different special cases facilitates the physical understanding of the VSC equations, especially the interaction of the shear-flow and buoyancy induced physics. Making use of the real and imaginary eigenvalues and the phase properties of the eigenmodes, the eigenmodes were characterized. One finds that the mode structure becomes progressively simpler with increasing Pr, with the greatest complexity in the mid ranges where the terms in the heat equation are of roughly the same size.
Bounds for convection between rough boundaries
Goluskin, David
2016-01-01
We consider Rayleigh-B\\'enard convection in a layer of fluid between no-slip rough boundaries, where the top and bottom boundary heights are functions of the horizontal coordinates with bounded gradients. We use the background method to derive an upper bound on mean heat flux across the layer for all admissible boundary geometries. This flux, normalized by the temperature difference between the boundaries, can grow with the Rayleigh number ($Ra$) no faster than $Ra^{1/2}$ as $Ra \\rightarrow \\infty$. Coefficients of the bound are given explicitly in terms of the geometry, and evaluation of the coefficients is illustrated for sinusoidal boundaries.
Scalings of field correlations and heat transport in turbulent convection.
Verma, Mahendra K; Mishra, Pankaj K; Pandey, Ambrish; Paul, Supriyo
2012-01-01
Using direct numerical simulations of Rayleigh-Bénard convection under free-slip boundary condition, we show that the normalized correlation function between the vertical velocity field and the temperature field, as well as the normalized viscous dissipation rate, scales as Ra-0.22 for moderately large Rayleigh number Ra. This scaling accounts for the Nusselt number Nu exponent of approximately 0.3, as observed in experiments. Numerical simulations also reveal that the aforementioned normalized correlation functions are constants for the convection simulation under periodic boundary conditions.
Double-diffusive convection in a rotating cylindrical annulus with conical caps
Simitev, R D
2011-01-01
Double-diffusive convection driven by both thermal and compositional buoyancy in a rotating cylindrical annulus with conical caps is considered with the aim to establish whether a small fraction of compositional buoyancy added to the thermal buoyancy (or vice versa) can significantly reduce the critical Rayleigh number and amplify convection in planetary cores. It is shown that the neutral surface describing the onset of convection in the double-buoyancy case is essentially different from that of the well-studied purely thermal case, and does indeed allow the possibility of low-Rayleigh number convection. In particular, isolated islands of instability are formed by an additional "double-diffusive" eigenmode in certain regions of the parameter space. However, the amplitude of such low-Rayleigh number convection is relatively weak. At similar flow amplitudes purely compositional and double-diffusive cases are characterized by a stronger time dependence compared to purely thermal cases, and by a prograde mean zo...
Simulations and scaling of horizontal convection
Mehmet ILIcak
2012-05-01
Full Text Available In this paper we describe the results of various numerical simulations of sideways or horizontal convection. Specifically, a two-dimensional Boussinesq fluid is both heated and cooled from its upper surface, but the walls and the bottom of the tank are insulating and have no flux of heat through them. We perform experiments with a range of Rayleigh numbers up to 1011, obtained by systematically reducing the diffusivity. We also explore the effects of a nonlinear equation of state and of a mechanical force imposed on the top surface at a fixed Rayleigh number. We find that, when there is no mechanical forcing, both the energy dissipation and the strength of the circulation itself monotonically fall with decreasing diffusivity. At Rayleigh numbers greater than 1010 the flow is unsteady; however, the eddying flow is still much weaker than the steady flow at smaller Rayleigh numbers. At high Rayleigh numbers, the stratification and the mean circulation are increasingly confined to a thin layer at the upper surface, with the layer thickness decreasing according to Ra−1/5. There is no evidence that the flow ever enters a regime that is independent of Rayleigh number. Using a nonlinear equation of state makes little difference to the flow phenomenology at a moderate Rayleigh number. The addition of an imposed stress at the upper surface makes a significant difference in the flow. A strong, energy-dissipating circulation can be maintained even at Ra = 109, and the stratification extends more deeply into the fluid than in the unstressed case. Overall, our results are consistent with the notion that in the absence of mechanical forcing a fluid that is heated and cooled from above cannot maintain a deep stratification or a strong sustained flow at high Rayleigh numbers, even if the interior flow is unsteady.
Internal Wave Generation by Turbulent Convection
Lecoanet, D.; Le Bars, M.; Burns, K. J.; Vasil, G. M.; Quataert, E.; Brown, B. P.; Oishi, J.
2015-12-01
Recent measurements suggest that a portion of the Earth's core may be stably stratified. If this is the case, then the Earth's core joins the many planetary and stellar objects which have a stably stratified region adjacent to a convective region. The stably stratified region admits internal gravity waves which can transport angular momentum, energy, and affect magnetic field generation. We describe experiments & simulations of convective excitation of internal waves in water, exploiting its density maximum at 4C. The simulations show that waves are excited within the bulk of the convection zone, opposed to at the interface between the convective and stably stratified regions. We will also present 3D simulations using a compressible fluid. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number.
Destabilization of free convection by weak rotation
Gelfgat, Alexander
2011-01-01
This study offers an explanation of a recently observed effect of destabilization of free convective flows by weak rotation. After studying several models where flows are driven by a simultaneous action of convection and rotation, it is concluded that the destabilization is observed in the cases where centrifugal force acts against main convective circulation. At relatively low Prandtl numbers this counter action can split the main vortex into two counter rotating vortices, where the interaction leads to instability. At larger Prandtl numbers, the counter action of the centrifugal force steepens an unstable thermal stratification, which triggers Rayleigh-B\\'enard instability mechanism. Both cases can be enhanced by advection of azimuthal velocity disturbances towards the axis, where they grow and excite perturbations of the radial velocity. The effect was studied considering a combined convective/rotating flow in a cylinder with a rotating lid and a parabolic temperature profile at the sidewall. Next, explana...
Large-scale numerical simulation of rotationally constrained convection
Sprague, Michael; Julien, Keith; Knobloch, Edgar; Werne, Joseph; Weiss, Jeffrey
2007-11-01
Using direct numerical simulation (DNS), we investigate solutions of an asymptotically reduced system of nonlinear PDEs for rotationally constrained convection. The reduced equations filter fast inertial waves and relax the need to resolve Ekman boundary layers, which allow exploration of a parameter range inaccessible with DNS of the full Boussinesq equations. The equations are applicable to ocean deep convection, which is characterized by small Rossby number and large Rayleigh number. Previous numerical studies of the reduced equations examined upright convection where the gravity vector was anti-parallel to the rotation vector. In addition to the columnar and geostrophic-turbulence regimes, simulations revealed a third regime where Taylor columns were shielded by sleeves of opposite-signed vorticity. We here extend our numerical simulations to examine both upright and tilted convection at high Rayleigh numbers.
Scaling regimes in spherical shell rotating convection
Gastine, T; Aubert, J
2016-01-01
Rayleigh-B\\'enard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning $3\\times 10^{-7} \\leq E \\leq 10^{-1}$, Rayleigh numbers within the range $10^3 < Ra < 2\\times 10^{10}$ and a Prandtl number unity. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection $Nu\\sim Ra^{3/2}E^{2}$ in ...
EFFECT OF CONVECTIVE BOUNDARY CONDITIONS AT BOTTOM WALL ON NATURAL CONVECTIONS IN A SQUARE CAVITY
ASWATHA
2013-04-01
Full Text Available Simulations were carried out for natural convection in a square cavity using finite volume based computational procedure with biased quadratic elements to investigate the influence of convective boundary conditions at bottom wall. Parametric study has been carried out for a wide range of Rayleigh number (Ra (103 ≤ Ra ≤ 108, Prandtl number (Pr (0.7 ≤ Pr ≤ 17 and heat transfer coefficient (h (0.1 ≤ h ≤ 104 W/m2 K. It is observed from the present study that the heat transfer is primarily due to conduction for Rayleigh number up to 104. Convection dominant heat transfer is observed at higher Ra values. The intensity of circulation increases with increase in Ra number. The average heat transfer rate at the bottom wall is found to be invariant for all values of heat transfer coefficient for Ra up to 104. The power law correlations between average Nusselt number and Rayleigh numbers are presented for convection dominated regimes.
Plasma transport driven by the Rayleigh-Taylor instability
Ma, X.; Delamere, P. A.; Otto, A.
2016-06-01
Two important differences between the giant magnetospheres (i.e., Jupiter's and Saturn's magnetospheres) and the terrestrial magnetosphere are the internal plasma sources and the fast planetary rotation. Thus, there must be a radially outward flow to transport the plasma to avoid infinite accumulation of plasma. This radial outflow also carries the magnetic flux away from the inner magnetosphere due to the frozen-in condition. As such, there also must be a radial inward flow to refill the magnetic flux in the inner magnetosphere. Due to the similarity between Rayleigh-Taylor (RT) instability and the centrifugal instability, we use a three-dimensional RT instability to demonstrate that an interchange instability can form a convection flow pattern, locally twisting the magnetic flux, consequently forming a pair of high-latitude reconnection sites. This process exchanges a part of the flux tube, thereby transporting the plasma radially outward without requiring significant latitudinal convection of magnetic flux in the ionosphere.
Banquet Speech Some Sketches Of Rayleigh
Howard, John N.
1985-11-01
Several short sketches are presented of Lord Rayleigh, to show his method of working and his interaction with his fellow scientists. The topics discussed are: his research on the blue of the sky (Rayleigh scattering); his rescue of Waterston from near-oblivion; his research on surface acoustic waves (Rayleigh waves); his collaboration with Agnes Pockels; his research on blackbody radiation (the Rayleigh-Jeans Law).
Mantle Convection in a Microwave Oven: New Perspectives for the Internally Heated Convection
Limare, A.; Fourel, L.; Surducan, E.; Neamtu, C.; Surducan, V.; Vilella, K.; Farnetani, C. G.; Kaminski, E. C.; Jaupart, C. P.
2015-12-01
The thermal evolution of silicate planets is primarily controlled by the balance between internal heating - due to radioactive decay - and heat transport by mantle convection. In the Earth, the problem is particularly complex due to the heterogeneous distribution of heat sources in the mantle and the non-linear coupling between this distribution and convective mixing. To investigate the behaviour of such systems, we have developed a new technology based on microwave absorption to study internally-heated convection in the laboratory. This prototype offers the ability to reach the high Rayleigh-Roberts and Prandtl numbers that are relevant for planetary convection. Our experimental results obtained for a uniform distribution of heat sources were compared to numerical calculations reproducing exactly experimental conditions (3D Cartesian geometry and temperature-dependent physical properties), thereby providing the first cross validation of experimental and numerical studies of convection in internally-heated systems. We find that the thermal boundary layer thickness and interior temperature scale with RaH-1/4, where RaH is the Rayleigh-Roberts number, as theoretically predicted by scaling arguments on the dissipation of kinetic energy. Our microwave-based method offers new perspectives for the study of internally-heated convection in heterogeneous systems which have been out of experimental reach until now. We are able to selectively heat specific regions in the convecting layer, through the careful control of the absorption properties of different miscible fluids. This is analogous to convection in the presence of chemical reservoirs with different concentration of long-lived radioactive isotopes. We shall show results for two different cases: the stability of continental lithosphere over a convective fluid and the evolution of a hidden enriched reservoir in the lowermost mantle.
Blue Skies, Coffee Creamer, and Rayleigh Scattering
Liebl, Michael
2010-01-01
The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…
Blue Skies, Coffee Creamer, and Rayleigh Scattering
Liebl, Michael
2010-01-01
The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…
Toward a unified theory of atmospheric convective instability
Shirer, H. N.
1982-01-01
A nonlinear three-dimensional truncated spectral model of shallow and moist Boussinesq convection indicates that parallel instability and thermal forcing are linked, in view of the fact that only one convective mode exists in which either or both mechanisms are operating to generate convection in the planetary boundary layer. It is also established that the wind field causes two-dimensional roll convection formation, an alignment of the convection with the wind in a preferred manner, and a propagation speed that is related to the wind component perpendicular to the roll axis. Latent heating is responsible for the decrease of the critical value of the environmental lapse rate in accordance with the slice method stability criterion. When only the upper part of the upward branch is moist and all of the downward branch is dry, latent heating also causes a finite-amplitude convective solution for Rayleigh number values lower than the critical value of linear analysis.
Electrothermo Convection in a Porous Medium Saturated by Nanofluid
Ramesh Chand
2016-01-01
Full Text Available Thermal instability in a horizontal layer of nanofluid with vertical AC electric field in a porous medium is investigated. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries and the eigenvalue problem is solved using the Galerkin method. Darcy model is used for the momentum equation. The model used for nanofluid incorporates the effect of Brownian diffusion and thermophoresis. Linear stability theory based upon normal mode technique is employed to find the expressions for Rayleigh number for stationary and oscillatory convection. Graphs have been plotted to study the effects of Lewis number, modified diffusivity ratio, concentration Rayleigh number, AC electric Rayleigh number and porosity on stationary convection.
Convective flows of colloidal suspension in an inclined closed cell
Smorodin, Boris; Cherepanov, Ivan; Ishutov, Sergey
2016-12-01
The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number).
Sidewall effects in Rayleigh–Bénard convection
Stevens, Richard Johannes Antonius Maria; Lohse, Detlef; Verzicco, Roberto
2014-01-01
We investigate the influence of the temperature boundary conditions at the sidewall on the heat transport in Rayleigh–Bénard (RB) convection using direct numerical simulations. For relatively low Rayleigh numbers Ra the heat transport is higher when the sidewall is isothermal, kept at a temperature
2015-05-11
providing full fields of temperature and velocity in the tank. The numerical data compared well to the laboratory data and both conformed to the...experiments were performed with the open- source CFD package OpenFOAM using a Large-Eddy Simulation (LES) approach. In LES, the larger-scale eddies in the... conformed to the Kolmogorov Fig. 7. Energy spectra (left) and temperature gradient spectra (right) from laboratory and model data. The
From convection rolls to finger convection in double-diffusive turbulence
Yang, Yantao; Lohse, Detlef
2015-01-01
Double diffusive convection (DDC), which is the buoyancy driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering enviroments. Of great interests are scalers transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large scale convection rolls to well-organised vertically-oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh-B\\'{e}nard convection can be directly applied to DDC flow for a wide range of contro...
Modeling of Thermal Convection of Liquid TNT for Cookoff
McCallen, R; Dunn, T; Nichols, A; Reaugh, J; McClelland, M
2003-02-27
The objective is to computationally model thermal convection of liquid TNT in a heated cylindrical container for what are called 'cookoff' experiments. Our goal is to capture the thermal convection coupled to the heat transfer in the surrounding container. We will present computational results that validate the functionality of the model, numerical strategy, and computer code for a model problem with Rayleigh number of O(10{sup 6}). We solve the problem of thermal convection between two parallel plates in this turbulent flow regime and show that the three-dimensional computations are in excellent agreement with experiment.
2-D traveling-wave patterns in binary fluid convection
Surko, C.M.; Porta, A.L. [Univ. of California, La Jolla, CA (United States)
1996-12-31
An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.
Amplitude equations for isothermal double diffusive convection
Becerril, R.; Swift, J.B. [Center for Nonlinear Dynamics and Department of Physics, University of Texas, Austin, Texas 78712 (United States)
1997-05-01
Amplitude equations are derived for isothermal double diffusive convection near threshold for both the stationary and oscillatory instabilities as well as in the vicinity of the codimension-2 point. The convecting fluid is contained in a thin Hele-Shaw cell that renders the system two dimensional, and convection is sustained by vertical concentration gradients of two species with different diffusion rates. The locations of the tricritical point for the stationary instability and the codimension-2 point are found. It is shown that these points can be made well separated (in the Rayleigh number R{sub s} of the slow diffusing species) as the Lewis number varies. Hence the behavior near these points should be experimentally accessible. {copyright} {ital 1997} {ital The American Physical Society}
Rotating Rayleigh-Taylor turbulence
Boffetta, G.; Mazzino, A.; Musacchio, S.
2016-09-01
The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.
Scaling of plate-tectonic convection with pseudoplastic rheology
Korenaga, Jun
2010-01-01
The scaling of plate-tectonic convection is investigated by simulating thermal convection with pseudoplastic rheology and strongly temperature-dependent viscosity. The effect of mantle melting is also explored with additional depth-dependent viscosity. Heat-flow scaling can be constructed with only two parameters, the internal Rayleigh number and the lithospheric viscosity contrast, the latter of which is determined entirely by rheological properties. The critical viscosity contrast for the transition between plate-tectonic and stagnant-lid convection is found to be proportional to the square root of the internal Rayleigh number. The relation between mantle temperature and surface heat flux on Earth is discussed on the basis of these scaling laws, and the inverse relationship between them, as previously suggested from the consideration of global energy balance, is confirmed by this fully dynamic approach. In the presence of surface water to reduce the effective friction coefficient, the operation of plate tec...
Finite-sample-size effects on convection in mushy layers
Zhong, Jin-Qiang; Wells, Andrew J; Wettlaufer, John S
2012-01-01
We report theoretical and experimental investigations of the flow instability responsible for the mushy-layer mode of convection and the formation of chimneys, drainage channels devoid of solid, during steady-state solidification of aqueous ammonium chloride. Under certain growth conditions a state of steady mushy-layer growth with no flow is unstable to the onset of convection, resulting in the formation of chimneys. We present regime diagrams to quantify the state of the flow as a function of the initial liquid concentration, the porous-medium Rayleigh number, and the sample width. For a given liquid concentration, increasing both the porous-medium Rayleigh number and the sample width caused the system to change from a stable state of no flow to a different state with the formation of chimneys. Decreasing the concentration ratio destabilized the system and promoted the formation of chimneys. As the initial liquid concentration increased, onset of convection and formation of chimneys occurred at larger value...
PERIODIC STREAM LINES IN THE THREE-DIMENSIONAL SQUARE CELL PATTERN
李继彬; 段晚锁
2001-01-01
By using the theory of the generalized perturbed Hamiltonian systems, it is shown that there exist periodic stream lines in the three-dimensional square cell pattern of Rayleigh-Benard convection. The result means that our method enables this three dimensional flow pattern to be described in an unambiguous manner, and some experimental results of other authors can be explained.
Inviscid Limits of the Complex Generalized Ginzburg-Landau Equations
杨灵娥
2002-01-01
@@ 1 Introduction Derivative Ginzburg-Landau equation appeared in many physical problem. It was derived for instability waves in hydrodynamic such as the nonlinear growth of Rayleigh-Benard convective rolls, the appearance of Taylor Vortices in the couette flow between counter-rotating cylinders.
Seismic Sounding of Convection in the Sun
Hanasoge, Shravan; Sreenivasan, Katepalli R
2015-01-01
Our Sun, primarily composed of ionized hydrogen and helium, has a surface temperature of 5777~K and a radius $R_\\odot \\approx 696,000$ km. In the outer $R_\\odot/3$, energy transport is accomplished primarily by convection. Using typical convective velocities $u\\sim100\\,\\rm{m\\,s^{-1}}$ and kinematic viscosities of order $10^{-4}$ m$^{2}$s$^{-1}$, we obtain a Reynolds number $Re \\sim 10^{14}$. Convection is thus turbulent, causing a vast range of scales to be excited. The Prandtl number, $Pr$, of the convecting fluid is very low, of order $10^{-7}$\\,--\\,$10^{-4}$, so that the Rayleigh number ($\\sim Re^2 Pr$) is on the order of $10^{21}\\,-\\,10^{24}$. Solar convection thus lies in extraordinary regime of dynamical parameters, highly untypical of fluid flows on Earth. Convective processes in the Sun drive global fluid circulations and magnetic fields, which in turn affect its visible outer layers ("solar activity") and, more broadly, the heliosphere ("space weather"). The precise determination of the depth of sola...
Experimental and numerical investigation of wave ferrofluid convection
Bozhko, A.A. [Department of Physics, Perm State University, Bukirev Str. 15, 614990 Perm (Russian Federation)]. E-mail: bozhko@psu.ru; Putin, G.F. [Department of Physics, Perm State University, Bukirev Str. 15, 614990 Perm (Russian Federation); Tynjaelae, T. [Department of Energy and Environmental Engineering, Lappeenranta Univeristy of Technology, P.O. Box 20, Lappeenranta 53851 (Finland); Sarkomaa, P. [Department of Energy and Environmental Engineering, Lappeenranta Univeristy of Technology, P.O. Box 20, Lappeenranta 53851 (Finland)
2007-09-15
The stability of buoyancy-driven shear flow in an inclined layer of a ferrocolloid is investigated for different values of inclinations and homogeneous longitudinal magnetic fields. Near the onset of Rayleigh convection of ferrofluid layer inclined with respect to gravity, the wave oscillatory regimes were observed in experiments and numerical simulations. Visualization of convection patterns is provided by a temperature-sensitive liquid crystal film. As experiments testify, the origin of traveling wave regimes in ferrofluid is due to concentration gradients caused by gravity sedimentation of the magnetic particles. To study the effects of initial concentration gradient of particles, on convective instabilities, finite volume numerical simulations using a two-phase mixture model were carried out for the same setup. The most fascinating effect in ferrofluid convection is spontaneous formation of localized states, those where the convection chaotically focuses in confined regions and is absent in the remainder of cavity.
Calkins, Michael A; Tobias, Steven M; Aurnou, Jonathan M; Marti, Philippe
2015-01-01
The onset of dynamo action is investigated within the context of a newly developed low Rossby, low magnetic Prandtl number, convection-driven dynamo model. The model represents an asymptotically exact form of an $\\alpha^2$ mean field dynamo model in which the small-scale convection is represented explicitly by the finite amplitude, single mode convective solutions first investigated by Bassom and Zhang (Geophys.~Astrophys.~Fluid Dyn., \\textbf{76}, p.223, 1994). Both steady and oscillatory convection are considered for a variety of horizontal planforms. The kinematic helicity is observed to be a monotonically increasing function of the Rayleigh number; as a result, very small magnetic Prandtl number dynamos can be found for a sufficiently large Rayleigh number. All dynamos are found to be oscillatory with an oscillation frequency that increases as the strength of the convection is increased and the magnetic Prandtl number is reduced. Single mode solutions which exhibit boundary layer behavior in the kinematic ...
Hall Effect on Bénard Convection of Compressible Viscoelastic Fluid through Porous Medium
Mahinder Singh
2013-01-01
Full Text Available An investigation made on the effect of Hall currents on thermal instability of a compressible Walter’s B′ elasticoviscous fluid through porous medium is considered. The analysis is carried out within the framework of linear stability theory and normal mode technique. For the case of stationary convection, Hall currents and compressibility have postponed the onset of convection through porous medium. Moreover, medium permeability hasten postpone the onset of convection, and magnetic field has duel character on the onset of convection. The critical Rayleigh numbers and the wave numbers of the associated disturbances for the onset of instability as stationary convection have been obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. The magnetic field, Hall currents found to introduce oscillatory modes, in the absence of these effects the principle of exchange of stabilities is valid.
Beltran, Jorge I. LLagostera; Trevisan, Osvair Vidal [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia
1990-12-31
Natural convection flow induced by heating from below in a irregular porous cavity is investigated numerically. The influence of the modified Rayleigh number and geometric ratios on heat transfer and fluid flow is studied. Global and local Nusselt for Rayleigh numbers covering the range 0 - 1600 and for several geometric ratios. The fluid flow and the temperature field are illustrated by contour maps. (author) 6 refs., 10 figs., 7 tabs.
Double-diffusive convection in a viscoelastic fluid
Pardeep Kumar
2012-09-01
Full Text Available The double-diffusive convection in an Oldroydian viscoelastic fluid is mathematical investigated under the simultaneous effects of magnetic field and suspended particles through porous medium. A sufficient condition for the invalidity of the `principle of exchange of stabilities' is derived, in the context, which states that the exchange principle is not valid provided the thermal Rayleigh number $R$, solutal Rayleigh number$R_S$, the medium permeability $P_1$ and the suspended particles parameter $B$ are restricted by the inequality $\\frac{BP_1}{\\pi^2}(R+R_S<1$.
Shen, Chunyun; Zhang, Yuwen; Li, Zheng
2016-01-01
Natural convection in a cylinder with an internally slotted annulus was solved by SIMPLE algorithm, and the effects of different slotted structures on nonlinear characteristics of natural convection were investigated. The results show that the equivalent thermal conductivity Keq increases with Rayleigh number, and reaches the maximum in the vertical orientation. Nonlinear results were obtained by simulating the fluid flow at different conditions. With increasing Rayleigh number, heat transfer is intensified and the state of heat transfer changes from the steady to unsteady. We investigated different slotted structures effects on natural convection, and analyze the corresponding nonlinear characteristics.
On the Linear Stability of Thermal Convection with Three Different Imposed Shear Flows
Ildebrando Pérez-Reyes
2016-01-01
Full Text Available The problem of convection in a fluid with temperature dependent viscosity and imposed shear flow, driven by pressure gradients and by a top moving wall, is studied for the case of poorly thermal conducting horizontal walls. Analytical expressions accounting for temperature dependent viscosity effects were obtained for the critical Rayleigh number and frequency of oscillation under a shallow water approximation for Poiseuille, Couette and returning primary flows. The results of this investi- gation contirbute and extend previous findings showing that the onset of convection can be achieved at smaller critical Rayleigh and wavenumbers. The results include approximations of weak and strong shear flows along with conditions for rigid-rigid and rigid-free boundaries. It was found that the imposed shear flow does not influence the critical wavenumber but it does increases the critical Rayleigh number. In this case convection sets in as oscillatory.
Asymptotic Rayleigh instantaneous unit hydrograph
Troutman, B.M.; Karlinger, M.R.
1988-01-01
The instantaneous unit hydrograph for a channel network under general linear routing and conditioned on the network magnitude, N, tends asymptotically, as N grows large, to a Rayleigh probability density function. This behavior is identical to that of the width function of the network, and is proven under the assumption that the network link configuration is topologically random and the link hydraulic and geometric properties are independent and identically distributed random variables. The asymptotic distribution depends only on a scale factor, {Mathematical expression}, where ?? is a mean link wave travel time. ?? 1988 Springer-Verlag.
Probing the energy cascade of convective turbulence.
Kunnen, R P J; Clercx, H J H
2014-12-01
The existence of a buoyancy-dominated scaling range in convective turbulence is a longstanding open question. We investigate this issue by considering the scale-by-scale energy budget in direct numerical simulations of Rayleigh-Bénard convection. We try to minimize the so-called Bolgiano length scale, the length scale at which buoyancy becomes dominant for scaling. Therefore, we deliberately choose modest Rayleigh numbers Ra=2.5×10(6) and 2.5×10(7). The budget reveals that buoyant forcing, turbulent energy transfer, and dissipation are contributing significantly over a wide range of scales. Thereby neither Kolmogorov-like (balance of turbulent transfer and dissipation) nor Bolgiano-Obukhov-like scaling (balance of turbulent transfer and buoyancy) is expected in the structure functions, which indeed reveal inconclusive scaling behavior. Furthermore, we consider the calculation of the Bolgiano length scale. To account for correlations between the dissipation rates of kinetic energy and thermal variance we propose to average the Bolgiano length scale directly. This gives an estimate, which is one order of magnitude larger than the previous estimate, and actually larger than the domain itself. Rather than studying the scaling of structure functions, we propose that the use of scale-by-scale energy budgets resolving anisotropic contributions is appropriate to consider the energy cascade mechanisms in turbulent convection.
Nanofluid bio-thermal convection: simultaneous effects of gyrotactic and oxytactic micro-organisms
Kuznetsov, A V, E-mail: avkuznet@eos.ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910 (United States)
2011-10-15
This paper investigates the onset of nanofluid bio-thermal convection in a horizontal layer of finite depth for the case when the suspension contains two species of motile micro-organisms exhibiting different taxes, gyrotactic and oxytactic micro-organisms. The obtained instability problem is controlled by four agencies, namely by distributions of nanoparticles, gyrotactic and oxytactic micro-organisms and by the vertical temperature variation. The utilization of the linear instability theory makes it possible to decouple the effects of these agencies and obtain an eigenvalue equation that involves four Rayleigh numbers: the nanoparticle Rayleigh number, the bioconvection gyrotactic and oxytactic Rayleigh numbers, and the traditional thermal Rayleigh number. Each Rayleigh number represents the effect of one of the four aforementioned agencies. Previously obtained results are recovered for limiting cases. The effects of different agencies on the boundary of marginal non-oscillatory instability are investigated.
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
Canaan, R.E.
1995-12-01
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.
Smith, Jamison A.; Ackerman, Andrew S.; Jensen, Eric J.; Toon, Owen B.
2006-01-01
The transport of H2O and HDO within deep convection is investigated with 3-D large eddy simulations (LES) using bin microphysics. The lofting and sublimation of HDO-rich ice invalidate the Rayleigh fractionation model of isotopologue distribution within deep convection. Bootstrapping the correlation of the ratio of HDO to H2O (deltaD) to water vapor mixing ratio (q(sub v)) through a sequence of convective events produced non-Rayleigh correlations resembling observations. These results support two mechanisms for stratospheric entry. Deep convection can inject air with water vapor of stratospheric character directly into the tropical transition layer (TTL). Alternatively, moister air detraining from convection may be dehydrated via cirrus formation n the TTL to produce stratospheric water vapor. Significant production of subsaturated air in the TTL via convective dehydration is not observed in these simulations, nor is it necessary to resolve the stratospheric isotope paradox.
Smith, Jamison A.; Ackerman, Andrew S.; Jensen, Eric J.; Toon, Owen B.
2006-01-01
The transport of H2O and HDO within deep convection is investigated with 3-D large eddy simulations (LES) using bin microphysics. The lofting and sublimation of HDO-rich ice invalidate the Rayleigh fractionation model of isotopologue distribution within deep convection. Bootstrapping the correlation of the ratio of HDO to H2O (deltaD) to water vapor mixing ratio (q(sub v)) through a sequence of convective events produced non-Rayleigh correlations resembling observations. These results support two mechanisms for stratospheric entry. Deep convection can inject air with water vapor of stratospheric character directly into the tropical transition layer (TTL). Alternatively, moister air detraining from convection may be dehydrated via cirrus formation n the TTL to produce stratospheric water vapor. Significant production of subsaturated air in the TTL via convective dehydration is not observed in these simulations, nor is it necessary to resolve the stratospheric isotope paradox.
A dynamically adaptive lattice Boltzmann method for thermal convection problems
Feldhusen Kai
2016-12-01
Full Text Available Utilizing the Boussinesq approximation, a double-population incompressible thermal lattice Boltzmann method (LBM for forced and natural convection in two and three space dimensions is developed and validated. A block-structured dynamic adaptive mesh refinement (AMR procedure tailored for the LBM is applied to enable computationally efficient simulations of moderate to high Rayleigh number flows which are characterized by a large scale disparity in boundary layers and free stream flow. As test cases, the analytically accessible problem of a two-dimensional (2D forced convection flow through two porous plates and the non-Cartesian configuration of a heated rotating cylinder are considered. The objective of the latter is to advance the boundary conditions for an accurate treatment of curved boundaries and to demonstrate the effect on the solution. The effectiveness of the overall approach is demonstrated for the natural convection benchmark of a 2D cavity with differentially heated walls at Rayleigh numbers from 103 up to 108. To demonstrate the benefit of the employed AMR procedure for three-dimensional (3D problems, results from the natural convection in a cubic cavity at Rayleigh numbers from 103 up to 105 are compared with benchmark results.
Stability of Unsteady Mixed Convection in a Horizontal Concentric Annulus
Kamil Kahveci
2016-01-01
Full Text Available In this study, stability of unsteady mixed convection in a horizontal annulus between two concentric cylinders was investigated numerically. The surfaces of the cylinders were considered to be at fixed temperatures and it was assumed that the hot inner cylinder is rotating at a constant angular velocity. The buoyancy forces were formulated utilizing the Boussinesq approximation. The governing equations of fluid flow and heat transfer in the annulus were solved with a finite element method for different values of the geometric (radius ratio and transport parameters (Rayleigh number and Reynolds number. Development of the convective flow and heat transfer was expressed by the average Nusselt number for the outer cylinder. The results show that, for a narrow gap annulus, convective flow induces flow bifurcation and becomes unstable for high values of the Rayleigh number. Flow becomes more unstable with an increase in the Reynolds number. For a wide gap annulus, flow is stable for all values of the Rayleigh number if the rotation effects are small. On the other hand, convective flow becomes unstable for the modest and high values of the Ra number with an increase in the Re number.
Numerical study of natural melt convection in cylindrical cavity with hot walls and cold bottom sink
Ahmanache Abdennacer
2013-01-01
Full Text Available Numerical study of natural convection heat transfer and fluid flow in cylindrical cavity with hot walls and cold sink is conducted. Calculations are performed in terms of the cavity aspect ratio, the heat exchanger length and the thermo physical properties expressed via the Prandtl number and the Rayleigh number. Results are presented in the form of isotherms, streamlines, average Nusselt number and average bulk temperature for a range of Rayleigh number up to 106. It is observed that Rayleigh number and heat exchanger length influences fluid flow and heat transfer, whereas the cavity aspect ratio has no significant effects.
Rayleigh imaging in spectral mammography
Berggren, Karl; Danielsson, Mats; Fredenberg, Erik
2016-03-01
Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.
National Convective Weather Diagnostic
National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...
Internal Wave Generation by Convection
Lecoanet, Daniel Michael
internal gravity wave spectrum, using the Lighthill theory of wave excitation by turbulence. We use a Green's function approach, in which we convolve a convective source term with the Green's function of different internal gravity waves. The remainder of the thesis is a circuitous attempt to verify these analytical predictions. I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code suitable for this study. I helped develop the Dedalus code framework to study internal wave generation by convection. Dedalus can solve many different partial differential equations using the pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus' ability to solve different equations used to model convection in astrophysics. I consider both the propagation and damping of internal waves, and the properties of low Rayleigh number convective steady states, in six different equation sets used in the astrophysics literature. This shows that Dedalus can be used to solve the equations of interest. Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astrophysics code Athena in a standard Kelvin-Helmholtz instability test problem. Dedalus performs admirably in comparison to Athena, and provides a high standard for other codes solving the fully compressible Navier-Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convective adjacent to a stably stratified region, by studying convective mixing near carbon flames. The convective overshoot and mixing is well-resolved, and is able to generate internal waves. Confident in Dedalus' ability to study the problem at hand, Chapter 6 describes simulations inspired by water experiments of internal wave generation by convection. The experiments exploit water's unusual property that its density maximum is at 4°C, rather than at 0°C. We use a similar equation of state in Dedalus, and study internal gravity waves generation by convection in a water
Importance sampling the Rayleigh phase function
Frisvad, Jeppe Revall
2011-01-01
Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature. Thi....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation.......Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature...
Transient convective instabilities in directional solidification
Meca, Esteban
2010-01-01
We study the convective instability of the melt during the initial transient in a directional solidification experiment in a vertical configuration. We obtain analytically the dispersion relation, and perform an additional asymptotic expansion for large Rayleigh number that permits a simpler analytical analysis and a better numerical behavior. We find a transient instability, i.e. a regime in which the system destabilizes during the transient whereas the final unperturbed steady state is stable. This could be relevant to growth mode predictions in solidification.
Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)
2001-07-01
Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)
Scaling Laws for Convection with Temperature-dependent Viscosity and Grain-damage
Foley, Bradford J
2014-01-01
Numerical experiments of convection with grain-damage are used to develop scaling laws for convective heat flow, mantle velocity, and plate velocity across the stagnant lid and plate-tectonic regimes. Three main cases are presented in order of increasing complexity: a simple case wherein viscosity is only dependent on grainsize, a case where viscosity depends on temperature and grainsize, and finally a case where viscosity is temperature and grainsize sensitive, and the grain-growth (or healing) is also temperature sensitive. In all cases, convection with grain-damage scales differently than Newtonian convection due to the effects of grain-damage. For the fully realistic case, numerical results show stagnant lid convection, fully mobilized convection that resembles the temperature-independent viscosity case, and partially mobile or transitional convection, depending on damage to healing ratio, Rayleigh number, and the activation energies for viscosity and healing. Applying our scaling laws for the fully reali...
Stability of High Rayleigh-Number Equilibrium Solutions of the Darcy-Oberbeck-Boussinesq Equations
Wen, Baole; Corson, Lindsey; Chini, Gregory
2013-11-01
There has been significant renewed interest in dissolution-driven convection in porous layers owing to the potential impact of this process on carbon dioxide storage in terrestrial aquifers. In this talk, we present some numerically-exact equilibrium solutions to the porous medium convection problem in small laterally-periodic domains at high Rayleigh number Ra . The ``uni-cellular'' equilibrium solutions first found by Corson and Chini (2011) by solving the steady Darcy-Oberbeck-Boussinesq equations are recovered and, in the interior (i.e. away from upper and lower boundary layers), are shown to have the same horizontal-mean structure as the ``heat-exchanger'' solutions identified by Hewitt et al. (2012). Secondary stability analysis of the steady solutions is performed, and implications for high-Ra porous medium convection are discussed. Funding from NSF Award 0928098 is gratefully acknowledged.
INTERMITTENCY AND SCALING IN TURBULENT CONVECTION
Emily S. C. CHING
2003-01-01
Both the velocity and temperature measurements taken in turbulent Rayleigh-B'enard convection experiments have been analyzed. It is found that both the velocity and temperature fluctuations are intermittent and can be well-described by the She-Leveque hierarchical structure. A positive correlation between the vertical velocity and the temperature differences is found both at the center,near the sidewall and near the bottom of the convection cell, supporting that buoyancy is significant in the Bolgiano regime. Moreover, the intermittent nature of the temperature fluctuations in the Bolgiano regime can be attributed to the variations in the temperature dissipation rate. However, the relations between the velocity and temperature structure functions and their correlations implied by the Bolgiano-Obukhov scaling are not supported by experimental measurements.
Periodic convection in liquid {sup 4}He close to onset
Lees, M.J.Matthew J.; Thurlow, M.S.Michael S.; Seddon, J.R.T.James R.T.; Lucas, P.G.J.Peter G.J
2003-05-01
High resolution images of convective flow patterns in a vertical axis cylindrical layer of normal fluid helium of diameter 18.25 mm and height 0.56 mm have been obtained near the Prandtl number minimum of 0.5 at 2.6 K. The primary stationary pattern close to the convection threshold is a robust state of straight parallel rolls signalling that the boundary conditions are close to ideal. A periodic response exists at slightly higher Rayleigh numbers in which dislocations climb periodically along the roll axes through the skew-varicose mechanism. Correlated with this regime are periodic oscillations of amplitude 100 {mu}K and period of the same order as the horizontal thermal diffusion time. The dynamics of the periodically varying pattern and of more chaotic patterns at higher Rayleigh numbers are revealed using time-lapse movie sequences of the images.
Stability Analysis of Convection in the Intracluster Medium
Gupta, Himanshu; Pessah, Martin E; Chakraborty, Sagar
2016-01-01
We use the machinery usually employed for studying the onset of Rayleigh--B\\'enard convection in hydro- and magnetohydro-dynamic settings to address the onset of convection induced by the magnetothermal instability and the heat-flux-buoyancy-driven-instability in the weakly-collisional magnetized plasma permeating the intracluster medium. Since most of the related numerical simulations consider the plasma being bounded between two `plates' on which boundary conditions are specified, our strategy provides a framework that could enable a more direct connection between analytical and numerical studies. We derive the conditions for the onset of these instabilities considering the effects of induced magnetic tension resulting from a finite plasma beta. We provide expressions for the Rayleigh number in terms of the wave vector associated with a given mode, which allow us to characterize the modes that are first to become unstable. For both the heat-flux-buoyancy-driven-instability and the magnetothermal instability...
Three-dimensional natural convection in a narrow spherical shell
Liu, Ming; Egbers, Christoph
The convective motions in a shallow fluid layer between two concentric spheres in the presence of a constant axial force field have been studied numerically. The aspect ratio of the fluid layer to inner radius is beta =0.08, the Prandtl number Pra =37.5. A three-dimensional time-dependent numerical code is used to solve the governing equations in primitive variables. Convection in the sphe rical shell has then a highly three-dimensional nature. Characteristic flow patterns with a large number of banana-type cells, oriented in north-south direction and aligned in the azimuthal direction, are formed on the northern hemisphere, which grow gradually into the equatorial region accompanied by the generation of new cells as the Rayleigh number is increased. Various characteristics of these flows as well as their transient evolution are investigated for Rayleigh numbers up to 20 000.
Second order closure for stratified convection: bulk region and overshooting
Biferale, L; Sbragaglia, M; Scagliarini, A; Toschi, F; Tripiccione, R
2011-01-01
The parameterization of small-scale turbulent fluctuations in convective systems and in the presence of strong stratification is a key issue for many applied problems in oceanography, atmospheric science and planetology. In the presence of stratification, one needs to cope with bulk turbulent fluctuations and with inversion regions, where temperature, density -or both- develop highly non-linear mean profiles due to the interactions between the turbulent boundary layer and the unmixed -stable- flow above/below it. We present a second order closure able to cope simultaneously with both bulk and boundary layer regions, and we test it against high-resolution state-of-the-art 2D numerical simulations in a convective and stratified belt for values of the Rayleigh number, up to Ra = 10^9. Data are taken from a Rayleigh-Taylor system confined by the existence of an adiabatic gradient.
Convective heat transport in stratified atmospheres at low and high Mach number
Anders, Evan H
2016-01-01
Convection in astrophysical systems is stratified and often occurs at high Rayleigh number (Ra) and low Mach number (Ma). Here we study stratified convection in the context of plane-parallel, polytropically stratified atmospheres. We hold the density stratification ($n_{\\rho}$) and Prandtl number (Pr) constant while varying Ma and Ra to determine the behavior of the Nusselt number (Nu), which quantifies the efficiency of convective heat transport. As Ra increases and $\\text{Ma} \\rightarrow 1$, a scaling of Nu $\\propto$ Ra$^{0.45}$ is observed. As Ra increases to a regime where Ma $\\geq 1$, this scaling gives way to a weaker Nu $\\propto$ Ra$^{0.19}$. In the regime of Ma $\\ll 1$, a consistent Nu $\\propto$ Ra$^{0.31}$ is retrieved, reminiscent of the Nu $\\propto$ Ra$^{2/7}$ seen in Rayleigh-B\\'{e}nard convection.
Natural convection in polygonal enclosures with inner circular cylinder
Habibis Saleh
2015-12-01
Full Text Available This study investigates the natural convection induced by a temperature difference between cold outer polygonal enclosure and hot inner circular cylinder. The governing equations are solved numerically using built-in finite element method of COMSOL. The governing parameters considered are the number of polygonal sides, aspect ratio, radiation parameter, and Rayleigh number. We found that the number of contra-rotative cells depended on polygonal shapes. The convection heat transfer becomes constant at L / D > 0 . 77 and the polygonal shapes are no longer sensitive to the Nusselt number profile.
Seismic Rayleigh Wave Digital Processing Technology
Jie, Li
2013-04-01
In Rayleigh wave exploration, the digital processing of data plays a very important position. This directly affects the interpretation of ground effect. Therefore, the use of accurate processing software and effective method in the Rayleigh wave exploration has important theoretical and practical significance. Previously, Rayleigh wave dispersion curve obtained by the one-dimensional phase analysis. This method requires channel spacing should be less than the effective wavelength. And minimal phase error will cause great changes in the phase velocity of Rayleigh wave. Damped least square method is a local linear model. It is easy to cause that inversion objective function cannot find the global optimal solution. Therefore, the method and the technology used in the past are difficult to apply the requirements of the current Rayleigh wave exploration. This study focused on the related technologies and algorithms of F-K domain dispersion curve extraction and GA global non-linear inversion, and combined with the impact of Rayleigh wave data acquisition parameters and the characteristics. Rayleigh wave exploration data processing software design and process technology research is completed. Firstly, the article describes the theoretical basis of Rayleigh wave method. This is also part of the theoretical basis of following treatment. The theoretical proof of existence of Rayleigh wave Dispersive in layered strata. Secondly, F-K domain dispersion curve extraction tests showed that the method can overcome the one-dimensional digital processing technology deficiencies, and make full use of multi-channel Rayleigh wave data record information. GA global non-linear inversion indicated that the inversion is not easy getting into local optimal solution. Thirdly, some examples illustrate each mode Rayleigh wave dispersion curve characteristics in the X-T domain. Tests demonstrated the impact on their extraction of dispersion curves. Parameters change example (including the X
Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow
Liu, Lulu
2017-03-17
A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.
Salinity transfer in bounded double diffusive convection
Yang, Yantao; Ostilla-Mónico, Rodolfo; Sun, Chao; Verzicco, Roberto; Grossmann, Siegfried; Lohse, Detlef
2015-01-01
The double diffusive convection between two parallel plates is numerically studied for a series of parameters. The flow is driven by the salinity difference and stabilized by the thermal field. Our simulations are directly compared to experiments by Hage and Tilgner (\\emph{Phys. Fluids} 22, 076603 (2010)) for several sets of parameters and reasonable agreement is found. This in particular holds for the salinity flux and its dependence on the salinity Rayleigh number. Salt fingers are present in all simulations and extend through the entire height. The thermal Rayleigh number seems to have minor influence on salinity flux but affects the Reynolds number and the morphology of the flow. Next to the numerical calculation, we apply the Grossmann-Lohse theory for Rayleigh-B\\'{e}nard flow to the current problem without introducing any new coefficients. The theory successfully predicts the salinity flux both with respect to the scaling and even with respect to the absolute value for the numerical and experimental res...
Mode-to-mode energy transfers in convective patterns
Mahendra K Verma; Krishna Kumar; Bhaskar Kamble
2006-12-01
We investigate the energy transfer between various Fourier modes in a low-dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical equations for thermal convection in Boussinesq fluids. Numerical and analytical studies of this model show that convective rolls appear as the Rayleigh number is raised above its critical value c. Further increase of Rayleigh number generates rolls in the perpendicular directions as well, and we obtain a dynamic asymmetric square pattern. This pattern is due to Hopf bifurcation. There are two sets of limit cycles corresponding to the two competing asymmetric square patterns. When the Rayleigh number is increased further, the limit cycles become unstable simultaneously, and chaotic motion sets in. The onset of chaos is via intermittent route. The trajectories wander for quite a long time almost periodically before jumping irregularly to one of the two ghost limit cycles.
Overview of Rayleigh-Taylor instability
Sharp, D.H.
1983-01-01
The aim of this talk is to survey Rayleigh-Taylor instability, describing the phenomenology that occurs at a Taylor unstable interface, and reviewing attempts to understand these phenomena quantitatively.
Convective mixing in homogeneous porous media flow
Ching, Jia-Hau; Chen, Peilong; Tsai, Peichun Amy
2017-01-01
Inspired by the flow processes in the technology of carbon dioxide (CO2) storage in saline formations, we modeled a homogeneous porous media flow in a Hele-Shaw cell to investigate density-driven convection due to dissolution. We used an analogy of the fluid system to mimic the diffusion and subsequent convection when CO2 dissolves in brine, which generates a heavier solution. By varying the permeability, we examined the onset of convection, the falling dynamics, the wavelengths of fingers, and the rate of dissolution, for the Rayleigh number Ra (a dimensionless forcing term which is the ratio of buoyancy to diffusivity) in the range of 2.0 ×104≤Ra≤8.26 ×105 . Our results reveal that the effect of permeability influences significantly the initial convective speed, as well as the later coarsening dynamics of the heavier fingering plumes. However, the total dissolved mass, characterized by a nondimensional Nusselt number Nu, has an insignificant dependence on Ra. This implies that the total dissolution rate of CO2 is nearly constant in high Ra geological porous structures.
Rayleigh-Taylor mixing in supernova experiments
Swisher, N. C.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Kuranz, C. C. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Arnett, D. [University of Arizona, Tucson, Arizona 85721 (United States); Hurricane, O.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-10-15
We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order.
Adiabatic partition effect on natural convection heat transfer inside a square cavity
Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.
2017-01-01
. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic...
Asymptotic solution of natural convection problem in a square cavity heated from below
Grundmann, M; Mojtabi, A; vantHof, B
1996-01-01
Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic development in powers of the Rayleigh number. Carries the approximation through to the 34th order. Analyses convergence of the resulting series for the Nusselt number in both monocellular and multicell
Asymptotic solution of natural convection problem in a square cavity heated from below
Grundmann, M; Mojtabi, A; vantHof, B
1996-01-01
Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic development in powers of the Rayleigh number. Carries the approximation through to the 34th order. Analyses convergence of the resulting series for the Nusselt number in both monocellular and multicell
The unifying theory of scaling in thermal convection: the updated prefactors
Stevens, Richard Johannes Antonius Maria; van der Poel, Erwin; Grossmann, S.; Lohse, Detlef
2013-01-01
The unifying theory of scaling in thermal convection (Grossmann & Lohse, J. Fluid. Mech., vol. 407, 2000, pp. 27–56; henceforth the GL theory) suggests that there are no pure power laws for the Nusselt and Reynolds numbers as function of the Rayleigh and Prandtl numbers in the experimentally accessi
Examining the Impact of Prandtl Number and Surface Convection Models on Deep Solar Convection
O'Mara, B. D.; Augustson, K.; Featherstone, N. A.; Miesch, M. S.
2015-12-01
Turbulent motions within the solar convection zone play a central role in the generation and maintenance of the Sun's magnetic field. This magnetic field reverses its polarity every 11 years and serves as the source of powerful space weather events, such as solar flares and coronal mass ejections, which can affect artificial satellites and power grids. The structure and inductive properties are linked to the amplitude (i.e. speed) of convective motion. Using the NASA Pleiades supercomputer, a 3D fluids code simulates these processes by evolving the Navier-Stokes equations in time and under an anelastic constraint. This code simulates the fluxes describing heat transport in the sun in a global spherical-shell geometry. Such global models can explicitly capture the large-scale motions in the deep convection zone but heat transport from unresolved small-scale convection in the surface layers must be parameterized. Here we consider two models for heat transport by surface convection, including a conventional turbulent thermal diffusion as well as an imposed flux that carries heat through the surface in a manner that is independent of the deep convection and the entropy stratification it establishes. For both models, we investigate the scaling of convective amplitude with decreasing diffusion (increasing Rayleigh number). If the Prandtl number is fixed, we find that the amplitude of convective motions increases with decreasing diffusion, possibly reaching an asymptotic value in the low diffusion limit. However, if only the thermal diffusion is decreased (keeping the viscosity fixed), we find that the amplitude of convection decreases with decreasing diffusion. Such a high-Prandtl-number, high-Peclet-number limit may be relevant for the Sun if magnetic fields mix momentum, effectively acting as an enhanced viscosity. In this case, our results suggest that the amplitude of large-scale convection in the Sun may be substantially less than in current models that employ an
Rayleigh--Taylor spike evaporation
Schappert, G. T.; Batha, S. H.; Klare, K. A.; Hollowell, D. E.; Mason, R. J.
2001-09-01
Laser-based experiments have shown that Rayleigh--Taylor (RT) growth in thin, perturbed copper foils leads to a phase dominated by narrow spikes between thin bubbles. These experiments were well modeled and diagnosed until this '' spike'' phase, but not into this spike phase. Experiments were designed, modeled, and performed on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton , Opt. Commun. 133, 495 (1997)] to study the late-time spike phase. To simulate the conditions and evolution of late time RT, a copper target was fabricated consisting of a series of thin ridges (spikes in cross section) 150 {mu}m apart on a thin flat copper backing. The target was placed on the side of a scale-1.2 hohlraum with the ridges pointing into the hohlraum, which was heated to 190 eV. Side-on radiography imaged the evolution of the ridges and flat copper backing into the typical RT bubble and spike structure including the '' mushroom-like feet'' on the tips of the spikes. RAGE computer models [R. M. Baltrusaitis, M. L. Gittings, R. P. Weaver, R. F. Benjamin, and J. M. Budzinski, Phys. Fluids 8, 2471 (1996)] show the formation of the '' mushrooms,'' as well as how the backing material converges to lengthen the spike. The computer predictions of evolving spike and bubble lengths match measurements fairly well for the thicker backing targets but not for the thinner backings.
Onset of Vibrational Convection in a Binary Fluid Saturated Non-Darcy Porous Layer Heated from Above
Saravanan S.
2012-07-01
Full Text Available A linear stability analysis is used to investigate the influence of mechanical vibration on the onset of thermosolutal convection in a horizontal porous layer heated and salted from above. Vibrations are considered with arbitrary amplitude and frequency. The Brinkman extended Darcy model is used to describe the flow and the Oberbeck-Boussinesq approximation is employed. Continued fraction method and Floquet theory are used to determine the convective instability threshold. It is found that the solutal Rayleigh number has the stabilizing effect. The existence of a closed disconnected loop of synchronous mode is predicted in the marginal curve for moderate values of solutal Rayleigh number and vibration amplitude.
National Convective Weather Forecast
National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...
Kawazura, Yohei
2011-01-01
Entropy production rate (EPR) is often effective to describe how a structure is self-organized in a nonequilibrium thermodynamic system. The "minimum EPR principle" is widely applicable to characterizing self-organized structures, but is sometimes disproved by observations of "maximum EPR states." Here we delineate a dual relation between the minimum and maximum principles; the mathematical representation of the duality is given by a Legendre transformation. For explicit formulation, we consider heat transport in the boundary layer of fusion plasma [Phys. Plasmas {\\bf 15}, 032307 (2008)]. The mechanism of bifurcation and hysteresis (which are the determining characteristics of the so-called H-mode, a self-organized state of reduced thermal conduction) is explained by multiple tangent lines to a pleated graph of an appropriate thermodynamic potential. In the nonlinear regime, we have to generalize Onsager's dissipation function. The generalized function is no longer equivalent to EPR; then EPR ceases to be the...
Convection in Binary Fluid Mixtures; 2, Localized Traveling Waves
Barten, W; Kamps, M; Schmitz, R
1995-01-01
Nonlinear, spatially localized structures of traveling convection rolls are investigated in quantitative detail as a function of Rayleigh number for two different Soret coupling strengths (separation ratios) with Lewis and Prandtl numbers characterizing ethanol-water mixtures. A finite-difference method was used to solve the full hydrodynamic field equations numerically. Structure and dynamics of these localized traveling waves (LTW) are dominated by the concentration field. Like in the spatially extended convective states ( cf. accompanying paper), the Soret-induced concentration variations strongly influence, via density changes, the buoyancy forces that drive convection. The spatio-temporal properties of this feed-back mechanism, involving boundary layers and concentration plumes, show that LTW's are strongly nonlinear states. Light intensity distributions are determined that can be observed in side-view shadowgraphs. Detailed analyses of all fields are made using colour-coded isoplots, among others. In th...
Spatio-temporal Patterns in Inclined Layer Convection
Subramanian, Priya; Brausch, Oliver; Daniels, Karen E; Bodenschatz, Eberhard; Schneider, Tobias M
2015-01-01
This paper reports on a theoretical analysis of the rich variety of spatio-temporal patterns observed recently in inclined layer convection at medium Prandtl number when varying the inclination angle {\\gamma} and the Rayleigh number R. The patterns are shown to originate from a complicated competition of buoyancy-driven and shear-flow driven pattern forming mechanisms. The former is expressed as longitudinal convection rolls with their axes oriented parallel to the incline, the latter as perpendicular transverse rolls. Our investigation is based on the standard Oberbeck-Boussinesq equations. Besides conventional methods to study roll patterns and their stability, we employ in particular, direct numerical simulations in large spatial domains comparable with experimental ones. As a result we arrive at a phase diagram of the characteristic complex 3D convection patterns in the {\\gamma}-R- plane, which compares very well to the experiments. In particular it is demonstrated that interactions of specific Fourier mo...
Convective heat transfer around vertical jet fires: an experimental study.
Kozanoglu, Bulent; Zárate, Luis; Gómez-Mares, Mercedes; Casal, Joaquim
2011-12-15
The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.
Equatorially trapped convection in a rapidly rotating spherical shell
Miquel, Benjamin; Julien, Keith; Knobloch, Edgar
2016-11-01
Convection plays a preponderant role in driving geophysical flows. Unfortunately, these flows are often characterized by rapid rotation (i.e. small Ekman number E) which renders the equations stiff and introduces a scale separation in the system: for example the wavelength of the marginal mode at the onset of convection in a rapidly rotating sphere scales like E 1 / 3 and is modulated by a E 1 / 6 envelope. These scalings keep the fully nonlinear dynamics of the internal convection in Earth's core (E 1015) out of reach from direct numerical simulations, analytical work and experiments on one hand, but advocate for the development of reduced models on the other hand. We present a reduced model derived in a shallow gap spherical shell geometry. As the Rayleigh number is increased, the flow is first destabilized in the equatorial region where the dynamics remains trapped. The linear stability is analyzed and the fully nonlinear dynamics is presented.
Chromo-Rayleigh Interactions of Dark Matter
Bai, Yang
2015-01-01
For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.
Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium
Jianhong Kang
2015-01-01
Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.
Bivariate Rayleigh Distribution and its Properties
Ahmad Saeed Akhter
2007-01-01
Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.
Reflectometry using longitudinal, shear and Rayleigh waves.
Chen, W; Wu, J
2000-09-01
A new technique of reflectometry using longitudinal, shear and Rayleigh waves is presented. Reflection coefficient as a function of angle incidence of an ultrasound beam with a finite beamwidth was measured for water-aluminum, water-brass, and water-glass interfaces. The measured values have matched very favorably with the results of numerical calculations based on the angular spectrum of waves method. It has been shown that the speeds of longitudinal, shear and Rayleigh waves of a solid can be determined very accurately by measuring a spectacularly reflected signal versus angle of incidence.
Optical results with Rayleigh quotient discrimination filters
Juday, Richard D.; Rollins, John M.; Monroe, Stanley E., Jr.; Morelli, Michael V.
1999-03-01
We report experimental laboratory results using filters that optimize the Rayleigh quotient [Richard D. Juday, 'Generalized Rayleigh quotient approach to filter optimization,' JOSA-A 15(4), 777-790 (April 1998)] for discriminating between two similar objects. That quotient is the ratio of the correlation responses to two differing objects. In distinction from previous optical processing methods it includes the phase of both objects -- not the phase of only the 'accept' object -- in the computation of the filter. In distinction from digital methods it is explicitly constrained to optically realizable filter values throughout the optimization process.
Castillo, Victor Manuel [Univ. of California, Davis, CA (United States)
1999-01-01
A collocation method using cubic splines is developed and applied to simulate steady and time-dependent, including turbulent, thermally convecting flows for two-dimensional compressible fluids. The state variables and the fluxes of the conserved quantities are approximated by cubic splines in both space direction. This method is shown to be numerically conservative and to have a local truncation error proportional to the fourth power of the grid spacing. A ''dual-staggered'' Cartesian grid, where energy and momentum are updated on one grid and mass density on the other, is used to discretize the flux form of the compressible Navier-Stokes equations. Each grid-line is staggered so that the fluxes, in each direction, are calculated at the grid midpoints. This numerical method is validated by simulating thermally convecting flows, from steady to turbulent, reproducing known results. Once validated, the method is used to investigate many aspects of thermal convection with high numerical accuracy. Simulations demonstrate that multiple steady solutions can coexist at the same Rayleigh number for compressible convection. As a system is driven further from equilibrium, a drop in the time-averaged dimensionless heat flux (and the dimensionless internal entropy production rate) occurs at the transition from laminar-periodic to chaotic flow. This observation is consistent with experiments of real convecting fluids. Near this transition, both harmonic and chaotic solutions may exist for the same Rayleigh number. The chaotic flow loses phase-space information at a greater rate, while the periodic flow transports heat (produces entropy) more effectively. A linear sum of the dimensionless forms of these rates connects the two flow morphologies over the entire range for which they coexist. For simulations of systems with higher Rayleigh numbers, a scaling relation exists relating the dimensionless heat flux to the two-seventh's power of the Rayleigh number
Castillo, V M
2005-01-12
A collocation method using cubic splines is developed and applied to simulate steady and time-dependent, including turbulent, thermally convecting flows for two-dimensional compressible fluids. The state variables and the fluxes of the conserved quantities are approximated by cubic splines in both space direction. This method is shown to be numerically conservative and to have a local truncation error proportional to the fourth power of the grid spacing. A ''dual-staggered'' Cartesian grid, where energy and momentum are updated on one grid and mass density on the other, is used to discretize the flux form of the compressible Navier-Stokes equations. Each grid-line is staggered so that the fluxes, in each direction, are calculated at the grid midpoints. This numerical method is validated by simulating thermally convecting flows, from steady to turbulent, reproducing known results. Once validated, the method is used to investigate many aspects of thermal convection with high numerical accuracy. Simulations demonstrate that multiple steady solutions can coexist at the same Rayleigh number for compressible convection. As a system is driven further from equilibrium, a drop in the time-averaged dimensionless heat flux (and the dimensionless internal entropy production rate) occurs at the transition from laminar-periodic to chaotic flow. This observation is consistent with experiments of real convecting fluids. Near this transition, both harmonic and chaotic solutions may exist for the same Rayleigh number. The chaotic flow loses phase-space information at a greater rate, while the periodic flow transports heat (produces entropy) more effectively. A linear sum of the dimensionless forms of these rates connects the two flow morphologies over the entire range for which they coexist. For simulations of systems with higher Rayleigh numbers, a scaling relation exists relating the dimensionless heat flux to the two-seventh's power of the Rayleigh number
Plume dynamics in quasi-2D turbulent convection.
Bizon, C.; Werne, J.; Predtechensky, A. A.; Julien, K.; McCormick, W. D.; Swift, J. B.; Swinney, Harry L.
1997-03-01
We have studied turbulent convection in a vertical thin (Hele-Shaw) cell at very high Rayleigh numbers (up to 7x10(4) times the value for convective onset) through experiment, simulation, and analysis. Experimentally, convection is driven by an imposed concentration gradient in an isothermal cell. Model equations treat the fields in two dimensions, with the reduced dimension exerting its influence through a linear wall friction. Linear stability analysis of these equations demonstrates that as the thickness of the cell tends to zero, the critical Rayleigh number and wave number for convective onset do not depend on the velocity conditions at the top and bottom boundaries (i.e., no-slip or stress-free). At finite cell thickness delta, however, solutions with different boundary conditions behave differently. We simulate the model equations numerically for both types of boundary conditions. Time sequences of the full concentration fields from experiment and simulation display a large number of solutal plumes that are born in thin concentration boundary layers, merge to form vertical channels, and sometimes split at their tips via a Rayleigh-Taylor instability. Power spectra of the concentration field reveal scaling regions with slopes that depend on the Rayleigh number. We examine the scaling of nondimensional heat flux (the Nusselt number, Nu) and rms vertical velocity (the Peclet number, Pe) with the Rayleigh number (Ra(*)) for the simulations. Both no-slip and stress-free solutions exhibit the scaling NuRa(*) approximately Pe(2) that we develop from simple arguments involving dynamics in the interior, away from cell boundaries. In addition, for stress-free solutions a second relation, Nu approximately nPe, is dictated by stagnation-point flows occurring at the horizontal boundaries; n is the number of plumes per unit length. No-slip solutions exhibit no such organization of the boundary flow and the results appear to agree with Priestley's prediction of Nu
Shear heating in creeping faults changes the onset of convection
Tung, R.; Poulet, T.; Alevizos, S.; Veveakis, E.; Regenauer-Lieb, K.
2017-10-01
The interaction between mechanical deformation of creeping faults and fluid flow in porous media has an important influence on the heat and mass transfer processes in Earth sciences. Creeping faults can act as heat sources due to the effect of shear heating and as such could be expected to alter the conditions for hydrothermal convection. In this work, we provide a finite element-based numerical framework developed to resolve the problem of heat and mass transfer in the presence of creeping faults. This framework extends the analytical approach of the linear stability analysis (LSA) frequently used to determine the bifurcation criterion for onset of convection, allowing us to study compressible cases with the option of complex geometry and/or material inhomogeneities. We demonstrate the impact of creeping faults on the onset of convection and show that shear heating—expressed through its dimensionless group the Gruntfest number Gr—has exponential influence on the critical value of the Lewis number Le (inversely proportional to the Rayleigh number Ra) required for convection: Lec ˜ Lec0 eGr. In this expression, Lec0 is the critical value of Le in the absence of shear heating. This exponential scaling shows that shear heating increases the critical Lewis number and triggers hydrothermal convection at lower permeability than in situations without it. We also show that the effect of shear heating in a fault significantly alters the pattern of convection in and around the fault zone.
Natural convection heat transfer along vertical rectangular ducts
Ali, M.
2009-12-01
Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases.
DONG-GYU LEE
2013-12-01
The predicted temperature field has indicated that the peak temperature is located in the second basket from the top along the vertical center line by effects of the natural convection. As the Rayleigh number increases, the convective heat transfer is dominant and the heat transfer due to the local circulation becomes stronger. The heat transfer characteristics show that the Nusselt numbers corresponding to 1.5×106 1.0×107.
Natural convection heat transfer of water in a horizontal circular gap
SU Guanghui; Kenichiro Sugiyama; WU Yingwei
2007-01-01
An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.
NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A PRISMATIC ENCLOSURE
Walid AICH
2011-01-01
Full Text Available Natural convection heat transfer and fluid flow have been examined numerically using the control-volume finite-element method in an isosceles prismatic cavity, submitted to a uniform heat flux from below when inclined sides are maintained isothermal and vertical walls are assumed to be perfect thermal insulators, without symmetry assumptions for the flow structure. The aim of the study is to examine a pitchfork bifurcation occurrence. Governing parameters on heat transfer and flow fields are the Rayleigh number and the aspect ratio of the enclosure. It has been found that the heated wall is not isothermal and the flow structure is sensitive to the aspect ratio. It is also found that heat transfer increases with increasing of Rayleigh number and decreases with increasing aspect ratio. The effects of aspect ratio become significant especially for higher values of Rayleigh number. Eventually the obtained results show that a pitchfork bifurcation occurs at a critical Rayleigh number, above which the symmetric solutions becomes unstable and asymmetric solutions are instead obtained.
Onset of Convection in a Nanofluid Saturated Porous Layer with Temperature Dependent Viscosity
I. S. Shivakumara
2014-04-01
Full Text Available The effect of nanofluid viscosity varying exponentially with temperature on the onset of convection in a layer of nanofluid saturated Darcy porous medium is investigated. The nanoparticle flux is zero condition on the boundaries is invoked to account for physically realistic situation. The resulting eigenvalue problem is solved numerically using the Galerkin method. It is observed that the instability sets in only as stationary convection and the occurrence of oscillatory convection is ruled out. The effect of viscosity parameter on the characteristics of stability is found to be significant and dual in nature. The onset of convection is hastened and the size of convection cells is enlarged with an increase in the value of modified diffusivity ratio, concentration Darcy-Rayleigh number, the modified particle density increment parameter and the Lewis number.
Yazdani, S.; Ashjaee, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Yousefi, T. [Razi Univ., Kermanshah (Iran, Islamic Republic of). Dept. of Mechanical Engineering
2009-07-01
Natural convection heat transfer from a horizontal isothermal cylinder located above an adiabatic surface is encountered in many technological applications, including heating, ventilating and air conditioning systems. Therefore, an understanding of how a ceiling can influence free convection heat transfer from a heated cylinder is important. This study investigated the local and average free convection heat transfer from a horizontal surface at different cylinder-to-surface spacing (L/D) and Rayleigh number experimentally using a Mach-Zehnder interferometer. Experiments were carried out using Mach-Zehnder interferometer at Rayleigh numbers in the range between 500 and 15000. The effect of the Rayleigh number and spacing from the adiabatic bottom surface on both local and the average Nusselt numbers around the cylinder were investigated. The experimental data showed that the average Nusselt number decreased to a minimum and then increased to a maximum as L/D increased. The maximum in average Nusselt number moved closer to the cylinder's surface as the Rayleigh number increased. 26 refs., 8 figs.
Convective dissolution in anisotropic porous media
de Paoli, Marco; Zonta, Francesco; Soldati, Alfredo
2016-11-01
Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability γ (the vertical-to-horizontal permeability ratio) on the distribution of solutal concentration in fluid saturated porous medium. Interestingly, we find that the finite-time (short-term) amount of solute that can be dissolved in anisotropic sedimentary rocks (γ < 1 , i.e. vertical permeability smaller than horizontal permeability) is much larger than in isotropic rocks. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. CINECA Supercomputing Centre and ISCRA Computing Initiative are gratefully acknowledged for generous allowance of computer resources. Support from Regione Autonoma Friuli Venezia Giulia under Grant PAR FSC 2007/2013 is also gratefully acknowledged.
Convective heat transport in compressible fluids.
Furukawa, Akira; Onuki, Akira
2002-07-01
We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking place throughout the cell (the piston effect) and those taking place within plumes (the adiabatic temperature gradient effect). Performing two-dimensional numerical analysis, we reveal some unique features of plume generation and convection in transient and steady states of compressible fluids. As the critical point is approached, the overall temperature changes induced by plume arrivals at the boundary walls are amplified, giving rise to overshoot behavior in transient states and significant noise in the temperature in steady states. The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for moderate Rayleigh numbers.
Sheikholeslami, Mohsen; Rokni, Houman B.
2017-05-01
Magnetohydrodynamic nanofluid flow and convective heat transfer are studied considering thermal radiation. Effects of magnetic field and shape of nanoparticles on viscosity and thermal conductivity of the nanofluid are taken into account. The solutions of final equations are obtained by the control volume-based finite-element method (CVFEM). Roles of shape of nanoparticles, radiation parameter, ferrofluid volume fraction, Hartmann and Rayleigh numbers are presented graphically. Results demonstrate that selecting the Platelet shape for Fe3O4 nanoparticles leads to maximum Nusselt number. Rate of heat transfer increases with increasing Rayleigh number and radiation parameter but it decreases with increasing Hartmann number.
Internally heated convection beneath a poor conductor
Goluskin, David
2016-01-01
We consider convection in an internally heated layer of fluid that is bounded below by a perfect insulator and above by a poor conductor. The poorly conducting boundary is modelled by a fixed heat flux. Using solely analytical methods, we find linear and energy stability thresholds for the static state, and we construct a lower bound on the mean temperature that applies to all flows. The linear stability analysis yields a Rayleigh number above which the static state is linearly unstable ($R_L$), and the energy analysis yields a Rayleigh number below which it is globally stable ($R_E$). For various boundary conditions on the velocity, exact expressions for $R_L$ and $R_E$ are found using long-wavelength asymptotics. Each $R_E$ is strictly smaller than the corresponding $R_L$ but is within 1%. The lower bound on the mean temperature is proven for no-slip velocity boundary conditions using the background method. The bound guarantees that the mean temperature of the fluid, relative to that of the top boundary, gr...
A cryostat device for liquid nitrogen convection experiments
Dubois, Charles; Duchesne, Alexis; Caps, Herve
2015-11-01
When a horizontal layer of expansible fluid heated from below is submitted to a large vertical temperature gradient, one can observe convective cells. This phenomenon is the so-called Rayleigh-Bénard instability. In the literature, this instability is mainly studied when the entire bottom surface of a container heats the liquid. Under these conditions, the development of regularly spaced convective cells in the liquid bulk is observed. Cooling applications led us to consider this instability in a different geometry, namely a resistor immersed in a bath of cold liquid. We present here experiments conducted with liquid nitrogen. For this purpose, we developed a cryostat in order to be able to perform Particle Image Velocimetry. We obtained 2D maps of the flow and observed, as expected, two Rayleigh-Bénard convective cells around the heater. We particularly investigated the vertical velocity in the central column between the two cells. We compared these data to results we obtained with silicone oil and water in the same geometry. We derived theoretical law from classical models applied to the proposed geometry and found a good agreement with our experimental data. This project has been financially supported by ARC SuperCool contract of the University of Liege.
Natural thermal convection in fractured porous media
Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.
2015-12-01
In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50
Enjilela, Vali; Salimi, Davood; Tavasoli, Ali; Lotfi, Mohsen
2016-02-01
In the present work, the meshless local Petrov-Galerkin vorticity-stream function (MLPG-VF) method is extended to solve two-dimensional laminar fluid flow and heat transfer equations for high Reynolds and Rayleigh numbers. The characteristic-based split (CBS) scheme which uses unity test function is employed for discretization, and the moving least square (MLS) method is used for interpolation of the field variables. Four test cases are considered to evaluate the present algorithm, namely lid-driven cavity flow with Reynolds numbers up to and including 104, flow over a backward-facing step at Reynolds number of 800, natural convection in a square cavity for Rayleigh numbers up to and including 108, and natural convection in a concentric square outer cylinder and circular inner cylinder annulus for Rayleigh numbers up to and including 107. In each case, the result obtained using the proposed algorithm is either compared with the results from the literatures or with those obtained using conventional numerical techniques. The present algorithm shows stable results at lower or equal computational cost compared to the other upwinding schemes usually employed in the MLPG method. Close agreements between the compared results as well as higher accuracy of the proposed method show the ability of this stabilized algorithm.
Variable permeability effect on convection in binary mixtures saturating a porous layer
Alloui, Z.; Vasseur, P. [University of Montreal, Ecole Polytechnique de Montreal, Montreal, QC (Canada); Bennacer, R. [LEEVAM, University of Cergy, Neuville sur Oise (France)
2009-06-15
The Darcy Model with the Boussinesq approximation is used to study natural convection in a shallow porous layer, with variable permeability, filled with a binary fluid. The permeability of the medium is assumed to vary exponentially with the depth of the layer. The two horizontal walls of the cavity are subject to constant fluxes of heat and solute while the two vertical ones are impermeable and adiabatic. The governing parameters for the problem are the thermal Rayleigh number, R{sub T}, the Lewis number, Le, the buoyancy ratio, {phi}, the aspect ratio of the cavity, A, the normalized porosity, {epsilon}, the variable permeability constant, c, and parameter a defining double-diffusive convection (a=0) or Soret induced convection (a=1). For convection in an infinite layer, an analytical solution of the steady form of the governing equations is obtained on the basis of the parallel flow approximation. The onset of supercritical convection, R{sub T}C{sup sub}, or subcritical, R{sub T}C{sup sub}, convection are predicted by the present theory. A linear stability analysis of the parallel flow model is conducted and the critical Rayleigh number for the onset of Hopf's bifurcation is predicted numerically. Numerical solutions of the full governing equations are found to be in excellent agreement with the analytical predictions. (orig.)
Transitional boundary layers in low-Prandtl-number convection
Schumacher, Jörg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet D.
2016-12-01
The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough, the dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes, and an interior region away from the side walls. The latter is dominated by the shear of the large-scale circulation (LSC) roll, which fills the whole cell and continuously varies its orientation. The working fluid is liquid mercury or gallium at a Prandtl number Pr=0.021 for Rayleigh numbers 3 ×105≤Ra≤4 ×108 . The generated turbulent momentum transfer corresponds to macroscopic flow Reynolds numbers with 1.8 ×103≤Re≤4.6 ×104 . In highly resolved spectral element direct numerical simulations, we present the mean profiles of velocity, Reynolds stress, and temperature in inner viscous units and compare our findings with convection experiments and channel flow data. The complex three-dimensional and time-dependent structure of the LSC in the cell is compensated by a plane-by-plane symmetry transformation which aligns the horizontal velocity components and all its derivatives with the instantaneous orientation of the LSC. As a consequence, the torsion of the LSC is removed, and a streamwise direction in the shear flow can be defined. It is shown that the viscous boundary layers for the largest Rayleigh numbers are highly transitional and obey properties that are directly comparable to transitional channel flows at friction Reynolds numbers Reτ≲102 . The transitional character of the viscous boundary layer is also underlined by the strong enhancement of the fluctuations of the wall stress components with increasing Rayleigh number. An extrapolation of our analysis data suggests that the friction Reynolds number Reτ in the velocity boundary
Porous-medium convection: new problems from CO2 sequestration
Lister, John
2013-11-01
Large scale injection and storage of supercritical carbon dioxide (CO2) into deep saline aquifers is proposed to offset anthropogenic emissions and mitigate climate change. Many aspects of the resultant porous flows provoke fundamental fluid-mechanical problems. The rise and spread of the buoyant CO2 plume beneath an overlying impermeable stratum is a classic gravity current, but with the undesirable extra possibility of upward leakage through fractures. Fortunately, long-term trapping mechanisms exist. One such, dissolution of CO2 into the underlying brine, produces a denser solution which thus convects reassuringly downwards. Consideration of the convective flux prompts re-examination of high-Ra convection in a porous medium, which is found to have a strikingly different asymptotic form from that in a pure fluid. The high-Ra regime of Rayleigh-Darcy convection has an ordered interior with a linear mean temperature gradient and a superposed vertical columnar heat-exchanger flow whose wavelength is consistent with the Ra - 5 / 14 scaling predicted by an asymptotic stability analysis. Quantification of the convective dissolution flux allows evolution towards saturation in confined aquifers, or the erosion of a gravity current in open aquifers, to be calculated.
Rayleigh reflections and nonlinear acoustics of solids
Breazeale, M. A.
1980-10-01
Schlierken studies of ultrasonic waves, and nonlinear acoustics of solids are addressed. A goniometer for use in a Schlieren system for visualization of ultrasonic waves in liquids is described. The goniometer is used to obtain Schlieren photographs of leaky Rayleigh waves excited on an Al2O3 layer on a stainless steel reflector immersed in water, showing that the Rayleigh wave velocity in this case is less than that of either a water Al203 layer or a water stainless steel layer. Also investigated are: (1) nonlinearity parameters and third order elastic constants of copper between 300 and 3 K; (2) measurement of nonlinearity parameters in small solid samples by the harmonic generation technique; (3) relationship between solid nonlinearity parameters and thermodynamic Gruneisen parameters; and (4) quantum mechanical theory of nonlinear interaction of ultrasonic waves.
Modulational instability arising from collective Rayleigh scattering.
Robb, G R M; McNeil, B W J
2003-02-01
It is shown that under certain conditions a collection of dielectric Rayleigh particles suspended in a viscous medium and enclosed in a bidirectional ring cavity pumped by a strong laser field can produce a new modulational instability transverse to the wave-propagation direction. The source of the instability is collective Rayleigh scattering i.e., the spontaneous formation of periodic longitudinal particle-density modulations and a backscattered optical field. Using a linear stability analysis a dispersion relation is derived which determines the region of parameter space in which modulational instability of the backscattered field and the particle distribution occurs. In the linear regime the pump is modulationally stable. A numerical analysis is carried out to observe the dynamics of the interaction in the nonlinear regime. In the nonlinear regime the pump field also becomes modulationally unstable and strong pump depletion occurs.
ALE simulation of Rayleigh-Taylor instability
Anbarlooei, H.R. [Univ. of Science and Technology, Dept. of Mechanical Engineering, Tehran (Iran, Islamic Republic of); Mazaheri, K. [Univ. of Tarbiyat Modares, Dept. of Mechanical Engineering, Tehran, (Iran, Islamic Republic of)]. E-mail: Kiumars@modares.ac.ir; Bidabadi, M. [Univ. of Science and Technology, Dept. of Mechanical Engineering, Tehran (Iran, Islamic Republic of)
2004-07-01
This paper investigates the use of an Arbitrary Lagrangian-Eulerian (ALE) technique for the simulation of a single mode Rayleigh-Taylor instability. A compatible Lagrangian algorithm is used on a simply connected quadrilateral grid in Lagrangian Phase. This algorithm includes subzonal pressures, which are used to control spurious grid motion, and an edge centered artificial viscosity. We use Reference Jacobians optimization based rezone algorithm in the rezoning phase of ALE method. Also a second order sign preserving method is used for remapping. To force monotonocity in remapping phase a Repair algorithm is used. Finally, for remapping of nodal variables we used a second order transformer to transfer these data to cell centers. It is shown that the usage of these algorithms for an ALE method can improve the simulation of a single mode Rayleigh-Taylor Instability. (author)
Stochastic Convection Parameterizations
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Houdek, G
2010-01-01
In this short review on stellar convection dynamics I address the following, currently very topical, issues: (1) the surface effects of the Reynolds stresses and nonadiabaticity on solar-like pulsation frequencies, and (2) oscillation mode lifetimes of stochastically excited oscillations in red giants computed with different time-dependent convection formulations.
High-Frequency Rayleigh-Wave Method
Jianghai Xia; Richard D Millerg; Xu Yixian; Luo Yinhe; Chen Chao; Liu Jiangping; Julian Ivanov; Chong Zeng
2009-01-01
High-frequency (≥2 Hz) Rayleigh-wave data acquired with a multichannei recording sys-tem have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave tech-niques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a nou-iuvasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.
Zero-Prandtl-number convection with slow rotation
Maity, Priyanka; Kumar, Krishna
2014-01-01
We present the results of our investigations of the primary instability and the flow patterns near onset in zero-Prandtl-number Rayleigh-B\\'enard convection with uniform rotation about a vertical axis. The investigations are carried out using direct numerical simulations of the hydrodynamic equations with stress-free horizontal boundaries in rectangular boxes of size $(2\\pi/k_x) \\times (2\\pi/k_y) \\times 1$ for different values of the ratio $\\eta = k_x/k_y$. The primary instability is found to...
Thermal convection of viscoelastic shear-thinning fluids
Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.
2016-12-01
The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.
Generation of large-scale winds in horizontally anisotropic convection
von Hardenberg, J; Provenzale, A; Spiegel, E A
2015-01-01
We simulate three-dimensional, horizontally periodic Rayleigh-B\\'enard convection between free-slip horizontal plates, rotating about a horizontal axis. When both the temperature difference between the plates and the rotation rate are sufficiently large, a strong horizontal wind is generated that is perpendicular to both the rotation vector and the gravity vector. The wind is turbulent, large-scale, and vertically sheared. Horizontal anisotropy, engendered here by rotation, appears necessary for such wind generation. Most of the kinetic energy of the flow resides in the wind, and the vertical turbulent heat flux is much lower on average than when there is no wind.
Numerical simulation of magnetic nanofluid natural convection in porous media
Sheikholeslami, Mohsen
2017-02-01
Free convection of magnetic nanofluid in a porous curved cavity is investigated. Influence of external magnetic source is taken into account. Innovative numerical approach, namely CVFEM, is applied. Impacts of Darcy number (Da), Rayleigh (Ra), Hartmann (Ha) numbers and volume fraction of Fe3O4 (ϕ) on hydrothermal characteristics are examined. Results indicate that heat transfer augmentation augments with rise of Ha and reduces with rise of Da , Ra . Lorentz forces make the nanofluid motion to decrease and enhance the thermal boundary layer thickness. Temperature gradient enhances with increase of Da , Ra , ϕ, but it reduces with rise of Ha.
Convective transport in a porous medium layer saturated with a Maxwell nanofluid
J.C. Umavathi
2016-01-01
Full Text Available A linear and weakly non-linear stability analys is has been carried out to study the onset of convection in a horizontal layer of a porous medium saturated with a Maxwell nanofluid. To simulate the momentum equation in porous media, a modified Darcy–Maxwell nanofluid model incorporating the effects of Brownian motion and thermophoresis has been used. A Galerkin method has been employed to investigate the stationary and oscillatory convections; the stability boundaries for these cases are approximated by simple and useful analytical expressions. The stability of the system is investigated by varying various parameters viz., nanoparticle concentration Rayleigh number, Lewis number, modified diffusivity ratio, porosity, thermal capacity ratio, viscosity ratio, conductivity ratio, Vadász number and relaxation parameter. A representation of Fourier series method has been used to study the heat and mass transport on the non-linear stability analysis. The effect of transient heat and mass transport on various parameters is also studied. It is found that for stationary convection Lewis number, viscosity ratio and conductivity ratio have a stabilizing effect while nanoparticle concentration Rayleigh number Rn destabilizes the system. For oscillatory convection we observe that the conductivity ratio stabilizes the system whereas nanoparticle concentration Rayleigh number, Lewis number, Vadász number and relaxation parameter destabilize the system. The viscosity ratio increases the thermal Rayleigh number for oscillatory convection initially thus delaying the onset of convection and later decreases thus advancing the onset of convection hence showing a dual effect. For steady finite amplitude motions, the heat and mass transport decreases with an increase in the values of nanoparticle concentration Rayleigh number, Lewis number, viscosity ratio and conductivity ratio. The mass transport increases with an increase in Vadász number and relaxation
Tournier, C.; Genthon, P.; Rabinowicz, M. [UMR 5562 Observatoire Midi-Pyrenees, Toulouse (France)
1999-07-01
Very few results are available on free convection in fractured zones, although this is a major mechanism for heat and mass transfer in crystalline rocks. Murphy (1979) has shown, using analytical stability analysis, that the critical Rayleigh number for the onset of free convection in a fracture greatly exceeds the value of 4{pi}{sup 2}, which is the value for an infinite porous medium, and even for a subcritical Rayleigh number, convection may occur after a time delay. Murphy proposed that this delayed convection results from a blanketing effect of the fracture induced by the progressive development of a thermal skin inside the fracture walls. The present paper extends Murphy's results by means of numerical modelling. Our numerical method involves a 2-D computation of convection in the fracture plane, and a 3-D solution of the conduction problem inside the fracture wall. The coupling of the codes is achieved by imposing a common temperature at the mid-fracture plane, together with the conservation of energy at the fracture-wall interface. We use two kinds of initial perturbation, which are assumed to constitute end-members for natural or application cases. For an A-type initial condition the thermal field is disrupted in the fracture only, while for a B-type initial condition the perturbation is introduced in the fracture and in the walls. For a given perturbation wavenumber, three distinct domains can be defined according to the Rayleigh number (R). In the first domain, convection takes place immediately; in the second one, convection starts after a delay; and in the third one, convection is damped. These three domains are therefore termed the instantaneous convection (R > R{sub s}), delayed convection (R{sub d} < R < R{sub s}), and conduction (R < R{sub d}) domains, respectively. It is noteworthy that these three domains are bounded by the same values of the Rayleigh number for both A-type and B-type perturbations. Except for R close to R{sub d}, the time
Zhou, S.-Q.; Qu, L.; Lu, Y.-Z.; Song, X.-L.
2014-02-01
In the present study, the classical description of diffusive convection is updated to interpret the instability of diffusive interfaces and the dynamical evolution of the bottom layer in the deep Arctic Ocean. In the new consideration of convective instability, both the background salinity stratification and rotation are involved. The critical Rayleigh number of diffusive convection is found to vary from 103 to 1011 in the deep Arctic Ocean as well as in other oceans and lakes. In such a wide range of conditions, the interface-induced thermal Rayleigh number is shown to be consistent with the critical Rayleigh number of diffusive convection. In most regions, background salinity stratification is found to be the main hindrance to the occurrence of convecting layers. With the new parameterization, it is predicted that the maximum thickness of the bottom layer is 1051 m in the deep Arctic Ocean, which is close to the observed value of 929 m. The evolution time of the bottom layer is predicted to be ~ 100 yr, which is on the same order as that based on 14C isolation age estimation.
Natural convection through enclosed disconnected solid blocks
Lao, Fernando Cesar De; Junqueira, Silvio L.M.; Franco, Admilson T. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)]. E-mails: fernandodelai@gmail.com; silvio@utfpr.edu.br; admilson@utfpr.edu.br; Lage, Jose L. [Southern Methodist University (SMU), Dallas, TX (United States)]. E-mail: JLL@smu.edu
2008-07-01
In this study, the natural convection inside a fluid filled, enclosure containing several solid obstructions and being heated from the side is modeled and numerically simulated. The solid obstructions are equally spaced, conducting, and disconnected square blocks. The mathematical model is based on the balance equations of mass, momentum and energy, which are then solved numerically via the finite-volume method with the SIMPLEST algorithm and the HYBRID scheme. The effects of varying the solid-fluid thermal conductivity ratio (K), the fluid volume-fraction or porosity ({phi}), the number of solid blocks (N) and the heating strength (represented by the Rayleigh number, Ra) of the enclosure on the Nusselt number based on the surface-averaged heat transfer coefficient along the heated wall of the enclosure are studied. The results indicate a competing effect caused by the proximity of the solid blocks to the heated and cooled walls, vis-a-vis hindering the boundary layer growth, hence reducing the heat transfer effectiveness, and at the same time enhancing the heat transfer when the blocks' thermal conductivity is larger than that of the fluid. An analytical estimate of the minimum number of blocks beyond which the convection hindrance becomes predominant is presented and validated by the numerical results. (author)
Flow patterns of natural convection in an air-filled vertical cavity
Wakitani, Shunichi
1998-08-01
Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.
Nonlinear thermal convection in a layer of nanofluid under G-jitter and internal heating effects
Bhadauria B. S.
2014-01-01
Full Text Available This paper deals with a mathematical model of controlling heat transfer in nanofluids. The time-periodic vertical vibrations of the system are considered to effect an external control of heat transport along with internal heating effects. A weakly non-linear stability analysis is based on the five-mode Lorenz model using which the Nusselt number is obtained as a function of the thermal Rayleigh number, nano-particle concentration based Rayleigh number, Prandtl number, Lewis number, modified diffusivity ratio, amplitude and frequency of modulation. It is shown that modulation can be effectively used to control convection and thereby heat transport. Further, it is found that the effect of internal Rayleigh number is to enhance the heat and nano-particles transport.
Observing Convective Aggregation
Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita
2017-06-01
Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.
Stability of Natural Convection of Power-law Fluid and non-Darcy Flow in Porous Media
Kong Xiangyan; Chen Guoquan; Wu Jianbing; Li Peichao; Lu Detang; Xu Xianzhi
2001-01-01
In the present work the effect of the power law exponent of power-law fluid and non-Darcy number of non-Darcy flow on stability of natural convection in porous media are studied. The computation analysis of effect of power law exponent of power-law fluid and non-Darcy number of non-Darcy flow in the rectangular duct on the transition Rayleigh number Ra*, which means the convective model transiting from stationary state to periodic solution. The duct has filled a porous medium saturated with the power-law non-Newtonian fluid or Newtonian fluid for non-Darcy flow, in which there is uniform internal heat generation per unit volume q. In this paper the relationship between the transition Rayleigh number Ra* and the power-law exponent n, Ra* and non-Darcy number Be, are shown .To these two aspects, the transition route from steady to chaotic convection is also obtained.
Turbulent mixed convection in asymmetrically heated vertical channel
Mokni Ameni
2012-01-01
Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.
Topological analysis of a mixing flow generated by natural convection
Contreras, Pablo Sebastián; de la Cruz, Luis Miguel; Ramos, Eduardo
2016-01-01
We use topological tools to describe the natural convective motion and the Lagrangian trajectories of a flow generated by stepwise, alternating heating and cooling protocol of opposite vertical walls of a cubic container. The working fluid considered is Newtonian and the system is in presence of the acceleration of gravity but the nonlinear terms are neglected, i.e., we study the piece-wise steady and linear problem. For this convective mixing flow, we identify invariant surfaces formed by the Lagrangian orbits of massless tracers that are topologically equivalent to spherical shells and period-1 lines with elliptic and hyperbolic segments that are located on symmetry planes. We describe the previous features as functions of the Rayleigh number in the range 3 × 104 ≤ Ra ≤ 5 × 105. We show that this system shares properties with other systems with non-toroidal invariant surfaces.
A numerical study of natural convection in eccentric spherical annuli
Gallegos, Angel; Malaga, Carlos
2016-11-01
A fluid between two spheres, concentric or not, at different temperatures will flow in the presence of a constant gravitational force. Although there is no possible hydrostatic state, energy transport is dominated by diffusion if temperature difference between the spheres is small enough. By the use of a full three-dimensional thermal lattice Boltzmann model we study the transition between the conductive, the steady convective, and the unsteady convective regimes. We use the concentric case to validate the results by comparing with experiments and numerical simulations found in the literature, and then we extend our numerical experiments to the eccentric case to observe the general behavior of the different regimes. We analyze the energy transport characterized by the relation between Nusselt and Rayleigh numbers as well as the arising flow patterns. This work was partially supported by UNAM-DGAPA-PAPIIT Grant Number IN115216.
Mixed convection in turbulent channels with unstable stratification
Pirozzoli, Sergio; Verzicco, Roberto; Orlandi, Paolo
2016-01-01
We study turbulent flows in planar channels with unstable thermal stratification, using direct numerical simulations in a wide range of Reynolds and Rayleigh numbers and reaching flow conditions which are representative of asymptotic developed turbulence. The combined effect of forced and free convection produces a peculiar pattern of quasi--streamwise rollers occupying the full channel thickness with aspect--ratio considerably higher than unity; it has been observed that they have an important redistributing effect on temperature and momentum. The mean values and the variances of the flow variables do not appear to follow Prandtl's scaling in the flow regime near free convection, except for the temperature and vertical velocity fluctuations, which are more affected by turbulent plumes. Nevertheless, we find that the Monin--Obukhov theory still yields a useful representation of the main flow features. In particular, the widely used Businger--Dyer relationships provide a convenient way of accounting for the bu...
Natural convection between a vertical cylinder and a surrounding array
McEligot, D.M.; O`Brien, J.E.; Stoots, C.M.; Larson, T.K.; Christenson, W.A.; Mecham, D.C.; Lussie, W.G.
1992-09-01
The generic situation considered is natural convection between a single heated, vertical cylinder and a surrounding array of cooler vertical cylinders in a triangular pattern. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6 by adjusting the electrical power. The Rayleigh number, based on test section diameter and air properties evaluated at cooling tube temperature, ranged from 2.9 x 10{sup 4} to 4.6 x 10{sup 5}. Results indicate that the convective heat transfer data could be approximated as Nu{sub D} (T{sub ts}/T{sub ct}){sup 0.14} = 0.156 Ra{sub D}{sup 1/3} in the apparent turbulent region for Ra{sub L} > 1.2 x 10{sup 11.}
Natural convection between a vertical cylinder and a surrounding array
McEligot, D.M.; O' Brien, J.E.; Stoots, C.M.; Larson, T.K.; Christenson, W.A.; Mecham, D.C.; Lussie, W.G.
1992-01-01
The generic situation considered is natural convection between a single heated, vertical cylinder and a surrounding array of cooler vertical cylinders in a triangular pattern. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6 by adjusting the electrical power. The Rayleigh number, based on test section diameter and air properties evaluated at cooling tube temperature, ranged from 2.9 x 10{sup 4} to 4.6 x 10{sup 5}. Results indicate that the convective heat transfer data could be approximated as Nu{sub D} (T{sub ts}/T{sub ct}){sup 0.14} = 0.156 Ra{sub D}{sup 1/3} in the apparent turbulent region for Ra{sub L} > 1.2 x 10{sup 11.}
Chaotic travelling rolls in Rayleigh–Bénard convection
Supriyo Paul; Krishna Kumar; Mahendra K Verma; Daniele Carati; Arnab K De; Vinayak Eswaran
2010-01-01
In this paper we investigate two-dimensional (2D) Rayleigh–B ́enard convection using direct numerical simulation in Boussinesq fluids with Prandtl number = 6.8 confined between thermally conducting plates. We show through the simulation that in a small range of reduced Rayleigh number (770 < < 890) the 2D rolls move chaotically in a direction normal to the roll axis. The lateral shift of the rolls may lead to a global flow reversal of the convective motion. The chaotic travelling rolls are observed in simulations with free-slip as well as no-slip boundary conditions on the velocity field. We show that the travelling rolls and the flow reversal are due to an interplay between the real and imaginary parts of the critical modes.
Pulsation driving and convection
Antoci, Victoria
2015-08-01
Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.
Mohammad Jafari
2015-09-01
Full Text Available The effects of Single Walled Carbon Nanotube and Copper nanoparticles on natural convection heat transfer in an open cavity are investigated numerically. The problem is studied for different volume fractions of nanoparticles (0–1% and aspect ratio of the cavity (1–4 when Rayleigh number varies from 103 to 105. The volume fraction of added nanoparticles to Water is lower than 1% to make a dilute suspension. Although, results show that adding nanoparticles to the base fluid enhances the heat transfer, make a comparison between SWCNT and Cu-nanoparticles shows that the SWCNT-nanoparticle has better performance to enhance the convection rate. It is found that the aspect ratio of the cavity plays an important role on natural convection. An increase of this parameter leads to heat transfer reduction in the target problem. It is concluded that the Carbon Nanotubes can be applied as a passive way to enhance heat transfer in convection problems.
On predicting the onset of transient convection in porous media saturated with Non-Newtonian liquid
Tan, K. K.; Pua, S. Y.; Yang, A.
2017-06-01
The onset of transient convection in non-Newtonian liquid immersing porous media was simulated using a Computational Fluid Dynamics (CFD) package for the thermal boundary condition of Fixed Surface Temperature (FST). Most of the simulated values of stability criteria were found to be in good agreement with the predicted and theoretical values of transient critical Rayleigh number for non-Newtonian liquid defined by Tan and Thorpe (1992) for power-law fluids. The critical transient Rayleigh numbers for convection in porous media were found to be in good agreement with theoretical values by using apparent viscosity µapp at zero shear. The critical time and critical depth for transient heat conduction were then determined accurately that
In situ Characterization of Nanoparticles Using Rayleigh Scattering
Biswajit Santra; Shneider, Mikhail N; Roberto Car
2017-01-01
We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected co...
The Destruction of 3He by Rayleigh-Taylor Instability on the First Giant Branch
Eggleton, P P; Lattanzio, J C
2006-01-01
Low-mass stars, ~1-2 solar masses, near the Main Sequence are efficient at producing 3He, which they mix into the convective envelope on the giant branch and distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the observed cosmic abundance of 3He with the predictions of Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell. In this zone the burning of the 3He left behind by the retreating convective envelope is predominantly by the reaction 3He + 3He -> 4He + 2p, a reaction which, untypically for stellar nuclear reactions, {\\it lowers} the mean molecular weight, leading to a local minimum. This local minimum ...
Search for methane isotope fractionation due to Rayleigh distillation on Titan
Ádámkovics, Máté; Mitchell, Jonathan L.
2016-09-01
We search for meridional variation in the abundance of CH3D relative to CH4 on Titan using near-IR spectra obtained with NIRSPAO at Keck, which have a photon-limited signal-to-noise ratio of ∼50. Our observations can rule out a larger than 10% variation in the column of CH3D below 50 km. The preferential condensation of the heavy isotopologues will fractionate methane by reducing CH3D in the remaining vapor, and therefore these observations place limits on the amount of condensation that occurs in the troposphere. While previous estimates of CH3D fractionation on Titan have estimated an upper limit of -6‰, assuming a solid condensate, we consider more recent laboratory data for the equilibrium fractionation over liquid methane, and use a Rayleigh distillation model to calculate fractionation in an ascending parcel of air that is following a moist adiabat. We find that deep, precipitating convection can enhance the fractionation of the remaining methane vapor by -10 to -40‰, depending on the final temperature of the rising parcel. By relating fractionation of our reference parcel model to the pressure level where the moist adiabat achieves the required temperature, we argue that the measured methane fractionation constrains the outflow level for a deep convective event. Observations with a factor of at least 4-6 times larger signal-to-noise are required to detect this amount of fractionation, depending on the altitude range over which the outflow from deep convection occurs.
Spiral plume structures in turbulent natural convection between two vertical walls
无
2002-01-01
By means of direct numerical simulation, coherent structures are investigated in turbulent natural convection between two vertical differentially heated walls. It is observed that large-scale spanwise vortices and spiral plume structures exist together in the flow. Spiral plume structures appear at the positions with relatively large helicity, large normal vorticity and high fluctuating temperature. In this note, the shape, the characteristics and formation of the spiral structures are studied and compared with those in Rayleigh-Bénard convection. The conditional sampling analysis indicates the main properties of the spiral structures.
Wong, Teresa; Solomatov, Viatcheslav S.
2016-05-01
We perform numerical simulations of lithospheric failure in the stagnant lid regime of temperature-dependent viscosity convection, using the yield stress approach. We find that the time of failure can vary significantly for the same values of the controlling parameters due to the chaotic nature of the convective system. The general trend of the dependence of the time of lithospheric failure on the yield stress can be explained by treating lithospheric failure as a type of Rayleigh-Taylor instability. This study suggests that it is important to address not only the question of whether plate tectonics can occur on a planet but also when it would occur if conditions are favorable.
Magnetic energy dissipation and mean magnetic field generation in planar convection-driven dynamos.
Tilgner, A
2014-07-01
A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipation length on the magnetic Reynolds number is found for the two geometries. Dynamos both with and without mean field exist in rapidly rotating convecting plane layers.
Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities
M. Prakash
2013-01-01
Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.
Convective modes in plasma with the strong shear of ExB drift velocity
Timofeev, A.V. [RRC ' Kurchatov Institute' , Moscow, Russia 123182 (Russian Federation)
2001-05-01
The convective modes of an inhomogeneously drifting plasma in a shear magnetic field (a generalization of Suydam's problem) is considered. It is shown that a sufficiently great shear of ExB velocity drift suppresses the instability in the case of an arbitrary 'magnetic hill'. This result can be considered again as a Rayleigh theorem analogue. (author). Letter-to-the-editor.
Unsteady MHD convection in a flat horizontal layer of liquid with free boundaries
Antimirov, M.Ya.; Liyepinya, V.R.
1977-10-01
A complete solution is produced to the unsteady problem of the convective movement of a conducting fluid in a flat horizontal layer with free boundaries (in its linear statement) when an external magnetic field is present. Analysis of the solution produced allows the stability of motion to be studied and, furthermore, permits unambiguous determination of steady motion at the boundary of stability by a passage to the limit as t ..-->.. infinity in the unsteady solution at the critical Rayleigh number. 3 references.
Kakac, Sadik; Pramuanjaroenkij, Anchasa
2014-01-01
Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....
Imaging Rayleigh wave attenuation with USArray
Bao, Xueyang; Dalton, Colleen A.; Jin, Ge; Gaherty, James B.; Shen, Yang
2016-07-01
The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. The surface wave amplitudes that constrain upper-mantle attenuation are sensitive to factors in addition to attenuation, including the earthquake source excitation, focusing and defocusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave traveltime and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique, which takes advantage of waveform similarity at nearby stations. Several estimates of Rayleigh wave attenuation and site amplification are generated at each period, using different approaches to separate the effects of attenuation and local site amplification on amplitude. It is assumed that focusing and defocusing effects can be described by the Laplacian of the traveltime field. All approaches identify the same large-scale patterns in attenuation, including areas where the attenuation values are likely contaminated by unmodelled focusing and defocusing effects. Regionally averaged attenuation maps are constructed after removal of the contaminated attenuation values, and the variations in intrinsic shear attenuation that are suggested by these Rayleigh wave attenuation maps are explored.
Transparent electric convection heater
Khalid, A.; Luck, J.L.
2001-01-01
An optically transparent electrically heated convection heater for use as a space heater in homes, offices, shops. Typically, said convection heater consists of a transparent layer 1 upon which is deposited a layer of a transparent electrically conductive material 2 such as indium-tin-oxide, electrodes 3 and 3a are formed on opposite edges of the transparent electrically conductive layer 2 and electrical wires 4 and 4a are connected to the electrodes. The transparent electrically conductive l...
Leaky Rayleigh wave investigation on mortar samples.
Neuenschwander, J; Schmidt, Th; Lüthi, Th; Romer, M
2006-12-01
Aggressive mineralized ground water may harm the concrete cover of tunnels and other underground constructions. Within a current research project mortar samples are used to study the effects of sulfate interaction in accelerated laboratory experiments. A nondestructive test method based on ultrasonic surface waves was developed to investigate the topmost layer of mortar samples. A pitch and catch arrangement is introduced for the generation and reception of leaky Rayleigh waves in an immersion technique allowing the measurement of their propagation velocity. The technique has been successfully verified for the reference materials aluminium, copper, and stainless steel. First measurements performed on mortar specimens demonstrate the applicability of this new diagnostic tool.
Global study of Rayleigh-Duffing oscillators
Chen, Hebai; Zou, Lan
2016-04-01
In this paper we investigate the global dynamics of Rayleigh-Duffing oscillators with global parameters, including equilibria at both finity and infinity, existences and coexistence of limit cycles and homoclinic loops. In fact, this oscillator will occur Hopf bifurcations, homoclinic bifurcations and double limit cycle bifurcations. Moreover, we find that the homoclinic bifurcation of this oscillator is special which is a gluing bifurcation. The global bifurcation diagram and all phase portrait are given, and numerical simulations are shown to verify our analysis finally.
Decoherence due to elastic rayleigh scattering
Uys, H
2010-11-01
Full Text Available in this manuscript now enables an accurate calculation of Rayleigh decoherence for these low-field trapped ion as well as other coherent-control experiments. We thank W.M. Itano, J. P. Britton, D. Hanneke, and M. J. Holland for useful suggestions.M. J. B.... acknowledges support from Georgia Tech and IARPA. D.M. is supported by NSF. This work was supported by the DARPA OLE program and by IARPA. This manuscript is the contribution of NIST and is not subject to U.S. copyright. *huys@csir.co.za †john...
Loodts, V.; Thomas, C.; Rongy, L.; De Wit, A.
2014-09-01
In partially miscible two-layer systems within a gravity field, buoyancy-driven convective motions can appear when one phase dissolves with a finite solubility into the other one. We investigate the influence of chemical reactions on such convective dissolution by a linear stability analysis of a reaction-diffusion-convection model. We show theoretically that a chemical reaction can either enhance or decrease the onset time of the convection, depending on the type of density profile building up in time in the reactive solution. We classify the stabilizing and destabilizing scenarios in a parameter space spanned by the solutal Rayleigh numbers. As an example, we experimentally demonstrate the possibility to enhance the convective dissolution of gaseous CO2 in aqueous solutions by a classical acid-base reaction.
Numerical Study of Natural Convection in Vertical Enclosures Utilizing Nanofluid
M. Alipanah
2014-01-01
Full Text Available Enhancement of buoyancy-driven convection heat transfer within vertical cavities containing nanofluids subjected to different side wall temperatures and various aspect ratios is investigated. The computations are based on an iterative, finitevolume numerical procedure (SIMPLE that incorporates the Boussinesq approximation to simulate the buoyancy term. With the base fluid being water, three different nanoparticles (Cu, TiO2, and Al2O3 are considered as the nanofluids. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number, Raf = 105–107 and the volumetric fraction of nanoparticle between 0 and 5 percent. The results are presented for different length-to-height ratios varying from 0.1 to 1.0. The comparisons show that the mean Nusselt numbers and velocity magnitudes increase with volume fraction for the whole range of the Rayleigh numbers. The predictions show a noticeable heat transfer enhancement compared to pure fluid. It is also found that the heat transfer enhancement utilizing nanofluid is more pronounced at low aspect ratios than high aspect ratios. Moreover, the results depict that the addition of nanoparticles to the pure fluid has more effects at lower Rayleigh numbers.
Onset of Convection in a Nanofluid Layer Confined within a Hele-Shaw Cell
Dhananjay Yadav
2016-01-01
Full Text Available In this study, the onset of nanofluid convection confined within a Hele-Shaw cell is investigated by performing a classical linear stability analysis. The model used for nanofluid combines the effects of Brownian motion and thermophoresis, while for Hele-Shaw cell Brinkman model are employed. The new stability equations are formulated by introducing new characteristic dimensionless parameters such as the Hele-Shaw number, the Hele-Shaw Rayleigh number and the nanoparticle concentration Hele-Shaw Rayleigh number. The resulting stability equations are solved numerically by using higher order Galerkin method. It is found that the nanoparticle concentration Hele-Shaw Rayleigh number, the Lewis number and the modified diffusivity ratio hasten the onset of convection, while the Hele-Shaw number delays the onset of convection. A comparison is also made between the existing boundary conditions for nanoparticle and obtained that the zero nanoparticle flux boundary conditions under the thermophoretic effects has more destabilizing effect than the fixed nanoparticle boundary conditions.
ON THE VIGOR OF MANTLE CONVECTION IN SUPER-EARTHS
Miyagoshi, Takehiro [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001 (Japan); Tachinami, Chihiro [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kameyama, Masanori [Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Ogawa, Masaki, E-mail: miyagoshi@jamstec.go.jp, E-mail: ctchnm.geo@gmail.com, E-mail: kameyama@sci.ehime-u.ac.jp, E-mail: cmaogawa@mail.ecc.u-tokyo.ac.jp [Department of Earth Sciences and Astronomy, University of Tokyo at Komaba, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)
2014-01-01
Numerical models are presented to clarify how adiabatic compression affects thermal convection in the mantle of super-Earths ten times the Earth's mass. The viscosity strongly depends on temperature, and the Rayleigh number is much higher than that of the Earth's mantle. The strong effect of adiabatic compression reduces the activity of mantle convection; hot plumes ascending from the bottom of the mantle lose their thermal buoyancy in the middle of the mantle owing to adiabatic decompression, and do not reach the surface. A thick lithosphere, as thick as 0.1 times the depth of the mantle, develops along the surface boundary, and the efficiency of convective heat transport measured by the Nusselt number is reduced by a factor of about four compared with the Nusselt number for thermal convection of incompressible fluid. The strong effect of adiabatic decompression is likely to inhibit hot spot volcanism on the surface and is also likely to affect the thermal history of the mantle, and hence, the generation of magnetic field in super-Earths.
Mahmood Husain Ali
2013-05-01
Full Text Available In this paper, numerical solution is presented for the steady state, two dimensional natural convection heat transfer from two parallel horizontal cylinders enclosed by circular cylinder. The inner cylinders are heated and maintained at constant surface temperature, while the outer cylinder is cooled at constant surface temperature. Boundary fitted coordinate system is used to solve governing equations. The vorticity-stream function and energy equations is solved using explicit finite deference method and stream function equation solved by successive iteration method. (20Deferent cases are studied cover rang of Rayleigh number from (1,000 to (25,000 based on the inner cylinder diameter. These cases study the effect of the varying inner cylinders position horizontally and vertically within outer cylinder on the heat transfer and buoyancy that causes the flow. Outputs are displayed in terms of streamline, isothermal contours and local and average Nusselt number. The results showed that the position of the inner cylinders highly affects the heat transfer and flow movements in the gap. At low Rayleigh numbers the average Nusselt number increases with increase of horizontal distance between inner cylinders but the state is reversed at high Rayleigh numbers, while the average Nusselt number is increases with inner cylinder moving down at all Rayleigh numbers. The optimal position of inner cylinders for maximum and minimum heat transfer is located at each Rayleigh number so can be employed in isolation process or cooling process.
Compressible, inviscid Rayleigh-Taylor instability
Guo, Yan
2009-01-01
We consider the Rayleigh-Taylor problem for two compressible, immiscible, inviscid, barotropic fluids evolving with a free interface in the presence of a uniform gravitational field. After constructing Rayleigh-Taylor steady-state solutions with a denser fluid lying above the free interface with the second fluid, we turn to an analysis of the equations obtained from linearizing around such a steady state. By a natural variational approach, we construct normal mode solutions that grow exponentially in time with rate like $e^{t \\sqrt{\\abs{\\xi}}}$, where $\\xi$ is the spatial frequency of the normal mode. A Fourier synthesis of these normal mode solutions allows us to construct solutions that grow arbitrarily quickly in the Sobolev space $H^k$, which leads to an ill-posedness result for the linearized problem. Using these pathological solutions, we then demonstrate ill-posedness for the original non-linear problem in an appropriate sense. More precisely, we use a contradiction argument to show that the non-linear...
Short Rayleigh length free electron lasers
W. B. Colson
2006-03-01
Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.
Sub-Rayleigh limit imaging via intensity correlation measurements
姚旭日; 李龙珍; 刘雪峰; 俞文凯; 翟光杰
2015-01-01
We demonstrate sub-Rayleigh limit imaging of an object via intensity correlation measurements. The image com-pletely unaffected by the disturbance of diffraction-limit is achieved under the condition that the imaging system has an appropriate field of view. The resolution of this sub-Rayleigh limit imaging system is only tied to the lateral resolution of the illumination light.
Shearing box simulations in the Rayleigh unstable regime
Nauman, Farrukh; Blackman, Eric G.
2015-01-01
We study the stability properties of Rayleigh unstable flows both in the purely hydrodynamic and magnetohydrodynamic (MHD) regimes for two different values of the shear $q=2.1, 4.2$ ($q = - d\\ln\\Omega / d\\ln r$) and compare it with the Keplerian case $q=1.5$. The Rayleigh stability criterion states...
Rayleigh scattering: blue sky thinking for future CMB observations
Lewis, Antony
2013-01-01
Rayleigh scattering from neutral hydrogen during and shortly after recombination causes the CMB anisotropies to be significantly frequency dependent at high frequencies. This may be detectable with Planck, and would be a strong signal at in any future space-based CMB missions. The later peak of the Rayleigh visibility compared to Thomson scattering gives an increased large-scale CMB polarization signal that is a greater than 4% effect for observed frequencies greater than 500GHz. There is a similar magnitude suppression on small scales from additional damping. Due to strong correlation between the Rayleigh and primary signal, measurement of the Rayleigh component is limited by noise and foregrounds, not cosmic variance of the primary CMB, and should observable over a wide range of angular scales at frequencies between roughly 200GHz and 800GHz. I give new numerical calculations of the temperature and polarization power spectra, and show that future CMB missions could measure the temperature Rayleigh cross-spe...
Anomalously Weak Solar Convection
Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.
2012-01-01
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.
Simulating deep convection with a shallow convection scheme
C. Hohenegger
2011-10-01
Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.
Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.
The role of Stewartson and Ekman layers in turbulent rotating Rayleigh-Bénard convection
Kunnen, Rudie P.J.; Stevens, Richard Johannes Antonius Maria; Overkamp, Jim; Sun, Chao; van Heijst, GertJan F.; Clercx, H.J.H.
2011-01-01
When the classical Rayleigh–Bénard (RB) system is rotated about its vertical axis roughly three regimes can be identified. In regime I (weak rotation) the largescale circulation (LSC) is the dominant feature of the flow. In regime II (moderate rotation) the LSC is replaced by vertically aligned
Axially homogeneous Rayleigh-Bénard convection in a cylindrical cell
Schmidt, L.E.; Calzavarini, E.; Lohse, Detlef; Toschi, F.; Verzicco, Roberto
2012-01-01
Previous numerical studies have shown that the ‘ultimate regime of thermal convection’ can be attained in a Rayleigh–Bénard cell when the kinetic and thermal boundary layers are eliminated by replacing both lateral and horizontal walls with periodic boundary conditions (homogeneous Rayleigh–Bénard
Salesky, Scott T.; Chamecki, Marcelo; Bou-Zeid, Elie
2017-04-01
Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10-20° of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of -z_i/L between zero (neutral) and 1041 (highly convective), where z_i is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the "roll factor," which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of -z_i/L; however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about -z_i/L ≈ 15-20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing -z_i/L. It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as -z_i/L increases.
Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II
2014-12-01
With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.
Mathematical models of convection
Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V
2012-01-01
Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel
Parameterizing convective organization
Brian Earle Mapes
2011-06-01
Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Technical Report: Rayleigh Scattering Combustion Diagnostic
Adams, Wyatt [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hecht, Ethan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-07-29
A laser Rayleigh scattering (LRS) temperature diagnostic was developed over 8 weeks with the goal of studying oxy-combustion of pulverized coal char in high temperature reaction environments with high concentrations of carbon dioxide. Algorithms were developed to analyze data collected from the optical diagnostic system and convert the information to temperature measurements. When completed, the diagnostic will allow for the kinetic gasification rates of the oxy-combustion reaction to be obtained, which was previously not possible since the high concentrations of high temperature CO_{2} consumed thermocouples that were used to measure flame temperatures inside the flow reactor where the combustion and gasification reactions occur. These kinetic rates are important for studying oxycombustion processes suitable for application as sustainable energy solutions.
Rayleigh-type parametric chemical oscillation
Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
Anelastic Rayleigh-Taylor mixing layers
Schneider, N.; Gauthier, S.
2016-07-01
Anelastic Rayleigh-Taylor mixing layers for miscible fluids are investigated with a recently built model (Schneider and Gauthier 2015 J. Eng. Math. 92 55-71). Four Chebyshev-Fourier-Fourier direct numerical simulations are analyzed. They use different values for the compressibility parameters: Atwood number (the dimensionless difference of the heavy and light fluid densities) and stratification (accounts for the vertical variation of density due to gravity). For intermediate Atwood numbers and finite stratification, compressibility effects quickly occurs. As a result only nonlinear behaviours are reached. The influence of the compressibility parameters on the growth speed of the RTI is discussed. The 0.1—Atwood number/0.4—stratification configuration reaches a turbulent regime. This turbulent mixing layer is analyzed with statistical tools such as moments, PDFs, anisotropy indicators and spectra.
Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi
Ahmed F. Alfahaid, R.Y. Sakr
2012-10-01
Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures. The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.
CDM Convective Forecast Planning guidance
National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...
QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.
Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy
We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.
Role of viscoelasticity in mantle convection models
Patocka, Vojtech; Cadek, Ondrej; Tackley, Paul
2015-04-01
A present limitation of global thermo-chemical convection models is that they assume a purely viscous or visco-plastic flow law for solid rock, i.e. elasticity is ignored. This may not be a good assumption in the cold, outer boundary layer known as the lithosphere, where elastic deformation may be important. Elasticity in the lithosphere plays at least two roles: It changes surface topography, which changes the relationship between topography and gravity, and it alters the stress distribution in the lithosphere, which may affect dynamical behaviour such as the formation of plate boundaries and other tectonics features. A method for adding elasticity to a viscous flow solver to make a visco-elastic flow solver, which involves adding advected elastic stress to the momentum equation and introducing an "effective" viscosity has been proposed (e.g. Moresi, 2002). The proposed method is designed primarily for a regional-scale numerical model which employs tracers for advection and co-rotation of the stress field. In this study we test a grid-based version of the method in context of thermal convection in the Boussinesq approximation. A simple finite difference/volume model with staggered grid is used, with the aim to later use the same method to implement viscoelasticity into StagYY (Tackley, 2008). The main obstacle is that Maxwell viscoelastic rheology produces instantaneous deformation if instantaneous change of the driving forces occurs. It is not possible to model such deformation in a velocity formulated convection model, as velocity undergoes a singularity for an instantaneous deformation. For a given Rayleigh number there exists a certain critical value of the Deborah number above which it is necessary to use a thermal time step different from the one used in viscoelastic constitutive equation to avoid this numerical instability from happening. Critical Deborah numbers for various Rayleigh numbers are computed. We then propose a method to decouple the thermal and
Internal Wave Generation by Convection
Lecoanet, Daniel
2016-01-01
In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liq...
Penetrative Brinkman convection in an anisotropic porous layer saturated by a nanofluid
I.S. Shivakumara
2015-06-01
Full Text Available The onset of penetrative Brinkman convection in a nanofluid saturated anisotropic porous layer is investigated via uniform internal heating for rigid-rigid, free-free, and lower-rigid and upper-free boundaries. The flux of volume fraction of nanoparticles is taken to be zero on the isothermal boundaries and the eigenvalue problem is solved using the Galerkin method. The numerical computations carried out indicated the validity of principle of exchange of stability for all types of velocity boundary conditions. The effect of heat source strength, mechanical anisotropy parameter, modified diffusivity ratio, nanoparticle concentration Darcy-Rayleigh number and Lewis number is to hasten, while the Darcy number and thermal anisotropy parameter are to delay the onset of convection. In contrast to the regular fluid saturating a Darcy porous medium, the onset of convection for nanofluids is found to be influenced even when the ratio of mechanical anisotropy parameter to thermal anisotropy parameter is unity.
Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers
Calkins, Michael A; Nieves, David; Julien, Keith; Tobias, Steven M
2016-01-01
Most large-scale planetary magnetic fields are thought to be driven by low Rossby number convection of a low magnetic Prandtl number fluid. Here kinematic dynamo action is investigated with an asymptotic, rapidly rotating dynamo model for the plane layer geometry that is intrinsically low magnetic Prandtl number. The thermal Prandtl number and Rayleigh number are varied to illustrate fundamental changes in flow regime, ranging from laminar cellular convection to geostrophic turbulence in which an inverse energy cascade is present. A decrease in the efficiency of the convection to generate a dynamo, as determined by an increase in the critical magnetic Reynolds number, is observed as the buoyancy forcing is increased. This decreased efficiency may result from both the loss of correlations associated with the increasingly disordered states of flow that are generated, and boundary layer behavior that enhances magnetic diffusion locally. We find that the spatial characteristics of $\\alpha$, and thus the large-sca...
Convection in Binary Fluid Mixtures; 1, Extended Traveling Wave and Stationary States
Barten, W; Kamps, M; Schmitz, R
1995-01-01
Nonlinear convection structures are investigated in quantitative detail as a function of Rayleigh number for several negative and positive Soret coupling strengths (separation ratios) and different Lewis and Prandtl numbers characterizing different mixtures. A finite difference method was used to solve the full hydrodynamic field equations in a range of experimentally accessible parameters. We elucidate the important role that the concentration field plays in the nonlinear states of stationary overturning convection (SOC) and of traveling wave (TW) convection. Structural differences in the concentration boundary layers and of the concentration plumes in TW's and SOC's and their physical consequences are discussed. These properties show that the states con- sidered here are indeed strongly nonlinear, as expected from the magnitude of advection and diffusion in the concentration balance. The bifurcation behaviour of the states is analysed using different order parameters such as flow intensity, Nusselt number, ...
Influence of through-flow on linear pattern formation properties in binary mixture convection
Jung, C; Büchel, P; Jung, Ch.
1996-01-01
We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic top and bottom boundary conditions. Through-flow induced changes of the bifurcation thresholds (stability boundaries) for different types of convective solutions are deter- mined in the control parameter space spanned by Rayleigh number, Soret coupling (positive as well as negative), and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we determine with a saddle point analysis of the complex dispersion relation of the field equations over the complex wave number plane the borders between absolute and convective instabilities for different types of perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation. PACS:47.2...
Experimental study on free convection of sodium in a long cylinder
Kolesnichenko, I. V.; Mamykin, A. D.; Pavlinov, A. M.; Pakholkov, V. V.; Rogozhkin, S. A.; Frick, P. G.; Khalilov, R. I.; Shepelev, S. F.
2015-06-01
The operation experience of sodium fast reactor shows that during design-basis validation of pipelines and equipment it is necessary to take into account the sodium free convection in the enclosures. The paper presents the results of experimental study of free convection of liquid sodium in a long thermo-insulated cylinder with the end heat supply and removal. The sodium-filled cylinder diameter is 168 mm, length is 850 mm. Three experiments for horizontal, inclined (at 45° to a vertical line) and vertical position of the cylinder were compared in detail. The Rayleigh number (based on cylinder diameter) is approximately same for three experiments and is equal to 5 × 106. The structure of large-scale and small-scale flows was analyzed. Nusselt number estimations being the intensity measure of heat transfer in case of free convection were obtained. A relationship between the flow structure and the Nusselt number is revealed.
Surface deformation and geoid anomalies over single and double-layered convective systems
Koch, M.; Yuen, D. A.
1985-01-01
Using a primitive variable formulation of the finite-element method, the differences in the surface observables, such as topography and geoid, produced by single- and double-layered thermal convection, were compared. Both constant and depth-dependent viscosities have been considered. For the same Rayleigh number, larger surface perturbations are produced by single-cell convection. For the same Nusselt number, the magnitudes of the surface observables are greater for double-layered convection. For the same surface heat-flux, surface topographies have similar magnitudes, but the relative amplitudes of geoid anomalies depend greatly on the style of viscosity stratification. This difference in the geoid between the two systems increases with greater surface heat-flow, regardless of viscosity structure.
Scaling and excitation of combined convection in a rapidly rotating plane layer
Starchenko, S. V., E-mail: sstarchenko@mail.ru [Russian Academy of Sciences, Pushkov Institute of Terrestrial Magnesium, Ionosphere and Radio Wave Propagation (Russian Federation)
2017-02-15
The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (s) and the ratio thermal convection/compositional convection (r). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10{sup –3} substitutes for the generally accepted Ekman number (E ~ 10{sup –15}) and s ~ 10{sup –6} substitutes for the inverse Rayleigh number 1/Ra ~ 10{sup –30}. It is found that, at turbulent transport coefficients, number s and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers s (which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.
Modeling the natural convective flow of micropolar nanofluids
Bourantas, Georgios
2014-01-01
A micropolar model for nanofluidic suspensions is proposed in order to investigate theoretically the natural convection of nanofluids. The microrotation of the nanoparticles seems to play a significant role into flow regime and in that manner it possibly can interpret the controversial experimental data and theoretical numerical results over the natural convection of nanofluids. Natural convection of a nanofluid in a square cavity is studied and computations are performed for Rayleigh number values up to 106, for a range of solid volume fractions (0 ≤ φ ≤ 0.2) and, different types of nanoparticles (Cu, Ag, Al2O3 and TiO 2). The theoretical results show that the microrotation of the nanoparticles in suspension in general decreases overall heat transfer from the heated wall and should not therefore be neglected when computing heat and fluid flow of micropolar fluids, as nanofluids. The validity of the proposed model is depicted by comparing the numerical results obtained with available experimental and theoretical data. © 2013 Elsevier Ltd. All rights reserved.
Pattern Formation and Secondary Instabilities for Convection in Porous Media
Behringer, R. P.; Fiering, J.
1996-11-01
In recent work(Howle et al. Nature 362), 230 (1993); JFM to appear we showed that the pattern formation for convection in porous media could be studied by means of a simple shadowgraph if there is a line of sight through the medium which does not encounter curved fluid-medium interfaces. This work focused primarily on pattern formation near onset and was carried out in relatively small aspect ratios, Γ (the ratio of the horizontal dimension of the layer to the height, d). We present new studies with both higher Γ, and at high enough Rayleigh number R to encounter the secondary instabilities for the convection roll patterns. In a Γ = radius/d = 10.7 cylindrical experiment with a medium made from stacked bars, we find well aligned convection rolls with wavelength, λ in good agreement with theory. The alignment direction is determined by the periodic structure of the medium. In two other experiments, also with bar stackings for the medium, we have studied the secondary instabilities. The experiments have Γ = 4 and 8, respectively (with square planform), and consist of 8 and 4 layers of bars. In both cases, the instability is to cross rolls. In the Γ = 8 case, the strong symmetry of the system leads to heteroclinic orbits between different patterns.
On a Misconception Involving Point Collocation and the Rayleigh Hypothesis
Christiansen, Søren; Kleinman, Ralph E.
1996-01-01
It is shown that the Rayleigh hypothesis does notgovern convergence of the simple point collocationapproach to the numerical solutions of scatteringby a sinusoidal grating. A recently developed numerical technique, interval arithmetic, is employed to perform some decisive numerical experiments wh...
Beating Rayleigh's Curse by Imaging Using Phase Information
Tham, Weng-Kian; Ferretti, Hugo; Steinberg, Aephraim M.
2017-02-01
Every imaging system has a resolution limit, typically defined by Rayleigh's criterion. Given a fixed number of photons, the amount of information one can gain from an image about the separation between two sources falls to zero as the separation drops below this limit, an effect dubbed "Rayleigh's curse." Recently, in a quantum-information-inspired proposal, Tsang and co-workers found that there is, in principle, infinitely more information present in the full electromagnetic field in the image plane than in the intensity alone, and suggested methods for extracting this information and beating the Rayleigh limit. In this Letter, we experimentally demonstrate a simple scheme that captures most of this information, and show that it has a greatly improved ability to estimate the distance between a pair of closely separated sources, achieving near-quantum-limited performance and immunity to Rayleigh's curse.
Rayleigh scattering in the atmospheres of hot stars
Fišák, Jakub; Munzar, Dominik; Kubát, Jiří
2016-01-01
Rayleigh scattering is a result of an interaction of photons with bound electrons. Rayleigh scattering is mostly neglected in calculations of hot star model atmospheres because most of the hydrogen atoms are ionized and the heavier elements have a lower abundance than hydrogen. In atmospheres of some chemically peculiar stars, helium overabundant regions containing singly ionized helium are present and Rayleigh scattering can be a significant opacity source. We evaluate the contribution of Rayleigh scattering by neutral hydrogen and singly ionized helium in the atmospheres of hot stars with solar composition and in the atmospheres of helium overabundant stars. We computed several series of model atmospheres using the TLUSTY code and emergent fluxes using the SYNSPEC code. These models describe atmospheres of main sequence B-type stars with different helium abundance. We used an existing grid of models for atmospheres with solar chemical composition and we calculated an additional grid for helium-rich stars wi...
Generalized Rayleigh and Jacobi Processes and Exceptional Orthogonal Polynomials
Chou, C.-I.; Ho, C.-L.
2013-09-01
We present four types of infinitely many exactly solvable Fokker-Planck equations, which are related to the newly discovered exceptional orthogonal polynomials. They represent the deformed versions of the Rayleigh process and the Jacobi process.
Rayleigh-Lagrange formalism for classical dissipative systems.
Virga, Epifanio G
2015-01-01
It is often believed that the Rayleigh-Lagrange formalism for classical dissipative systems is unable to encompass forces described by nonlinear functions of the velocities. Here we show that this is indeed a misconception.
Rajib Basu; G.C.Layek
2013-01-01
Double-diffusive stationary and oscillatory instabilities at the marginal state in a saturated porous horizontal fluid layer heated and salted from above are investigated theoretically under the Darcy's framework for a porous medium.The contributions of Soret and Dufour coefficients are taken into account in the analysis.Linear stability analysis shows that the critical value of the Darcy-Rayleigh number depends on cross-diffusive parameters at marginally stationary convection,while the marginal state characterized by oscillatory convection does not depend on the cross-diffusion terms even if the condition and frequency of oscillatory convection depends on the cross-diffusive parameters.The critical value of the Darcy-Rayleigh number increases with increasing value of the solutal Darcy-Rayleigh number in the absence of crossdiffusive parameters.The critical Darcy-Rayleigh number decreases with increasing Soret number,resulting in destabilization of the system,while its value increases with increasing Dufour number,resulting in stabilization of the system at the marginal state characterized by stationary convection.The analysis reveals that the Dufour and Soret parameters as well as the porosity parameter play an important role in deciding the type of instability at the onset.This analysis also indicates that the stationary convection is followed by the oscillatory convection for certain fluid mixtures.It is interesting to note that the roles of cross-diffusive parameters on the double-diffusive system heated and salted from above are reciprocal to the double-diffusive system heated and salted from below.
Bayes Estimation for Inverse Rayleigh Model under Different Loss Functions
Guobing Fan
2015-04-01
Full Text Available The inverse Rayleigh distribution plays an important role in life test and reliability domain. The aim of this article is study the Bayes estimation of parameter of inverse Rayleigh distribution. Bayes estimators are obtained under squared error loss, LINEX loss and entropy loss functions on the basis of quasi-prior distribution. Comparisons in terms of risks with the estimators of parameter under three loss functions are also studied. Finally, a numerical example is used to illustrate the results.
Stability of Rayleigh-Taylor Vortices in Dusty Plasma
MA Jun; CHEN Yin-Hua; GAN Bao-Xia; WANG Fei-Hu; WANG Dong
2006-01-01
@@ The evolution of Rayleigh-Taylor mode in dusty plasma with vortex-flow is investigated. Based on fluid theory and Bayly's method, we derive the coupling equations describing the Rayleigh-Taylor mode in the core of vortex,and research the evolution characteristics of the perturbation amplitude with time numerically. It is shown that the eccentric of vortex and the content of dust have considerable effects on the amplitude evolutions.
Optimization of natural convection heat transfer of Newtonian nanofluids in a cylindrical enclosure
Hamid Moradi; Bahamin Bazooyar; Ahmad Moheb; Seyed Gholamreza Etemad
2015-01-01
This study characterizes and optimizes natural convection heat transfer of two Newtonian Al2O3 and TiO2/water nanofluids in a cylindrical enclosure. Nusselt number (Nu) of nanofluids in relation to Rayleigh number (Ra) for different concentrations of nanofluids is investigated at different configurations and orientations of the enclosure. Results show that adding nanoparticles to water has a negligible or even adverse influence upon natural convec-tion heat transfer of water:only a slight increase in natural convection heat transfer of Al2O3/water is observed, while natural convection heat transfer for TiO2/water nanofluid is inferior to that for the base fluid. Results also reveal that at low Ra, the likelihood of enhancement in natural convection heat transfer is more than at high Ra:at low Ra, inclination angle, aspect ratio of the enclosure and nanoparticle concentration influence natural convec-tion heat transfer more pronouncedly than that in high Ra.
Sid, Samir; Terrapon, Vincent; Dubief, Yves
2015-11-01
Results of direct numerical simulation of turbulent channel flows under unstable stratification are reported. Two Reynolds number are considered: Reτ = 180 , 395 and the Rayleigh number ranges between Ra = [106 -109 ] . The Prandtl number is set to 1. The channel is periodic in both streamwise and spanwise directions and non-slip/isothermal boundary conditions are imposed at the walls. The temperature difference between the walls is set so that the stratification is unstable and the coupling between temperature and momentum is achieved using the Boussinesq approximation. The dependency of the typical large scale convective structures on both Reynolds and Rayleigh numbers are investigated through cross flow sectional statistics and instantaneous flow field visualizations. Moreover, the effects of the natural convection on the coherent structures associated to the cycle of wall-bounded turbulence (Jimenez, et al. JFM 1999), namely velocity streaks and streamwise vortices, are examined. Finally, macroscopic quantities such as friction coefficient and Nusselt number are reported as a function of the Rayleigh number and are compared for both Reynolds numbers. The Belgian Team acknowledges computational resources from CÉCI (F.R.S.-FNRS grant No.2.5020.11) and the PRACE infrastructure. YD acknowledges the support of NSF and DOE under grant NSF/DOE 1258697.
Rayleigh scattering in the atmospheres of hot stars
Fišák, J.; Krtička, J.; Munzar, D.; Kubát, J.
2016-05-01
Context. Rayleigh scattering is a result of an interaction of photons with bound electrons. Rayleigh scattering is mostly neglected in calculations of hot star model atmospheres because most of the hydrogen atoms are ionized and the heavier elements have a lower abundance than hydrogen. In atmospheres of some chemically peculiar stars, helium overabundant regions containing singly ionized helium are present and Rayleigh scattering can be a significant opacity source. Aims: We evaluate the contribution of Rayleigh scattering by neutral hydrogen and singly ionized helium in the atmospheres of hot stars with solar composition and in the atmospheres of helium overabundant stars. Methods: We computed several series of model atmospheres using the TLUSTY code and emergent fluxes using the SYNSPEC code. These models describe atmospheres of main sequence B-type stars with different helium abundance. We used an existing grid of models for atmospheres with solar chemical composition and we calculated an additional grid for helium-rich stars with N(He)/N(H) = 10. Results: Rayleigh scattering by neutral hydrogen can be neglected in atmospheres of hot stars, while Rayleigh scattering by singly ionized helium can be a non-negligible opacity source in some hot stars, especially in helium-rich stars.
Chen, Wen Ruey
2016-10-01
This paper studies the steady laminar natural convection of micropolar fluids in the complex annuli between the inner sphere and outer vertical cylinder to present a numerical analysis of the flow and heat transfer characteristics with buoyancy effects. Computations were carried out systematically by the several different parameters of geometric ratio, micropolar material parameter and Rayleigh number to determine the average Nusselt number and the skin friction coefficient on the flow and the thermal fields.
Rayleigh-Taylor instability simulations with CRASH
Chou, C.-C.; Fryxell, B.; Drake, R. P.
2012-03-01
CRASH is a code package developed for the predictive study of radiative shocks. It is based on the BATSRUS MHD code used extensively for space-weather research. We desire to extend the applications of this code to the study of hydrodynamically unstable systems. We report here the results of Rayleigh-Taylor instability (RTI) simulations with CRASH, as a necessary step toward the study of such systems. Our goal, motivated by the previous comparison of simulations and experiment, is to be able to simulate the magnetic RTI with self-generated magnetic fields produced by the Biermann Battery effect. Here we show results for hydrodynamic RTI, comparing the effects of different solvers and numerical parameters. We find that the early-time behavior converges to the analytical result of the linear theory. We observe that the late-time morphology is sensitive to the numerical scheme and limiter beta. At low-resolution limit, the growth of RTI is highly dependent on the setup and resolution, which we attribute to the large numerical viscosity at low resolution.
Kinetic Simulations of Rayleigh-Taylor Instabilities
Sagert, Irina; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance
2014-01-01
We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is i...
Optical switching by stimulated thermal Rayleigh scattering
Peterson, Lauren M.
1986-06-01
Preliminary experiments were conducted whose ultimate goal is to develop all-optical control functions useful in an all-optical or optical-electronic hybrid digital computer or for optical interconnects. Stimulated thermal Rayleigh scattering (STRS) based upon generator experiments was pursued for scattering angles of 90 deg and 180 deg (backscattering). A pulsed nitrogen laser pumped dye laser served as the radiation source and the interaction medium was a liquid to which an absorbing dye was added. STRS amplifier experiments were successful and gain was observed and studied parametrically using eosine dye in ethanol. The gain was found to increase (although the gain coefficient decreased) with increasing pump power and the gain was found to be a maximum at an absorption coefficient of about 2.6 per cm. The generator experiments did not lead to stimulated scattering due to the limited output power of the laser and its multi-longitudinal spectral mode content. These studies will be continued along with analytical modeling in order to characterize the interaction and to enable the optimization of the scattering process.
Modeling of Rayleigh wave dispersion in Iberia
José Badal
2011-01-01
Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.
Bejan, Adrian
2013-01-01
Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.
Bachmann, Kurt T.
2000-01-01
I helped to complete a research project with NASA scientists Dr. David Hathaway (my mentor), Rick Bogart, and John Beck from the SOHO/SOI collaboration. Our published paper in 'Solar Physics' was titled 'The Solar Convection Spectrum' (April 2000). Two of my undergraduate students were named on the paper--Gavrav Khutri and Josh Petitto. Gavrav also wrote a short paper for the National Conference of Undergraduate Research Proceedings in 1998 using a preliminary result. Our main result was that we show no evidence of a scale of convection named 'mesogranulation'. Instead, we see only direct evidence for the well-known scales of convection known as graduation and supergranulation. We are also completing work on vertical versus horizontal flow fluxes at the solar surface. I continue to work on phase relationships of solar activity indicators, but I have not yet written a paper with my students on this topic. Along with my research results, I have developed and augmented undergraduate courses at Birmingham-Southern College by myself and with other faculty. We have included new labs and observations, speakers from NASA and elsewhere, new subject material related to NASA and space science. I have done a great deal of work in outreach, mostly as President and other offices in the Birmingham Astronomical Society. My work includes speaking, attracting speakers, giving workshops, and governing.
Thermal Vibrational Convection
Gershuni, G. Z.; Lyubimov, D. V.
1998-08-01
Recent increasing awareness of the ways in which vibrational effects can affect low-gravity experiments have renewed interest in the study of thermal vibrational convection across a wide range of fields. For example, in applications where vibrational effects are used to provide active control of heat and mass transfer, such as in heat exchangers, stirrers, mineral separators and crystal growth, a sound understanding of the fundamental theory is required. In Thermal Vibrational Convection, the authors present the theory of vibrational effects caused by a static gravity field, and of fluid flows which appear under vibration in fluid-filled cavities. The first part of the book discusses fluid-filled cavities where the fluid motion only appears in the presence of temperature non-uniformities, while the second considers those situations where the vibrational effects are caused by a non-uniform field. Throughout, the authors concentrate on consideration of high frequency vibrations, where averaging methods can be successfully applied in the study of the phenomena. Written by two of the pioneers in this field, Thermal Vibrational Convection will be of great interest to scientists and engineers working in the many areas that are concerned with vibration, and its effect on heat and mass transfer. These include hydrodynamics, hydro-mechanics, low gravity physics and mechanics, and geophysics. The rigorous approach adopted in presenting the theory of this fascinating and highly topical area will facilitate a greater understanding of the phenomena involved, and will lead to the development of more and better-designed experiments.
Inverse cascade and symmetry breaking in rapidly-rotating Boussinesq convection
Favier, B; Proctor, M R E
2014-01-01
In this paper we present numerical simulations of rapidly-rotating Rayleigh-B\\'enard convection in the Boussinesq approximation with stress-free boundary conditions. At moderately low Rossby number and large Rayleigh number, we show that a large-scale depth-invariant flow is formed, reminiscent of the condensate state observed in two-dimensional flows. We show that the large-scale circulation shares many similarities with the so-called vortex, or slow-mode, of forced rotating turbulence. Our investigations show that at a fixed rotation rate the large-scale vortex is only observed for a finite range of Rayleigh numbers, as the quasi-two-dimensional nature of the flow disappears at very high Rayleigh numbers. We observe slow vortex merging events and find a non-local inverse cascade of energy in addition to the regular direct cascade associated with fast small-scale turbulent motions. Finally, we show that cyclonic structures are dominant in the small-scale turbulent flow and this symmetry breaking persists in ...
Ahmed Kadhim Hussein
2016-06-01
Full Text Available Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ⩽ Ra ⩽ 105, while the trapezoidal cavity inclination angle is varied as 0° ⩽ Φ ⩽ 180°. Prandtl number is considered constant at Pr = 0.71. Second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers is presented and discussed, while, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low. Moreover, when the Rayleigh number increases the average Nusselt number increases.
Study of natural convection cooling of a nanofluid subjected to a magnetic field
Mahmoudi, Ahmed; Mejri, Imen; Omri, Ahmed
2016-06-01
This paper presents a numerical study of natural convection cooling of water-Al2O3 nanofluid by two heat sinks vertically attached to the horizontal walls of a cavity subjected to a magnetic field. The left wall is hot, the right wall is cold, while the horizontal walls are insulated. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra =103 to 105, Hartmann number varied from Ha = 0 to 60 and the solid volume fraction of nanoparticles between ϕ = 0 and 6%. In order to investigate the effect of heat sinks location, three different configurations of heat sinks are considered. The effects of Rayleigh numbers, Hartmann number and heat sinks location on the streamlines, isotherms, Nusselt number are investigated. Results show that the heat transfer rate decreases with the increase of Hartmann number and increases with the rise of Rayleigh number. In addition it is observed that the average Nusselt number increases linearly with the increase of the nanoparticles solid volume fraction. Also, results show that the heat sinks positions greatly influence the heat transfer rate depending on the Hartmann number, Rayleigh number and nanoparticle solid volume fraction.
Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage
Allen, Rebecca
2015-04-01
ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for
Complex bifurcations in Bénard-Marangoni convection
Vakulenko, Sergey; Sudakov, Ivan
2016-10-01
We study the dynamics of a system defined by the Navier-Stokes equations for a non-compressible fluid with Marangoni boundary conditions in the two-dimensional case. We show that more complicated bifurcations can appear in this system for a certain nonlinear temperature profile as compared to bifurcations in the classical Rayleigh-Bénard and Bénard-Marangoni systems with simple linear vertical temperature profiles. In terms of the Bénard-Marangoni convection, the obtained mathematical results lead to our understanding of complex spatial patterns at a free liquid surface, which can be induced by a complicated profile of temperature or a chemical concentration at that surface. In addition, we discuss some possible applications of the results to turbulence theory and climate science.
PARALLEL LATTICE BGK SIMULATION OF NATURAL CONVECTION IN A CAVITY
SHI Bao-chang; LIU Hong-juan
2005-01-01
A Coupled Lattice Bhatnagar-Gross-Krook (CLBGK) model was proposed with a robust boundary scheme to model the Bossinesq incompressible flows. The LBGK method is a powerful approach, but is also computationally demanding. Therefore, parallel computing was implemented, and the codes were run on the parallel computer "Lenovo DeepComp 1800" with 24 nodes written in C++ using the Message Passing Interface (MPI) library. Numerical results for natural convection in a cavity with the Rayleigh number (Ra) ranging from 106 to 4×1010 were presented, and found to agree well with the previous work. And with the increase of the resolution rate, the accuracy has been greatly improved. In addition, new models were set up by applying different equilibriums to the CLBGK model to simulate the same problem, which all yield sound results.
Numerical investigation of Rayleigh–Bénard convection in a cylinder of unit aspect ratio
Wang, Bo-Fu; Jiang, Jin [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Zhou, Lin [Institute of Structural Mechanics, Chinese Academy of Engineering Physics, Mianyang, 621900 (China); Sun, De-Jun, E-mail: jinjiang@whu.edu.cn [Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027 (China)
2016-02-15
Thermal convection in a vertical cylindrical cavity with a heated bottom, cooled top and insulated sidewall is investigated numerically. The radius to height ratio (Γ = height/radius) is fixed to unity and the Prandtl number is varied from 0.04 to 1. Rayleigh numbers up to 16 000 are considered in this study. Ten different kinds of flow regime have been identified, including both steady and unsteady patterns. The transition from steady to oscillatory flow occurs at a much lower Rayleigh number for small Prandtl number flow than for large Prandtl number flow. A bifurcation analysis shows the coexistence of two flow patterns in a certain parameter regime. The effect of flow structure on heat transfer is studied for a Prandtl number of unity. (paper)
Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow
Priede, JÄnis
2008-01-01
We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field (HMRI) using the inductionless approximation defined by a zero magnetic Prandtl number (Pm=0). The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically-modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the t...
Heat transfer enhancement induced by wall inclination in turbulent thermal convection.
Kenjereš, Saša
2015-11-01
We present a series of numerical simulations of turbulent thermal convection of air in an intermediate range or Rayleigh numbers (10(6)≤Ra≤10(9)) with different configurations of a thermally active lower surface. The geometry of the lower surface is designed in such a way that it represents a simplified version of a mountain slope with different inclinations (i.e., "Λ"- and "V"-shaped geometry). We find that different wall inclinations significantly affect the local heat transfer by imposing local clustering of instantaneous thermal plumes along the inclination peaks. The present results reveal that significant enhancement of the integral heat transfer can be obtained (up to 32%) when compared to a standard Rayleigh-Bénard configuration with flat horizontal walls. This is achieved through combined effects of the enlargement of the heated surface and reorganization of the large-scale flow structures.
Surface tension effects on the onset of double-diffusive convection
Chen, C. F.
Experiments have been carried out to determine the critical thermal Rayleigh number for onset of convection in a horizontal layer of density-stratified fluid with a free surface when heated from below. Three different aqueous solutions were used: salt, glycerol, and acetic acid. The rates of change in surface tension with concentration for these three solutions are positive, nearly zero, and negative, respectively. Compared to the rigid-rigid boundaries, the critical thermal Rayleigh number was found to be larger by 11.2 percent for the salt solution and smaller by 10.0 percent for the glycerol solution. With the acetic acid solution, however, the effect of the free surface was found to be negligible.
Effects of various thermal boundary conditions on natural convection in porous cavities
Cheong, H. T.; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Z.
2015-10-01
The present work analyzes numerically the effects of various thermal boundary conditions and the geometry of the cavity on natural convection in cavities with fluid-saturated porous medium. Cavity of square, right-angled trapezium and right-angled triangle shapes are considered. The different temperature profiles are imposed on the left wall of the cavity and the right wall is maintained at a lower constant temperature. The top and bottom walls are adiabatic. The Darcy model is adopted for the porous medium. The finite difference method is used to solve the governing equations and boundary conditions over a range of Darcy-Rayleigh numbers. Streamlines, isotherms and Nusselt numbers are used for presenting the results. The heat transfer of the square cavity is more enhanced at high Darcy-Rayleigh number for all the thermal boundary conditions considered.
Strong turbulent convection: distributed chaos and large-scale circulation
Bershadskii, A
2016-01-01
Two types of spontaneous breaking of the space translational symmetry in distributed chaos have been considered for turbulent thermal convection at large values of Rayleigh number. First type is related to boundaries and second type is related to appearance of inertial range of scales. The first type is dominated by vorticity correlation integral: $\\int_{V} \\langle {\\boldsymbol \\omega} ({\\bf x},t) \\cdot {\\boldsymbol \\omega} ({\\bf x} + {\\bf r},t) \\rangle_{V} d{\\bf r}$ and is characterized by stretched exponential spectrum $\\exp-(k/k_{\\beta})^{\\beta }$ with $\\beta =1/2$. The second type is dominated by energy correlation integral: $\\int_{V} \\langle {\\bf u}^2 ({\\bf x},t) ~ {\\bf u}^2({\\bf x} + {\\bf r},t) \\rangle_{V} d{\\bf r}$ and is characterized by $\\beta =3/5$. Good agreement has been established with laboratory experimental data at large values of Rayleigh number $Ra \\sim 10^{11}-10^{14}$ (the range relevant to solar photosphere). Taylor hypothesis transforms the wavenumber spectrum to frequency spectrum $\\exp...
Geostrophic convective turbulence: The effect of boundary layers
Ostilla-Mónico, Rodolfo; Kunnen, Rudie P J; Verzicco, Roberto; Lohse, Detlef
2014-01-01
This Letter presents results of the first direct numerical simulations of rotating Rayleigh--B\\'enard convection in the so-called geostrophic regime, (hence very small Ekman numbers $\\mathcal{O}(10^{-7})$ and high Rayleigh numbers~$Ra=10^{10}$ and~$5\\cdot 10^{10}$), employing the \\emph{full} Navier--Stokes equations. In the geostrophic regime the criteria of very strong rotation and large supercriticality are met simultaneously, which is true for many geophysical and astrophysical flows. Until now, numerical approaches of this regime have been based on \\emph{reduced} versions of the Navier--Stokes equations (cf. Sprague \\emph{et al.} J. Fluid Mech., \\textbf{551}, 141 (2006)), omitting the effect of the viscous (Ekman) boundary layers. By using different velocity boundary conditions at the plates, we study the effect of these Ekman layers. We find that the formation of large-scale structures (Rubio \\emph{et al.} (Phys. Rev. Lett. \\textbf{112} (2014)), which indicates the presence of an inverse energy cascade, ...
New variational bounds on convective transport. II. Computations and implications
Souza, Andre; Tobasco, Ian; Doering, Charles R.
2016-11-01
We study the maximal rate of scalar transport between parallel walls separated by distance h, by an incompressible fluid with scalar diffusion coefficient κ. Given velocity vector field u with intensity measured by the Péclet number Pe =h2 1/2 / κ (where is space-time average) the challenge is to determine the largest enhancement of wall-to-wall scalar flux over purely diffusive transport, i.e., the Nusselt number Nu . Variational formulations of the problem are studied numerically and optimizing flow fields are computed over a range of Pe . Implications of this optimal wall-to-wall transport problem for the classical problem of Rayleigh-Bénard convection are discussed: the maximal scaling Nu Pe 2 / 3 corresponds, via the identity Pe2 = Ra (Nu - 1) where Ra is the usual Rayleigh number, to Nu Ra 1 / 2 as Ra -> ∞ . Supported in part by National Science Foundation Graduate Research Fellowship DGE-0813964, awards OISE-0967140, PHY-1205219, DMS-1311833, and DMS-1515161, and the John Simon Guggenheim Memorial Foundation.
Shiels, C.; Butler, S. L.
2015-09-01
Mantle convection models with a low viscosity asthenosphere and high viscosity surface plates have been shown to produce very large aspect ratio convection cells like those inferred to exist in Earth's mantle and to exhibit two asthenospheric flow regimes. When the surface plate is highly mobile, the plate velocity exceeds the flow velocities in the asthenosphere and the plate drives a Couette-type flow in the asthenospheric channel. For sluggish plates, the flow velocities in the asthenosphere exceed the plate velocity and the asthenospheric flow is more Poiseuille-like. It has been shown that under certain circumstances, flows become increasingly Couette-like as the aspect ratio of the plate is increased in numerical simulations. These models also show an increase in the average surface heat flux with aspect ratio which is counterintuitive, as one would expect that large aspect ratio models would result in older and colder oceanic lithosphere. Previous investigations have used single internal heating rates and Rayleigh numbers and a plate formulation that did not preclude significant deformation within the plate. In this paper, we investigate the conditions necessary for Couette and Poiseuille asthenospheric flows and for surface heat flux to increase with plate aspect ratio by varying the internal heating rate, the Rayleigh number and the representation of surface plates in 2D mantle convection models Plates are represented as a high viscosity layer with (1) a free-slip top surface boundary condition and (2) a force-balance boundary condition that imposes a constant surface velocity within the plate. We find that for models with a free-slip surface boundary condition, the internal heating rate and Rayleigh number do not strongly affect the dominance of Couette or Poiseuille flows in the asthenosphere but the increase in surface heat flux with model aspect ratio in the Poiseuille asthenospheric flow regime increases with internal heating rate. For models using
An Interface Stretching-Diffusion Model for Mixing-Limited Reactions During Convective Mixing
Hidalgo, J. J.; Dentz, M.; Cabeza, Y.; Carrera, J.
2014-12-01
We study the behavior of mixing-limited dissolution reactions under the unstable flow conditions caused by a Rayleigh-Bénard convective instability in a two fluids system. The reactions produce a dissolution pattern that follows the ascending fluids's interface where the largest concentration gradients and maximum mixing are found. Contrary to other chemical systems, the mixing history engraved by the dissolution does not map out the fingering geometry of the unstable flow. The temporal scaling of the mixing Χ and the reaction rate r are explained by a stretching-diffusion model of the interface between the fluids. The model accurately reproduces the three observed regimes: a diffusive regime at which Χ, r ~ t-1/2; a convective regime of at which the interface contracts to the Batchelor scale resulting in a constant Χf and r independent of the Rayleigh number; and an attenuated convection regime in which Χ and r decay faster than diffusion as t-3/2 and t-1, respectevely, because of the decompression of the interface and weakened reactions caused by the accumulation of dissolved fluid below the interface.
Nonlinear mushy-layer convection with chimneys: stability and optimal solute fluxes
Wells, Andrew J; Orszag, Steven A
2012-01-01
We model buoyancy-driven convection with chimneys -- channels of zero solid fraction -- in a mushy layer formed during directional solidification of a binary alloy in two-dimensions. A large suite of numerical simulations is combined with scaling analysis in order to study the parametric dependence of the flow. Stability boundaries are calculated for states of finite-amplitude convection with chimneys, which for a narrow domain can be interpreted in terms of a modified Rayleigh number criterion based on the domain width and mushy-layer permeability. For solidification in a wide domain with multiple chimneys, it has previously been hypothesised that the chimney spacing will adjust to optimise the rate of removal of potential energy from the system. For a wide variety of initial liquid concentration conditions, we consider the detailed flow structure in this optimal state and derive scaling laws for how the flow evolves as the strength of convection increases. For moderate mushy-layer Rayleigh numbers these flo...
Chen, Yan-Jun; Wang, Ping-Yang; Liu, Zhen-Hua
2016-11-01
The natural convective heat transfer and flow characteristics of nanofluids in an enclosure are numerically simulated using the multiphase-flow model and single phase model respectively. The simulated results are compared with the experimental results from the published papers to investigate the applicability of these models for nanofluids from a macro standpoint. The effects of Rayleigh number, Grashof number and volume concentration of nanoparticles on the heat transfer and flow characteristics are investigated and discussed. Comparisons of the horizontal and vertical central dimensionless velocity profiles between nanofluid and water for various Grashof numbers are studied. In addition, both streamline contours and isotherms lines for different volume concentrations of nanofluids are analyzed as well. The study results show that a great deviation exists between the simulated result of the single phase model and the experimental data on the relation of Nusselt number and Rayleigh number, which indicates that the single phase model cannot reflect the heat transfer characteristic of nanofluid. While the simulated results using the multiphase-flow model show a good agreement with the experimental data of nanofluid, which means that the multiphase-flow model is more suitable for the numerical study of nanofluid. For the natural convection, the present study holds the point that using Grashof numbers as the benchmark would be more appropriate to describe the heat transfer characteristics of nanofluid. Moreover, the simulated results demonstrate that adding nanoparticles into the base fluid can enhance both the motion of fluid and convection in the enclosure significantly.
Double diffusive convection in a porous medium layer saturated with an Oldroyd nanofluid
Umavathi, J. C.; Sasso, Maurizio
2017-01-01
The onset of double diffusive convection in a horizontal layer of a porous medium saturated with an Oldroyd nanofluid is studied using linear and non-linear stability analysis. The modified Darcy-Oldroyd model is used for the momentum equation. The model used for the Oldroyd nanofluid incorporates the effects of Brownian motion and thermophoresis. The thermal energy equations include the diffusion and cross diffusion terms. The linear theory depends on normal mode technique and the onset criterion for stationary and oscillatory convection is derived analytically. The effects of various governing parameters viz., concentration Rayleigh number, nanofluid Lewis number, modified diffusivity ratio, Soret and Dufour parameters, Solutal Rayleigh number, Vadasz number, Lewis number, relaxation, and retardation parameters, viscosity ratio and conductivity ratio on the stationary and oscillatory convections are presented graphically. The non-linear theory based on the representation of Fourier series method is used to find the heat and mass transport. The effect of various parameters on transient heat and mass transfer is also brought out and nonlinear analysis depends on a minimal representation of double Fourier series. We also study the effect of time on transient Nusselt numbers which is found to be oscillatory when time is small. However, when time becomes very large all the three transient Nusselt values approaches to their steady state values.
Titan Balloon Convection Model Project
National Aeronautics and Space Administration — This innovative research effort is directed at determining, quantitatively, the convective heat transfer coefficients applicable to a Montgolfiere balloon operating...
Statistically steady measurements of Rayleigh-Taylor mixing in a gas channel
Banerjee, Arindam
A novel gas channel experiment was constructed to study the development of high Atwood number Rayleigh-Taylor mixing. Two gas streams, one containing air and the other containing helium-air mixture, flow parallel to each other separated by a thin splitter plate. The streams meet at the end of a splitter plate leading to the formation of an unstable interface and of buoyancy driven mixing. This buoyancy driven mixing experiment allows for long data collection times, short transients and was statistically steady. The facility was designed to be capable of large Atwood number studies of At ˜ 0.75. We describe work to measure the self similar evolution of mixing at density differences corresponding to 0.035 hot-wire anemometer, and high resolution digital image analysis. The hot-wire probe gives velocity, density and velocity-density statistics of the mixing layer. Two different multi-position single-wire techniques were used to measure the velocity fluctuations in three mutually perpendicular directions. Analysis of the measured data was used to explain the mixing as it develops to a self-similar regime in this flow. These measurements are to our knowledge, the first use of hot-wire anemometry in the Rayleigh-Taylor community. Since the measurement involved extensive calibration of the probes in a binary gas mixture of air and helium, a new convective heat transfer correlation was formulated to account for variable-density low Reynolds number flows past a heated cylinder. In addition to the hot-wire measurements, a digital image analysis procedure was used to characterize various properties of the flow and also to validate the hot-wire measurements. A test of statistical convergence was performed and the study revealed that the statistical convergence was a direct consequence of the number of different large three-dimensional structures that were averaged over the duration of the run.
Zero-Prandtl-number convection with slow rotation
Maity, Priyanka; Kumar, Krishna
2014-10-01
We present the results of our investigations of the primary instability and the flow patterns near onset in zero-Prandtl-number Rayleigh-Bénard convection with uniform rotation about a vertical axis. The investigations are carried out using direct numerical simulations of the hydrodynamic equations with stress-free horizontal boundaries in rectangular boxes of size (2π/kx) × (2π/ky) × 1 for different values of the ratio η = kx/ky. The primary instability is found to depend on η and Ta. Wavy rolls are observed at the primary instability for smaller values of η (1/√{3} ≤ η ≤ 2 except at η = 1) and for smaller values of Ta. We observed Küppers-Lortz (KL) type patterns at the primary instability for η = 1/√{3} and Ta ≥ 40. The fluid patterns are found to exhibit the phenomenon of bursting, as observed in experiments [K. M. S. Bajaj, G. Ahlers, and W. Pesch, "Rayleigh-Bénard convection with rotation at small Prandtl numbers," Phys. Rev. E 65, 056309 (2002)]. Periodic wavy rolls are observed at onset for smaller values of Ta, while KL-type patterns are observed for Ta ≥ 100 for η =√{3}. In case of η = 2, wavy rolls are observed for smaller values of Ta and KL-type patterns are observed for 25 ≤ Ta ≤ 575. Quasi-periodically varying patterns are observed in the oscillatory regime (Ta > 575). The behavior is quite different at η = 1. A time dependent competition between two sets of mutually perpendicular rolls is observed at onset for all values of Ta in this case. Fluid patterns are found to burst periodically as well as chaotically in time. It involved a homoclinic bifurcation. We have also made a couple of low-dimensional models to investigate bifurcations for η = 1, which is used to investigate the sequence of bifurcations.
Bidispersive-inclined convection
Mulone, Giuseppe; Straughan, Brian
2016-01-01
A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced
Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing
Susie Wright
2017-07-01
Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.
Rayleigh scattering in few-mode optical fibers
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-01-01
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation. PMID:27775003
Rayleigh scattering in few-mode optical fibers
Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang
2016-10-01
The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.
Wong, Teresa; Solomatov, Viatcheslav S.
2015-12-01
The strongly temperature-dependent viscosity of rocks leads to the formation of nearly rigid lithospheric plates. Previous studies showed that a very low yield stress might be necessary to weaken and mobilize the plates, for example, due to water. However, the magnitude of the yield stress remains poorly understood. While the convective stresses below the lithosphere are relatively small, sublithospheric convection can induce large stresses in the lithosphere indirectly, through thermal thinning of the lithosphere. The magnitude of the thermal thinning, the stresses associated with it, and the critical yield stress to initiate subduction depend on several factors including the viscosity law, the Rayleigh number, and the aspect ratio of the convective cells. We conduct a systematic numerical analysis of lithospheric stresses and other convective parameters for single steady-state convection cells. Such cells can be considered as part of a multi-cell, time-dependent convective system. This allows us a better control of convective solutions and a relatively simple scaling analysis. We find that subduction initiation depends much stronger on the aspect ratio than in previous studies and speculate that plate tectonics initiation may not necessarily require significant weakening and can, at least in principle, start if a sufficiently long cell develops during planetary evolution.
Effect of natural convection heat transfer during polymer optical fiber drawing
Reeve, Hayden Matane
The quality of polymer optical fiber is dependent on the diametral uniformity of the fiber and the applied drawing force. In this study, the force required to draw a polymer preform into optical fiber is predicted and measured as it is heated in an enclosed cylindrical furnace. The draw force is a function of the highly temperature dependent polymer viscosity. Therefore accurate prediction of the drawing force requires a detailed investigation of the heat transfer within the furnace. In this investigation, the full axi-symmetric conjugate problem (including both natural convection and thermal radiation) was solved. In addition, the location of the polymer/air interface was solved for as part of the problem and was not prescribed beforehand. Numerical results compared well with the experimentally measured draw tension and neck-down profiles for several preform diameters, draw speeds, and furnace temperatures. The experimental investigation also found that as the buoyant potential of the air within the furnace was increased the natural convection transitioned from time-invariant to oscillatory, and finally, to chaotic flow. The time-varying heating caused by the oscillatory and chaotic regimes alters the rheology of the elongating polymer preform, causing detrimental variations in the fiber diameter. When subjected to oscillatory and chaotic natural convection the standard deviation of the fiber diameter variations was up to 2.5 to 10 times greater, respectively, than that measured under time-invariant heating conditions. Experimental visualization of the unsteady natural convection flow indicates that the instability occurs at the interface between two counter-rotating cells. Numerical simulations of natural convection within a tall non-isothermal axi-symmetric annular cavity with an aspect ratio of 10 and a radius ratio of 0.6 predicted unsteady phenomena. At low Rayleigh numbers a steady bi-cellular flow was predicted. As the Rayleigh number was increased the
Huang, Zhu
2015-03-01
The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.
Missoum Abdelkrim
2016-01-01
Full Text Available This study focuses on the numerical simulation of heat transfer by natural convection in a rectangular enclosure, filled with a liquid metal (low Prandtl number partially heated from below with a sinusoidal temperature. The value of the study lies in its involvement in the crystal growth for the manufacture of semiconductors and electronics cooling. Indeed, the occurrence of convection during crystal growth can lead to in homogeneities that lead to striations and defects that affect the quality of the crystals obtained by the Bridgman techniques or Chochrawlski. Temperature of the oscillations, due to the instabilities of the convective flow in the liquid metal, also induces non-uniform cooling in the solidification front. Convection is then studied in order to reduce it. A modelling of the problem in two dimensions was conducted using Comsol computer code that is based on the finite element method, by varying the configuration of the control parameters, namely, the Rayleigh number, the nature of fluid (Prandtl number and amplitude of temperature on heat transfer rate (Nusselt number on convective structures that appear.
AN EFFICIENT SIMULATION OF MULTIPLE CORRELATED RAYLEIGH FADING ENVELOPES
Zhou Ke; Cao Shike; Song Rongfang
2008-01-01
In order to better assess the performance of wireless communication systems,it is desirable to produce multiple Rayleigh fading envelopes with specified correlations. In this paper,we analyze theoretically a procedure which generates correlated Gaussian random variables from independent Gaussian random variables and give a physical explanation for the limitation of this procedure. Then,based on some uncorrelated Rayleigh fading envelopes,a simple but efficient procedure for generating an arbitrary number of cross-correlated Rayleigh fading envelopes is proposed. Simulation results and computational complexity analysis are presented,which show that the proposed method has some advantages,such as high accuracy,low computational complexity and easy implementation,over the conventional simulation method.
In situ Characterization of Nanoparticles Using Rayleigh Scattering
Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto
2017-01-01
We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.
In situ Characterization of Nanoparticles Using Rayleigh Scattering.
Santra, Biswajit; Shneider, Mikhail N; Car, Roberto
2017-01-10
We report a theoretical analysis showing that Rayleigh scattering could be used to monitor the growth of nanoparticles under arc discharge conditions. We compute the Rayleigh scattering cross sections of the nanoparticles by combining light scattering theory for gas-particle mixtures with calculations of the dynamic electronic polarizability of the nanoparticles. We find that the resolution of the Rayleigh scattering probe is adequate to detect nanoparticles as small as C60 at the expected concentrations of synthesis conditions in the arc periphery. Larger asymmetric nanoparticles would yield brighter signals, making possible to follow the evolution of the growing nanoparticle population from the evolution of the scattered intensity. Observable spectral features include characteristic resonant behaviour, shape-dependent depolarization ratio, and mass-dependent line shape. Direct observation of nanoparticles in the early stages of growth with unobtrusive laser probes should give insight on the particle formation mechanisms and may lead to better-controlled synthesis protocols.
2013-01-01
Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure (the left wall is kept at a high constant temperature (TH), and the top wall is kept at a low constant temperature (TC)) filled with Al2O3/H2O nanofluid. This model is validated by comparing numerical results with published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction distribution in the square enclosure are studied in this paper. It is found that the driving force of the temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force, interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural convective heat transfer, while drag force has a negative effect. PMID:23374509
Graphene-coated rayleigh SAW resonators for NO2 detection
Thomas, Stephen M.; Cole, Marina; De Luca, A; Torrisi, F.; Ferrari, A. C.; Udrea, Florin; Gardner, J. W.
2014-01-01
This paper describes the development of a novel low-cost Rayleigh Surface Acoustic Wave Resonator (SAWR) device coated with a graphene layer that is capable of detecting PPM levels of NO2 in air. The sensor comprises two 262 MHz ST-cut quartz based Rayleigh SAWRs arranged in a dual oscillator configuration; where one resonator is coated with gas-sensitive graphene, and the other left uncoated to act as a reference. An array of NMP-dispersed exfoliated reduced graphene oxide dots was deposited...
Passive retrieval of Rayleigh waves in disordered elastic media.
Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel
2005-10-01
When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime.
Ergodic channel capacity of the spatial correlated rayleigh MIMO channel
ZHANG Hui-ping; WU Ping; LIU Ai-jun
2007-01-01
The theoretical capacity of the spatial correlated Rayleigh multiple input multiple output (MIMO) channel is an important issue in MIMO technology. In this article, an ergodic channel capacity formula of the spatial correlated rayleigh MIMO channel is provided, which is deduced when two antennas exist at either the transmitter or the receiver. The multi-dimensional least-squares fit algorithm is employed to narrow the difference between the theoretical formula capacity and the practical capacity. Simulation results show that the theoretical capacity approaches the practical one closely.
A viscous-convective instability in laminar Keplerian thin discs. II. Anelastic approximation
Shakura, N
2015-01-01
Using the anelastic approximation of linearised hydrodynamic equations, we investigate the development of axially symmetric small perturbations in thin Keplerian discs. The sixth-order dispersion equation is derived and numerically solved for different values of relevant physical parameters (viscosity, heat conductivity, disc semi-thickness and vertical structure). The analysis reveals the appearance of two overstable modes which split out from the classical Rayleigh inertial modes in a wide range of the parameters in both ionized and neutral gases. These modes have a viscous-convective nature and can serve as a seed for turbulence in astrophysical discs even in the absence of magnetic fields.
Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N. [Institute of Nuclear Safety Russian Academy Science, Moscow (Russian Federation)
1995-09-01
Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.
Transportation of MHD nanofluid free convection in a porous semi annulus using numerical approach
Sheikholeslami, M.; Ganji, D. D.
2017-02-01
Nanofluid free convection in presence of Lorentz forces in a permeable semi annulus is simulated using Control Volume based Finite Element Method. Impact of porous media on governing equations is considered by means of Darcy law. Brownian motion impact on properties of nanofluid is taken into account using Koo-Kleinstreuer-Li (KKL) model. Important parameters are inclination angle (ξ) , CuO-water volume fraction (ϕ) , Hartmann (Ha) and Rayleigh (Ra) numbers for porous medium. A formula for Nuave is provided. Results indicated that temperature gradient detracts with enhance of Ha but it enhances with rise of ξ, Ra . Heat transfer augmentation enhances with rise of Lorentz forces.
Convective stability of a vertical layer of magnetizable fluid in a uniform magnetic field
Bashtovoy, V.G.; Pavlinov, M.I.
1978-01-01
An infinitely large plane vertical layer of magnetizable fluid is considered, this layer being heated from below and bounded on both lateral surfaces by ferromagnetic half-spaces. The fluid and the ferromagnetic material on both sides have the same pyromagnetic coefficient. The possibility of overcoming a convective instability of such a fluid layer in a uniform magnetic field is demonstrated by a solution of the equilibrium equation. The result indicates that such a magnetic field raises the stability threshold to full stabilization of the fluid layer, with the instability range in terms of the Rayleigh number now having both a lower and an upper limit. 3 references.
Temperature and velocity fields in natural convection by PIV and LIF
Meyer, Knud Erik; Larsen, Poul Scheel; Westergaard, C. H.
2002-01-01
Natural convection in a cubical cavity (L = 250 mm) filled with water is created by heating a square plate (0.5 L) centred in the bottom wall and by cooling the sidewalls, while the remaining walls are insulated. The Rayleigh number based on cavity side length and temperature difference between...... plate and cooled walls is 1.4×10^10. The flow is turbulent and is similar to some indoor room flows. Combined Particle Image Velocimetry (PIV) and Planar Light Induced Fluorescence (LIF) are used to measure local velocities and temperatures. Data measured in a symmetry plane parallel to a sidewall...
Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)
2011-10-15
Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift
Nield, Donald A
1992-01-01
This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches
Nield, Donald A
2013-01-01
Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...
Liot, Olivier; Rusaouën, Elonore; Coudarchet, Thibaut; Salort, Julien; Chillà, Francesca
2016-01-01
We report Particle Image Velocimetry of the Large Scale Circulation and the viscous boundary layer in turbulent thermal convection. We use two parallelepipedic Rayleigh-B{\\'e}nard cells with a top smooth plate. The first one has a rough bottom plate and the second one has a smooth one so we compare the rough-smooth and the smooth-smooth configurations. The dimensions of the cell allow to consider a bi-dimensional mean flow. Lots of previous heat flux measurements have shown a Nusselt--Rayleigh regime transition corresponding to an increase of the heat flux in presence of roughness which is higher than the surface increase. Our velocity measurements show that if the mean velocity field is not clearly affected by the roughness, the velocity fluctuations rise dramatically. It is accompanied by a change of the longitudinal velocity structure functions scaling. Moreover, we show that the boundary layer becomes turbulent close to roughness, as it was observed recently in the air [Liot et al., JFM, vol. 786, pp. 275...
Field-Correlation Effects on Rayleigh-Enhanced Nondegenerate Four-Wave Mixing
王延帮; 姜谦; 米辛; 俞祖和; 傅盘铭
2002-01-01
We study Rayleigh-enhanced nondegenerate four-wave mixing (NFWM) with time-delayed, correlated fluctuating fields. The importance of the field correlation is revealed in the Rayleigh-enhanced NFWM spectrum when the time delay is varied. The Rayleigh-enhanced NFWM is employed to study the ultrafast processes in the frequency domain. A relaxation time as short as 220 fs was deduced in the Rayleigh-enhanced NFWM experiments in carbon disulphide.
Experimental free convection heat transfer from inclined square cylinders
Ali, Mohamed
2016-10-01
Natural convection from axisymmetric objects such as vertical or horizontal cylinders and spheres are two dimensional. However, for inclined circular or noncircular cylinders the flow and heat transfer is three dimensional and hence more complex and needs more attention. This study investigates the steady state mechanism of natural convection from inclined square cylinders in air. Five different cylinders of 1 m length, 8 × 8, 7 × 7, 6 × 6, 4 × 4 and 2.5 × 2.5 cm2 cross sections are used. The cylinders are heated using inserted heating element of 6 mm in diameter. Self-adhesive thermocouples are used at the upper, bottom and at one side of the cylinders for temperature measurement. Three inclination angles to the horizontal 30, 45 and 60o are used for each cylinder with uniform heat flux boundary conditions. For each cylinder, about ten heat fluxes are used to generate the heat transfer data. Local and average heat transfer coefficient is determined for each cylinder at each inclination angle for each uniform heat flux. Laminar and transition to turbulent regimes are obtained and characterized. Local critical axial distance where heat transfer coefficient changes the mode is obtained for each heat flux. Local and averaged Nusselt numbers are correlated with the modified Rayleigh numbers for all angles.
Anelastic convection in the mantle with variable properties
Quareni, F.; Marzocchi, W.; Mulargia, F.
1991-08-01
The convective motion and the thermal state of the Earth's mantle are investigated through the mean-field approximation, deriving the steady-state solutions of the set of conservation equations in cartesian geometry for a compressible fluid with variable viscosity, bulk modulus, thermal expansion and thermal conductivity. The density and bulk modulus are taken from the Preliminary Reference Earth Model (PREM) and the Grüneisen parameter is evaluated through the Debye-Brillouin formulation, which has been proven to be an effective approximation. Thermal expansion is derived from the thermodynamical definition of the Grüneisen parameter, and thermal conductivity and the other thermodynamic parameters are written in terms of the elastic constants according to the quasi-harmonic theory. Comparison of the solutions obtained with an exponential density profile following the Adams-Williamson equation of state and the polynomial profile of the PREM shows that the detail of the radial behaviour of density has a minor influence. The radial variation of thermal expansivity is found to produce a lower thermal gradient at high Rayleigh numbers through a complex feedback mechanism involving buoyancy and adiabatic heating. The radial dependence of thermal conductivity strongly affects both the mechanical and thermal state of the convective cells and inhibits the formation of thermal boundary layers at the bottom of the cells. In this case, the temperature dependence of the viscosity determines a 'cold' and a 'hot' branch, which may be related to the composition of the outer core.
Stability analysis of convection in the intracluster medium
Gupta, H., E-mail: hiugupta@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Rathor, S.K., E-mail: skrathor@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Pessah, M.E., E-mail: mpessah@nbi.dk [Niels Bohr International Academy, Niels Bohr Institute, 2100, Copenhagen Ø (Denmark); Chakraborty, S., E-mail: sagarc@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, U.P. 208016 (India); Mechanics & Applied Mathematics Group, Indian Institute of Technology Kanpur, U.P. 208016 (India)
2016-07-15
We use the machinery usually employed for studying the onset of Rayleigh–Bénard convection in hydro- and magnetohydro-dynamic settings to address the onset of convection induced by the magnetothermal instability and the heat-flux-buoyancy-driven-instability in the weakly-collisional magnetized plasma permeating the intracluster medium. Since most of the related numerical simulations consider the plasma being bounded between two ‘plates’ on which boundary conditions are specified, our strategy provides a framework that could enable a more direct connection between analytical and numerical studies. We derive the conditions for the onset of these instabilities considering the effects of induced magnetic tension resulting from a finite plasma beta. We provide expressions for the Rayleigh number in terms of the wave vector associated with a given mode, which allow us to characterize the modes that are first to become unstable. For both the heat-flux-buoyancy-driven-instability and the magnetothermal instability, oscillatory marginal stable states are possible. - Highlights: • Stability analysis of the HBI and the MTI are presented taking into account the boundary conditions employed in the simulations. • It has been shown that the HBI doesn't set in as an oscillatory marginal state whereas the MTI can do so. • The HBI and the MTI criteria have been modified to include the affects of the magnetic tension.
On the effect of laterally varying boundary heat flux on rapidly rotating spherical shell convection
Sahoo, Swarandeep; Sreenivasan, Binod
2017-08-01
The onset of convection in a rotating spherical shell subject to laterally varying heat flux at the outer boundary is considered in this paper. The focus is on the geophysically relevant regime of rapid rotation (low Ekman number) where the natural length scale of convection is significantly smaller than the length scale imposed by the boundary heat flux pattern. Contrary to earlier studies at a higher Ekman number, we find a substantial reduction in the onset Rayleigh number Rac with increasing lateral variation. The decrease in Rac is shown to be closely correlated to the equatorial heat flux surplus in the steady, basic state solution. The consistency of such a correlation makes the estimation of Rac possible without solving the full stability problem. The steady baroclinic flow has a strong cyclone-anticyclone asymmetry in the kinetic helicity only for equatorially symmetric lateral variations, with possible implications for dynamo action. Equatorially antisymmetric variations, on the other hand, break the symmetry of the mean flow, in turn negating its helicity. Analysis of the perturbation solution reveals strongly localized clusters through which convection rolls drift in and out at a frequency higher than that for the reference case with homogeneous boundary heat flux. Large lateral variations produce a marked decrease in the azimuthal length scale of columns, which indicates that small-scale motions are essential to the transport of heat in rapidly rotating, localized convection. With an equatorially antisymmetric heat flux pattern, convection in individual clusters goes through an asynchronous wax-wane cycle whose frequency is much lower than the drift rate of the columns. These continual variations in convection intensity may in turn result in fluctuations in the magnetic field intensity, an effect that needs to be considered in dynamo models. Finally, there is a notable analogy between the role of a laterally varying boundary heat flux and the role of a
Convection in Type 2 supernovae
Miller, D.S.
1993-10-15
Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.
Convection in Type 2 supernovae
Miller, Douglas Scott [Univ. of California, Davis, CA (United States)
1993-10-15
Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of ~ 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for γ-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of ~ 200. When convection is allowed, the bubble reaches ~60 then the bubble begins to move upward into the cooler, denser material above it.
A Simple Capacity Formula for Correlated Diversity Rayleigh Fading Channels
CHENG Xing-qing; SU Shu-chun; LI Dao-ben
2004-01-01
Abstract: The system capacity can be considerably increased if we appropriately exploit the randomness of multipath propagation. A simple average capacity formula is derived for correlated diversity Rayleigh fading channels through linear transformation method.Numerical results that illustrate the effect of correlation parameter and diversity order on the diversitycapacity are also presented.
A Rayleigh Doppler Frequency Estimator Derived from Maximum Likelihood Theory
Hansen, Henrik; Affes, Sofiene; Mermelstein, Paul
1999-01-01
Reliable estimates of Rayleigh Doppler frequency are useful for the optimization of adaptive multiple access wireless receivers.The adaptation parameters of such receivers are sensitive to the amount of Doppler and automatic reconfiguration to the speed of terminalmovement can optimize cell...
PALM and STORM: what hides beyond the Rayleigh limit?
Henriques, R
2009-06-01
Full Text Available -1 Biotechnol. J. 2009, 4, 846?857 Review PALM and STORM: What hides beyond the Rayleigh limit? Ricardo Henriques1 and Musa M. Mhlanga1,2 1 Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de...
A COMPARATIVE STUDY UNDER PROGRESSIVELY FIRST FAILURE CENSORED RAYLEIGH DATA
Gyan Prakash
2015-06-01
Full Text Available A comparative study presented in this article for two different asymmetric loss functions is based on simulation. Two-parameter Rayleigh model is considered here as the underline model for evaluating the properties of Bayes estimators under progressive first failure censored data. Known and unknown both cases of location parameter are considered here for Bayes estimation of scale parameter.
Attenuation of Rayleigh Surface Waves in a Porous Material
DEBBOUB Salima; BOUMA(I)ZA Youcef; BOUDOUR Amar; TAHRAOUI Tarek
2012-01-01
Using acoustic microscopy at higher frequency,we show the velocity evolutions of surface acoustic waves,in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer.The velocities are obtained from different V(z) curves,which are determined experimentally at a frequency of 600MHz.The analysis of V(z) data yields attenuation that is directly dependent on porosity.On the other hand,αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.%Using acoustic microscopy at higher frequency, we show the velocity evolutions of surface acoustic waves, in particular Rayleigh waves that depend on porosity for a mesoporous silicon layer. The velocities are obtained from different V(z) curves, which are determined experimentally at a frequency of 600 MHz. The analysis of V(z) data yields attenuation that is directly dependent on porosity. On the other hand, αN attenuation has been modeled and allows us to investigate its influence on the velocity VR of the propagation for Rayleigh waves.
Spatial sub-Rayleigh imaging analysis via speckle laser illumination
Wang, Yunlong; Liu, Ruifeng; Chen, Dongxu; Gao, Hong; Zhang, Pei; Li, Fuli
2016-01-01
It is commonly accepted that optical sub-Rayleigh imaging has potential application in many fields. In this Letter, by confining the divergence of the optical field, as well as the size of the illumination source, we show that the first-order averaged intensity measurement via speckle laser illumina- tion can make an actual breakthrough on the Rayleigh limit. For a high-order algorithm, it has been reported that the autocorrelation function can be utilized to achieve the sub-Rayleigh feature. However, we find that this sub- Rayleigh feature for the high-order algorithm is limited only to binary objects, and the image will be distorted when a gray object is placed. This property encourages us to find the physics behind the high-order correlation imaging algo- rithm. We address these explanations in this Letter and find that for different types of high-order algorithm, there is always a seat in the right place from the cross-correlation function.
mitants of Order Statistics from Bivariate Inverse Rayleigh Distribution
Muhammad Aleem
2006-01-01
Full Text Available The probability density function (pdf of the rth, 1 r n and joint pdf of the rth and sth, 1 rRayleigh Distribution and their moments, product moments are obtained. Its percentiles are also obtained.
A Rayleigh Doppler frequency estimator derived from maximum likelihood theory
Hansen, Henrik; Affes, Sofiéne; Mermelstein, Paul
1999-01-01
Reliable estimates of Rayleigh Doppler frequency are useful for the optimization of adaptive multiple access wireless receivers. The adaptation parameters of such receivers are sensitive to the amount of Doppler and automatic reconfiguration to the speed of terminal movement can optimize cell cap...
Exponential stabilization of a Rayleigh beam using collocated control
Weiss, George; Curtain, Ruth F.
We consider a hinged elastic beam described by the Rayleigh beam equation on the interval [0, pi]. We assume the presence of two sensors: one measures the angular velocity of the beam at a point xi is an element of [0, pi] and the other measures the bending (curvature) of the beam at the same point.
Natural convection in a room with two opposite heated vertical walls
Ameer Saad, Abdul Jabbar N. Khalifa
2015-01-01
Full Text Available In this study, investigation of radiation and natural convection in cubic enclosure has been carried out. A model of an enclosure representing a room was constructed from polystyrene boards. Two vertical walls are supplied with constant heat flux in the range of 9.4-47.8 W/m2. Temperatures of walls, ceiling, floor and air inside enclosure were measured using a 26 K-type thermocouples under steady state condition. Heat transfer was investigated for Rayleigh numbers in the range 4.4e7 - 1.2e8 with Prandtl number of 0.71. Detailed results including temperature profiles and correlation equations for convection heat transfer coefficient in terms of temperature difference between the heated surface temperature and the temperature of the air have been obtained for the walls of the enclosure.
Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid
Kageyama, Akira; Yoshida, Masaki [Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Showa-machi 3173-25, Yokohama (Japan)
2005-01-01
We have developed finite difference codes based on the Yin-Yang grid for the geodynamo simulation and the mantle convection simulation. The Yin-Yang grid is a kind of spherical overset grid that is composed of two identical component grids. The intrinsic simplicity of the mesh configuration of the Yin-Yang grid enables us to develop highly optimized simulation codes on massively parallel supercomputers. The Yin-Yang geodynamo code has achieved 15.2 Tflops with 4096 processors on the Earth Simulator. This represents 46% of the theoretical peak performance. The Yin-Yang mantle code has enabled us to carry out mantle convection simulations in realistic regimes with a Rayleigh number of 10{sup 7} including strongly temperature dependent viscosity with spatial contrast up to 10{sup 6}.
Generation of a symmetric magnetic field by thermal convection in a plane rotating layer
Zheligovsky, V
2010-01-01
We investigate numerically magnetic field generation by thermal convection with square periodicity cells in a rotating horizontal layer of electrically-conducting fluid with stress-free electrically perfectly conducting boundaries for Rayleigh numbers in the interval 5100\\le R\\le 5800. Dynamos of three kinds, apparently not encountered before, are presented: 1) Steady and time-periodic regimes, where the flow and magnetic field are symmetric about a vertical axis. In regimes with this symmetry, the global alpha-effect is insignificant, and the complex structure of the system of amplitude equations controlling weakly nonlinear stability of the system to perturbations with large spatial and temporal scales suggests that the perturbations are likely to exhibit uncommon complex patterns of behaviour, to be studied in the future work. 2) Periodic in time regimes, where magnetic field is always concentrated in the interior of the convective layer, in contrast to the behaviour first observed by St Pierre (1993) and ...
Heat transfers in a double-skin roof ventilated by natural convection in summer time
Biwole, Pascal; Pompeo, C
2013-01-01
The double-skin roofs investigated in this paper are formed by adding a metallic screen on an existing sheet metal roof. The system enhances passive cooling of dwellings and can help diminishing power costs for air conditioning in summer or in tropical and arid countries. In this work, radiation, convection and conduction heat transfers are investigated. Depending on its surface properties, the screen reflects a large amount of oncoming solar radiation. Natural convection in the channel underneath drives off the residual heat. The bi-dimensional numerical simulation of the heat transfers through the double skin reveals the most important parameters for the system's efficiency. They are, by order of importance, the sheet metal surface emissivity, the screen internal and external surface emissivity, the insulation thickness and the inclination angle for a channel width over 6 cm. The influence of those parameters on Rayleigh and Nusselt numbers is also investigated. Temperature and air velocity profiles on seve...
Numerical studies of convective heat transfer in an inclined semi-annular enclosure
Wang, L.-W.; Chai, A.-T.; Yung, C.-N.; Rashidnia, N.
1989-01-01
Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.
Numerical studies of convective heat transfer in an inclined semiannular enclosure
Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser
1989-01-01
Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.
Wang, Wei-Hsiang; Fu, Wu-Shung; Tsubokura, Makoto
2016-11-01
Unstable phenomena of low speed compressible natural convection are investigated numerically. Geometry contains parallel square plates or single heated plate with open boundaries is taken into consideration. Numerical methods of the Roe scheme, preconditioning and dual time stepping matching the DP-LUR method are used for low speed compressible flow. The absorbing boundary condition and modified LODI method is adopted to solve open boundary problems. High performance parallel computation is achieved by multi-GPU implementation with CUDA platform. The effects of natural convection by isothermal plates facing upwards in air is then carried out by the methods mentioned above Unstable behaviors appeared upon certain Rayleigh number with characteristic length respect to the width of plates or height between plates.
Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities
Allen, Rebecca
2016-06-29
We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.
Dissolution in anisotropic porous media: Modelling convection regimes from onset to shutdown
De Paoli, Marco; Zonta, Francesco; Soldati, Alfredo
2017-02-01
In the present study, we use direct numerical simulations to examine the role of non-isotropic permeability on solutal convection in a fluid-saturated porous medium. The dense solute injected from the top boundary is driven downwards by gravity and follows a complex time-dependent dynamics. The process of solute dissolution, which is initially controlled by diffusion, becomes dominated by convection as soon as fingers appear, grow, and interact. The dense solute finally reaches the bottom boundary where, due to the prescribed impermeable boundary, it starts filling the domain so to enter the shutdown stage. We present the entire transient dynamics for large Rayleigh-Darcy numbers, Ra, and non-isotropic permeability. We also try to provide suitable and reliable models to parametrize it. With the conceptual setup presented here, we aim at mimicking the process of liquid CO2 sequestration into geological reservoirs.
NUMERICAL SIMULATION OF TRAVELING WAVE CONVECTION IN A WEAKLY NONLINEAR REGIME
无
2000-01-01
This paper presents a simulational result on a blinking traveling wave (BTW) state in binary fluid convection in a rectangular cell. The numerical simulations were made using the two-dimensional perturbation equations of full hydrodynamic equations. We found for the first time that the BTW or sloshing traveling wave state is a type of modulated traveling wave (MTW) generated by the motion of a source defect which originates from the reflection effect at the end walls and depends on the reduced Rayleigh number r. Comparison with the localized traveling wave (LTW) shows that the BTW is convective patterns on a weakly nonlinear branch with a small amplitude and the LTW is those on a full nonlinear branch whth a large amplitude. They have different dynamical behaviour. A discontinuous jump from the BTW branch to the stable LTW branch takes place as the oscillatory period lengthens and the amplitude grows above the upper critical value of the BTW.
Effects of convective motion in n-octane pool fires in an ice cavity
Farahani, Harried Farmahini; Jomaas, Grunde; Rangwala, Ali S.
2015-01-01
performed by burning n-octane in cylindrically shaped ice cavities of 5.7 cm diameter. The first set of experiments was intended to provide a clear understanding of the geometry change of the cavity and displacement of the fuel layer. The results of these experiments showed that the rate of melting...... of the ice walls were higher in areas where the fuel layer was in contact with ice than in places where the flame was present. Due to the melting of the ice walls, a ring-shaped void was formed around the perimeter of the cavity. In the second set of experiments, the change in the temperature of the fuel...... two major convective phases; in the first half of the burning time, the buoyancy driven flows (Rayleigh) were dominant, while Marangoni convection was dominant in the second half of the burning time. The role of these mechanisms in affecting the flow and melting the ice is discussed. (C) 2015...
Geoid and topography for infinite Prandtl number convection in a spherical shell
Bercovici, D.; Schubert, G.; Zebib, A.
1988-01-01
Geoid anomalies and surface and lower-boundary topographies are calculated for numerically generated thermal convection for an infinite Prandtl number, Boussinesq, axisymmetric spherical fluid shell with constant gravity and viscosity, for heating both entirely from below and entirely from within. Convection solutions are obtained for Rayleigh numbers Ra up to 20 times the critical Ra in heating from below and 27 times critical for heating from within. Geoid parallels surface undulations, and boundary deformation generally increases with increasing cell wavelength. Dimensionless geoid and topography in heating from below are about 5 times greater than in heating from within. Values for heating from within correlate more closely with geophysical data than values from heating from below, suggesting a predominance of internal heating in the mantle. The study emphasizes that dynamically induced topography and geoid are sensitive to the mode of heating in the earth's mantle.
Retrieval of Rayleigh Wave Ellipticity from Ambient Vibration Recordings
Maranò, Stefano; Hobiger, Manuel; Fäh, Donat
2017-01-01
The analysis of ambient vibrations is a useful tool in microzonation and geotechnical investigations. Ambient vibrations are composed to a large part of surface waves, both Love and Rayleigh waves. One reason to analyse surface waves is that they carry information about the subsurface. The dispersion curve of Rayleigh waves and Love waves can be retrieved using array processing techniques. The Rayleigh wave ellipticity, including the sense of rotation of the particle motion, can also be retrieved using array techniques. These quantities are used in an inversion procedure aimed at obtaining a structural model of the subsurface. The focus of this work is the retrieval of Rayleigh wave ellipticity. We show applications of the (ML) method presented in Maranó et al. (2012) to a number of sites in Switzerland. The sites examined are chosen to reflect a wide range of soil conditions that are of interest in microzonation studies. Using a synthetic wavefield with known structural model, we compare our results with theoretical ellipticity curves and we show the accuracy of the considered algorithm. The sense of rotation of the particle motion (prograde vs. retrograde) is also estimated. In addition, we show that by modelling the presence of both Love and Rayleigh waves it is possible to mitigate the disruptive influence of Love waves on the estimation of Rayleigh wave ellipticity. Using recordings from several real sites, we show that it is possible to retrieve the ellipticity curve over a broad range of frequencies. Fundamental modes and higher modes are retrieved. Singularities of the ellipticity, corresponding to a change of the sense of rotation from prograde to retrograde (or vice versa), are detected with great accuracy. Knowledge of Rayleigh wave ellipticity, including the sense of rotation, is useful in several ways. The ellipticity angle allows us to pinpoint accurately the frequency of singularities (i.e., peaks and zeros of the H/V representation of the
Search for methane isotope fractionation due to Rayleigh distillation on Titan
Ádámkovics, Máté
2016-01-01
We search for meridional variation in the abundance of CH$_3$D relative to CH$_4$ on Titan using near-IR spectra obtained with NIRSPAO at Keck, which have a photon-limited signal-to-noise ratio of $\\sim$50. Our observations can rule out a larger than 10% variation in the column of CH$_3$D below 50 km. The preferential condensation of the heavy isotopologues will fractionate methane by reducing CH$_3$D in the remaining vapor, and therefore these observations place limits on the amount of condensation that occurs in the troposphere. While previous estimates of CH$_3$D fractionation on Titan have estimated an upper limit of -6 per mil, assuming a solid condensate, we consider more recent laboratory data for the equilibrium fractionation over liquid methane, and use a Rayleigh distillation model to calculate fractionation in an ascending parcel of air that is following a moist adiabat. We find that deep, precipitating convection can enhance the fractionation of the remaining methane vapor by -10 to -40 per mil, d...
On the origin of intrinsic randomness of Rayleigh-Bénard turbulence
Lin, ZhiLiang; Wang, LiPo; Liao, ShiJun
2017-01-01
It is of broad interest to understand how the evolution of non-equilibrium systems can be triggered and the role played by external perturbations. A famous example is the origin of randomness in the laminar-turbulence transition, which is raised in the pipe flow experiment by Reynolds as a century old unresolved problem. Although there exist different hypotheses, it is widely believed that the randomness is "intrinsic", which, however, remains as an open question to be verified. Simulating the modeled Rayleigh-Bénard convection system by means of the so-called clean numerical simulation (CNS) with negligible numerical noises that are smaller even than thermal fluctuation, we verify that turbulence can be self-excited from the inherent thermal fluctuation without any external disturbances, i.e. out of nothing. This reveals a relationship between microscopic physical uncertainty and macroscopic randomness. It is found that in physics the system nonlinearity functions as a channel for randomness information, and energy as well, to transport microscopic uncertainty toward large scales. Such scenario can generally be helpful to understand the various relevant phenomena. In methodology, compared with direct numerical simulation (DNS), CNS opens a new direction to investigate turbulent flows with largely improved accuracy and reliability.
Kameyama, Masanori; Miyagoshi, Takehiro; Ogawa, Masaki
2015-02-01
A series of linear analysis was performed on the onset of thermal convection of highly compressible fluids, in order to deepen the fundamental insights into the mantle convection of massive super-Earths in the presence of strong adiabatic compression. We consider the temporal evolution (growth or decay) of an infinitesimal perturbation superimposed to a highly compressible fluid which is in a hydrostatic (motionless) and conductive state in a basally heated horizontal layer. As a model of pressure-dependence in material properties, we employed an exponential decrease in thermal expansivity α and exponential increase in (reference) density ρ with depth. The linearized equations for conservation of mass, momentum and internal (thermal) energy are numerically solved for the critical Rayleigh number as well as the vertical profiles of eigenfunctions for infinitesimal perturbations. The above calculations are repeatedly carried out by systematically varying (i) the dissipation number (Di), (ii) the temperature at the top surface and (iii) the magnitude of pressure-dependence in α and ρ. Our analysis demonstrated that the onset of thermal convection is strongly affected by the adiabatic compression, in response to the changes in the static stability of thermal stratification in the fluid layer. For sufficiently large Di where a thick sublayer of stable stratification develops in the layer, for example, the critical Rayleigh number explosively increases with Di, together with drastic decreases in the length scales of perturbations both in vertical and horizontal directions. In particular, for very large Di, a thick `stratosphere' occurs in the fluid layer where the vertical motion is significantly suppressed, resulting in a shrink of the incipient convection in a thin sublayer of unstable thermal stratification. In addition, when Di exceeds a threshold value above which a thermal stratification becomes stable in the entire layer, no perturbation is allowed to grow
S.N. Gaikwad
2014-01-01
Full Text Available In this paper, we have investigated theoretically the effect of Soret parameter on the onset of double diffusive rotating anisotropic convection in a horizontal sparsely packed porous layer using linear stability theory which is based on the usual normal mode technique. The Brinkman model that includes the Coriolis term is employed for the momentum equation. The effect of anisotropy parameters, Soret parameter, solute Rayleigh number, Taylor number, Lewis number, Darcy and Darcy Prandtl number on stationary and oscillatory convection is shown graphically.
Javaherdeh, Korosh; Moslemi, Mehdi; Shahbazi, Mona [University of Guilan, Rasht (Iran, Islamic Republic of)
2017-04-15
A numerical analysis has been performed to investigate the laminar natural convection heat characteristics in a wavy cavity filled with CuO/water nanofluid. One of the sinusoidal walls (BC) is at the volatile high temperature and the opposite wavy surface is at a stable low temperature and the two other walls are considered flat and insulated while the uniform magnetic field is considered. Performing the analysis, the governing equations are given in terms of the stream function-vorticity formulation. In order to solve the nondimensionalized equations, discretizing with second-order accurate central difference method is performed then the successive under relaxation method with appropriate boundary conditions is considered. To validate the numerical model, various comparisons with previously published studies have been conducted and the results are in a good agreement. The main objective is to survey the effects of the Rayleigh number, Hartmann number, and nanoparticles volume fraction on the fluid flow and heat transfer characteristics. The results are illustrated in contours of stream function, constant temperature, and Nusselt number. The results show that the presence of the magnetic field the local Nusselt number decreases at the hot wall. Moreover, the enhancement in the heat transfer performance increases with an increasing nanoparticle concentration. However, for all values of Rayleigh number, the presence of nanoparticles leads to significant enhancement in heat transfer and the increase of Rayleigh number causes the heat transfer mechanism to change from conduction to convection.
Plumes in stellar convection zones
Zahn, J P
1999-01-01
All numerical simulations of compressible convection reveal the presence of strong downwards directed flows. Thanks to helioseismology, such plumes have now been detected also at the top of the solar convection zone, on super- granular scales. Their properties may be crudely described by adopting Taylor's turbulent entrainment hypothesis, whose validity is well established under various conditions. Using this model, one finds that the strong density stratification does not prevent the plumes from traversing the whole convection zone, and that they carry upwards a net energy flux (Rieutord & Zahn 1995). They penetrate to some extent in the adjacent stable region, where they establish a nearly adiabatic stratification. These plumes have a strong impact on the dynamics of stellar convection zones, and they play probably a key role in the dynamo mechanism.
Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging
Yan, Zewu; Ju, Li; Eon, François; Gras, Slawomir; Zhao, Chunnong; Jacob, John; Blair, David G.
2004-03-01
Rayleigh scattering in test masses can introduce noise and reduce the sensitivity of laser interferometric gravitational wave detectors. In this paper, we present laser Rayleigh scattering imaging as a technique to investigate sapphire test masses. The system provides three-dimensional Rayleigh scattering mapping of entire test masses and quantitative evaluation of the Rayleigh scattering coefficient. Rayleigh scattering mapping of two sapphire samples reveals point defects as well as inhomogeneous structures in the samples. We present results showing significant non-uniform scattering within two 4.5 kg sapphire test masses manufactured by the heat exchanger method.
Convective cooling of photovoltaics
Hodge, E.; Gibbons, C. [Energy Engineering Group, Mechanical Engineering Department, Cork Institute of Technology, Bishopstown, Cork (Ireland)
2004-07-01
Most solar cells presently on the market are based on silicon wafers, the so-called first generation technology. As this technology has matured costs have become increasingly dominated by material costs. In the last ten years, continuous work has brought the efficiency of standard cells to the 25% region. A switch to second generation or thin film technology cells now seems imminent. Thin film technology eliminates the silicon wafer and offer the prospect of reducing material and manufacturing costs, but they exhibit lower efficiencies of around 10% for a commercial device. Third generation or tandem cells are currently at a 'proof of concept' research level, with a theoretical conversion rate of 86.8% being asserted Whatever the material construction and manufacturing method of cells, the thermal effect of overheating will prevail in the semiconductor and it is accepted that a lowered temperature will bring about an increase in conversion efficiency. The aim of this project is to improve the efficiency of PV electrical output, by convectively cooling the cells through perforations in them. As the cells heat up they lose efficiency. As the panel heats up a loss in efficiency of 0.5% per C increase in temperature has been recorded. (orig.)
Sourtiji Ehsan
2012-01-01
Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parameters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Rayleigh numbers. The influence of the magnetic field has been also studied and deduced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.
M. Narendra Kumar
2016-01-01
Full Text Available Natural convection heat transfer in a two dimensional unsteady rotating differentially heated enclosure is studied numerically in this paper. The enclosure is filled with air and executes a steady counterclockwise rotation about the centre of the enclosure. A finite volume code on a staggered grid arrangement with TDMA algorithm is developed and employed to solve the governing equations subject to Boussinesq approximation. The numerical investigation is carried out for fixed Prandtl number equal to 0.71, Rayleigh number equal to1.1×〖10〗^5 while Taylors number vary from5.2×〖10〗^4 to 3.3×〖10〗^5and Rotational Rayleigh number from 4.9×〖10〗^2 to 3.1×〖10〗^3.Results reveal that there are considerable change in heat transfer rates beyond 15 rpm. The effect of rotation on the Nusselt number for a given Rayleigh number is shown in the present work which is not normally indicated and discussed in the available literature
Laminar Natural Convection of Newtonian and Non Newtonian Fluids Inside Triangular Enclosure
Ala?a Abbas Muhadi
2007-01-01
Full Text Available In the present work, steady two dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103 ≤ Ra ≤ 105, with non-dimensional parameter (NE of Prandtl Eyring model ranging from (0 to 10, and modified Prandtl number take in the range (Pr* =1,10, and 100. Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at the constant cold temperature. Also, the non-Newtonian fluids under consideration were assumed to obey the Prandtl Eyring model..The results are presented in terms of isotherms and streamlines to show the behavior of the fluid flow and temperature fields. In addition, some graphics are presented the relation between average Nusselt number and the various parameters. The results show the effect of non dimensional parameter (NE on the velocity and temperature profiles. They also show that the average Nusselt number is a strong function of modified Rayleigh number, modified Prandtl number, non-dimensional parameter, and the boundary conditions. Four different correlations have been made to show the dependence of the average Nusselt number on the non-dimensional parameter, the modified Rayleigh and Prandtl numbers.
Observation of deep convection initiation from shallow convection environment
Lothon, Marie; Couvreux, Fleur; Guichard, Françoise; Campistron, Bernard; Chong, Michel; Rio, Catherine; Williams, Earle
2010-05-01
In the afternoon of 10 July 2006, deep convective cells initiated right in the field of view of the Massachusetts Institute Technology (MIT) C-band Doppler radar. This radar, with its 3D exploration at 10 min temporal resolution and 250 m radial resolution, allows us to track the deep convective cells and also provides clear air observations of the boundary layer structure prior to deep convection initiation. Several other observational platforms were operating then which allow us to thoroughly analyse this case: Vertically pointing aerosol lidar, W-band radar and ceilometer from the ARM Mobile Facility, along with radiosoundings and surface measurements enable us to describe the environment, from before their initiation to after the propagation of of one propagating cell that generated a circular gust front very nicely caught by the MIT radar. The systems considered here differ from the mesoscale convective systems which are often associated with African Easterly Waves, increasing CAPE and decreasing CIN. The former have smaller size, and initiate more locally, but there are numerous and still play a large role in the atmospheric circulation and scalar transport. Though, they remain a challenge to model. (See the presentation by Guichard et al. in the same session, for a model set up based on the same case, with joint single-column model and Large Eddy Simulation, which aims at better understanding and improving the parametrisation of deep convection initiation.) Based on the analysis of the observations mentioned above, we consider here the possible sources of deep convection initiation that day, which showed a typical boundary-layer growth in semi-arid environment, with isolated deep convective events.
Turbulent Compressible Convection with Rotation. Part 1; Flow Structure and Evolution
Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri
1996-01-01
The effects of Coriolis forces on compressible convection are studied using three-dimensional numerical simulations carried out within a local modified f-plane model. The physics is simplified by considering a perfect gas occupying a rectilinear domain placed tangentially to a rotating sphere at various latitudes, through which a destabilizing heat flux is driven. The resulting convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers, evaluating conditions where the influence of rotation is both weak and strong. Given the computational demands of these high-resolution simulations, the parameter space is explored sparsely to ascertain the differences between laminar and turbulent rotating convection. The first paper in this series examines the effects of rotation on the flow structure within the convection, its evolution, and some consequences for mixing. Subsequent papers consider the large-scale mean shear flows that are generated by the convection, and the effects of rotation on the convective energetics and transport properties. It is found here that the structure of rotating turbulent convection is similar to earlier nonrotating studies, with a laminar, cellular surface network disguising a fully turbulent interior punctuated by vertically coherent structures. However, the temporal signature of the surface flows is modified by inertial motions to yield new cellular evolution patterns and an overall increase in the mobility of the network. The turbulent convection contains vortex tubes of many scales, including large-scale coherent structures spanning the full vertical extent of the domain involving multiple density scale heights. Remarkably, such structures align with the rotation vector via the influence of Coriolis forces on turbulent motions, in contrast with the zonal tilting of streamlines found in laminar flows. Such novel turbulent mechanisms alter the correlations which drive mean shearing flows and affect the
Horizontal velocity field near the hot plate in turbulent natural convection
Koothur, Vipin
2014-01-01
We study the velocity field in a horizontal (x-y) plane 1.5 mm above the hot plate in turbulent natural convection using PIV at a Rayleigh number Raw=106 and Prandtl number Pr=5.2. The plane of measurement is inside the velocity boundary layer estimated from the natural convection boundary layer equations[7] as well as inside the velocity boundary layer due to the large scale flow[2, 5].The boundary layer comprises of line plumes with sinking fluid between them. The instantaneous velocity variation from the center of the sinking fluid to the line plumes is found to deviate with the classical Prandtl-Blasius laminar boundary layer profile, which is assumed to be the nature of boundary layer by the GL theory [2, 5]. Our results agree well with the natural convection boundary layer profile. The time averaged mean velocity variation deviates from both natural convection and Blasius type profiles as expected as it depends on the orientation of the line plumes. Our measurement result is a proof to the theory of the...
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K., E-mail: prodip.das@ncl.ac.uk [School of Mechanical and Systems Engineering Newcastle University Newcastle upon Tyne, NE1 7RU United Kingdom (United Kingdom)
2016-07-12
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin
Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.
2016-07-01
Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.
Luo, Kang; Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn; Tan, He-Ping, E-mail: tanheping@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)
2014-05-15
Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.
Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers
Calkins, Michael A.; Long, Louie; Nieves, David; Julien, Keith; Tobias, Steven M.
2016-12-01
Most large-scale planetary magnetic fields are thought to be driven by low Rossby number convection of a low magnetic Prandtl number fluid. Here kinematic dynamo action is investigated with an asymptotic, rapidly rotating dynamo model for the plane layer geometry that is intrinsically low magnetic Prandtl number. The thermal Prandtl number and Rayleigh number are varied to illustrate fundamental changes in flow regime, ranging from laminar cellular convection to geostrophic turbulence in which an inverse energy cascade is present. A decrease in the efficiency of the convection to generate a dynamo, as determined by an increase in the critical magnetic Reynolds number, is observed as the buoyancy forcing is increased. This decreased efficiency may result from both the loss of correlations associated with the increasingly disordered states of flow that are generated, and boundary layer behavior that enhances magnetic diffusion locally. We find that the spatial characteristics of the large-scale magnetic field is dependent only weakly on changes in flow behavior. In contrast, the behavior of the small-scale magnetic field is directly dependent on, and therefore shows significant variations with, the small-scale convective flow field. However, our results are limited to the linear, kinematic dynamo regime; future simulations that include the Lorentz force are therefore necessary to assess the robustness of these results.
Large-scale instabilities in a non-rotating turbulent convection
Elperin, T; Kleeorin, N; Rogachevskii, I
2006-01-01
Formation of large-scale coherent structures in a turbulent convection via excitation of large-scale instability is studied. The redistribution of the turbulent heat flux due to non-uniform large-scale motions plays a crucial role in the formation of the coherent large-scale structures in the turbulent convection. The modification of the turbulent heat flux results in strong reduction of the critical Rayleigh number (based on the eddy viscosity and turbulent temperature diffusivity) required for the excitation of the large-scale instability. The mean-field equations which describe the large-scale instability, are solved numerically. We determine the key parameters that affect formation of the large-scale coherent structures in the turbulent convection. In particular, the degree of thermal anisotropy and the lateral background heat flux strongly modify the growth rates of the large-scale instability, the frequencies of the generated convective-shear waves and change the thresholds required for the excitation o...
Prediction of refrigerant absorption and onset of natural convection in lubricant oil
Barbosa, Jader R.; Marcelino Neto, Moises A. [Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis, SC 88040900 (Brazil); Thoma, Stefan M. [Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology, Sonneggstrasse 3, 8092 Zurich (Switzerland)
2008-11-15
Refrigerant absorption and mixing in lubricant oil are important in the design of refrigeration compressors and refrigeration systems. Experimental work is reported on absorption of R-134a vapour through the top interface of an initially stagnant layer of pure lubricant oil. Since the liquid refrigerant is heavier than the oil, mixing is enhanced due to natural mass convection. In the present paper, the behaviour of the liquid temperature during absorption is described based on measurements carried out in a test rig consisting of a transparent 70 mm ID, 150 mm long, vertical glass tube through which absorption can be directly observed. Transient liquid temperatures were measured at three different heights in the test section (two in the vapour, one in the liquid). The experimental work is complemented by a theoretical analysis of the critical time for the onset of mass transfer induced Rayleigh instability. The model is based on a critical mass transfer Rayleigh number criterion widely reported in the literature and takes into account the variation of physical properties in the liquid layer. The critical time for the onset of natural mass convection increases with decreasing system pressure as a result of a lower equilibrium concentration at the vapour-liquid interface. (author)
Garcia Velarde, M.
1977-07-01
Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs.
A Rayleigh-Brillouin scattering spectrometer for ultraviolet wavelengths
Gu, Ziyu; van Duijn, Eric-Jan; Ubachs, Wim; 10.1063/1.4721272
2012-01-01
A spectrometer for the measurement of spontaneous Rayleigh-Brillouin scattering line profiles at ultraviolet wavelengths from gas phase molecules has been developed, employing a high-power frequency-stabilized UV laser with narrow bandwidth (2 MHz). The UV light from a frequency-doubled titanium:sapphire laser is further amplified in an enhancement cavity, delivering a 5 Watt UV-beam propagating through the interaction region inside a scattering cell. The design of the RB-scattering cell allows for measurements at gas pressures in the range 0-4 bar and at stably controlled temperatures from -30 to 70 degree Celsius. A scannable Fabry-Perot analyzer with instrument resolution of 232 MHz probes the Rayleigh-Brillouin profiles. Measurements on N2 and SF6 gases demonstrate the high signal-to-noise ratio achievable with the instrument, at the 1% level at the peak amplitude of the scattering profile.
Theoretical Analysis of Rayleigh Backscattering Noise in Fiber Raman Amplifiers
无
2005-01-01
In this paper, a new theoretical model for Rayleigh backscattering (RB) analysis of fiber Raman amplifiers is proposed. The model includes all the interactions among the pumps, signals, and all orders of RB. The results show that the higher order RB has a negligible influence on the performance of the amplifier. The co-propagating and counterpropagating RB power of the signal grow quadratically with the net-gain of the amplifier. The signal to double Rayleigh backscattering noise ratio (OSNRDRB ) of backward-pumped FRAs is better than that of the forward-pumped ones at high net-gain level (＞ 13 dB), while at low net-gain level the OSNRDrb of the forward-pumped FRAs is slightly better than that of the backward-pumped ones.
Polarized Rayleigh back-scattering from individual semiconductor nanowires
Zhang Duming; Wu Jian; Lu Qiujie; Gutierrez, Humberto R; Eklund, Peter C, E-mail: hur3@psu.edu [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)
2010-08-06
A complete understanding of the interaction between electromagnetic radiation and semiconductor nanowires (NWs) is required in order to further develop a new generation of opto-electronic and photonic devices based on these nanosystems. The reduced dimensionality and high aspect ratio of nanofilaments can induce strong polarization dependence of the light absorption, emission and scattering, leading in some cases to the observation of optical antenna effects. In this work we present the first systematic study of polarized Rayleigh back-scattering from individual crystalline semiconductor NWs with known crystalline structure, orientation and diameters. To explain our experimental Rayleigh polar patterns, we propose a simple theory that relies on a secondary calculation of the volume-averaged internal electromagnetic fields inside the NW. These results revealed that the internal and emitted field can be enhanced depending on the polarization with respect to the NW axis; we also show that this effect strongly depends on the NW diameter.