WorldWideScience

Sample records for rayleigh benard convection

  1. Universality in quasiperiodic Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Ecke, R.E.; Mainieri, R.; Sullivan, T.S.

    1991-01-01

    We study universal scaling properties of quasiperiodic Rayleigh-Benard convection in a 3 He--superfluid- 4 He mixture. The critical line is located in a parameter space of Rayleigh and Prandtl numbers using a transient-Poincare-section technique to identify transitions from nodal periodic points to spiral periodic points within resonance horns. We measure the radial and angular contraction rates and extract the linear-stability eigenvalues (Flouquet multipliers) of the periodic point. At the crossings of the critical line with the lines of fixed golden-mean-tail winding number we determine the universality class of our experimental dynamics using f(α) and trajectory-scaling-function analyses. A technique is used to obtain a robust five-scale approximation to the universal trajectory scaling function. Different methods of multifractal analysis are employed and an understanding of statistical and systematic errors in these procedures is developed. The power law of the inflection point of the map, determined for three golden-mean-tail winding numbers, is 2.9±0.3, corresponding to the universality class of the sine map

  2. Large-scale patterns in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Hardenberg, J. von; Parodi, A.; Passoni, G.; Provenzale, A.; Spiegel, E.A.

    2008-01-01

    Rayleigh-Benard convection at large Rayleigh number is characterized by the presence of intense, vertically moving plumes. Both laboratory and numerical experiments reveal that the rising and descending plumes aggregate into separate clusters so as to produce large-scale updrafts and downdrafts. The horizontal scales of the aggregates reported so far have been comparable to the horizontal extent of the containers, but it has not been clear whether that represents a limitation imposed by domain size. In this work, we present numerical simulations of convection at sufficiently large aspect ratio to ascertain whether there is an intrinsic saturation scale for the clustering process when that ratio is large enough. From a series of simulations of Rayleigh-Benard convection with Rayleigh numbers between 10 5 and 10 8 and with aspect ratios up to 12π, we conclude that the clustering process has a finite horizontal saturation scale with at most a weak dependence on Rayleigh number in the range studied

  3. An Experimental Study on Rayleigh-Benard Natural Convection

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2012-01-01

    Core melt in a severe accident condition, forms a molten pool in the reactor vessel lower head. The molten pool is divided by a metallic pool (top) and an oxide pool (bottom) by the density difference. Due to the decay heat generated in oxide pool, Rayleigh- Benard natural convection heated from below and cooled from above occurs in the metallic pool. Experiments were performed to investigate Rayleigh- Benard natural convection as a preparatory study before an in-depth severe accident study. The natural convection heat transfers were measured varying the plate separation distance and the area of plate with and without the side wall. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid.copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system was adopted as the mass transfer system and the electric currents were measured rather than the heat

  4. Laser speckle velocimetry applied to Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Arroyo, M.P.; Yonte, T.; Quintanilla, M.; Saviron, J.M.

    1986-01-01

    An application of speckle velocimetry technique to Rayleigh-Benard convection is presented. A 5-mW He-Ne laser allows precise determination of the two-dimensional velocity flow field, up to several mm/sec. The digital techniques used to analyze automatically the multiexposed photographs and to generate velocity and vorticity fields are described. The obtained results are in good agreement with previously reported data. The ability of the technique to cover other experimental conditions is discussed. 14 references

  5. Rayleigh-Benard Natural Convection Cell Formation and Nusselt number

    International Nuclear Information System (INIS)

    Moon, Je Young; Chung, Bum Jin

    2013-01-01

    The experimental results lie within the predictions of the existing heat transfer correlations for the Rayleigh-Benard natural convections even though the material properties were different. For shorter separation distances, the heat transfers enhance due to the active interaction between heated and cooled plumes. For a step temperature difference, the time dependent Nusselt number variations were investigated. Both experimental and numerical results showed that with time the Nusselt number decreases monotonically to a minimum point presenting the onset of convection. As the hot and cold plumes increase and convey the heat to the other plates, the Nusselt number increases to the local maximum point, presenting the vertical movements of the plumes. Then, the Nusselt number fluctuates with the formation of square cells and larger vortices. This also predicted by the mass transfer experiment. The experiments and calculations show similar trend but the timings were different. These discrepancies are caused by the disturbances inherent in both systems. The molten pool is formed in a hypothetical severe accident condition at the lower head of reactor vessel and is stratified into two layers by the density difference: an upper metallic layer and a lower oxide pool. Rayleigh-Benard natural convection occurs in the metallic layer of relocated molten pool. This study aimed at the investigation of the time-dependent cell formation and Nusselt number variation in Rayleigh-Benard natural convection. Time dependent variation of Nusselt number was also measured experimentally and analyzed numerically to investigate the relationship between the cell formation and Nusselt number. Based on the analogy, heat transfer experiments were replaced by mass transfer experiments using a sulfuric acid-copper sulfate (H 2 SO 4 -CuSO 4 ) electroplating system. Numerical analysis using the commercial CFD program FLUENT 6.3 were carried out with the same material properties and heating conditions

  6. Rayleigh-Benard convection as a Nambu-metriplectic problem

    International Nuclear Information System (INIS)

    Bihlo, A

    2008-01-01

    The traditional Hamiltonian structure of the equations governing conservative Rayleigh-Benard convection (RBC) is singular, i.e., its Poisson bracket possesses nontrivial Casimir functionals. We show that a special form of one of these Casimirs can be used to extend the bilinear Poisson bracket to a trilinear generalized Nambu bracket. It is further shown that the equations governing dissipative RBC can be written as the superposition of the conservative Nambu bracket with a dissipative symmetric bracket. This leads to a Nambu-metriplectic system, which completes the geometrical picture of RBC. (fast track communication)

  7. Three caveats for linear stability theory: Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Greenside, H.S.

    1984-06-01

    Recent theories and experiments challenge the applicability of linear stability theory near the onset of buoyancy-driven (Rayleigh-Benard) convection. This stability theory, based on small perturbations of infinite parallel rolls, is found to miss several important features of the convective flow. The reason is that the lateral boundaries have a profound influence on the possible wave numbers and flow patterns even for the largest cells studied. Also, the nonlinear growth of incoherent unstable modes distorts the rolls, leading to a spatially disordered and sometimes temporally nonperiodic flow. Finally, the relation of the skewed varicose instability to the onset of turbulence (nonperiodic time dependence) is examined. Linear stability theory may not suffice to predict the onset of time dependence in large cells close to threshold

  8. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    Science.gov (United States)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  9. Efficiency of Heat Transfer in Turbulent Rayleigh-Benard Convection

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Musilová, Věra; Skrbek, L.

    2011-01-01

    Roč. 107, č. 1 (2011), 014302:1-4 ISSN 0031-9007 R&D Projects: GA AV ČR KJB200650902 Institutional research plan: CEZ:AV0Z20650511 Keywords : natural convection * thermal convection Subject RIV: BK - Fluid Dynamics Impact factor: 7.370, year: 2011

  10. Effects of modulation on Rayleigh-Benard convection. Part I

    Directory of Open Access Journals (Sweden)

    B. S. Bhadauria

    2004-01-01

    Full Text Available The linear stability of a horizontal layer of fluid heated from below and above is considered. In addition to a steady temperature difference between the walls of the fluid layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. Numerical results for the critical Rayleigh number are obtained at various Prandtl numbers and for various values of the frequency. Some comparisons have been made with the known results.

  11. Direct simulation of turbulent Rayleigh-Benard convection in liquid sodium

    International Nuclear Information System (INIS)

    Woerner, M.

    1994-11-01

    The numerical results are analysed to investigate both the structures and mechanisms of convection and the statistical features of turbulence in natural convection of liquid metals. The simulations are performed with the finite volume code TURBIT which is extended by a semi-implicit time integration scheme for the energy equation. Due to the implicit treatment of thermal diffusion the computational time for simulation of natural convection in liquid metals is reduced by about one order of magnitude, as compared to the original fully explicit code version. Results for Rayleigh-Benard convection in liquid sodium with Prandtl number Pr=0.006 are given for four different Rayleigh numbers: Ra=3 000, Ra=6 000, Ra=12 000, and Ra=24 000. At the Rayleigh number Ra=3 000 the inertial convection is identified. It is characterized by large two-dimensional vortices, which rotate like a solid body. These vortices are also observed in the simulations for Ra=6 000, Ra=12 000 and Ra=24 000, but, they only exist in certain regions and for short time intervals. The appearance of these two-dimensional structures in three-dimensional, time-dependent and turbulent convection is explained by the relative importance of the non-linear terms in the momentum and energy equation, which is totally different in both equations, and by the coupling of these equations by the buoyancy and the convective term. In order to improve and validate statistical turbulence model for application to natural convection in liquid metals, budgets of turbulence kinetic energy, turbulent heat flux and temperature variance are calculated from the numerical results. For several unknown correlations closure assumptions used in standard turbulence models are analyzed and model coefficients are determined. (orig./HP) [de

  12. Quasiperiodicity, mode-locking, and universal scaling in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Ecke, R.E.

    1990-01-01

    This major review paper describes research on a model nonlinear dynamical system of small-aspect-ratio Rayleigh-Benard convection in 3 He - 4 He mixtures. The nonlinear effects of mode locking and quasiperiodic behavior are described. Analysis techniques for characterizing the state of the dynamical system include Fourier transforms, Poincare sections, phase differences, transients, multifractal f(∝) spectra and scaling function dynamics. Theoretical results such as the fractal staircase of mode-locked intervals and the Arnold tongues are reproduced in experimental data. New techniques for analyzing scaling dynamics are developed and discussed. This is a tutorial article that introduces the major important concepts in nonlinear dynamics and focuses on experimental problems and techniques. 77 refs

  13. Reduced-Order Modeling of 3D Rayleigh-Benard Turbulent Convection

    Science.gov (United States)

    Hassanzadeh, Pedram; Grover, Piyush; Nabi, Saleh

    2017-11-01

    Accurate Reduced-Order Models (ROMs) of turbulent geophysical flows have broad applications in science and engineering; for example, to study the climate system or to perform real-time flow control/optimization in energy systems. Here we focus on 3D Rayleigh-Benard turbulent convection at the Rayleigh number of 106 as a prototype for turbulent geophysical flows, which are dominantly buoyancy driven. The purpose of the study is to evaluate and improve the performance of different model reduction techniques using this setting. One-dimensional ROMs for horizontally averaged temperature are calculated using several methods. Specifically, the Linear Response Function (LRF) of the system is calculated from a large DNS dataset using Dynamic Mode Decomposition (DMD) and Fluctuation-Dissipation Theorem (FDT). The LRF is also calculated using the Green's function method of Hassanzadeh and Kuang (2016, J. Atmos. Sci.), which is based on using numerous forced DNS runs. The performance of these LRFs in estimating the system's response to weak external forcings or controlling the time-mean flow are compared and contrasted. The spectral properties of the LRFs and the scaling of the accuracy with the length of the dataset (for the data-driven methods) are also discussed.

  14. Analytical determination of 3-D global modes in Rayleigh-Benard-Poiseuille-type mixed convection flow; Determination analytique des modes globaux tridimensionnels en ecoulement de convection mixte du type Rayleigh-Benard-Poiseuille

    Energy Technology Data Exchange (ETDEWEB)

    Martinand, D

    2003-01-15

    This analytical study deals with the spatio-temporal evolution of linear thermo-convective instabilities in a horizontal fluid layer heated from below (the Rayleigh--Benard system) and subject to a horizontal pressure gradient (Poiseuille flow). The novelty consists of a spatially inhomogeneous temperature, in the form of a two-dimensional bump imposed on the lower plate, while the upper plate is kept at a constant temperature. The inhomogeneous boundary temperature and the mean flow of the Rayleigh--Benard--Poiseuille system break the symmetries of the classical Rayleigh--Benard system. The instabilities of interest are therefore spatially localised packets of convection rolls. If a mode of this type is synchronized, it is called a global mode. Assuming that the characteristic scale of the spatial variation of the lower plate temperature is large compared to the wavelength of the rolls, global modes are sought in the form of Eigenmodes in the confined vertical direction, modulated by a two-dimensional WKBJ expansion in the slowly-varying horizontal directions. Such an expansion breaks down at points where the group velocity of the instability vanishes, i.e. at WKBJ turning points. In the neighbourhood of one such point, located at the top of the temperature bump, the boundedness of the solution imposes a selection criterion for the global modes which provides the growth rate (or equivalently the critical threshold), the frequency and the wave vector of the most amplified global mode. This study thus generalizes to two-dimensional cases the methods used and the results obtained for one-dimensional inhomogeneities. The analysis is first applied to a simplified governing equation obtained by an envelope formalism and the analytical results are compared with numerical solutions of the amplitude equation. The formalism is finally applied to the Rayleigh--Benard--Poiseuille system described by the Navier--Stokes equations with the Boussinesq approximation. (author)

  15. The GeoFlow experiment-spherical Rayleigh-Benard convection under the influence of an artificial central force field

    International Nuclear Information System (INIS)

    Gellert, M; Beltrame, P; Egbers, C

    2005-01-01

    Spherical Rayleigh-Benard convection under the influence of an artificial central force field produced by the so-called dielectrophoretic effect is studied as a simplified model of the flow in the outer earth core. The fluid motion there is most probably driving the earth's dynamo and the energy source for the earth's magnetic field. Studying convective flows in earth-like geometry could lead to a deeper understanding of the basics of these processes. This research is a preparatory study for the experiments on the International Space Station (ISS). A bifurcation-theoretical approach shows the existence of heteroclinic cycles between spherical modes (l, l + 1) for the non-rotating system. This behavior depends strong on the radius ratio of the spheres and will be hard to detect in the experiment. For slow rotations interactions of the azimuthal modes (m, m + 1) found in numerical simulations for supercritical states are supposed to be experimentally observable

  16. Introductory analysis of Benard-Marangoni convection

    International Nuclear Information System (INIS)

    Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics

  17. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  18. Rayleigh-Benard convection in a Hele-Shaw cell - a numerical study

    International Nuclear Information System (INIS)

    Guenther, C.; Mueller, U.

    1987-05-01

    Free convection in narrow vertical gaps heated from below gives rise to several different flow patterns as has been demonstrated by previous experimental investigations. A numerical study is presented aimed at simulating the observed flow phenomena in Hele-Shaw cells of small lateral extend. The numerical study is based on the assumption that the flow is essentially two-dimensional. This allows an approach using a one-term Galerkin approximation with respect to the direction perpendicular to the gap and a finite difference scheme with regard to the coordinates in the plane of the gap. The calculations result in realistic values of the critical Rayleigh numbers for the onset of steady and oscillatory convection. Most of the observed unsteady flow patterns can be simulated numerically. It is shown that five different stable flow patterns can occur at one particular Rayleigh number. The different stable flow patterns are coupled by a variety of complex transitions. Moreover the calculations show that a realistic description of the observed flow phenomena can not be obtained by a simplified model using the Darcy law in the momentum equation and implying slip flow at the small confining boundaries. (orig.) [de

  19. Reynolds number scaling in cryogenic turbulent Rayleigh-Benard convection in a cylindrical aspect ratio one cell

    Czech Academy of Sciences Publication Activity Database

    Musilová, Věra; Králík, Tomáš; La Mantia, M.; Macek, Michal; Urban, Pavel; Skrbek, L.

    2017-01-01

    Roč. 832, OCT 26 (2017), s. 721-744 ISSN 0022-1120 R&D Projects: GA ČR(CZ) GA17-03572S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Benard convection * turbulent convection * turbulent flows Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.821, year: 2016

  20. Benard convection in gaps and cavities

    International Nuclear Information System (INIS)

    Mueller, U.

    1981-04-01

    The article contains two parts. In the first part a condensed review of the most striking phenomena in Benard convection in laterally confined fluid layers is given. In the second part recent experimental and theoretical work on Benard convection in gaps is presented an analysed. (orig.) [de

  1. The dynamics of droplets in moist Rayleigh-Benard turbulence

    Science.gov (United States)

    Chandrakar, Kamal Kant; van der Voort, Dennis; Kinney, Greg; Cantrell, Will; Shaw, Raymond

    2017-11-01

    Clouds are an intricate part of the climate, and strongly influence atmospheric dynamics and radiative balances. While properties such as cloud albedo and precipitation rate are large scale effects, these properties are determined by dynamics on the microscale, such droplet sizes, liquid water content, etc. The growth of droplets from condensation is dependent on a multitude of parameters, such as aerosol concentration (nucleation sites) and turbulence (scalar fluctuations and coalescence). However, the precise mechanism behind droplet growth and clustering in a cloud environment is still unclear. In this investigation we use a facility called the Pi Chamber to generate a (miniature) cloud in a laboratory setting with known boundary conditions, such as aerosol concentration, temperature, and humidity. Through the use of particle imaging velocimetry (PIV) on the droplets generated in the cloud, we can investigate the dynamics of these cloud droplets in the convective (Rayleigh-Benard) turbulence generated through an induced temperature gradient. We show the influence of the temperature gradient and Froude number (gravity forces) on the changing turbulence anisotropy, large scale circulation, and small-scale dissipation rates. This work was supported by National Science Foundation Grant AGS-1623429.

  2. Benard convection in liquid sodium layers

    International Nuclear Information System (INIS)

    Kek, V.

    1989-08-01

    In a sodium layer heated from below and cooled from above, the integral Nusselt numbers are determined in a range of Rayleigh numbers 1.5x10 3 5 . The experiments are performed in containers with dimensions of 500 mm in diameter and 15 mm and 45 mm in height. The relevant quantities are evaluated from measured temperature and heating power data. The experiments show that the heat transfer across the layer is determined mainly by heat conduction up to Rayleigh number Ra ≅ 10 4 . Beyond this value a significant increase of the convective heat transport is observed. At a Rayleigh number of 4x10 4 the Nusselt number achieves the value Nu = 1.7. This result differs from values given by Nusselt-Rayleigh number correlations reported in the literature for liquids with higher Prandtl number. A regression analysis of the experimental data results empirical correlations for the Nusselt number. A time series analysis of the time dependent temperature signals shows that the measured temperature fluctuations exhibit predominantly stochastic features. However, in the lower range of Rayleigh numbers 1.5x10 3 4 certain regular frequencies can be identified from peaks in broadband power density spectra. These frequencies correspond to fluctuations of a period of 80 to 200 seconds. These regular frequencies are explained by instabilities of the cellular pattern in the convection layer reported in the literature. (orig./HP) [de

  3. Pattern selection in single-component systems coupling Benard convection and solidification

    International Nuclear Information System (INIS)

    Davis, S.H.; Mueller, U.; Dietsche, C.

    1983-12-01

    A horizontal layer is heated from below and cooled from above so that the enclosed single-component liquid is frozen in the upper part of the layer. When the imposed temperature difference is such that the Rayleigh number across the liquid is supercritical, there is Benard convection coupled with the dynamics of the solidification interface. An experiment is presented which shows that the interfacial corrugations that result are two-dimensional when this ''ice'' is thin but hexagonal when the ''ice'' is thick. A weakly-nonlinear convective instability theory is presented which explains this behavior, and isolates the mechanism of the pattern selection. Jump behavior is seen in the liquid-layer thickness at the onset of hexagonal convection. (orig.) [de

  4. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    Science.gov (United States)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  5. The structure and dynamics of patterns of Benard convection cells

    International Nuclear Information System (INIS)

    Rivier, N.; Imperial Coll. of Science and Technology, London; Lausanne Univ.

    1990-08-01

    Benard-Marangoni convection, in containers with large aspect ratio, exhibits space-filling cellular structures, highly deformable, but crystallized. They contain dislocations and grain boundaries generated and moved by elementary topological transformations, and are subjected to a weak shear stress due to the earth's rotation. The cellular structure and its fluctuations are analyzed from a crystallographic viewpoint, by using two complementary approaches. One is a global analysis of cellular structures in cylindrical symmetry. Their structural stability and defect pattern are obtained as topological mode-locking of a continuous structural parameter. The other, a local, molecular dynamics of the cells, gives a realistic parametrization of the forces and the transformations by generalizing the Voronoi cell construction in one extra dimension. 23 refs., 8 figs

  6. Onset of Absolute Instability Induced by Viscous Dissipation in the Poiseuille-Darcy-Benard Convection of a Newtonian Fluid

    International Nuclear Information System (INIS)

    Brandão, P V; Alves, L S de B; Barletta, A

    2014-01-01

    The present paper investigates the transition from convective to absolute instability induced by viscous dissipation. As far as the authors are aware, this is the first time such a study is reported in the literature. Its framework is provided by the Poiseuille-Darcy-Benard convection of a Newtonian fluid. We found the same behaviour observed in the absence of viscous dissipation whenever the Gebhart number is smaller than Ge < 0.95, which is the stabilising effect of the cross flow. When 0.95 < Ge < 4.31, weak cross flows still stabilise the onset of absolute instability but stronger cross flows destabilise it. For a stronger viscous dissipation, i.e. Ge > 4.31, the cross flow always destabilises this onset. The latter two conditions create a scenario where viscous dissipation is capable of inducing a transition to absolute instability in the absence of wall heating, i.e. with a zero Rayleigh number

  7. Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows

    International Nuclear Information System (INIS)

    Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.

    2005-01-01

    In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)

  8. On the structure of cellular solutions in Rayleigh-Benard-Marangoni flows in small-aspect-ratio containers

    Science.gov (United States)

    Dijkstra, Henk A.

    1992-01-01

    Multiple steady flow patterns occur in surface-tension/buoyancy-driven convection in a liquid layer heated from below (Rayleigh-Benard-Marangoni flows). Techniques of numerical bifurcation theory are used to study the multiplicity and stability of two-dimensional steady flow patterns (rolls) in rectangular small-aspect-ratio containers as the aspect ratio is varied. For pure Marangoni flows at moderate Biot and Prandtl number, the transitions occurring when paths of codimension 1 singularities intersect determine to a large extent the multiplicity of stable patterns. These transitions also lead, for example, to Hopf bifurcations and stable periodic flows for a small range in aspect ratio. The influence of the type of lateral walls on the multiplicity of steady states is considered. 'No-slip' lateral walls lead to hysteresis effects and typically restrict the number of stable flow patterns (with respect to 'slippery' sidewalls) through the occurrence of saddle node bifurcations. In this way 'no-slip' sidewalls induce a selection of certain patterns, which typically have the largest Nusselt number, through secondary bifurcation.

  9. Dynamics of a secondary instability in Benard-Marangoni convection with unidimensional heating

    International Nuclear Information System (INIS)

    Burguete, J.; Mancini, H.L.; Perez-Garcia, C.

    1993-01-01

    The dynamics of Benard-Marangoni convection with unidimensional heating in a pure fluid is studied experimentally. Convection begins with rolls parallel to the heater. The characteristics of these primary rolls have been determined. When the temperature difference across the liquid layer is increased beyond a critical value a secondary instability appears. Motions transverse to the heater with a definite wavelength can be seen. Moreover, for small angles between the heater and the fluid surface, the pattern drifts along the heater with a velocity that depends almost linearly on the inclination. A phenomenological phase equation is proposed to interpret this observation. (orig.)

  10. Rayleigh-Bénard convection instability in the presence of temperature variation at the lower wall

    Directory of Open Access Journals (Sweden)

    Jovanović Miloš M.

    2012-01-01

    Full Text Available This paper analyzes the two-dimensional viscous fluid flow between two parallel plates, where the lower plate is heated and the upper one is cooled. The temperature difference between the plates is gradually increased during a certain time period, and afterwards it is temporarily constant. The temperature distribution on the lower plate is not constant in x-direction, and there is longitudinal sinusoidal temperature variation imposed on the mean temperature. We investigate the wave number and amplitude influence of this variation on the stability of Rayleigh-Benard convective cells, by direct numerical simulation of 2-D Navier-Stokes and energy equation.

  11. Penetrative convection at high Rayleigh numbers

    Science.gov (United States)

    Toppaladoddi, Srikanth; Wettlaufer, John S.

    2018-04-01

    We study penetrative convection of a fluid confined between two horizontal plates, the temperatures of which are such that a temperature of maximum density lies between them. The range of Rayleigh numbers studied is Ra=[0.01 ,4 ]106,108 and the Prandtl numbers are Pr=1 and 11.6. An evolution equation for the growth of the convecting region is obtained through an integral energy balance. We identify a new nondimensional parameter, Λ , which is the ratio of temperature difference between the stable and unstable regions of the flow; larger values of Λ denote increased stability of the upper stable layer. We study the effects of Λ on the flow field using well-resolved lattice Boltzmann simulations and show that the characteristics of the flow depend sensitively upon it. For the range Λ = , we find that for a fixed Ra the Nusselt number, Nu, increases with decreasing Λ . We also investigate the effects of Λ on the vertical variation of convective heat flux and the Brunt-Väisälä frequency. Our results clearly indicate that in the limit Λ →0 the problem reduces to that of the classical Rayleigh-Bénard convection.

  12. Design Aspects of the Rayleigh Convection Code

    Science.gov (United States)

    Featherstone, N. A.

    2017-12-01

    Understanding the long-term generation of planetary or stellar magnetic field requires complementary knowledge of the large-scale fluid dynamics pervading large fractions of the object's interior. Such large-scale motions are sensitive to the system's geometry which, in planets and stars, is spherical to a good approximation. As a result, computational models designed to study such systems often solve the MHD equations in spherical geometry, frequently employing a spectral approach involving spherical harmonics. We present computational and user-interface design aspects of one such modeling tool, the Rayleigh convection code, which is suitable for deployment on desktop and petascale-hpc architectures alike. In this poster, we will present an overview of this code's parallel design and its built-in diagnostics-output package. Rayleigh has been developed with NSF support through the Computational Infrastructure for Geodynamics and is expected to be released as open-source software in winter 2017/2018.

  13. Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol

    NARCIS (Netherlands)

    Sugiyama, K.; Calzavarini, E.; Grossmann, S.; Lohse, Detlef

    2007-01-01

    We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number Ra up to 108 (for fixed temperature difference �

  14. Comparison of entropy production rates in two different types of self-organized flows: Benard convection and zonal flow

    International Nuclear Information System (INIS)

    Kawazura, Y.; Yoshida, Z.

    2012-01-01

    Two different types of self-organizing and sustaining ordered motion in fluids or plasmas--one is a Benard convection (or streamer) and the other is a zonal flow--have been compared by introducing a thermodynamic phenomenological model and evaluating the corresponding entropy production rates (EP). These two systems have different topologies in their equivalent circuits: the Benard convection is modeled by parallel connection of linear and nonlinear conductances, while the zonal flow is modeled by series connection. The ''power supply'' that drives the systems is also a determinant of operating modes. When the energy flux is a control parameter (as in usual plasma experiments), the driver is modeled by a constant-current power supply, and when the temperature difference between two separate boundaries is controlled (as in usual computational studies), the driver is modeled by a constant-voltage power supply. The parallel (series)-connection system tends to minimize (maximize) the total EP when a constant-current power supply drives the system. This minimum/maximum relation flips when a constant-voltage power supply is connected.

  15. Rayleigh-Taylor convective overturn in stellar collapse

    International Nuclear Information System (INIS)

    Bruenn, S.W.; Buchler, J.R.; Livio, M.

    1979-01-01

    Rayleigh--Taylor convective overturn in collapsing stellar cores is modeled with a one-dimensional parametrization. The results of a numerical hydrodynamic study are very encouraging and indicate that such an overturn could well be a dominant feature in the supernova explosion mechanism

  16. Plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  17. GPU Implementation of High Rayleigh Number Three-Dimensional Mantle Convection

    Science.gov (United States)

    Sanchez, D. A.; Yuen, D. A.; Wright, G. B.; Barnett, G. A.

    2010-12-01

    Although we have entered the age of petascale computing, many factors are still prohibiting high-performance computing (HPC) from infiltrating all suitable scientific disciplines. For this reason and others, application of GPU to HPC is gaining traction in the scientific world. With its low price point, high performance potential, and competitive scalability, GPU has been an option well worth considering for the last few years. Moreover with the advent of NVIDIA's Fermi architecture, which brings ECC memory, better double-precision performance, and more RAM to GPU, there is a strong message of corporate support for GPU in HPC. However many doubts linger concerning the practicality of using GPU for scientific computing. In particular, GPU has a reputation for being difficult to program and suitable for only a small subset of problems. Although inroads have been made in addressing these concerns, for many scientists GPU still has hurdles to clear before becoming an acceptable choice. We explore the applicability of GPU to geophysics by implementing a three-dimensional, second-order finite-difference model of Rayleigh-Benard thermal convection on an NVIDIA GPU using C for CUDA. Our code reaches sufficient resolution, on the order of 500x500x250 evenly-spaced finite-difference gridpoints, on a single GPU. We make extensive use of highly optimized CUBLAS routines, allowing us to achieve performance on the order of O( 0.1 ) µs per timestep*gridpoint at this resolution. This performance has allowed us to study high Rayleigh number simulations, on the order of 2x10^7, on a single GPU.

  18. Rotating thermal convection at very large Rayleigh numbers

    Science.gov (United States)

    Weiss, Stephan; van Gils, Dennis; Ahlers, Guenter; Bodenschatz, Eberhard

    2016-11-01

    The large scale thermal convection systems in geo- and astrophysics are usually influenced by Coriolis forces caused by the rotation of their celestial bodies. To better understand the influence of rotation on the convective flow field and the heat transport at these conditions, we study Rayleigh-Bénard convection, using pressurized sulfur hexaflouride (SF6) at up to 19 bars in a cylinder of diameter D=1.12 m and a height of L=2.24 m. The gas is heated from below and cooled from above and the convection cell sits on a rotating table inside a large pressure vessel (the "Uboot of Göttingen"). With this setup Rayleigh numbers of up to Ra =1015 can be reached, while Ekman numbers as low as Ek =10-8 are possible. The Prandtl number in these experiment is kept constant at Pr = 0 . 8 . We report on heat flux measurements (expressed by the Nusselt number Nu) as well as measurements from more than 150 temperature probes inside the flow. We thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through SFB963: "Astrophysical Flow Instabilities and Turbulence". The work of GA was supported in part by the US National Science Foundation through Grant DMR11-58514.

  19. Rotating Rayleigh-Bénard convection at low Prandtl number

    Science.gov (United States)

    Aguirre Guzman, Andres; Ostilla-Monico, Rodolfo; Clercx, Herman; Kunnen, Rudie

    2017-11-01

    Most geo- and astrophysical convective flows are too remote or too complex for direct measurements of the physical quantities involved, and thus a reduced framework with the main physical constituents is beneficial. This approach is given by the problem of rotating Rayleigh-Bénard convection (RRBC). For large-scale systems, the governing parameters of RRBC take extreme values, leading to the geostrophic turbulent regime. We perform Direct Numerical Simulations to investigate the transition to this regime at low Prandtl number (Pr). In low- Pr fluids, thermal diffusivity dominates over momentum diffusivity; we use Pr = 0.1 , relevant to liquid metals. In particular, we study the convective heat transfer (Nusselt number Nu) as a function of rotation (assessed by the Ekman number Ek). The strength of the buoyant forcing (Rayleigh number Ra) is Ra = 1 ×1010 to ensure turbulent convection. Varying Ek , we observe a change of the power-law scaling Nu Ekβ that suggests a transition to geostrophic turbulence, which is likely to occur at Ek = 9 ×10-7 . The thermal boundary layer thickness, however, may suggest a transition at lower Ekman numbers, indicating that perhaps not all statistical quantities show a transitional behaviour at the same Ek .

  20. Turbulent boundary layer in high Rayleigh number convection in air.

    Science.gov (United States)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  1. Supercritical Quasi-Conduction States in Stochastic Rayleigh-Benard Convection

    Science.gov (United States)

    2011-09-15

    is 10 (see table 1). The sensitivity (in the sense of Sobol [39]) of the integrated Nusselt number with respect to the amplitude of the boundary...using a multi-element quadrature formula [32]. Following Sobol [39], we shall define global sensitivity indices as the ratio between the variance of...39] I. M. Sobol , Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Math. Comput. Simul. 55 (2001) 271

  2. Modulated convection at high frequencies and large modulation amplitudes

    International Nuclear Information System (INIS)

    Swift, J.B.; Hohenberg, P.C.

    1987-01-01

    Modulated Rayleigh-Benard convection is analyzed for high frequencies and large modulation amplitudes. The linear theory of Gershuni and Zhukhovitskii is generalized to the nonlinear domain, and a subcritical bifurcation to convection is found in agreement with the experiments of Niemela and Donnelly. The crossover between the high-frequency (''Stokes layer'') regime and the low-frequency regime studied previously is analyzed

  3. Convection in an ideal gas at high Rayleigh numbers.

    Science.gov (United States)

    Tilgner, A

    2011-08-01

    Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.

  4. Turbulent thermal superstructures in Rayleigh-Bénard convection

    Science.gov (United States)

    Stevens, Richard J. A. M.; Blass, Alexander; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra=109 . We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Γ =128 . In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Γ ≈4 , while horizontally averaged statistics such as standard deviation and kurtosis converge around Γ ≈8 , the integral scale converges around Γ ≈32 , and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Γ ≈64 .

  5. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Ahlers, Günter; Grossmann, Siegfried; Lohse, Detlef

    2009-01-01

    The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the

  6. Kinetic thermal structure in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Chen, Jun; Yin, Ze-Xia; She, Zhen-Su; Bao, Yun

    2017-11-01

    Plumes are believed to be the most important heat carrier in turbulent Rayleigh-Bénard convection (RBC). However, a physically sound and clear definition of plume is still absent. We report here the investigation of a definition of plume called kinetic thermal structure (KTS), based on the analysis of vertical velocity gradient (Λ = ∂w / ∂z), using direct numerical simulation (DNS) data of the three-dimensional RBC in a rectangular cell for Pr = 0.7 and Ra = 1 ×108 5 ×109 . It is shown that the conditional average of temperature on Λ exhibits such a behavior that when Λ is larger than a threshold, the volume carries a constant temperature of fluid, hence defines an unambiguous thermal structure, KTS. The DNS show that the KTS behaves in a sheet-like shape near the conducting plate, and becomes slender and smaller with increasing Ra . The heat flux carried by KTS displays a scaling law, with an exponent larger than the global- Nu - Ra scaling, indicating stronger heat transport than the turbulent background. An advantage of the KTS is its connection to the balance equation allowing, for the first time, a prediction of the Ra -dependence of its vertical velocity and the characteristic Λ threshold, validated by DNS. Supported by NSFC (11172006, 11221062, 11452002), and by MOST (China) 973 project (2009CB724100).

  7. Feedback control and heat transfer measurements in a Rayleigh-Bénard convection cell

    Science.gov (United States)

    Vial, M.; Hernández, R. H.

    2017-07-01

    We report experimental results on the heat transfer and instability onset of a Rayleigh-Bénard convection cell of aspect ratios 6:3:1 filled with a high Prandtl aqueous solution of glycerol under feedback control. We investigate the transient and stationary response of both local temperature readings and heat transfer fluxes on the Rayleigh Bénard cell in both conductive and convective states when we perform two independent feedback control actions on both hot and cold walls. We evaluate the performance of both controllers to maintain a temperature gradient independently if the system is below or above the convection threshold. As the convection cell can be rotated at 180° about the shorter axis of the cell, it was possible to perform transitions between thermal conduction and convection regimes and vice versa under a constant temperature difference maintained by both independent controllers. The experimental setup provided an accurate measurement of the critical Rayleigh number and the evolution of the Nusselt number as a function of the Rayleigh number in the moderately supercritical regime (R a cellular convection pattern formed by 6 transverse rolls throughout the range of Rayleigh numbers.

  8. Nusselt-Rayleigh correlations for design of industrial elements: Experimental and numerical investigation of natural convection in tilted square air filled enclosures

    International Nuclear Information System (INIS)

    Bairi, A.

    2008-01-01

    Natural convection in air filled 2D tilted square cavities is experimentally and numerically studied. The hot and cold walls of the cavity are maintained isothermal at temperatures T h and T c , respectively, and the channel of the cavity is adiabatic. Measurements and simulations are performed for various geometrical and thermal configurations. Different values of the Rayleigh number Ra and the tilt angle α of the cavity are considered. The range of Ra covered in our work extends from 10 to 10 10 while α varies from 0 to 360 deg. This permits the analysis of several significant situations corresponding to vertical active walls (α 0 deg.), hot wall at the bottom (α = 90 deg.; Rayleigh-Benard convection) and hot wall at the top, pure conductive mode (α = 270 deg.). A computational 2D model based on the finite volume method is used for solving the mass, momentum and energy transfer governing equations. The simulation provides thermal and dynamic maps of the fluid for all configurations treated. The influence of Ra and α on the flow pattern and on the convective heat transfer are analysed and discussed. The thermal boundary distribution and the convective heat transfer calculated are, for most treated cases, close to those obtained experimentally by means of a simple bench specifically designed for this purpose. The maximum discrepancy between the simulations and measurements is relatively small, corresponding to the expected uncertainty of the model and measurements. The convective heat transfer is determined while calculating the radiative and conductive contributions to the global exchange. Radiation is determined by the radiosity method associated with the measured field of temperatures as well as to the global IR emissivities of all the internal elements of the cavity. The average Nusselt number Nu-bar is used to quantify the calculated convective contribution of the heat exchange within the cavity, and is compared with the measured value Nu-bar m . We

  9. Active control of convection

    Energy Technology Data Exchange (ETDEWEB)

    Bau, H.H. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  10. Stability of impulsively-driven natural convection with unsteady base state: implications of an adiabatic boundary

    International Nuclear Information System (INIS)

    Ihle, Christian F.; Nino, Yarko

    2011-01-01

    Stability conditions of a quiescent, horizontally infinite fluid layer with adiabatic bottom subject to sudden cooling from above are studied. Here, at difference from Rayleigh-Benard convection, the temperature base state is never steady. Instability limits are studied using linear analysis while stability is analyzed using the energy method. Critical stability curves in terms of Rayleigh numbers and convection onset times were obtained for several kinematic boundary conditions. Stability curves resulting from energy and linear approaches exhibit the same temporal growth rate for large values of time, suggesting a bound for the temporal asymptotic behavior of the energy method. - Highlights: → Non-penetrative convection appears after a time-evolving temperature base state. → Global stability and instability limits were analyzed. → Critical Rayleigh numbers were computed for different kinematic boundary conditions. → Adiabatic, bottom boundary was found to have a de-stabilizing effect. → System is less stable than in Benard convection.

  11. Thermal convection at low Rayleigh number from concentrated sources in porous media

    International Nuclear Information System (INIS)

    Hickox, C.E.

    1980-01-01

    A simple mathematical theory is proposed for the analysis of natural convective motion, at low Rayleigh number, from a concentrated source of heat in a fluid-saturated porous medium. The theory consists of retaining only the leading terms of series expansions of the dependent variables in terms of the Rayleigh number, is thus linear, and is valid only in the limit of small Rayleigh number. Based on fundamental results for a variety of isolated sources, superposition is used to provide solutions for situations of practical interest. Special emphasis is given to the analysis of sub-seabed disposal of nuclear waste. 8 figures

  12. Ultimate regime of high Rayleigh number convection in a porous medium.

    Science.gov (United States)

    Hewitt, Duncan R; Neufeld, Jerome A; Lister, John R

    2012-06-01

    Well-resolved direct numerical simulations of 2D Rayleigh-Bénard convection in a porous medium are presented for Rayleigh numbers Ra≤4×10(4) which reveal that, contrary to previous indications, the linear classical scaling for the Nusselt number, Nu~Ra, is attained asymptotically. The flow dynamics are analyzed, and the interior of the vigorously convecting system is shown to be increasingly well described as Ra→∞ by a simple columnar "heat-exchanger" model with a single horizontal wave number k and a linear background temperature field. The numerical results are approximately fitted by k~Ra(0.4).

  13. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  14. Non-Oberbeck-Boussinesq Effects in Gaseous Rayleigh-Bénard Convection

    NARCIS (Netherlands)

    Ahlers, Günter; Fontenele Araujo Junior, F.; Funfschilling, Denis; Grossmann, Siegfried; Lohse, Detlef

    2007-01-01

    Non-Oberbeck-Boussinesq (NOB) effects are measured experimentally and calculated theoretically for strongly turbulent Rayleigh-Be´nard convection of ethane gas under pressure where the material properties strongly depend on the temperature. Relative to the Oberbeck-Boussinesq case we find a decrease

  15. Effect of plumes on measuring the large scale circulation in turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef

    2011-01-01

    We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a

  16. Cell structures caused by settling particles in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Lee, Changhoon; Park, Sangro

    2016-11-01

    Turbulent thermal convection is an important phenomenon frequently found in nature and industrial processes, often with laden particles. In the last several decades, the vast majority of studies have addressed single phase convective flow with focus on the scaling relation of flow parameters associated with heat transfer. Particle-laden Rayleigh-Bénard convection, however, has not been sufficiently studied. In this study, modulation of cell structures by settling particles in turbulent Rayleigh-Bénard convection in a doubly periodic square channel is investigated using direct numerical simulation with a point particle approach. Flow parameters are fixed at Rayleigh number=106, Prandtl number=0.7, the aspect ratio=6, and Froude number=0.19. We report from the simulations that settling heavy particles modulate irregular large-scale thermal plume structures into organized polygonal cell structures. Different shapes of flow structures are obtained for different particle diameters and mass loadings. We found that polygonal cell structures arise due to asymmetric feedback force exerted by particles onto hot and cold plumes. Increasing the number of particles augments the asymmetry and the polygonal cell structures become smaller, eventually going to the hexagonal structures.

  17. A model for near-wall dynamics in turbulent Rayleigh Bénard convection

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    1998-10-01

    Experiments indicate that turbulent free convection over a horizontal surface (e.g. Rayleigh Bénard convection) consists of essentially line plumes near the walls, at least for moderately high Rayleigh numbers. Based on this evidence, we propose here a two-dimensional model for near-wall dynamics in Rayleigh Bénard convection and in general for convection over heated horizontal surfaces. The model proposes a periodic array of steady laminar two-dimensional plumes. A plume is fed on either side by boundary layers on the wall. The results from the model are obtained in two ways. One of the methods uses the similarity solution of Rotem & Classen (1969) for the boundary layer and the similarity solution of Fuji (1963) for the plume. We have derived expressions for mean temperature and temperature and velocity fluctuations near the wall. In the second approach, we compute the two-dimensional flow field in a two-dimensional rectangular open cavity. The number of plumes in the cavity depends on the length of the cavity. The plume spacing is determined from the critical length at which the number of plumes increases by one. The results for average plume spacing and the distribution of r.m.s. temperature and velocity fluctuations are shown to be in acceptable agreement with experimental results.

  18. Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    Science.gov (United States)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-05-01

    The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.

  19. Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    I. C. Ramos

    2015-10-01

    Full Text Available We present the adaptation to non-free boundary conditions of a pseudospectral method based on the (complex Fourier transform. The method is applied to the numerical integration of the Oberbeck-Boussinesq equations in a Rayleigh-Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (. These results are the basis for the later study, by the same method, of wet convection in a solar still. Received: 20 Novembre 2014, Accepted: 15 September 2015; Edited by: C. A. Condat, G. J. Sibona; DOI:http://dx.doi.org/10.4279/PIP.070015 Cite as: I C Ramos, C B Briozzo, Papers in Physics 7, 070015 (2015

  20. The multifractal nature of plume structure in high-Rayleigh-number convection

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Ananthakrishna, G.; Arakeri, Jaywant H.

    2005-03-01

    The geometrically different planforms of near-wall plume structure in turbulent natural convection, visualized by driving the convection using concentration differences across a membrane, are shown to have a common multifractal spectrum of singularities for Rayleigh numbers in the range 1010-1011 at Schmidt number of 602. The scaling is seen for a length scale range of 25 and is independent of the Rayleigh number, the flux, the strength and nature of the large-scale flow, and the aspect ratio. Similar scaling is observed for the plume structures obtained in the presence of a weak flow across the membrane. This common non-trivial spatial scaling is proposed to be due to the same underlying generating process for the near-wall plume structures.

  1. Effect of periodic bottom plate heating on large scale flow in turbulent Rayleigh-Bénard convection

    Czech Academy of Sciences Publication Activity Database

    Kuqali, M.; Babuin, Simone; Niemela, J.J.

    2015-01-01

    Roč. 8, č. 3 (2015), 483-489 ISSN 1735-3572 Institutional support: RVO:68378271 Keywords : Rayleigh-Bénard convection * Reynolds number Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.888, year: 2015

  2. Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Zhou, Quan; Sugiyama, K.; Stevens, Richard Johannes Antonius Maria; Grossmann, Siegfried; Lohse, Detlef; Xia, K.

    2011-01-01

    We investigate the structures of the near-plate velocity and temperature profiles at different horizontal positions along the conducting bottom (and top) plate of a Rayleigh-Bénard convection cell, using two-dimensional (2D) numerical data obtained at the Rayleigh number Ra = 108 and the Prandtl

  3. Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers

    Science.gov (United States)

    Vikhansky, A.

    2009-10-01

    We consider the effect of yield stress on the Rayleigh-Bénard convection of a viscoplastic material. First we consider the model problem of convection in a differentially heated loop, which is described by the (modified) Lorenz equations. The presence of the yield stress significantly alters the dynamics of the system. In particular, the chaotic motion can stop suddenly (sometimes, after a period of chaotic oscillations). Guided by the model equations we performed direct numerical simulations of convection of the Bingham liquid in a square cavity heated from bellow. Our interest has been concentrated on the situation when both buoyancy and plastic forces are large. The obtained results are in a reasonable agreement with the predictions by the Lorenz equations.

  4. Growth of Rayleigh-Taylor and bulk convective instabilities in dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    Perturbation growth is studied for the initial, linear stage of an instability development in the course of a cylindrically-symmetric compression and expansion of plasma liners and Z-pinches with a sharp boundary. The hydrodynamic instabilities are Rayleigh-Taylor and bulk convective ones, the former being the most dengerous. Classification of the instability modes developing in accelerated plasmas, inclusing the local and global Rayleigh-Taylor modes, is given. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The properties of the spectra appear to explain the filamentation and stratification of plasmas observed in the experiments with liners and Z-pinches. An axial magnetic field is shown to create a window of stability in the space of the flow parameters, where th Rayleigh-Taylor modes are fully suppressed by the magnetic shear, and the bulk convective ones - to a considerable extent. The axial magnetic field required to stabilize the implosion of a liner is estimated as B z0 =(10-30 kG)I(MA)/R 0 (cm), where I is the average current, R 0 - the initial radius of the liner

  5. Three-dimensional Rayleigh-Taylor convection of miscible fluids in a porous medium

    Science.gov (United States)

    Suekane, Tetsuya; Nakanishi, Yuji; Wang, Lei

    2017-11-01

    Natural convection of miscible fluids in a porous medium is relevant for fields, such as geoscience and geoengineering, and for the geological storage of CO2. In this study, we use X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appears at the interface. As the wavelength and amplitude increase, descending fingers form on the interface and extend vertically downward; moreover, ascending and highly symmetric fingers form. The adjacent fingers are cylindrical in shape and coalesce to form large fingers. Fingers appearing on the interface tend to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. If the Péclet number exceeds 10, the transverse dispersion increases the finger diameter and enhances finger coalescence, strongly impacting the decay in finger number density. When mechanical dispersion is negligible, the finger-extension velocity, the mass-transfer rate, and the onset time scale with Rayleigh number. Mechanical dispersion not only reduces the onset time but also enhances mass transport, which indicates that mechanical dispersion influences the long-term dissolution process of CO2 injected into aquifers.

  6. Turbulent Superstructures in Rayleigh-Bénard convection at different Prandtl number

    Science.gov (United States)

    Schumacher, Jörg; Pandey, Ambrish; Ender, Martin; Westermann, Rüdiger; Scheel, Janet D.

    2017-11-01

    Large-scale patterns of the temperature and velocity field in horizontally extended cells can be considered as turbulent superstructures in Rayleigh-Bénard convection (RBC). These structures are obtained once the turbulent fluctuations are removed by a finite-time average. Their existence has been reported for example in Bailon-Cuba et al.. This large-scale order obeys a strong similarity with the well-studied patterns from the weakly nonlinear regime at lower Rayleigh number in RBC. In the present work we analyze the superstructures of RBC at different Prandtl number for Prandtl values between Pr = 0.005 for liquid sodium and 7 for water. The characteristic evolution time scales, the typical spatial extension of the rolls and the properties of the defects of the resulting superstructure patterns are analyzed. Data are obtained from well-resolved spectral element direct numerical simulations. The work is supported by the Priority Programme SPP 1881 of the Deutsche Forschungsgemeinschaft.

  7. Nusselt number and bulk temperature in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Bodenschatz, Eberhard; Weiss, Stephan; Shishkina, Olga; International CollaborationTurbulence Research Collaboration

    2017-11-01

    We present an algorithm to calculate the Nusselt number (Nu) in measurements of the heat transport in turbulent Rayleigh-Bénard convection under general non-Oberbeck-Boussinesq (NOB) conditions. We further critically analyze the different ways to evaluate the dependences of Nu over the Rayleigh number (Ra) and show the sensitivity of these dependences to the reference temperatures in the bulk, top and bottom boundary layers (BLs). Finally we propose a method to predict the bulk temperature and a way to calculate the reference temperatures of the top and bottom BLs and validate them against the Göttingen measurements. The work is supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  8. Prandtl-number Effects in High-Rayleigh-number Spherical Convection

    Science.gov (United States)

    Orvedahl, Ryan J.; Calkins, Michael A.; Featherstone, Nicholas A.; Hindman, Bradley W.

    2018-03-01

    Convection is the predominant mechanism by which energy and angular momentum are transported in the outer portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone are characterized in part by the Prandtl number \\Pr = ν/κ, where ν is the kinematic viscosity and κ is the thermal diffusion; in stars, \\Pr is extremely low, \\Pr ≈ 10‑7. The influence of \\Pr on the convective motions at the heart of the dynamo is not well understood since most numerical studies are limited to using \\Pr ≈ 1. We systematically vary \\Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower \\Pr generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing. Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in \\Pr . Importantly, we find that \\Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of the thermal boundary layer.

  9. Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine.

    Science.gov (United States)

    Ramadan, Islam A; Bailliet, Hélène; Valière, Jean-Christophe

    2018-01-01

    The influence of both the natural convection and end-effects on Rayleigh streaming pattern in a simple standing-wave thermoacoustic engine is investigated experimentally at different acoustic levels. The axial mean velocity inside the engine is measured using both Laser Doppler Velocimetry and Particle Image Velocimetry. The mean flow patterns are categorized in three different regions referred to as "cold streaming" region, "hot streaming" region, and "end-effects" region. In the cold streaming region, the dominant phenomenon is Rayleigh streaming and the mean velocity measurements correspond well with the theoretical expectations of Rayleigh streaming at low acoustic levels. At higher acoustic levels, the measurements deviate from the theoretical expectations which complies with the literature. In the hot streaming region, temperature measurements reveal that the non-uniformity of the resonator wall temperature is the origin of natural convection flow. Velocity measurements show that natural convection flow superimposes on the Rayleigh streaming flow so that the measured mean velocity deviates from the theoretical expectations of Rayleigh streaming. In the last region, the measured mean velocity is very different from Rayleigh streaming due to the combined effects of both the flow disturbances generated near the extremity of the stack and the natural convection flow.

  10. Lattice BGK simulation of natural convection

    International Nuclear Information System (INIS)

    Chen, Yu; Ohashi, Hirotada; Akiyama, Mamoru

    1995-01-01

    Recently a new thermal lattice Bhatnagar-Gross-Krook fluid model was suggested by the authors. In this study, this new model was applied into the numerical simulation of natural convection, namely the Rayleigh Benard flow. The critical number for the onset of convective phenomenon was numerically measured and compared with that of theoretical prediction. A gravity dependent deviation was found in the numerical simulation, which is explained as an unavoidable consequence of the incorporation of gravity force in the lattice BGK system. (author)

  11. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  12. The effect of centrifugal buoyancy on the heat transport in rotating Rayleigh-Bénard convection

    Science.gov (United States)

    Horn, Susanne; Aurnou, Jonathan

    2017-11-01

    In a rapidly rotating and differentially heated fluid, the centrifugal acceleration can play a similar role to that of gravity in generating convective motion. However, in the paradigm system of rotating Rayleigh-Bénard convection, centrifugal buoyancy is typically not considered in theoretical studies and, thus, usually undesired in laboratory experiments, despite being unavoidable. How centrifugal buoyancy affects the turbulent flow, including the heat transport, is still largely unknown, in particular, when it can be considered negligible. We study this problem by means of direct numerical simulations. Unlike in experiments, we are able to systematically vary the Froude number Fr (ratio of centrifugal to gravitational acceleration) and the Rossby number Ro (dimensionless rotation rate) independently, and even set each to zero exactly. We show that the centrifugal acceleration simultaneously leads to contending phenomena, e.g. reflected by an increase and a decrease of the center temperature, or a suppression and an enhancement of the heat transfer efficiency. Which one prevails as net effect strongly depends on the combination of Fr and Ro. Furthermore, we discuss implications for experiments of rapidly rotating convection. SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under Grant HO 5890/1-1, JA by the NSF Geophysics Program.

  13. Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2006-01-01

    Full Text Available A numerical approach is substantiated for searching for the large-scale alpha-like instability in thermoconvective turbulence. The main idea of the search strategy is the application of a forcing function which can have a physical interpretation. The forcing simulates the influence of small-scale helical turbulence generated in a rotating fluid with internal heat sources and is applied to naturally induced fully developed convective flows. The strategy is tested using the Rayleigh-Bénard convection in an extended horizontal layer of incompressible fluid heated from below. The most important finding is an enlargement of the typical horizontal scale of the forming helical convective structures accompanied by a cells merging, an essential increase in the kinetic energy of flows and intensification of heat transfer. The results of modeling allow explaining how the helical feedback can work providing the non-zero mean helicity generation and the mutual intensification of horizontal and vertical circulation, and demonstrate how the energy of the additional helical source can be effectively converted into the energy of intensive large-scale vortex flow.

  14. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    Science.gov (United States)

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.

    2010-11-01

    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  15. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Kerry, K.

    2008-10-28

    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii

  16. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Sterl, S.H.; Li, H.M.; Zhong, J.Q.

    2016-01-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ(t) and thermal amplitude δ(t) of the large-scale circulation (LSC) are

  17. Stabilization of the Rayleigh - Taylor instability with convection in an ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Liberman, M.A.

    1992-01-01

    In the framework of WKB approximation the problem is studied of stabilizing the Rayleigh - Taylor instability with unhomogeneous convective flow, developing in the ablation zone during the ablative acceleration of the laser target plasma. The eigenvalue (instability growth rates) problem is reduced to solving an algebraic equation with the coefficients depending on the unperturbed profile structure of hydrodynamic variables. For the important case of the incompressible plasma subsonic flow, the instability growth rates is shown to vanish at k=k 0 =max(2(g|∇ ln p|) 1/2 /ν). The consistency condition of the model consists in the smallness of the local Froude number in the region of instability development. However, as seen from the comparison with the numerical calculations, the model is well appicable also for the case of the sufficiently abrupt density gradient provided the Froude number is of order of unity

  18. Modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Emran, Mohammad; Shishkina, Olga

    2016-11-01

    We report modeling of the thermal boundary layer in turbulent Rayleigh-Bénard convection (RBC), which incorporates the effect of turbulent fluctuations. The study is based on the thermal boundary layer equation from Shishkina et al., and new Direct Numerical Simulations (DNS) of RBC in a cylindrical cell of the aspect ratio 1, for the Prandtl number variation of several orders of magnitude. Our modeled temperature profiles are found to agree with the DNS much better than those obtained with the classical Prandtl-Blasius or Falkner-Skan approaches. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh405/4 - Heisenberg fellowship and SFB963, Project A06.

  19. Nonlinear traveling waves in rotating Rayleigh-Bacute enard convection: Stability boundaries and phase diffusion

    International Nuclear Information System (INIS)

    Liu, Y.; Ecke, R.E.

    1999-01-01

    We present experimental measurements of a sidewall traveling wave in rotating Rayleigh-Bacute enard convection. The fluid, water with Prandtl number about 6.3, was confined in a 1-cm-high cylindrical cell with radius-to-height ratio Γ=5. We used simultaneous optical-shadowgraph, heat-transport, and local temperature measurements to determine the stability and characteristics of the traveling-wave state for dimensionless rotation rates 60<Ω<420. The state is well described by the one-dimensional complex Ginzburg-Landau (CGL) equation for which the linear and nonlinear coefficients were determined for Ω=274. The Eckhaus-Benjamin-Feir-stability boundary was established and the phase-diffusion coefficient and nonlinear group velocity were determined in the stable regime. Higher-order corrections to the CGL equation were also investigated. copyright 1999 The American Physical Society

  20. Transition to the Ultimate Regime in Two-Dimensional Rayleigh-Bénard Convection

    Science.gov (United States)

    Zhu, Xiaojue; Mathai, Varghese; Stevens, Richard J. A. M.; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    The possible transition to the so-called ultimate regime, wherein both the bulk and the boundary layers are turbulent, has been an outstanding issue in thermal convection, since the seminal work by Kraichnan [Phys. Fluids 5, 1374 (1962), 10.1063/1.1706533]. Yet, when this transition takes place and how the local flow induces it is not fully understood. Here, by performing two-dimensional simulations of Rayleigh-Bénard turbulence covering six decades in Rayleigh number Ra up to 1 014 for Prandtl number Pr =1 , for the first time in numerical simulations we find the transition to the ultimate regime, namely, at Ra*=1013 . We reveal how the emission of thermal plumes enhances the global heat transport, leading to a steeper increase of the Nusselt number than the classical Malkus scaling Nu ˜Ra1 /3 [Proc. R. Soc. A 225, 196 (1954), 10.1098/rspa.1954.0197]. Beyond the transition, the mean velocity profiles are logarithmic throughout, indicating turbulent boundary layers. In contrast, the temperature profiles are only locally logarithmic, namely, within the regions where plumes are emitted, and where the local Nusselt number has an effective scaling Nu ˜Ra0.38 , corresponding to the effective scaling in the ultimate regime.

  1. Boundary layers and scaling relations in natural thermal convection

    Science.gov (United States)

    Shishkina, Olga; Lohse, Detlef; Grossmann, Siegfried

    2017-11-01

    We analyse the boundary layer (BL) equations in natural thermal convection, which includes vertical convection (VC), where the fluid is confined between two differently heated vertical walls, horizontal convection (HC), where the fluid is heated at one part of the bottom plate and cooled at some other part, and Rayleigh-Benard convection (RBC). For BL dominated regimes we derive the scaling relations of the Nusselt and Reynolds numbers (Nu, Re) with the Rayleigh and Prandtl numbers (Ra, Pr). For VC the scaling relations are obtained directly from the BL equations, while for HC they are derived by applying the Grossmann-Lohse theory to the case of VC. In particular, for RBC with large Pr we derive Nu Pr0Ra1/3 and Re Pr-1Ra2/3. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  2. Numerical simulations of thermal convection in a rotating spherical fluid shell at high Taylor and Rayleigh numbers

    International Nuclear Information System (INIS)

    Sun, Z.; Schubert, G.

    1995-01-01

    In this study, we carry out numerical simulations of thermal convection in a rapidly rotating spherical fluid shell at high Taylor number Ta and Rayleigh number R with a nonlinear, three-dimensional, time-dependent, spectral-transform code. The parameters used in the simulations are chosen to be in a range which allows us to study two different types of convection, i.e., single column and multi-layered types, and the transition between them. Numerical solutions feature highly time-dependent north--south open columnar convective cells. The cells occur irregularly in longitude, are quasi-layered in cylindrical radius, and maintain alternating bands of mean zonal flow. The complex convective structure and the banded mean zonal flow are results of the high Taylor and Rayleigh numbers. The transition between the two types of convection appears to occur gradually with increasing Rayleigh and Taylor numbers. At a Taylor number of 10 7 the differential rotation pattern consists of an inner cylindrical region of subrotation and an outer cylindrical shell of superrotation manifest at the outer boundary as an equatorial superrotation and a high latitude subrotation. The differential rotation pattern is similar at Ta=10 8 and low Rayleigh number. Cylindrical shells of alternately directed mean zonal flow begin to develop at Ta=10 8 and R=50R c and at Ta=10 9 and R=25R c . This pattern is seen on the outer surface as a latitudinally-banded zonal flow consisting of an equatorial superrotation, a middle and high latitude subrotation, and a polar superrotation. At Ta=10 9 and R=50R c the differential rotation appears at the surface as a broad eastward flow in the equatorial region with alternating bands of westward and eastward flow at high latitudes. copyright 1995 American Institute of Physics

  3. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li, E-mail: mali@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Li, Jing, E-mail: lijing@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Ji, Shui, E-mail: jishui@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Chang, Huajian, E-mail: changhuajian@snptrd.com [State Nuclear Hua Qing(Beijing) Nuclear Power Technology R& D Centre Co., Ltd, Building A, State Nuclear Power Research Institute, Future Science & Technology Park, Changping Dist., Beijing 102209 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Highlights: • The facility reached high Ra number at 10{sup 12} of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra{sup 0.315} was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10{sup 5} to 6.8 × 10{sup 8} in G–D correlation and less than 10{sup 12} in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10{sup 11} for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra{sup 0.315} in the range 3.93 × 10{sup 8} < Ra < 3.57

  4. Turbulent convection experiment at high Rayleigh number to support CAP1400 IVR strategy

    International Nuclear Information System (INIS)

    Ma, Li; Li, Jing; Ji, Shui; Chang, Huajian

    2015-01-01

    Highlights: • The facility reached high Ra number at 10 12 of CAP1400 working condition. • The fitting formula Nu = 0.085 × Ra 0.315 was established to calculate the heat flux in the metal layer at high Ra for the CAP1400. • The coupling method can accurately and safely predict the heat flow distribution of metal layer in high Ra number conditions. • The experiment results will predict the relationship between axial and radial heat transfer well. - Abstract: The characteristics of the heat transfer and the calculation of heat flux in metal layer are both the critical problems for in-vessel retention (IVR) strategy. Turbulent convection occurs in the metal layer when the Rayleigh number (Ra) becomes sufficient high. The Globe–Dropkin (G–D) correlation (Globe and Dropkin, 1959) and Chu–Churchill (C–C) correlation (Churchill and Chu, 1975) have been widely used to calculate the heat flux in the metal layer, where the valid range of the Ra is from 1.5 × 10 5 to 6.8 × 10 8 in G–D correlation and less than 10 12 in C–C correlation. However, with the increase of reactor power, both the Rayleigh number and the rate of heat transfer below the bottom of metal layer of the molten pool will increase, and in this case the Rayleigh number even can reach 10 11 for the China Advanced Passive Plant CAP1400. Accordingly, the G–D correlation is not suitable for the CAP1400. Therefore, our experiment purposes are to establish the appropriate correlation at high Ra for the CAP1400 and predict the axial and radial distribution of the heat transfer in the metal layer with the heat transfer behavior of metal layer experiment (HELM) facility. The experiments are divided into two parts. Each part concerns 39 runs and 47 experimental conditions. Its corresponding results are obtained at middle Prandtl number (Pr = 7 for water) and the Nusselt number is found to be proportional to Ra 0.315 in the range 3.93 × 10 8 < Ra < 3.57 × 10 12 . Furthermore, the experiment

  5. Development of Rayleigh-Taylor and bulk convection instabilities in the dynamics of plasma liners and pinches

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Velikovich, A.L.; Liberman, M.A.; Felber, F.S.

    1989-01-01

    A solution is derived for the problem of the initial, linear stage of the growth of small perturbations in the course of the cylindrically symmetric compression and expansion of a plasma liner and a Z-pinch with a sharp boundary. In these systems, Rayleigh-Taylor instabilities localized near the plasma boundaries are the most dangerous. Bulk convective instabilities develop in addition to these Rayleigh-Taylor instabilities. The various instability modes, including local and global Rayleigh-Taylor modes, which grown in an accelerated plasma with distributed profiles of hydrodynamic variables, are classified. The spectra of the instability growth rates are calculated for plasma liners and Z-pinches. The shape of these spectra reveals an explanation of the stratification and filamentation of the plasma observed experimentally in pinches and liners. The imposition of a longitudinal magnetic field gives rise to a stability window in the space of the flow parameters. In this window, the Rayleigh-Taylor modes are suppressed completely by magnetic shear, while the bulk convective modes are suppressed to a significant extent

  6. A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.

    2017-10-01

    At the crossroad between flow topology analysis and turbulence modeling, a priori studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS) motions in turbulent flows. In this paper, properties of the SGS features in the framework of a large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To do so, data from direct numerical simulation (DNS) of a turbulent air-filled RBC in a rectangular cavity of aspect ratio unity and π spanwise open-ended distance are used at two Rayleigh numbers R a ∈{1 08,1 010 } [Dabbagh et al., "On the evolution of flow topology in turbulent Rayleigh-Bénard convection," Phys. Fluids 28, 115105 (2016)]. First, DNS at Ra = 108 is used to assess the performance of eddy-viscosity models such as QR, Wall-Adapting Local Eddy-viscosity (WALE), and the recent S3PQR-models proposed by Trias et al. ["Building proper invariants for eddy-viscosity subgrid-scale models," Phys. Fluids 27, 065103 (2015)]. The outcomes imply that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large scales. However, these models fail to approach the exact evolution of the SGS heat flux and are incapable to reproduce well the further dominant rotational enstrophy pertaining to the buoyant production. Afterwards, the key ingredients of eddy-viscosity, νt, and eddy-diffusivity, κt, are calculated a priori and revealed positive prevalent values to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests that the effective turbulent diffusion paradigm and the hypothesis of a constant turbulent Prandtl number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown that the bulk-dominated rotational structures of vortex-stretching (and its synchronous viscous dissipative structures) hold

  7. Stabilization of the Rayleigh-Taylor instability by convection in an ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bul'ko, A.B.; Liberman, M.A.

    1992-01-01

    The authors use the WKB-approximation to treat the problem of the stabilization by an inhomogeneous convective current of the Rayleigh-Taylor instability developing in the ablation zone when the plasma of laser targets is accelerated by ablation. The problem of the eigenvalues - the instability growth rates - is reduced to the solution of an algebraic equation with coefficients which depend on the structure of the unperturbed profiles of the hydrodynamic variables. They show for the practically important case of subsonic flow of an incompressible plasma that the instability growth rate vanishes for k = k o = max[2(g|∇lnρ|) 1/2 /v]. The condition for the self-consistency of the model is that the local Froude number be small in the region where the instability develops; however, comparison with numerical calculations shows that the model is also applicable in the case of rather steep density gradients when the Froude number is of order unity. 32 refs., 2 figs

  8. Direct numerical simulation of turbulent Rayleigh-Bénard convection in a vertical thin disk

    Science.gov (United States)

    Xu, Wei; Wang, Yin; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger

    2017-11-01

    We report a direct numerical simulation (DNS) of turbulent Rayleigh-Bénard convection in a thin vertical disk with a high-order spectral element method code NEK5000. An unstructured mesh is used to adapt the turbulent flow in the thin disk and to ensure that the mesh sizes satisfy the refined Groetzbach criterion and a new criterion for thin boundary layers proposed by Shishkina et al. The DNS results for the mean and variance temperature profiles in the thermal boundary layer region are found to be in good agreement with the predictions of the new boundary layer models proposed by Shishkina et al. and Wang et al.. Furthermore, we numerically calculate the five budget terms in the boundary layer equation, which are difficult to measure in experiment. The DNS results agree well with the theoretical predictions by Wang et al. Our numerical work thus provides a strong support for the development of a common framework for understanding the effect of boundary layer fluctuations. This work was supported in part by Hong Kong Research Grants Council.

  9. Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Bénard convection

    Science.gov (United States)

    Wen, Baole; Chini, Gregory P.; Kerswell, Rich R.; Doering, Charles R.

    2015-10-01

    An alternative computational procedure for numerically solving a class of variational problems arising from rigorous upper-bound analysis of forced-dissipative infinite-dimensional nonlinear dynamical systems, including the Navier-Stokes and Oberbeck-Boussinesq equations, is analyzed and applied to Rayleigh-Bénard convection. A proof that the only steady state to which this numerical algorithm can converge is the required global optimal of the relevant variational problem is given for three canonical flow configurations. In contrast with most other numerical schemes for computing the optimal bounds on transported quantities (e.g., heat or momentum) within the "background field" variational framework, which employ variants of Newton's method and hence require very accurate initial iterates, the new computational method is easy to implement and, crucially, does not require numerical continuation. The algorithm is used to determine the optimal background-method bound on the heat transport enhancement factor, i.e., the Nusselt number (Nu), as a function of the Rayleigh number (Ra), Prandtl number (Pr), and domain aspect ratio L in two-dimensional Rayleigh-Bénard convection between stress-free isothermal boundaries (Rayleigh's original 1916 model of convection). The result of the computation is significant because analyses, laboratory experiments, and numerical simulations have suggested a range of exponents α and β in the presumed Nu˜PrαRaβ scaling relation. The computations clearly show that for Ra≤1010 at fixed L =2 √{2 },Nu≤0.106 Pr0Ra5/12 , which indicates that molecular transport cannot generally be neglected in the "ultimate" high-Ra regime.

  10. Rayleigh convective instability in the presence of phase transitions of water vapor. The formation of large-scale eddies and cloud structures

    International Nuclear Information System (INIS)

    Shmerlin, Boris Ya; Kalashnik, Maksim V

    2013-01-01

    Convective motions in moist saturated air are accompanied by the release of latent heat of condensation. Taking this effect into account, we consider the problem of convective instability of a moist saturated air layer, generalizing the formulation of the classical Rayleigh problem. An analytic solution demonstrating the fundamental difference between moist convection and Rayleigh convection is obtained. Upon losing stability in the two-dimensional case, localized convective rolls or spatially periodic chains of rollers with localized areas of upward motion evolve. In the case of axial symmetry, the growth of localized convective vortices with circulation characteristic of tropical cyclones (hurricanes) is possible at the early stages of development and on the scale of tornados to tropical cyclones. (methodological notes)

  11. Lattice Boltzmann analysis of effect of heating location and Rayleigh number on natural convection in partially heated open ended cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gangawane, Krunal Madhukar; Bharti, Ram Prakash; Kumar, Surendra [Indian Institute of Technology Roorkee, Uttarakhand (India)

    2015-08-15

    Natural convection characteristics of a partially heated open ended square cavity have been investigated numerically by using an in-house computational flow solver based on the passive scalar thermal lattice Boltzmann method (PS-TLBM) with D2Q9 (two-dimensional and nine-velocity link) lattice model. The partial part of left wall of the cavity is heated isothermally at either of the three different (bottom, middle and top) locations for the fixed heating length as half of characteristic length (H/2) while the right wall is open to the ambient conditions. The other parts of the cavity are thermally isolated. In particular, the influences of partial heating locations and Rayleigh number (103≤ Ra≤106) in the laminar zone on the local and global natural convection characteristics (such as streamline, vorticity and isotherm contours; centerline variations of velocity and temperature; and local and average Nusselt numbers) have been presented and discussed for the fixed value of the Prandtl number (Pr=0.71). The streamline patterns show qualitatively similar nature for all the three heating cases and Rayleigh numbers, except the change in the recirculation zone which is found to be largest for middle heating case. Isotherm patterns are shifted towards a partially heated wall on increasing Rayleigh number and/or shifting of heating location from bottom to top. Both the local and average Nusselt numbers, as anticipated, shown proportional increase with Rayleigh number. The cavity with middle heating location shown higher heat transfer rate than that for the top and bottom heating cases. Finally, the functional dependence of the average Nusselt number on flow governing parameters is also presented as a closure relationship for the best possible utilization in engineering practices and design.

  12. Boundary layers in turbulent convection for air, liquid gallium and liquid sodium

    Science.gov (United States)

    Scheel, Janet; Schumacher, Joerg

    2017-11-01

    The scaling of physical quantities that characterize the shape and dynamics of the viscous and thermal boundary layers with respect to the Rayleigh number will be presented for three series of three-dimensional high-resolution direct numerical simulations of Rayleigh-Benard convection (RBC) in a closed cylindrical cell of aspect ratio one. The simulations have been conducted for convection in air at a Prandtl number Pr = 0.7, in liquid gallium at Pr = 0.021 and in liquid sodium at Pr = 0.005. Then we discuss three statistical analysis methods which have been developed to predict the transition of turbulent RBC into the ultimate regime. The methods are based on the large-scale properties of the velocity profile. All three methods indicate that the range of critical Rayleigh numbers is shifted to smaller magnitudes as the Prandtl number becomes smaller. This work is supported by the Priority Programme SPP 1881 of the Deutsche Forschungsgemeinschaft.

  13. A new scaling law for temperature variance profile in the mixing zone of turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Wang, Yin; Xu, Wei; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger

    2017-11-01

    We report a combined experimental and numerical study of the scaling properties of the temperature variance profile η(z) along the central z axis of turbulent Rayleigh-Bénard convection in a thin disk cell and an upright cylinder of aspect ratio unity. In the mixing zone outside the thermal boundary layer region, the measured η(z) is found to scale with the cell height H in both cells and obey a power law, η(z) (z/H)ɛ, with the obtained values of ɛ being very close to -1. Based on the experimental and numerical findings, we derive a new equation for η(z) in the mixing zone, which has a power-law solution in good agreement with the experimental and numerical results. Our work thus provides a common framework for understanding the effect of boundary layer fluctuations on the scaling properties of the temperature variance profile in turbulent Rayleigh-Bénard convection. This work was supported in part by Hong Kong Research Grants Council.

  14. Transitional boundary layer in low-Prandtl-number convection at high Rayleigh number

    Science.gov (United States)

    Schumacher, Joerg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet

    2016-11-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough the boundary layer dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes and an interior region (away from side walls) that is dominated by a shear flow of varying orientation. This interior plate region is compared here to classical wall-bounded shear flows. The working fluid is liquid mercury or liquid gallium at a Prandtl number of Pr = 0 . 021 for a range of Rayleigh numbers of 3 ×105 Deutsche Forschungsgemeinschaft.

  15. The structure of sidewall boundary layers in conned rotating Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; van Heijst, G.J.F.

    2013-01-01

    Turbulent rotating convection is usually studied in a cylindrical geometry, as this is its most convenient experimental realization. In our previous work (Kunnen et al., J. Fluid Mech., vol. 688, 2011, pp. 422–442) we studied turbulent rotating convection in a cylinder with the emphasis on the

  16. Boundary Layer Control of Rotating Convection Systems

    Science.gov (United States)

    King, E. M.; Stellmach, S.; Noir, J.; Hansen, U.; Aurnou, J. M.

    2008-12-01

    Rotating convection is ubiquitous in the natural universe, and is likely responsible for planetary processes such magnetic field generation. Rapidly rotating convection is typically organized by the Coriolis force into tall, thin, coherent convection columns which are aligned with the axis of rotation. This organizational effect of rotation is thought to be responsible for the strength and structure of magnetic fields generated by convecting planetary interiors. As thermal forcing is increased, the relative influence of rotation weakens, and fully three-dimensional convection can exist. It has long been assumed that rotational effects will dominate convection dynamics when the ratio of buoyancy to the Coriolis force, the convective Rossby number, Roc, is less than unity. We investigate the influence of rotation on turbulent Rayleigh-Benard convection via a suite of coupled laboratory and numerical experiments over a broad parameter range: Rayleigh number, 10310; Ekman number, 10-6≤ E ≤ ∞; and Prandtl number, 1≤ Pr ≤ 100. In particular, we measure heat transfer (as characterized by the Nusselt number, Nu) as a function of the Rayleigh number for several different Ekman and Prandtl numbers. Two distinct heat transfer scaling regimes are identified: non-rotating style heat transfer, Nu ~ Ra2/7, and quasigeostrophic style heat transfer, Nu~ Ra6/5. The transition between the non-rotating regime and the rotationally dominant regime is described as a function of the Ekman number, E. We show that the regime transition depends not on the global force balance Roc, but on the relative thicknesses of the thermal and Ekman boundary layers. The transition scaling provides a predictive criterion for the applicability of convection models to natural systems such as Earth's core.

  17. Heat transfer in cryogenic helium gas by turbulent Rayleigh-Bénard convection in a cylindrical cell of aspect ratio 1

    Czech Academy of Sciences Publication Activity Database

    Urban, Pavel; Hanzelka, Pavel; Musilová, Věra; Králík, Tomáš; La Mantia, M.; Srnka, Aleš; Skrbek, L.

    2014-01-01

    Roč. 16, č. 5 (2014), 053042: 1-40 ISSN 1367-2630 R&D Projects: GA ČR GPP203/12/P897 Institutional support: RVO:68081731 Keywords : Rayleigh-Bénard convection * heat transfer efficiency * cryogenic helium Subject RIV: BK - Fluid Dynamics Impact factor: 3.558, year: 2014

  18. State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convection.

    Science.gov (United States)

    Cornick, Matthew; Hunt, Brian; Ott, Edward; Kurtuldu, Huseyin; Schatz, Michael F

    2009-03-01

    Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.

  19. Temperature oscillation and the sloshing motion of the large-scale circulation in turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Xi, Heng-Dong; Chen, Xin; Xia, Ke-Qing

    2017-11-01

    We report an experimental study of the temperature oscillation and the sloshing motion of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard convection in water. Temperature measurements were made in aspect ratio one cylindrical cell by probes put in fluid and embedded in the sidewall simultaneously, and located at the 1/4, 1/2 and 3/4 heights of the convection cell. The results show that the temperature measured in fluid contains information of both the LSC and the signature of the hot and cold plumes, while the temperature measured in sidewall only contains information of the LSC. It is found that the sloshing motion of the LSC can be measured by both the temperatures in fluid and in sidewall. We also studies the effect of cell tilting on the temperature oscillation and sloshing motion of the LSC. It is found that both the amplitude and the frequency of the temperature oscillation (and the sloshing motion) increase when the tilt angle increases, while the off-center distance of the sloshing motion of the LSC remains unchanged. This work is supported by the NSFC of China (Grant Nos. 11472094 and U1613227), the RGC of Hong Kong SAR (Grant No. 403712) and the 111 project of China (Grant No. B17037).

  20. Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Ahlers, Günter; Brown, Eric; Fontenele Araujo Junior, F.; Funfschilling, Denis; Grossmann, Siegfried; Lohse, Detlef

    2006-01-01

    Non-Oberbeck–Boussinesq (NOB) effects on the Nusselt number $Nu$ and Reynolds number $\\hbox{\\it Re}$ in strongly turbulent Rayleigh–Bénard (RB) convection in liquids were investigated both experimentally and theoretically. In the experiments the heat current, the temperature difference, and the

  1. Rotating turbulent Rayleigh-Bénard convection subject to harmonically forced flow reversals

    NARCIS (Netherlands)

    Geurts, B.J.; Kunnen, R.P.J.

    2014-01-01

    The characteristics of turbulent flow in a cylindrical Rayleigh–B´enard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by nonconstant rotation rates, a remarkably strong

  2. Turbulence statistics and energy budget in rotating Rayleigh-Bénard convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Geurts, Bernardus J.; Clercx, H.J.H.

    The strongly-modified turbulence statistics of Rayleigh–Bénard convection subject to various rotation rates is addressed by numerical investigations. The flow is simulated in a domain with periodic boundary conditions in the horizontal directions, and confined vertically by parallel no-slip

  3. The onset of nonpenetrative convection in a suddenly cooled layer of fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ihle, Christian F. [Program in Fluid Dynamics, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Blanco Encalada 2002 Of. 327, Santiago (Chile); Nino, Yarko [Departamento de Ingenieria Civil, Division de Recursos Hidricos y Medio Ambiente, Universidad de Chile, Av. Blanco Encalada 2002, Santiago (Chile)

    2006-04-15

    Conditions for the onset of nonpenetrative convection in a horizontal Boussinesq fluid layer subject to a step change in temperature are studied using propagation theory. A wide range of Prandtl numbers and two different kinematic boundary conditions are considered. It is shown that for high Rayleigh numbers, critical conditions for the onset of convective motion reproduce exactly those for the unsteady Rayleigh-Benard instability. Present results extend those of previous research and show a tendency of the rigid-rigid and free-rigid critical curves to converge for low Prandtl numbers. Comparison between present and previously reported results on critical conditions for the onset of instabilities and onset time using different methods yields good agreement on a middle to high Prandtl number range. A ratio of 10 between experimentally measured and theoretically predicted onset times is suggested for stress-free bounded systems. (author)

  4. Logarithmic spatial variations and universal f-1 power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection.

    Science.gov (United States)

    He, Xiaozhou; van Gils, Dennis P M; Bodenschatz, Eberhard; Ahlers, Guenter

    2014-05-02

    We report measurements of the temperature variance σ(2)(z,r) and frequency power spectrum P(f,z,r) (z is the distance from the sample bottom and r the radial coordinate) in turbulent Rayleigh-Bénard convection (RBC) for Rayleigh numbers Ra = 1.6 × 10(13) and 1.1 × 10(15) and for a Prandtl number Pr ≃ 0.8 for a sample with a height L = 224 cm and aspect ratio D/L=0.50 (D is the diameter). For z/L ≲ 0.1 σ(2)(z,r) was consistent with a logarithmic dependence on z, and there was a universal (independent of Ra, r, and z) normalized spectrum which, for 0.02 ≲ fτ(0) ≲ 0.2, had the form P(fτ(0)) = P(0)(fτ(0))(-1) with P(0) = 0.208 ± 0.008 a universal constant. Here τ(0) = sqrt[2R] where R is the radius of curvature of the temperature autocorrelation function C(τ) at τ = 0. For z/L ≃ 0.5 the measurements yielded P(fτ(0))∼(fτ(0))(-α) with α in the range from 3/2 to 5/3. All the results are similar to those for velocity fluctuations in shear flows at sufficiently large Reynolds numbers, suggesting the possibility of an analogy between the flows that is yet to be determined in detail.

  5. Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number

    International Nuclear Information System (INIS)

    Amati, G.; Koal, K.; Massaioli, F.; Sreenivasan, K.R.; Verzicco, R.

    2006-12-01

    The results from direct numerical simulations of turbulent Boussinesq convection are briefly presented. The flow is computed for a cylindrical cell of aspect ratio 1/2 in order to compare with the results from recent experiments. The results span eight decades of Ra from 2x10 6 to 2x10 14 and form the baseline data for a strictly Boussinesq fluid of constant Prandtl number (Pr=0.7). A conclusion is that the Nusselt number varies nearly as the 1/3 power of Ra for about four decades towards the upper end of the Ra range covered. (author)

  6. Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh-Bénard convection

    Science.gov (United States)

    Sterl, Sebastian; Li, Hui-Min; Zhong, Jin-Qiang

    2016-12-01

    In this paper, we present results from an experimental study into turbulent Rayleigh-Bénard convection forced externally by periodically modulated unidirectional rotation rates. We find that the azimuthal rotation velocity θ ˙(t ) and thermal amplitude δ (t ) of the large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics including increasing phase delays and a resonant peak in the amplitude of θ ˙(t ) . We also focus on the influence of modulated rotation rates on the frequency of occurrence η of stochastic cessation or reorientation events, and on the interplay between such events and the periodically modulated response of θ ˙(t ) . Here we identify a mechanism by which η can be amplified by the modulated response, and these normally stochastic events can occur with high regularity. We provide a modeling framework that explains the observed amplitude and phase responses, and we extend this approach to make predictions for the occurrence of cessation events and the probability distributions of θ ˙(t ) and δ (t ) during different phases of a modulation cycle, based on an adiabatic approach that treats each phase separately. Last, we show that such periodic forcing has consequences beyond influencing LSC dynamics, by investigating how it can modify the heat transport even under conditions where the Ekman pumping effect is predominant and strong enhancement of heat transport occurs. We identify phase and amplitude responses of the heat transport, and we show how increased modulations influence the average Nusselt number.

  7. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  8. Effect of Darcy, fluid Rayleigh and heat generation parameters on natural convection in a porous square enclosure: A Brinkman-extended Darcy model

    International Nuclear Information System (INIS)

    Das, S.; Sahoo, R.K.

    1999-01-01

    Analysis of flow and convective heat transfer in volumetrically heated porous layer has become a separate topic for research in the last twenty five years in view of its importance in various engineering applications, such as heat removal from nuclear fuel debris, heat transfer associated with storage of nuclear waste, exothermic reaction in packed-bed reactors, heat recovery from geothermal systems and particularly in the field of large storage systems of agricultural products. Here, a pressure-velocity solution for natural convection for fluid saturated heat generating porous medium in a square enclosure is analyzed by finite element method. The numerical solutions obtained for wide range of fluid Rayleigh number, Ra f , Darcy number, Da, and heat generating number, Q d . The justification for taking these non-dimensional parameters independently is to establish the effect of individual parameters on flow patterns. It has been observed that peak temperature occurs at the top central part and weaker velocity prevails near the vertical walls of the enclosure due to the heat generation parameter alone. On comparison, the modified Rayleigh number used by the earlier investigators, can not explain explicitly the effect of heat generation parameter on natural convection within an enclosure having differentially heated vertical walls. At higher Darcy number, the peak temperature and peak velocity are comparatively more, resulting in better enhancement of heat transfer rate

  9. Influence of the Ringwoodite-Perovskite transition on mantle convection in spherical geometry as a function of Clapeyron slope and Rayleigh number

    Directory of Open Access Journals (Sweden)

    M. Wolstencroft

    2011-12-01

    Full Text Available We investigate the influence on mantle convection of the negative Clapeyron slope ringwoodite to perovskite and ferro-periclase mantle phase transition, which is correlated with the seismic discontinuity at 660 km depth. In particular, we focus on understanding the influence of the magnitude of the Clapeyron slope (as measured by the Phase Buoyancy parameter, P and the vigour of convection (as measured by the Rayleigh number, Ra on mantle convection. We have undertaken 76 simulations of isoviscous mantle convection in spherical geometry, varying Ra and P. Three domains of behaviour were found: layered convection for high Ra and more negative P, whole mantle convection for low Ra and less negative P, and transitional behaviour in an intervening domain. The boundary between the layered and transitional domain was fit by a curve P = α Raβ where α = −1.05, and β = −0.1, and the fit for the boundary between the transitional and whole mantle convection domain was α = −4.8, and β = −0.25. These two curves converge at Ra ≈ 2.5 × 104 (well below Earth mantle vigour and P ≈ −0.38. Extrapolating to high Ra, which is likely earlier in Earth history, this work suggests a large transitional domain. It is therefore likely that convection in the Archean would have been influenced by this phase change, with Earth being at least in the transitional domain, if not the layered domain.

  10. Boundary-modulated Thermal Convection Model in the Mantle

    Science.gov (United States)

    Kurita, K.; Kumagai, I.

    2008-12-01

    Analog experiments have played an important role in the constructing ideas of mantle dynamics. The series of experiments by H. Ramberg is one of the successful examples. Recently, however the realm of the analog experiments seems to be overwhelmed by steady progress of computer simulations. Is there still room for the analog experiments? This might be a main and hidden subject of this session. Here we propose a working hypothesis how the convecting mantle behaves based on the analog experiments in the system of viscous fluid and particles. The essential part is the interaction of convecting flow with heterogeneities existing in the boundaries. It is proposed the preexisting topographical heterogeneity in the boundary could control the flow pattern of convecting fluid. If this kind of heterogeneity can be formed as a consequence of convective motion and mobilized by the flow, the convection also can control the heterogeneity. We can expect interactions in two ways, by which the system behaves in a self-organize fashion. To explore the mutual interactions between convection flow and heterogeneity the system of viscous fluid and particles with slightly higher density is selected as 2D Rayleigh-Benard type convection. The basic structure consists of a basal particulate layer where permeable convection transports heat and an upper viscous fluid layer. By reducing the magnitude of the density difference the convective flow can mobilize the particles and can erode the basal layer. The condition of this erosion can be identified in the phase diagram of the particle Shields"f and the Rayleigh numbers. At Ra greater than 107 the convection style drastically changed before and after the erosion. Before the erosion where the flat interface of the boundary is maintained small scaled turbulent convection pattern is dominant. After the erosion where the interface becomes bumpy the large scale convective motion is observed. The structure is coherent to that of the boundary. This

  11. Simulations of thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model

    Science.gov (United States)

    Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg

    2017-11-01

    Operating a liquid-metal battery produces Ohmic losses in the electrolyte layer that separates both metal electrodes. As a consequence, temperature gradients establish which potentially cause thermal convection since density and interfacial tension depend on the local temperature. In our numerical investigations, we considered three plane, immiscible layers governed by the Navier-Stokes-Boussinesq equations held at a constant temperature of 500°C at the bottom and top. A homogeneous current is applied that leads to a preferential heating of the mid electrolyte layer. We chose a typical material combination of Li separated by LiCl-KCl (a molten salt) from Pb-Bi for which we analyzed the linear stability of pure thermal conduction and performed three-dimensional direct-numerical simulations by a pseudospectral method probing different: electrolyte layer heights, overall heights, and current densities. Four instability mechanisms are identified, which are partly coupled to each other: buoyant convection in the upper electrode, buoyant convection in the molten salt layer, and Marangoni convection at both interfaces between molten salt and electrode. The global turbulent heat transfer follows scaling predictions for internally heated buoyant convection. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. KO 5515/1-1 is gratefully acknowledged.

  12. Heat Transport Enhancement of Turbulent Thermal Convection by Inserted Channels

    Science.gov (United States)

    Xia, Ke-Qing; Zhang, Lu

    2017-11-01

    We report an experimental study on the heat transport properties of turbulent Rayleigh Benard Convection (RBC) in a rectangular cell with two types of 3D-printed structures inserted inside. The first one splits the original rectangular cell into 60 identical sub cells whose aspect ratio is 1:1:10 (length, width, height). The second one splits the cell into 30 sub cells, each with a 1:2:10 aspect ratio and a baffle in the center. We find that for large Rayleigh numbers (Ra), the Nusselt numbers (Nu) of both structures increase compared with that of the empty rectangular cell. An enhancement in Nu as much as 20% is found for the second type of insertion at Rayleigh number 2 ×109 . Moreover, the Nu-Ra scaling shows a transition with both geometries. The particle image velocimetry (PIV) measurement within a single sub unit indicates that the transition may be related to the laminar to turbulent transition in flow field. Direct numerical simulations (DNS) confirm the experimental results. Our results demonstrate the potential in using insertions to enhance passive heat transfer. This work was supported by the Research Grants Council (RGC) of HKSAR (Nos. CUHK404513 and CUHK14301115).

  13. Long-term unsteadiness and large-scale structures in Rayleigh-Bénard convection with and without electromagnetic forcing

    NARCIS (Netherlands)

    Verdoold, J.

    2010-01-01

    This dissertation focuses on turbulent thermal convection, which occurs in a wide range of (geo)physical situations, like in the atmosphere, the oceans, the interior of stars or planets, and engineering applications, like metal casting or crystal growth processes. In this work, a special type of

  14. Turbulence modeling of natural convection in enclosures: A review

    International Nuclear Information System (INIS)

    Choi, Seok Ki; Kim, Seong O

    2012-01-01

    In this paper a review of recent developments of turbulence models for natural convection in enclosures is presented. The emphasis is placed on the effect of the treatments of Reynolds stress and turbulent heat flux on the stability and accuracy of the solution for natural convection in enclosures. The turbulence models considered in the preset study are the two-layer k -ε model, the shear stress transport (SST) model, the elliptic-relaxation (V2-f) model and the elliptic-blending second-moment closure (EBM). Three different treatments of the turbulent heat flux are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The mathematical formulation of the above turbulence models and their solution method are presented. Evaluation of turbulence models are performed for turbulent natural convection in a 1:5 rectangular cavity ( Ra = 4.3x10 10 ) and in a square cavity with conducting top and bottom walls ( Ra =1.58x10 9 ) and the Rayleigh-Benard convection ( Ra = 2x10 6 ∼ Ra =10 9 ). The relative performances of turbulence models are examined and their successes and shortcomings are addressed

  15. Direct numerical simulation and statistical analysis of turbulent convection in lead-bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Otic, I.; Grotzbach, G. [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern-und Energietechnik (Germany)

    2003-07-01

    Improved turbulent heat flux models are required to develop and analyze the reactor concept of an lead-bismuth cooled Accelerator-Driven-System. Because of specific properties of many liquid metals we have still no sensors for accurate measurements of the high frequency velocity fluctuations. So, the development of the turbulent heat transfer models which are required in our CFD (computational fluid dynamics) tools needs also data from direct numerical simulations of turbulent flows. We use new simulation results for the model problem of Rayleigh-Benard convection to show some peculiarities of the turbulent natural convection in lead-bismuth (Pr = 0.025). Simulations for this flow at sufficiently large turbulence levels became only recently feasible because this flow requires the resolution of very small velocity scales with the need for recording long-wave structures for the slow changes in the convective temperature field. The results are analyzed regarding the principle convection and heat transfer features. They are also used to perform statistical analysis to show that the currently available modeling is indeed not adequate for these fluids. Basing on the knowledge of the details of the statistical features of turbulence in this convection type and using the two-point correlation technique, a proposal for an improved statistical turbulence model is developed which is expected to account better for the peculiarities of the heat transfer in the turbulent convection in low Prandtl number fluids. (authors)

  16. Mixed convection between horizontal plates and consequences for chemical vapor deposition flows

    International Nuclear Information System (INIS)

    Chiu, K.C.

    1986-01-01

    To simulate the fluid dynamics of VD systems, mixed convection between horizontal plates (AR = width/height = 10) heated from below was studied by laser Doppler anemometry in a range 1368 < Ra < 8300 and 15 < R3 < 170. The entrance effects were characterized by two lengths: one for the onset of bouyancy-driven instability, and one for the full development of longitudinal convection rolls. Explicit expressions for both entrance lengths are given in terms of Ra and Re. In addition, unsteady longitudinal convection rolls were observed. These are discussed in terms of the admixture of transverse convection rolls and/or contributions from upstream turbulence. For the fully developed region it is shown analytically that the transverse velocities of the longitudinal convection rolls, v and w, are independent of the forced flow and are identical to those of the two-dimensional Rayleigh-Benard convection rolls. These fundamental results serve as a base for the discussion of horizontal CVD flows. The entrance and sidewall effects are found to have pronounced influences on the flow patterns observed in CVD (AR = 2) reactors

  17. Stabilization of the Rayleigh-Taylor instability by convection and thermal conduction in smooth density gradient: WKB analysis

    International Nuclear Information System (INIS)

    Bud'ko, A.B.; Liberman, M.A.; Bondarenko, E.A.

    1992-01-01

    Since development of the RT modes in the ablatively accelerated plasma of laser targets imposes crucial limitations on symmetry of spherical implosions and hence on energy cumulation, it has been the subject of intensive numerical and analytical analysis in the recent years, particularly in the context of inertial confinement fusion. Recent thin-foil ablative-acceleration experiments as well as the results of 2D numerical simulations demonstrated substantial reduction of the instability growth rates compared with the classical theory predictions up to the total stabilization in the short-wavelength limit. The numerical results indicated that the main stabilization mechanism is convection. To derive the scaling laws for the RT growth rates and cut-off wavenumbers in the wide range of flow parameters, analytical solutions attract special interest. The analytical approach based on the discontinuity model was developed to analyze the reduction of the RT growth rates by the plasma convective flow and the thermal conductivity effects. The following major problem arises in the discontinuity approximation, which leaves the solution undetermined: the number of the boundary conditions on the perturbed ablation surface is not sufficient to derive the dispersion equation. One needs additional boundary conditions not associated with the conservation laws on the discontinuity surface to close the system of linearized equations for small perturbations. The stabilization effect of highly structured hydrodynamic profiles was studied by Mikaelian and Munro for a stationary plasma. Nevertheless, no reasonable analytical model was constructed taking into account the combined convective, thermal conductivity and density gradient reduction of the RT growth rates. In this report we develop the analytical approach based on the WKB approximation to analyze the stabilization of the RT modes in plasma with smooth density and velocity gradients. (author) 9 refs., 1 fig

  18. Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection at large Rayleigh numbers

    Science.gov (United States)

    Kozitskiy, Sergey

    2018-05-01

    Numerical simulation of nonstationary dissipative structures in 3D double-diffusive convection has been performed by using the previously derived system of complex Ginzburg-Landau type amplitude equations, valid in a neighborhood of Hopf bifurcation points. Simulation has shown that the state of spatiotemporal chaos develops in the system. It has the form of nonstationary structures that depend on the parameters of the system. The shape of structures does not depend on the initial conditions, and a limited number of spectral components participate in their formation.

  19. Some considerations about the symmetry and evolution of chaotic Rayleigh-Bénard convection: The flywheel mechanism and the ``wind'' of turbulence

    Science.gov (United States)

    Lappa, Marcello

    2011-09-01

    Rayleigh-Bénard convection in finite-size enclosures exhibits really intricate features when turbulent states are reached and thermal plumes play a crucial role in a number of them. This complex mechanism may be regarded as a "machine" containing many different working parts: boundary layers, mixing zones, jets, and a relatively free and isothermal central region. These parts are generally regarded as the constitutive "ingredients" whose interplay leads to the emergence of a macroscopic pattern with well-defined properties. Like the Lorenz model (but with the due differences) such a complex structure has a prevailing two-dimensional nature and can be oriented clockwise or anticlockwise (both configurations are equally likely to occur and the flow can exhibit occasional and irregular "reversals" from one to the other without a change in magnitude). It is usually referred to in the literature as "wind of turbulence" or "flywheel". The present article provides insights into the possible origin of such dynamics and related patterning behavior (supported by "ad hoc" novel numerical simulations carried out for Pr=15 and O(10)⩽Ra⩽O(10)) together with a short exposition of existing theories, also illustrating open points and future directions of research.

  20. Steady convection in MHD Benard problem with Hall effects

    Directory of Open Access Journals (Sweden)

    Lidia Palese

    2017-10-01

    Full Text Available In this paper we apply some variants of the classical energy method to study the nonlinear Lyapunov stability of the thermodiffusive equilibrium for a viscous thermoelectroconducting fully ionized fluid in a horizontal layer heated from below. The classical L^2 norm, too weak to highlight some stabilizing or unstabilizing effects, can be used to dominate the nonlinear terms. A more fine Lyapunov function is obtained by reformulating the initial perturbation evolution problem, in terms of some independent scalar fields. In such a way, if the principle of exchange of stabilities holds, we obtain the coincidence of linear and nonlinear stability bounds.

  1. Thermal turbulent convection: thermal plumes and fluctuations

    International Nuclear Information System (INIS)

    Gibert, M.

    2007-10-01

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  2. Thermal turbulent convection: thermal plumes and fluctuations; Convection thermique turbulente: panaches et fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, M

    2007-10-15

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  3. Extend of magnetic field interference in the natural convection of diamagnetic nanofluid

    Science.gov (United States)

    Roszko, Aleksandra; Fornalik-Wajs, Elzbieta

    2017-10-01

    Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.

  4. Analysis of natural convection heat transfer with crust formation in the molten metal pool using CONV-2 and 3D computer codes

    International Nuclear Information System (INIS)

    Park, R. J.; Kang, K. H.; Kim, S. B.; Kim, H. D.; Choi, S. M.

    1998-01-01

    Analytical studies have been performed on natural convection heat transfer with crust formation in a molten metal pool to validate and evaluate experimental data using the CONV-2 and 3D computer codes. Two types of steady state tests, a low and high geometric aspect ratio case in the molten metal pool, were performed to investigate crust thickness as a function of boundary conditions. The CONV-2 and 3D computer codes were developed under the OECD/NEA RASPLAV project to simulate two- and three-dimensional natural convection heat transfer with crust formation, respectively. The Rayleigh-Benard flow patterns in the molten metal pool contribute to the temperature distribution, which affects non-uniform crust formation. The CONV-2D results on crust thickness are a little higher than the experimental data because of heat loss during the test. In comparison of the CONV-3D results with the CONV-2D results on crust thickness, the three-dimensional results are higher than the two-dimensional results, because of three dimensional natural convection flow and wall effect

  5. Rayleigh- and Prandtl-number dependence of the large-scale flow-structure in weakly-rotating turbulent thermal convection

    Science.gov (United States)

    Weiss, Stephan; Wei, Ping; Ahlers, Guenter

    2015-11-01

    Turbulent thermal convection under rotation shows a remarkable variety of different flow states. The Nusselt number (Nu) at slow rotation rates (expressed as the dimensionless inverse Rossby number 1/Ro), for example, is not a monotonic function of 1/Ro. Different 1/Ro-ranges can be observed with different slopes ∂Nu / ∂ (1 / Ro) . Some of these ranges are connected by sharp transitions where ∂Nu / ∂ (1 / Ro) changes discontinuously. We investigate different regimes in cylindrical samples of aspect ratio Γ = 1 by measuring temperatures at the sidewall of the sample for various Prandtl numbers in the range 3 Deutsche Forschungsgemeinschaft.

  6. Solutal convection induced by dissolution. Influence on erosion dynamics and interface shaping.

    Science.gov (United States)

    Berhanu, Michael; Philippi, Julien; Cohen, Caroline; Derr, Julien; Courrech du Pont, Sylvain

    2017-04-01

    Rock fractures invaded by a water flow, are often subjected to dissolution, which let grow and evolve the initial fracture network, by evacuating the eroded minerals under a solute form. In the case of fast kinetic of dissolution, local erosion rate is set by the advection of the solute. The erosion velocity decreases indeed with the solute concentration at the interface and vanishes when this concentration reaches the saturation value. Even in absence of an imposed or external flow, advection can drive the dissolution, when buoyancy effects due to gravity induce a solutal convection flow, which controls the erosive dynamics and modifies the shape of the dissolving interface. Here, we investigate using model experiments with fast dissolving materials and numerical simulations in simplified situations, solutal convection induced by dissolution. Results are interpreted regarding a linear stability analysis of the corresponding solutal Rayleigh-Benard instability. A dissolving surface is suspended above a water height, initially at rest. In a first step, solute flux is transported through a growing diffusion layer. Then after an onset time, once the layer exceeds critical width, convection flow starts under the form of falling plumes. A dynamic equilibrium results in average from births and deaths of intermittent plumes, setting the size of the solute concentration boundary layer at the interface and thus the erosion velocity. Solutal convection can also induce a pattern on the dissolving interface. We show experimentally with suspended and inclined blocks of salt and sugar, that in a linear stage, the first wavelength of the dissolution pattern corresponds to the wavelength of the convection instability. Then pattern evolves to more complex shapes due to non-linear interactions between the flow and the eroded interface. More generally, we inquire what are the conditions to observe a such solutal convection instability in geological situations and if the properties of

  7. Vortex statistics in turbulent rotating convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, B.J.

    2010-01-01

    The vortices emerging in rotating turbulent Rayleigh-Bénard convection in water at Rayleigh number Ra=6.0×108 are investigated using stereoscopic particle image velocimetry and by direct numerical simulation. The so-called Q criterion is used to detect the vortices from velocity fields. This

  8. Natural convection inside an irregular porous cavity

    International Nuclear Information System (INIS)

    Beltran, Jorge I. LLagostera; Trevisan, Osvair Vidal

    1990-01-01

    Natural convection flow induced by heating from below in a irregular porous cavity is investigated numerically. The influence of the modified Rayleigh number and geometric ratios on heat transfer and fluid flow is studied. Global and local Nusselt for Rayleigh numbers covering the range 0 - 1600 and for several geometric ratios. The fluid flow and the temperature field are illustrated by contour maps. (author)

  9. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  10. Effect of Rayleigh accelerations applied to an initially moving fluid. [in circular cylinders under low gravity associated with space flight

    Science.gov (United States)

    Dressler, R. F.; Robertson, S. J.; Spradley, L. W.

    1982-01-01

    The General Interpolant Method computer code was used to analyze two-dimensional unsteady thermal convection in circular cylinders under variable low-g conditions associated with space flight. When an acceleration vector was applied parallel to the thermal gradient, in the case of a fluid at rest, no convection resulted for the stable direction, and an instability led to Rayleigh convection for the opposite direction. However, when the acceleration had a component orthogonal to the gradient, convection resulted at any Rayleigh number. The effect on convection of both types of acceleration, applied concurrently or sequentially, was investigated, including the case when the resultant vector varied in direction with time. An analysis of experimental results shows that for space flight conditions, the Rayleigh accelerations induce significant, but not dominating, changes in the established convection even when the Rayleigh number is less than critical.

  11. Vertical natural convection: application of the unifying theory of thermal convection

    NARCIS (Netherlands)

    Ng, C.S.; Ooi, A.; Lohse, Detlef; Chung, D.

    2015-01-01

    Results from direct numerical simulations of vertical natural convection at Rayleigh numbers 1.0×10 5 –1.0×10 9 and Prandtl number 0.709 support a generalised applicability of the Grossmann–Lohse (GL) theory, which was originally developed for horizontal natural (Rayleigh–Bénard) convection. In

  12. An infinite-dimensional model of free convection

    Energy Technology Data Exchange (ETDEWEB)

    Iudovich, V.I. (Rostovskii Gosudarstvennyi Universitet, Rostov-on-Don (USSR))

    1990-12-01

    An infinite-dimensional model is derived from the equations of free convection in the Boussinesq-Oberbeck approximation. The velocity field is approximated by a single mode, while the heat-conduction equation is conserved fully. It is shown that, for all supercritical Rayleigh numbers, there exist exactly two secondary convective regimes. The case of ideal convection with zero viscosity and thermal conductivity is examined. The averaging method is used to study convection regimes at high Reynolds numbers. 10 refs.

  13. Rayleigh reciprocity relations: Applications

    International Nuclear Information System (INIS)

    Lin Ju; Li Xiao-Lei; Wang Ning

    2016-01-01

    Classical reciprocity relations have wide applications in acoustics, from field representation to generalized optical theorem. In this paper we introduce our recent results on the applications and generalization of classical Rayleigh reciprocity relation: higher derivative reciprocity relations as a generalization of the classical one and a theoretical proof on the Green’s function retrieval from volume noises. (special topic)

  14. An application of the unifying theory of thermal convection in vertical natural convection

    Science.gov (United States)

    Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel

    2014-11-01

    Using direct numerical simulations of vertical natural convection (VNC) at Rayleigh numbers 1 . 0 ×105 - 1 . 0 ×109 and Prandtl number 0 . 709 , we provide support for a generalised applicability of the Grossmann-Lohse (GL) theory, originally developed for horizontal natural (Rayleigh-Bénard) convection. In accordance with the theory, the boundary-layer thicknesses of the velocity and temperature fields in VNC obey laminar-like scaling, whereas away from the walls, the dissipation of the turbulent fluctuations obey the scaling for fully developed turbulence. In contrast to Rayleigh-Bénard convection, the direction of gravity in VNC is parallel to the mean flow. Thus, there no longer exists an exact relation linking the normalised global dissipations to the Nusselt, Rayleigh and Prandtl numbers. Nevertheless, we show that the unclosed term, namely the global-averaged buoyancy flux, also exhibits laminar and turbulent scaling, consistent with the GL theory. The findings suggest that, similar to Rayleigh-Bénard convection, a pure power-law relationship between the Nusselt, Rayleigh and Prandtl numbers is not the best description for VNC and existing empirical power-law relationships should be recalibrated to better reflect the underlying physics.

  15. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    International Nuclear Information System (INIS)

    Garcia Velarde, M.

    1977-01-01

    Thermoconvective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Benard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (author) [es

  16. Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow

    Science.gov (United States)

    Taher, R.; Abid, C.

    2018-05-01

    This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.

  17. Rayleigh Pareto Distribution

    Directory of Open Access Journals (Sweden)

    Kareema ‎ Abed Al-Kadim

    2017-12-01

    Full Text Available In this paper Rayleigh Pareto distribution have  introduced denote by( R_PD. We stated some  useful functions. Therefor  we  give some of its properties like the entropy function, mean, mode, median , variance , the r-th moment about the mean, the rth moment about the origin, reliability, hazard functions, coefficients of variation, of sekeness and of kurtosis. Finally, we estimate the parameters  so the aim of this search  is to introduce a new distribution

  18. Extended Rayleigh Damping Model

    Directory of Open Access Journals (Sweden)

    Naohiro Nakamura

    2016-07-01

    Full Text Available In dynamic analysis, frequency domain analysis can be used if the entire structure is linear. However, time history analysis is generally used if nonlinear elements are present. Rayleigh damping has been widely used in time history response analysis. Many articles have reported the problems associated with this damping and suggested remedies. A basic problem is that the frequency area across which the damping ratio is almost constant is too narrow. If the area could be expanded while incurring only a small increase in computational cost, this would provide an appropriate remedy for this problem. In this study, a novel damping model capable of expanding the constant frequency area by more than five times was proposed based on the study of a causal damping model. This model was constructed by adding two terms to the Rayleigh damping model and can be applied to the linear elements in the time history analysis of a nonlinear structure. The accuracy and efficiency of the model were confirmed using example analyses.

  19. Recent results in Rayleigh scattering

    International Nuclear Information System (INIS)

    Kahane, S.; Shahal, O.; Moreh, R.; Ben-Gurion Univ. of the Negev, Beer-Sheva

    1997-01-01

    New measurements of Rayleigh scattering, employing neutron capture γ rays are presented. Experimental conditions are achieved such that the Rayleigh contribution is dominant and much larger than other competing coherent process. A detailed comparison with the modified relativistic form factor approximation (MRFF) is made. It is found that MRFF overestimates the true cross sections by 3-4%. (author)

  20. Nonlinear interaction of Rayleigh--Taylor and shear instabilities

    International Nuclear Information System (INIS)

    Finn, J.M.

    1993-01-01

    Results on the nonlinear behavior of the Rayleigh--Taylor instability and consequent development of shear flow by the shear instability [Phys. Fluids B 4, 488 (1992)] are presented. It is found that the shear flow is generated at sufficient amplitude to reduce greatly the convective transport. For high viscosity, the time-asymptotic state consists of an equilibrium with shear flow and vortex flow (with islands, or ''cat's eyes''), or a relaxation oscillation involving an interplay between the shear instability and the Rayleigh--Taylor instability in the presence of shear. For low viscosity, the dominant feature is a high-frequency nonlinear standing wave consisting of convective vortices localized near the top and bottom boundaries. The localization of these vortices is due to the smaller shear near the boundary regions. The convective transport is largest around these convective vortices near the boundary and there is a region of good confinement near the center. The possible relevance of this behavior to the H mode and edge-localized modes (ELM's) in the tokamak edge region is discussed

  1. Heat transport in bubbling turbulent convection.

    Science.gov (United States)

    Lakkaraju, Rajaram; Stevens, Richard J A M; Oresta, Paolo; Verzicco, Roberto; Lohse, Detlef; Prosperetti, Andrea

    2013-06-04

    Boiling is an extremely effective way to promote heat transfer from a hot surface to a liquid due to numerous mechanisms, many of which are not understood in quantitative detail. An important component of the overall process is that the buoyancy of the bubble compounds with that of the liquid to give rise to a much-enhanced natural convection. In this article, we focus specifically on this enhancement and present a numerical study of the resulting two-phase Rayleigh-Bénard convection process in a cylindrical cell with a diameter equal to its height. We make no attempt to model other aspects of the boiling process such as bubble nucleation and detachment. The cell base and top are held at temperatures above and below the boiling point of the liquid, respectively. By keeping this difference constant, we study the effect of the liquid superheat in a Rayleigh number range that, in the absence of boiling, would be between 2 × 10(6) and 5 × 10(9). We find a considerable enhancement of the heat transfer and study its dependence on the number of bubbles, the degree of superheat of the hot cell bottom, and the Rayleigh number. The increased buoyancy provided by the bubbles leads to more energetic hot plumes detaching from the cell bottom, and the strength of the circulation in the cell is significantly increased. Our results are in general agreement with recent experiments on boiling Rayleigh-Bénard convection.

  2. Natural convection between two concentric spheres

    International Nuclear Information System (INIS)

    Blondel-Roux, Marie

    1983-01-01

    After an overview of researches on natural convection in a confined or semi-confined environment, this research thesis reports the use of the Caltagirone and Mojtabi numerical model and the study of its validity for different values of the Rayleigh and Prandtl numbers. Results obtained with this model are compared with experimental ones. Thermal transfer curves are presented and discussed, as well as the different temperature fields numerically obtained, flow function fields, velocities in the fluid layer, and temperature profiles with respect to the Rayleigh number [fr

  3. Concentration field in traveling-wave and stationary convection in fluid mixtures

    International Nuclear Information System (INIS)

    Eaton, K.D.; Ohlsen, D.R.; Yamamoto, S.Y.; Surko, C.M.; Barten, W.; Luecke, M.; Kamps, M.; Kolodner, P.

    1991-01-01

    By comparison of measurements of shadowgraph images of convection in ethanol-water mixtures with the results of recent numerical calculations, we study the role of the concentration field in traveling-wave and stationary convection. The results confirm the existence of a large concentration contrast between adjacent traveling-wave convection rolls. This concentration modulation, which decreases as the Rayleigh number is increased and the transition to stationary convection is approached, is fundamental to the translation of the pattern

  4. Cryogenic helium gas convection research

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so

  5. Vertical Slot Convection: A linear study

    International Nuclear Information System (INIS)

    McAllister, A.; Steinolfson, R.; Tajima, T.

    1992-11-01

    The linear stability properties of fluid convection in a vertical slot were studied. We use a Fourier-Chebychev decomposition was used to set up the linear eigenvalue problems for the Vertical Slot Convection and Benard problems. The eigenvalues, neutral stability curves, and critical point values of the Grashof number, G, and the wavenumber were determined. Plots of the real and imaginary parts of the eigenvalues as functions of G and α are given for a wide range of the Prandtl number, Pr, and special note is made of the complex mode that becomes linearly unstable above Pr ∼ 12.5. A discussion comparing different special cases facilitates the physical understanding of the VSC equations, especially the interaction of the shear-flow and buoyancy induced physics. Making use of the real and imaginary eigenvalues and the phase properties of the eigenmodes, the eigenmodes were characterized. One finds that the mode structure becomes progressively simpler with increasing Pr, with the greatest complexity in the mid ranges where the terms in the heat equation are of roughly the same size

  6. On flow reversals in Rayleigh-Bénard convection

    International Nuclear Information System (INIS)

    Chandra, Mani; Verma, Mahendra K

    2011-01-01

    The dynamics of flow reversals are studied numerically using Fourier mode analysis. Our analysis shows that the Fourier modes represent the large-scale flows accurately. We observe that during the reversals, the amplitude of one of the large-scale modes vanishes, while another mode rises sharply, very similar to the cessation-led reversals observed earlier in experiments and numerical simulations. The Fourier coefficients of the RBC equations obey certain symmetries properties, which dictates which modes change sign in flow reversals. Based on our simulation results and symmetry properties of the Fourier modes, we provide a qualitative explanation for the flow reversals.

  7. Behaviors and transitions along the path to magnetostrophic convection

    Science.gov (United States)

    Grannan, A. M.; Vogt, T.; Horn, S.; Hawkins, E. K.; Aggarwal, A.; Aurnou, J. M.

    2017-12-01

    The generation of magnetic fields in planetary and stellar interiors are believed to be controlled primarily by turbulent convection constrained by Coriolis and Lorentz forces in their electrically conducting fluid layers. Yet relatively few laboratory experiments are capable of investigating the different regimes of turbulent magnetohydrodynamic convection. In this work, we perform one laboratory experiment in a cylinder at a fixed heat flux using the liquid metal gallium in order to investigate, sequentially: Rayleigh-Bènard convection without any imposed constraints, magnetoconvection with a Lorentz constraint imposed by vertical magnetic field, rotating convection with a Coriolis constraint imposed by rotation, and finally the magnetostrophic convective regime where both Coriolis and Lorentz are imposed and equal. Using an array of internal and external temperature probes, we show that each regime along the path to magnetostrophic convection is unique. The behaviors and transitions in the dominant modes of convection as well as their fundamental frequencies and wavenumbers are investigated.

  8. Steady, three-dimensional, internally heated convection

    International Nuclear Information System (INIS)

    Schubert, G.; Glatzmaier, G.A.; Travis, B.

    1993-01-01

    Numerical calculations have been carried out of steady, symmetric, three-dimensional modes of convection in internally heated, infinite Prandtl number, Boussinesq fluids at a Rayleigh number of 1.4x10 4 in a spherical shell with inner/outer radius of 0.55 and in a 3x3x1 rectangular box. Multiple patterns of convection occur in both geometries. In the Cartesian geometry the patterns are dominated by cylindrical cold downflows and a broad hot upwelling. In the spherical geometry the patterns consist of cylindrical cold downwellings centered either at the vertices of a tetrahedron or the centers of the faces of a cube. The cold downflow cylinders are immersed in a background of upwelling within which there are cylindrical hot concentrations (plumes) and hot halos around the downflows. The forced hot upflow return plumes of internally heated spherical convection are fundamentally different from the buoyancy-driven plumes of heated from below convection

  9. Comparison of scale analysis and numerical simulation for saturated zone convective mixing processes

    International Nuclear Information System (INIS)

    Oldenburg, C.M.

    1998-01-01

    Scale analysis can be used to predict a variety of quantities arising from natural systems where processes are described by partial differential equations. For example, scale analysis can be applied to estimate the effectiveness of convective missing on the dilution of contaminants in groundwater. Scale analysis involves substituting simple quotients for partial derivatives and identifying and equating the dominant terms in an order-of-magnitude sense. For free convection due to sidewall heating of saturated porous media, scale analysis shows that vertical convective velocity in the thermal boundary layer region is proportional to the Rayleigh number, horizontal convective velocity is proportional to the square root of the Rayleigh number, and thermal boundary layer thickness is proportional to the inverse square root of the Rayleigh number. These scale analysis estimates are corroborated by numerical simulations of an idealized system. A scale analysis estimate of mixing time for a tracer mixing by hydrodynamic dispersion in a convection cell also agrees well with numerical simulation for two different Rayleigh numbers. Scale analysis for the heating-from-below scenario produces estimates of maximum velocity one-half as large as the sidewall case. At small values of the Rayleigh number, this estimate is confirmed by numerical simulation. For larger Rayleigh numbers, simulation results suggest maximum velocities are similar to the sidewall heating scenario. In general, agreement between scale analysis estimates and numerical simulation results serves to validate the method of scale analysis. Application is to radioactive repositories

  10. Predictions of laminar natural convection in heated cavities

    International Nuclear Information System (INIS)

    Winters, K.H.

    1982-06-01

    Several examples of laminar, natural convection in heated cavities are discussed with illustrative calculations. These include convection in a square cavity at high Rayleigh number; in a narrow cavity at moderate aspect ratio; in a rectangular cavity heated from below; in a trapezoidal cavity, and in a rectangular cavity containing a conducting obstruction. The steady equations for the velocity, pressure and temperature are solved in the Boussinesq approximation, using a standard Galerkin formulation of the finite-element method. (author)

  11. Two-dimensional turbulent convection

    Science.gov (United States)

    Mazzino, Andrea

    2017-11-01

    We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].

  12. Basal melting driven by turbulent thermal convection

    Science.gov (United States)

    Rabbanipour Esfahani, Babak; Hirata, Silvia C.; Berti, Stefano; Calzavarini, Enrico

    2018-05-01

    Melting and, conversely, solidification processes in the presence of convection are key to many geophysical problems. An essential question related to these phenomena concerns the estimation of the (time-evolving) melting rate, which is tightly connected to the turbulent convective dynamics in the bulk of the melt fluid and the heat transfer at the liquid-solid interface. In this work, we consider a convective-melting model, constructed as a generalization of the Rayleigh-Bénard system, accounting for the basal melting of a solid. As the change of phase proceeds, a fluid layer grows at the heated bottom of the system and eventually reaches a turbulent convection state. By means of extensive lattice-Boltzmann numerical simulations employing an enthalpy formulation of the governing equations, we explore the model dynamics in two- and three-dimensional configurations. The focus of the analysis is on the scaling of global quantities like the heat flux and the kinetic energy with the Rayleigh number, as well as on the interface morphology and the effects of space dimensionality. Independently of dimensionality, we find that the convective-melting system behavior shares strong resemblances with that of the Rayleigh-Bénard one, and that the heat flux is only weakly enhanced with respect to that case. Such similarities are understood, at least to some extent, considering the resulting slow motion of the melting front (with respect to the turbulent fluid velocity fluctuations) and its generally little roughness (compared to the height of the fluid layer). Varying the Stefan number, accounting for the thermodynamical properties of the material, also seems to have only a mild effect, which implies the possibility of extrapolating results in numerically delicate low-Stefan setups from more convenient high-Stefan ones. Finally, we discuss the implications of our findings for the geophysically relevant problem of modeling Arctic ice melt ponds.

  13. Convective flows of colloidal suspension in an inclined closed cell

    Energy Technology Data Exchange (ETDEWEB)

    Smorodin, Boris; Ishutov, Sergey [Department of Physics of Phase Transitions, Perm State University, Perm (Russian Federation); Cherepanov, Ivan, E-mail: bsmorodin@yandex.ru [Department of Radio Electronics and Information Security, Perm State University, Perm (Russian Federation)

    2016-12-15

    The nonlinear spatiotemporal evolution of convective flows is numerically investigated in the case of colloidal suspension filling an inclined closed cell heated from below. The bifurcation diagram (the dependency of the Nusselt number on the Rayleigh number) is obtained. The characteristics of the wave and steady patterns are investigated depending on heat intensity. The travelling wave changing travel direction and the non-regular oscillatory flow are found to be stable solutions within a certain interval of the Rayleigh number. Temporal Fourier decomposition is used together with other diagnostic tools to analyse the complex bifurcation and spatiotemporal properties caused by the interplay of the gravity-induced gradient of concentration and convective mixing of the fluid. It is shown that a more complex flow structure exists at a lower heating intensity (Rayleigh number). (paper)

  14. Breakdown of large-scale circulation in turbulent rotating convection

    NARCIS (Netherlands)

    Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, Bernardus J.

    2008-01-01

    Turbulent rotating convection in a cylinder is investigated both numerically and experimentally at Rayleigh number Ra = $10^9$ and Prandtl number $\\sigma$ = 6.4. In this Letter we discuss two topics: the breakdown under rotation of the domain-filling large-scale circulation (LSC) typical for

  15. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  16. Natural convection in horizontal fluid layers

    International Nuclear Information System (INIS)

    Suo-Antilla, A.J.

    1977-02-01

    The experimental work includes developing and using a thermal convection cell to obtain measurements of the heat flux and turbulent core temperature of a horizontal layer of fluid heated internally and subject to both stabilizing and destabilizing temperature differences. The ranges of Rayleigh numbers tested were 10 7 equal to or less than R/sub I/ equal to or less than 10 13 and -10 10 equal to or less than R/sub E/ equal to or less than 10 10 . Power integral methods were found to be adequate for interpolating and extrapolating the data. The theoretical work consists of the derivation, solution and use of the mean field equations for study of thermally driven convection in horizontal layers of infinite extent. The equations were derived by a separation of variables technique where the horizontal directions were described by periodic structures and the vertical being some function of z. The derivation resulted in a coupled set of momentum and energy equations. The equations were simplified by using the infinite Prandtl number limit and neglecting direct intermodal interaction. Solutions to these equations are used to predict the existence of multi-wavenumber flows at all supercritical Rayleigh numbers. Subsequent inspection of existing experimental photographs of convecting fluids confirms their existence. The onset of time dependence is found to coincide with the onset of the second convective mode. Each mode is found to consist of two wavenumbers and typically the velocity and temperature fields of the right modal branch are found to be out of phase

  17. Breakdown of the large-scale circulation in $\\Gamma = 1/2$ rotating Rayleigh-Bénard flow

    NARCIS (Netherlands)

    Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef

    2012-01-01

    Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a

  18. Importance sampling the Rayleigh phase function

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2011-01-01

    Rayleigh scattering is used frequently in Monte Carlo simulation of multiple scattering. The Rayleigh phase function is quite simple, and one might expect that it should be simple to importance sample it efficiently. However, there seems to be no one good way of sampling it in the literature....... This paper provides the details of several different techniques for importance sampling the Rayleigh phase function, and it includes a comparison of their performance as well as hints toward efficient implementation....

  19. Plume dynamics in quasi-2D turbulent convection

    International Nuclear Information System (INIS)

    Bizon, C.; Werne, J.; Predtechensky, A.A.; Julien, K.; McCormick, W.D.; Swift, J.B.; Swinney, H.L.

    1997-01-01

    We have studied turbulent convection in a vertical thin (Hele-Shaw) cell at very high Rayleigh numbers (up to 7x10 4 times the value for convective onset) through experiment, simulation, and analysis. Experimentally, convection is driven by an imposed concentration gradient in an isothermal cell. Model equations treat the fields in two dimensions, with the reduced dimension exerting its influence through a linear wall friction. Linear stability analysis of these equations demonstrates that as the thickness of the cell tends to zero, the critical Rayleigh number and wave number for convective onset do not depend on the velocity conditions at the top and bottom boundaries (i.e., no-slip or stress-free). At finite cell thickness δ, however, solutions with different boundary conditions behave differently. We simulate the model equations numerically for both types of boundary conditions. Time sequences of the full concentration fields from experiment and simulation display a large number of solutal plumes that are born in thin concentration boundary layers, merge to form vertical channels, and sometimes split at their tips via a Rayleigh-Taylor instability. Power spectra of the concentration field reveal scaling regions with slopes that depend on the Rayleigh number. We examine the scaling of nondimensional heat flux (the Nusselt number, Nu) and rms vertical velocity (the Pacute eclet number, Pe) with the Rayleigh number (Ra * ) for the simulations. Both no-slip and stress-free solutions exhibit the scaling NuRa * ∼Pe 2 that we develop from simple arguments involving dynamics in the interior, away from cell boundaries. In addition, for stress-free solutions a second relation, Nu∼√(nPe), is dictated by stagnation-point flows occurring at the horizontal boundaries; n is the number of plumes per unit length. (Abstract Truncated)

  20. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  1. The Effects of Radiation on the Linear Stability of a horizontal layer ...

    African Journals Online (AJOL)

    The effect of radiation on the onset of Rayleigh-Benard convection is studied in the case of a radiating Newtonian fluid in a fluid-saturated horizontal porous layer heated from below. The radiative heat transfer is treated using the differential approximation for optically thin limiting case. The linear stability theory is employed ...

  2. Arunn Narasimhan

    Indian Academy of Sciences (India)

    Volume 4 Issue 6 June 1999 pp 82-90 Classroom. Rayleigh-Benard Convection - Physics of a Widespread Phenomenon · Arunn Narasimhan · More Details Fulltext PDF. Volume 13 Issue 7 July 2008 pp 638-647 General Article. Why do Elephants have Big Ear Flaps? Arunn Narasimhan · More Details Fulltext PDF ...

  3. Flux scaling: Ultimate regime

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Flux scaling: Ultimate regime. With the Nusselt number and the mixing length scales, we get the Nusselt number and Reynolds number (w'd/ν) scalings: and or. and. scaling expected to occur at extremely high Ra Rayleigh-Benard convection. Get the ultimate regime ...

  4. RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL

    Directory of Open Access Journals (Sweden)

    S. F. Kolomiets

    2014-01-01

    Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.

  5. Oscillatory convection in low aspect ratio Czochralski melts

    Science.gov (United States)

    Anselmo, A.; Prasad, V.; Koziol, J.; Gupta, K. P.

    1993-11-01

    Modeling of the crucible in bulk crystal growth simulations as a right circular cylinder may be adequate for high aspect ratio melts but this may be unrealistic when the melt height is low. Low melt height is a unique feature of a solid feed continuous Czochralski growth process for silicon single crystals currently under investigation. At low melt heights, the crucible bottom curvature has a dampening effect on the buoyancy-induced oscillations, a source of inhomogeneities in the grown crystal. The numerical results demonstrate how the mode of convection changes from vertical wall-dominated recirculating flows to Benard convection as the aspect ratio is lowered. This phenomenon is strongly dependent on the boundary condition at the free surface of the melt, which has been generally considered to be either adiabatic or radiatively cooled. A comparison of the flow oscillations in crucibles with and without curved bottoms at aspect ratios in the range of 0.25 to 0.50, and at realistic Grashof numbers (10 7 < Gr < 10 8) illustrate that changing the shape of the crucible may be an effective means of suppressing oscillations and controlling the melt flow.

  6. Convective mass transfer around a dissolving bubble

    Science.gov (United States)

    Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric

    2017-11-01

    Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.

  7. Convective heat transfer around vertical jet fires: An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent, E-mail: bulentu.kozanoglu@udlap.mx [Universidad de las Americas, Puebla (Mexico); Zarate, Luis [Universidad Popular Autonoma del Estado de Puebla (Mexico); Gomez-Mares, Mercedes [Universita di Bologna (Italy); Casal, Joaquim [Universitat Politecnica de Catalunya (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Experiments were carried out to analyze convection around a vertical jet fire. Black-Right-Pointing-Pointer Convection heat transfer is enhanced increasing the flame length. Black-Right-Pointing-Pointer Nusselt number grows with higher values of Rayleigh and Reynolds numbers. Black-Right-Pointing-Pointer In subsonic flames, Nusselt number increases with Froude number. Black-Right-Pointing-Pointer Convection and radiation are equally important in causing a domino effect. - Abstract: The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice.

  8. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array

  9. Numerical study of natural melt convection in cylindrical cavity with hot walls and cold bottom sink

    Directory of Open Access Journals (Sweden)

    Ahmanache Abdennacer

    2013-01-01

    Full Text Available Numerical study of natural convection heat transfer and fluid flow in cylindrical cavity with hot walls and cold sink is conducted. Calculations are performed in terms of the cavity aspect ratio, the heat exchanger length and the thermo physical properties expressed via the Prandtl number and the Rayleigh number. Results are presented in the form of isotherms, streamlines, average Nusselt number and average bulk temperature for a range of Rayleigh number up to 106. It is observed that Rayleigh number and heat exchanger length influences fluid flow and heat transfer, whereas the cavity aspect ratio has no significant effects.

  10. RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES

    International Nuclear Information System (INIS)

    Jacquet, Emmanuel; Krumholz, Mark R.

    2011-01-01

    We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick a diabaticregime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.

  11. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  12. Scaling of Convection and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Valencia, D. C.; O'Connell, R. J.; Sasselov, D. D.

    2006-12-01

    The discovery of three Super-Earths around different stars, possible only in the last year, prompts us to study the characteristics of our planet within a general context. The Earth, being the most massive terrestrial object in the solar system is the only planet that exhibits plate tectonics. We think this might not be a coincidence and explore the role that mass plays in determining the mode of convection. We use the scaling of convective vigor with Rayleigh number commonly used in parameterized convection. We study how the parameters controlling convection: Rayleigh number (Ra), boundary layer thickness (δ), internal temperature (T_i) and convective velocities (u) scale with mass. This is possible from the scaling of heat flux, mantle density, size and gravity with mass which we reported in Valencia, et. al 2006. The extrapolation to massive rocky planets is done from our knowledge of the Earth. Even though uncertainties arise from extrapolation and assumptions are needed we consider this simple scaling to be a first adequate step. As the mass of a planet increases, Ra increases, yielding a decrease in δ and an increase in u, while T_i increases very slightly. This is true for an isoviscous case and is more accentuated in a temperature dependent viscosity scenario. In a planet with vigorous convection (high u), a thin lithosphere (low δ) is easier to subduct and hence, initiate plate tectonics. The lithosphere also has to be dense enough (cold and thick) to have the bouyancy necessary for subduction. We calculate that a convective cycle for an isoviscous planet is τ ~ M^{-0.3} considering whole mantle convection. Meaning that if these planets have continents, the timescale for continental rearrangement is shorter (about half the Earth's for a 5 earth-mass planet). Additionally, we explore the negative feedback cycle between convection and temperature dependent viscosity and estimate a timescale for this effect.

  13. Double-diffusive convection in a Darcy porous medium saturated with a couple-stress fluid

    International Nuclear Information System (INIS)

    Malashetty, M S; Kollur, Premila; Pal, Dulal

    2010-01-01

    The onset of double-diffusive convection in a couple-stress fluid-saturated horizontal porous layer is studied using linear and weak nonlinear stability analyses. The modified Darcy equation that includes the time derivative term and the inertia term is used to model the momentum equation. The expressions for stationary, oscillatory and finite-amplitude Rayleigh number are obtained as a function of the governing parameters. The effect of couple-stress parameter, solute Rayleigh number, Vadasz number and diffusivity ratio on stationary, oscillatory and finite-amplitude convection is shown graphically. It is found that the couple-stress parameter and the solute Rayleigh number have a stabilizing effect on stationary, oscillatory and finite-amplitude convection. The diffusivity ratio has a destabilizing effect in the case of stationary and finite-amplitude modes, with a dual effect in the case of oscillatory convection. The Vadasz number advances the onset of oscillatory convection. The heat and mass transfer decreases with an increase in the values of couple-stress parameter and diffusivity ratio, while both increase with an increase in the value of the solute Rayleigh number.

  14. Natural convection in wavy enclosures with volumetric heat sources

    International Nuclear Information System (INIS)

    Oztop, H.F.; Varol, Y.; Abu-Nada, E.; Chamkha, A.

    2011-01-01

    In this paper, the effects of volumetric heat sources on natural convection heat transfer and flow structures in a wavy-walled enclosure are studied numerically. The governing differential equations are solved by an accurate finite-volume method. The vertical walls of enclosure are assumed to be heated differentially whereas the two wavy walls (top and bottom) are kept adiabatic. The effective governing parameters for this problem are the internal and external Rayleigh numbers and the amplitude of wavy walls. It is found that both the function of wavy wall and the ratio of internal Rayleigh number (Ra I ) to external Rayleigh number (Ra E ) affect the heat transfer and fluid flow significantly. The heat transfer is predicted to be a decreasing function of waviness of the top and bottom walls in case of (IRa/ERa)>1 and (IRa/ERa)<1. (authors)

  15. Convective instabilities in SN 1987A

    Science.gov (United States)

    Benz, Willy; Thielemann, Friedrich-Karl

    1990-01-01

    Following Bandiera (1984), it is shown that the relevant criterion to determine the stability of a blast wave, propagating through the layers of a massive star in a supernova explosion, is the Schwarzschild (or Ledoux) criterion rather than the Rayleigh-Taylor criterion. Both criteria coincide only in the incompressible limit. Results of a linear stability analysis are presented for a one-dimensional (spherical) explosion in a realistic model for the progenitor of SN 1987A. When applying the Schwarzschild criterion, unstable regions get extended considerably. Convection is found to develop behind the shock, with a characteristic growth rate corresponding to a time scale much smaller than the shock traversal time. This ensures that efficient mixing will take place. Since the entire ejected mass is found to be convectively unstable, Ni can be transported outward, even into the hydrogen envelope, while hydrogen can be mixed deep into the helium core.

  16. Ice-water convection in an inclined rectangular cavity filled with a porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. (Dept. of Mechanical Engineering, Ecole Polytechnique de Montreal (Canada)); Kahawita, R. (Dept. of Civil Engineering, Ecole Polytechnique de Montreal (Canada))

    1994-10-01

    This paper reports on the results of a numerical study on the equilibrium state of the convection of water in the presence of ice in an inclined rectangular cavity filled with a porous medium. One side of the cavity is maintained at a temperature higher than the fusion temperature while the opposite side is cooled to a temperature lower than the fusion temperature. The two remaining sides are insulated. Results are analysed in terms of the density inversion parameter, the tilt angle, and the cooling temperature. It appears that the phenomenon of density inversion plays an important role in the equilibrium of an ice-water system when the heating temperature is below 20 . In a vertical cavity, the density inversion causes the formation of two counter-rotating vortices leading to a water volume which is wider at the bottom than at the top. When the cavity is inclined, there exist two branches of solutions which exhibit the bottom heating and the side heating characteristics, respectively (the Benard and side heating branches). Due to the inversion of density, the solution on the Benard branch may fail to converge to a steady state at small tilt angles and exhibits an oscillating behavior. On the side heating branch, a maximum heat transfer rate is obtained at a tilt angle of about 70 but the water volume was found to depend very weakly on the inclination of the cavity. Under the effect of subcooling, the interplay between conduction in the solid phase and convection in the liquid leads to an equilibrium ice-water interface which is most distorted at some intermediate cooling temperature. (orig.)

  17. Turbulent convection in liquid metal with and without rotation.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  18. Control strategy on the double-diffusive convection in a nanofluid layer with internal heat generation

    Science.gov (United States)

    Mokhtar, N. F. M.; Khalid, I. K.; Siri, Z.; Ibrahim, Z. B.; Gani, S. S. A.

    2017-10-01

    The influences of feedback control and internal heat source on the onset of Rayleigh-Bénard convection in a horizontal nanofluid layer is studied analytically due to Soret and Dufour parameters. The confining boundaries of the nanofluid layer (bottom boundary-top boundary) are assumed to be free-free, rigid-free, and rigid-rigid, with a source of heat from below. Linear stability theory is applied, and the eigenvalue solution is obtained numerically using the Galerkin technique. Focusing on the stationary convection, it is shown that there is a positive thermal resistance in the presence of feedback control on the onset of double-diffusive convection, while there is a positive thermal efficiency in the existence of internal heat generation. The possibilities of suppress or augment of the Rayleigh-Bénard convection in a nanofluid layer are also discussed in detail.

  19. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  20. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in.

  1. Convection in a colloidal suspension in a closed horizontal cell

    International Nuclear Information System (INIS)

    Smorodin, B. L.; Cherepanov, I. N.

    2015-01-01

    The experimentally detected [1] oscillatory regimes of convection in a colloidal suspension of nanoparticles with a large anomalous thermal diffusivity in a closed horizontal cell heated from below have been simulated numerically. The concentration inhomogeneity near the vertical cavity boundaries arising from the interaction of thermal-diffusion separation and convective mixing has been proven to serve as a source of oscillatory regimes (traveling waves). The dependence of the Rayleigh number at the boundary of existence of the traveling-wave regime on the aspect ratio of the closed cavity has been established. The spatial characteristics of the emerging traveling waves have been determined

  2. Vigorous convection as the explanation for Pluto's polygonal terrain.

    Science.gov (United States)

    Trowbridge, A J; Melosh, H J; Steckloff, J K; Freed, A M

    2016-06-02

    Pluto's surface is surprisingly young and geologically active. One of its youngest terrains is the near-equatorial region informally named Sputnik Planum, which is a topographic basin filled by nitrogen (N2) ice mixed with minor amounts of CH4 and CO ices. Nearly the entire surface of the region is divided into irregular polygons about 20-30 kilometres in diameter, whose centres rise tens of metres above their sides. The edges of this region exhibit bulk flow features without polygons. Both thermal contraction and convection have been proposed to explain this terrain, but polygons formed from thermal contraction (analogous to ice-wedges or mud-crack networks) of N2 are inconsistent with the observations on Pluto of non-brittle deformation within the N2-ice sheet. Here we report a parameterized convection model to compute the Rayleigh number of the N2 ice and show that it is vigorously convecting, making Rayleigh-Bénard convection the most likely explanation for these polygons. The diameter of Sputnik Planum's polygons and the dimensions of the 'floating mountains' (the hills of of water ice along the edges of the polygons) suggest that its N2 ice is about ten kilometres thick. The estimated convection velocity of 1.5 centimetres a year indicates a surface age of only around a million years.

  3. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    International Nuclear Information System (INIS)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L.

    2001-01-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  4. Molten pool-lower head integrity. Heat transfer models including advanced numerical simulations (DNS)

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)

    2001-07-01

    Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)

  5. Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow

    KAUST Repository

    Liu, Lulu; Zhang, Wei; Keyes, David E.

    2017-01-01

    A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.

  6. Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow

    KAUST Repository

    Liu, Lulu

    2017-03-17

    A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.

  7. Rayleigh-Taylor mixing in supernova experiments

    International Nuclear Information System (INIS)

    Swisher, N. C.; Abarzhi, S. I.; Kuranz, C. C.; Arnett, D.; Hurricane, O.; Remington, B. A.; Robey, H. F.

    2015-01-01

    We report a scrupulous analysis of data in supernova experiments that are conducted at high power laser facilities in order to study core-collapse supernova SN1987A. Parameters of the experimental system are properly scaled to investigate the interaction of a blast-wave with helium-hydrogen interface, and the induced Rayleigh-Taylor instability and Rayleigh-Taylor mixing of the denser and lighter fluids with time-dependent acceleration. We analyze all available experimental images of the Rayleigh-Taylor flow in supernova experiments and measure delicate features of the interfacial dynamics. A new scaling is identified for calibration of experimental data to enable their accurate analysis and comparisons. By properly accounting for the imprint of the experimental conditions, the data set size and statistics are substantially increased. New theoretical solutions are reported to describe asymptotic dynamics of Rayleigh-Taylor flow with time-dependent acceleration by applying theoretical analysis that considers symmetries and momentum transport. Good qualitative and quantitative agreement is achieved of the experimental data with the theory and simulations. Our study indicates that in supernova experiments Rayleigh-Taylor flow is in the mixing regime, the interface amplitude contributes substantially to the characteristic length scale for energy dissipation; Rayleigh-Taylor mixing keeps order

  8. Finite bandwidth, nonlinear convective flow in a mushy layer

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, D N, E-mail: daniel.riahi@utrgv.edu [School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX 78520 (United States)

    2017-04-15

    Finite amplitude convection with a continuous finite bandwidth of modes in a horizontal mushy layer during the solidification of binary alloys is investigated. We analyze the nonlinear convection for values of the Rayleigh number close to its critical value by using multiple scales and perturbation techniques. Applying a combined temporal and spatial evolution approach, we determine a set of three coupled differential equations for the amplitude functions of the convective modes. A large number of new subcritical or supercritical stable solutions to these equations in the form of steady rolls and hexagons with different horizontal length scales are detected. We find, in particular, that depending on the parameter values and on the magnitude and direction of the wave number vectors for the amplitude functions, hexagons with down-flow or up-flow at the cells’ centers or rolls can be stable. Rolls or hexagons with longer horizontal wave length can be stable at higher amplitudes, and there are cases where hexagons are unstable for any value of the Rayleigh number, while rolls are stable only for the values of the Rayleigh number beyond some value. We also detected new stable and irregular flow patterns with two different horizontal scales in the form of superposition of either two sets of hexagons or two sets of inclined rolls. (paper)

  9. Oscillatory Convection in Rotating Liquid Metals

    Science.gov (United States)

    Bertin, Vincent; Grannan, Alex; Aurnou, Jonathan

    2016-11-01

    We have performed laboratory experiments in a aspect ratio Γ = 2 cylinder using liquid gallium (Pr = 0 . 023) as the working fluid. The Ekman number varies from E = 4 ×10-5 to 4 ×10-6 and the Rayleigh number varies from Ra = 3 ×105 to 2 ×107 . Using heat transfer and temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes develop, coexisting with the inertial oscillatory modes in the bulk. When the strength of the buoyancy increases further, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr = 1 planetary and stellar dynamo models, but in the form of oscillatory motions. Therefore, convection driven dynamo action in low Pr fluids can differ substantively than that occurring in typical Pr = 1 numerical models. Our results also suggest that low wavenumber, wall modes may be dynamically and observationally important in liquid metal dynamo systems. We thank the NSF Geophysics Program for support of this project.

  10. Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2018-02-01

    We present 2D simulations using the Lattice Boltzmann Method (LBM) of a fluid in a rectangular box being heated from below, and cooled from above. We observe plumes, hot narrow upwellings from the base, and down-going cold chutes from the top. We have varied both the Rayleigh numbers and the Prandtl numbers respectively from Ra = 1000 to Ra =1010 , and Pr = 1 through Pr = 5 ×104 , leading to Rayleigh-Bénard convection cells at low Rayleigh numbers through to vigorous convection and unstable plumes with pronounced vortices and eddies at high Rayleigh numbers. We conduct simulations with high Prandtl numbers up to Pr = 50, 000 to simulate in the inertial regime. We find for cases when Pr ⩾ 100 that we obtain a series of narrow plumes of upwelling fluid with mushroom heads and chutes of downwelling fluid. We also present simulations at a Prandtl number of 0.7 for Rayleigh numbers varying from Ra =104 through Ra =107.5 . We demonstrate that the Nusselt number follows power law scaling of form Nu ∼Raγ where γ = 0.279 ± 0.002 , which is consistent with published results of γ = 0.281 in the literature. These results show that the LBM is capable of reproducing results obtained with classical macroscopic methods such as spectral methods, and demonstrate the great potential of the LBM for studying thermal convection and plume dynamics relevant to geodynamics.

  11. Asymptotic solution of natural convection problem in a square cavity heated from below

    NARCIS (Netherlands)

    Grundmann, M; Mojtabi, A; vantHof, B

    Studies a two-dimensional natural convection in a porous, square cavity using a regular asymptotic development in powers of the Rayleigh number. Carries the approximation through to the 34th order. Analyses convergence of the resulting series for the Nusselt number in both monocellular and

  12. Free-convective flow of fluid in a thin porous contour and geothermal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Magomedbekov Kh.G.; Ramazanov, M.M.; Vagabov, M.V.

    1996-01-24

    The problem of free convection in a thin porous contour, placed in uniform impermeable massif is considered. The approximate analitical solution of conjugate problem is obtained. The critical Rayleigh number is determined, by exceeding of which the steady fluid circulation in an annulus is established. The computations of abnormal heat flow near surface are carried out, stipulated by thermoconvection in a contour.

  13. Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point

    NARCIS (Netherlands)

    Ahlers, Günter; Calzavarini, E.; Fontenele Araujo Junior, F.; Funfschilling, Denis; Grossmann, Siegfried; Lohse, Detlef; Sugiyama, K.

    2008-01-01

    As shown in earlier work [Ahlers et al., J. Fluid Mech. 569, 409 (2006)], non-Oberbeck-Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Bénard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal

  14. Benard C. Rusche nomination. Hearing before the Committee on Energy and Natural Resources, US Senate, Ninety-Eighth Congress, Second Session, May 17, 1984

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A hearing on the nomination of Benard C. Rusche to the new position of Director of the Office of Civilian Radioactive Waste Management in DOE began with an introduction and endorsement by Senator Thurmond of South Carolina. Testimony by the nominee emphasized the need to move ahead on radioactive waste disposal and storage arrangements that will provide protection for the environment and the public. His key points included the need for a common framework and an integrated program that would include opportunities for public discussion of all affected parties. He expressed a commitment to responsible and accountable procedures and cooperation with other regulatory agencies

  15. Convection Cells in the Atmospheric Boundary Layer

    Science.gov (United States)

    Fodor, Katherine; Mellado, Juan-Pedro

    2017-04-01

    In dry, shear-free convective boundary layers (CBLs), the turbulent flow of air is known to organise itself on large scales into coherent, cellular patterns, or superstructures, consisting of fast, narrow updraughts and slow, wide downdraughts which together form circulations. Superstructures act as transport mechanisms from the surface to the top of the boundary layer and vice-versa, as opposed to small-scale turbulence, which only modifies conditions locally. This suggests that a thorough investigation into superstructure properties may help us better understand transport across the atmospheric boundary layer as a whole. Whilst their existence has been noted, detailed studies into superstructures in the CBL have been scarce. By applying methods which are known to successfully isolate similar large-scale patterns in turbulent Rayleigh-Bénard convection, we can assess the efficacy of those detection techniques in the CBL. In addition, through non-dimensional analysis, we can systematically compare superstructures in various convective regimes. We use direct numerical simulation of four different cases for intercomparison: Rayleigh-Bénard convection (steady), Rayleigh-Bénard convection with an adiabatic top lid (quasi-steady), a stably-stratified CBL (quasi-steady) and a neutrally-stratified CBL (unsteady). The first two are non-penetrative and the latter two penetrative. We find that although superstructures clearly emerge from the time-mean flow in the non-penetrative cases, they become obscured by temporal averaging in the CBL. This is because a rigid lid acts to direct the flow into counter-rotating circulation cells whose axis of rotation remains stationary, whereas a boundary layer that grows in time and is able to entrain fluid from above causes the circulations to not only grow in vertical extent, but also to move horizontally and merge with neighbouring circulations. Spatial filtering is a useful comparative technique as it can be performed on boundary

  16. Rayleigh scattering from ions near threshold

    International Nuclear Information System (INIS)

    Roy, S.C.; Gupta, S.K.S.; Kissel, L.; Pratt, R.H.

    1988-01-01

    Theoretical studies of Rayleigh scattering of photons from neon atoms with different degrees of ionization, for energies both below and above the K-edges of the ions, are presented. Some unexpected structures both in Rayleigh scattering and in photoionization from neutral and weakly ionized atoms, very close to threshold, have been reported. It has recently been realized that some of the predicted structures may have a nonphysical origin and are due to the limitation of the independent-particle model and also to the use of a Coulombic Latter tail. Use of a K-shell vacancy potential - in which an electron is assumed to be removed from the K-shell - in calculating K-shell Rayleigh scattering amplitudes removes some of the structure effects near threshold. We present in this work a discussion of scattering angular distributions and total cross sections, obtained utilizing vacancy potentials, and compare these predictions with those previously obtained in other potential model. (author) [pt

  17. Chromo-Rayleigh interactions of dark matter

    International Nuclear Information System (INIS)

    Bai, Yang; Osborne, James

    2015-01-01

    For a wide range of models, dark matter can interact with QCD gluons via chromo-Rayleigh interactions. We point out that the Large Hadron Collider (LHC), as a gluon machine, provides a superb probe of such interactions. In this paper, we introduce simplified models to UV-complete two effective dark matter chromo-Rayleigh interactions and identify the corresponding collider signatures, including four jets or a pair of di-jet resonances plus missing transverse energy. After performing collider studies for both the 8 TeV and 14 TeV LHC, we find that the LHC can be more sensitive to dark matter chromo-Rayleigh interactions than direct detection experiments and thus provides the best opportunity for future discovery of this class of models.

  18. Transitions in rapidly rotating convection dynamos

    Science.gov (United States)

    Tilgner, A.

    2013-12-01

    It is commonly assumed that buoyancy in the fluid core powers the geodynamo. We study here the minimal model of a convection driven dynamo, which is a horizontal plane layer in a gravity field, filled with electrically conducting fluid, heated from below and cooled from above, and rotating about a vertical axis. Such a plane layer may be viewed as a local approximation to the geophysically more relevant spherical geometry. The numerical simulations have been run on graphics processing units with at least 960 cores. If the convection is driven stronger and stronger at fixed rotation rate, the flow behaves at some point as if it was not rotating. This transition shows in the scaling of the heat transport which can be used to distinguish slow from rapid rotation. One expects dynamos to behave differently in these two flow regimes. But even within the convection flows which are rapidly rotating according to this criterion, it will be shown that different types of dynamos exist. In one state, the magnetic field strength obeys a scaling indicative of a magnetostrophic balance, in which the Lorentz force is in equilibrium with the Coriolis force. The flow in this case is helical. A different state exists at higher magnetic Reynolds numbers, in which the magnetic energy obeys a different scaling law and the helicity of the flow is much reduced. As one increases the Rayleigh number, all other parameters kept constant, one may find both types of dynamos separated by an interval of Rayleigh numbers in which there are no dynamos at all. The effect of these transitions on energy dissipation and mean field generation have also been studied.

  19. Onset of Vibrational Convection in a Binary Fluid Saturated Non-Darcy Porous Layer Heated from Above

    Directory of Open Access Journals (Sweden)

    Saravanan S.

    2012-07-01

    Full Text Available A linear stability analysis is used to investigate the influence of mechanical vibration on the onset of thermosolutal convection in a horizontal porous layer heated and salted from above. Vibrations are considered with arbitrary amplitude and frequency. The Brinkman extended Darcy model is used to describe the flow and the Oberbeck-Boussinesq approximation is employed. Continued fraction method and Floquet theory are used to determine the convective instability threshold. It is found that the solutal Rayleigh number has the stabilizing effect. The existence of a closed disconnected loop of synchronous mode is predicted in the marginal curve for moderate values of solutal Rayleigh number and vibration amplitude.

  20. Bivariate Rayleigh Distribution and its Properties

    Directory of Open Access Journals (Sweden)

    Ahmad Saeed Akhter

    2007-01-01

    Full Text Available Rayleigh (1880 observed that the sea waves follow no law because of the complexities of the sea, but it has been seen that the probability distributions of wave heights, wave length, wave induce pitch, wave and heave motions of the ships follow the Rayleigh distribution. At present, several different quantities are in use for describing the state of the sea; for example, the mean height of the waves, the root mean square height, the height of the “significant waves” (the mean height of the highest one-third of all the waves the maximum height over a given interval of the time, and so on. At present, the ship building industry knows less than any other construction industry about the service conditions under which it must operate. Only small efforts have been made to establish the stresses and motions and to incorporate the result of such studies in to design. This is due to the complexity of the problem caused by the extensive variability of the sea and the corresponding response of the ships. Although the problem appears feasible, yet it is possible to predict service conditions for ships in an orderly and relatively simple manner Rayleigh (1980 derived it from the amplitude of sound resulting from many independent sources. This distribution is also connected with one or two dimensions and is sometimes referred to as “random walk” frequency distribution. The Rayleigh distribution can be derived from the bivariate normal distribution when the variate are independent and random with equal variances. We try to construct bivariate Rayleigh distribution with marginal Rayleigh distribution function and discuss its fundamental properties.

  1. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  2. Attractors of the periodically forced Rayleigh system

    Directory of Open Access Journals (Sweden)

    Petre Bazavan

    2011-07-01

    Full Text Available The autonomous second order nonlinear ordinary differential equation(ODE introduced in 1883 by Lord Rayleigh, is the equation whichappears to be the closest to the ODE of the harmonic oscillator withdumping.In this paper we present a numerical study of the periodic andchaotic attractors in the dynamical system associated with the generalized Rayleigh equation. Transition between periodic and quasiperiodic motion is also studied. Numerical results describe the system dynamics changes (in particular bifurcations, when the forcing frequency is varied and thus, periodic, quasiperiodic or chaotic behaviour regions are predicted.

  3. Approximation and stability of three-dimensional natural convection flows in a porous medium

    International Nuclear Information System (INIS)

    Janotto, Marie-Laurence

    1991-01-01

    The equations of the three-dimensional natural convection in a porous medium within a differentially heated horizontal walls cavity are solved by a pseudo-spectral method. First we will present the evolution of the two main modes according to two models of convection. A few asymptotic properties connected to the small and large eddies are set up and numerically validated. A new approximate inertial manifold is then proposed. The numerical scheme used is an exponential fitting algorithm the convergence of which is proved. We will present the physical mechanism at the origin of the un-stationary three-dimensional convection at high Rayleigh numbers. (author) [fr

  4. Heat Transfer Correlations for Free Convection from Suspended Microheaters

    Directory of Open Access Journals (Sweden)

    David GOSSELIN

    2016-08-01

    Full Text Available Portability and autonomy for biomedical diagnostic devices are two rising requirements. It is recognized that low-energy heating of such portable devices is of utmost importance for molecular recognition. This work focuses on screen-printed microheaters based on on Joule effect, which constitute an interesting solution for low-energy heating. An experimental study of the natural convection phenomena occurring with such microheaters is conducted. When they are suspended in the air, and because of the thinness of the supporting film, it is shown that the contributions of both the upward and downward faces have to be taken into account. A total Nusselt number and a total convective heat transfer coefficient have been used to describe the natural convection around these microheaters. In addition a relation between the Nusselt number and the Rayleigh number is derived, leading to an accurate prediction of the heating temperature (MRE< 2 %.

  5. Chaotic Darcy-Brinkman convection in a fluid saturated porous layer subjected to gravity modulation

    Directory of Open Access Journals (Sweden)

    Moli Zhao

    2018-06-01

    Full Text Available On the basis of Darcy-Brinkman model, the chaotic convection in a couple stress fluid saturated porous media under gravity modulation is investigated using the nonlinear stability analyses. The transition from steady convection to chaos is analysed with the effect of Darcy-Brinkman couple stress parameter and the gravity modulation. The results show that the chaotic behavior is connected with the critical value of Rayleigh number which is dependent upon the oscillation frequency and the Darcy-Brinkman couple stress parameter. If the oscillation frequency Ω is not zero, the Rayleigh number value R of the chaotic behavior increases with the increase of the Darcy-Brinkman couple stress parameter. The Darcy-Brinkman couple stress parameter and the gravity modulation decrease the rate of heat transfer. Keywords: Darcy-Brinkman model, Gravity modulation, Nonlinear stability, Chaotic convection

  6. Heat Transfer and Flows of Thermal Convection in a Fluid-Saturated Rotating Porous Medium

    Directory of Open Access Journals (Sweden)

    Jianhong Kang

    2015-01-01

    Full Text Available Thermal convection at the steady state for high Rayleigh number in a rotating porous half space is investigated. Taking into account the effect of rotation, Darcy equation is extended to incorporate the Coriolis force term in a rotating reference frame. The velocity and temperature fields of thermal convection are obtained by using the homotopy analysis method. The influences of Taylor number and Rayleigh number on the Nusselt number, velocity profile, and temperature distribution are discussed in detail. It is found that the Nusselt number decreases rapidly with the increase of Taylor number but tends to have an asymptotic value. Besides, the rotation can give rise to downward flow in contrast with the upward thermal convection.

  7. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  8. Rayleigh scattering in coupled microcavities: theory.

    Science.gov (United States)

    Vörös, Zoltán; Weihs, Gregor

    2014-12-03

    In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.

  9. Experimental investigation of natural convection induced by internal heat generation

    International Nuclear Information System (INIS)

    Tasaka, Y; Kudoh, Y; Takeda, Y; Yanagisawa, T

    2005-01-01

    Dilatation of a convection cell with respect to its Rayleigh number, one of the problems in internally heated convection, was quantitatively investigated by analyzing temperature field in a cell. The temperature field visualized by a thermo-chromic liquid crystal (TLC) expresses the cell dilatation. A calibration system was developed to convert the visualized photographs of the temperature field to the temperature field. A calibration curve correlating color information extracted from the photograph and temperature was determined from the approximately linear temperature distribution in the horizontal fluid layer using the hue method. Photos taken at various internal Rayleigh numbers were converted to the temperature field by the obtained curve. Extracting individual cells from a temperature field achieves a quantitative expression of the cell dilatation as the variation of the wavenumber of the cell with Rayleigh number increases. The temperature profile in a cell shows that high temperature areas appear at the apexes of the cell, largely different from the profile obtained by linear theory

  10. Quantifying near-wall coherent structures in turbulent convection

    Science.gov (United States)

    Gunasegarane, G. S.; A Puthenveettil, Baburaj; K Agrawal, Yogesh; Schmeling, Daniel; Bosbach, Johannes; Arakeri, Jaywant; IIT Madras-DLR-IISc Collaboration

    2011-11-01

    We present planforms of line plumes formed on horizontal surfaces in turbulent convection, along with the length of near- wall line plumes measured from these planforms, in a six decade range of Rayleigh numbers (105 < Ra <1011) and at three Prandtl numbers (Pr = 0 . 7 , 6 , 602). Using geometric constraints on the relations for the mean plume spacings, we obtain expressions for the total length of these near-wall plumes in turbulent convection. The plume length per unit area (Lp / A), made dimensionless by the near-wall length scale in turbulent convection (Zw) remains a constant for a given fluid. The Nusselt number is shown to be directly proportional to Lp H / A for a given fluid layer of height H. Increase in Pr has a weak influence in decreasing Lp / A . These expressions match the measurements, thereby showing that the assumption of laminar natural convection boundary layers in turbulent convection is consistent with the observed total length of line plumes. We then show that similar relationships are obtained based on the assumption that the line plumes are the outcome of the instability of laminar natural convection boundary layers on the horizontal surfaces.

  11. Natural convection heat transfer of water in a horizontal circular gap

    Institute of Scientific and Technical Information of China (English)

    SU Guanghui; Kenichiro Sugiyama; WU Yingwei

    2007-01-01

    An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.

  12. On a Five-Dimensional Chaotic System Arising from Double-Diffusive Convection in a Fluid Layer

    Directory of Open Access Journals (Sweden)

    R. Idris

    2013-01-01

    Full Text Available A chaotic system arising from double-diffusive convection in a fluid layer is investigated in this paper based on the theory of dynamical systems. A five-dimensional model of chaotic system is obtained using the Galerkin truncated approximation. The results showed that the transition from steady convection to chaos via a Hopf bifurcation produced a limit cycle which may be associated with a homoclinic explosion at a slightly subcritical value of the Rayleigh number.

  13. NUMERICAL ANALYSIS OF NATURAL CONVECTION IN A PRISMATIC ENCLOSURE

    Directory of Open Access Journals (Sweden)

    Walid AICH

    2011-01-01

    Full Text Available Natural convection heat transfer and fluid flow have been examined numerically using the control-volume finite-element method in an isosceles prismatic cavity, submitted to a uniform heat flux from below when inclined sides are maintained isothermal and vertical walls are assumed to be perfect thermal insulators, without symmetry assumptions for the flow structure. The aim of the study is to examine a pitchfork bifurcation occurrence. Governing parameters on heat transfer and flow fields are the Rayleigh number and the aspect ratio of the enclosure. It has been found that the heated wall is not isothermal and the flow structure is sensitive to the aspect ratio. It is also found that heat transfer increases with increasing of Rayleigh number and decreases with increasing aspect ratio. The effects of aspect ratio become significant especially for higher values of Rayleigh number. Eventually the obtained results show that a pitchfork bifurcation occurs at a critical Rayleigh number, above which the symmetric solutions becomes unstable and asymmetric solutions are instead obtained.

  14. The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia

    Science.gov (United States)

    Sheldon, Heather A.; Florio, Brendan; Trefry, Michael G.; Reid, Lynn B.; Ricard, Ludovic P.; Ghori, K. Ameed R.

    2012-11-01

    Convection of groundwater in aquifers can create areas of anomalously high temperature at shallow depths which could be exploited for geothermal energy. Temperature measurements in the Perth Basin (Western Australia) reveal thermal patterns that are consistent with convection in the Yarragadee Aquifer. This observation is supported by Rayleigh number calculations, which show that convection is possible within the range of aquifer thickness, geothermal gradient, salinity gradient and permeability encountered in the Yarragadee Aquifer, assuming that the aquifer can be treated as a homogeneous anisotropic layer. Numerical simulations of convection in a simplified model of the Yarragadee Aquifer show that: (1) the spacing of convective upwellings can be predicted from aquifer thickness and permeability anisotropy; (2) convective upwellings may be circular or elongate in plan view; (3) convective upwellings create significant temperature enhancements relative to the conductive profile; (4) convective flow rates are similar to regional groundwater flow rates; and (5) convection homogenises salinity within the aquifer. Further work is required to constrain the average horizontal and vertical permeability of the Yarragadee Aquifer, to assess the validity of treating the aquifer as a homogeneous anisotropic layer, and to determine the impact of realistic aquifer geometry and advection on convection.

  15. Effect of Buoyancy on Forced Convection Heat Transfer in Vertical Channels - a Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, A

    1965-03-15

    This report contains a short resume of the available information from various sources on the effect of free convection flow on forced convection heat transfer in vertical channels. Both theoretical and experimental investigations are included. Nearly all of the theoretical investigations are concerned with laminar flow with or without internal heat generation. More consistent data are available for upward flow than for downward flow. Curves are presented to determine whether free convection or forced convection mode of heat transfer is predominant for a particular Reynolds number and Rayleigh number. At Re{sub b} > 10{sup 5} free convection effects are negligible. Downward flow through a heated channel at low Reynolds number is unstable. Under similar conditions the overall heat transfer coefficient for downward flow tends to be higher than that for upward flow.

  16. Homogeneous purely buoyancy driven turbulent flow

    Science.gov (United States)

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  17. Study of natural convection characteristics in a narrow annular gap in (Part 1)

    International Nuclear Information System (INIS)

    Narahara, Nobuyuki; Uotani, Masaki; Kinoshita, Izumi

    1986-01-01

    To clarify the characteristics of natural convection in a narrow annular gap at the roof-slab penetrations in pool-type LMFBR, preliminary and visualization experiments were carried out. The results are summarized as follows. (1) In the preliminary experiment having the upper and bottom closed annular space nondimensional circumferential temperature difference increases with gap width decreasing, and decreses with Rayleigh number increasing at the range of rayleigh number 10 10 to 10 11 . (2) In the visualization experiment, which consists the upper and bottom closed annular space type apparatus and the upper-closed bottom-open type apparatus, flow pattern and its effect at temperature distribution are clarified. (author)

  18. Mixing in heterogeneous internally-heated convection

    Science.gov (United States)

    Limare, A.; Kaminski, E. C.; Jaupart, C. P.; Farnetani, C. G.; Fourel, L.; Froment, M.

    2017-12-01

    Past laboratory experiments of thermo chemical convection have dealt with systems involving fluids with different intrinsic densities and viscosities in a Rayleigh-Bénard setup. Although these experiments have greatly improved our understanding of the Earth's mantle dynamics, they neglect a fundamental component of planetary convection: internal heat sources. We have developed a microwave-based method in order to study convection and mixing in systems involving two layers of fluid with different densities, viscosities, and internal heat production rates. Our innovative laboratory experiments are appropriate for the early Earth, when the lowermost mantle was likely enriched in incompatible and heat producing elements and when the heat flux from the core probably accounted for a small fraction of the mantle heat budget. They are also relevant to the present-day mantle if one considers that radioactive decay and secular cooling contribute both to internal heating. Our goal is to quantify how two fluid layers mix, which is still very difficult to resolve accurately in 3-D numerical calculations. Viscosities and microwave absorptions are tuned to achieve high values of the Rayleigh-Roberts and Prandtl numbers relevant for planetary convection. We start from a stably stratified system where the lower layer has higher internal heat production and density than the upper layer. Due to mixing, the amount of enriched material gradually decreases to zero over a finite time called the lifetime. Based on more than 30 experiments, we have derived a scaling law that relates the lifetime of an enriched reservoir to the layer thickness ratio, a, to the density and viscosity contrasts between the two layers, and to their two different internal heating rates in the form of an enrichment factor beta=1+2*a*H1/H, where H1 is the heating rate of the lower fluid and H is the average heating rate. We find that the lifetime of the lower enriched reservoir varies as beta**(-7/3) in the low

  19. Chemical Applications of Second Harmonic Rayleigh Scattering ...

    Indian Academy of Sciences (India)

    Chemical Applications of Second Harmonic Rayleigh Scattering Puspendu Kumar Das Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012, India pkdas@ipc.iisc.ernet.in · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13.

  20. High-frequency Rayleigh-wave method

    Science.gov (United States)

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  1. Centrifugally Driven Rayleigh-Taylor Instability

    Science.gov (United States)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  2. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  3. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  4. Constraints on the properties of Pluto's nitrogen-ice rich layer from convection simulations

    Science.gov (United States)

    Wong, T.; McKinnon, W. B.; Schenk, P.

    2016-12-01

    Pluto's Sputnik Planum basin (informally named) displays regular cellular patterns strongly suggesting that solid-state convection is occurring in a several-kilometers-deep nitrogen-ice rich layer (McKinnon et al., Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour, Nature 534, 82-85, 2016). We investigate the behavior of thermal convection in 2-D that covers a range of parameters applicable to the nitrogen ice layer to constrain its properties such that these long-wavelength surface features can be explained. We perform a suite of numerical simulations of convection with basal heating and temperature-dependent viscosity in either exponential form or Arrhenius form. For a plausible range of Rayleigh numbers and viscosity contrasts for solid nitrogen, convection can occur in all possible regimes: sluggish lid, transitional, or stagnant lid, or the layer could be purely conducting. We suggest the range of depth and temperature difference across the layer for convection to occur. We observe that the plume dynamics can be widely different in terms of the aspect ratio of convecting cells, or the width and spacing of plumes, and also in the lateral movement of plumes. These differences depend on the regime of convection determined by the Rayleigh number and the actual viscosity contrast across the layer, but is not sensitive to whether the viscosity is in Arrhenius or exponential form. The variations in plume dynamics result in different types of dynamic topography, which can be compared with the observed horizontal and vertical scales of the cells in Sputnik Planum. Based on these simulations we suggest several different possibilities for the formation and evolution of Sputnik Planum, which may be a consequence of the time-dependent behavior of thermal convection.

  5. Natural convection in porous media with heat generation

    International Nuclear Information System (INIS)

    Hardee, H.C. Jr.; Nilson, R.H.

    1976-12-01

    Heat transfer characteristics of a fluid saturated porous media are investigated for the case of uniform internal heat generation with cooling from above. Analytical models of conduction and single phase cellular convection show good agreement with previous Rayleigh number correlations and with experimental data obtained by Joule heating of salt water in a sand bed. An approximate dryout criterion is also derived for two phase boiling heat transfer in a fixed bed which is neither channeled nor fluidized. Correlation of dryout data using this criterion is encouraging, especially considering the analytical rather than correlational basis of the criterion

  6. The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer with non-equilibrium model.

    Directory of Open Access Journals (Sweden)

    Zhixin Yang

    Full Text Available The onset of double diffusive convection in a viscoelastic fluid-saturated porous layer is studied when the fluid and solid phase are not in local thermal equilibrium. The modified Darcy model is used for the momentum equation and a two-field model is used for energy equation each representing the fluid and solid phases separately. The effect of thermal non-equilibrium on the onset of double diffusive convection is discussed. The critical Rayleigh number and the corresponding wave number for the exchange of stability and over-stability are obtained, and the onset criterion for stationary and oscillatory convection is derived analytically and discussed numerically.

  7. Rayleigh wave effects in an elastic half-space.

    Science.gov (United States)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  8. Adiabatic partition effect on natural convection heat transfer inside a square cavity

    DEFF Research Database (Denmark)

    Mahmoudi Nezhad, Sajjad; Rezaniakolaei, Alireza; yousefi, Tooraj

    2018-01-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach......-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study...... partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms...

  9. Thermal convection around a heat source embedded in a box containing a saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Himasekhar, K.; Bau, H.H. (Univ. of Pennsylvania, Philadelphia (USA))

    1988-08-01

    A study of the thermal convection around a uniform flux cylinder embedded in a box containing a saturated porous medium is carried out experimentally and theoretically. The experimental work includes heat transfer and temperature field measurements. It is observed that for low Rayleigh numbers, the flow is two dimensional and time independent. Once a critical Rayleigh number is exceeded, the flow undergoes a Hopf bifurcation and becomes three dimensional and time dependent. The theoretical study involves the numerical solution of the two-dimensional Darcy-Oberbeck-Boussinesq equations. The complicated geometry is conveniently handled by mapping the physical domain onto a rectangle via the use of boundary-fitted coordinates. The numerical code can easily be extended to handle diverse geometric configurations. For low Rayleigh numbers, the theoretical results agree favorably with the experimental observations. However, the appearance of three-dimensional flow phenomena limits the range of utility of the numerical code.

  10. Nonlinear thermal convection in a layer of nanofluid under G-jitter and internal heating effects

    Directory of Open Access Journals (Sweden)

    Bhadauria B. S.

    2014-01-01

    Full Text Available This paper deals with a mathematical model of controlling heat transfer in nanofluids. The time-periodic vertical vibrations of the system are considered to effect an external control of heat transport along with internal heating effects. A weakly non-linear stability analysis is based on the five-mode Lorenz model using which the Nusselt number is obtained as a function of the thermal Rayleigh number, nano-particle concentration based Rayleigh number, Prandtl number, Lewis number, modified diffusivity ratio, amplitude and frequency of modulation. It is shown that modulation can be effectively used to control convection and thereby heat transport. Further, it is found that the effect of internal Rayleigh number is to enhance the heat and nano-particles transport.

  11. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  12. Heating-insensitive scale increase caused by convective precipitation

    Science.gov (United States)

    Haerter, Jan; Moseley, Christopher; Berg, Peter

    2017-04-01

    The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective

  13. Predictability of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Viecelli, J.A.

    1986-01-01

    Numerical experiments modeling the Rayleigh Taylor instability are carried out using a two-dimensional incompressible Eulerian hydrodynamic code VFTS. The method of integrating the Navier-Stokes equations including the viscous terms is similar to that described in Kim and Moin, except that Lagrange particles have been added and provision for body forces is given. The Eulerian method is 2nd order accurate in both space and time, and the Poisson equation for the effective pressure field is solved exactly at each time step using a cyclic reduction method. 3 refs., 3 figs

  14. A simple proposal for Rayleigh's scaterring experiment

    Directory of Open Access Journals (Sweden)

    Adriano José Ortiz

    2010-03-01

    Full Text Available This work presents an alternative proposal for Rayleigh's scattering experiment presented and discussed in Krapas and Santos (2002 in this journal. Besides being simple and low-cost, the proposal suggested here is also proposing to demonstrate experimentally other physical phenomena such as polarization of light from the sky, the rainbow and reflection on non-conductive surfaces, as well as determine the direction of these biases. The polarization will be observed with the aid of Polaroid obtained from liquid crystal displays taken from damaged electronic devices and the Polaroid polarization direction will be established by the observation of Brewester's angle in reflection experiment.

  15. Bayesian Predictive Models for Rayleigh Wind Speed

    DEFF Research Database (Denmark)

    Shahirinia, Amir; Hajizadeh, Amin; Yu, David C

    2017-01-01

    predictive model of the wind speed aggregates the non-homogeneous distributions into a single continuous distribution. Therefore, the result is able to capture the variation among the probability distributions of the wind speeds at the turbines’ locations in a wind farm. More specifically, instead of using...... a wind speed distribution whose parameters are known or estimated, the parameters are considered as random whose variations are according to probability distributions. The Bayesian predictive model for a Rayleigh which only has a single model scale parameter has been proposed. Also closed-form posterior...... and predictive inferences under different reasonable choices of prior distribution in sensitivity analysis have been presented....

  16. Nonlinear saturation of the Rayleigh Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    The problem of the nonlinear saturation of the 2 dimensional Rayleigh Taylor instability is re-examined to put various earlier results in a proper perspective. The existence of a variety of final states can be attributed to the differences in the choice of boundary conditions and initial conditions in earlier numerical modeling studies. Our own numerical simulations indicate that the RT instability saturates by the self consistent generation of shear flow even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. Such final states can be achieved for suitable values of the Prandtl number. (author)

  17. Turbulent mixed convection in asymmetrically heated vertical channel

    Directory of Open Access Journals (Sweden)

    Mokni Ameni

    2012-01-01

    Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.

  18. The nonlinear interaction of convection modes in a box of a saturated porous medium

    Science.gov (United States)

    Florio, Brendan J.; Bassom, Andrew P.; Fowkes, Neville; Judd, Kevin; Stemler, Thomas

    2015-05-01

    A plethora of convection modes may occur within a confined box of porous medium when the associated dimensionless Rayleigh number R is above some critical value dependent on the geometry. In many cases the crucial Rayleigh number Rc for onset is different for each mode, and in practice the mode with the lowest associated Rc is likely to be the dominant one. For particular sizes of box, however, it is possible for multiple modes (typically three) to share a common Rc. For box shapes close to these special geometries the modes interact and compete nonlinearly near the onset of convection. Here this mechanism is explored and it is shown that generically the dynamics of the competition takes on one of two possible structures. A specific example of each is described, while the general properties of the system enables us to compare our results with some previous calculations for particular box dimensions.

  19. Entropy generation in natural convection in a symmetrically and uniformly heated vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, Assunta [Dipartimento di Energetica, Termofluidodinamica applicata e Condizionamenti ambientali, Universita degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Auletta, Antonio [CIRA - Centro Italiano Ricerche Aerospaziali, Via Maiorise 1, 81043 Capua (CE) (Italy); Manca, Oronzio [Dipartimento di Ingegneria Aerospaziale e Meccanica, Seconda Universita degli Studi di Napoli, Real Casa dell' Annunziata, Via Roma 29, 81031 Aversa (CE) (Italy)

    2006-08-15

    In this study numerical predictions of local and global entropy generation rates in natural convection in air in a vertical channel symmetrically heated at uniform heat flux are reported. Results of entropy generation analysis are obtained by solving the entropy generation equation based on the velocity and temperature data. The analyzed regime is two-dimensional, laminar and steady state. The numerical procedure expands an existing computer code on natural convection in vertical channels. Results in terms of fields and profiles of local entropy generation, for various Rayleigh number, Ra, and aspect ratio values, L/b, are given. The distributions of local values show different behaviours for the different Ra values. A correlation between global entropy generation rates, Rayleigh number and aspect ratio is proposed in the ranges 10{sup 3}=

  20. Direct numerical simulation and modeling of turbulent natural convection in a vertical differentially heated slot

    International Nuclear Information System (INIS)

    Boudjemadi, R.

    1996-03-01

    The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends

  1. Effect of crust increase on natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, Rae Joon; Kim, Sang Baik; Kim, Hee Dong; Choi, Sang Min

    1999-01-01

    An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured as a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments, is the major influential parameter in the crust formation, due to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number in the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation was developed as Nu=0.0923 (Ra) 0.0923 (2 X 10 4 7 ). (author)

  2. Numerical Studies on Natural Convection Heat Losses from Open Cubical Cavities

    Directory of Open Access Journals (Sweden)

    M. Prakash

    2013-01-01

    Full Text Available The natural convection heat losses occurring from cubical open cavities are analysed in this paper. Open cubical cavities of sides 0.1 m, 0.2 m, 0.25 m, 0.5 m, and 1 m with constant temperature back wall boundary conditions and opening ratio of 1 are studied. The Fluent CFD software is used to analyse the three-dimensional (3D cavity models. The studies are carried out for cavities with back wall temperatures between 35°C and 100°C. The effect of cavity inclination on the convective loss is analysed for angles of 0° (cavity facing sideways, 30°, 45°, 60°, and 90° (cavity facing vertically downwards. The Rayleigh numbers involved in this study range between 4.5 × 105 and 1.5 × 109. The natural convection loss is found to increase with an increase in back wall temperature. The natural convection loss is observed to decrease with an increase in cavity inclination; the highest convective loss being at 0° and the lowest at 90° inclination. This is observed for all cavities analysed here. Nusselt number correlations involving the effect of Rayleigh number and the cavity inclination angle have been developed from the current studies. These correlations can be used for engineering applications such as electronic cooling, low- and medium-temperature solar thermal systems, passive architecture, and also refrigeration systems.

  3. Short Rayleigh length free electron lasers

    Directory of Open Access Journals (Sweden)

    W. B. Colson

    2006-03-01

    Full Text Available Conventional free electron laser (FEL oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third to one half of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. We model this interaction using a coordinate system that expands with the rapidly diffracting optical mode from the ends of the undulator to the mirrors. Simulations show that the interaction of the strongly focused optical mode with a narrow electron beam inside the undulator distorts the optical wave front so it is no longer in the fundamental Gaussian mode. The simulations are used to study how mode distortion affects the single-pass gain in weak fields, and the steady-state extraction in strong fields.

  4. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  5. Natural convection in asymmetric triangular enclosures heated from below

    Science.gov (United States)

    Kamiyo, O. M.; Angeli, D.; Barozzi, G. S.; Collins, M. W.

    2014-11-01

    Triangular enclosures are typical configurations of attic spaces found in residential as well as industrial pitched-roof buildings. Natural convection in triangular rooftops has received considerable attention over the years, mainly on right-angled and isosceles enclosures. In this paper, a finite volume CFD package is employed to study the laminar air flow and temperature distribution in asymmetric rooftop-shaped triangular enclosures when heated isothermally from the base wall, for aspect ratios (AR) 0.2 <= AR <= 1.0, and Rayleigh number (Ra) values 8 × 105 <= Ra <= 5 × 107. The effects of Rayleigh number and pitch angle on the flow structure and temperature distributions within the enclosure are analysed. Results indicate that, at low pitch angle, the heat transfer between the cold inclined and the hot base walls is very high, resulting in a multi-cellular flow structure. As the pitch angle increases, however, the number of cells reduces, and the total heat transfer rate progressively reduces, even if the Rayleigh number, being based on the enclosure height, rapidly increases. Physical reasons for the above effect are inspected.

  6. Natural convection in asymmetric triangular enclosures heated from below

    International Nuclear Information System (INIS)

    Kamiyo, O M; Angeli, D; Enzo Ferrari, Universita di Modena e Reggio Emilia, via Vignolese 905, I-41125 Modena (Italy))" data-affiliation=" (DIEF – Dipartimento di Ingegneria Enzo Ferrari, Universita di Modena e Reggio Emilia, via Vignolese 905, I-41125 Modena (Italy))" >Barozzi, G S; Collins, M W

    2014-01-01

    Triangular enclosures are typical configurations of attic spaces found in residential as well as industrial pitched-roof buildings. Natural convection in triangular rooftops has received considerable attention over the years, mainly on right-angled and isosceles enclosures. In this paper, a finite volume CFD package is employed to study the laminar air flow and temperature distribution in asymmetric rooftop-shaped triangular enclosures when heated isothermally from the base wall, for aspect ratios (AR) 0.2 ≤ AR ≤ 1.0, and Rayleigh number (Ra) values 8 × 10 5 ≤ Ra ≤ 5 × 10 7 . The effects of Rayleigh number and pitch angle on the flow structure and temperature distributions within the enclosure are analysed. Results indicate that, at low pitch angle, the heat transfer between the cold inclined and the hot base walls is very high, resulting in a multi-cellular flow structure. As the pitch angle increases, however, the number of cells reduces, and the total heat transfer rate progressively reduces, even if the Rayleigh number, being based on the enclosure height, rapidly increases. Physical reasons for the above effect are inspected

  7. Delay in convection in nocturnal boundary layer due to aerosol-induced cooling

    Science.gov (United States)

    Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.

    2012-11-01

    Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.

  8. Correlation development of natural convection heat transfer in consideration of aspect ratio change and coolant boiling

    International Nuclear Information System (INIS)

    Park, L. J.; Cho, Y. L.; Kang, K. H.; Kim, S. B.; Kim, H. D.; Cho, J. S.; Jung, C. H.

    1999-01-01

    A new correlation on natural convection heat transfer with crust formation in the molten metal pool has been developed in consideration of coolant boiling effect and of aspect ratio change by an increase in crust thickness. Two test results of the convection cooling case, natural and forced convection cooling cases, and of the boiling case were used in the present study. The experimental results have shown that the Nusselt number of the case with boiling condition in the molten metal pool is greater than that of the case with non-boiling condition at the same Rayleigh number. Even though the Rayleigh number rapidly decreases due to an increase of the crust thickness, the Nusselt number does not rapidly decrease because of the aspect ratio effect. From the experimental results, the new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation has been developed as Nu 0.051(Ra) 1/3 (AR) . 0 .2441 (Φ) 0.025 using Globe and Dropkin correlation

  9. The Rayleigh-Taylor instability in inertial fusion, astrophysical plasma and flames

    International Nuclear Information System (INIS)

    Bychkov, V; Modestov, M; Akkerman, V; Eriksson, L-E

    2007-01-01

    Previous results are reviewed and new results are presented on the Rayleigh-Taylor instability in inertial confined fusion, flames and supernovae including gravitational and thermonuclear explosion mechanisms. The instability couples micro-scale plasma effects to large-scale hydrodynamic phenomena. In inertial fusion the instability reduces target compression. In supernovae the instability produces large-scale convection, which determines the fate of the star. The instability is often accompanied by mass flux through the unstable interface, which may have either a stabilizing or a destabilizing influence. Destabilization happens due to the Darrieus-Landau instability of a deflagration front. Still, it is unclear whether the instabilities lead to well-organized large-scale structures (bubbles) or to relatively isotropic turbulence (mixing layer)

  10. Method of generalized coordinates and an application to Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1978-01-01

    The method of generalized coordinates is extended to the analysis of continuous bodies for which the degrees of freedom are independent velocity distributions in the spatial coordinates. The corresponding Lagrange equations contain generalized convective terms as well as the usual generalized forces and masses. Since the existence of a potential is not assumed, the equations of motion can be applied to media with arbitrary (possible dissipative) constitutive laws. Material deformation is characterized by the rate of strain, which is taken as the symmetric part of the velocity gradient, making the approach valid for arbitrarily large deformations. As an example, infinitesimal Rayleigh-Taylor instability is considered by analytic methods. Then, large amplitude Rayleigh-Taylor instability is represented with a single-degree-of-freedom analysis that shows the development (by numerical integration) of the known spike-and-bubble configuration of the unstable interface. The infinitesimal stability of a plastically deforming solid and the growth of the instability to large amplitudes are also considered

  11. Role of Rayleigh numbers on characteristics of double diffusive salt fingers

    Science.gov (United States)

    Rehman, F.; Singh, O. P.

    2018-05-01

    Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.

  12. Rayleigh-Bénard convection of a supercritical fluid : PIV and heat transfer study

    NARCIS (Netherlands)

    Valori, V.

    2018-01-01

    Fluids above the critical point are widely used in industry. Chemical, pharmaceutical, food industry and energy production are some examples. In the energy production sector they are mainly used as cooling fluids, because they allow to increase the thermal efficiency of the power plants. However,

  13. The Oscillatory Nature of Rotating Convection in Liquid Metal

    Science.gov (United States)

    Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.

    2016-12-01

    Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.

  14. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    Science.gov (United States)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  15. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  16. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  17. Rayleigh's hypothesis and the geometrical optics limit.

    Science.gov (United States)

    Elfouhaily, Tanos; Hahn, Thomas

    2006-09-22

    The Rayleigh hypothesis (RH) is often invoked in the theoretical and numerical treatment of rough surface scattering in order to decouple the analytical form of the scattered field. The hypothesis stipulates that the scattered field away from the surface can be extended down onto the rough surface even though it is formed by solely up-going waves. Traditionally this hypothesis is systematically used to derive the Volterra series under the small perturbation method which is equivalent to the low-frequency limit. In this Letter we demonstrate that the RH also carries the high-frequency or the geometrical optics limit, at least to first order. This finding has never been explicitly derived in the literature. Our result comforts the idea that the RH might be an exact solution under some constraints in the general case of random rough surfaces and not only in the case of small-slope deterministic periodic gratings.

  18. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  19. EFFECTS OF STELLAR FLUX ON TIDALLY LOCKED TERRESTRIAL PLANETS: DEGREE-1 MANTLE CONVECTION AND LOCAL MAGMA PONDS

    International Nuclear Information System (INIS)

    Gelman, S. E.; Elkins-Tanton, L. T.; Seager, S.

    2011-01-01

    We model the geodynamical evolution of super-Earth exoplanets in synchronous rotation about their star. While neglecting the effects of a potential atmosphere, we explore the parameter spaces of both the Rayleigh number and intensity of incoming stellar flux, and identify two main stages of mantle convection evolution. The first is a transient stage in which a lithospheric temperature and thickness dichotomy emerges between the substellar and the antistellar hemispheres, while the style of mantle convection is dictated by the Rayleigh number. The second stage is the development of degree-1 mantle convection. Depending on mantle properties, the timescale of onset of this second stage of mantle evolution varies from order 1 to 100 billion years of simulated planetary evolution. Planets with higher Rayleigh numbers (due to, for instance, larger planetary radii than the Earth) and planets whose incoming stellar flux is high (likely for most detectable exoplanets) will develop degree-1 mantle convection most quickly, on the order of 1 billion years, which is within the age of many planetary systems. Surface temperatures range from 220 K to 830 K, implying the possibility of liquid water in some regions near the surface. These results are discussed in the context of stable molten magma ponds on hotter planets, and the habitability of super-Earths which may lie outside the Habitable Zone.

  20. Natural convection heat transfer from a horizontal cylinder in liquid sodium. Pt. 2. Generalized correlation for laminar natural convection heat transfer

    International Nuclear Information System (INIS)

    Hata, K.; Takeuchi, Y.

    1999-01-01

    For pt.I see ibid., vol.193, p.105-18, 1999. Rigorous numerical solution of natural convection heat transfer, from a horizontal cylinder with uniform surface heat flux or with uniform surface temperature, to liquid sodium was derived by solving the fundamental equations for laminar natural convection heat transfer without the boundary layer approximation. It was made clear that the local and average Nusselt numbers experimentally obtained and reported in part 1 of this paper were described well by the numerical solutions for uniform surface heat fluxes, but that those for uniform surface temperatures could not describe the angular distribution of the local Nusselt numbers and about 10% underpredicted the average Nusselt numbers. Generalized correlation for natural convection heat transfer from a horizontal cylinder with a uniform surface heat flux in liquid metals was presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. It was confirmed that the correlation can describe the authors' and other workers' experimental data on horizontal cylinders in various kinds of liquid metals for a wide range of Rayleigh numbers. Another correlation for a horizontal cylinder with a uniform surface temperature in liquid metals, which may be applicable for special cases such as natural convection heat transfer in a sodium-to-sodium heat exchanger etc. was also presented based on the rigorous theoretical values for a wide range of Rayleigh numbers. These correlations can also describe the rigorous numerical solutions for non-metallic liquids and gases for the Prandtl numbers up to 10. (orig.)

  1. QUADRO: A SUPERVISED DIMENSION REDUCTION METHOD VIA RAYLEIGH QUOTIENT OPTIMIZATION.

    Science.gov (United States)

    Fan, Jianqing; Ke, Zheng Tracy; Liu, Han; Xia, Lucy

    We propose a novel Rayleigh quotient based sparse quadratic dimension reduction method-named QUADRO (Quadratic Dimension Reduction via Rayleigh Optimization)-for analyzing high-dimensional data. Unlike in the linear setting where Rayleigh quotient optimization coincides with classification, these two problems are very different under nonlinear settings. In this paper, we clarify this difference and show that Rayleigh quotient optimization may be of independent scientific interests. One major challenge of Rayleigh quotient optimization is that the variance of quadratic statistics involves all fourth cross-moments of predictors, which are infeasible to compute for high-dimensional applications and may accumulate too many stochastic errors. This issue is resolved by considering a family of elliptical models. Moreover, for heavy-tail distributions, robust estimates of mean vectors and covariance matrices are employed to guarantee uniform convergence in estimating non-polynomially many parameters, even though only the fourth moments are assumed. Methodologically, QUADRO is based on elliptical models which allow us to formulate the Rayleigh quotient maximization as a convex optimization problem. Computationally, we propose an efficient linearized augmented Lagrangian method to solve the constrained optimization problem. Theoretically, we provide explicit rates of convergence in terms of Rayleigh quotient under both Gaussian and general elliptical models. Thorough numerical results on both synthetic and real datasets are also provided to back up our theoretical results.

  2. A numerical method for investigating crystal settling in convecting magma chambers

    Science.gov (United States)

    Verhoeven, J.; Schmalzl, J.

    2009-12-01

    Magma chambers can be considered as thermochemically driven convection systems. We present a new numerical method that describes the movement of crystallized minerals in terms of active spherical particles in a convecting magma that is represented by an infinite Prandtl number fluid. The main part focuses on the results we obtained. A finite volume thermochemical convection model for two and three dimensions and a discrete element method, which is used to model granular material, are combined. The new model is validated with floating experiments using particles of different densities and an investigation of single and multiparticle settling velocities. The resulting velocities are compared with theoretical predictions by Stokes's law and a hindered settling function for the multiparticle system. Two fundamental convection regimes are identified in the parameter space that is spanned by the Rayleigh number and the chemical Rayleigh number, which is a measure for the density of the particles. We define the T regime that is dominated by thermal convection. Here the thermal driving force is strong enough to keep all particles in suspension. As the particles get denser, they start settling to the ground, which results in a C regime. The C regime is characterized by the existence of a sediment layer with particle-rich material and a suspension layer with few particles. It is shown that the presence of particles can reduce the vigor of thermal convection. In the frame of a parameter study we discuss the change between the regimes that is systematically investigated. We show that the so-called TC transition fits a power law. Furthermore, we investigate the settling behavior of the particles in vigorous thermal convection, which can be linked to crystal settling in magma chambers. We develop an analytical settling law that describes the number of settled particles against time and show that the results fit the observations from numerical and laboratory experiments.

  3. Evidence for Gravity Wave Seeding of Convective Ionosphere Storms Initiated by Deep Troposphere Convection

    Science.gov (United States)

    Kelley, M. C.; Pfaff, R. F., Jr.; Dao, E. V.; Holzworth, R. H., II

    2014-12-01

    With the increase in solar activity, the Communications/Outage Forecast System satellite (C/NOFS) now goes below the F peak. As such, we now can study the development of Convective Ionospheric Storms (CIS) and, most importantly, large-scale seeding of the low growth-rate Rayleigh-Taylor (R-T) instability. Two mechanisms have been suggested for such seeding: the Collisional Kelvin-Helmholtz Instability (CKHI) and internal atmospheric gravity waves. A number of observations have shown that the spectrum of fully developed topside structures peaks at 600 km and extends to over 1000 km. These structures are exceedingly difficult to explain by CKHI. Here we show that sinusoidal plasma oscillations on the bottomside during daytime develop classical R-T structures on the nightside with the background 600 km structure still apparent. In two case studies, thunderstorm activity was observed east of the sinusoidal features in the two hours preceding the C/NOFS passes. Thus, we argue that convective tropospheric storms are a likely source of these sinusoidal features.

  4. Subcritical thermal convection of liquid metals in a rapidly rotating sphere

    Science.gov (United States)

    Cardin, P.; Schaeffer, N.; Guervilly, C.; Kaplan, E.

    2017-12-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct (down to Ek=10-7) and a quasi geostrophic (down to Ek=10-10) numerical simulations. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superceded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are continuously connected. As the planetary core rotates faster, the continuous transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ekforcing decreases well below the linear onset of convection (Ra 0.4Racrit in this study for Ek=10-10 and Pr=0.01). We highlight the importance of the Reynolds stress, which is required for convection to persist below the linear onset. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective subcritical state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets and shuts down through a subcritical bifurcation. This scenario may be relevant to explain the lunar and martian dynamo extinctions.

  5. Analysis of recovery efficiency in high-temperature aquifer thermal energy storage: a Rayleigh-based method

    Science.gov (United States)

    Schout, Gilian; Drijver, Benno; Gutierrez-Neri, Mariene; Schotting, Ruud

    2014-01-01

    High-temperature aquifer thermal energy storage (HT-ATES) is an important technique for energy conservation. A controlling factor for the economic feasibility of HT-ATES is the recovery efficiency. Due to the effects of density-driven flow (free convection), HT-ATES systems applied in permeable aquifers typically have lower recovery efficiencies than conventional (low-temperature) ATES systems. For a reliable estimation of the recovery efficiency it is, therefore, important to take the effect of density-driven flow into account. A numerical evaluation of the prime factors influencing the recovery efficiency of HT-ATES systems is presented. Sensitivity runs evaluating the effects of aquifer properties, as well as operational variables, were performed to deduce the most important factors that control the recovery efficiency. A correlation was found between the dimensionless Rayleigh number (a measure of the relative strength of free convection) and the calculated recovery efficiencies. Based on a modified Rayleigh number, two simple analytical solutions are proposed to calculate the recovery efficiency, each one covering a different range of aquifer thicknesses. The analytical solutions accurately reproduce all numerically modeled scenarios with an average error of less than 3 %. The proposed method can be of practical use when considering or designing an HT-ATES system.

  6. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them...

  7. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  8. Physics of Stellar Convection

    Science.gov (United States)

    Arnett, W. David

    2009-05-01

    We review recent progress using numerical simulations as a testbed for development of a theory of stellar convection, much as envisaged by John von Newmann. Necessary features of the theory, non-locality and fluctuations, are illustrated by computer movies. It is found that the common approximation of convection as a diffusive process presents the wrong physical picture, and improvements are suggested. New observational results discussed at the conference are gratifying in their validation of some of our theoretical ideas, especially the idea that SNIb and SNIc events are related to the explosion of massive star cores which have been stripped by mass loss and binary interactions [1

  9. Parameterizing convective organization

    Directory of Open Access Journals (Sweden)

    Brian Earle Mapes

    2011-06-01

    Full Text Available Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate depend on a new prognostic variable (“organization,” org meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5 with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme. Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ∼3 h for a 2o model. Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1 plume base warmth above the mean temperature 2 plume radius enhancement (reduced mixing, and 3 increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model. Since rain evaporation is a source for org, it functions as a time

  10. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  11. Effects of shock waves on Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Zhang Yongtao; Shu Chiwang; Zhou Ye

    2006-01-01

    A numerical simulation of two-dimensional compressible Navier-Stokes equations using a high-order weighted essentially nonoscillatory finite difference shock capturing scheme is carried out in this paper, to study the effect of shock waves on the development of Rayleigh-Taylor instability. Shocks with different Mach numbers are introduced ahead or behind the Rayleigh-Taylor interface, and their effect on the transition to instability is demonstrated and compared. It is observed that shock waves can speed up the transition to instability for the Rayleigh-Taylor interface significantly. Stronger shocks are more effective in this speed-up process

  12. Convective aggregation in realistic convective-scale simulations

    OpenAIRE

    Holloway, Christopher E.

    2017-01-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15-day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibriu...

  13. Adiabatic partition effect on natural convection heat transfer inside a square cavity: experimental and numerical studies

    Science.gov (United States)

    Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.

    2018-02-01

    A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.

  14. Experimental Study on Natural Convection Heat Transfer From two Parallel Horizontal Cylinders in Horizontal Cylindrical Enclosure

    Directory of Open Access Journals (Sweden)

    Ahmed T. Ahmed

    2013-05-01

    Full Text Available  An experimental study on natural convection heat transfer from two parallel horizontal cylinders in horizontal cylindrical enclosure was carried out under condition of constant surfaces temperature for two cylinders and cylindrical enclosure. The study included the effect of Rayleigh number, rotation angle that represent the confined angle between the passing horizontal plane in cylindrical enclosure center and passing line in two cylinders centers, and the spaces between two cylinders on their heat loss ability.39An experimental set-up was used for this purpose which consist watercontainer, test section which is formed of plastic cylinder that represent the cylindrical enclosure, and two heating elements which are formed of two copper cylinders with (19 mm in diameters heated internally by electrical sources that represents transfer and heat loss elements through this set-up.      The experiments were done at the range of Rayleigh number between ( , cylinders rotation angle at ( , and spacing ratio at ( .     The study showed that the ability of heat loss from two cylinders is a function of Rayleigh number, cylinders rotation angle, and the spaces between them. This ability is increased by increasing of Rayleigh number and it was showed that this ability reaches maximum value at the first cylinder ( and minimum value at the second cylinder ( at spacing ratio (S/D=3 and rotation angle ( for the first and ( for the second cylinder respectively.      The effective variables on natural convection heat transfer from the above two cylinders are related by two correlating equations, each one explains dimensionless relation of heat transfer from each cylinder that represented by Nusselt number against Rayleigh number, rotation angle, and the spacing ratio between two cylinders. 

  15. Estimation of the effect of thermal convection and casing on the temperature regime of boreholes: a review

    International Nuclear Information System (INIS)

    Eppelbaum, L V; Kutasov, I M

    2011-01-01

    In a vertical borehole, free heat convection arises when the temperature gradient equals or exceeds the so-called critical gradient. The critical temperature gradient is expressed through the critical Rayleigh number and depends on two parameters: (a) the ratio of formation (casings) to fluid (gas) conductivities (λ f /λ) and (b) the convective parameter of the fluid. Both these parameters depend on the temperature (depth). An empirical equation for the critical Rayleigh number as a function of the ratio λ f /λ is suggested. For the 0–100 °C range, empirical equations for convective parameters of water and air are proposed. The analysis of the published results of field investigations in deep boreholes and modelling shows that the temperature disturbances caused by thermal convection do not exceed 0.01–0.05 °C. Thus, in deep wells the temperature deviations due to thermal convection are usually within the accuracy of the temperature surveys. However, due to convection cells the geothermal gradient cannot be determined with sufficient accuracy for short well sections. In shallow boreholes the effect of thermal convection is more essential (up to 3–5 °C). To reduce the effect of convection on the temperature regime in shallow observational wells, it is necessary to reduce the diameter of the wellbores and use well fillers (fluids and gases) with low values of the convective parameters. The field observations and numerical calculations indicate that the distorting effect due to casing pipes is small and its influence is localized to the ends of the pipes, and this effect is independent of time. (topical review)

  16. Application of fast Fourier transform in thermo-magnetic convection analysis

    International Nuclear Information System (INIS)

    Pyrda, L

    2014-01-01

    Application of Fast Fourier Transform in thermo-magnetic convection is reported. Cubical enclosure filled with paramagnetic fluid heated from below and placed in the strong magnetic field gradients was investigated. The main aim of study was connected with identification of flow types, especially transition to turbulence. For this purpose the Fast Fourier Transform (FFT) analysis was applied. It was followed by the heat transfer characteristic for various values of magnetic induction gradient. The analysis was done at two Rayleigh numbers 7.89·10 5 and 1.86·10 6 with thermo-magnetic Rayleigh numbers up to 1.8·10 8 and 4.5·10 8 respectively. The presented results clearly indicate flow types and also demonstrate augmented heat transfer in dependence on magnetic induction gradient. Detailed analysis of flow transition to turbulent state was compared with transition line for natural convection reported in literature. The transition to turbulence in the case of thermo-magnetic convection of paramagnetic fluid was in very good agreement with transition in the case of natural convection.

  17. Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi

    Directory of Open Access Journals (Sweden)

    Ahmed F. Alfahaid, R.Y. Sakr

    2012-10-01

    Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures.  The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.

  18. Investigation of a natural convection in a small slot using a finite difference method

    International Nuclear Information System (INIS)

    Schira, P.; Guenther, C.; Mueller, U.

    1984-07-01

    Experimental results by Koster who studied natural convection processes in slender Hele-Shaw cells are simulated with an existing two-dimensional natural convection code. This investigation yields the following results: The basic model of the calculations, which assumes a constant temperature across the gap (smallest extent of the Hele-Shaw cell) and thus without heat exchange with the Plexiglas windows, leads to an underestimation of the experimentally obtained critical Rayleigh numbers (onset of convection, onset of oscillatory convection) by one order of magnitude and an overestimation of the nondimensional period compared to experimental findings. Another version of the code, which permits heat exchange with the windows reveals an overestimation of the critical Rayleigh numbers and smaller dimensionless periods than the experiments. By these two different approaches a twoside bounding the Koster's experiments are achieved. As the modified version overestimates the real heat transfer from and to the windows it may be concluded that using a suitably adapted heat transfer coefficient for the thermal coupling of the fluid and the windows numerical simulation would also reproduce quantitatively the results of Koster. The reason for the break down of the steady flow solution and the onset of transient flow was studied numerically by examining a model proposed by Howard. At this time no really satisfying answer to this question is available. (orig./GL) [de

  19. Transient natural convection in an internally heated fluid layer. Topical report, June 1975--June 1976

    International Nuclear Information System (INIS)

    Kulacki, F.A.; Emara, A.A.

    1976-06-01

    An experimental study of the transient response of a horizontal fluid layer subjected to a step change in internal energy generation has been conducted to determine the time scales for the development and decay of natural convection driven solely by the internal heat release. The layer is bounded from above by a rigid, constant temperature surface and from below by a rigid, insulated surface. Two types of unsteady convection processes are considered. In the first, the layer is brought to a motionless, isothermal state, and internal energy generation is suddenly started. In the second, steady natural convection is the initial state, and internal energy generation is suddenly stopped. For both cases, the time required for the development of the final steady state is determined by measuring the temperature response of the fluid with a small thermocouple probe. The time required for the development of the maximum temperature difference in the layer with internal generation and the time required for the complete decay of the maximum temperature difference of steady convection at a given Rayleigh number when internal energy generation is suddenly stopped are correlated with the Rayleigh number in equations which will find general application in PAHR problems in nuclear power reactors and particularly in the analysis of the small-time thermal response of in-vessel and ex-vessel molten core retention devices

  20. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  1. Suppression of instability in rotatory hydromagnetic convection

    Indian Academy of Sciences (India)

    first time by Lord Rayleigh [9] for the idealized case of two free boundaries. Rayleigh's theory shows that the gravity-dominated thermal instability in liquid layer ... suppressed for oscillatory perturbations by the simultaneous application of a ...

  2. Presentation on Tropical Mesoscale convective Systems and ...

    Indian Academy of Sciences (India)

    IAS Admin

    Shallow convection- 70% of the storm heights are below 6 km. ♢ Deep convection ... Decay convection, the convective top is found at a higher altitude than deep .... Stratospheric Fountain – Two step process. Warm tropopause- preferable for.

  3. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  4. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    National Research Council Canada - National Science Library

    Meents, Steven M

    2008-01-01

    Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images...

  5. Rayleigh scattering and depolarization ratio in linear alkylbenzene

    International Nuclear Information System (INIS)

    Liu, Qian; Zhou, Xiang; Huang, Wenqian; Zhang, Yuning; Wu, Wenjie; Luo, Wentai; Yu, Miao; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang

    2015-01-01

    It is planned to use linear alkylbenzene (LAB) as the organic solvent for the Jiangmen Underground Neutrino Observatory (JUNO) liquid scintillator detectors, due to its ultra-transparency. However, the current Rayleigh scattering length calculation for LAB disagrees with the experimental measurement. This paper reports for the first time that the Rayleigh scattering of LAB is anisotropic, with a depolarization ratio of 0.31±0.01(stat.)±0.01(sys.). We use an indirect method for Rayleigh scattering measurement with the Einstein–Smoluchowski–Cabannes formula, and the Rayleigh scattering length of LAB is determined to be 28.2±1.0 m at 430 nm

  6. Rayleigh scattering under light-atom coherent interaction

    OpenAIRE

    Takamizawa, Akifumi; Shimoda, Koichi

    2012-01-01

    Semi-classical calculation of an oscillating dipole induced in a two-level atom indicates that spherical radiation from the dipole under coherent interaction, i.e., Rayleigh scattering, has a power level comparable to that of spontaneous emission resulting from an incoherent process. Whereas spontaneous emission is nearly isotropic and has random polarization generally, Rayleigh scattering is strongly anisotropic and polarized in association with incident light. In the case where Rabi frequen...

  7. Effect of volumetric radiation on natural convection in a cavity with a horizontal fin using the lattice Boltzmann method

    Science.gov (United States)

    Tighchi, Hashem Ahmadi; Sobhani, Masoud; Esfahani, Javad Abolfazli

    2018-01-01

    The lattice Boltzmann method (LBM) is presented for the effects of volumetric radiation on laminar natural convection in a square cavity with a horizontal fin on the hot wall containing an absorbing, emitting and scattering medium. Accordingly, the flow, energy and radiative equations are solved by separate distribution functions in the LBM. A parametric study is performed: the effects of Rayleigh number and radiative parameters, such as extinction coefficient and scattering albedo on the flow and temperature fields are investigated. It is found that the isotherms become dense near the cold wall, due to highly participating properties and Rayleigh number. Also, the Nusselt number ratio (NNR) on the clod wall is examined for values of fin length and height. The maximum NNR is found at the longest fin length and near top wall for a given Rayleigh number.

  8. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  9. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  10. Non-Boussinesq Dissolution-Driven Convection in Porous Media

    Science.gov (United States)

    Amooie, M. A.; Soltanian, M. R.; Moortgat, J.

    2017-12-01

    Geological carbon dioxide (CO2) sequestration in deep saline aquifers has been increasingly recognized as a feasible technology to stabilize the atmospheric carbon concentrations and subsequently mitigate the global warming. Solubility trapping is one of the most effective storage mechanisms, which is associated initially with diffusion-driven slow dissolution of gaseous CO2 into the aqueous phase, followed by density-driven convective mixing of CO2 throughout the aquifer. The convection includes both diffusion and fast advective transport of the dissolved CO2. We study the fluid dynamics of CO2 convection in the underlying single aqueous-phase region. Two modeling approaches are employed to define the system: (i) a constant-concentration condition for CO2 in aqueous phase at the top boundary, and (ii) a sufficiently low, constant injection-rate for CO2 from top boundary. The latter allows for thermodynamically consistent evolution of the CO2 composition and the aqueous phase density against the rate at which the dissolved CO2 convects. Here we accurately model the full nonlinear phase behavior of brine-CO2 mixture in a confined domain altered by dissolution and compressibility, while relaxing the common Boussinesq approximation. We discover new flow regimes and present quantitative scaling relations for global characters of spreading, mixing, and dissolution flux in two- and three-dimensional media for the both model types. We then revisit the universal Sherwood-Rayleigh scaling that is under debate for porous media convective flows. Our findings confirm the sublinear scaling for the constant-concentration case, while reconciling the classical linear scaling for the constant-injection model problem. The results provide a detailed perspective into how the available modeling strategies affect the prediction ability for the total amount of CO2 dissolved in the long term within saline aquifers of different permeabilities.

  11. Modeling of Rayleigh wave dispersion in Iberia

    Directory of Open Access Journals (Sweden)

    José Badal

    2011-01-01

    Full Text Available Phase and group velocities of 15–70 s Rayleigh waves propagating across the Iberian Peninsula have been transformed into local dispersion curves by linear inversion of travel times. The procedure permits that the waveform dispersion to be obtained as a continuous period-dependent velocity function at grid points belonging to the area probed by the waves, thus providing phase- and group-velocity contour maps for several periods within the interval of interest. The regionalization process rests on a homogeneous initial data set in which the number of observations remains almost constant for all periods of reference. Damped least-squares inversion of the local dispersion curves for shear-wave velocity structure is performed to obtain depth-dependent S-wave velocity profiles at the grid points covering the model region. The reliability of the results should improve significantly owing to the use of phase and group velocities simultaneously. On this basis, we have built horizontal depth sections that give an updated view of the seismic velocity structure of the peninsula at lithospheric and upper mantle depths (20–200 km. After averaging all the pure-path S-wave velocities previously determined at each grid point, the velocity-depth models so obtained for major tectonic units allow the comparison between the Hercynian basement and other areas of Mesozoic folding and Tertiary basins.

  12. Kinetic simulations of Rayleigh-Taylor instabilities

    International Nuclear Information System (INIS)

    Sagert, Irina; Bauer, Wolfgang; Colbry, Dirk; Howell, Jim; Staber, Alec; Strother, Terrance

    2014-01-01

    We report on an ongoing project to develop a large scale Direct Simulation Monte Carlo code. The code is primarily aimed towards applications in astrophysics such as simulations of core-collapse supernovae. It has been tested on shock wave phenomena in the continuum limit and for matter out of equilibrium. In the current work we focus on the study of fluid instabilities. Like shock waves these are routinely used as test-cases for hydrodynamic codes and are discussed to play an important role in the explosion mechanism of core-collapse supernovae. As a first test we study the evolution of a single-mode Rayleigh-Taylor instability at the interface of a light and a heavy fluid in the presence of a gravitational acceleration. To suppress small-wavelength instabilities caused by the irregularity in the separation layer we use a large particle mean free path. The latter leads to the development of a diffusion layer as particles propagate from one fluid into the other. For small amplitudes, when the instability is in the linear regime, we compare its position and shape to the analytic prediction. Despite the broadening of the fluid interface we see a good agreement with the analytic solution. At later times we observe the development of a mushroom like shape caused by secondary Kelvin-Helmholtz instabilities as seen in hydrodynamic simulations and consistent with experimental observations.

  13. Acoustofluidic particle dynamics: Beyond the Rayleigh limit.

    Science.gov (United States)

    Baasch, Thierry; Dual, Jürg

    2018-01-01

    In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.

  14. Manipulating Rayleigh-Taylor Growth Using Adjoints

    Science.gov (United States)

    Kord, Ali; Capecelatro, Jesse

    2017-11-01

    It has been observed that initial interfacial perturbations affect the growth of Rayleigh-Taylor (RT) instabilities. However, it remains to be seen to what extent the perturbations alter the RT growth rate. Direct numerical simulations (DNS) provide a powerful means for studying the effects of initial conditions (IC) on the growth rate. However, a brute-force approach for identifying optimal initial perturbations is not practical via DNS. In addition, identifying sensitivity of the RT growth to the large number of parameters used in defining the IC is computationally expensive. A discrete adjoint is formulated to measure sensitivities of multi-mode RT growth to ICs in a high-order finite difference framework. The sensitivity is used as a search direction for adjusting the initial perturbations to both maximize and suppress the RT growth rate during its non-linear regime. The modes that contribute the greatest sensitivity are identified, and optimized perturbation energy spectrum are reported. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.

  15. Combined Lorentz force and ultrasound Doppler velocimetry in a vertical convection liquid metal flow

    Science.gov (United States)

    Zürner, Till; Vogt, Tobias; Resagk, Christian; Eckert, Sven; Schumacher, Jörg

    2017-11-01

    We report experimental studies on turbulent vertical convection flow in the liquid metal alloy gallium-indium-tin. Flow measurements were conducted by a combined use of local Lorentz force velocimetry (LLFV) and ultrasound Doppler velocimetry (UDV). It is known that the forced convection flow in a duct generates a force on the LLFV magnet system, that grows proportional to the flow velocity. We show that for the slower flow of natural convection LLFV retains this linear dependence in the range of micronewtons. Furthermore experimental results on the scaling of heat and momentum transport with the thermal driving are presented. The results cover a range of Rayleigh numbers 3 ×105 Deutsche Forschungsgemeinschaft under Grant No. GRK 1567.

  16. On the interaction of Rayleigh surface waves with structures

    International Nuclear Information System (INIS)

    Simpson, I.C.

    1976-12-01

    A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the 'frequency filtering' effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves. (author)

  17. Simulation of natural convection in an inclined polar cavity using a finite-difference lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Yang, Haicheng; Guo, Xueyan; Ren Dai [University of Shanghai for Science and Technology, Shanghai (China); Yan, Yonghua [Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai (China); Liu, Chaoqun [University of Texas at Arlington, Arlington (United States)

    2017-06-15

    Natural convection heat transfer in an inclined polar cavity was studied using a Finite-difference lattice Boltzmann method (FDLBM) based on a double-population approach for body-fitted coordinates. A D2G9 model coupled with the simplest TD2Q4 lattice model was applied to determine the velocity field and temperature field. For both velocity and temperature fields, the discrete spatial derivatives were obtained by combining the upwind scheme with the central scheme, and the discrete temporal term is obtained using a fourth-order Runge-Kutta scheme. Studies were carried out for different Rayleigh numbers and different inclination angles. The results in terms of streamlines, isotherms, and Nusselt numbers explain the heat transfer mechanism of natural convection in an inclined polar cavity due to the change of Rayleigh number and inclination angle.

  18. Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection.

    Science.gov (United States)

    Shishkina, Olga; Wagner, Sebastian; Horn, Susanne

    2014-03-01

    We derive the asymptotes for the ratio of the thermal to viscous boundary layer thicknesses for infinite and infinitesimal Prandtl numbers Pr as functions of the angle β between the large-scale circulation and an isothermal heated or cooled surface for the case of turbulent thermal convection with laminar-like boundary layers. For this purpose, we apply the Falkner-Skan ansatz, which is a generalization of the Prandtl-Blasius one to a nonhorizontal free-stream flow above the viscous boundary layer. Based on our direct numerical simulations (DNS) of turbulent Rayleigh-Bénard convection for Pr=0.1, 1, and 10 and moderate Rayleigh numbers up to 108 we evaluate the value of β that is found to be around 0.7π for all investigated cases. Our theoretical predictions for the boundary layer thicknesses for this β and the considered Pr are in good agreement with the DNS results.

  19. Heat and momentum transport scalings in vertical convection

    Science.gov (United States)

    Shishkina, Olga

    2016-11-01

    For vertical convection, where a fluid is confined between two differently heated isothermal vertical walls, we investigate the heat and momentum transport, which are measured, respectively, by the Nusselt number Nu and the Reynolds number Re . For laminar vertical convection we derive analytically the dependence of Re and Nu on the Rayleigh number Ra and the Prandtl number Pr from our boundary layer equations and find two different scaling regimes: Nu Pr 1 / 4 Ra 1 / 4 , Re Pr - 1 / 2 Ra 1 / 2 for Pr > 1 . Direct numerical simulations for Ra from 105 to 1010 and Pr from 0.01 to 30 are in excellent ageement with our theoretical findings and show that the transition between the regimes takes place for Pr around 0.1. We summarize the results from and present new theoretical and numerical results for transitional and turbulent vertical convection. The work is supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant Sh 405/4 - Heisenberg fellowship.

  20. Modeling the natural convective flow of micropolar nanofluids

    KAUST Repository

    Bourantas, Georgios

    2014-01-01

    A micropolar model for nanofluidic suspensions is proposed in order to investigate theoretically the natural convection of nanofluids. The microrotation of the nanoparticles seems to play a significant role into flow regime and in that manner it possibly can interpret the controversial experimental data and theoretical numerical results over the natural convection of nanofluids. Natural convection of a nanofluid in a square cavity is studied and computations are performed for Rayleigh number values up to 106, for a range of solid volume fractions (0 ≤ φ ≤ 0.2) and, different types of nanoparticles (Cu, Ag, Al2O3 and TiO 2). The theoretical results show that the microrotation of the nanoparticles in suspension in general decreases overall heat transfer from the heated wall and should not therefore be neglected when computing heat and fluid flow of micropolar fluids, as nanofluids. The validity of the proposed model is depicted by comparing the numerical results obtained with available experimental and theoretical data. © 2013 Elsevier Ltd. All rights reserved.

  1. Natural convection in enclosures containing lead-bismuth and lead

    International Nuclear Information System (INIS)

    Dzodzo, M.; Cuckovic-Dzodzo, D.

    2001-01-01

    The design of liquid metal reactors such as Encapsulated Nuclear Heat Source (ENHS) which are based predominantly on the flow generated by natural convection effects demands knowledge of velocity and temperature fields, distribution of the local Nusselt numbers and values of the average Nusselt numbers for small coolant velocity regimes. Laminar natural convection in rectangular enclosures with different aspect ratios, containing lead-bismuth and lead is studied numerically in this paper. The numerical model takes into account variable properties of the liquid metals. The developed correlation for average Nusselt numbers is presented. It is concluded that average Nusselt numbers are lower than in 'normal' fluids (air, water and glycerol) for the same values of Rayleigh numbers. However, the heat flux, which can be achieved, is greater due to the high thermal conductivity of liquid metals. Some specific features of the flow fields generated by natural convection in liquid metals are presented. Their consequences on the design of heat exchangers for liquid metals are discussed. An application of the obtained results to the design of a new type of steam generator, which integrates the intermediate heat exchanger and secondary pool functions of the ENHS reactor, is presented. (authors)

  2. Natural convection heat transfer in the molten metal pool

    International Nuclear Information System (INIS)

    Park, R.J.; Kim, S.B.; Kim, H.D.; Choi, S.M.

    1997-01-01

    Analytical studies using the FLOW-3D computer program have been performed on natural convection heat transfer of a high density molten metal pool, in order to evaluate the coolability of the corium pool. The FLOW-3D results on the temperature distribution and the heat transfer rate in the molten metal pool region have been compared and evaluated with the experimental data. The FLOW-3D results have shown that the developed natural convection flow contributes to the solidified crust formation of the high density molten metal pool. The present FLOW-3D results, on the relationship between the Nusselt number and the Rayleigh number in the molten metal pool region, are more similar to the calculated results of Globe and Dropkin's correlation than any others. The natural convection heat transfer in the low aspect ratio case is more substantial than that in the high aspect ratio case. The FLOW-3D results, on the temperature profile and on the heat transfer rate in the molten metal pool region, are very similar to the experimental data. The heat transfer rate of the internal heat generation case is higher than that of the bottom heating case at the same heat supply condition. (author)

  3. Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity

    Science.gov (United States)

    Ashouri, Majid; Behshad Shafii, Mohammad

    2017-11-01

    The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and counterclockwise in the lower half. In addition, strong circulations are observed around the edges of the permanent magnet surface. The strength of the circulations increase monotonically with the magnetic Rayleigh number. The circulations also increase with the permanent magnet size, but eventually, are suppressed for larger sizes. It is found that there is an optimum size for the permanent magnet due to the contrary effects of the increase in magnetic force and the increase in flow resistance by increasing the size. By increasing the magnetic Rayleigh number or isothermal walls temperature ratio, the heat transfer rate increases.

  4. Numerical Study of Mixed Convection of Nanofluid in a Concentric Annulus with Rotating Inner Cylinder

    Directory of Open Access Journals (Sweden)

    G. A. Sheikhzadeh

    2013-01-01

    Full Text Available In this work, the steady and laminar mixed convection of nanofluid in horizontal concentric annulus withrotating inner cylinder is investigated numerically. The inner and outer cylinders are kept at constanttemperature Ti and To respectively, where Ti>To. The annular space is filled with Alumina-water nanofluid.The governing equations with the corresponded boundary conditions in the polar coordinate are discretizedusing the finite volume method where pressure-velocity coupling is done by the SIMPLER algorithm.Numerical results have been obtained for Rayleigh number ranging from 102 to 105, Reynolds number from 1 to 300 and nanoparticles volume fraction from 0.01 to 0.06. The effects of the Reynolds and Rayleigh numbers, average diameter of nanoparticles and the volume fraction of the nanoparticles on the fluid flow and heat transfer inside the annuli are investigated. According to the results, the average Nusselt number decreases with increasing the Reynolds number. However, the average Nusselt number increases by increasing the Rayleigh number. Moreover, the maximum average Nusselt number occurs for an optimal nanoparticle volume fraction except situations that heat conduction predominates over the heat convection. In these conditions the average Nusselt number is close to unity.

  5. Experimental transient natural convection heat transfer from a vertical cylindrical tank

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Alberto Dopazo, J.

    2011-01-01

    In this paper heat transfer experimental data is presented and compared to general correlations proposed in the literature for transient laminar free convection from a vertical cylindrical tank. The experimental data has been obtained from heating and cooling experiments carried out with a cylindrical full-scale hot water storage tank working under real operating conditions. The experimental device and the data acquisition system are described. The calculation procedures established to obtain the experimental values of the heat transfer coefficients, as well as the data reduction process, are detailed. The local convection and radiation heat transfer coefficients are obtained from different heating power conditions for local Rayleigh numbers within the range of 1x10 5 -3x10 8 . The great quantity of available experimental data allows a detailed analysis with a reliable empirical base. The experimental local convection heat transfer coefficients are correlated and compared to correlations proposed in open literature for engineering calculations. - Highlights: → Experimental data of transient local convection heat transfer coefficients from a cylindrical tank for heating and cooling processes is obtained. → The transient behaviour of the convection coefficients is dependent on temperature difference evolutions between the surface and the air. → The Nu.Ra -1/4 ratio decreases proportionally in (T s -T ∞ ) -0.9 . → A new correlation based on the semi-infinite region theory for laminar transient free convection is proposed.

  6. Two-parameter study of the quasiperiodic route to chaos in convecting 3He--superfluid-4He mixtures

    International Nuclear Information System (INIS)

    Mainieri, R.; Sullivan, T.S.; Ecke, R.E.

    1989-01-01

    We study the frequency lockings of two intrinsic hydrodynamic modes of a convecting 3 He-superfluid- 4 He mixture by independently varying the Rayleigh and Prandtl numbers. We establish points on the critical line in this parameter space using a transient technique to locate the spiral-node transition in the interior of three resonance horns. Universal scaling is demonstrated at winding numbers with golden mean tails by computing the f(α) singularity spectrum

  7. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  8. Hyper-Rayleigh scattering in centrosymmetric systems

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org [School of Chemistry, University of East Anglia, Norwich NR4 7TJ (United Kingdom)

    2015-09-28

    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.

  9. Concepts of magnetospheric convection

    International Nuclear Information System (INIS)

    Vasyliunas, V.M.

    1975-01-01

    Magnetospheric physics, which grew out of attempts to understand the space environment of the Earth, is becoming increasingly applicable to other systems in the Universe. Among the planets, in addition to the Earth, Jupiter, Mercury, Mars and (in a somewhat different way) Venus are now known to have magnetospheres. The magnetospheres of pulsars have been regarded as an essential part of the pulsar phenomenon. Other astrophysical systems, such as supernova remnant shells or magnetic stars and binary star systems, may be describable as magnetospheres. The major concepts of magnetospheric physics thus need to be formulated in a general way not restricted to the geophysical context in which they may have originated. Magnetospheric convection has been one of the most important and fruitful concepts in the study of the Earth's magnetosphere. This paper describes the basic theoretical notions of convection in a manner applicable to magnetospheres generally and discusses the relative importance of convective corotational motions, with particular reference to the comparison of the Earth and Jupiter. (Auth.)

  10. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    Science.gov (United States)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  11. Three-dimensional unsteady natural convection and entropy generation in an inclined cubical trapezoidal cavity with

    Directory of Open Access Journals (Sweden)

    Ahmed Kadhim Hussein

    2016-06-01

    Full Text Available Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ⩽ Ra ⩽ 105, while the trapezoidal cavity inclination angle is varied as 0° ⩽ Φ ⩽ 180°. Prandtl number is considered constant at Pr = 0.71. Second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers is presented and discussed, while, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low. Moreover, when the Rayleigh number increases the average Nusselt number increases.

  12. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  13. Aspect ratio effects of an adiabatic rectangular obstacle on natural convection and entropy generation of a nanofluid in an enclosure

    International Nuclear Information System (INIS)

    Sheikhzadeh, G. A.; Nikfar, M.

    2013-01-01

    In the present study, aspect ratio (AR) effects of a centered adiabatic rectangular obstacle numerically investigated on natural convection and entropy generation in a differentially heated enclosure filled with either water or nanofluid (Cu-water). The governing equations are solved numerically with finite volume method using the SIMPLER algorithm. The study has been done for Rayleigh numbers between 10"3 and 10"6 , the aspect ratio of 1/3, 1/2, 1, 2 and 3 and for base fluid as well as nanofluid. It is found that, using the nanofluid leads to increase the flow strength, average Nusselt number and entropy generation and decrease the Bejan number especially at high Rayleigh numbers. At low Rayleigh numbers entropy generation is very low. By increasing Rayleigh number, entropy generation and Bejan number increases. It is observed that the viscose entropy generation is more considerable than the thermal entropy generation and has dominant role in total entropy generation. The maximum entropy generation occurs at AR = 1/3 and 3 and the minimum entropy generation occurs at AR = 1 and 1/2. It is observed that the effect of AR on Nusselt number, entropy generation and Bejan number depends on Rayleigh number.

  14. Aspect ratio effects of an adiabatic rectangular obstacle on natural convection and entropy generation of a nanofluid in an enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhzadeh, G. A.; Nikfar, M. [University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-11-15

    In the present study, aspect ratio (AR) effects of a centered adiabatic rectangular obstacle numerically investigated on natural convection and entropy generation in a differentially heated enclosure filled with either water or nanofluid (Cu-water). The governing equations are solved numerically with finite volume method using the SIMPLER algorithm. The study has been done for Rayleigh numbers between 10{sup 3} and 10{sup 6} , the aspect ratio of 1/3, 1/2, 1, 2 and 3 and for base fluid as well as nanofluid. It is found that, using the nanofluid leads to increase the flow strength, average Nusselt number and entropy generation and decrease the Bejan number especially at high Rayleigh numbers. At low Rayleigh numbers entropy generation is very low. By increasing Rayleigh number, entropy generation and Bejan number increases. It is observed that the viscose entropy generation is more considerable than the thermal entropy generation and has dominant role in total entropy generation. The maximum entropy generation occurs at AR = 1/3 and 3 and the minimum entropy generation occurs at AR = 1 and 1/2. It is observed that the effect of AR on Nusselt number, entropy generation and Bejan number depends on Rayleigh number.

  15. Rayleigh scattering in few-mode optical fibers.

    Science.gov (United States)

    Wang, Zhen; Wu, Hao; Hu, Xiaolong; Zhao, Ningbo; Mo, Qi; Li, Guifang

    2016-10-24

    The extremely low loss of silica fibers has enabled the telecommunication revolution, but single-mode fiber-optic communication systems have been driven to their capacity limits. As a means to overcome this capacity crunch, space-division multiplexing (SDM) using few-mode fibers (FMF) has been proposed and demonstrated. In single-mode optical fibers, Rayleigh scattering serves as the dominant mechanism for optical loss. However, to date, the role of Rayleigh scattering in FMFs remains elusive. Here we establish and experimentally validate a general model for Rayleigh scattering in FMFs. Rayleigh backscattering not only sets the intrinsic loss limit for FMFs but also provides the theoretical foundation for few-mode optical time-domain reflectometry, which can be used to probe perturbation-induced mode-coupling dynamics in FMFs. We also show that forward inter-modal Rayleigh scattering ultimately sets a fundamental limit on inter-modal-crosstalk for FMFs. Therefore, this work not only has implications specifically for SDM systems but also broadly for few-mode fiber optics and its applications in amplifiers, lasers, and sensors in which inter-modal crosstalk imposes a fundamental performance limitation.

  16. Rayleigh scattering in an emitter-nanofiber-coupling system

    Science.gov (United States)

    Tang, Shui-Jing; Gao, Fei; Xu, Da; Li, Yan; Gong, Qihuang; Xiao, Yun-Feng

    2017-04-01

    Scattering is a general process in both fundamental and applied physics. In this paper, we investigate Rayleigh scattering of a solid-state-emitter coupled to a nanofiber, by S -matrix-like theory in k -space description. Under this model, both Rayleigh scattering and dipole interaction are studied between a two-level artificial atom embedded in a nanocrystal and fiber modes (guided and radiation modes). It is found that Rayleigh scattering plays a critical role in the transport properties and quantum statistics of photons. On the one hand, Rayleigh scattering produces the transparency in the optical transmitted field of the nanofiber, accompanied by the change of atomic phase, population, and frequency shift. On the other hand, the interference between two kinds of scattering fields by Rayleigh scattering and dipole transition modifies the photon statistics (second-order autocorrelation function) of output fields, showing a strong wavelength dependence. This study provides guidance for the solid-state emitter acting as a single-photon source and can be extended to explore the scattering effect in many-body physics.

  17. Natural convection heat transfer from a vertical circular tube sheet

    International Nuclear Information System (INIS)

    Dharne, S.P.; Gaitonde, U.N.

    1996-01-01

    Experiments were conducted to determine natural convection heat transfer coefficients (a) on a plain vertical circular plate, and (b) on a similar plate with a square array of non-conducting tubes fixed in it. The experiments were carried out using air as the heat transfer medium. The diameter of the brass plates used was 350 mm. The diameter of the bakelite tubes used was 19.2 mm. The range of Rayleigh numbers was from 1.06x10 8 to 1.66x10 8 . The results show that the heat transfer coefficients in case (a) are very close to those obtained using standard correlations for vertical flat plates, whereas for case (b) the heat transfer coefficients are at least 50 percent higher than those predicted by the Churchill-Chu correlation. It is hence concluded that the disturbance to boundary layer caused by the presence of tubes enhances the heat transfer coefficient significantly. (author). 4 refs., 3 figs

  18. Unsteady three-dimensional behavior of natural convection in horizontal annulus

    International Nuclear Information System (INIS)

    Ohya, Toshizo; Miki, Yasutomi; Morita, Kouji; Fukuda, Kenji; Hasegawa, Shu

    1988-01-01

    An numerical analysis has been performed on unsteady three-dimensional natural convection in a concentric horizontal annulus filled with air. The explicit leap-frog scheme is used for integrating three-dimensional time-dependent equations and the fast Fourier transform (FFT) for solving the Poisson equations for pressure. An oscillatory flow is found to occur at high Rayleigh numbers, which agree qualitatively with the experimental observation made by Bishop et al. An experiment is also conducted to measure temperature fluctuations; a comparison between periods of fluctuations obtained numerically and experimentally shows a good agreement. Numerical calculations yield various statistical parameters of turbulence at higher Rayleigh numbers, which wait experimental verificaions, however. (author)

  19. Numerical investigation of Rayleigh–Bénard convection in a cylinder of unit aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo-Fu; Jiang, Jin [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Zhou, Lin [Institute of Structural Mechanics, Chinese Academy of Engineering Physics, Mianyang, 621900 (China); Sun, De-Jun, E-mail: jinjiang@whu.edu.cn [Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027 (China)

    2016-02-15

    Thermal convection in a vertical cylindrical cavity with a heated bottom, cooled top and insulated sidewall is investigated numerically. The radius to height ratio (Γ = height/radius) is fixed to unity and the Prandtl number is varied from 0.04 to 1. Rayleigh numbers up to 16 000 are considered in this study. Ten different kinds of flow regime have been identified, including both steady and unsteady patterns. The transition from steady to oscillatory flow occurs at a much lower Rayleigh number for small Prandtl number flow than for large Prandtl number flow. A bifurcation analysis shows the coexistence of two flow patterns in a certain parameter regime. The effect of flow structure on heat transfer is studied for a Prandtl number of unity. (paper)

  20. Experimental study of the steady natural convection in a horizontal annulus with irregular boundaries

    International Nuclear Information System (INIS)

    Boyd, R.D.

    1980-01-01

    The natural convective heat transfer across an annulus with irregular boundaries was studied using a Mach-Zehnder interferometer. The annulus was formed by an inner hexagonal cylinder and an outer concentric circular cylinder. This configuration models, in two dimensions, a liquid metal fast breeder reactor spent fuel subassembly inside a shipping container. During the test, the annulus was filled with a single gas, either neon, air, argon, krypton, or xenon, at a pressure of about 0.5 MPa. From temperature measurements, both local and mean Nusselt numbers (Nu/sub Δ/) at the surface of the inner cylinder were evaluated, with the mean Rayleigh number (anti Ra/sub Δ/) varying from 4.54 x 10 4 to 0.915 x 10 6 (Δ is the local gas width). The data correlation for the mean Nusselt and Rayleigh numbers is given by anti Nu/sub Δ/ = 0.183 anti Ra/sub Δ/ 0 310

  1. Numerical Approach of Coupling Vibration Magneto-convection In Nanofluid

    Directory of Open Access Journals (Sweden)

    K Syham

    2016-06-01

    Full Text Available The objective of our work is to visualize numerically the effect of coupling vibratory excitation and magnetic field on cooling an electronic component or a solar cell (originality of our study in arid and semi-arid area. A square cavity of side H filled with Al2O3-water nanofluid where an electronic component is placed on the bottom horizontal wall is maintained at isothermal hot temperature Th. The top horizontal wall is maintained at a cold temperature Tc. The vertical walls are adiabatic. The equations describing the natural convection flow in the square cavity consist of mass conservation, momentum and energy. For the physical parameters of Al2O3-water nanofluid, we use the Brinkman and Wasp model. Transport equations are solved numerically by finite element method. The results are obtained for Rayleigh number Ra= 105, Hartmann numbers between 0 and 100 and vibratory excitation inclination angle between 0° and 90°. The external magnetic field inclination angle varies between 0° and 90° and the Rayleigh number ratio between 0 and 50.  Results are presented in the form of heat transfer flux ratio and maximum absolute value of stream function.

  2. Thermal convection in dielectric liquids in a cylindrical annulus

    Science.gov (United States)

    Mutabazi, Innocent; Kang, Changwoo; Meyer, Antoine; Meier, Martin; Egbers, Christoph

    2017-11-01

    Thermal convection is investigated in a dielectric liquid of thermal expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ and electric permittivity ɛ in a cylindrical annulus of inner radius a and outer radius bwith a radial temperature gradient and a high-frequency electric tension. The coupling between the electric field and the gradient of the permittivity yields the dielectrophoretic force. The control parameters are η = a/b, Pr = ν / κ, the classic Rayleigh number Ra = αΔ T gd3 / νκ , and the electric Rayleigh number L = αΔ T ged3 / νκ The electric gravity ge is the gradient of the electric energy in the condenser. Linear stability analysis shows that for infinite annulus, depending on values of η, Ra and L, critical modes are either hydrodynamic or thermal modes, helical electric modes or columnar vortices. Experiments in an annulus of aspect ratio Γ = 19.6 during parabolic flight campaigns indicate the existence of columns. Columnar vortices result from the competition between Archimedean buoyancy and dielectrophoretic force. Direct numerical simulations in the annulus of Γ = 20 show that the columnar vortices occupy the central part of the annulus, while near the end-zones the flow is laminar and dominated by an azimuthal vorticity. This work was supported by CNRS (LIA ISTROF), CNES and DLR.

  3. Thermal convection of liquid sodium in inclined cylinders

    Science.gov (United States)

    Khalilov, Ruslan; Kolesnichenko, Ilya; Pavlinov, Alexander; Mamykin, Andrey; Shestakov, Alexander; Frick, Peter

    2018-04-01

    The effect of inclination on the low Prandtl number turbulent convection in a cylinder of unit aspect ratio was studied experimentally. The working fluid was sodium (Prandtl number Pr =0.0094 ), the measurements were performed for a fixed Rayleigh number Ra =(1.47 ±0.03 ) ×107 , and the inclination angle varied from β =0∘ (the Rayleigh-Bénard convection, the temperature gradient is vertical) up to β =90∘ (the applied temperature gradient is horizontal) with a step Δ β =10∘ . The effective axial heat flux characterized by the Nusselt number is minimal at β =0∘ and demonstrates a smooth growth with the increase of the cylinder inclination, reaching a maximum at angle β ≈70∘ and decreasing with a further increase of β . The maximal value of the normalized Nusselt number Nu (β )/Nu (0 ) was 1.21. In general, the dependence of Nu (β ) in a cylinder with unit aspect ratio is similar to what was observed in sodium convection in inclined long cylinders but is much weaker. The structure of the flow undergoes a significant transformation with inclination. Under moderate inclination (β ≲30∘ ), the fluctuations are strong and are provided by regular oscillations of large-scale circulation (LSC) and by turbulence. Under large inclination (β >60∘ ), the LSC is regular and the turbulence is weak, while in transient regimes (30∘border of transient and large inclinations. We find the first evidence of strong LSC fluctuations in low Prandtl number convective flow under moderate inclination. The rms azimuthal fluctuations of LSC, about 27∘ at β =0∘ , decrease almost linearly up to β =30∘ , where they are about 9∘. The angular fluctuations in the vicinity of the end faces are much stronger (about 37∘ at β =0∘ ) and weakly decrease up to β =20∘ . The strong anticorrelation of the fluctuations in two halves of the cylinder indicates the torsional character of LSC fluctuations. At β =30∘ , the intensity of the oscillations at the

  4. Computational simulation of turbulent natural convection in a corium pool

    International Nuclear Information System (INIS)

    Vieira, Camila B.; Su, Jian; Niceno, Bojan

    2013-01-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10 8 to 10 15 . Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu i ). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v 2 -f (commonly called as v 2 -f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  5. Computational simulation of turbulent natural convection in a corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Camila B.; Su, Jian, E-mail: camila@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Niceno, Bojan, E-mail: bojan.niceno@psi.ch [Paul Scherrer Institut (PSI), Villigen (Switzerland). Nuclear Energy and Safety

    2013-07-01

    After a severe accident in a nuclear power plant, the total thermal loading on the vessel of a nuclear reactor is controlled by the convective heat transfer. Taking that fact into account, this work aimed to analyze the turbulent natural convection inside a representative lower head cavity. By means of an open-source CFD code, OpenFOAM (Open Field Operation and Manipulation), numerical simulations were performed to investigate a volumetrically heated fluid (Pr = 7.0) at internal Rayleigh (Ra) numbers ranging from 10{sup 8} to 10{sup 15}. Bearing in mind that severe accident scenario and the physical-chemical effects are many and complex, the fluid analyzed was considered Newtonian, with constant physical properties, homogeneous and single phase. Even working with that simplifications, the modeling of turbulent natural convection has posed a considerable challenge for the Reynolds Averaged Navier-Stokes (RANS) equations based models, not only because of the complete unsteadiness of the flow and the strong turbulence effects in the near wall regions, but also because of the correct treatment of the turbulent heat fluxes (θu{sub i}). So, this work outlined three approaches for treating the turbulent heat fluxes: the Simple Gradient Diffusion Hypothesis (SGDH), the Generalized Gradient Diffusion Hypothesis (GGDH) and the Algebraic Flux Model (AFM). Simulations performed at BALI test based geometry with a four equations model, k-ε-v{sup 2} -f (commonly called as v{sup 2}-f and V2-f), showed that despite of AFM and GGDH have provided reasonable agreement with experimental data for turbulent natural convection in a differentially heated cavity, they proved to be very unstable for buoyancy-driven flows with internal source in comparison to SGDH model. (author)

  6. The Rayleigh-Taylor instability in the spherical pinch

    International Nuclear Information System (INIS)

    Chen, H.B.; Hilko, B.; Panarella, E.

    1994-01-01

    The spherical pinch (SP) concept is an outgrowth of the inertial confinement model (ICF). Unlike the ICF where instabilities, especially the Rayleigh-Taylor instability, have been studied extensively, the instability study of the spherical pinch has just begun. The Raleigh-Taylor instability is investigated for the first time in the SP in the present work. By using the simple condition for the Rayleigh-Taylor instability ∇p · ∇p < O (density and pressure gradients have opposite direction), we have qualitatively identified the regions for development of instabilities in the SP. It is found that the explosion phase (central discharge) is stable and instabilities take place in the imploding phase. However, the growth rate for the instability is not in exponential form, and the appearance of the Rayleigh-Taylor instability does not prevent the main shock wave from converging to the center of the sphere

  7. Rayleigh-Taylor instability of cylindrical jets with radial motion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.

  8. Rayleigh-Taylor instability and mixing in SN 1987A

    International Nuclear Information System (INIS)

    Ebisuzaki, T.; Shigeyama, T.; Nomoto, K.

    1989-01-01

    The stability of the supernova ejecta is compared with the Rayleigh-Taylor instability for a realistic model of SN 1987A. A linear analysis indicates that the layers around the composition interface between the hydrogen-rich and helium zones, and become Rayleigh-Taylor unstable between the helium and metal zones. In these layers, the pressure increases outward because of deceleration due to the reverse shock which forms when the blast shock hits the massive hydrogen-rich envelope. On the contrary, the density steeply decreases outward because of the preexisting nuclear burning shell. Then, these layers undergo the Raleigh-Taylor instability because of the opposite signs of the pressure and density gradients. The estimated growth rate is larger than the expansion rate of the supernova. The Rayleigh-Taylor instability near the composition interface is likely to induce mixing, which has been strongly suggested from observations of SN 1987A. 25 refs

  9. Nonlinear saturation of the Rayleigh endash Taylor instability

    International Nuclear Information System (INIS)

    Das, A.; Mahajan, S.; Kaw, P.; Sen, A.; Benkadda, S.; Verga, A.

    1997-01-01

    A detailed numerical simulation of the nonlinear state of the Rayleigh endash Taylor instability has been carried out. There are three distinct phases of evolution where it is governed by the (i) linear effects, (ii) effects arising from the conventional nonlinear terms and (iii) subtle nonlinear effects arising through the coupling terms. During the third phase of evolution, there is a self-consistent generation of shear flow which saturates the Rayleigh endash Taylor instability even in situations (with periodic boundaries) where, in principle, an infinite amount of gravitational energy can be tapped. The Galerkin approximation is presented to provide an understanding of our numerical findings. Last, there is an attempt to provide a comprehensive understanding of the nonlinear state of the Rayleigh endash Taylor instability by comparing and contrasting this work with earlier studies. copyright 1997 American Institute of Physics

  10. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  11. True polar wander on convecting planets

    Science.gov (United States)

    Rose, Ian Robert

    Rotating planets are most stable when spinning around their maximum moment of inertia, and will tend to reorient themselves to achieve this configuration. Geological activity redistributes mass in the planet, making the moment of inertia a function of time. As the moment of inertia of the planet changes, the spin axis shifts with respect to a mantle reference frame in order to maintain rotational stability. This process is known as true polar wander (TPW). Of the processes that contribute to a planet's moment of inertia, convection in the mantle generates the largest and longest-period fluctuations, with corresponding shifts in the spin axis. True polar wander has been hypothesized to explain several physiographic features on planets and moons in our solar system. On Earth, TPW events have been invoked in some interpretations of paleomagnetic data. Large swings in the spin axis could have enormous ramifications for paleogeography, paleoclimate, and the history of life. Although the existence of TPW is well-verified, it is not known whether its rate and magnitude have been large enough for it to be an important process in Earth history. If true polar wander has been sluggish compared to plate tectonic speeds, then it would be difficult to detect and its consequences would be minor. I investigate rates of true polar wander on convecting planets using scaling, numerics, and inverse problems. I perform a scaling analysis of TPW on a convecting planet, identifying a minimal set of nondimensional parameters which describe the problem. The primary nondimensional numbers that control the rate of TPW are the ratio of centrifugal to gravitational forces m and the Rayleigh number Ra. The parameter m sets the size of a planet's rotational bulge, which determines the amount of work that needs to be done to move the spin axis. The Rayleigh number controls the size, distribution, and rate of change of moment of inertia anomalies, all of which affect the rate of TPW. I find that

  12. Rayleigh wave ellipticity across the Iberian Peninsula and Morocco

    Science.gov (United States)

    Gómez García, Clara; Villaseñor, Antonio

    2015-04-01

    Spectral amplitude ratios between horizontal and vertical components (H/V ratios) from seismic records are useful to evaluate site effects, predict ground motion and invert for S velocity in the top several hundred meters. These spectral ratios can be obtained from both ambient noise and earthquakes. H/V ratios from ambient noise depend on the content and predominant wave types: body waves, Rayleigh waves, a mixture of different waves, etc. The H/V ratio computed in this way is assumed to measure Rayleigh wave ellipticity since ambient vibrations are dominated by Rayleigh waves. H/V ratios from earthquakes are able to determine the local crustal structure at the vicinity of the recording station. These ratios obtained from earthquakes are based on surface wave ellipticity measurements. Although long period (>20 seconds) Rayleigh H/V ratio is not currently used because of large scatter has been reported and uncertainly about whether these measurements are compatible with traditional phase and group velocity measurements, we will investigate whether it is possible to obtain stable estimates after collecting statistics for many earthquakes. We will use teleseismic events from shallow earthquakes (depth ≤ 40 km) between 2007 January 1 and 2012 December 31 with M ≥ 6 and we will compute H/V ratios for more than 400 stations from several seismic networks across the Iberian Peninsula and Morocco for periods between 20 and 100 seconds. Also H/V ratios from cross-correlations of ambient noise in different components for each station pair will be computed. Shorter period H/V ratio measurements based on ambient noise cross-correlations are strongly sensitive to near-surface structure, rather than longer period earthquake Rayleigh waves. The combination of ellipticity measurements based on earthquakes and ambient noise will allow us to perform a joint inversion with Rayleigh wave phase velocity. Upper crustal structure is better constrained by the joint inversion compared

  13. Regimes of Axisymmetric Flow and Scaling Laws in a Rotating Annulus with Local Convective Forcing

    Directory of Open Access Journals (Sweden)

    Susie Wright

    2017-07-01

    Full Text Available We present a numerical study of axisymmetric flow in a rotating annulus in which local thermal forcing, via a heated annular ring on the outside of the base and a cooled circular disk in the centre of the top surface, drives convection. This new configuration is a variant of the classical thermally-driven annulus, where uniform heating and cooling are applied through the outer and inner sidewalls respectively. The annulus provides an analogue to a planetary circulation and the new configuration, with its more relaxed vertical thermal boundary conditions, is expected to better emulate vigorous convection in the tropics and polar regions as well as baroclinic instability in the mid-latitude baroclinic zone. Using the Met Office/Oxford Rotating Annulus Laboratory (MORALS code, we have investigated a series of equilibrated, two dimensional axisymmetric flows across a large region of parameter space. These are characterized in terms of their velocity and temperature fields. When rotation is applied several distinct flow regimes may be identified for different rotation rates and strengths of differential heating. These regimes are defined as a function of the ratio of the horizontal Ekman layer thickness to the non-rotating thermal boundary layer thickness and are found to be similar to those identified in previous annulus experiments. Convection without rotation is also considered and the scaling of the heat transport with Rayleigh number is calculated. This is then compared with existing work on the classical annulus as well as horizontal and Rayleigh-Bénard convection. As with previous studies on both rotating and non-rotating convection the system’s behaviour is found to be aspect ratio dependent. This dependence is seen in the scaling of the non-rotating Nusselt number and in transitions between regimes in the rotating case although further investigation is required to fully explain these observations.

  14. Numerical simulation of Rayleigh-Taylor turbulent mixing layers

    International Nuclear Information System (INIS)

    Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.

    2009-01-01

    Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)

  15. Passive retrieval of Rayleigh waves in disordered elastic media

    International Nuclear Information System (INIS)

    Larose, Eric; Derode, Arnaud; Clorennec, Dominique; Margerin, Ludovic; Campillo, Michel

    2005-01-01

    When averaged over sources or disorder, cross correlation of diffuse fields yields the Green's function between two passive sensors. This technique is applied to elastic ultrasonic waves in an open scattering slab mimicking seismic waves in the Earth's crust. It appears that the Rayleigh wave reconstruction depends on the scattering properties of the elastic slab. Special attention is paid to the specific role of bulk to Rayleigh wave coupling, which may result in unexpected phenomena, such as a persistent time asymmetry in the diffuse regime

  16. Grain size measurements by ultrasonic Rayleigh surface waves

    International Nuclear Information System (INIS)

    Palanichamy, P.; Jayakumar, T.

    1996-01-01

    The use of Rayleigh surface waves to determine average grain size nondestructively in an austenitic stainless steel AISI type 316 stainless is discussed. Two commercial type 4MHz frequency surface wave transducers, one as transmitter and the other as receiver were employed for the measurement of surface wave amplitudes. Relative amplitudes of the Rayleigh surface waves were correlated with the metallographically obtained grain sizes. Results indicate that surface/sub-surface average grain sizes of AISI type 316 austenitic stainless steel can be estimated with a confidence level of more than 80% in the grain size range 30-170 μm. (author)

  17. Study on evaluation methods for Rayleigh wave dispersion characteristic

    Science.gov (United States)

    Shi, L.; Tao, X.; Kayen, R.; Shi, H.; Yan, S.

    2005-01-01

    The evaluation of Rayleigh wave dispersion characteristic is the key step for detecting S-wave velocity structure. By comparing the dispersion curves directly with the spectra analysis of surface waves (SASW) method, rather than comparing the S-wave velocity structure, the validity and precision of microtremor-array method (MAM) can be evaluated more objectively. The results from the China - US joint surface wave investigation in 26 sites in Tangshan, China, show that the MAM has the same precision with SASW method in 83% of the 26 sites. The MAM is valid for Rayleigh wave dispersion characteristic testing and has great application potentiality for site S-wave velocity structure detection.

  18. Rayleigh waves in elastic medium with double porosity

    Directory of Open Access Journals (Sweden)

    Rajneesh KUMAR

    2018-03-01

    Full Text Available The present paper deals with the propagation of Rayleigh waves in isotropic homogeneous elastic half-space with double porosity whose surface is subjected to stress-free boundary conditions. The compact secular equations for elastic solid half-space with voids are deduced as special cases from the present analysis. In order to illustrate the analytical developments, the secular equations have been solved numerically. The computer simulated results for copper materials in respect of Rayleigh wave velocity and attenuation coe¢ cient have been presented graphically.

  19. Rayleigh-Schrödinger series and Birkhoff decomposition

    Science.gov (United States)

    Novelli, Jean-Christophe; Paul, Thierry; Sauzin, David; Thibon, Jean-Yves

    2018-01-01

    We derive new expressions for the Rayleigh-Schrödinger series describing the perturbation of eigenvalues of quantum Hamiltonians. The method, somehow close to the so-called dimensional renormalization in quantum field theory, involves the Birkhoff decomposition of some Laurent series built up out of explicit fully non-resonant terms present in the usual expression of the Rayleigh-Schrödinger series. Our results provide new combinatorial formulae and a new way of deriving perturbation series in quantum mechanics. More generally we prove that such a decomposition provides solutions of general normal form problems in Lie algebras.

  20. Nd:YAG Laser-Based Dual-Line Detection Rayleigh Scattering and Current Efforts on UV, Filtered Rayleigh Scattering

    Science.gov (United States)

    Otugen, M. Volkan; Popovic, Svetozar

    1996-01-01

    Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.

  1. Natural convection of Al2O3-water nanofluid in a wavy enclosure

    Science.gov (United States)

    Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.

    2017-06-01

    Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat

  2. Depolarization Rayleigh scattering as a means of molecular concentration determination in plasmas

    NARCIS (Netherlands)

    Meulenbroeks, R.F.G.; Schram, D.C.; Jaegers, L.J.M.; Sanden, van de M.C.M.

    1992-01-01

    The difference in polarization for Rayleigh scattered radiation on spherically and nonspherically symmetric scattering objects has been used to obtain molecular species concentrations in plasmas of simple composition. Using a Rayleigh scattering diagnostic, the depolarized component of the scattered

  3. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    International Nuclear Information System (INIS)

    Puragliesi, R.; Dehbi, A.; Leriche, E.; Soldati, A.; Deville, M.O.

    2011-01-01

    Highlights: → 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. → Description of velocity and temperature first and second moments with changing in the Rayleigh number. → Strong decoupling between the turbulent kinetic energy and the dissipation rate. → Particle recirculation sustained by the vertical hot boundary layer. → Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10 9 , 10 10 ) and three values of the particle diameter (d p = 15, 25, 35 [μm]). We consider the cavity filled with air and particles with the same density of water ρ w = 1000 [kg/m 3 ] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift and thermophoretic

  4. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)

    2011-10-15

    Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift

  5. Effective thermal conductivity of a heat generating rod bundle dissipating heat by natural convection and radiation

    International Nuclear Information System (INIS)

    Senve, Vinay; Narasimham, G.S.V.L.

    2011-01-01

    Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.

  6. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  7. Active Control of Thermal Convection in a Rectangular Loop by Changing its Spatial Orientation

    Science.gov (United States)

    Bratsun, Dmitry A.; Krasnyakov, Ivan V.; Zyuzgin, Alexey V.

    2018-02-01

    The problem of the automatic control of the fluid flow in a rectangular convective loop heated from below is studied theoretically and experimentally. The control is performed by using a feedback subsystem which changes the convection regimes by introducing small discrete changes in the spatial orientation of the loop with respect to gravity. We focus on effects that arise when the feedback controller operates with an unavoidable time delay, which is cause by the thermal inertia of the medium. The mathematical model of the phenomenon is developed. The dynamic regimes of the convection in the thermosyphon loop under control are studied. It is shown that the proposed control method can successfully stabilize not only a no-motion state of the fluid, but also time-dependent modes of convection including the irregular fluid flow at high values of the Rayleigh number. It is shown that the excessive gain of the proportional feedback can result in oscillations in the loop orientation exciting the unsteady convection modes. The comparison of the experimental data obtained for dielectric oil and dodecane with theory is given, and their good agreement is demonstrated.

  8. Periodic Boundary Motion in Thermal Turbulence

    International Nuclear Information System (INIS)

    Zhang, Jun; Libchaber, Albert

    2000-01-01

    A free-floating plate is introduced in a Benard convection cell with an open surface. It partially covers the cell and distorts the local heat flux, inducing a coherent flow that in turn moves the plate. Remarkably, the plate can be driven to a periodic motion even under the action of a turbulent fluid. The period of the oscillation depends on the coverage ratio, and on the Rayleigh number of the convective system. The plate oscillatory behavior observed in this experiment may be related to a geological model, in which continents drift in a quasiperiodic fashion. (c) 2000 The American Physical Society

  9. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation

    Science.gov (United States)

    Sheikholeslami, M.; Li, Zhixiong; Shamlooei, M.

    2018-06-01

    Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.

  10. Numerical analysis of natural convection in a double-layer immiscible system

    International Nuclear Information System (INIS)

    Gubaidullin, A.A.; Sehgal, B.R.

    2001-01-01

    In the present paper numerical analysis has been applied to study the natural convection heat transfer in a system composed of two immiscible fluids with uniform internal heat generation in the lower layer or in both layers enclosed in a rectangular or in a semi-circular vessel. The objective of the work is to perform a parametric study to assess the effect of physical properties on the heat transfer characteristics as well as to complement results obtained from experiments by means of CFD simulations for a range of lower Rayleigh number and combine the experimental data and the computational results. (author)

  11. Parametric numerical investigaion of natural convection in a heat-generating fluid with phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N. [Institute of Nuclear Safety Russian Academy Science, Moscow (Russian Federation)

    1995-09-01

    Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.

  12. Wavelength selection in traveling-wave convection in a fluid mixture

    International Nuclear Information System (INIS)

    Surko, C.M.; Eaton, K.D.; Baxter, G.W.; Iwata, K.

    1993-01-01

    The mechanisms by which a one-dimensional pattern of traveling waves changes wavelength (i.e. the Eckhaus instability) is studied in a binary fluid mixture. Propagating wavelength modulations develop when the Rayleigh number of the system is decreased below a wavelength-dependent threshold, commonly referred to as the Eckhaus boundary. These wavelength modulations increase in amplitude and narrow in spatial extent until they trigger the creation or annihilation of convection roll pairs and thereby change the average wavelength of the system. The authors find qualitatively different dynamics for wavelength-increasing events and wavelength-decreasing events; these differences are due to the strong wavelength dependence of the group velocity

  13. Experimental investigation of quantum effects in time-resolved resonance Rayleigh scattering from quantum well excitons

    DEFF Research Database (Denmark)

    Birkedal, Dan; Shah, Jagdeep; Shchegrov, Andrei V.

    2000-01-01

    Resonant Rayleigh scattering from quantum well excitons is investigated using ultrafast spectral interferometry. We isolate the coherent Rayleigh scattering from incoherent luminescence in a single speckle. Averaging the resonant Rayleigh intensity over several speckles allows us to identify...... features in support of quantum corrections to the classical description of the underlying scattering process....

  14. Instantaneous Rayleigh scattering from excitons localized in monolayer islands

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Leosson, Kristjan; Jensen, Jacob Riis

    2000-01-01

    We show that the initial dynamics of Rayleigh scattering from excitons in quantum wells can be either instantaneous or delayed, depending on the exciton ensemble studied. For excitation of the entire exciton resonance, a finite rise time given by the inverse inhomogeneous broadening: of the exciton...

  15. Measurement of the stimulated thermal Rayleigh scattering instability

    International Nuclear Information System (INIS)

    Karr, T.J.; Rushford, M.C.; Murray, J.R.; Morris, J.R.

    1989-04-01

    Growth of perturbations due to stimulated thermal Rayleigh scattering was observed on a laser beam propagating in a 1 meter cell of CC14. Initial sinusoidal irradiance perturbations were seeded onto the laser leam, and their amplification in the cell was recorded by a near field camera. The perturbation growth rate is in agreement with analytical predictions of linearized propagation theory

  16. The prediction and discovery of Rayleigh line fine structure

    International Nuclear Information System (INIS)

    Fabelinskii, Immanuil L

    2000-01-01

    The history of the theoretical prediction and experimental discovery of the Rayleigh line fine structure (which belongs to one of the most important phenomena in optics and physics of condensed matter) is discussed along with the history of first publications concerning this topic. (from the history of physics)

  17. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  18. Temperature-Driven Convection

    Science.gov (United States)

    Bohan, Richard J.; Vandegrift, Guy

    2003-02-01

    Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.

  19. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  20. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank.

    Science.gov (United States)

    Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin

    2017-08-01

    The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

  1. Dynamical role of Ekman pumping in rapidly rotating convection

    Science.gov (United States)

    Stellmach, Stephan; Julien, Keith; Cheng, Jonathan; Aurnou, Jonathan

    2015-04-01

    The exact nature of the mechanical boundary conditions (i.e. no-slip versus stress-free) is usually considered to be of secondary importance in the rapidly rotating parameter regime characterizing planetary cores. While they have considerable influence for the Ekman numbers achievable in today's global simulations, for planetary values both the viscous Ekman layers and the associated secondary flows are generally expected to become negligibly small. In fact, usually the main purpose of using stress-free boundary conditions in numerical dynamo simulations is to suppress unrealistically large friction and pumping effects. In this study, we investigate the influence of the mechanical boundary conditions on core convection systematically. By restricting ourselves to the idealized case of rapidly rotating Rayleigh-Bénard convection, we are able to combine results from direct numerical simulations (DNS), laboratory experiments and asymptotic theory into a coherent picture. Contrary to the general expectation, we show that the dynamical effects of Ekman pumping increase with decreasing Ekman number over the investigated parameter range. While stress-free DNS results converge to the asymptotic predictions, both no-slip simulations and laboratory experiments consistently reveal increasingly large deviations from the existing asymptotic theory based on dynamically passive Ekman layers. The implications of these results for core dynamics are discussed briefly.

  2. Stellar convection and dynamo theory

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R L

    1989-10-01

    In considering the large scale stellar convection problem the outer layers of a star are modelled as two co-rotating plane layers coupled at a fluid/fluid interface. Heating from below causes only the upper fluid to convect, although this convection can penetrate into the lower fluid. Stability analysis is then used to find the most unstable mode of convection. With parameters appropriate to the Sun the most unstable mode is steady convection in thin cells (aspect ratio {approx equal} 0.2) filling the convection zone. There is negligible vertical motion in the lower fluid, but considerable thermal penetration, and a large jump in helicity at the interface, which has implications for dynamo theory. An {alpha}{omega} dynamo is investigated in isolation from the convection problem. Complexity is included by allowing both latitudinal and time dependence in the magnetic fields. The nonlinear dynamics of the resulting partial differential equations are analysed in considerable detail. On varying the main control parameter D (the dynamo number), many transitions of behaviour are found involving many forms of time dependence, but not chaos. Further, solutions which break equatorial symmetry are common and provide a theoretical explanation of solar observations which have this symmetry. Overall the behaviour was more complicated than expected. In particular, there were multiple stable solutions at fixed D, meaning that similar stars can have very different magnetic patterns, depending upon their history. (author).

  3. Study of natural convection heat transfer characteristics. (1) Influence of ventilation duct height

    International Nuclear Information System (INIS)

    Wakamatsu, Mitsuo; Iwaki, Chikako; Ikeda, Tatsumi; Morooka, Shinichi; Ikeda, Hiroshi; Nakada, Kotaro; Masaki, Yoshikazu

    2008-01-01

    Natural cooling system has been investigated in waste storage. It is important to evaluate the flow by natural draft enough to removal the decay heat from the waste. In this study, we carried out the fundamental experiment of ventilation duct height effect for natural convection on vertical cylindrical heater in atmospheric air. The scale of test facility is about 4m height with single heater. The heating value is varied in the range of 33-110W, where Rayleigh number is over 10 10 . Natural convection flow rate were calculated by measured velocity with thermo anemometer in the inlet duct. The temperature of the cylindrical heater wall and fluid were measured with thermocouples. It was found that the heat transfer coefficient difference between long duct and short duct is small in this experiment. (author)

  4. Large plasma pressure perturbations and radial convective transport in a tokamak

    International Nuclear Information System (INIS)

    Krasheninnikov, Sergei; Yu, Guanghui; Ryutov, Dmitri

    2004-01-01

    Strongly localized plasma structures with large pressure inhomogeneities (such as plasma blobs in the scrape-off-layer (SOL)/shadow regions, pellet clouds, Edge localized Modes (ELMs)) observed in the tokamaks, stellarators and linear plasma devices. Experimental studies of these phenomena reveal striking similarities including more convective rather than diffusive radial plasma transport. We suggest that rather simple models can describe many essentials of blobs, ELMs, and pellet clouds dynamics. The main ingredient of these models is the effective plasma gravity caused by magnetic curvature, centrifugal or friction forces effects. As a result, the equations governing plasma transport in such localized structures appear to be rather similar to that used to describe nonlinear evolution of thermal convection in the Boussinesq approximation (directly related to the Rayleigh-Taylor (RT) instability). (author)

  5. Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar

    Science.gov (United States)

    Cooper, D. I.; Eichinger, W. E.; Ecke, R. E.; Kao, J. C. Y.; Reisner, J. M.; Tellier, L. L.

    During the Combined Sensor Program (CSP) in March of 1996, the Los Alamos National Laboratory (LANL) fielded an advanced scanning Raman lidar. The lidar was part of a larger suite of micrometeorological sensors to quantify processes associated with the ocean-atmosphere interface, including intermittency and coherent atmospheric features in the “warm pool” of the Tropical Western Pacific (TWP) near Manus Island (2° S. lat, 147° E. long). Initial inspection of the data has revealed excellent information on the microscale vertical and horizontal spatial and temporal structure of the equatorial Marine Atmospheric Boundary Layer (MABL). The data from this experiment have added to the increasing body of measurements on surface layer convection and intermittency including, for the first time, the observation of microscale cellular convective structures such as hexagonal patterns associated with Rayleigh-Bénard cells.

  6. An experimental investigation of laminar free convection from a vertical flat plate at general boundary condition

    International Nuclear Information System (INIS)

    Aharon, J.; Lahav, C.; Kalman, H.; Shai, I.

    1996-01-01

    The present work deals with natural convection on a vertical flat plate, where one side of the plate is exposed to an environment of constant temperature - T a , with which heat is exchanged at an effective heat transfer coefficient, Glen. The other side of the plate is exposed to a fluid at a different temperature -T ∞ . The temperature gradient induces a natural convection in the fluid. The present investigation treats the heat transfer problem in the laminar cone in air (P r =1). An experimental apparatus has been constructed to confirm the heat transfer features predicted analytically in previous work. The local experimental Nusselt number was correlated with the modified Rayleigh number, for the laminar range. (authors)

  7. Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities

    KAUST Repository

    Allen, Rebecca

    2016-06-29

    We study a multiple relaxation time lattice Boltzmann model for natural convection with moment-based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 108. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy. Copyright © 2016 Inderscience Enterprises Ltd.

  8. Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid

    International Nuclear Information System (INIS)

    Kageyama, Akira; Yoshida, Masaki

    2005-01-01

    We have developed finite difference codes based on the Yin-Yang grid for the geodynamo simulation and the mantle convection simulation. The Yin-Yang grid is a kind of spherical overset grid that is composed of two identical component grids. The intrinsic simplicity of the mesh configuration of the Yin-Yang grid enables us to develop highly optimized simulation codes on massively parallel supercomputers. The Yin-Yang geodynamo code has achieved 15.2 Tflops with 4096 processors on the Earth Simulator. This represents 46% of the theoretical peak performance. The Yin-Yang mantle code has enabled us to carry out mantle convection simulations in realistic regimes with a Rayleigh number of 10 7 including strongly temperature dependent viscosity with spatial contrast up to 10 6

  9. Experimental and numerical investigation on natural convection heat transfer in nanofluids

    International Nuclear Information System (INIS)

    Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2014-01-01

    Currently, a lot of research is being carried out on the potential application of nanofluids as a coolant in nuclear reactors owing to their enhanced heat transfer characteristics as compared to base fluid. In this regards, an experimental study has been undertaken concerning natural convection heat transfer of nanofluids over a cylindrical heater with a constant wall heat flux condition. The heat flux was varied from 0-50000 W/m 2 and Rayleigh number range is 30000 to 1.65 X 10 5 . Results show that there was a reduction in natural convection heat transfer coefficient of nanofluids as compared to water. Experimental results were compared with existing models for similar geometry. However, the available correlation was found to be unable to predict experimental data. A new empirical model was developed based on the experimental data including the effect of nanoparticles concentration which predicts the experimental data satisfactorily. (author)

  10. MHD Natural Convection and Entropy Generation of Variable Properties Nanofluid in a Triangular Enclosure

    Directory of Open Access Journals (Sweden)

    A. Aghaei

    2015-01-01

    Full Text Available Natural convection heat transfer has many applications in different fields of industry; such as cooling industries, electronic transformer devices and ventilation equipment; due to simple process, economic advantage, low noise and renewed retrieval. Recently, heat transfer of nanofluids have been considered because of higher thermal conductivity coefficient compared with those of ordinary fluids. In this study; natural convection and entropy generation in a triangular enclosure filled by Al2O3 –water nanofluid affected by magnetic field considering Brownian motion is investigated numerically. Two inclined walls are maintained at constant cold temperature (Tc while the bottom wall is kept at constant high temperature (Th with (Th>Tc. In order to investigate natural convection, a computer program (FORTRAN language based on finite volume method and SIMPLER algorithm has been used. Analyses is performed for volume fraction of nanoparticles 0, 0.02, 0.04, Hartmann number 0, 50,100, Rayleigh numbers 103,104,105 and angle of inclined walls 450. In investigated angles and Rayleigh numbers; average Nusselt number is increased by enhancement of volume fraction of nanoparticles in a fixed Hartmann number. It is also observed that total entropy generation variations by increasing volume fraction of nanoparticles is similar to that of Nusselt number. By the results; effect of friction is always insignificant on generated entropy. It is observed that natural convection of nanofluid is decreased by enhancement of Hartmann number and its behavior is close to thermal conduction. It is also concluded that average Nusselt number and total generated entropy are decreased.

  11. Numerical study of three-dimensional natural convection and entropy generation in a cubical cavity with partially active vertical walls

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A Al-Rashed

    2017-09-01

    Full Text Available Natural convection and entropy generation due to the heat transfer and fluid friction irreversibilities in a three-dimensional cubical cavity with partially heated and cooled vertical walls has been investigated numerically using the finite volume method. Four different arrangements of partially active vertical sidewalls of the cubical cavity are considered. Numerical calculations are carried out for Rayleigh numbers from (103 ≤ Ra ≤ 106, various locations of the partial heating and cooling vertical sidewalls, while the Prandtl number of air is considered constant as Pr=0.7 and the irreversibility coefficient is taken as (φ=10−4. The results explain that the total entropy generation rate increases when the Rayleigh number increases. While, the Bejan number decreases as the Rayleigh number increases. Also, it is found that the arrangements of heating and cooling regions have a significant effect on the fluid flow and heat transfer characteristics of natural convection and entropy generation in a cubical cavity. The Middle-Middle arrangement produces higher values of average Nusselt numbers.

  12. Natural convection of nanofluid in a wavy cavity in the presence of magnetic field on variable heat surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Javaherdeh, Korosh; Moslemi, Mehdi; Shahbazi, Mona [University of Guilan, Rasht (Iran, Islamic Republic of)

    2017-04-15

    A numerical analysis has been performed to investigate the laminar natural convection heat characteristics in a wavy cavity filled with CuO/water nanofluid. One of the sinusoidal walls (BC) is at the volatile high temperature and the opposite wavy surface is at a stable low temperature and the two other walls are considered flat and insulated while the uniform magnetic field is considered. Performing the analysis, the governing equations are given in terms of the stream function-vorticity formulation. In order to solve the nondimensionalized equations, discretizing with second-order accurate central difference method is performed then the successive under relaxation method with appropriate boundary conditions is considered. To validate the numerical model, various comparisons with previously published studies have been conducted and the results are in a good agreement. The main objective is to survey the effects of the Rayleigh number, Hartmann number, and nanoparticles volume fraction on the fluid flow and heat transfer characteristics. The results are illustrated in contours of stream function, constant temperature, and Nusselt number. The results show that the presence of the magnetic field the local Nusselt number decreases at the hot wall. Moreover, the enhancement in the heat transfer performance increases with an increasing nanoparticle concentration. However, for all values of Rayleigh number, the presence of nanoparticles leads to significant enhancement in heat transfer and the increase of Rayleigh number causes the heat transfer mechanism to change from conduction to convection.

  13. New phenomena in variable-density Rayleigh-Taylor turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Livescu, D; Ristorcelli, J R; Petersen, M R; Gore, R A, E-mail: livescu@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-12-15

    This paper presents several issues related to mixing and turbulence structure in buoyancy-driven turbulence at low to moderate Atwood numbers, A, found from direct numerical simulations in two configurations: classical Rayleigh-Taylor instability and an idealized triply periodic Rayleigh-Taylor flow. Simulations at A up to 0.5 are used to examine the turbulence characteristics and contrast them with those obtained close to the Boussinesq approximation. The data sets used represent the largest simulations to date in each configuration. One of the more remarkable issues explored, first reported in (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80), is the marked difference in mixing between different density fluids as opposed to the mixing that occurs between fluids of commensurate densities, corresponding to the Boussinesq approximation. Thus, in the triply periodic configuration and the non-Boussinesq case, an initially symmetric density probability density function becomes skewed, showing that the mixing is asymmetric, with pure heavy fluid mixing more slowly than pure light fluid. A mechanism producing the mixing asymmetry is proposed and the consequences for the classical Rayleigh-Taylor configuration are discussed. In addition, it is shown that anomalous small-scale anisotropy found in the homogeneous configuration (Livescu and Ristorcelli 2008 J. Fluid Mech. 605 145-80) and Rayleigh-Taylor turbulence at A=0.5 (Livescu et al 2008 J. Turbul. 10 1-32) also occurs near the Boussinesq limit. Results pertaining to the moment closure modelling of Rayleigh-Taylor turbulence are also presented. Although the Rayleigh-Taylor mixing layer width reaches self-similar growth relatively fast, the lower-order terms in the self-similar expressions for turbulence moments have long-lasting effects and derived quantities, such as the turbulent Reynolds number, are slow to follow the self-similar predictions. Since eddy diffusivity in the popular gradient transport hypothesis

  14. Thermal convection for large Prandtl numbers

    NARCIS (Netherlands)

    Grossmann, Siegfried; Lohse, Detlef

    2001-01-01

    The Rayleigh-Bénard theory by Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000)] is extended towards very large Prandtl numbers Pr. The Nusselt number Nu is found here to be independent of Pr. However, for fixed Rayleigh numbers Ra a maximum in the Nu(Pr) dependence is predicted. We moreover offer

  15. Combined Natural Convection and Radiation Heat Transfer of Various Absorbing-Emitting-Scattering Media in a Square Cavity

    Directory of Open Access Journals (Sweden)

    Xianglong Liu

    2014-01-01

    Full Text Available A numerical model is developed to simulate combined natural convection and radiation heat transfer of various anisotropic absorbing-emitting-scattering media in a 2D square cavity based on the discrete ordinate (DO method and Boussinesq assumption. The effects of Rayleigh number, optical thickness, scattering ratio, scattering phase function, and aspect ratio of square cavity on the behaviors of heat transfer are studied. The results show that the heat transfer of absorbing-emitting-scattering media is the combined results of radiation and natural convection, which depends on the physical properties and the aspect ratio of the cavity. When the natural convection becomes significant, the convection heat transfer is enhanced, and the distributions of NuR and Nuc along the walls are obviously distorted. As the optical thickness increases, NuR along the hot wall decreases. As the scattering ratio decreases, the NuR along the walls decreases. At the higher aspect ratio, the more intensive thermal radiation and natural convection are formed, which increase the radiation and convection heat fluxes. This paper provides the theoretical research for the optimal thermal design and practical operation of the high temperature industrial equipments.

  16. Effects of radial distribution of entropy diffusivity on critical modes of anelastic thermal convection in rotating spherical shells

    Science.gov (United States)

    Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio

    2018-03-01

    Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.

  17. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid

    Science.gov (United States)

    Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha

    2017-06-01

    The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.

  18. Convection in the Labrador Sea

    National Research Council Canada - National Science Library

    Davis, R

    1997-01-01

    The long-term goal of this grant was to describe the process of deep oceanic convection well enough to provide critical tests of, and guidance to, models used to predict subsurface ocean conditions...

  19. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  20. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  1. MHD natural convection of hybrid nanofluid in an open wavy cavity

    Science.gov (United States)

    Ashorynejad, Hamid Reza; Shahriari, Alireza

    2018-06-01

    In this paper, natural convection heat transfer of Al2O3-Cu/water hybrid nanofluid within open wavy cavity and subjected to a uniform magnetic field is examined by adopting the lattice Boltzmann method scheme. The left wavy wall is heated sinusoidal, while the right wall is open and maintained to the ambient conditions. The top and the bottom horizontal walls are smooth and insulated against heat and mass. The influence of solid volume fraction of nanoparticles (φ = 0, 0.02, 0.04), Rayleigh number (Ra = 103, 104, 105), Hartmann number (Ha = 0, 30, 60, 90) and phase deviation (Φ = 0, π/4, π/2, 3π/4) are investigated on flow and heat transfer fields. The results proved that the Nusselt number decreases with the increase of the Hartmann number, but it increases by the increment of Rayleigh number and nanoparticle volume fraction. The magnetic field rises or falls the effect produced by the presence of nanoparticles with respect to Rayleigh number. At Ra = 103, the effect of the raising phase deviation on heat transfer is erratic while it has a positive role in the improvement of nanoparticles effect at Ra = 105.

  2. Heat transfer augmentation of magnetohydrodynamics natural convection in L-shaped cavities utilizing nanofluids

    Directory of Open Access Journals (Sweden)

    Sourtiji Ehsan

    2012-01-01

    Full Text Available A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame­ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray­leigh numbers. The influence of the magnetic field has been also studied and de­duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.

  3. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid.

    Science.gov (United States)

    Meng, Xiangyin; Li, Yan

    2015-01-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.

  4. GENERALIZATION OF RAYLEIGH MAXIMUM LIKELIHOOD DESPECKLING FILTER USING QUADRILATERAL KERNELS

    Directory of Open Access Journals (Sweden)

    S. Sridevi

    2013-02-01

    Full Text Available Speckle noise is the most prevalent noise in clinical ultrasound images. It visibly looks like light and dark spots and deduce the pixel intensity as murkiest. Gazing at fetal ultrasound images, the impact of edge and local fine details are more palpable for obstetricians and gynecologists to carry out prenatal diagnosis of congenital heart disease. A robust despeckling filter has to be contrived to proficiently suppress speckle noise and simultaneously preserve the features. The proposed filter is the generalization of Rayleigh maximum likelihood filter by the exploitation of statistical tools as tuning parameters and use different shapes of quadrilateral kernels to estimate the noise free pixel from neighborhood. The performance of various filters namely Median, Kuwahura, Frost, Homogenous mask filter and Rayleigh maximum likelihood filter are compared with the proposed filter in terms PSNR and image profile. Comparatively the proposed filters surpass the conventional filters.

  5. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S., E-mail: shahid.ali@ncp.edu.p [National Centre for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); IPFN, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Ahmed, Z. [COMSATS Institute of Information Technology, Department of Physics, Wah Campus (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ahmad, I. [COMSATS Institute of Information Technology, Department of Physics, Islamabad Campus (Pakistan)

    2009-08-10

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  6. Rayleigh-Taylor/gravitational instability in dense magnetoplasmas

    International Nuclear Information System (INIS)

    Ali, S.; Ahmed, Z.; Mirza, Arshad M.; Ahmad, I.

    2009-01-01

    The Rayleigh-Taylor instability is investigated in a nonuniform dense quantum magnetoplasma. For this purpose, a quantum hydrodynamical model is used for the electrons whereas the ions are assumed to be cold and classical. The dispersion relation for the Rayleigh-Taylor instability becomes modified with the quantum corrections associated with the Fermi pressure law and the quantum Bohm potential force. Numerically, it is found that the quantum speed and density gradient significantly modify the growth rate of RT instability. In a dense quantum magnetoplasma case, the linear growth rate of RT instability becomes significantly higher than its classical value and the modes are found to be highly localized. The present investigation should be useful in the studies of dense astrophysical magnetoplasmas as well as in laser-produced plasmas.

  7. Influence of velocity shear on the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Satyanarayana, P.; Huba, J.D.; Ossakow, S.L.

    1982-01-01

    The influence of a transverse velocity shear on the Rayleigh-Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh-Taylor instability in short wavelength regime (i.e., kL>1 where L is the scale length of the density inhomogeneity), and causes the growth rate to maximize at kL<1.0. Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect of shear could account for, at times, the 100's of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena

  8. Stochastic model of Rayleigh-Taylor turbulent mixing

    International Nuclear Information System (INIS)

    Abarzhi, S.I.; Cadjan, M.; Fedotov, S.

    2007-01-01

    We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for

  9. Rayleigh-Taylor instability in an equal mass plasma

    Energy Technology Data Exchange (ETDEWEB)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran, E-mail: sran-g@yahoo.com [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2014-09-15

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  10. Measurement of molecular polarizability on Rayleigh light scattering

    International Nuclear Information System (INIS)

    Nerushev, O.A.; Novopashin, S.A.

    1994-01-01

    The installation for measuring the polarizability of atoms and molecules on Rayleigh light scattering is described. The measurements in gases with the known polarizability are used for a calibration. Test measurements are carried out on nitrogen, argon, carbon dioxide, vapours of water and acetone. The results of measurements are compared with the table data. The technique is used for measuring the polarizability of fullerene molecules. 6 refs., 2 figs

  11. Rayleigh-Taylor instability in a visco-plastic fluid

    International Nuclear Information System (INIS)

    Demianov, A Yu; Doludenko, A N; Son, E E; Inogamov, N A

    2010-01-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  12. Rayleigh-Taylor instability in a visco-plastic fluid

    Science.gov (United States)

    Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.

    2010-12-01

    The Rayleigh-Taylor and Richtmyer-Meshkov instabilities of a visco-plastic fluid are discussed. The Bingham model is used as an effective rheological model which takes into account plastic effects. For the purposes of numerical simulation a one-mode disturbance of the contact surface between two fluids is considered. The main goal of this work is to construct numerical 2D and 3D models and to obtain the relationship between yield stress and the development of instability.

  13. Dipping-interface mapping using mode-separated Rayleigh waves

    Science.gov (United States)

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.

  14. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  15. Heat transfer measurements of internally heated liquids in cylindrical convection cells

    International Nuclear Information System (INIS)

    Fieg, G.

    1978-10-01

    In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de

  16. Prediction of refrigerant absorption and onset of natural convection in lubricant oil

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Jader R.; Marcelino Neto, Moises A. [Department of Mechanical Engineering, Federal University of Santa Catarina, Florianopolis, SC 88040900 (Brazil); Thoma, Stefan M. [Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology, Sonneggstrasse 3, 8092 Zurich (Switzerland)

    2008-11-15

    Refrigerant absorption and mixing in lubricant oil are important in the design of refrigeration compressors and refrigeration systems. Experimental work is reported on absorption of R-134a vapour through the top interface of an initially stagnant layer of pure lubricant oil. Since the liquid refrigerant is heavier than the oil, mixing is enhanced due to natural mass convection. In the present paper, the behaviour of the liquid temperature during absorption is described based on measurements carried out in a test rig consisting of a transparent 70 mm ID, 150 mm long, vertical glass tube through which absorption can be directly observed. Transient liquid temperatures were measured at three different heights in the test section (two in the vapour, one in the liquid). The experimental work is complemented by a theoretical analysis of the critical time for the onset of mass transfer induced Rayleigh instability. The model is based on a critical mass transfer Rayleigh number criterion widely reported in the literature and takes into account the variation of physical properties in the liquid layer. The critical time for the onset of natural mass convection increases with decreasing system pressure as a result of a lower equilibrium concentration at the vapour-liquid interface. (author)

  17. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    International Nuclear Information System (INIS)

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.

    2016-01-01

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.

  18. Hydrodynamic theory of convective transport across a dynamically stabilized diffuse boundary layer

    International Nuclear Information System (INIS)

    Gerhauser, H.

    1983-09-01

    The diffuse boundary layer between miscible liquids is subject to Rayleigh-Taylor instabilities if the heavy fluid is supported by the light one. The resulting rapid interchange of the liquids can be suppressed by enforcing vertical oscillations on the whole system. This dynamic stabilization is incomplete and produces some peculiar novel transport phenomena such as decay off the density profile into several steps, periodic peeling of density sheets of the boundary layer and the appearance of steady vortex flow. The theory presented in this paper identifies the basic mechanism as formation of convective cells leading to enhanced diffusion, and explains previous experimental results with water and ZnJ 2 -solutions. A nonlinear treatment of the stationary convective flow problem gives the saturation amplitude of the ground mode and provides an upper bound for the maximum convective transport. The hydrodynamic model can be used for visualizing similar transport processes in the plasma of toroidal confinement devices such as sawtooth oscillations in soft disruptions of tokamak discharges and anomalous diffusion by excitation of convective cells. The latter process is investigated here in some detail, leading to the result that the maximum possible transport is of the order of Bohm diffusion. (orig.)

  19. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K., E-mail: prodip.das@ncl.ac.uk [School of Mechanical and Systems Engineering Newcastle University Newcastle upon Tyne, NE1 7RU United Kingdom (United Kingdom)

    2016-07-12

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid’s thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.

  20. Radiation effects on bifurcation and dual solutions in transient natural convection in a horizontal annulus

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Kang; Yi, Hong-Liang, E-mail: yihongliang@hit.edu.cn; Tan, He-Ping, E-mail: tanheping@hit.edu.cn [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-05-15

    Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.

  1. Periodic mixed convection in horizontal porous layer heated from below by isoflux heater

    International Nuclear Information System (INIS)

    Saeid, Nawaf H.; Pop, I.

    2006-01-01

    Numerical study for transient mixed convection in a two-dimensional horizontal porous layer heated from below by a constant heat flux source is carried out in the present paper. The transient thermal field, flow field and average Nusselt number are presented for a wide range of the Peclet number, Pe, for the particular case of Rayleigh number Ra=10x2 and the ratio of heater length to the porous layer thickness A=1, 3 and 5. It is found that for A=3 and A=5 with small values of the Peclet number, the free convection mode is dominated, while for large values, of the Peclet number, the forced convection mode is dominated. However, for moderate values the oscillatory mixed convection is observed and a periodic variation of the average Nusselt number is obtained. When the heater length is equal to the porous layer thickness (A=1) the steady-state results are obtained for the range of Pe=0.01-10. (author)

  2. Mixed convection flow of nanofluid in a square enclosure with an intruded rectangular fin

    Science.gov (United States)

    Cong, Ran; Zhou, Xuanyu; De Souza Machado, Bruno; Das, Prodip K.

    2016-07-01

    Mixed convection flow in enclosures has been a subject of interest for many years due to their ever increasing applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. In comparison, little effort has been given to the problem of mixed convection in enclosures filled with nanofluids, while the addition of nanoparticles in a fluid base to alter specific material properties is considered a feasible solution for many heat transfer problems. Mixed convection of nanofluids is a challenging problem as the addition of nanoparticles changes the fluid's thermo-physical properties as well as due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, a two-dimensional steady-state numerical model has been developed to investigate mixed convection flow of nanofluids in a square enclosure with an intruded rectangular fin and to optimize the fin geometry for maximizing the heat transfer using the Constructal design. The model has been developed using ANSYS-FLUENT for various fin geometries. Flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers for several geometries of the fin with the aim of maximizing the heat transfer from the fin to the surrounding flow. Outcome of this study provides important insight into the heat transfer behavior of nanofluids, which will help in developing novel geometries with enhanced and controlled heat transfer for solar collectors and electronic devices.

  3. Visualization of Natural Convection Heat Transfer on a Single Sphere using the Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Young; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The natural convective flows on outer sphere rise along surface. At top of sphere, the flows are lifted-up plume shape. For laminar flows, the local heat transfer shows maximum at the bottom of sphere and a monotonic decreases as flows approached to the top. The laminar natural convection heat transfer on a single sphere has been studied experimentally and numerically by several researchers. However, relatively less study has been performed for turbulent flows as it requires large facilities to achieve high Rayleigh numbers. The flows, which occur transition, is hard to experiment because of unstable. This study tried measurement of heat transfer and visualization external natural convection on a single sphere. The basic idea is that the plating patterns of copper on the sphere in mass transfer system will reveal the amount of heat transfer according to angular distance from the bottom. This study simulated natural convection on a single sphere and performed a mass transfer experiment using heat and mass transfer analogy concept. For visualization experiment, streak form plating pattern was observed. In this case, it seems that turbulence sets on the top of sphere and increases local heat transfer.

  4. Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water

    International Nuclear Information System (INIS)

    Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik

    2004-01-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes

  5. Dynamo Scaling Laws for Uranus and Neptune: The Role of Convective Shell Thickness on Dipolarity

    Science.gov (United States)

    Stanley, Sabine; Yunsheng Tian, Bob

    2017-10-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet’s magnetic field is determined by the local Rossby number (Ro_l): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Ro_l ~ 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). When these scaling laws are applied to the planets, it appears that Uranus and Neptune should have dipole-dominated fields, contrary to observations. However, those scaling laws were derived using the specific convective shell thickness of the Earth’s core. Here we investigate the role of convective shell thickness on dynamo scaling laws. We find that the local Rossby number depends exponentially on the convective shell thickness. Including this new dependence on convective shell thickness, we find that the dynamo scaling laws now predict that Uranus and Neptune reside deeply in the multipolar regime, thereby resolving the previous contradiction with observations.

  6. Breakdown of the large-scale circulation in Γ=1/2 rotating Rayleigh-Bénard flow.

    Science.gov (United States)

    Stevens, Richard J A M; Clercx, Herman J H; Lohse, Detlef

    2012-11-01

    Experiments and simulations of rotating Rayleigh-Bénard convection in cylindrical samples have revealed an increase in heat transport with increasing rotation rate. This heat transport enhancement is intimately related to a transition in the turbulent flow structure from a regime dominated by a large-scale circulation (LSC), consisting of a single convection roll, at no or weak rotation to a regime dominated by vertically aligned vortices at strong rotation. For a sample with an aspect ratio Γ=D/L=1 (D is the sample diameter and L is its height) the transition between the two regimes is indicated by a strong decrease in the LSC strength. In contrast, for Γ=1/2, Weiss and Ahlers [J. Fluid Mech. 688, 461 (2011)] revealed the presence of a LSC-like sidewall temperature signature beyond the critical rotation rate. They suggested that this might be due to the formation of a two-vortex state, in which one vortex extends vertically from the bottom into the sample interior and brings up warm fluid while another vortex brings down cold fluid from the top; this flow field would yield a sidewall temperature signature similar to that of the LSC. Here we show by direct numerical simulations for Γ=1/2 and parameters that allow direct comparison with experiment that the spatial organization of the vertically aligned vortical structures in the convection cell do indeed yield (for the time average) a sinusoidal variation of the temperature near the sidewall, as found in the experiment. This is also the essential and nontrivial difference with the Γ=1 sample, where the vertically aligned vortices are distributed randomly.

  7. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Velarde, M

    1977-07-01

    Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs.

  8. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    International Nuclear Information System (INIS)

    Garcia Velarde, M.

    1977-01-01

    Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs

  9. Research of heat transfer of staggered horizontal bundles of finned tubes at free air convection

    Science.gov (United States)

    Novozhilova, A. V.; Maryna, Z. G.; Samorodov, A. V.; Lvov, E. A.

    2017-11-01

    The study of free-convective processes is important because of the cooling problem in many machines and systems, where other ways of cooling are impossible or impractical. Natural convective processes are common in the steam turbine air condensers of electric power plants located within the city limits, in dry cooling towers of circulating water systems, in condensers cooled by air and water, in radiators cooling oil of power electric transformers, in emergency cooling systems of nuclear reactors, in solar power, as well as in air-cooling of power semiconductor energy converters. All this makes actual the synthesis of the results of theoretical and experimental research of free convection for heat exchangers with finned tube bundles. The results of the study of free-convection heat transfer for two-, three- and four-row staggered horizontal bundles of industrial bimetallic finned tubes with finning factor of 16.8 and equilateral tubes arrangement are presented. Cross and diagonal steps in the bundles are the same: 58; 61; 64; 70; 76; 86; 100 mm, which corresponds to the relative steps: 1.042; 1.096; 1.152; 1.258; 1.366; 1.545; 1.797. These steps are standardized for air coolers. An equation for calculating the free-convection heat transfer, taking into account the influence of geometrical parameters in the range of Rayleigh number from 30,000 to 350,000 with an average deviation of ± 4.8%, has been obtained. The relationship presented in the article allows designing a wide range of air coolers for various applications, working in the free convection modes.

  10. Open Channel Natural Convection Heat Transfer on a Vertical Finned Plate

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Heo, Jeong Hwan; Chung, Bum Jin

    2013-01-01

    The natural convection heat transfer of vertical plate fin was investigated experimentally. Heat transfer systems were replaced by mass-transfer systems, based on the analogy concept. The experimental results lie within the predictions of the existing heat transfer correlations of plate-fin for the natural convections. An overlapped thermal boundary layers caused increasing heat transfer, and an overlapped momentum boundary layers caused decreasing heat transfer. As the fin height increases, heat transfer was enhanced due to increased inflow from the open side of the fin spacing. When fin spacing and fin height are large, heat transfer was unaffected by the fin spacing and fin height. Passive cooling by natural convection becomes more and more important for the nuclear systems as the station black out really happened at the Fukushima NPPs. In the RCCS (Reactor Cavity Cooling System) of a VHTR (Very High Temperature Reactor), natural convection cooling through duct system is adopted. In response to the stack failure event, extra cooling capacity adopting the fin array has to be investigated. The finned plate increases the surface area and the heat transfer increases. However, the plate of fin arrays may increase the pressure drop and the heat transfer decreases. Therefore, in order to enhance the passive cooling with fin arrays, the parameters for the fin arrays should be optimized. According to Welling and Wooldridge, a natural convection on vertical plate fin is function of Gr, Pr, L, t, S, and H. The present work investigated the natural convection heat transfer of a vertical finned plate with varying the fin height and the fin spacing. In order achieve high Rayleigh numbers, an electroplating system was employed and the mass transfer rates were measured using a copper sulfate electroplating system based on the analogy concept

  11. Turbulent Convection Insights from Small-Scale Thermal Forcing with Zero Net Heat Flux at a Horizontal Boundary.

    Science.gov (United States)

    Griffiths, Ross W; Gayen, Bishakhdatta

    2015-11-13

    A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.

  12. Mantle Convection on Modern Supercomputers

    Science.gov (United States)

    Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.

    2015-12-01

    Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.

  13. Convective behaviour in severe accidents

    International Nuclear Information System (INIS)

    Clement, C.F.

    1988-01-01

    The nature and magnitude of the hazard from radioactivity posed by a possible nuclear accident depend strongly on convective behaviour within and immediately adjacent to the plant in question. This behaviour depends upon the nature of the vapour-gas-aerosol mixture concerned, and can show unusual properties such as 'upside-down' convection in which hot mixtures fall and cold mixtures rise. Predictions and criteria as to the types of behaviour which could possibly occur are summarised. Possible applications to present reactors are considered, and ways in which presently expected convection could be drastically modified are described. In some circumstances these could be used to suppress the radioactive source term or to switch its effect between distant dilute contamination and severe local contamination. (author). 8 refs, 2 figs, 2 tabs

  14. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  15. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  16. Experimental methods in natural convection

    International Nuclear Information System (INIS)

    Koster, J.N.

    1982-11-01

    Some common experimental techniques to determine local velocities and to visualize temperature fields in natural convection research are discussed. First the physics and practice of anemometers are discussed with emphasis put on optical anemometers. In the second and third case the physics and practice of the most developed interferometers are discussed; namely differential interferometry for visualization of temperature gradient fields and holographic interferometry for visualization of temperature fields. At the Institut fuer Reaktorbauelemente these three measuring techniques are applied for convection and pipe flow studies. (orig.) [de

  17. Rayleigh radiance computations for satellite remote sensing: accounting for the effect of sensor spectral response function.

    Science.gov (United States)

    Wang, Menghua

    2016-05-30

    To understand and assess the effect of the sensor spectral response function (SRF) on the accuracy of the top of the atmosphere (TOA) Rayleigh-scattering radiance computation, new TOA Rayleigh radiance lookup tables (LUTs) over global oceans and inland waters have been generated. The new Rayleigh LUTs include spectral coverage of 335-2555 nm, all possible solar-sensor geometries, and surface wind speeds of 0-30 m/s. Using the new Rayleigh LUTs, the sensor SRF effect on the accuracy of the TOA Rayleigh radiance computation has been evaluated for spectral bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS)-1, showing some important uncertainties for VIIRS-SNPP particularly for large solar- and/or sensor-zenith angles as well as for large Rayleigh optical thicknesses (i.e., short wavelengths) and bands with broad spectral bandwidths. To accurately account for the sensor SRF effect, a new correction algorithm has been developed for VIIRS spectral bands, which improves the TOA Rayleigh radiance accuracy to ~0.01% even for the large solar-zenith angles of 70°-80°, compared with the error of ~0.7% without applying the correction for the VIIRS-SNPP 410 nm band. The same methodology that accounts for the sensor SRF effect on the Rayleigh radiance computation can be used for other satellite sensors. In addition, with the new Rayleigh LUTs, the effect of surface atmospheric pressure variation on the TOA Rayleigh radiance computation can be calculated precisely, and no specific atmospheric pressure correction algorithm is needed. There are some other important applications and advantages to using the new Rayleigh LUTs for satellite remote sensing, including an efficient and accurate TOA Rayleigh radiance computation for hyperspectral satellite remote sensing, detector-based TOA Rayleigh radiance computation, Rayleigh radiance calculations for high altitude

  18. A study of the required Rayleigh number to sustain dynamo with various inner core radius

    Science.gov (United States)

    Nishida, Y.; Katoh, Y.; Matsui, H.; Kumamoto, A.

    2017-12-01

    It is widely accepted that the geomagnetic field is sustained by thermal and compositional driven convections of a liquid iron alloy in the outer core. The generation process of the geomagnetic field has been studied by a number of MHD dynamo simulations. Recent studies of the ratio of the Earth's core evolution suggest that the inner solid core radius ri to the outer liquid core radius ro changed from ri/ro = 0 to 0.35 during the last one billion years. There are some studies of dynamo in the early Earth with smaller inner core than the present. Heimpel et al. (2005) revealed the Rayleigh number Ra of the onset of dynamo process as a function of ri/ro from simulation, while paleomagnetic observation shows that the geomagnetic field has been sustained for 3.5 billion years. While Heimpel and Evans (2013) studied dynamo processes taking into account the thermal history of the Earth's interior, there were few cases corresponding to the early Earth. Driscoll (2016) performed a series of dynamo based on a thermal evolution model. Despite a number of dynamo simulations, dynamo process occurring in the interior of the early Earth has not been fully understood because the magnetic Prandtl numbers in these simulations are much larger than that for the actual outer core.In the present study, we performed thermally driven dynamo simulations with different aspect ratio ri/ro = 0.15, 0.25 and 0.35 to evaluate the critical Ra for the thermal convection and required Ra to maintain the dynamo. For this purpose, we performed simulations with various Ra and fixed the other control parameters such as the Ekman, Prandtl, and magnetic Prandtl numbers. For the initial condition and boundary conditions, we followed the dynamo benchmark case 1 by Christensen et al. (2001). The results show that the critical Ra increases with the smaller aspect ratio ri/ro. It is confirmed that larger amplitude of buoyancy is required in the smaller inner core to maintain dynamo.

  19. Rayleigh-Bénard turbulence modified by two-way coupled inertial, nonisothermal particles

    Science.gov (United States)

    Park, Hyungwon John; O'Keefe, Kevin; Richter, David H.

    2018-03-01

    Direct numerical simulation (DNS) combined with the Lagrangian point particle model is used to study Rayleigh-Bénard convection in order to understand modifications due to the interaction of inertial, nonisothermal particles with buoyancy-driven turbulence. In this system, turbulence can be altered through direct momentum coupling, as well as through buoyancy modification via thermal coupling between phases. We quantify the effect of the dispersed phase by changes to the total integrated turbulent kinetic energy (TKE) and Nusselt number (Nu). The dispersed particles experience gravitational settling and are introduced at the lower wall so that turbulence must overcome the settling velocity for the particles to vertically distribute throughout the domain. We focus primarily on particle inertia, settling velocity, mass fraction, and the ratio of the particle to fluid specific heat. Furthermore, individual contributions by the momentum coupling and thermal coupling are studied to see which most significantly changes Nu and TKE. Our results show that particles with Stokes number of order unity maximize Nu, corresponding to a peak of clustering and attenuation of TKE. Increased mass fractions lead to a linear increase of Nu and decrease of TKE. With varying specific heat ratio, Nu and TKE exhibit monotonic behaviors, where in the high limit particles become isothermal and depend upon the initialized particle temperature. It is also shown that particles two-way coupled only through momentum attenuate Nu and weaken TKE, while thermal-only coupling also weakens TKE but enhances Nu. When both couplings are present, however, thermal coupling overwhelms the momentum coupling attenuation, and the net result is an enhancement of Nu.

  20. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    Science.gov (United States)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  1. Combined natural convection and radiation in a volumetrically heated fluid layer

    International Nuclear Information System (INIS)

    Chawla, T.C.; Chan, S.H.; Cheung, F.B.; Cho, D.H.

    1980-01-01

    The effect of radiation in combination with turbulent natural convection on the rates of heat transfer in volumetrically heated fluid layers characterized by high temperatures has been considered in this study. It is demonstrated that even at high Rayleigh numbers the radiation mode is as effective as the turbulent natural convection mode in removing the heat from the upper surface of the molten pools with adiabatic lower boundary. As a result of this improved heat transfer, it is shown that considerably thicker molten pools with internal heat generation can be supported without boiling inception. The total Nusselt number at a moderate but fixed value of conduction-radiation parameter, can be represented as a function of Rayleigh number in a simple power-law form. As a consequence of this relationship it is shown that maximum nonboiling pool thicknesses vary approximately inversely as the 0.9% power of internal heat generation rate. A comparison between exact analysis using the integral formulation of radiation flux and Rosseland approximation shows that the latter approximation bears out very adequately for optically thick pools with conduction-radiation parameters greater than or equal to 0.4 inspite of the fact that individual components of Nusselt number due to radiation and convection, respectively, are grossly in error. These errors in component heat fluxes are compensating due to the total heat balance constraint. However, the comparison between Rosseland approximation and exact formulation gets poorer as the value of conduction-radiation parameters decreases. This increase in error is principally incurred due to the error in estimating wall temperature differences

  2. Combined natural convection and radiation in a volumetrically heated fluid layer

    International Nuclear Information System (INIS)

    Chawla, T.C.; Chan, S.H.; Cheung, F.B.; Cho, D.H.

    1980-01-01

    The effect of radiation in combining with turbulent natural convection on the rates of heat transfer in volumetrically heated fluid layers characterized by high temperatures has been considered in this study. It is demonstrated that even at high Rayleigh numbers the radiation mode is as effective as the turbulent natural convection mode in removing the heat from the upper surface of molten pools with adiabatic lower boundary. As a result of this improved heat transfer, it is shown that considerably thicker molten pools with internal heat generation can be supported without boiling inception. The total Nusselt number at a moderate but fixed value of conduction-radiation parameter, can be represented as a function of Rayleigh number in a simple power-law form. As a consequence of this relationship it is shown that maximum nonboiling pool thicknesses vary approximately inversely as the 0.9 power of internal heat generation rate. A comparison between exact analysis using the integral formulation of radiation flux and Rosseland approximateion shows that the latter approximation bears out very adequately for optically thick pools with conduction-radiation parameter > or approx. =0.4 inspite of the fact that individual components of Nusselt number due to radiation and convection, respectively, are grossly in error. These errors in component heat fluxes are compensating due to the total heat balance constraint. However, the comparison between Rosseland approximation and exact formulation gets poorer as the value of conduction-radiation parameter decreases. This increase in error is principally incurred due to the error in estimating wall temperature differences

  3. Fully determined scaling laws for volumetrically heated convective systems, a tool for assessing habitability of exoplanets

    Science.gov (United States)

    Vilella, Kenny; Kaminski, Edouard

    2017-05-01

    The long-term habitability of a planet rises from its ability to generate and maintain an atmosphere through partial melting and volcanism. This question has been mainly addressed in the framework of plate tectonics, which may be too specific to apply to the wide range of internal dynamics expected for exoplanets, and even to the thermal evolution of the early Earth. Here we propose a more general theoretical approach of convection to build a regime diagram giving the conditions for partial melting to occur, in planetary bodies, as a function of key parameters that can be estimated for exoplanets, their size and internal heating rate. To that aim, we introduce a refined view of the Thermal Boundary Layer (TBL) in a convective system heated from within, that focuses on the temperature and thickness of the TBL at the top of the hottest temperature profiles, along which partial melting shall first occur. This ;Hottest Thermal Boundary Layer; (HotTBL) is first characterized using fully theoretical scaling laws based on the dynamics of thermal boundary layers. These laws are the first ones proposed in the literature that do not rely on empirical determinations of dimensionless constants and that apply to both low Rayleigh and high Rayleigh convective regimes. We show that the scaling laws can be successfully applied to planetary bodies by comparing their predictions to full numerical simulations of the Moon. We then use the scaling laws to build a regime diagram for exoplanets. Combined with estimates of internal heating in exoplanets, the regime diagram predicts that in the habitable zone partial melting occurs in planets younger than the Earth.

  4. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity

    Science.gov (United States)

    Varé, Thomas; Nouar, Chérif; Métivier, Christel

    2017-10-01

    Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.

  5. On the relationship between finger width, velocity, and fluxes in thermohaline convection

    Science.gov (United States)

    Sreenivas, K. R.; Singh, O. P.; Srinivasan, J.

    2009-02-01

    Double-diffusive finger convection occurs in many natural processes. The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (Rρ) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (RaT) has been systematically varied from 7×103 to 7×108. Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as RaT-1/3. Velocity in the finger varies as RaT1/3/Rρ. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

  6. Natural convection heat transfer in a rectangular pool with volumetric heat sources

    International Nuclear Information System (INIS)

    Lee, Seung Dong; Lee, Kang Hee; Suh, Kune Y.

    2003-01-01

    Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. The heat transfer within the molten core material can be characterized by buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of the molten pool depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, natural convection involving internal heat generation is delineated in terms of the modified Rayleigh number, Ra', which quantifies the internal heat source and hence the strength of buoyancy. The test section is of rectangular cavity whose length, width, and height are 500 mm, 80 mm, and 250 mm, respectively. A total of twenty-four T-type thermocouples were installed in the test loop to measure temperature distribution. Four T-type thermocouples were utilized to measure temperatures on the boundary. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Rayleigh number, Ra, between 4.87x10 7 and 2.32x10 14 and Prandtl number, Pr, between 0.7 and 3.98. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained at a uniform temperature of 10degC. (author)

  7. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  8. On Lamb and Rayleigh wave convergence in viscoelastic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nenadic, Ivan Z; Urban, Matthew W; Aristizabal, Sara; Mitchell, Scott A; Humphrey, Tye C; Greenleaf, James F, E-mail: Nenadic.Ivan@mayo.edu [Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905 (United States)

    2011-10-21

    Characterization of the viscoelastic material properties of soft tissue has become an important area of research over the last two decades. Our group has been investigating the feasibility of using a shear wave dispersion ultrasound vibrometry (SDUV) method to excite Lamb waves in organs with plate-like geometry to estimate the viscoelasticity of the medium of interest. The use of Lamb wave dispersion ultrasound vibrometry to quantify the mechanical properties of viscoelastic solids has previously been reported. Two organs, the heart wall and the spleen, can be readily modeled using plate-like geometries. The elasticity of these two organs is important because they change in pathological conditions. Diastolic dysfunction is the inability of the left ventricle (LV) of the heart to supply sufficient stroke volumes into the systemic circulation and is accompanied by the loss of compliance and stiffening of the LV myocardium. It has been shown that there is a correlation between high splenic stiffness in patients with chronic liver disease and strong correlation between spleen and liver stiffness. Here, we investigate the use of the SDUV method to quantify the viscoelasticity of the LV free-wall myocardium and spleen by exciting Rayleigh waves on the organ's surface and measuring the wave dispersion (change of wave velocity as a function of frequency) in the frequency range 40-500 Hz. An equation for Rayleigh wave dispersion due to cylindrical excitation was derived by modeling the excised myocardium and spleen with a homogenous Voigt material plate immersed in a nonviscous fluid. Boundary conditions and wave potential functions were solved for the surface wave velocity. Analytical and experimental convergence between the Lamb and Rayleigh waves is reported in a finite element model of a plate in a fluid of similar density, gelatin plate and excised porcine spleen and left-ventricular free-wall myocardium.

  9. Shear flow stabilization of the hydromagnetic Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Roderick, N.F.; Shumlak, U.; Douglas, M.; Peterkin, R.E. Jr.; Ruden, E.

    1997-01-01

    Numerical simulations have indicated that shear flow may help stabilize the hydromagnetic Rayleigh-Taylor instability in imploding plasma z-pinches. A simple extension to a model presented in Chandrasekhar has been developed to study the linear stability of incompressible plasma subjected to both a shear flow and acceleration. The model has been used to investigate the stability plasma implosion schemes using externally imposed velocity shear which develops from the plasma flow itself. Specific parameters were chosen to represent plasma implosions driven by the Saturn and PBFA-Z, pulsed power generators at Sandia National Laboratories. Results indicate a high shear is necessary to stabilize the z-pinch implosions studied

  10. Rayleigh-Taylor instability in accelerated elastic-solid slabs

    Science.gov (United States)

    Piriz, S. A.; Piriz, A. R.; Tahir, N. A.

    2017-12-01

    We develop the linear theory for the asymptotic growth of the incompressible Rayleigh-Taylor instability of an accelerated solid slab of density ρ2, shear modulus G , and thickness h , placed over a semi-infinite ideal fluid of density ρ110.1007/s000330050121] to arbitrary values of AT and unveil the singular feature of an instability threshold below which the slab is stable for any perturbation wavelength. As a consequence, an accelerated elastic-solid slab is stable if ρ2g h /G ≤2 (1 -AT) /AT .

  11. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  12. Experimental demonstration of the Rayleigh acoustic viscous boundary layer theory.

    Science.gov (United States)

    Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; Tovar, R

    2006-03-01

    Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.

  13. Resonance scattering of Rayleigh waves by a mass defect

    International Nuclear Information System (INIS)

    Croitoru, M.; Grecu, D.

    1978-06-01

    The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)

  14. Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser

    Science.gov (United States)

    Wu, Han; Wang, Zinan; Fan, Mengqiu; Li, Jiaqi; Meng, Qingyang; Xu, Dangpeng; Rao, Yunjiang

    2018-03-01

    In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.

  15. Rayleigh-Brillouin spectrum in special relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Garcia-Perciante, A. L.; Garcia-Colin, L. S.; Sandoval-Villalbazo, A.

    2009-01-01

    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.

  16. Statistical approach of weakly nonlinear ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Garnier, J.; Masse, L.

    2005-01-01

    A weakly nonlinear model is proposed for the Rayleigh-Taylor instability in presence of ablation and thermal transport. The nonlinear effects for a single-mode disturbance are computed, included the nonlinear correction to the exponential growth of the fundamental modulation. Mode coupling in the spectrum of a multimode disturbance is thoroughly analyzed by a statistical approach. The exponential growth of the linear regime is shown to be reduced by the nonlinear mode coupling. The saturation amplitude is around 0.1λ for long wavelengths, but higher for short instable wavelengths in the ablative regime

  17. Size estimates of nobel gas clusters by Rayleigh scattering experiments

    Institute of Scientific and Technical Information of China (English)

    Pinpin Zhu (朱频频); Guoquan Ni (倪国权); Zhizhan Xu (徐至展)

    2003-01-01

    Noble gases (argon, krypton, and xenon) are puffed into vacuum through a nozzle to produce clusters for studying laser-cluster interactions. Good estimates of the average size of the argon, krypton and xenon clusters are made by carrying out a series of Rayleigh scattering experiments. In the experiments, we have found that the scattered signal intensity varied greatly with the opening area of the pulsed valve. A new method is put forward to choose the appropriate scattered signal and measure the size of Kr cluster.

  18. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    International Nuclear Information System (INIS)

    Lau, Yue Ying; Gilgenbach, Ronald

    2013-01-01

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed

  19. Hydromagnetic Rayleigh-Taylor instability in cylindrical implosions

    International Nuclear Information System (INIS)

    Hwang, C.S.; Roderick, N.F.; Wu, M.W.

    1986-01-01

    Rayleigh-Taylor Instability in the (r,Θ) plane has been solved by the variational approach. Results are compared to the analytical solutions of two-region and three-region problems at the infinite radius. They show the magnetic stabilization effect. Growth rates in this plane are decreased by the effects of plasma shell thickness, plasma shell radius, magnetic tension, magnetic diffusion and finite density gradient of the plasma magnetic field interface. The most unstable mode number decreases when the radius of the plasma shell decreases

  20. Theoretical and Experimental Studies of Magneto-Rayleigh-Taylor Instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Yue Ying [University of Michigan, Ann Arbor, MI (United States); Gilgenbach, Ronald [University of Michigan, Ann Arbor, MI (United States)

    2013-07-07

    Magneto-Rayleigh-Taylor instability (MRT) is important to magnetized target fusion, wire-array z-pinches, and equation-of-state studies using flyer plates or isentropic compression. It is also important to the study of the crab nebula. The investigators performed MRT experiments on thin foils, driven by the mega-ampere linear transformer driver (LTD) facility completed in their laboratory. This is the first 1-MA LTD in the USA. Initial experiments on the seeding of MRT were performed. Also completed was an analytic study of MRT for a finite plasma slab with arbitrary magnetic fields tangential to the interfaces. The effects of magnetic shear and feedthrough were analyzed.

  1. Segregation and convection in dendritic alloys

    Science.gov (United States)

    Poirier, D. R.

    1990-01-01

    Microsegregation in dentritic alloys is discussed, including solidification with and without thermal gradient, the convection of interdendritic liquid. The conservation of momentum, energy, and solute is considered. Directional solidification and thermosolutal convection are discussed.

  2. Numerical Investigation of the Effect of Magnetic Field on Natural Convection in a Curved-Shape Enclosure

    Directory of Open Access Journals (Sweden)

    M. Sheikholeslami

    2013-01-01

    Full Text Available This investigation reports the magnetic field effect on natural convection heat transfer in a curved-shape enclosure. The numerical investigation is carried out using the control volume-based-finite element method (CVFEM. The numerical investigations are performed for various values of Hartmann number and Rayleigh number. The obtained results are depicted in terms of streamlines and isotherms which show the significant effects of Hartmann number on the fluid flow and temperature distribution inside the enclosure. Also, it was found that the Nusselt number decreases with an increase in the Hartmann number.

  3. Direct numerical simulation of free convection in a vertical channel: a tool for second moment closure modeling

    International Nuclear Information System (INIS)

    Maupu, V.; Laurence, D.; Boudjemadi, R.; Le Quere, P.

    1996-03-01

    Natural turbulent convection in a differentially heated infinite vertical slot is computed with a mixed finite differences/Fourier code. At a Rayleigh number of 10 5 , periodic perturbations from the laminar solution develop and transition to a fully turbulent flow occurs. From then on, a database of high order correlations is constituted and used for testing a second moment closure based on the LRR model and elliptic relaxation near wall effects. Counter gradient turbulent transport, found in the central part of the channel, requires an algebraic model for the triple correlations instead of the standard DH or HL, gradient diffusion models. (authors). 18 refs., 14 figs., 1 tab

  4. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  5. Rayleigh-Taylor instability in multi-structured spherical targets

    International Nuclear Information System (INIS)

    Gupta, N.K.; Lawande, S.V.

    1986-01-01

    An eigenvalue equation for the exponential growth rate of the Rayleigh-Taylor instability is derived in spherical geometry. The free surface and jump boundary conditions are obtained from the eigenvalue equation. The eigenvalue equation is solved in the cases where the initial fluid density profile has a step function or exponential variation in space and analytical formulae for growth rate of the instability are obtained. The solutions for the step function are generalized for any number N of spherical zones forming an arbitrary fluid density profile. The results of the numerical calculations for N spherical zones are compared with the exact analytical results for exponential fluid density profile with N=10 and a good agreement is observed. The formalism is further used to study the effects of density gradients on Rayleigh-Taylor instability in spherical geometry. Also analytical formulae are presented for a particular case of N=3 and shell targets. The formalism developed here can be used to study the growth of the instability in present day multi-structured shell targets. (author)

  6. Rayleigh-Taylor mixing with time-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  7. Rayleigh-Taylor mixing with space-dependent acceleration

    Science.gov (United States)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  8. Development of Rayleigh Doppler lidar for measuring middle atmosphere winds

    Science.gov (United States)

    Raghunath, K.; Patra, A. K.; Narayana Rao, D.

    Interpretation of most of the middle and upper atmospheric dynamical and chemical data relies on the climatological description of the wind field Rayleigh Doppler lidar is one instrument which monitors wind profiles continuously though continuity is limited to clear meteorological conditions in the middle atmosphere A Doppler wind lidar operating in incoherent mode gives excellent wind and temperature information at these altitudes with necessary spectral sensitivity It observes atmospheric winds by measuring the spectral shift of the scattered light due to the motions of atmospheric molecules with background winds and temperature by spectral broadening The presentation is about the design and development of Incoherent Doppler lidar to obtain wind information in the height regions of 30-65 km The paper analyses and describes various types of techniques that can be adopted viz Edge technique and Fringe Imaging technique The paper brings out the scientific objectives configuration simulations error sources and technical challenges involved in the development of Rayleigh Doppler lidar The presentation also gives a novel technique for calibrating the lidar

  9. Subsonic leaky Rayleigh waves at liquid-solid interfaces.

    Science.gov (United States)

    Mozhaev, V G; Weihnacht, M

    2002-05-01

    The paper is devoted to the study of leaky Rayleigh waves at liquid-solid interfaces close to the border of the existence domain of these modes. The real and complex roots of the secular equation are computed for interface waves at the boundary between water and a binary isotropic alloy of gold and silver with continuously variable composition. The change of composition of the alloy allows one to cross a critical velocity for the existence of leaky waves. It is shown that, contrary to popular opinion, the critical velocity does not coincide with the phase velocity of bulk waves in liquid. The true threshold velocity is found to be smaller, the correction being of about 1.45%. Attention is also drawn to the fact that using the real part of the complex phase velocity as a velocity of leaky waves gives only approximate value. The most interesting feature of the waves under consideration is the presence of energy leakage in the subsonic range of the phase velocities where, at first glance, any radiation by harmonic waves is not permitted. A simple physical explanation of this radiation with due regard for inhomogeneity of radiated and radiating waves is given. The controversial question of the existence of leaky Rayleigh waves at a water/ice interface is reexamined. It is shown that the solution considered previously as a leaky wave is in fact the solution of the bulk-wave-reflection problem for inhomogeneous waves.

  10. Identification of dominant flow structures in rapidly rotating convection of liquid metals using Dynamic Mode Decomposition

    Science.gov (United States)

    Horn, S.; Schmid, P. J.; Aurnou, J. M.

    2016-12-01

    The Earth's metal core acts as a dynamo whose efficiency in generating and maintaining the magnetic field is essentially determined by the rotation rate and the convective motions occurring in its outer liquid part. For the description of the primary physics in the outer core the idealized system of rotating Rayleigh-Bénard convection is often invoked, with the majority of studies considering only working fluids with Prandtl numbers of Pr ≳ 1. However, liquid metals are characterized by distinctly smaller Prandtl numbers which in turn result in an inherently different type of convection. Here, we will present results from direct numerical simulations of rapidly rotating convection in a fluid with Pr ≈ 0.025 in cylindrical containers and Ekman numbers as low as 5 × 10-6. In this system, the Coriolis force is the source of two types of inertial modes, the so-called wall modes, that also exist at moderate Prandtl numbers, and cylinder-filling oscillatory modes, that are a unique feature of small Prandtl number convection. The obtained flow fields were analyzed using the Dynamic Mode Decomposition (DMD). This technique allows to extract and identify the structures that govern the dynamics of the system as well as their corresponding frequencies. We have investigated both the regime where the flow is purely oscillatory and the regime where wall modes and oscillatory modes co-exist. In the purely oscillatory regime, high and low frequency oscillatory modes characterize the flow. When both types of modes are present, the DMD reveals that the wall-attached modes dominate the flow dynamics. They precess with a relatively low frequency in retrograde direction. Nonetheless, also in this case, high frequency oscillations have a significant contribution.

  11. Predicting chaotic time series

    International Nuclear Information System (INIS)

    Farmer, J.D.; Sidorowich, J.J.

    1987-01-01

    We present a forecasting technique for chaotic data. After embedding a time series in a state space using delay coordinates, we ''learn'' the induced nonlinear mapping using local approximation. This allows us to make short-term predictions of the future behavior of a time series, using information based only on past values. We present an error estimate for this technique, and demonstrate its effectiveness by applying it to several examples, including data from the Mackey-Glass delay differential equation, Rayleigh-Benard convection, and Taylor-Couette flow

  12. Study on the Instability of Two-Phase Flow in the Heat-Absorbing Tube of Trough Solar Collector

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2017-01-01

    Full Text Available The Marangoni effect and Rayleigh-Benard effect in the two-phase region of solar trough heat-absorbing tube are simulated by FTM (front tracking method. Considering the Marangoni effect alone, although surface tension gradient and surface tension affect the interface wave, the two effects have different characteristics. The surface tension gradient caused by the temperature gradient is one of the factors that swing the interface. The amplitude attenuation of the interface wave decreases with the increase of the Marangoni number (Ma. In general, the surface tension gradient enhances the convection opposite to the temperature gradient. Under the gravity field, the Rayleigh-Benard effect influences the development of the vortex structure in the flow field, which in turn affects the velocity gradient near the interface to influence the evolution of the interface fluctuation. In a small Rayleigh number (Ra, the buoyancy convection reduces the velocity gradient, thus suppressing the evolution of the interfacial wave. In the range of Ra  4.0E4, the situation is just the opposite. The larger the Ra is, the stronger the promoting effect is.

  13. From Leonardo to the graser: light scattering in historical perspective. Pt. 5. The fourth Baron Rayleigh

    Energy Technology Data Exchange (ETDEWEB)

    Hey, J D

    1986-07-01

    The optical research of Robert John Strutt, fourth Baron Rayleigh, on the transparency of the terrestrial atmosphere as determined by the distribution of ozone, is reviewed in relation to the studies of Hartley, Cornu, Fabry and Buisson, and Fowler on this subject. It is shown that the basis of Rayleigh's work is now incorporated in the modern optical techniques for atmospheric monitoring.

  14. Dynamics of globular molecules: moisture effect on the Rayleigh scattering spectrum of the Moessbauer radiation

    International Nuclear Information System (INIS)

    Chesskaya, T.Yu.

    1998-01-01

    The Rayleigh scattering spectrum of the Moessbauer radiation is plotted on the model simulating globular macromolecules. The modeling results are compared with experimental data on the spectra of the Rayleigh scattering of the Moessbauer radiation for various moisture content and hydratation dependence of the elastic scattering portion

  15. A simple analytic approximation to the Rayleigh-Bénard stability threshold

    NARCIS (Netherlands)

    Prosperetti, Andrea

    2011-01-01

    The Rayleigh-Bénard linear stability problem is solved by means of a Fourier series expansion. It is found that truncating the series to just the first term gives an excellent explicit approximation to the marginal stability relation between the Rayleigh number and the wave number of the

  16. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  17. Thermal convection in a co-rotating cylindrical annulus

    Science.gov (United States)

    Kang, Changwoo; Meyer, Antoine; Mutabazi, Innocent

    2017-11-01

    We investigate thermal convection in a fluid of thermal expansion coefficient α, kinematic viscosity ν, thermal diffusivity κ in a cylindrical annulus of inner radius a and outer radius bwith a solid body rotation of angular frequency Ω and an inward heating with a temperature difference ΔT. The control parameters are η = a/b, Pr = ν / κ and the Rayleigh number Ra = αΔ T gd3 / νκ where the centrifugal gravity gc =Ω2 (a +b)/2. We adopt the generalized Boussinesq approximation. Linear stability analysis shows that for infinite annulus, the threshold Rac decreases with η and tends to the value Rac = 1708 when η -> 1 and that critical modes are columnar vortices. Direct numerical simulations using periodic boundary conditions in the axial direction, show that the columnar vortices appear via a supercritical bifurcation. Higher modes of columnar vortices have been determined using the frequency spectra and the Nusselt number for Pr =1 and η = 0.5 : drifting vortices, vacillation modes and chaotic modes have been identified from Ra =1700 to Ra =107 The contribution of the centrifugal buoyancy to the variation of the kinetic energy in the flow is analysed. This work was supported by the project BIOENGINE (CPER-FEDER, Normandie) and CNES.

  18. Microgravity modulation effects on free convection problems LBM simulation

    Science.gov (United States)

    Javadi, Khodayar; Kazemi, Koorosh

    2018-01-01

    In this paper, microgravity modulation effects on free convection in a cavity are investigated using the lattice Boltzmann method. In order to create microgravity modulation, a sinusoidal time-dependent function is considered. Parameters of the flow are chosen such that the maximum Rayleigh number approaches 106. The natural frequency of the system is obtained at first. Afterwards, effects of different frequencies on the flow and heat transfer fields are investigated in detail. Results are presented in four different frequency ratios categorized as (1) ω*=1/200 , 1/100 , 1/20 , and 1/10 ; (2) ω*=1/8 , 1/5 , 1/3 , and 1/2 ; (3) ω* = 0.75, 0.85, and 0.95; and (4) the last one is considered for natural frequency as a special case of ω* = 1. Furthermore, the fast Fourier transformation is used to describe the cavity flow behavior. The results indicated that at low frequency, the system has enough time to adapt itself with the gravity modulation while historical effects do not disappear. Increasing the frequency changes the behavior of the system and different flow patterns appear. Finally, at the natural frequency (ω* = 1), all system modes are stimulated and a strange flow pattern is formed.

  19. A Laboratory Study of Vortical Structures in Rotating Convection Plumes

    Science.gov (United States)

    Fu, Hao; Sun, Shiwei; Wang, Yuan; Zhou, Bowen; Thermal Turbulence Research Team

    2015-11-01

    A laboratory study of the columnar vortex structure in rotating Rayleigh-Bénard convection is conducted. A rectangular water tank is uniformly heated from below and cooled from above, with Ra = (6 . 35 +/- 0 . 77) ×107 , Ta = 9 . 84 ×107 , Pr = 7 . 34 . The columnar vortices are vertically aligned and quasi steady. Two 2D PIV systems were used to measure velocity field. One system performs horizontal scans at 9 different heights every 13.6s, covering 62% of the total depth. The other system scans vertically to obtain the vertical velocity profile. The measured vertical vorticity profiles of most vortices are quasi-linear with height while the vertical velocities are nearly uniform with only a small curvature. A simple model to deduce vertical velocity profile from vertical vorticity profile is proposed. Under quasi-steady and axisymmetric conditions, a ``vortex core'' assumption is introduced to simplify vertical vorticity equation. A linear ODE about vertical velocity is obtained whenever a vertical vorticity profile is given and solved with experimental data as input. The result is approximately in agreement with the measurement. This work was supported by Undergraduates Training Project (J1103410).

  20. High accuracy mantle convection simulation through modern numerical methods

    KAUST Repository

    Kronbichler, Martin

    2012-08-21

    Numerical simulation of the processes in the Earth\\'s mantle is a key piece in understanding its dynamics, composition, history and interaction with the lithosphere and the Earth\\'s core. However, doing so presents many practical difficulties related to the numerical methods that can accurately represent these processes at relevant scales. This paper presents an overview of the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth\\'s mantle, and discusses their implementation in the Open Source code Aspect (Advanced Solver for Problems in Earth\\'s ConvecTion). Specifically, we show how an interconnected set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal discretizations, advection stabilization and efficient linear solvers can provide high accuracy at a numerical cost unachievable with traditional methods, and how these methods can be designed in a way so that they scale to large numbers of processors on compute clusters. Aspect relies on the numerical software packages deal.II and Trilinos, enabling us to focus on high level code and keeping our implementation compact. We present results from validation tests using widely used benchmarks for our code, as well as scaling results from parallel runs. © 2012 The Authors Geophysical Journal International © 2012 RAS.

  1. A Single Mode Study of a Quasi-Geostrophic Convection-Driven Dynamo Model

    Science.gov (United States)

    Plumley, M.; Calkins, M. A.; Julien, K. A.; Tobias, S.

    2017-12-01

    Planetary magnetic fields are thought to be the product of hydromagnetic dynamo action. For Earth, this process occurs within the convecting, turbulent and rapidly rotating outer core, where the dynamics are characterized by low Rossby, low magnetic Prandtl and high Rayleigh numbers. Progress in studying dynamos has been limited by current computing capabilities and the difficulties in replicating the extreme values that define this setting. Asymptotic models that embrace these extreme parameter values and enforce the dominant balance of geostrophy provide an option for the study of convective flows with actual relevance to geophysics. The quasi-geostrophic dynamo model (QGDM) is a multiscale, fully-nonlinear Cartesian dynamo model that is valid in the asymptotic limit of low Rossby number. We investigate the QGDM using a simplified class of solutions that consist of a single horizontal wavenumber which enforces a horizontal structure on the solutions. This single mode study is used to explore multiscale time stepping techniques and analyze the influence of the magnetic field on convection.

  2. An investigation of implicit turbulence modeling for laminar-turbulent transition in natural convection

    Science.gov (United States)

    Li, Chunggang; Tsubokura, Makoto; Wang, Weihsiang

    2017-11-01

    The automatic dissipation adjustment (ADA) model based on truncated Navier-Stokes equations is utilized to investigate the feasibility of using implicit large eddy simulation (ILES) with ADA model on the transition in natural convection. Due to the high Rayleigh number coming from the larger temperature difference (300K), Roe scheme modified for low Mach numbers coordinating ADA model is used to resolve the complicated flow field. Based on the qualitative agreement of the comparisons with DNS and experimental results and the capability of numerically predicating a -3 decay law for the temporal power spectrum of the temperature fluctuation, this study thus validates the feasibility of ILES with ADA model on turbulent natural convection. With the advantages of ease of implementation because no explicit modeling terms are needed and nearly free of tuning parameters, ADA model offers to become a promising tool for turbulent thermal convection. Part of the results is obtained using the K computer at the RIKEN Advanced Institute for Computational Science (Proposal number hp160232).

  3. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios

    Science.gov (United States)

    Ghasemi, Kasra; Siavashi, Majid

    2017-11-01

    MHD natural convection of Cu-water nanofluid in a square porous enclosure is investigated using a parallel LBM code, considering temperature dependence of viscosity and viscous dissipation. Effects of nanofluid concentration (φ = 0 - 0.12), Rayleigh (Ra =103 -106), Hartmann (Ha = 0-20) and porous-fluid thermal conductivity ratio (K∗ = 1-70) on heat transfer and entropy generation are investigated. It is shown that K∗ is a very important parameter, and porous media with low K∗ numbers can confine convection effects, but by increasing K∗ both conduction and convection effects can substantially improve. Also, magnetic field always has negative impact on Nu, however this impact can be controlled by φ and K∗. A magnetic instability has also observed in Ra = 104, and Nu exhibits a sinusoidal variation with Ha. It is proved that, depending on K∗, Ra and Ha values, use of nanofluid with porous media to enhance heat transfer can be either beneficial or detrimental. Also, for given K∗, Ra and Ha numbers an optimal φ exists to improve heat transfer. Finally, entropy generation study performed and results state that in low and high Ra values the thermal and frictional entropy generation are respectively dominant, while for moderate Ra they have the same order of magnitude.

  4. The Weight Loss Effect of Heated Inner Cylinder by Free Convection in Horizontal Cylindrical Enclosure

    Science.gov (United States)

    Sboev, I. O.; Kondrashov, A. N.; Rybkin, K. A.; Burkova, L. N.; Goncharov, M. M.

    2018-03-01

    The work presents results of numerical simulations of natural convection in cavity formed by the surfaces of two horizontal coaxial cylinders. The temperature of the outer cylinder is constant. The area between the cylinders is filled with an ideal incompressible fluid. The inner cylinder is set as the heater. The solution of the equations of thermal convection in a two-dimensional approximation performed by the software package ANSYS Fluent with finite volume method. The study compares the results of numerical simulation with several well-known theoretical and experimental results. The nature of interaction of the inner cylinder with a convection current created in the gap was observed. It was shown that the flux appeared around a heated cylinder affects the weight of the heat source and causes an additional lift force from the surrounding fluid. The various Rayleigh numbers (from 1.0 ṡ 103 to 1.5 ṡ 106) and fluid with different Prandtl number (from 0.5 to 1.0 ṡ 105) are considered.

  5. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  6. Convection due to an unstable density difference across a permeable membrane

    Science.gov (United States)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    We study natural convection driven by unstable concentration differences of sodium chloride (NaCl) across a horizontal permeable membrane at Rayleigh numbers (Ra) of 1010 to 1011 and Schmidt number (Sc)=600. A layer of brine lies over a layer of distilled water, separated by the membrane, in square-cross-section tanks. The membrane is permeable enough to allow a small flow across it at higher driving potentials. Based on the predominant mode of transport across the membrane, three regimes of convection, namely an advection regime, a diffusion regime and a combined regime, are identified. The near-membrane flow in all the regimes consists of sheet plumes formed from the unstable layers of fluid near the membrane. In the advection regime observed at higher concentration differences (Bb) show a common log-normal probability density function at all Ra. We propose a phenomenology which predicts /line{lambda}_b sqrt{Z_w Z_{V_i}}, where Zw and Z_{V_i} are, respectively, the near-wall length scales in Rayleighnard convection (RBC) and due to the advection velocity. In the combined regime, which occurs at intermediate values of C/2)4/3. At lower driving potentials, in the diffusion regime, the flux scaling is similar to that in turbulent RBC.

  7. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  8. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    International Nuclear Information System (INIS)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan's investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra) n , where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan's aligned array results and to other studies of natural convection in horizontal tube arrays

  9. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside.

  10. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I.

    2016-01-01

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside

  11. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions

    Science.gov (United States)

    Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.

    2018-02-01

    We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-burning phases. Stars with Meffects of Rayleigh-Taylor instabilities that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, as well as four new software tools - MESA-Web, MESA-Docker, pyMESA, and mesastar.org - to enhance MESA's education and research impact.

  12. Computational study of the Rayleigh light scattering properties of atmospheric pre-nucleation clusters

    DEFF Research Database (Denmark)

    Elm, Jonas; Norman, Patrick; Bilde, Merete

    2014-01-01

    The Rayleigh and hyper Rayleigh scattering properties of the binary (H 2SO4)(H2O)n and ternary (H 2SO4)(NH3)(H2O)n clusters are investigated using a quantum mechanical response theory approach. The molecular Rayleigh scattering intensities are expressed using the dipole polarizability α...... and hyperpolarizability β tensors. Using density functional theory, we elucidate the effect of cluster morphology on the scattering properties using a combinatorial sampling approach. We find that the Rayleigh scattering intensity depends quadratically on the number of water molecules in the cluster and that a single...... ammonia molecule is able to induce a high anisotropy, which further increases the scattering intensity. The hyper Rayleigh scattering activities are found to be extremely low. This study presents the first attempt to map the scattering of atmospheric molecular clusters using a bottom-up approach...

  13. Mantle dynamics in Mars and Venus: Influence of an immobile lithosphere on three-dimensional mantle convection

    International Nuclear Information System (INIS)

    Schubert, G.; Bercovici; Glatzmaier, G.A.

    1990-01-01

    Numerical calculations of fully three-dimensional convection in constant viscosity, compressible spherical shells are interpreted in terms of possible convective motions in the mantles of Venus and Mars. The shells are heated both internally and from below to account for radiogenic heating, secular cooling, and heat flow from the core. The lower boundary of each of the shells is isothermal and shear stress free, as appropriate to the interface between a mantle and a liquid outer core. The upper boundary of each of the shells is rigid and isothermal, as appropriate to the base of a thick immobile lithosphere. Calculations with shear stress-free upper boundaries are also carried out to assess the role of the rigid surface condition. The ratio of the inner radius of each shell to its outer radius is in accordance with possible core sizes in both Venus and Mars. A calculation is also carried out for a Mars model with a small core to simulate mantle convection during early core formation. Different relative proportions of internal and bottom heating are investigated, ranging from nearly complete heating from within to almost all heating from below. The Rayleigh numbers of all the cases are approximately 100 times the critical Rayleigh numbers for the onset of convection. Cylindrical plumes are the prominent form of upwelling in the models independent of the surface boundary condition so long as sufficient heat derives from the core. Thus major volcanic centers on Mars, such as Tharsis and Elysium, and the coronae and some equatorial highlands on Venus may be the surface expressions of cylindrical mantle plumes

  14. Rough horizontal plates: heat transfer and hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Tisserand, J-C; Gasteuil, Y; Pabiou, H; Castaing, B; Chilla, F [Universite de Lyon, ENS Lyon, CNRS, 46 Allee d' ltalie, 69364 Lyon Cedex 7 (France); Creyssels, M [LMFA, CNRS, Ecole Centrale Lyon, 69134 Ecully Cedex (France); Gibert, M, E-mail: mathieu.creyssels@ec-lyon.fr [Also at MPI-DS (LFPN) Gottingen (Germany)

    2011-12-22

    To investigate the influence of a rough-wall boundary layer on turbulent heat transport, an experiment of high-Rayleigh convection in water is carried out in a Rayleigh-Benard cell with a rough lower plate and a smooth upper plate. A transition in the heat transport is observed when the thermal boundary layer thickness becomes comparable to or smaller than the roughness height. Besides, at larger Rayleigh numbers than the threshold value, heat transport is found to be increased up to 60%. This enhancement cannot be explained simply by an increase in the contact area of the rough surface since the contact area is increased only by a factor of 40%. Finally, a simple model is proposed to explain the enhanced heat transport.

  15. Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in a presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Ahmed Kadhim, E-mail: ahmedkadhim7474@gmail.com [Department of Mechanical Engineering, College of Engineering, Babylon University, Babylon City (Iraq); Ashorynejad, Hamid Reza; Shikholeslami, Mohsen [Faculty of Mechanical Engineering, Babol University of Technology, Babol, Mazandaran, Islamic Republic of Iran (Iran, Islamic Republic of); Sivasankaran, S. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-03-15

    Highlights: • Convection very strong when Ra is high and Ha = 0. • Isotherms smooth when Ra is low and Ha is high. • Maximum stream function increases by adding nano-particle. • Flow circulation decreases when magnetic orientation angle increases. • Nusselt number ratio increases when Ra increases. - Abstract: In this paper magneto hydrodynamic (MHD) natural convection flow of Cu–water nanofluid in an open enclosure is investigated numerically using lattice Boltzmann method (LBM) scheme. The effective thermal conductivity and viscosity of nanofluid are calculated by the Maxwell–Garnetts (MG) and Brinkman models, respectively. In addition, the MDF model was used for simulating the effect of uniform magnetic field. The influence of pertinent parameters such as Hartmann number, nanoparticle volume fraction, Rayleigh number and the inclination of magnetic field on the flow and heat transfer characteristics have been examined. The results indicate that the absolute values of stream function decline significantly by increasing Hartmann numbers while these values rise by increasing Rayleigh numbers. Moreover, the results show that the solid volume fraction has a significant influence on stream function and heat transfer, depending on the value of Hartmann and Rayleigh numbers.

  16. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  17. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  18. Fluid convection, constraint and causation

    Science.gov (United States)

    Bishop, Robert C.

    2012-01-01

    Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955

  19. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  20. Nonlinear hydrodynamic stability and transition; Proceedings of the IUTAM Symposium, Nice, France, Sept. 3-7, 1990

    Science.gov (United States)

    Theoretical and experimental research on nonlinear hydrodynamic stability and transition is presented. Bifurcations, amplitude equations, pattern in experiments, and shear flows are considered. Particular attention is given to bifurcations of plane viscous fluid flow and transition to turbulence, chaotic traveling wave covection, chaotic behavior of parametrically excited surface waves in square geometry, amplitude analysis of the Swift-Hohenberg equation, traveling wave convection in finite containers, focus instability in axisymmetric Rayleigh-Benard convection, scaling and pattern formation in flowing sand, dynamical behavior of instabilities in spherical gap flows, and nonlinear short-wavelength Taylor vortices. Also discussed are stability of a flow past a two-dimensional grid, inertia wave breakdown in a precessing fluid, flow-induced instabilities in directional solidification, structure and dynamical properties of convection in binary fluid mixtures, and instability competition for convecting superfluid mixtures.

  1. Earth's core formation due to the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Ida, S.; Nakagawa, Y.; Nakazawa, K.

    1987-01-01

    A protoearth accretion stage configuration consisting of an undifferentiated solid core, an intermediate metal-melt layer, and an outer silicate-melt layer, is presently taken as the initial state in an investigation of Rayleigh-Taylor instability-induced core formation. The Ida et al. (to be published) quantitative results on the instability in a self-gravitating fluid sphere are used. The instability is found to occur through the translational mode on a time-scale of about 10 hr, in the case where the metal-melt layer is greater than about 1 km; this implies that the earth's core formed due to the undifferentiated solid core's translation upon the outer layer's melting. Differentiation would then have occurred in the late accretion stage. 17 references

  2. Mode coupling in nonlinear Rayleigh--Taylor instability

    International Nuclear Information System (INIS)

    Ofer, D.; Shvarts, D.; Zinamon, Z.; Orszag, S.A.

    1992-01-01

    This paper studies the interaction of a small number of modes in the two-fluid Rayleigh--Taylor instability at relatively late stages of development, i.e., the nonlinear regime, using a two-dimensional hydrodynamic code incorporating a front-tracking scheme. It is found that the interaction of modes can greatly affect the amount of mixing and may even reduce the width of the mixing region. This interaction is both relatively long range in wave-number space and also acts in both directions, i.e., short wavelengths affect long wavelengths and vice versa. Three distinct stages of interaction have been identified, including substantial interaction among modes some of which may still be in their classical (single mode) ''linear'' phase

  3. Rayleigh-Taylor analysis in a laser-induced plasma

    International Nuclear Information System (INIS)

    Marin, R A; Gonzales, C A; Riascos, H

    2012-01-01

    We report the conditions (plasma parameters) under which the Rayleigh-Taylor Instability (RTI) develops in an Al plasma produced by a Nd:Yag pulsed laser with a fluence range of 1 to 4 J/cm 2 , wavelength of 1064nm and 10Hz repetition rate. The used data correspond to different pressure values of the ambient N atmosphere. From previous works, we took the RTI growth rate form. From the perturbation theory the instability amplitude is proportional to e -ηt . Using the drag model, we calculated the plume dynamics equations integrating the instability term and plotted the instability growth profile with the delay time values to get critical numbers for it, in order to show under which conditions the RTI appears.

  4. Simulation of Rayleigh--Taylor flows using vortex blobs

    International Nuclear Information System (INIS)

    Kerr, R.M.

    1988-01-01

    An inviscid boundary-integral method is modified in order to study the single-scale Rayleigh--Taylor instability for arbitrary Atwood number. The primary modification uses vortex blobs to smooth the Green's function and suppress a finite time singularity in the curvature. Additional modifications to earlier codes such as using second-order central differences along the interface to accommodate spikes in the vorticity and spreading the nodes evenly along the interface to suppress clustering of nodes are designed to maintain resolution and accuracy. To achieve second-order accuracy in time when the nodes are spread, an extra predictor step is needed that shifts the nodes before the variables are advanced. The method successfully follows the development of a single mode to states with asymptotic velocities for the bubble and spike that depend on the Atwood number and are independent of the blob size. Incipient droplet formation is observed. copyright 1988 Academic Press, Inc

  5. Size invariance of the granular Rayleigh-Taylor instability.

    Science.gov (United States)

    Vinningland, Jan Ludvig; Johnsen, Øistein; Flekkøy, Eirik G; Toussaint, Renaud; Måløy, Knut Jørgen

    2010-04-01

    The size scaling behavior of the granular Rayleigh-Taylor instability [J. L. Vinningland, Phys. Rev. Lett. 99, 048001 (2007)] is investigated experimentally, numerically, and theoretically. An upper layer of grains displaces a lower gap of air by organizing into dense fingers of falling grains separated by rising bubbles of air. The dependence of these structures on the system and grain sizes is investigated. A spatial measurement of the finger structures is obtained by the Fourier power spectrum of the wave number k. As the size of the grains increases the wave number decreases accordingly which leaves the dimensionless product of wave number and grain diameter, dk, invariant. A theoretical interpretation of the invariance, based on the scaling properties of the model equations, suggests a gradual breakdown of the invariance for grains smaller than approximately 70 microm or greater than approximately 570 microm in diameter.

  6. Relationship between ultrasonic Rayleigh waves and surface residual stress

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Dewey, B.R.; King, R.T.

    1977-01-01

    Local variations of Rayleigh (surface) circumferential ultrasonic wave velocity near a pipe-girth weld in large-diameter thin-wall type 316H stainless steel pipe were measured. The weldment was similar to those anticipated for the Liquid Metal Fast Breeder Reactor (LMFBR) piping systems. The residual stress distribution was estimated independently from shell theory for an elastic, infinite, thin shell with circumferential line loading. An upper bound on the magnitude of the residual stresses was estimated assuming the deformation of the shell was entirely elastic. The pattern of surface wave velocity variations matches the theoretical residual stress pattern closely. It is suggested that the monitoring of surface wave velocity variations might be used for characterizing residual stress patterns near critical welds in piping, aiding in design calculations, and for in-service monitoring of the state of stress of weldments

  7. Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.

    Science.gov (United States)

    Yang, Qiang; Li, Huizeng; Li, Mingzhu; Li, Yanan; Chen, Shuoran; Bao, Bin; Song, Yanlin

    2017-11-29

    Elimination of satellite droplets in inkjet printing has long been desired for high-resolution and precision printing of functional materials and tissues. Generally, the strategy to suppress satellite droplets is to control ink properties, such as viscosity or surface tension, to assist ink filaments in retracting into one drop. However, this strategy brings new restrictions to the ink, such as ink viscosity, surface tension, and concentration. Here, we report an alternative strategy that the satellite droplets are eliminated by enhancing Rayleigh instability of filament at the break point to accelerate pinch-off of the droplet from the nozzle. A superhydrophobic and ultralow adhesive nozzle with cone morphology exhibits the capability to eliminate satellite droplets by cutting the ink filament at breakup point effectively. As a result, the nozzles with different sizes (10-80 μm) are able to print more inks (1 printing electronics and biotechnologies.

  8. Numerical simulation of anisotropic preheating ablative Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Wang Lifeng; Ye Wenhua; Li Yingjun

    2010-01-01

    The linear growth rate of the anisotropic preheating ablative Rayleigh-Taylor instability (ARTI) is studied by numerical simulations. The preheating model κ(T)=κ SH [1+f(T)] is applied, where f(T) is the preheating function interpreting the preheating tongue effect in the cold plasma ahead of the ablative front. An arbitrary coefficient D is introduced in the energy equation to study the influence of transverse thermal conductivity on the growth of the ARTI. We find that enhancing diffusion in a plane transverse to the mean longitudinal flow can strongly reduce the growth of the instability. Numerical simulations exhibit a significant stabilization of the ablation front by improving the transverse thermal conduction. Our results are in general agreement with the theory analysis and numerical simulations by Masse. (authors)

  9. Observation of Rayleigh - Taylor growth to short wavelengths on Nike

    International Nuclear Information System (INIS)

    Pawley, C.J.; Bodner, S.E.; Dahlburg, J.P.; Obenschain, S.P.; Schmitt, A.J.; Sethian, J.D.; Sullivan, C.A.; Gardner, J.H.; Aglitskiy, Y.; Chan, Y.; Lehecka, T.

    1999-01-01

    The uniform and smooth focal profile of the Nike KrF laser [S. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to ablatively accelerate 40 μm thick polystyrene planar targets with pulse shaping to minimize shock heating of the compressed material. The foils had imposed small-amplitude sinusoidal wave perturbations of 60, 30, 20, and 12.5 μm wavelength. The shortest wavelength is near the ablative stabilization cutoff for Rayleigh - Taylor growth. Modification of the saturated wave structure due to random laser imprint was observed. Excellent agreement was found between the two-dimensional simulations and experimental data for most cases where the laser imprint was not dominant. copyright 1999 American Institute of Physics

  10. The Magnetic Rayleigh-Taylor Instability in Astrophysical Discs

    Science.gov (United States)

    Contopoulos, I.; Kazanas, D.; Papadopoulos, D. B.

    2016-01-01

    This is our first study of the magnetic Rayleigh-Taylor instability at the inner edge of an astrophysical disc around a central back hole. We derive the equations governing small-amplitude oscillations in general relativistic ideal magnetodydrodynamics and obtain a criterion for the onset of the instability. We suggest that static disc configurations where magnetic field is held by the disc material are unstable around a Schwarzschild black hole. On the other hand, we find that such configurations are stabilized by the space-time rotation around a Kerr black hole. We obtain a crude estimate of the maximum amount of poloidal magnetic flux that can be accumulated around the centre, and suggest that it is proportional to the black hole spin. Finally, we discuss the astrophysical implications of our result for the theoretical and observational estimations of the black hole jet power.

  11. Stability of a short Rayleigh length laser resonator

    Directory of Open Access Journals (Sweden)

    P. P. Crooker

    2005-04-01

    Full Text Available Motivated by the prospect of constructing a short Rayleigh length free-electron laser in a high-vibration environment, we demonstrate the use of a collection of rays to study the effect of mirror vibration and distortion on the behavior of the fundamental optical mode of a cold-cavity resonator. We find that the ray collection accurately describes both on-axis and off-axis optical beams. We show that a tilt or transverse shift of a mirror causes the optical mode to rock about the original resonator axis, while a longitudinal mirror shift or a change in the mirror’s radius of curvature causes the beam diameter at a mirror to successively dilate and contract on the mirror. Results are in excellent agreement with analytic calculations and wave front propagation simulations as long as the mirrors remain large with respect to the beam diameter.

  12. Front propagation in Rayleigh-Taylor systems with reaction

    International Nuclear Information System (INIS)

    Scagliarini, A; Biferale, L; Sbragaglia, M; Mantovani, F; Pivanti, M; Schifano, S F; Tripiccione, R; Pozzati, F; Toschi, F

    2011-01-01

    A special feature of Rayleigh-Taylor systems with chemical reactions is the competition between turbulent mixing and the 'burning processes', which leads to a highly non-trivial dynamics. We studied the problem performing high resolution numerical simulations of a 2d system, using a thermal lattice Boltzmann (LB) model. We spanned the various regimes emerging at changing the relative chemical/turbulent time scales, from slow to fast reaction; in the former case we found numerical evidence of an enhancement of the front propagation speed (with respect to the laminar case), providing a phenomenological argument to explain the observed behaviour. When the reaction is very fast, instead, the formation of sharp fronts separating patches of pure phases, leads to an increase of intermittency in the small scale statistics of the temperature field.

  13. Unstable Titan-generated Rayleigh-Taylor Lakes Impact Ice

    Science.gov (United States)

    Umurhan, O. M.; Korycansky, D. G.; Zahnle, K. J.

    2014-12-01

    The evolution of surface morphology on Titan, Triton, and other worlds is strongly influenced by the interplay of various fluid dynamical processes. Specifically, overturning instabilities can easily arise due to the special circumstances of landform evolution that probably occurred on these worlds. On Titan, large impacts that formed basins like Menrva crater (and possibly Hotei Regio) would have generated impact-melt ice lakes unstably arranged over less dense ice. Cantaloupe terrains, for example as seen on Triton, may be the result of condensation of volatiles (methane, nitrogen) leading to unstably stratified layers of different compositions and densities. In each of these cases, Rayleigh-Taylor instabilities leading to large scale diapirism may be at play. In addition to the dynamics of these instabilities, other physical effects (e.g. heat diffusion, freezing/melting, porosity, temperature dependent viscosity) likely play an important role in the evolution of these features. In this ongoing study, we examine the properties of unstably stratified fluids in which the lower less-dense ice has a temperature dependent viscosity. Surprisingly, we find that there exists an optimal disturbance length scale corresponding to the fastest growth of the Rayleigh-Taylor instability. For unstably stratified layers of water (low viscosity heavy liquid lying above an ice whose viscosity increases with depth) the fastest growing mode corresponds to 40-60 km scales with overturn times of approximately 100 days. We present a detailed numerical stability analysis in a corresponding Boussinessq model (in the creeping flow limit) incorporating thermal conduction and latent heat release and we examine the stability properties surveying a variety of parameters. We have also developed a two-dimensional numerical code (a hybrid spectral/compact-differencing scheme) to model the evolution of such systems for which we shall present preliminary numerical results depicting the outcome of

  14. Generation of Rayleigh waves into mortar and concrete samples.

    Science.gov (United States)

    Piwakowski, B; Fnine, Abdelilah; Goueygou, M; Buyle-Bodin, F

    2004-04-01

    The paper deals with a non-destructive method for characterizing the degraded cover of concrete structures using high-frequency ultrasound. In a preliminary study, the authors emphasized on the interest of using higher frequency Rayleigh waves (within the 0.2-1 MHz frequency band) for on-site inspection of concrete structures with subsurface damage. The present study represents a continuation of the previous work and aims at optimizing the generation and reception of Rayleigh waves into mortar and concrete be means of wedge transducers. This is performed experimentally by checking the influence of the wedge material and coupling agent on the surface wave parameters. The selection of the best combination wedge/coupling is performed by searching separately for the best wedge material and the best coupling material. Three wedge materials and five coupling agents were tested. For each setup the five parameters obtained from the surface wave measurement i.e. the frequency band, the maximal available central frequency, the group velocity error and its standard deviation and finally the error in velocity dispersion characteristic were investigated and classed as a function of the wedge material and the coupling agent. The selection criteria were chosen so as to minimize the absorption of both materials, the randomness of measurements and the systematic error of the group velocity and of dispersion characteristic. Among the three tested wedge materials, Teflon was found to be the best. The investigation on the coupling agent shows that the gel type materials are the best solutions. The "thick" materials displaying higher viscosity were found as the worst. The results show also that the use of a thin plastic film combined with the coupling agent even increases the bandwidth and decreases the uncertainty of measurements.

  15. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Youngs, D.L.

    1992-01-01

    A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations

  16. Direct numerical simulation and modeling of turbulent natural convection in a vertical differentially heated slot; Simulation numerique directe et modelisation de la convection naturelle turbulente dans un canal differentiellement chauffe

    Energy Technology Data Exchange (ETDEWEB)

    Boudjemadi, R.

    1996-03-01

    The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10{sup 5} and 5.4*10{sup 5}. A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends.

  17. Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Tariq [Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000 (Pakistan); Mehmood, Z., E-mail: rajaziafat@yahoo.com [Department of Mathematics and Statistics, FBAS, International Islamic University, Islamabad 44000 (Pakistan); Abbas, Z. [Department of Mathematics, The Islamia University, Bahawalpur (Pakistan)

    2017-02-01

    This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.

  18. Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field

    International Nuclear Information System (INIS)

    Javed, Tariq; Mehmood, Z.; Abbas, Z.

    2017-01-01

    This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.

  19. Multiple zonal jets and convective heat transport barriers in a quasi-geostrophic model of planetary cores

    Science.gov (United States)

    Guervilly, C.; Cardin, P.

    2017-10-01

    We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.

  20. Evidence for thermal convection in the deep carbonate aquifer of the eastern sector of the Po Plain, Italy

    Science.gov (United States)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2013-05-01

    Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.