WorldWideScience

Sample records for ray tracing implementation

  1. RAY TRACING IMPLEMENTATION IN JAVA PROGRAMMING LANGUAGE

    OpenAIRE

    Aybars UĞUR; Mustafa TÜRKSEVER

    2002-01-01

    In this paper realism in computer graphics and components providing realism are discussed at first. It is mentioned about illumination models, surface rendering methods and light sources for this aim. After that, ray tracing which is a technique for creating two dimensional image of a three-dimensional virtual environment is explained briefly. A simple ray tracing algorithm was given. "SahneIzle" which is a ray tracing program implemented in Java programming language which ...

  2. RAY TRACING IMPLEMENTATION IN JAVA PROGRAMMING LANGUAGE

    Directory of Open Access Journals (Sweden)

    Aybars UĞUR

    2002-01-01

    Full Text Available In this paper realism in computer graphics and components providing realism are discussed at first. It is mentioned about illumination models, surface rendering methods and light sources for this aim. After that, ray tracing which is a technique for creating two dimensional image of a three-dimensional virtual environment is explained briefly. A simple ray tracing algorithm was given. "SahneIzle" which is a ray tracing program implemented in Java programming language which can be used on the internet is introduced. As a result, importance of network-centric ray tracing software is discussed.

  3. Implementation of Refined Ray Tracing inside a Space Module

    Directory of Open Access Journals (Sweden)

    Balamati Choudhury

    2012-08-01

    Full Text Available Modern space modules are susceptible to EM radiation from both external and internal sources within the space module. Since the EM waves for various operations are frequently in the high-frequency domain, asymptotic raytheoretic methods are often the most optimal choice for deterministic EM field analysis. In this work, surface modeling of a typical manned space module is done by hybridizing a finite segment of right circular cylinder and a general paraboloid of revolution (GPOR frustum. A transmitting source is placed inside the space module and test rays are launched from the transmitter. The rays are allowed to propagate inside the cavity. Unlike the available ray-tracing package, that use numerical search methods, a quasi-analytical ray-propagation model is developed to obtain the ray-path details inside the cavity which involves the ray-launching, ray-bunching, and an adaptive cube for ray-reception.

  4. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  5. Computer ray tracing speeds.

    Science.gov (United States)

    Robb, P; Pawlowski, B

    1990-05-01

    The results of measuring the ray trace speed and compilation speed of thirty-nine computers in fifty-seven configurations, ranging from personal computers to super computers, are described. A correlation of ray trace speed has been made with the LINPACK benchmark which allows the ray trace speed to be estimated using LINPACK performance data. The results indicate that the latest generation of workstations, using CPUs based on RISC (Reduced Instruction Set Computer) technology, are as fast or faster than mainframe computers in compute-bound situations.

  6. Modeling UV Radiation Feedback from Massive Stars. I. Implementation of Adaptive Ray-tracing Method and Tests

    Science.gov (United States)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    We present an implementation of an adaptive ray-tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a recently proposed parallel algorithm that uses nonblocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems, including the propagation of radiation in vacuum and the expansions of various types of H II regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to ∼ {10}3 processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is 12% when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with those from the M 1 closure relation. Although the ART and M 1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.

  7. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  8. Real time ray tracing based on shader

    Science.gov (United States)

    Gui, JiangHeng; Li, Min

    2017-07-01

    Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.

  9. Implementation of diffraction in a ray-tracing model for the prediction of noise in open-plan offices.

    Science.gov (United States)

    Chevret, P; Chatillon, J

    2012-11-01

    Sound prediction in open-plan offices is a real challenge because of the complexity of the layout of such offices, and therefore because of the multitude of acoustic phenomena involved. One such phenomenon, of primary importance, and not the least challenging of them, is the diffraction by screens and low dividers that usually partition the workspace. This paper describes implementing the equations of the Uniform Theory of Diffraction [McNamara et al. (1990). Introduction to the Uniform Theory of Diffraction (Artech House, Boston)] in an existing ray-tracing model initially dedicated to sound prediction in industrial premises. For the purposes of validation, a series of measurements was conducted in a semi-anechoic chamber in the same manner as Wang and Bradley [(2002). Appl. Acoust. 63, 849-866] but including real desktops instead of single screens. A first phase was dedicated to controlling the quality of the installation by making comparisons with McNamara's solution for a single screen on a rigid floor. Then, the validation itself was conducted with measurements on real desktops, first without a ceiling, and then with a rigid ceiling suspended above the double desk. The results of the comparisons between calculations and measurements in this configuration have demonstrated that the model is an effective tool for predicting sound levels in an open-plan office.

  10. Computer program for optical systems ray tracing

    Science.gov (United States)

    Ferguson, T. J.; Konn, H.

    1967-01-01

    Program traces rays of light through optical systems consisting of up to 65 different optical surfaces and computes the aberrations. For design purposes, paraxial tracings with astigmation and third order tracings are provided.

  11. A Computer Library for Ray Tracing in Analytical Media

    International Nuclear Information System (INIS)

    Miqueles, Eduardo; Coimbra, Tiago A; Figueiredo, J J S de

    2013-01-01

    Ray tracing technique is an important tool not only for forward but also for inverse problems in Geophysics, which most of the seismic processing steps depends on. However, implementing ray tracing codes can be very time consuming. This article presents a computer library to trace rays in 2.5D media composed by stack of layers. The velocity profile inside each layer is such that the eikonal equation can be analitically solved. Therefore, the ray tracing within such profile is made fast and accurately. The great advantage of an analytical ray tracing library is the numerical precision of the quantities computed and the fast execution of the implemented codes. Although ray tracing programs already exist for a long time, for example the seis package by Cervený, with a numerical approach to compute the ray. Regardless of the fact that numerical methods can solve more general problems, the analytical ones could be part of a more sofisticated simulation process, where the ray tracing time is completely relevant. We demonstrate the feasibility of our codes using numerical examples.

  12. Reverse ray tracing for transformation optics.

    Science.gov (United States)

    Hu, Chia-Yu; Lin, Chun-Hung

    2015-06-29

    Ray tracing is an important technique for predicting optical system performance. In the field of transformation optics, the Hamiltonian equations of motion for ray tracing are well known. The numerical solutions to the Hamiltonian equations of motion are affected by the complexities of the inhomogeneous and anisotropic indices of the optical device. Based on our knowledge, no previous work has been conducted on ray tracing for transformation optics with extreme inhomogeneity and anisotropicity. In this study, we present the use of 3D reverse ray tracing in transformation optics. The reverse ray tracing is derived from Fermat's principle based on a sweeping method instead of finding the full solution to ordinary differential equations. The sweeping method is employed to obtain the eikonal function. The wave vectors are then obtained from the gradient of that eikonal function map in the transformed space to acquire the illuminance. Because only the rays in the points of interest have to be traced, the reverse ray tracing provides an efficient approach to investigate the illuminance of a system. This approach is useful in any form of transformation optics where the material property tensor is a symmetric positive definite matrix. The performance and analysis of three transformation optics with inhomogeneous and anisotropic indices are explored. The ray trajectories and illuminances in these demonstration cases are successfully solved by the proposed reverse ray tracing method.

  13. Ray Tracing for Real-time Games

    NARCIS (Netherlands)

    Bikker, J.

    2012-01-01

    This thesis describes efficient rendering algorithms based on ray tracing, and the application of these algorithms to real-time games. Compared to rasterizationbased approaches, rendering based on ray tracing allows elegant and correct simulation of important global effects, such as shadows,

  14. RAY TRACING RENDER MENGGUNAKAN FRAGMENT ANTI ALIASING

    Directory of Open Access Journals (Sweden)

    Febriliyan Samopa

    2008-07-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Rendering is generating surface and three-dimensional effects on an object displayed on a monitor screen. Ray tracing as a rendering method that traces ray for each image pixel has a drawback, that is, aliasing (jaggies effect. There are some methods for executing anti aliasing. One of those methods is OGSS (Ordered Grid Super Sampling. OGSS is able to perform aliasing well. However, this method requires more computation time since sampling of all pixels in the image will be increased. Fragment Anti Aliasing (FAA is a new alternative method that can cope with the drawback. FAA will check the image when performing rendering to a scene. Jaggies effect is only happened at curve and gradient object. Therefore, only this part of object that will experience sampling magnification. After this sampling magnification and the pixel values are computed, then downsample is performed to retrieve the original pixel values. Experimental results show that the software can implement ray tracing well in order to form images, and it can implement FAA and OGSS technique to perform anti aliasing. In general, rendering using FAA is faster than using OGSS

  15. A 3D implementation of ray tracing combined with diffraction on facets: Verification and a potential application

    International Nuclear Information System (INIS)

    Clarke, Adrian J.M.; Hesse, Evelyn; Ulanowski, Zbigniew; Kaye, Paul H.

    2006-01-01

    A 3D implementation of a new model of light scattering applicable to dielectric faceted objects is introduced. The model combines standard geometric optics with diffraction on individual facets. It can be applied to any faceted geometry. The model adds no significant computational overheads to classical geometric optics yet provides much improved results. Initial results for long hexagonal columns are compared to SVM and appear favourable. 2D scattering patterns are calculated for a hexagonal column in a fixed orientation and compared to those created by ice analogue crystals in the laboratory with close agreement. The comparison includes the observation of a guided wave propagating along the length of the column. The new model is then applied to a selection of geometries to illustrate how it could be used to aid particle characterization, particularly in the case of cirrus ice

  16. The Alba ray tracing code: ART

    Science.gov (United States)

    Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi

    2013-09-01

    The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.

  17. Improved backward ray tracing with stochastic sampling

    Science.gov (United States)

    Ryu, Seung Taek; Yoon, Kyung-Hyun

    1999-03-01

    This paper presents a new technique that enhances the diffuse interreflection with the concepts of backward ray tracing. In this research, we have modeled the diffuse rays with the following conditions. First, as the reflection from the diffuse surfaces occurs in all directions, it is impossible to trace all of the reflected rays. We confined the diffuse rays by sampling the spherical angle out of the reflected rays around the normal vector. Second, the traveled distance of reflected energy from the diffuse surface differs according to the object's property, and has a comparatively short reflection distance. Considering the fact that the rays created on the diffuse surfaces affect relatively small area, it is very inefficient to trace all of the sampled diffused rays. Therefore, we set a fixed distance as the critical distance and all the rays beyond this distance are ignored. The result of this research is that as the improved backward ray tracing can model the illumination effects such as the color bleeding effects, we can replace the radiosity algorithm under the limited environment.

  18. AXAF FITS standard for ray trace interchange

    Science.gov (United States)

    Hsieh, Paul F.

    1993-07-01

    A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.

  19. Backward ray tracing for ultrasonic imaging

    NARCIS (Netherlands)

    Breeuwer, R.

    1990-01-01

    Focused ultrasonic beams frequently pass one or more media interfaces, strongly affecting the ultrasonic beamshape and focusing. A computer program, based on backward ray tracing was developed to compute the shape of a corrected focusing mirror. This shape is verified with another program; then the

  20. Electron ray tracing with high accuracy

    International Nuclear Information System (INIS)

    Saito, K.; Okubo, T.; Takamoto, K.; Uno, Y.; Kondo, M.

    1986-01-01

    An electron ray tracing program is developed to investigate the overall geometrical and chromatic aberrations in electron optical systems. The program also computes aberrations due to manufacturing errors in lenses and deflectors. Computation accuracy is improved by (1) calculating electrostatic and magnetic scalar potentials using the finite element method with third-order isoparametric elements, and (2) solving the modified ray equation which the aberrations satisfy. Computation accuracy of 4 nm is achieved for calculating optical properties of the system with an electrostatic lens

  1. Ray tracing package through a lens system and a spectrometer

    International Nuclear Information System (INIS)

    Zurro, B.; King, P.W.; Lazarus, E.A.

    1980-03-01

    To study the light collection optics of the ISX-B two-dimensional (2-D) Thomson scattering system, we have implemented in the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) PDP-10 two computer programs, LENS and SPECT, that trace rays through a lens system and a spectrometer, respectively. The lens package follows the path of any kind of ray (meridional or skew) through a centered optical system formed by an arbitrary number of spherical surfaces. The spectrometer package performs geometrical ray tracing through a Czerney-Turner spectrometer and can be easily modified for studying any other configuration. Contained herein is a description of the procedures followed and a listing of the computer programs

  2. Parallel ray tracing for one-dimensional discrete ordinate computations

    International Nuclear Information System (INIS)

    Jarvis, R.D.; Nelson, P.

    1996-01-01

    The ray-tracing sweep in discrete-ordinates, spatially discrete numerical approximation methods applied to the linear, steady-state, plane-parallel, mono-energetic, azimuthally symmetric, neutral-particle transport equation can be reduced to a parallel prefix computation. In so doing, the often severe penalty in convergence rate of the source iteration, suffered by most current parallel algorithms using spatial domain decomposition, can be avoided while attaining parallelism in the spatial domain to whatever extent desired. In addition, the reduction implies parallel algorithm complexity limits for the ray-tracing sweep. The reduction applies to all closed, linear, one-cell functional (CLOF) spatial approximation methods, which encompasses most in current popular use. Scalability test results of an implementation of the algorithm on a 64-node nCube-2S hypercube-connected, message-passing, multi-computer are described. (author)

  3. RayTrace: A Simplified Ray Tracing Software for use in AutoCad

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter; Tang, C.K.

    2005-01-01

    A design aid tool for testing and development of daylighting systems was developed. A simplified ray tracing software was programmed in Lisp for AutoCad. Only fully specularly reflective, fully transparent and fully absorbant surfaces can be defined in the software. The software is therefore best...

  4. Development of ray tracing visualization program by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Otani, Takayuki [Japan Atomic Energy Research Inst., Tokyo (Japan); Hasegawa, Yukihiro

    1997-09-01

    Ray tracing algorithm is a powerful method to synthesize three dimensional computer graphics. In conventional ray tracing algorithms, a view point is used as a starting point of ray tracing, from which the rays are tracked up to the light sources through center points of pixels on the view screen to calculate the intensities of the pixels. This manner, however, makes it difficult to define the configuration of light source as well as to strictly simulate the reflections of the rays. To resolve these problems, we have developed a new ray tracing means which traces rays from a light source, not from a view point, with use of Monte Carlo method which is widely applied in nuclear fields. Moreover, we adopt the variance reduction techniques to the program with use of the specialized machine (Monte-4) for particle transport Monte Carlo so that the computational time could be successfully reduced. (author)

  5. Real-time generation of kd-trees for ray tracing using DirectX 11

    OpenAIRE

    Säll, Martin; Cronqvist, Fredrik

    2017-01-01

    Context. Ray tracing has always been a simple but effective way to create a photorealistic scene but at a greater cost when expanding the scene. Recent improvements in GPU and CPU hardware have made ray tracing faster, making more complex scenes possible with the same amount of time needed to process the scene. Despite the improvements in hardware ray tracing is still rarely run at a interactive speed. Objectives. The aim of this experiment was to implement a new kdtree generation algorithm us...

  6. Use of X-Ray Fluorescence Spectrometry to Determine Trace ...

    African Journals Online (AJOL)

    This paper deals with application of X-ray fluorescence spectrometry for the detection of trace elements in graphic. An X-ray spectrometer was constructed and used to carry out measurements on graphite spheres impregnated with different chemical elements. The intensities of the lines of these trace elements, as function of ...

  7. High precision ray tracing in cylindrically symmetric electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards Jr, David, E-mail: dej122842@gmail.com

    2015-11-15

    Highlights: • High precision ray tracing is formulated using power series techniques. • Ray tracing is possible for fields generated by solution to laplace's equation. • Spatial and temporal orders of 4–10 are included. • Precisions in test geometries of hemispherical deflector analyzer of ∼10{sup −20} have been obtained. • This solution offers a considerable extension to the ray tracing accuracy over the current state of art. - Abstract: With the recent availability of a high order FDM solution to the curved boundary value problem, it is now possible to determine potentials in such geometries with considerably greater accuracy than had been available with the FDM method. In order for the algorithms used in the accurate potential calculations to be useful in ray tracing, an integration of those algorithms needs to be placed into the ray trace process itself. The object of this paper is to incorporate these algorithms into a solution of the equations of motion of the ray and, having done this, to demonstrate its efficacy. The algorithm incorporation has been accomplished by using power series techniques and the solution constructed has been tested by tracing the medial ray through concentric sphere geometries. The testing has indicated that precisions of ray calculations of 10{sup −20} are now possible. This solution offers a considerable extension to the ray tracing accuracy over the current state of art.

  8. Cosmic ray particle dosimetry and trajectory tracing

    International Nuclear Information System (INIS)

    Cruty, M.R.; Benton, E.V.; Turnbill, C.E.; Philpott, D.E.

    1975-01-01

    Five pocket mice (Perognathus longimembris) were flown on Apollo XVII, each with a solid-state (plastic) nuclear track detector implanted beneath its scalp. The subscalp detectors were sensitive to HZE cosmic ray particles with a LET greater than or approximately equal to 0.15 million electron volts per micrometer (MeV/micron). A critical aspect of the dosimetry of the experiment involved tracing individual particle trajectories through each mouse head from particle tracks registered in the individual subscalp detectors, thereby establishing a one-to-one correspondence between a trajectory location in the tissue and the presence or absence of a lesion. The other major aspect was the identification of each registered particle. An average of 16 particles with Z greater than or equal to 6 and 2.2 particles with Z greater than or equal to 20 were found per detector. The track density, 29 tracks/sq cm, when adjusted for detection volume, was in agreement with the photographic emulsion data from an area dosimeter located next to the flight package

  9. RAY: a ray tracing program in cold magnetized plasma

    International Nuclear Information System (INIS)

    Montes, A.; Souza, L.H.

    1985-01-01

    This report deals with the development of a ray tracing program, that is, the plot of an electromagnetic wave path in a cold magnetized plasma medium. The program was developed based on the validity of the geometrical optics laws to calculate the electromagnetic wave trajectory. This approximation is valid when the wave length is much smaller than the characteristic length of the medium. No hypothesis was made about a particular geometric configuration for the magnetic field, what enables the use of the program in any magnetic confinment scheme. The numerically obtained results were compared with an analytic solution for a particular case (cylindrically symmetric medium, uniform magnetostatic, field along the symmetry axis and ordinary wave) and have shown a satisfactory precision. (Author) [pt

  10. Geometry-invariant GRIN lens: finite ray tracing.

    Science.gov (United States)

    Bahrami, Mehdi; Goncharov, Alexander V

    2014-11-17

    The refractive index distribution of the geometry-invariant gradient refractive index lens (GIGL) model is derived as a function of Cartesian coordinates. The adjustable external geometry of the GIGL model aims to mimic the shape of the human and animal crystalline lens. The refractive index distribution is based on an adjustable power-law profile, which provides additional flexibility of the model. An analytical method for layer-by-layer finite ray tracing through the GIGL model is developed and used to calculate aberrations of the GIGL model. The result of the finite ray tracing aberrations of the GIGL model are compared to those obtained with paraxial ray tracing. The derived analytical expression for the refractive index distribution can be employed in the reconstruction processes of the eye using the conventional ray tracing methods. The layer-by-layer finite ray tracing approach would be an asset in ray tracing through a modified GIGL model, where the refractive index distribution cannot be described analytically. Using the layer-by-layer finite ray-tracing method, the potential of the GIGL model in representing continuous as well as shell-like layered structures is illustrated and the results for both cases are presented and analysed.

  11. X-ray fluorescence method for trace analysis and imaging

    International Nuclear Information System (INIS)

    Hayakawa, Shinjiro

    2000-01-01

    X-ray fluorescence analysis has a long history as conventional bulk elemental analysis with medium sensitivity. However, with the use of synchrotron radiation x-ray fluorescence method has become a unique analytical technique which can provide tace elemental information with the spatial resolution. To obtain quantitative information of trace elemental distribution by using the x-ray fluorescence method, theoretical description of x-ray fluorescence yield is described. Moreover, methods and instruments for trace characterization with a scanning x-ray microprobe are described. (author)

  12. The vectorization of a ray tracing program for image generation

    Science.gov (United States)

    Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.

    1984-01-01

    Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.

  13. Ray Tracing for Ocean Acoustic Tomography

    National Research Council Canada - National Science Library

    Dushaw, Brian

    1998-01-01

    .... The Numerical Recipes software package provided the basis for much of this computer code. The ray equations are reviewed, and ray equations that include the effects of ocean current are derived...

  14. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Fox, Christopher; Romeijn, H. Edwin; Dempsey, James F.

    2006-01-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique

  15. Application of ray tracing towards a correction for refracting effects in computed tomography with diffracting sources

    International Nuclear Information System (INIS)

    Andersen, A.H.

    1983-01-01

    Ray tracing methods are investigated in forward and inverse processes and applied for image restoration and resolution enhancement in computed tomography with diffracting sources. Within the geometrical optics approximation for a given refractive field, a mathematical model for the forward propagation and inverse reconstruction process is presented. For a finite set of rays in a discrete image representation, an algebraic reconstruction technique is derived which is analogous to the inverse process for a continuum of rays. The geometrical theory of diffraction is invoked to describe ray patterns arising from the introduction of object discontinuity surfaces. We have compared the performance of existing recursive ray tracing techniques for the reconstruction of objects exhibiting discontinuity boundaries. A novel ray tracing and reconstruction technique is presented which enjoys significant computational savings over traditional implementations incorporating tedious ray linking procedures. Simulation studies illustrate the macro-structural distortion and loss of fine resolution when ray refraction is unaccounted for. Restoration and resolution enhancement is achieved with a recursive ray tracing approach. Successful experimental studies with tissue equivalent phantoms are presented. The comparison of simulation and experimental results demonstrated the reasonable assumption of the geometrical optics approximation. Simulation results for larger refractive deviations are encouraging

  16. Polarization ray tracing in anisotropic optically active media. I. Algorithms

    International Nuclear Information System (INIS)

    McClain, S.C.; Hillman, L.W.; Chipman, R.A.

    1993-01-01

    Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometrical ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide and organic liquids. Refraction and reflection algorithms are presented that compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified. A numerical example of these algorithms is given for analyzing the field of view of a quartz rotator. 37 refs., 3 figs

  17. Approximate P-wave ray tracing and dynamic ray tracing in weakly orthorhombic media of varying symmetry orientation

    KAUST Repository

    Masmoudi, Nabil; Pšenčí k, Ivan

    2014-01-01

    We present an approximate, but efficient and sufficiently accurate P-wave ray tracing and dynamic ray tracing procedure for 3D inhomogeneous, weakly orthorhombic media with varying orientation of symmetry planes. In contrast to commonly used approaches, the orthorhombic symmetry is preserved at any point of the model. The model is described by six weak-anisotropy parameters and three Euler angles, which may vary arbitrarily, but smoothly, throughout the model. We use the procedure for the calculation of rays and corresponding two-point traveltimes in a VSP experiment in a part of the BP benchmark model generalized to orthorhombic symmetry.

  18. GPU-accelerated ray-tracing for real-time treatment planning

    International Nuclear Information System (INIS)

    Heinrich, H; Ziegenhein, P; Kamerling, C P; Oelfke, U; Froening, H

    2014-01-01

    Dose calculation methods in radiotherapy treatment planning require the radiological depth information of the voxels that represent the patient volume to correct for tissue inhomogeneities. This information is acquired by time consuming ray-tracing-based calculations. For treatment planning scenarios with changing geometries and real-time constraints this is a severe bottleneck. We implemented an algorithm for the graphics processing unit (GPU) which implements a ray-matrix approach to reduce the number of rays to trace. Furthermore, we investigated the impact of different strategies of accessing memory in kernel implementations as well as strategies for rapid data transfers between main memory and memory of the graphics device. Our study included the overlapping of computations and memory transfers to reduce the overall runtime using Hyper-Q. We tested our approach on a prostate case (9 beams, coplanar). The measured execution times for a complete ray-tracing range from 28 msec for the computations on the GPU to 99 msec when considering data transfers to and from the graphics device. Our GPU-based algorithm performed the ray-tracing in real-time. The strategies efficiently reduce the time consumption of memory accesses and data transfer overhead. The achieved runtimes demonstrate the viability of this approach and allow improved real-time performance for dose calculation methods in clinical routine.

  19. Investigation of propagation algorithms for ray-tracing simulation of polarized neutrons

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Tranum-Rømer, A.; Willendrup, Peter Kjær

    2014-01-01

    Ray-tracing of polarized neutrons faces a challenge when the neutron propagates through an inhomogeneous magnetic field. This affects simulations of novel instruments using encoding of energy or angle into the neutron spin. We here present a new implementation of propagation of polarized neutrons...

  20. Simulations Of Neutron Beam Optic For Neutron Radiography Collimator Using Ray Tracing Methodology

    International Nuclear Information System (INIS)

    Norfarizan Mohd Said; Muhammad Rawi Mohamed Zin

    2014-01-01

    Ray- tracing is a technique for simulating the performance of neutron instruments. McStas, the open-source software package based on a meta-language, is a tool for carrying out ray-tracing simulations. The program has been successfully applied in investigating neutron guide design, flux optimization and other related areas with high complexity and precision. The aim of this paper is to discuss the implementation of ray-tracing technique with McStas for simulating the performance of neutron collimation system developed for imaging system of TRIGA RTP reactor. The code for the simulation was developed and the results are presented. The analysis of the performance is reported and discussed. (author)

  1. Ray tracing the Wigner distribution function for optical simulations

    NARCIS (Netherlands)

    Mout, B.M.; Wick, Michael; Bociort, F.; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems

  2. ARTEAM - Advanced ray tracing with earth atmospheric models

    NARCIS (Netherlands)

    Kunz, G.J.; Moerman, M.M.; Eijk, A.M.J. van

    2002-01-01

    The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and

  3. Real time ray tracing of skeletal implicit surfaces

    DEFF Research Database (Denmark)

    Rouiller, Olivier; Bærentzen, Jakob Andreas

    Modeling and rendering in real time is usually done via rasterization of polygonal meshes. We present a method to model with skeletal implicit surfaces and an algorithm to ray trace these surfaces in real time in the GPU. Our skeletal representation of the surfaces allows to create smooth models...

  4. Multiplexed optical data storage and vectorial ray tracing

    Directory of Open Access Journals (Sweden)

    Foreman M.R.

    2010-06-01

    Full Text Available With the motivation of creating a terabyte-sized optical disk, a novel imaging technique is implemented. This technique merges two existing technologies: confocal microscopy and Mueller matrix imaging. Mueller matrix images from a high numerical space are obtained. The acquisition of these images makes the exploration of polarisation properties in a sample possible. The particular case of optical data storage is used as an example in this presentation. Since we encode information into asymmetric datapits (see Figure 1, the study of the polarisation of the scattered light can then be used to recover the orientation of the pit. It is thus possible to multiplex information by changing the angle of the mark. The storage capacity in the system is hence limited by the number of distinct angles that the optical system can resolve. This presentation thus answers the question; what is the current storage capacity of a polarisation sensitive optical disk? After a brief introduction to polarisation, the decoding method and experimental results are presented so as to provide an answer to this question. With the aim of understanding high NA focusing, an introduction to vectorial ray tracing is then given.

  5. Rapid simulation of X-ray transmission imaging for baggage inspection via GPU-based ray-tracing

    Science.gov (United States)

    Gong, Qian; Stoian, Razvan-Ionut; Coccarelli, David S.; Greenberg, Joel A.; Vera, Esteban; Gehm, Michael E.

    2018-01-01

    We present a pipeline that rapidly simulates X-ray transmission imaging for arbitrary system architectures using GPU-based ray-tracing techniques. The purpose of the pipeline is to enable statistical analysis of threat detection in the context of airline baggage inspection. As a faster alternative to Monte Carlo methods, we adopt a deterministic approach for simulating photoelectric absorption-based imaging. The highly-optimized NVIDIA OptiX API is used to implement ray-tracing, greatly speeding code execution. In addition, we implement the first hierarchical representation structure to determine the interaction path length of rays traversing heterogeneous media described by layered polygons. The accuracy of the pipeline has been validated by comparing simulated data with experimental data collected using a heterogenous phantom and a laboratory X-ray imaging system. On a single computer, our approach allows us to generate over 400 2D transmission projections (125 × 125 pixels per frame) per hour for a bag packed with hundreds of everyday objects. By implementing our approach on cloud-based GPU computing platforms, we find that the same 2D projections of approximately 3.9 million bags can be obtained in a single day using 400 GPU instances, at a cost of only 0.001 per bag.

  6. New challenges in ray tracing simulations of X-ray optics

    International Nuclear Information System (INIS)

    Río, M Sánchez del

    2013-01-01

    The construction of new synchrotron sources and the refurbishment and upgrade of existing ones has boosted in the last years the interest in X-ray optics simulations for beamline design and optimization. In the last years we conducted a full renewal of the well established SHADOW ray tracing code, ending with a modular version SHADOW3 interfaced to multiple programming languages (C, C++, IDL, Python). Some of the new features of SHADOW3 are presented. From the physics point of view, SHADOW3 has been upgraded for dealing with lens systems. X-ray partial coherence applications demand an extension of traditional ray tracing methods into a hybrid ray-tracing wave-optics approach. The software development is essential for fulfilling the requests of the ESRF Upgrade Programme, and some examples of calculations are also presented.

  7. Ray tracing reconstruction investigation for C-arm tomosynthesis

    Science.gov (United States)

    Malalla, Nuhad A. Y.; Chen, Ying

    2016-04-01

    C-arm tomosynthesis is a three dimensional imaging technique. Both x-ray source and the detector are mounted on a C-arm wheeled structure to provide wide variety of movement around the object. In this paper, C-arm tomosynthesis was introduced to provide three dimensional information over a limited view angle (less than 180o) to reduce radiation exposure and examination time. Reconstruction algorithms based on ray tracing method such as ray tracing back projection (BP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were developed for C-arm tomosynthesis. C-arm tomosynthesis projection images of simulated spherical object were simulated with a virtual geometric configuration with a total view angle of 40 degrees. This study demonstrated the sharpness of in-plane reconstructed structure and effectiveness of removing out-of-plane blur for each reconstruction algorithms. Results showed the ability of ray tracing based reconstruction algorithms to provide three dimensional information with limited angle C-arm tomosynthesis.

  8. Ray tracing study of rising tone EMIC-triggered emissions

    Science.gov (United States)

    Hanzelka, Miroslav; Santolík, Ondřej; Grison, Benjamin; Cornilleau-Wehrlin, Nicole

    2017-04-01

    ElectroMagnetic Ion Cyclotron (EMIC) triggered emissions have been subject of extensive theoretical and experimental research in last years. These emissions are characterized by high coherence values and a frequency range of 0.5 - 2.0 Hz, close to local helium gyrofrequency. We perform ray tracing case studies of rising tone EMIC-triggered emissions observed by the Cluster spacecraft in both nightside and dayside regions off the equatorial plane. By comparison of simulated and measured wave properties, namely wave vector orientation, group velocity, dispersion and ellipticity of polarization, we determine possible source locations. Diffusive equilibrium density model and other, semi-empirical models are used with ion composition inferred from cross-over frequencies. Ray tracing simulations are done in cold plasma approximation with inclusion of Landau and cyclotron damping. Various widths, locations and profiles of plasmapause are tested.

  9. Ray tracing the Wigner distribution function for optical simulations

    Science.gov (United States)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.

  10. Ray Tracing modelling of reflector for vertical bifacial panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  11. Ray-tracing toroidal axisymmetric devices. 1. theoretical analysis

    International Nuclear Information System (INIS)

    Cardinali, A.; Brambilla, M.

    1981-06-01

    Ray tracing technique for lower hybrid waves is used to obtain informations about accessibility, power deposition profiles and eventually electric field distribution. In the first part a critical discussion to establish the meaning and validity of this technique is presented, while in the second part of this work applications to small and to large, fat tokamaks are presented, which support and explain the theoretical arguments

  12. Virtual Ray Tracing as a Conceptual Tool for Image Formation in Mirrors and Lenses

    Science.gov (United States)

    Heikkinen, Lasse; Savinainen, Antti; Saarelainen, Markku

    2016-01-01

    The ray tracing method is widely used in teaching geometrical optics at the upper secondary and university levels. However, using simple and straightforward examples may lead to a situation in which students use the model of ray tracing too narrowly. Previous studies show that students seem to use the ray tracing method too concretely instead of…

  13. X-ray trace element analysis with positive ion beams

    International Nuclear Information System (INIS)

    Davis, R.H.

    1973-01-01

    A new trace element analysis having the advantage that many elements may be detected in a single measurement, based on positive charged particle induced X-ray florescence and on the production of X-rays by heavy ions, is described. Because of the large cross-sections for the production of discrete X-ray and the low yield of continuum radiation, positive charged particle X-ray florescence is a competitive, fast, analytic tool. In the experiment a beam of positive charged particles from an accelerator was directed toward a target. X-rays induced by the bombardment were detected by a Si(Li) detector the ouput from which was amplified and sorted in a multichannel analyzer. For rapid data handling and analysis, the multichannel analyzer or ADC unit was connected to an on-line computer. A large variety of targets prepared in collaboration with the oceanographers have been studied and spectra obtained for different particles having the same velocity are presented to show that the yield of discrete X-rays increases at least as rapidly as Z 2 . While protons of several MeV appear to be already competitive further advantage may be gained by heavy ions at lower energies since the continuum is reduced while the peak ''signals'' retain strength due to the Z 2 dependence. (S.B.)

  14. The elimination of ray tracing in Monte Carlo shielding programs

    International Nuclear Information System (INIS)

    Bendall, D.E.

    1988-01-01

    The MONK6 code has clearly demonstrated the advantages of hole tracking, which was devised by Woodcock et at. for use in criticality codes from earlier work by Von Neumann. Hole tracking eliminates ray tracing by introducing, for all materials present in the problem, a pseudo scattering reaction that forward scatters without energy loss. The cross section for this reaction is chosen so that the total cross sections for all the materials are equal at a given energy. By this means, tracking takes place with a constant total cross section everywhere, so there is now no need to ray trace. The present work extends hole tracking to shielding codes, where it functions in tandem with Russian roulette and splitting. An algorithm has been evolved and its performance is compared with the ray-tracking code McBEND. A disadvantage with hole tracking occurs when there is a wide variation in total cross section for materials present. As the tracking uses the total cross section of the material that has the maximum cross section, there can be a large number of pseudo collisions in the materials with low total cross sections. In extreme cases, the advantages of hole tracking can be lost by the by the extra time taken in servicing these pseudo collisions; however, techniques for eliminating this problem are under consideration

  15. A comparison of ray-tracing software for the design of quadrupole microbeam systems

    International Nuclear Information System (INIS)

    Incerti, S.; Smith, R.W.; Merchant, M.; Grime, G.W.; Meot, F.; Serani, L.; Moretto, Ph.; Touzeau, C.; Barberet, Ph.; Habchi, C.; Nguyen, D.T.

    2005-01-01

    For many years the only ray-tracing software available with sufficient precision for the design of quadrupole microbeam focusing systems has been OXRAY and its successor TRAX, developed at Oxford in the 1980s. With the current interest in pushing the beam diameter into the nanometre region, this software has become dated and more importantly the precision at small displacements may not be sufficient and new simulation tools are required. Two candidates for this are Zgoubi, developed at CEA as a general beam line design tool and the CERN simulation program Geant in its latest version Geant4. In order to use Geant4 new quadrupole field modules have been developed and implemented. In this paper the capabilities of the three codes TRAX, Zgoubi and Geant4 are reviewed. Comparisons of ray-tracing calculations in a high demagnification quadrupole probe-forming system for the sub-micron region are presented

  16. Comparison of matrix method and ray tracing in the study of complex optical systems

    Science.gov (United States)

    Anterrieu, Eric; Perez, Jose-Philippe

    2000-06-01

    In the context of the classical study of optical systems within the geometrical Gauss approximation, the cardinal elements are efficiently obtained with the aid of the transfer matrix between the input and output planes of the system. In order to take into account the geometrical aberrations, a ray tracing approach, using the Snell- Descartes laws, has been implemented in an interactive software. Both methods are applied for measuring the correction to be done to a human eye suffering from ametropia. This software may be used by optometrists and ophthalmologists for solving the problems encountered when considering this pathology. The ray tracing approach gives a significant improvement and could be very helpful for a better understanding of an eventual surgical act.

  17. Ray tracing for inhomogeneous media applied to the human eye

    Science.gov (United States)

    Diaz-Gonzalez, G.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.

    2017-08-01

    Inhomogeneous or gradient index media exhibit a refractive index varying with the position. This kind of media are very interesting because they can be found in both synthetic as well as real life optical devices such as the human lens. In this work we present the development of a computational tool for ray tracing in refractive optical systems. Particularly, the human eye is used as the optical system under study. An inhomogeneous medium with similar characteristics to the human lens is introduced and modeled by the so-called slices method. The useful of our proposal is illustrated by several graphical results.

  18. Optimization of Monte Carlo algorithms and ray tracing on GPUs

    International Nuclear Information System (INIS)

    Bergmann, R.M.; Vujic, J.L.

    2013-01-01

    To take advantage of the computational power of GPUs (Graphical Processing Units), algorithms that work well on CPUs must be modified to conform to the GPU execution model. In this study, typical task-parallel Monte Carlo algorithms have been reformulated in a data-parallel way, and the benefits of doing so are examined. We were able to show that the data-parallel approach greatly improves thread coherency and keeps thread blocks busy, improving GPU utilization compared to the task-parallel approach. Data-parallel does not, however, outperform the task-parallel approach in regards to speedup over CPU. Regarding the ray-tracing acceleration, OptiX shows promise for providing enough ray tracing speed to be used in a full 3D Monte Carlo neutron transport code for reactor calculations. It is important to note that it is necessary to operate on large datasets of particle histories in order to have good performance in both OptiX and the data-parallel algorithm since this reduces the impact of latency. Our paper also shows the need to rewrite standard Monte Carlo algorithms in order to take full advantage of these new, powerful processor architectures

  19. Ray Tracing Study on Top ECCD Launch in KSTAR

    Directory of Open Access Journals (Sweden)

    Bae Young-soon

    2017-01-01

    Full Text Available The current drive efficiency of electron cyclotron (EC wave is typically low compared with other RF and neutral beam heating system in tokamak. It is known that EC current drive by outboard launch suffers from low current drive efficiency due to electron trapping. However, the heating and current drive by EC wave is being regarded as a strong candidate for DEMO reactor due to the simplicity of the launcher, none of its interaction with plasma, and no coupling issue at the plasma edge. Also, off-axis heating and current drive by EC wave plays an important role of steady state operation optimization. To enhance the current drive efficiency in DEMO-relevant operation condition having high density and high temperature, the top launch of EC wave is recently proposed in FNSF design [2]. In FNSF, a top launch makes use of a large toroidal component to the launch direction adjusting the vertical launch angle so that the rays propagate nearly parallel to the resonance layer increasing of Doppler shift with higher n||. The results shows a high dimensional efficiency for a broad ECCD profile peaked off axis. In KSTAR, the possibility of efficient off-axis ECCD using top launch is investigated using the ray tracing code, GENRAY [3] for the operating EC frequencies (105 GHz or 140 GHz, and 170 GHz. The high current drive efficiency is found by adjusting the toroidal magnetic field and the radial pivot position of the final launcher mirror for fundamental O-mode and second harmonic X-mode. A large Doppler shift is not quite sure in the typical plasma profile in KSTAR, but the simulation results show high current drive efficiency. This paper presents ray tracing results for many cases with the wave trajectories and damping of EC by scanning the launching angle for specific launcher pivot positions and toroidal magnetic field, and two equilibriums of the KSTAR.

  20. A manual to the MAXRAY program library for reflective and dispersive ray tracing

    International Nuclear Information System (INIS)

    Svensson, S.; Nyholm, R.

    1985-07-01

    A general ray tracing program package for reflective and dispersive X-ray optics is described. The package consists of a number of subroutines written in FORTRAN 77 code giving the necessary tools for ray tracing. The program package is available on request from the authors. (authors)

  1. High performance dosimetry calculations using adapted ray-tracing

    International Nuclear Information System (INIS)

    Perrotte, Lancelot; Saupin, Guillaume

    2010-01-01

    When preparing interventions on nuclear sites, it is interesting to study different scenarios, to identify the most appropriate one for the operator(s). Using virtual reality tools is a good way to simulate the potential scenarios. Thus, taking advantage of very efficient computation times can help the user studying different complex scenarios, by immediately evaluating the impact of any changes. In the field of radiation protection, people often use computation codes based on the straight line attenuation method with build-up factors. As for other approaches, geometrical computations (finding all the interactions between radiation rays and the scene objects) remain the bottleneck of the simulation. We present in this paper several optimizations used to speed up these geometrical computations, using innovative GPU ray-tracing algorithms. For instance, we manage to compute every intersection between 600 000 rays and a huge 3D industrial scene in a fraction of second. Moreover, our algorithm works the same way for both static and dynamic scenes, allowing easier study of complex intervention scenarios (where everything moves: the operator(s), the shielding objects, the radiation sources).

  2. R-LODs: fast LOD-based ray tracing of massive models

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sung-Eui; Lauterbach, Christian; Manocha, Dinesh

    2006-08-25

    We present a novel LOD (level-of-detail) algorithm to accelerate ray tracing of massive models. Our approach computes drastic simplifications of the model and the LODs are well integrated with the kd-tree data structure. We introduce a simple and efficient LOD metric to bound the error for primary and secondary rays. The LOD representation has small runtime overhead and our algorithm can be combined with ray coherence techniques and cache-coherent layouts to improve the performance. In practice, the use of LODs can alleviate aliasing artifacts and improve memory coherence. We implement our algorithm on both 32bit and 64bit machines and able to achieve up to 2.20 times improvement in frame rate of rendering models consisting of tens or hundreds of millions of triangles with little loss in image quality.

  3. A FORMALISM FOR COVARIANT POLARIZED RADIATIVE TRANSPORT BY RAY TRACING

    International Nuclear Information System (INIS)

    Gammie, Charles F.; Leung, Po Kin

    2012-01-01

    We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N αβ ≡ (a α k a* β k ), where a k is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k μ ∇ μ N αβ = 0. We show that this is equivalent to Broderick and Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.

  4. Microwave transport in EBT distribution manifolds using Monte Carlo ray-tracing techniques

    International Nuclear Information System (INIS)

    Lillie, R.A.; White, T.L.; Gabriel, T.A.; Alsmiller, R.G. Jr.

    1983-01-01

    Ray tracing Monte Carlo calculations have been carried out using an existing Monte Carlo radiation transport code to obtain estimates of the microsave power exiting the torus coupling links in EPT microwave manifolds. The microwave power loss and polarization at surface reflections were accounted for by treating the microwaves as plane waves reflecting off plane surfaces. Agreement on the order of 10% was obtained between the measured and calculated output power distribution for an existing EBT-S toroidal manifold. A cost effective iterative procedure utilizing the Monte Carlo history data was implemented to predict design changes which could produce increased manifold efficiency and improved output power uniformity

  5. GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chi-kwan; Psaltis, Dimitrios; Özel, Feryal [Department of Astronomy, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States)

    2013-11-01

    We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This graphics-processing-unit (GPU)-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single-precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 ns per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing central-processing-unit-based ray-tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and light curves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of Kerr black holes and the photon rings that surround them. We also provide accurate fitting formulae of their dependencies on black hole spin and observer inclination, which can be used to interpret upcoming observations of the black holes at the center of the Milky Way, as well as M87, with the Event Horizon Telescope.

  6. Ray-tracing of shape metrology data of grazing incidence x-ray astronomy mirrors

    Science.gov (United States)

    Zocchi, Fabio E.; Vernani, Dervis

    2008-07-01

    A number of future X-ray astronomy missions (e.g. Simbol-X, eROSITA) plan to utilize high throughput grazing incidence optics with very lightweight mirrors. The severe mass specifications require a further optimization of the existing technology with the consequent need of proper optical numerical modeling capabilities for both the masters and the mirrors. A ray tracing code has been developed for the simulation of the optical performance of type I Wolter masters and mirrors starting from 2D and 3D metrology data. In particular, in the case of 2D measurements, a 3D data set is reconstructed on the basis of dimensional references and used for the optical analysis by ray tracing. In this approach, the actual 3D shape is used for the optical analysis, thus avoiding the need of combining the separate contributions of different 2D measurements that require the knowledge of their interactions which is not normally available. The paper describes the proposed approach and presents examples of application on a prototype engineering master in the frame of ongoing activities carried out for present and future X-ray missions.

  7. use of x-ray fluorescence spectrometry to determine trace elements ...

    African Journals Online (AJOL)

    NIJOTECH

    Abstract. This paper deals with application of X-ray fluorescence spectrometry for the detection of trace elements in graphic. An X-ray spectrometer was constructed and used to carry out measurements on graphite spheres impregnated with different chemical elements. The intensities of the lines of these trace elements, ...

  8. Computation and analysis of backward ray-tracing in aero-optics flow fields.

    Science.gov (United States)

    Xu, Liang; Xue, Deting; Lv, Xiaoyi

    2018-01-08

    A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.

  9. Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens.

    Science.gov (United States)

    Gómez-Correa, J E; Coello, V; Garza-Rivera, A; Puente, N P; Chávez-Cerda, S

    2016-03-10

    Ray tracing in spherical Luneburg lenses has always been represented in 2D. All propagation planes in a 3D spherical Luneburg lens generate the same ray tracing, due to its radial symmetry. A geometry without radial symmetry generates a different ray tracing. For this reason, a new ray tracing method in 3D through spherical and elliptical Luneburg lenses using 2D methods is proposed. The physics of the propagation is shown here, which allows us to make a ray tracing associated with a vortex beam. A 3D ray tracing in a composite modified Luneburg lens that represents the human eye lens is also presented.

  10. Development of Ray Tracing Algorithms for Scanning Plane and Transverse Plane Analysis for Satellite Multibeam Application

    Directory of Open Access Journals (Sweden)

    N. H. Abd Rahman

    2014-01-01

    Full Text Available Reflector antennas have been widely used in many areas. In the implementation of parabolic reflector antenna for broadcasting satellite applications, it is essential for the spacecraft antenna to provide precise contoured beam to effectively serve the required region. For this purpose, combinations of more than one beam are required. Therefore, a tool utilizing ray tracing method is developed to calculate precise off-axis beams for multibeam antenna system. In the multibeam system, each beam will be fed from different feed positions to allow the main beam to be radiated at the exact direction on the coverage area. Thus, detailed study on caustics of a parabolic reflector antenna is performed and presented in this paper, which is to investigate the behaviour of the rays and its relation to various antenna parameters. In order to produce accurate data for the analysis, the caustic behaviours are investigated in two distinctive modes: scanning plane and transverse plane. This paper presents the detailed discussions on the derivation of the ray tracing algorithms, the establishment of the equations of caustic loci, and the verification of the method through calculation of radiation pattern.

  11. Ray-tracing 3D dust radiative transfer with DART-Ray: code upgrade and public release

    Science.gov (United States)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard J.; Clarke, Adam J.; Debattista, Victor P.; Fischera, Jörg; Pasetto, Stefano; Rushton, Mark; Thirlwall, Jordan J.

    2017-11-01

    We present an extensively updated version of the purely ray-tracing 3D dust radiation transfer code DART-Ray. The new version includes five major upgrades: 1) a series of optimizations for the ray-angular density and the scattered radiation source function; 2) the implementation of several data and task parallelizations using hybrid MPI+OpenMP schemes; 3) the inclusion of dust self-heating; 4) the ability to produce surface brightness maps for observers within the models in HEALPix format; 5) the possibility to set the expected numerical accuracy already at the start of the calculation. We tested the updated code with benchmark models where the dust self-heating is not negligible. Furthermore, we performed a study of the extent of the source influence volumes, using galaxy models, which are critical in determining the efficiency of the DART-Ray algorithm. The new code is publicly available, documented for both users and developers, and accompanied by several programmes to create input grids for different model geometries and to import the results of N-body and SPH simulations. These programmes can be easily adapted to different input geometries, and for different dust models or stellar emission libraries.

  12. Ray tracing and Hubble diagrams in post-Newtonian cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sanghai, Viraj A.A.; Clifton, Timothy [School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS (United Kingdom); Fleury, Pierre, E-mail: v.a.a.sanghai@qmul.ac.uk, E-mail: pierre.fleury@unige.ch, E-mail: t.clifton@qmul.ac.uk [Départment de Physique Théorique, Université de Genève, 24 quai Ernest-Ansermet, 1211 Genève 4 (Switzerland)

    2017-07-01

    On small scales the observable Universe is highly inhomogeneous, with galaxies and clusters forming a complex web of voids and filaments. The optical properties of such configurations can be quite different from the perfectly smooth Friedmann-Lemaȋtre-Robertson-Walker (FLRW) solutions that are frequently used in cosmology, and must be well understood if we are to make precise inferences about fundamental physics from cosmological observations. We investigate this problem by calculating redshifts and luminosity distances within a class of cosmological models that are constructed explicitly in order to allow for large density contrasts on small scales. Our study of optics is then achieved by propagating one hundred thousand null geodesics through such space-times, with matter arranged in either compact opaque objects or diffuse transparent haloes. We find that in the absence of opaque objects, the mean of our ray tracing results faithfully reproduces the expectations from FLRW cosmology. When opaque objects with sizes similar to those of galactic bulges are introduced, however, we find that the mean of distance measures can be shifted up from FLRW predictions by as much as 10%. This bias is due to the viable photon trajectories being restricted by the presence of the opaque objects, which means that they cannot probe the regions of space-time with the highest curvature. It corresponds to a positive bias of order 10% in the estimation of Ω{sub Λ} and highlights the important consequences that astronomical selection effects can have on cosmological observables.

  13. Ray tracing and Hubble diagrams in post-Newtonian cosmology

    Science.gov (United States)

    Sanghai, Viraj A. A.; Fleury, Pierre; Clifton, Timothy

    2017-07-01

    On small scales the observable Universe is highly inhomogeneous, with galaxies and clusters forming a complex web of voids and filaments. The optical properties of such configurations can be quite different from the perfectly smooth Friedmann-Lemaȋtre-Robertson-Walker (FLRW) solutions that are frequently used in cosmology, and must be well understood if we are to make precise inferences about fundamental physics from cosmological observations. We investigate this problem by calculating redshifts and luminosity distances within a class of cosmological models that are constructed explicitly in order to allow for large density contrasts on small scales. Our study of optics is then achieved by propagating one hundred thousand null geodesics through such space-times, with matter arranged in either compact opaque objects or diffuse transparent haloes. We find that in the absence of opaque objects, the mean of our ray tracing results faithfully reproduces the expectations from FLRW cosmology. When opaque objects with sizes similar to those of galactic bulges are introduced, however, we find that the mean of distance measures can be shifted up from FLRW predictions by as much as 10%. This bias is due to the viable photon trajectories being restricted by the presence of the opaque objects, which means that they cannot probe the regions of space-time with the highest curvature. It corresponds to a positive bias of order 10% in the estimation of ΩΛ and highlights the important consequences that astronomical selection effects can have on cosmological observables.

  14. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    Science.gov (United States)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  15. MCViNE – An object oriented Monte Carlo neutron ray tracing simulation package

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiao Y.Y., E-mail: linjiao@ornl.gov [Caltech Center for Advanced Computing Research, California Institute of Technology (United States); Department of Applied Physics and Materials Science, California Institute of Technology (United States); Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory (United States); Smith, Hillary L. [Department of Applied Physics and Materials Science, California Institute of Technology (United States); Granroth, Garrett E., E-mail: granrothge@ornl.gov [Neutron Data Analysis and Visualization Division, Oak Ridge National Laboratory (United States); Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A. [Quantum Condensed Matter Division, Oak Ridge National Laboratory (United States); Aivazis, Michael [Caltech Center for Advanced Computing Research, California Institute of Technology (United States); Fultz, Brent, E-mail: btf@caltech.edu [Department of Applied Physics and Materials Science, California Institute of Technology (United States)

    2016-02-21

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  16. SOLFAST, a Ray-Tracing Monte-Carlo software for solar concentrating facilities

    International Nuclear Information System (INIS)

    Roccia, J P; Piaud, B; Coustet, C; Caliot, C; Guillot, E; Flamant, G; Delatorre, J

    2012-01-01

    In this communication, the software SOLFAST is presented. It is a simulation tool based on the Monte-Carlo method and accelerated Ray-Tracing techniques to evaluate efficiently the energy flux in concentrated solar installations.

  17. Usage of ray tracing transfer matrix to mitigate the stray light for ITER spectroscopy

    International Nuclear Information System (INIS)

    Kajita, S.; Veshchev, E.; Barnsley, R.; Walsh, M.

    2016-01-01

    Stray light formed by the reflection of photons on inner wall from a bright divertor region can be a serious issue in spectroscopic measurement systems in ITER. In this study, we propose a method to mitigate the influence of stray light using a ray tracing analysis. Usually, a ray tracing simulation requires a time consuming runs. We constructed transfer matrices based on the ray tracing simulation results and used them to demonstrate the influence of stray light. It is shown that the transfer matrix can be used to reconstruct the emission profile by considering the influence of the stray light without any additional ray tracing runs. Mitigation of the stray light in ITER divertor impurity monitor was demonstrated, and a method of prediction of the stray light level for the scrape off layer spectroscopy from divertor region was proposed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Introducing GAMER: A Fast and Accurate Method for Ray-tracing Galaxies Using Procedural Noise

    Science.gov (United States)

    Groeneboom, N. E.; Dahle, H.

    2014-03-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  19. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    International Nuclear Information System (INIS)

    Groeneboom, N. E.; Dahle, H.

    2014-01-01

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  20. Introducing GAMER: A fast and accurate method for ray-tracing galaxies using procedural noise

    Energy Technology Data Exchange (ETDEWEB)

    Groeneboom, N. E.; Dahle, H., E-mail: nicolaag@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

    2014-03-10

    We developed a novel approach for fast and accurate ray-tracing of galaxies using procedural noise fields. Our method allows for efficient and realistic rendering of synthetic galaxy morphologies, where individual components such as the bulge, disk, stars, and dust can be synthesized in different wavelengths. These components follow empirically motivated overall intensity profiles but contain an additional procedural noise component that gives rise to complex natural patterns that mimic interstellar dust and star-forming regions. These patterns produce more realistic-looking galaxy images than using analytical expressions alone. The method is fully parallelized and creates accurate high- and low- resolution images that can be used, for example, in codes simulating strong and weak gravitational lensing. In addition to having a user-friendly graphical user interface, the C++ software package GAMER is easy to implement into an existing code.

  1. SU-F-T-555: Accurate Stereotactic Cone TMRs Converted from PDDs Scanned with Ray Trace

    International Nuclear Information System (INIS)

    Li, H; Zhong, H; Qin, Y; Snyder, K; Chetty, I; Wen, N

    2016-01-01

    Purpose: To investigate whether the accuracy of TMRs for stereotactic cones converted from PDDs scanned with Ray Trace can be improved, when compared against the TMRs converted from the traditional PDDs. Methods: Ray Trace measurement in Sun Nuclear 3D Scanner is for accurate scan of small field PDDs. The system detects the center of field at two depths, for example, at 3 and 20 cm in our study, and then performs scan along the line passing the two centers. With both Ray Trace and the traditional method, PDDs for conical cones of 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter (jaws set to 5×5 cm) were obtained for 6X FFF and 10X FFF energies on a Varian Edge linac, using Edge detectors. The formalism of converting PDD to TMR given in Khan’s book (4th Edition, p.161) was applied. Sp values at dmax were obtained by measuring cone Scp and Sc. Continuous direct measurement of TMR by filling/draining water to/from the tank and spot measurement by moving the tank and detector were also performed with the same equipment, using 100 cm SDD. Results: For 6XFFF energy and all the cones, TMRs converted from Ray Trace were very close to the continuous and spot measurement, while TMRs converted from traditional PDDs had larger deviation. Along the central axis beyond dmax, 1.7% of TMR data points calculated from Ray Trace had more 3% deviation from measurement, with maximal deviation of 5.2%. Whereas, 34% of TMR points calculated from traditional PDDs had more than 3% deviation, with maximum of 5.7%. In this initial study, Ray Trace scans for 10XFFF beam were noisy, further measurement is warranted. Conclusion: The Ray Trace could improve the accuracy of PDDs measurement and the calculated TMRs for stereotactic cones, which was within 3% of the measured TMRs.

  2. SU-F-T-555: Accurate Stereotactic Cone TMRs Converted from PDDs Scanned with Ray Trace

    Energy Technology Data Exchange (ETDEWEB)

    Li, H; Zhong, H; Qin, Y; Snyder, K; Chetty, I; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To investigate whether the accuracy of TMRs for stereotactic cones converted from PDDs scanned with Ray Trace can be improved, when compared against the TMRs converted from the traditional PDDs. Methods: Ray Trace measurement in Sun Nuclear 3D Scanner is for accurate scan of small field PDDs. The system detects the center of field at two depths, for example, at 3 and 20 cm in our study, and then performs scan along the line passing the two centers. With both Ray Trace and the traditional method, PDDs for conical cones of 4, 5, 7.5, 10, 12.5, 15, and 17.5 mm diameter (jaws set to 5×5 cm) were obtained for 6X FFF and 10X FFF energies on a Varian Edge linac, using Edge detectors. The formalism of converting PDD to TMR given in Khan’s book (4th Edition, p.161) was applied. Sp values at dmax were obtained by measuring cone Scp and Sc. Continuous direct measurement of TMR by filling/draining water to/from the tank and spot measurement by moving the tank and detector were also performed with the same equipment, using 100 cm SDD. Results: For 6XFFF energy and all the cones, TMRs converted from Ray Trace were very close to the continuous and spot measurement, while TMRs converted from traditional PDDs had larger deviation. Along the central axis beyond dmax, 1.7% of TMR data points calculated from Ray Trace had more 3% deviation from measurement, with maximal deviation of 5.2%. Whereas, 34% of TMR points calculated from traditional PDDs had more than 3% deviation, with maximum of 5.7%. In this initial study, Ray Trace scans for 10XFFF beam were noisy, further measurement is warranted. Conclusion: The Ray Trace could improve the accuracy of PDDs measurement and the calculated TMRs for stereotactic cones, which was within 3% of the measured TMRs.

  3. High-efficiency photorealistic computer-generated holograms based on the backward ray-tracing technique

    Science.gov (United States)

    Wang, Yuan; Chen, Zhidong; Sang, Xinzhu; Li, Hui; Zhao, Linmin

    2018-03-01

    Holographic displays can provide the complete optical wave field of a three-dimensional (3D) scene, including the depth perception. However, it often takes a long computation time to produce traditional computer-generated holograms (CGHs) without more complex and photorealistic rendering. The backward ray-tracing technique is able to render photorealistic high-quality images, which noticeably reduce the computation time achieved from the high-degree parallelism. Here, a high-efficiency photorealistic computer-generated hologram method is presented based on the ray-tracing technique. Rays are parallelly launched and traced under different illuminations and circumstances. Experimental results demonstrate the effectiveness of the proposed method. Compared with the traditional point cloud CGH, the computation time is decreased to 24 s to reconstruct a 3D object of 100 ×100 rays with continuous depth change.

  4. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  5. SolTrace: A Ray-Tracing Code for Complex Solar Optical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wendelin, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewandowski, Allan [Allan Lewandowski Solar Consulting LLC, Evergreen, CO (United States)

    2013-10-01

    SolTrace is an optical simulation tool designed to model optical systems used in concentrating solar power (CSP) applications. The code was first written in early 2003, but has seen significant modifications and changes since its inception, including conversion from a Pascal-based software development platform to C++. SolTrace is unique in that it can model virtually any optical system utilizingthe sun as the source. It has been made available for free and as such is in use worldwide by industry, universities, and research laboratories. The fundamental design of the code is discussed, including enhancements and improvements over the earlier version. Comparisons are made with other optical modeling tools, both non-commercial and commercial in nature. Finally, modeled results are shownfor some typical CSP systems and, in one case, compared to measured optical data.

  6. Ray-tracing analysis of electron-cyclotron-resonance heating in straight stellarators

    International Nuclear Information System (INIS)

    Kato, K.

    1983-05-01

    A ray-tracing computer code is developed and implemented to simulate electron cyclotron resonance heating (ECRH) in stellarators. A straight stellarator model is developed to simulate the confinement geometry. Following a review of ECRH, a cold plasma model is used to define the dispersion relation. To calculate the wave power deposition, a finite temperature damping approximation is used. 3-D ray equations in cylindrical coordinates are derived and put into suitable forms for computation. The three computer codes, MAC, HERA, and GROUT, developed for this research, are described next. ECRH simulation is then carried out for three models including Heliotron E and Wendelstein VII A. Investigated aspects include launching position and mode scan, frequency detuning, helical effects, start-up, and toroidal effects. Results indicate: (1) an elliptical waveguide radiation pattern, with its long axis oriented half-way between the toroidal axis and the saddle point line, is more efficient than a circular one; and (2) mid-plane, high field side launch is favored for both O- and X-waves

  7. X-ray fluorescent analysis of iodin traces in urine

    International Nuclear Information System (INIS)

    Mikhajlov, I.F.; Baturin, A.A.; Mikhajlov, A.I.; Borisova, S.S.; Reshetnyak, M.V.; Shlyakhova, N.V.; Budrejko, E.A.; Galata, D.I.

    2015-01-01

    Using XFA method, determination of iodine concentration in urine for 35 children of 10-15 with endocrine pathology (delay of sexual development, diffuse goiter, obesity) and 10 practically healthy children being observed under conditions of the consultative polyclinic and the department of endocrinology of SI ''ISHCJ NAMSU''. The proposed optimized XFA method allows by 1-2 orders increasing detection sensitivity for micro-elements measurements in biology objects and attaining the iodine trace contents in urine in the range from 50 to 200 gg/dm 3

  8. Particle induced X-ray emission for quantitative trace-element analysis using the Eindhoven cyclotron

    International Nuclear Information System (INIS)

    Kivits, H.

    1980-01-01

    Development of a multi-elemental trace analysis technique using PIXE (Particle Induced X-ray Emission), was started almost five years ago at the Eindhoven University of Technology, in the Cyclotron Applications Group of the Physics Department. The aim of the work presented is to improve the quantitative aspects of trace-element analysis with PIXE, as well as versatility, speed and simplicity. (Auth.)

  9. Robust ray-tracing algorithms for interactive dose rate evaluation

    International Nuclear Information System (INIS)

    Perrotte, L.

    2011-01-01

    More than ever, it is essential today to develop simulation tools to rapidly evaluate the dose rate received by operators working on nuclear sites. In order to easily study numerous different scenarios of intervention, computation times of available softwares have to be all lowered. This mainly implies to accelerate the geometrical computations needed for the dose rate evaluation. These computations consist in finding and sorting the whole list of intersections between a big 3D scene and multiple groups of 'radiative' rays meeting at the point where the dose has to be measured. In order to perform all these computations in less than a second, we first propose a GPU algorithm that enables the efficient management of one big group of coherent rays. Then we present a modification of this algorithm that guarantees the robustness of the ray-triangle intersection tests through the elimination of the precision issues due to floating-point arithmetic. This modification does not require the definition of scene-dependent coefficients ('epsilon' style) and only implies a small loss of performance (less than 10%). Finally we propose an efficient strategy to handle multiple ray groups (corresponding to multiple radiative objects) which use the previous results.Thanks to these improvements, we are able to perform an interactive and robust dose rate evaluation on big 3D scenes: all of the intersections (more than 13 million) between 700 000 triangles and 12 groups of 100 000 rays each are found, sorted along each ray and transferred to the CPU in 470 milliseconds. (author) [fr

  10. (U) Second-Order Sensitivity Analysis of Uncollided Particle Contributions to Radiation Detector Responses Using Ray-Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Favorite, Jeffrey A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    The Second-Level Adjoint Sensitivity System (2nd-LASS) that yields the second-order sensitivities of a response of uncollided particles with respect to isotope densities, cross sections, and source emission rates is derived in Refs. 1 and 2. In Ref. 2, we solved problems for the uncollided leakage from a homogeneous sphere and a multiregion cylinder using the PARTISN multigroup discrete-ordinates code. In this memo, we derive solutions of the 2nd-LASS for the particular case when the response is a flux or partial current density computed at a single point on the boundary, and the inner products are computed using ray-tracing. Both the PARTISN approach and the ray-tracing approach are implemented in a computer code, SENSPG. The next section of this report presents the equations of the 1st- and 2nd-LASS for uncollided particles and the first- and second-order sensitivities that use the solutions of the 1st- and 2nd-LASS. Section III presents solutions of the 1st- and 2nd-LASS equations for the case of ray-tracing from a detector point. Section IV presents specific solutions of the 2nd-LASS and derives the ray-trace form of the inner products needed for second-order sensitivities. Numerical results for the total leakage from a homogeneous sphere are presented in Sec. V and for the leakage from one side of a two-region slab in Sec. VI. Section VII is a summary and conclusions.

  11. Three-dimensional ray-tracing model for the study of advanced refractive errors in keratoconus.

    Science.gov (United States)

    Schedin, Staffan; Hallberg, Per; Behndig, Anders

    2016-01-20

    We propose a numerical three-dimensional (3D) ray-tracing model for the analysis of advanced corneal refractive errors. The 3D modeling was based on measured corneal elevation data by means of Scheimpflug photography. A mathematical description of the measured corneal surfaces from a keratoconus (KC) patient was used for the 3D ray tracing, based on Snell's law of refraction. A model of a commercial intraocular lens (IOL) was included in the analysis. By modifying the posterior IOL surface, it was shown that the imaging quality could be significantly improved. The RMS values were reduced by approximately 50% close to the retina, both for on- and off-axis geometries. The 3D ray-tracing model can constitute a basis for simulation of customized IOLs that are able to correct the advanced, irregular refractive errors in KC.

  12. 2-Dimensional B-Spline Algorithms with Applications to Ray Tracing in Media of Spatially-Varying Refractive Index

    Science.gov (United States)

    2007-08-01

    In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than linear trajectories. The...coupling the radiative transport solution into heat transfer and damage models. 15. SUBJECT TERMS: B-Splines, Ray-Tracing, Eikonal Equation...multi-layer biological tissue model. In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods

  13. Trace element analysis in liquids by proton induced x-ray emission

    International Nuclear Information System (INIS)

    Deconninck, G.

    Proton induced x-ray emission (PIXE) from liquid has been developed for quantitative and simultaneous analysis of trace elements. Liquid drops and trickles are bombarded at atmospheric pressure, x-rays are detected in a non dispersive Si(Li) solid state detector. Absolute determinations are made by comparison with standard solutions. Detection limits in a 5 minutes run are in the ppm range for a single drop (0.05 ml). The application of this technique to the determination of trace elements in biological liquids is investigated (Cr, Mn, Fe, Co, Ni, Cu, Zn, in plant extracts, haemocyanine, albumins...). (author)

  14. A Sub-band Divided Ray Tracing Algorithm Using the DPS Subspace in UWB Indoor Scenarios

    DEFF Research Database (Denmark)

    Gan, Mingming; Xu, Zhinan; Hofer, Markus

    2015-01-01

    Sub-band divided ray tracing (SDRT) is one technique that has been extensively used to obtain the channel characteristics for ultra-wideband (UWB) radio wave propagation in realistic indoor environments. However, the computational complexity of SDRT scales directly with the number of sub-bands. A......Sub-band divided ray tracing (SDRT) is one technique that has been extensively used to obtain the channel characteristics for ultra-wideband (UWB) radio wave propagation in realistic indoor environments. However, the computational complexity of SDRT scales directly with the number of sub...

  15. Ray tracing of auroral Z mode radiation, AKR and auroral hiss

    International Nuclear Information System (INIS)

    Horne, R.B.; Jones, D.; Kimura, I.; Sawada, A.

    1990-01-01

    While observed frequency bandwidths of auroral Z mode radiation cannot be directly accounted for in terms of direct cyclotron maser instability generation, ray tracing in a hot plasma indicates that if the radiation near a plasma frequency lower than the gyrofrequency, the observed bandwidths are explainable in terms of upward propagation away from the earth. An auroral Z-mode generation mechanism is proposed involving mode conversion from O-mode auroral kilometric radiation (AKR) at the plasma frequency, as well as mode conversion from upgoing auroral hiss. Ray tracings in the O mode identify a possible AKR source region along L = 8.55. 11 refs

  16. Neutron transport study based on assembly modular ray tracing MOC method

    International Nuclear Information System (INIS)

    Tian Chao; Zheng Youqi; Li Yunzhao; Li Shuo; Chai Xiaoming

    2015-01-01

    It is difficulty for the MOC method based on Cell Modular Ray Tracing to deal with the irregular geometry such as the water gap between the PWR lattices. Hence, the neutron transport code NECP-Medlar based on Assembly Modular Ray Tracing is developed. CMFD method is used to accelerate the transport calculation. The numerical results of the 2D C5G7 benchmark and typical PWR lattice prove that NECP-Medlar has an excellent performance in terms of accuracy and efficiency. Besides, NECP-Medlar can describe clearly the flux distribution of the lattice with water gap. (authors)

  17. A boundary integral formalism for stochastic ray tracing in billiards

    International Nuclear Information System (INIS)

    Chappell, David J.; Tanner, Gregor

    2014-01-01

    Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain

  18. Correction for interelement effect in X-Ray fluorescence analysis of trace elements in geological materials

    International Nuclear Information System (INIS)

    El-Behay, A.Z.; Attawiya, M.Y.; Khattab, F.M.

    1984-01-01

    In a trial to obtain accurate results from X-ray fluorescence technique for the analysis of trace elements in geological materials, two corrections were used for the obtained data, namely, correction for the observed x-ray intensities for absorption and/or enhancement effects due to the presence of other elements in the system and correction for spectral deconvolution to account for the overlapping lines. Significant improvement in the precision and accuracy was obtained and evaluated

  19. A comparison of three different ray trace programs for x-ray and infrared synchrotron beamline designs

    International Nuclear Information System (INIS)

    Irick, S.C.; Jung, C.R.

    1997-07-01

    There are a number of ray trace programs currently used for the design of synchrotron beamlines. While several of these programs have been written and used mostly within the programmer''s institution, many have also been available to the general public. This paper discusses three such programs. One is a commercial product oriented for the general optical designer (not specifically for synchrotron beamlines). One is designed for synchrotron beamlines and is free with restricted availability. Finally, one is designed for synchrotron beamlines and is used primarily in one institution. The wealth of information from general optical materials and components catalogs is readily available in the commercial program for general optical designs. This makes the design of an infrared beamline easier from the standpoint of component selection. However, this program is not easily configured for synchrotron beamline designs, particularly for a bending magnet source. The synchrotron ray trace programs offer a variety of sources, but generally are not as easy to use from the standpoint of the user interface. This paper shows ray traces of the same beamline Optikwerks, SHADOW, and RAY, and compares the results

  20. Fast solar radiation pressure modelling with ray tracing and multiple reflections

    Science.gov (United States)

    Li, Zhen; Ziebart, Marek; Bhattarai, Santosh; Harrison, David; Grey, Stuart

    2018-05-01

    Physics based SRP (Solar Radiation Pressure) models using ray tracing methods are powerful tools when modelling the forces on complex real world space vehicles. Currently high resolution (1 mm) ray tracing with secondary intersections is done on high performance computers at UCL (University College London). This study introduces the BVH (Bounding Volume Hierarchy) into the ray tracing approach for physics based SRP modelling and makes it possible to run high resolution analysis on personal computers. The ray tracer is both general and efficient enough to cope with the complex shape of satellites and multiple reflections (three or more, with no upper limit). In this study, the traditional ray tracing technique is introduced in the first place and then the BVH is integrated into the ray tracing. Four aspects of the ray tracer were tested for investigating the performance including runtime, accuracy, the effects of multiple reflections and the effects of pixel array resolution.Test results in runtime on GPS IIR and Galileo IOV (In Orbit Validation) satellites show that the BVH can make the force model computation 30-50 times faster. The ray tracer has an absolute accuracy of several nanonewtons by comparing the test results for spheres and planes with the analytical computations. The multiple reflection effects are investigated both in the intersection number and acceleration on GPS IIR, Galileo IOV and Sentinel-1 spacecraft. Considering the number of intersections, the 3rd reflection can capture 99.12 %, 99.14 % , and 91.34 % of the total reflections for GPS IIR, Galileo IOV satellite bus and the Sentinel-1 spacecraft respectively. In terms of the multiple reflection effects on the acceleration, the secondary reflection effect for Galileo IOV satellite and Sentinel-1 can reach 0.2 nm /s2 and 0.4 nm /s2 respectively. The error percentage in the accelerations magnitude results show that the 3rd reflection should be considered in order to make it less than 0.035 % . The

  1. Pseudo forward ray-tracing: A new method for surface validation in cornea topography

    NARCIS (Netherlands)

    Sicam, V.; Snellenburg, J.J.; van der Heijde, R.G.; van Stokkum, I.H.M.

    2007-01-01

    PURPOSE. A pseudo forward ray-tracing (PFRT) algorithm is developed to evaluate surface reconstruction in corneal topography. The method can be applied to topographers where one-to-one correspondence between mire and image points can be established. METHODS. The PFRT algorithm was applied on a

  2. Proton induced X-ray emission analysis of trace elements in human blood serum

    International Nuclear Information System (INIS)

    Cheek, D.B.; Hay, H.J.; Newton, C.S.

    1979-01-01

    Proton induced x-ray emission has been used for quantitative analyses of trace elements in blood serum samples. This work is part of a survey concerned with Zn, Cu, Fe, Cr, Mn and Se in Australian Aboriginal people not receiving optimal diet. Special attention is being directed to Cr because of the high incidence of diabetes mellitus in these people

  3. An Energy Conservative Ray-Tracing Method With a Time Interpolation of the Force Field

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-10

    A new algorithm that constructs a continuous force field interpolated in time is proposed for resolving existing difficulties in numerical methods for ray-tracing. This new method has improved accuracy, but with the same degree of algebraic complexity compared to Kaisers method.

  4. Interior metric and ray-tracing map in the firework black-to-white hole transition

    OpenAIRE

    Rovelli, Carlo; Martin-Dussaud, Pierre

    2018-01-01

    The possibility that a black hole could tunnel into to white hole has recently received attention. Here we present a metric that improves the "firework" metric: it describes the entire process and solves the Einstein's equations everywhere except on a small transition surface that corresponds to the quantum tunneling. We compute the corresponding ray-tracing map from past infinity to future infinity explicitly.

  5. A Simplified Multipath Component Modeling Approach for High-Speed Train Channel Based on Ray Tracing

    Directory of Open Access Journals (Sweden)

    Jingya Yang

    2017-01-01

    Full Text Available High-speed train (HST communications at millimeter-wave (mmWave band have received a lot of attention due to their numerous high-data-rate applications enabling smart rail mobility. Accurate and effective channel models are always critical to the HST system design, assessment, and optimization. A distinctive feature of the mmWave HST channel is that it is rapidly time-varying. To depict this feature, a geometry-based multipath model is established for the dominant multipath behavior in delay and Doppler domains. Because of insufficient mmWave HST channel measurement with high mobility, the model is developed by a measurement-validated ray tracing (RT simulator. Different from conventional models, the temporal evolution of dominant multipath behavior is characterized by its geometry factor that represents the geometrical relationship of the dominant multipath component (MPC to HST environment. Actually, during each dominant multipath lifetime, its geometry factor is fixed. To statistically model the geometry factor and its lifetime, the dominant MPCs are extracted within each local wide-sense stationary (WSS region and are tracked over different WSS regions to identify its “birth” and “death” regions. Then, complex attenuation of dominant MPC is jointly modeled by its delay and Doppler shift both which are derived from its geometry factor. Finally, the model implementation is verified by comparison between RT simulated and modeled delay and Doppler spreads.

  6. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    International Nuclear Information System (INIS)

    Liang, Yicheng; Peng, Hao

    2015-01-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. (paper)

  7. Invisibility cloaking via non-smooth transformation optics and ray tracing

    International Nuclear Information System (INIS)

    Crosskey, Miles M.; Nixon, Andrew T.; Schick, Leland M.; Kovacic, Gregor

    2011-01-01

    We present examples of theoretically-predicted invisibility cloaks with shapes other than spheres and cylinders, including cones and ellipsoids, as well as shapes spliced from parts of these simpler shapes. In addition, we present an example explicitly displaying the non-uniqueness of invisibility cloaks of the same shape. We depict rays propagating through these example cloaks using ray tracing for geometric optics. - Highlights: → Theoretically-predicted conical and ellipsoidal invisibility cloaks. → Non-smooth cloaks spliced from parts of simpler shapes. → Example displaying non-uniqueness of invisibility cloaks of the same shape. → Rays propagating through example cloaks depicted using geometric optics.

  8. CUDA-Accelerated Geodesic Ray-Tracing for Fiber Tracking

    Directory of Open Access Journals (Sweden)

    Evert van Aart

    2011-01-01

    Full Text Available Diffusion Tensor Imaging (DTI allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU. This algorithm, which is based on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a multithreaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times.

  9. Simplifying numerical ray tracing for two-dimensional non circularly symmetric models of the human eye.

    Science.gov (United States)

    Jesus, Danilo A; Iskander, D Robert

    2015-12-01

    Ray tracing is a powerful technique to understand the light behavior through an intricate optical system such as that of a human eye. The prediction of visual acuity can be achieved through characteristics of an optical system such as the geometrical point spread function. In general, its precision depends on the number of discrete rays and the accurate surface representation of each eye's components. Recently, a method that simplifies calculation of the geometrical point spread function has been proposed for circularly symmetric systems [Appl. Opt.53, 4784 (2014)]. An extension of this method to 2D noncircularly symmetric systems is proposed. In this method, a two-dimensional ray tracing procedure for an arbitrary number of surfaces and arbitrary surface shapes has been developed where surfaces, rays, and refractive indices are all represented in functional forms being approximated by Chebyshev polynomials. The Liou and Brennan anatomically accurate eye model has been adapted and used for evaluating the method. Further, real measurements of the anterior corneal surface of normal, astigmatic, and keratoconic eyes were substituted for the first surface in the model. The results have shown that performing ray tracing, utilizing the two-dimensional Chebyshev function approximation, is possible for noncircularly symmetric models, and that such calculation can be performed with a newly created Chebfun toolbox.

  10. Polarization ray tracing in anisotropic optically active media. II. Theory and physics

    International Nuclear Information System (INIS)

    McClain, S.C.; Hillman, L.W.; Chipman, R.A.

    1993-01-01

    Refraction, reflection, and amplitude relations are derived that apply to polarization ray tracing in anisotropic, optically active media such as quartz. The constitutive relations for quartz are discussed. The refractive indices and polarization states associated with the two modes of propagation are derived as a function of wave direction. A procedure for refracting at any uniaxial or optically active interface is derived that computes both the ray direction and the wave direction. A method for computing the optical path length is given, and Fresnel transmission and ref lection equations are derived from boundary conditions on the electromagnetic fields. These ray-tracing formulas apply to uniaxial, optically active media and therefore encompass uniaxial, non-optically active materials and isotropic, optically active materials

  11. Solar Proton Transport Within an ICRU Sphere Surrounded by a Complex Shield: Ray-trace Geometry

    Science.gov (United States)

    Slaba, Tony C.; Wilson, John W.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2015-01-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z is less than or equal to 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency.

  12. Development of Extended Ray-tracing method including diffraction, polarization and wave decay effects

    Science.gov (United States)

    Yanagihara, Kota; Kubo, Shin; Dodin, Ilya; Nakamura, Hiroaki; Tsujimura, Toru

    2017-10-01

    Geometrical Optics Ray-tracing is a reasonable numerical analytic approach for describing the Electron Cyclotron resonance Wave (ECW) in slowly varying spatially inhomogeneous plasma. It is well known that the result with this conventional method is adequate in most cases. However, in the case of Helical fusion plasma which has complicated magnetic structure, strong magnetic shear with a large scale length of density can cause a mode coupling of waves outside the last closed flux surface, and complicated absorption structure requires a strong focused wave for ECH. Since conventional Ray Equations to describe ECW do not have any terms to describe the diffraction, polarization and wave decay effects, we can not describe accurately a mode coupling of waves, strong focus waves, behavior of waves in inhomogeneous absorption region and so on. For fundamental solution of these problems, we consider the extension of the Ray-tracing method. Specific process is planned as follows. First, calculate the reference ray by conventional method, and define the local ray-base coordinate system along the reference ray. Then, calculate the evolution of the distributions of amplitude and phase on ray-base coordinate step by step. The progress of our extended method will be presented.

  13. ACCELERATION RENDERING METHOD ON RAY TRACING WITH ANGLE COMPARISON AND DISTANCE COMPARISON

    Directory of Open Access Journals (Sweden)

    Liliana liliana

    2007-01-01

    Full Text Available In computer graphics applications, to produce realistic images, a method that is often used is ray tracing. Ray tracing does not only model local illumination but also global illumination. Local illumination count ambient, diffuse and specular effects only, but global illumination also count mirroring and transparency. Local illumination count effects from the lamp(s but global illumination count effects from other object(s too. Objects that are usually modeled are primitive objects and mesh objects. The advantage of mesh modeling is various, interesting and real-like shape. Mesh contains many primitive objects like triangle or square (rare. A problem in mesh object modeling is long rendering time. It is because every ray must be checked with a lot of triangle of the mesh. Added by ray from other objects checking, the number of ray that traced will increase. It causes the increasing of rendering time. To solve this problem, in this research, new methods are developed to make the rendering process of mesh object faster. The new methods are angle comparison and distance comparison. These methods are used to reduce the number of ray checking. The rays predicted will not intersect with the mesh, are not checked weather the ray intersects the mesh. With angle comparison, if using small angle to compare, the rendering process will be fast. This method has disadvantage, if the shape of each triangle is big, some triangles will be corrupted. If the angle to compare is bigger, mesh corruption can be avoided but the rendering time will be longer than without comparison. With distance comparison, the rendering time is less than without comparison, and no triangle will be corrupted.

  14. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    1981-01-01

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million

  15. Mapping of trace elements with photon microprobes: x-ray fluorescence with focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Jones, K.W.; Gordon, B.M.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.

    1985-04-01

    High energy electron synchrotron storage rings provide copious quantities of polarized photons that make possible the mapping of many trace elements with sensitivities at the parts per billion (ppB) level with spatial resolutions in the micrometer range. The brightness of the x-ray ring of the National Synchrotron Light Source (NSLS), presently being commissioned, will be five orders of magnitude larger than that of the bremsstrahlung spectrum of state-of-the-art rotating anode tubes. We will discuss mapping trace elements with a photon microprobe presently being constructed for use at the NSLS. This microprobe will have micrometer spatial resolution

  16. PEMBUATAN PERANGKAT LUNAK UNTUK MEMVISUALISASIKAN BENDA TEMBUS PANDANG DENGAN METODE RAY TRACING

    Directory of Open Access Journals (Sweden)

    Liliana Liliana

    2004-01-01

    Full Text Available Today computer graphics is used in many aspects, especially to make animation, advertisement and game. We hope this technology can produce realistic pictures which same quality with photo. Metode to get the realistic 3D image is ray tracing. In this journal, make a software which can produce realistic 3D image, especially for reflective and transparent object. Reflective object will modeled can reflect another object surrounding it. And transparent object will modeled can produce caustic effect, that's rays which refract in one area. So that area will appear brighter than area surround it. Abstract in Bahasa Indonesia : Dewasa ini grafika komputer semakin banyak digunakan di berbagai bidang terutama untuk pembuatan film animasi, iklan dan pembuatan game. Diharapkan teknologi grafika komputer mampu menghasilkan gambar-gambar realistik yang kualitasnya sama dengan kualitas foto. Salah satu metode yang digunakan untuk menghasilkan gambar 3D yang realistik tersebut adalah metode ray tracing. Dalam penelitian ini dibuat perangkat lunak yang mampu menghasilkan gambar-gambar 3D yang realistik terutama untuk benda-benda yang mengkilap dan benda-benda transparan. Benda mengkilap yang dimodelkan bisa memantulkan bayangan benda lain yang berada di sekitarnya. Benda transparan yang dimodelkan adalah benda transparan yang menghasilkan efek kaustik, yaitu pembiasan sinar dari sumber cahaya yang mengumpul di suatu daerah sehingga pada daerah tersebut akan tampak lebih terang daripada daerah sekitarnya. Kata kunci: efek kaustik, ray tracing.

  17. TIM, a ray-tracing program for METATOY research and its dissemination

    Science.gov (United States)

    Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes

    2012-03-01

    TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.

  18. Random ray-tracing and graphic analysing of charged particle trajectories

    International Nuclear Information System (INIS)

    Lin Xiaomei; Mao Naifeng; Chen Jingxian

    1990-01-01

    In order to describe the optical properties of a charged particle beam realistically, the random sampling of initial conditions of particles in ray-tracing is discussed. The emission surface of particles may be a plane, a cylindrical surface or a spherical surface. The distribution functions may be expressed analytically or numerically. In order to analyse the properties of the charged particle beam systematically by use of the results from ray-tracing efficiently, the graphic processing and analysing of particle trajectories are also discussed, including the spline function fitting of trajectories, the graphic drafting of trajectories and beam envelopes, the determining of image dimensions and the correspinding positions, and also the graphic drafting of particle distributions on arbitrary cross sections

  19. Thermal radiation characteristics of nonisothermal cylindrical enclosures using a numerical ray tracing technique

    Science.gov (United States)

    Baumeister, Joseph F.

    1990-01-01

    Analysis of energy emitted from simple or complex cavity designs can lead to intricate solutions due to nonuniform radiosity and irradiation within a cavity. A numerical ray tracing technique was applied to simulate radiation propagating within and from various cavity designs. To obtain the energy balance relationships between isothermal and nonisothermal cavity surfaces and space, the computer code NEVADA was utilized for its statistical technique applied to numerical ray tracing. The analysis method was validated by comparing results with known theoretical and limiting solutions, and the electrical resistance network method. In general, for nonisothermal cavities the performance (apparent emissivity) is a function of cylinder length-to-diameter ratio, surface emissivity, and cylinder surface temperatures. The extent of nonisothermal conditions in a cylindrical cavity significantly affects the overall cavity performance. Results are presented over a wide range of parametric variables for use as a possible design reference.

  20. An efficient ray tracing method for propagation prediction along a mobile route in urban environments

    Science.gov (United States)

    Hussain, S.; Brennan, C.

    2017-07-01

    This paper presents an efficient ray tracing algorithm for propagation prediction in urban environments. The work presented in this paper builds upon previous work in which the maximum coverage area where rays can propagate after interaction with a wall or vertical edge is described by a lit polygon. The shadow regions formed by buildings within the lit polygon are described by shadow polygons. In this paper, the lit polygons of images are mapped to a coarse grid superimposed over the coverage area. This mapping reduces the active image tree significantly for a given receiver point to accelerate the ray finding process. The algorithm also presents an efficient method of quickly determining the valid ray segments for a mobile receiver moving along a linear trajectory. The validation results show considerable computation time reduction with good agreement between the simulated and measured data for propagation prediction in large urban environments.

  1. Ray tracing for optimization of compound parabolic concentrators for solar collectors of enclosed design

    OpenAIRE

    YURCHENKO, VLADIMIR; YURCHENKO, EDUARD; ÇİYDEM, MEHMET; TOTUK, ONAT

    2015-01-01

    We present our developments in computer simulations and optimization of compound parabolic concentrators (CPCs) for solar heat collectors. Issues of both the optical and thermal optimization of CPC collectors of enclosed design are discussed. Ray tracing results for a CPC with a V-shaped absorber are presented. A range of optimal values for the apex angle of a V-shaped absorber is proposed for a CPC collector of typical design.

  2. Mathematic models for a ray tracing method and its applications in wireless optical communications.

    Science.gov (United States)

    Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan

    2010-08-16

    This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.

  3. X-ray fluorescence analysis for trace element determination in foodstuff chemistry

    International Nuclear Information System (INIS)

    Wildanger, W.

    The physical fundamentals of X-ray fluorescence analysis are given and the routine spectrometers described. The basic principles are given of analytical methods used in qualitative and quantitative fluorescence analyses. Examples are given of the use of the method in a number of fields and the possibility and usefulness is discussed for the determination of trace elements in foodstuffs. The preparation of samples, preliminary concentration of components and calibration methods are discussed. (M.K.)

  4. Multiscale optical simulation settings: challenging applications handled with an iterative ray-tracing FDTD interface method.

    Science.gov (United States)

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian

    2016-03-20

    We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.

  5. Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing

    Science.gov (United States)

    Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng

    2017-05-01

    Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.

  6. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens

    International Nuclear Information System (INIS)

    Yildirim, A.; Gökdoğan, A.; Merdan, M.; Lakshminarayanan, V.

    2012-01-01

    An approximate analytical solution in the form of a rapidly convergent series for tracing light rays through an inhomogeneous graded index medium is developed, using the multi-step differential transform method based on the classical differential transformation method. Numerical results are compared to those obtained by the fourth-order Runge—Kutta method to illustrate the precision and effectiveness of the proposed method. Results are given in explicit and graphical forms. (fundamental areas of phenomenology(including applications))

  7. Proton induced X-Ray fluorescence study as a tool trace element analysis

    International Nuclear Information System (INIS)

    El-Kady, Ahmed A.

    1978-01-01

    Usefulness and limitations of trace elemental analysis by high energy charged particles and photon induced X-ray have been discussed. Comparison with the well established neutron activation analysis technique is also given. Back-ground radiation due to bremsstrahlung from secondary electrons and due to charged particle bremsstrahlung have been reviewed for different projectiles. The sensitivity of elemental analysis by proton induced X-ray fluorescence have been examined by measuring the characteristic X-ray emission cross section for K and L transitions of many elements and for different proton energies and compared with theroretical values. The discussion given in this report show that with suitable proton generator and a high resolution X-ray detector, proton X-ray fluorescence technique is capable of analyzing many elements simultaneously at the part per million level and offers a rapid and reliable method for trace element analysis. Data on water, blood and tissue samples given in this report are few examples of many possible applications

  8. Ray Trace

    International Nuclear Information System (INIS)

    Kowalski, S.

    1981-01-01

    During the past decade, a very general RAYTRACE code has been developed at MIT for following the trajectories of charged particles through ion-optical systems. The motion of a particle carrying charge Q is governed by the Lorentz equation, F = Q[E + V x B], where E is the electric field and B is the magnetic field. In a rectangular (x,y,z) coordinate system the equations of motion along each of the axes may be written as mx = Q(E/sub x/ + V/sub Y/B/sub z/ - v/sub z/B/sub Y/), my = Q(E/sub Y/ + v/sub z/B/sub x/ - v/sub x/B/sub z/, mz = Q(E/sub z/ + v/sub x/B/sub Y/ - v/sub Y/B/sub x/). These three particle differential equations of motion are solved by means of a step-by-step numerical integration with time as the independent variable. Accuracy is limited only by the uncertainties in our knowledge of the electric and magnetic fields. Current versions of the code may be used to calculate trajectories through an arbitrary arrangement of elements including dipoles, quadrupoles, general multipoles, solenoids, velocity selectors, drifts and thin lenses

  9. Vertex shading of the three-dimensional model based on ray-tracing algorithm

    Science.gov (United States)

    Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.

  10. Trace rare earth analysis by neutron activation and γ-ray/x-ray spectrometry

    International Nuclear Information System (INIS)

    Laul, J.C.; Nielson, K.K.; Wogman, N.A.

    1977-01-01

    A rare earth group separation scheme followed by photon energy analysis using Ge(Li) and intrinsic Ge detectors enhances significantly the detection of individual rare earth elements (REE) at or below the ppb level. Based on the x-ray and selected γ-ray energies, Ge(Li) γ-ray counting is favorable for 140 La, 141 Ce, 142 Pr, 153 Sm, 171 Er, and 177 Lu, whereas intrinsic Ge γ-ray counting is favorable for 143 Ce, 147 Nd, 160 Tb, and 166 Ho, and intrinsic Ge x-ray counting is favorable for 152 Eu and 175 Yb. Gamma-ray counting of 153 Gd and 170 Tm is equally sensitive with Ge(Li) or intrinsic Ge detectors. Precise measurements of the REE were made in the USGS geological samples BCR-1, W-1, AGV-1, G2, GSP-1 and PCC-1, the IAEA Soil-5, and the NBS orchard leaf and bovine liver standards. Their chondritic normalized REE patterns behave as a smooth function of the REE ionic radii. Interestingly, the REE patterns observed in orchard leaf and other plants are identical to the REE pattern in bovine liver. This comparison leads us to suggest that the plant REE patterns are probably not further fractionated by animals such as bovine during their dietary plant uptake

  11. Line shape and ray trace calculations in saturated X-ray lasers: Application to Ni-like silver

    International Nuclear Information System (INIS)

    Benredjem, D.; Guilbaud, O.; Moeller, C.; Klisnick, A.; Ros, D.; Dubau, J.; Calisti, A.; Talin, B.

    2006-01-01

    Longitudinal coherence length in X-ray lasers depends strongly on the shape of the amplified line. We have modelled an experiment performed at the LULI facility of Ecole Polytechnique. The experiment was devoted to the study of the temporal (longitudinal) coherence of the transient Ni-like silver 4d-4p transition X-ray laser at 13.9 nm. Accurate line shape calculations using PPP, a spectral line shape code, confirm that the Voigt profile is a good approximation for this X-ray laser line. This allows us to extensively use the Voigt shape in conditions where the amplifier, i.e. the plasma produced by the interaction of a high intensity laser with a slab target, is neither stationary nor homogeneous. Our calculations involve a ray trace code which is a post-processor to the hydrodynamic simulation EHYBRID. As the effect of saturation is important for the level populations and gains we include the interaction between the amplified beam and the medium using the Maxwell-Bloch formalism. While the FWHM of the spontaneous emission profile is ∼10 mA, the amplified X-ray line exhibits gain narrowing leading to the smaller width ∼3 mA. Comparison with experiment is discussed

  12. Factors influencing health care workers’ implementation of tuberculosis contact tracing in Kweneng, Botswana

    Science.gov (United States)

    Tlale, Lebapotswe; Frasso, Rosemary; Kgosiesele, Onalenna; Selemogo, Mpho; Mothei, Quirk; Habte, Dereje; Steenhoff, Andrew

    2016-01-01

    Introduction TB contact tracing rates remain low in high burden settings and reasons for this are not well known. We describe factors that influence health care workers' (HCW) implementation of TB contact tracing (CT) in a high TB burden district of Botswana. Methods Data were collected using questionnaires and in-depth interviews in 31 of the 52 health facilities in Kweneng East Health District. Responses were summarized using summary statistics and comparisons between HCW groups were done using parametric or non-parametric tests as per normality of the data distribution. Results One hundred and four HCWs completed questionnaires. Factors that influenced HCW TB contact tracing were their knowledge, attitudes and practices as well as personal factors including decreased motivation and lack of commitment. Patient factors included living further away from the clinic, unknown residential address and high rates of migration and mobility. Administrative factors included staff shortages, lack of transport, poor reporting of TB cases and poor medical infrastructure e.g. suboptimal laboratory services. A national HCW strike and a restructuring of the health system emerged as additional factors during in-depth interviews of TB coordinators. Conclusion Multiple factors lead to poor TB contact tracing in this district. Interventions to increase TB contact tracing will be informed by these findings. PMID:27800084

  13. 3D Laser Imprint Using a Smoother Ray-Traced Power Deposition Method

    Science.gov (United States)

    Schmitt, Andrew J.

    2017-10-01

    Imprinting of laser nonuniformities in directly-driven icf targets is a challenging problem to accurately simulate with large radiation-hydro codes. One of the most challenging aspects is the proper construction of the complex and rapidly changing laser interference structure driving the imprint using the reduced laser propagation models (usually ray-tracing) found in these codes. We have upgraded the modelling capability in our massively-parallel fastrad3d code by adding a more realistic EM-wave interference structure. This interference model adds an axial laser speckle to the previous transverse-only laser structure, and can be impressed on our improved smoothed 3D raytrace package. This latter package, which connects rays to form bundles and performs power deposition calculations on the bundles, is intended to decrease ray-trace noise (which can mask or add to imprint) while using fewer rays. We apply this improved model to 3D simulations of recent imprint experiments performed on the Omega-EP laser and the Nike laser that examined the reduction of imprinting due to very thin high-Z target coatings. We report on the conditions in which this new model makes a significant impact on the development of laser imprint. Supported by US DoE/NNSA.

  14. The flux distribution from a 1.25m2 target aligned heliostat: comparison of ray tracing and experimental results

    CSIR Research Space (South Africa)

    Maliage, M

    2012-05-01

    Full Text Available The purpose of this paper is to validate SolTrace for concentrating solar investigations at CSIR by means of a test case: the comparison of the flux distribution in the focal spot of a 1.25 m2 target aligned heliostat predicted by the ray tracing...

  15. The quantitative determination of trace elements in giant unicellular plants by particle-induced X-ray emission

    International Nuclear Information System (INIS)

    Navarrete-Dominguez, V.R.; Yoshihara, K.; Tanaka, N.

    1982-01-01

    Particle-induced X-ray emission (PIXE) was applied for the determination of trace elements in biologically interesting materials, giant unicellular plants. It was found that the PIXE method had advantages in multi-element trace analysis of a single cell of the sample plant. (author)

  16. Combined visualization for noise mapping of industrial facilities based on ray-tracing and thin plate splines

    Science.gov (United States)

    Ovsiannikov, Mikhail; Ovsiannikov, Sergei

    2017-01-01

    The paper presents the combined approach to noise mapping and visualizing of industrial facilities sound pollution using forward ray tracing method and thin-plate spline interpolation. It is suggested to cauterize industrial area in separate zones with similar sound levels. Equivalent local source is defined for range computation of sanitary zones based on ray tracing algorithm. Computation of sound pressure levels within clustered zones are based on two-dimension spline interpolation of measured data on perimeter and inside the zone.

  17. Technical Note: A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber.

    Science.gov (United States)

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-12-01

    To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in

  18. Trace element determination in tomato puree using particle induced X-ray emission and Rutherford backscattering

    International Nuclear Information System (INIS)

    Romero-Davila, E.; Miranda, J.

    2004-01-01

    Particle induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) were used to determine the concentrations of trace elements in samples of 12 tomato puree brands sold in the Mexican market. While RBS offered information about the main elements present in the matrix, PIXE gave results on trace elements. As a whole, data for 17 elements (C, N, O, Na, Mg, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn) were obtained. To evaluate the results, a comparison with brands from USA, Japan, Colombia, and Chile was carried out, using tomato purees produced following the domestic technology recipe. Additionally, the results were considered in the light of the Codex Alimentarius and the Mexican standard. It was found that all of the brands fall within the limits established by these standards, being of the same order of magnitude as the foreign brands. (author)

  19. Analytical approximations to the Hotelling trace for digital x-ray detectors

    Science.gov (United States)

    Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.

    2001-06-01

    The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.

  20. Linear scans of hair strands for trace elements by proton induced x-ray emission

    International Nuclear Information System (INIS)

    Jolly, R.K.; Pehrson, G.R.; Gupta, S.K.; Buckle, D.C.; Aceto, H. Jr.

    1974-01-01

    Hair strands obtained from school children in the 10 to 12 year age group were analyzed for trace element concentration as a function of distance from the root by proton-induced x-ray emission to study the history of exposure of the donors to toxic trace metals. These samples were collected from the vicinity of a copper smelter where high levels of As, Cd, Sb, and Pb have been noted. Scans show a continual build-up of Pb as a function of distance from the root, while As shows a reproducible and distinct maximum approximately 10 cm from the root. The concentration of Zn was found to be constant in all samples (without exception) to within the uncertainties of our measurements

  1. Infrasonic ray tracing applied to mesoscale atmospheric structures: refraction by hurricanes.

    Science.gov (United States)

    Bedard, Alfred J; Jones, R Michael

    2013-11-01

    A ray-tracing program is used to estimate the refraction of infrasound by the temperature structure of the atmosphere and by hurricanes represented by a Rankine-combined vortex wind plus a temperature perturbation. Refraction by the hurricane winds is significant, giving rise to regions of focusing, defocusing, and virtual sources. The refraction of infrasound by the temperature anomaly associated with a hurricane is small, probably no larger than that from uncertainties in the wind field. The results are pertinent to interpreting ocean wave generated infrasound in the vicinities of tropical cyclones.

  2. Trace elements in tobacco and tobacco smoke by x-ray fluorescence technique

    International Nuclear Information System (INIS)

    Mishra, U.C.; Shaikh, G.N.; Sadasivan, S.

    1986-01-01

    Trace elements in tobacco and tobacco smoke of a large number of commonly available brands of cigarettes were analyzed by energy dispersive x-ray fluorescence. This work supplements the data on the same samples gathered by INAA and reported earlier. Data on some toxic elements like Pb, Cu and Ni that could not be measured by INAA are presented. A number of chewing and snuff tobacco samples were also analyzed. The concentrations of Ca, K, Cl, Br, Cu, Fe, Ni, Pb, Rb, Sr, Ti and Zn in all these samples are presented and their relative hazards are discussed. (author)

  3. Developments in the ray-tracing code Zgoubi for 6-D multiturn tracking in FFAG rings

    International Nuclear Information System (INIS)

    Lemuet, F.; Meot, F.

    2005-01-01

    A geometrical method for 3-D modeling of the magnetic field in scaling and non-scaling FFAG magnets has been installed in the ray-tracing code Zgoubi. The method in particular allows a good simulation of transverse non-linearities, of field fall-offs and possible merging fields in configurations of neighboring magnets, while using realistic models of magnetic fields. That yields an efficient tool for FFAG lattice design and optimizations, and for 6-D tracking studies. It is applied for illustration to the simulation of an acceleration cycle in a 150 MeV radial sector proton FFAG

  4. Study on method of characteristics based on cell modular ray tracing

    International Nuclear Information System (INIS)

    Tang Chuntao; Zhang Shaohong

    2009-01-01

    To address the issue of accurately solving neutron transport problem in complex geometry, method of characteristics (MOC) is studied in this paper, and a quite effective and memory saving cell modular ray tracing (CMRT) method is developed and related angle discretization and boundary condition handling issues are discussed. A CMRT based MOC code-PEACH is developed and tested against C5G7 MOX benchmark problem. Numerical results demonstrate that PEACH can give excellent accuracy for both k eff and pin power distribution for neutron transport problem. (authors)

  5. Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor

    NARCIS (Netherlands)

    Zijffers, J.F.; Janssen, M.G.J.; Tramper, J.; Wijffels, R.H.; Salim, S.

    2008-01-01

    The Green Solar Collector (GSC), a photobioreactor designed for area efficient outdoor cultivation of microalgae uses Fresnel lenses and light guides to focus, transport and distribute direct light into the algae suspension. Calculating the path of rays of light, so-called ray tracing, is used to

  6. Ray Tracing Results for Elevation Angle Spread of Departure and its Impact on System Performance

    DEFF Research Database (Denmark)

    Mondal, Bishwarup; Thomas, Timothy; Nguyen, Huan Cong

    2014-01-01

    Elevation spread of departure angles (ESD) is the key parameter characterizing a 3D fast-fading channel model. 3D channel mod-eling is currently being studied in 3GPP to enable the develop-ment of MIMO techniques exploiting both azimuth and elevation dimensions of the channel. In this paper we use...... ray-tracing techniques to estimate the ESD behavior in Manhattan and Copenhagen city environments and compare it with the 3GPP ESD model. We also investigate the ESD spread within a cluster of rays and show that the ESD within a cluster depends significantly on the distance of the mobile from the base......-station. This char-acterization addresses a gap in the existing literature. Simulation results show that the performance of MIMO techniques such as vertical sectorization depends significantly on the ESD of the underlying environment. This observation also underscores the importance of an accurate ESD model....

  7. Novel applications of the x-ray tracing software package McXtrace

    DEFF Research Database (Denmark)

    Bergbäck Knudsen, Erik; Nielsen, Martin Meedom; Haldrup, Kristoffer

    2014-01-01

    We will present examples of applying the X-ray tracing software package McXtrace to different kinds of X-ray scattering experiments. In particular we will be focusing on time-resolved type experiments. Simulations of full scale experiments are particularly useful for this kind, especially when...... some of the issues encountered. Generally more than one or all of these effects are present at once. Simulations can in these cases be used to identify distinct footprints of such distortions and thus give the experimenter a means of deconvoluting them from the signal. We will present a study...... of this kind along with the newest developments of the McXtrace software package....

  8. Proton induced x-ray emission analysis of trace elements in thick bread samples

    International Nuclear Information System (INIS)

    Mohamed Baker Al-bedri; Ikram Jameel Abdul Ghani; Ibrahim Abdul Rahman Al-aghil

    2009-01-01

    Proton induced X-ray emission (PIXE) technique has been used for identification and quantitative analysis of the elemental concentration in thick bread samples. Bread samples were air-oven dried at 60degC and milled in a clean agate mortar to homogenize the sample and pressed into a pellet. PIXE technique relies on the analysis of the energy spectra of the characteristic X-ray emitted from the thick bread sample and the orchard leaf standard (NIST-SRM-1571) bombarded with 2.0 MeV protons. The concentration of the elements (Cl, K, Ca, Mn, Fe, Cu, and Zn) in the bread samples was determined by comparison with NIST orchard leaf standard. The accuracy of the measurements ranged between ±2% and ±10% for the most elements detected in this method. The aim of this study is to establish the reference concentration of trace elements in the Iraqi bread using PIXE technique. (author)

  9. Accounting for partiality in serial crystallography using ray-tracing principles

    International Nuclear Information System (INIS)

    Kroon-Batenburg, Loes M. J.; Schreurs, Antoine M. M.; Ravelli, Raimond B. G.; Gros, Piet

    2015-01-01

    Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R int factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R int of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography

  10. Accounting for partiality in serial crystallography using ray-tracing principles

    Energy Technology Data Exchange (ETDEWEB)

    Kroon-Batenburg, Loes M. J., E-mail: l.m.j.kroon-batenburg@uu.nl; Schreurs, Antoine M. M. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Ravelli, Raimond B. G. [Maastricht University, PO Box 616, 6200 MD Maastricht (Netherlands); Gros, Piet [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)

    2015-08-25

    Serial crystallography generates partial reflections from still diffraction images. Partialities are estimated with EVAL ray-tracing simulations, thereby improving merged reflection data to a similar quality as conventional rotation data. Serial crystallography generates ‘still’ diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a ‘still’ Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R{sub int} factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R{sub int} of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  11. Application of energy dispersive X-ray fluorescence technique for investigations of trace element composition in medicinal plants from Manipur

    International Nuclear Information System (INIS)

    Joseph, Daisy; Singh, Toudam Sony; Singh, Rajmohan

    2009-01-01

    Seven medicinal plants from remote areas of Manipur were analyzed for their trace elemental composition using an X-ray spectrometer consisting of a radioisotope source of 109 Cd and Si (Li) X-ray detector of resolution 170 eV at 5.9 keV Mn K-X-ray and its associated electronics. In most samples Ca, Mn, Fe and Sr were predominantly seen and Cu, Zn and Pb were detected at trace levels. The presence and significance of the elements in these medicinal plants will be presented and discussed in the following sections of the paper. (author)

  12. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm

    International Nuclear Information System (INIS)

    Thing, Rune S.; Bernchou, Uffe; Brink, Carsten; Mainegra-Hing, Ernesto

    2013-01-01

    Purpose: Cone beam computed tomography (CBCT) image quality is limited by scattered photons. Monte Carlo (MC) simulations provide the ability of predicting the patient-specific scatter contamination in clinical CBCT imaging. Lengthy simulations prevent MC-based scatter correction from being fully implemented in a clinical setting. This study investigates the combination of using fast MC simulations to predict scatter distributions with a ray tracing algorithm to allow calibration between simulated and clinical CBCT images. Material and methods: An EGSnrc-based user code (egs c bct), was used to perform MC simulations of an Elekta XVI CBCT imaging system. A 60keV x-ray source was used, and air kerma scored at the detector plane. Several variance reduction techniques (VRTs) were used to increase the scatter calculation efficiency. Three patient phantoms based on CT scans were simulated, namely a brain, a thorax and a pelvis scan. A ray tracing algorithm was used to calculate the detector signal due to primary photons. A total of 288 projections were simulated, one for each thread on the computer cluster used for the investigation. Results: Scatter distributions for the brain, thorax and pelvis scan were simulated within 2 % statistical uncertainty in two hours per scan. Within the same time, the ray tracing algorithm provided the primary signal for each of the projections. Thus, all the data needed for MC-based scatter correction in clinical CBCT imaging was obtained within two hours per patient, using a full simulation of the clinical CBCT geometry. Conclusions: This study shows that use of MC-based scatter corrections in CBCT imaging has a great potential to improve CBCT image quality. By use of powerful VRTs to predict scatter distributions and a ray tracing algorithm to calculate the primary signal, it is possible to obtain the necessary data for patient specific MC scatter correction within two hours per patient

  13. Fast ray-tracing of human eye optics on Graphics Processing Units.

    Science.gov (United States)

    Wei, Qi; Patkar, Saket; Pai, Dinesh K

    2014-05-01

    We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Quantitative trace element analysis of individual fly ash particles by means of X-ray microfluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Vincze, L.; Somogyi, A.; Osan, J.; Vekemans, B.; Torok, S.; Janssens, K.; Adams, F. [Universitaire of Instelling Antwerp, Wilrijk (Belgium). Dept. of Chemistry

    2002-07-01

    A new quantification procedure was developed for the evaluation of X-ray microfluorescence (XRF) data sets obtained from individual particles, based on iterative Monte Carlo (MC) simulation. Combined with the high sensitivity of synchrotron radiation-induced XRF spectroscopy, the method was used to obtain quantitative information down to trace-level concentrations from micrometer-sized particulate matter. The detailed XRF simulation model was validated by comparison of calculated and experimental XRF spectra obtained for glass microsphere standards, resulting in uncertainties in the range of 3-10% for the calculated elemental sensitivities. The simulation model was applied for the quantitative analysis of X-ray tube and synchrotron radiation-induced scanning micro-XRF spectra of individual coal and wood fly ash particles originating from different Hungarian power plants. By measuring the same particles by both methods the major, minor, and trace element compositions of the particles were determined. The uncertainty of the MC based quantitative analysis scheme is estimated to be in the range of 5-30%.

  15. A versatile ray-tracing code for studying rf wave propagation in toroidal magnetized plasmas

    International Nuclear Information System (INIS)

    Peysson, Y; Decker, J; Morini, L

    2012-01-01

    A new ray-tracing code named C3PO has been developed to study the propagation of arbitrary electromagnetic radio-frequency (rf) waves in magnetized toroidal plasmas. Its structure is designed for maximum flexibility regarding the choice of coordinate system and dielectric model. The versatility of this code makes it particularly suitable for integrated modeling systems. Using a coordinate system that reflects the nested structure of magnetic flux surfaces in tokamaks, fast and accurate calculations inside the plasma separatrix can be performed using analytical derivatives of a spline-Fourier interpolation of the axisymmetric toroidal MHD equilibrium. Applications to reverse field pinch magnetic configuration are also included. The effects of 3D perturbations of the axisymmetric toroidal MHD equilibrium, due to the discreteness of the magnetic coil system or plasma fluctuations in an original quasi-optical approach, are also studied. Using a Runge–Kutta–Fehlberg method for solving the set of ordinary differential equations, the ray-tracing code is extensively benchmarked against analytical models and other codes for lower hybrid and electron cyclotron waves. (paper)

  16. A fast and efficient adaptive parallel ray tracing based model for thermally coupled surface radiation in casting and heat treatment processes

    International Nuclear Information System (INIS)

    Fainberg, J; Schaefer, W

    2015-01-01

    A new algorithm for heat exchange between thermally coupled diffusely radiating interfaces is presented, which can be applied for closed and half open transparent radiating cavities. Interfaces between opaque and transparent materials are automatically detected and subdivided into elementary radiation surfaces named tiles. Contrary to the classical view factor method, the fixed unit sphere area subdivision oriented along the normal tile direction is projected onto the surrounding radiation mesh and not vice versa. Then, the total incident radiating flux of the receiver is approximated as a direct sum of radiation intensities of representative “senders” with the same weight factor. A hierarchical scheme for the space angle subdivision is selected in order to minimize the total memory and the computational demands during thermal calculations. Direct visibility is tested by means of a voxel-based ray tracing method accelerated by means of the anisotropic Chebyshev distance method, which reuses the computational grid as a Chebyshev one. The ray tracing algorithm is fully parallelized using MPI and takes advantage of the balanced distribution of all available tiles among all CPU's. This approach allows tracing of each particular ray without any communication. The algorithm has been implemented in a commercial casting process simulation software. The accuracy and computational performance of the new radiation model for heat treatment, investment and ingot casting applications is illustrated using industrial examples. (paper)

  17. A new 3-D ray tracing method based on LTI using successive partitioning of cell interfaces and traveltime gradients

    Science.gov (United States)

    Zhang, Dong; Zhang, Ting-Ting; Zhang, Xiao-Lei; Yang, Yan; Hu, Ying; Qin, Qian-Qing

    2013-05-01

    We present a new method of three-dimensional (3-D) seismic ray tracing, based on an improvement to the linear traveltime interpolation (LTI) ray tracing algorithm. This new technique involves two separate steps. The first involves a forward calculation based on the LTI method and the dynamic successive partitioning scheme, which is applied to calculate traveltimes on cell boundaries and assumes a wavefront that expands from the source to all grid nodes in the computational domain. We locate several dynamic successive partition points on a cell's surface, the traveltimes of which can be calculated by linear interpolation between the vertices of the cell's boundary. The second is a backward step that uses Fermat's principle and the fact that the ray path is always perpendicular to the wavefront and follows the negative traveltime gradient. In this process, the first-arriving ray path can be traced from the receiver to the source along the negative traveltime gradient, which can be calculated by reconstructing the continuous traveltime field with cubic B-spline interpolation. This new 3-D ray tracing method is compared with the LTI method and the shortest path method (SPM) through a number of numerical experiments. These comparisons show obvious improvements to computed traveltimes and ray paths, both in precision and computational efficiency.

  18. Determination of minor and trace elements in kidney stones by x-ray fluorescence analysis

    Science.gov (United States)

    Srivastava, Anjali; Heisinger, Brianne J.; Sinha, Vaibhav; Lee, Hyong-Koo; Liu, Xin; Qu, Mingliang; Duan, Xinhui; Leng, Shuai; McCollough, Cynthia H.

    2014-03-01

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. In particular, x-ray fluorescence (XRF) can be very useful for the determination of minor and trace materials in the kidney stone. The X-ray fluorescence measurements were performed at the Radiation Measurements and Spectroscopy Laboratory (RMSL) of department of nuclear engineering of Missouri University of Science and Technology and different kidney stones were acquired from the Mayo Clinic, Rochester, Minnesota. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. A new type of experimental set-up was developed and utilized for XRF analysis of the kidney stone. The correlation of applied radiation source intensity, emission of X-ray spectrum from involving elements and absorption coefficient characteristics were analyzed. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF technique. The elements which were identified from this techniques are Silver (Ag), Arsenic (As), Bromine (Br), Chromium (Cr), Copper (Cu), Gallium (Ga), Germanium (Ge), Molybdenum (Mo), Niobium (Nb), Rubidium (Rb), Selenium (Se), Strontium (Sr), Yttrium (Y), Zirconium (Zr). This paper presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF instrumental activation analysis technique.

  19. On self-consistent ray-tracing and Fokker-Planck modeling of the hard X-ray emission during lower-hybrid current driven in Tokamaks

    International Nuclear Information System (INIS)

    Bizarro, J.P.; Peysson, Y.; Bonoli, P.T.; Carrasco, J.; Dudok de Wit, T.; Fuchs, V.; Hoang, G.T.; Litaudon, X.; Moreau, D.; Pocheau, C.; Shkarofsky, I.P.

    1993-04-01

    A detailed investigation is presented on the ability of combined ray-tracing and Fokker-Planck calculations to predict the hard x-ray (HXR) emission during lower-hybrid (LH) current drive in tokamaks when toroidally induced-ray-stochasticity is important. A large number of rays is used and the electron distribution function is obtained by self-consistently iterating the appropriate LH power deposition and Fokker-Planck calculations. Most of the experimentally observed features of the HXR emission are correctly predicted. It is found that corrections due to radial diffusion of suprathermal electrons and to radiation scattering by the inner wall can be significant

  20. Procedure of trace element analysis in oyster tissues by using X-ray fluorescence

    International Nuclear Information System (INIS)

    Vo Thi Tuong Hanh; Dinh Thi Bich Lieu; Dinh Thien Lam and Nguyen Manh Hung

    2004-01-01

    The procedure of trace element analysis such as Ca, Mn, Fe, Zn, Cu, Pb in molluscs (oyster tissues) was established by using X-ray fluorescence techniques. The procedure was investigated from the sample collection, drying, ashing ratio to the analytical techniques by using Cd-109, detector Si (Li) and the peak processing MCAPLUS program was applied for this study. The procedure is based on direct comparison with certified concentrations of international standard reference SRM 1566b Oyster Tissue of National Institute of Standards and Technology, Department of commerce, United States of America for Ca, Mn, Fe, Zn, Cu and the Standard Addition Methods for Pb. The accuracy of the Standard Addition Methods was estimated by CRM281 Rye Grass of Community Bureau of Reference-BCR, European Commission. The results of 10 samples which were collected from several markets in Hanoi are shown. (author)

  1. MC ray-tracing optimization of lobster-eye focusing devices with RESTRAX

    International Nuclear Information System (INIS)

    Saroun, Jan; Kulda, Jiri

    2006-01-01

    The enhanced functionalities of the latest version of the RESTRAX software, providing a high-speed Monte Carlo (MC) ray-tracing code to represent a virtual three-axis neutron spectrometer, include representation of parabolic and elliptic guide profiles and facilities for numerical optimization of parameter values, characterizing the instrument components. As examples, we present simulations of a doubly focusing monochromator in combination with cold neutron guides and lobster-eye supermirror devices, concentrating a monochromatic beam to small sample volumes. A Levenberg-Marquardt minimization algorithm is used to optimize simultaneously several parameters of the monochromator and lobster-eye guides. We compare the performance of optimized configurations in terms of monochromatic neutron flux and energy spread and demonstrate the effect of lobster-eye optics on beam transformations in real and momentum subspaces

  2. Sample preparation techniques in trace element analysis by X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Valkovic, V.

    1983-11-01

    The report, written under a research contract with the IAEA, contains a detailed presentation of the most difficult problem encountered in the trace element analysis by methods of the X-ray emission spectroscopy, namely the sample preparation techniques. The following items are covered. Sampling - with specific consideration of aerosols, water, soil, biological materials, petroleum and its products, storage of samples and their handling. Pretreatment of samples - preconcentration, ashing, solvent extraction, ion exchange and electrodeposition. Sample preparations for PIXE - analysis - backings, target uniformity and homogeneity, effects of irradiation, internal standards and specific examples of preparation (aqueous, biological, blood serum and solid samples). Sample preparations for radioactive sources or tube excitation - with specific examples (water, liquid and solid samples, soil, geological, plants and tissue samples). Finally, the problem of standards and reference materials, as well as that of interlaboratory comparisons, is discussed

  3. Fully automated laser ray tracing system to measure changes in the crystalline lens GRIN profile.

    Science.gov (United States)

    Qiu, Chen; Maceo Heilman, Bianca; Kaipio, Jari; Donaldson, Paul; Vaghefi, Ehsan

    2017-11-01

    Measuring the lens gradient refractive index (GRIN) accurately and reliably has proven an extremely challenging technical problem. A fully automated laser ray tracing (LRT) system was built to address this issue. The LRT system captures images of multiple laser projections before and after traversing through an ex vivo lens. These LRT images, combined with accurate measurements of the lens geometry, are used to calculate the lens GRIN profile. Mathematically, this is an ill-conditioned problem; hence, it is essential to apply biologically relevant constraints to produce a feasible solution. The lens GRIN measurements were compared with previously published data. Our GRIN retrieval algorithm produces fast and accurate measurements of the lens GRIN profile. Experiments to study the optics of physiologically perturbed lenses are the future direction of this research.

  4. Interfering line in trace analysis by X-ray spectrometry: Radiative auger satellites

    International Nuclear Information System (INIS)

    Maeda, Kuniko; Kawai, Jun.

    1994-01-01

    Strong characteristic X-ray lines (e.g. Kα and Kβ) are accompanied by broad low-energy satellites caused by the radiative Auger effect (RAE). In order to prove how the RAE satellites interfere the analysis of minor elements, low-energy side spectra of Ca and Ti Kβ, and Ca-Fe Kα were measured. The obtained RAE intensities are summarized together with published experimental and theoretical data. The integrated intensities of satellites due to K → MM, K → LM and K → LL RAE relative to that of Kα are determined to be of the order of 0.01-0.1%. This warns that the neglecting of the RAE satellites will introduce a serious error in trace analysis. (author)

  5. Particle induced X-ray emission and complementary nuclear methods for trace element determination; Plenary lecture

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, S A.E. [Lund Univ. (Sweden). Dept. of Nuclear Physics

    1992-03-01

    In this review the state-of-the-art of particle induced X-ray emission (PIXE) methods for the determination of trace elements is described. The developmental work has mostly been carried out in nuclear physics laboratories, where accelerators are available, but now the increased interest has led to the establishment of other dedicated PIXE facilities. The reason for this interest is the versatility, high sensitivity and multi-element capability of PIXE analysis. A further very important advantage is that PIXE can be combined with the microbeam technique, which makes elemental mapping with a spatial resolution of about 1 {mu}m possible. As a technique, PIXE can also be combined with other nuclear reactions such as elastic scattering and particle-induced gamma emission, so that light elements can be determined. The usefulness of PIXE is illustrated by a number of typical applications in biology, medicine, geology, air pollution research, archaeology and the arts. (author).

  6. A comparison of partially specular radiosity and ray tracing for room acoustics modeling

    Science.gov (United States)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2005-04-01

    Partially specular (PS) radiosity is an extended form of the general radiosity method. Acoustic radiosity is a form of bulk transfer of radiant acoustic energy. This bulk transfer is accomplished through a system of energy balance equations that relate the bulk energy transfer of each surface in the system to all other surfaces in the system. Until now acoustic radiosity has been limited to modeling only diffuse surface reflection. The new PS acoustic radiosity method can model all real surface types, diffuse, specular and everything in between. PS acoustic radiosity also models all real source types and distributions, not just point sources. The results of the PS acoustic radiosity method are compared to those of well known ray tracing programs. [Work supported by NSF.

  7. Ray tracing method for simulation of laser beam interaction with random packings of powders

    Science.gov (United States)

    Kovalev, O. B.; Kovaleva, I. O.; Belyaev, V. V.

    2018-03-01

    Selective laser sintering is a technology of rapid manufacturing of a free form that is created as a solid object by selectively fusing successive layers of powder using a laser. The motivation of this study is due to the currently insufficient understanding of the processes and phenomena of selective laser melting of powders whose time scales differ by orders of magnitude. To construct random packings from mono- and polydispersed solid spheres, the algorithm of their generation based on the discrete element method is used. A numerical method of ray tracing is proposed that is used to simulate the interaction of laser radiation with a random bulk packing of spherical particles and to predict the optical properties of the granular layer, the extinction and absorption coefficients, depending on the optical properties of a powder material.

  8. The determination of trace elements in uranium ores by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    De Villiers, W. van Z.

    1983-11-01

    The determination of 17 trace elements (As, Ba, Co, Cr, Cu, Mo, Nb, Ni, Pb, Rb, Sr, Th, U, V, Y, Zn and Zr) in uranium ores by x-ray fluorescence spectrometry was investigated in this study. The determination of major elements was also necessary for the calculation of mass absorption coefficients. Initially a method was developed for the determination of the elements of interest in unmineralised silicates. Correction for absorption of radiation by the sample were made by means of mass absorption coefficients which were obtained from the relation between the inverse of the mass absorption coefficient and the intensity of the Compton scattering peak. The Feather and Willis method was used for determining the background intensity at the peak positions as well as for mass absorption coefficients. It was observed that the background intensity in the region of the uranium lines increases with increasing uranium content of the sample

  9. Total reflection X-ray fluorescence analysis of trace-elements in candies marketed in Mexico

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2010-01-01

    Trace metals concentrations in food are significant for nutrition, due either to their nature or toxicity. Sweets, including chewing gum and candies, are not exactly a food, but they usually are unwearied consumed by children, the most vulnerable age-group to any kind of metal contamination in the food chain. The presence of relatively high concentrations of heavy metals such as Lead elicits concern since children are highly susceptible to heavy metals poisoning. Trace-metals concentrations were determined for six different flavors of a Mexican candy by means of Total X-ray Fluorescence Spectrometry. Triplicate samples of the various candy's flavours (strawberry, pineapple, lemon, blackberry, orange and chilli) were digested in 8 mL of a mix of supra-pure HNO 3 and H 2 O 2 (6 mL: 2 mL) in a microwave oven MARS-X. Results show the presence of essential and toxic elements such as Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. All metal concentrations were higher and significantly different (α = 0.05) in chilli candy, compared to other candy flavours. Lead concentration fluctuated in the range of 0.102 to 0.342 μg g -1 . A discussion about risk consumption and concentration allowed by Mexican and International Norms is made. As a part of the Quality Control Program, a NIST standard of 'Citrus Leaves' and a blank were treated in the same way.

  10. Total reflection X-ray fluorescence analysis of trace-elements in candies marketed in Mexico

    Science.gov (United States)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2010-06-01

    Trace metals concentrations in food are significant for nutrition, due either to their nature or toxicity. Sweets, including chewing gum and candies, are not exactly a food, but they usually are unwearied consumed by children, the most vulnerable age-group to any kind of metal contamination in the food chain. The presence of relatively high concentrations of heavy metals such as Lead elicits concern since children are highly susceptible to heavy metals poisoning. Trace-metals concentrations were determined for six different flavors of a Mexican candy by means of Total X-ray Fluorescence Spectrometry. Triplicate samples of the various candy's flavours (strawberry, pineapple, lemon, blackberry, orange and chilli) were digested in 8 mL of a mix of supra-pure HNO 3 and H 2O 2 (6 mL: 2 mL) in a microwave oven MARS-X. Results show the presence of essential and toxic elements such as Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. All metal concentrations were higher and significantly different ( α = 0.05) in chilli candy, compared to other candy flavours. Lead concentration fluctuated in the range of 0.102 to 0.342 μg g - 1 . A discussion about risk consumption and concentration allowed by Mexican and International Norms is made. As a part of the Quality Control Program, a NIST standard of "Citrus Leaves" and a blank were treated in the same way.

  11. Global Calibration of Multi-Cameras Based on Refractive Projection and Ray Tracing

    Directory of Open Access Journals (Sweden)

    Mingchi Feng

    2017-10-01

    Full Text Available Multi-camera systems are widely applied in the three dimensional (3D computer vision, especially when multiple cameras are distributed on both sides of the measured object. The calibration methods of multi-camera systems are critical to the accuracy of vision measurement and the key is to find an appropriate calibration target. In this paper, a high-precision camera calibration method for multi-camera systems based on transparent glass checkerboards and ray tracing is described, and is used to calibrate multiple cameras distributed on both sides of the glass checkerboard. Firstly, the intrinsic parameters of each camera are obtained by Zhang’s calibration method. Then, multiple cameras capture several images from the front and back of the glass checkerboard with different orientations, and all images contain distinct grid corners. As the cameras on one side are not affected by the refraction of glass checkerboard, extrinsic parameters can be directly calculated. However, the cameras on the other side are influenced by the refraction of glass checkerboard, and the direct use of projection model will produce a calibration error. A multi-camera calibration method using refractive projection model and ray tracing is developed to eliminate this error. Furthermore, both synthetic and real data are employed to validate the proposed approach. The experimental results of refractive calibration show that the error of the 3D reconstruction is smaller than 0.2 mm, the relative errors of both rotation and translation are less than 0.014%, and the mean and standard deviation of reprojection error of the four-camera system are 0.00007 and 0.4543 pixels, respectively. The proposed method is flexible, highly accurate, and simple to carry out.

  12. TRACING THE LOWEST PROPELLER LINE IN MAGELLANIC HIGH-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Dimitris M.; Laycock, Silas G. T.; Yang, Jun; Fingerman, Samuel, E-mail: dimitris_christodoulou@uml.edu, E-mail: silas_laycock@uml.edu, E-mail: jun_yang@uml.edu, E-mail: fingerman.samuel@gmail.com [Lowell Center for Space Science and Technology, 600 Suffolk Street, Lowell, MA 01854 (United States)

    2016-09-20

    We have combined the published observations of high-mass X-ray binary (HMXB) pulsars in the Magellanic Clouds with a new processing of the complete archival data sets from the XMM-Newton and Chandra observatories in an attempt to trace the lowest propeller line below which accretion to polar caps is inhibited by the centrifugal force and the pulsations from the most weakly magnetized pulsars cease. Previously published data reveal that some of the faster-spinning pulsars with spin periods of P {sub S} < 12 s, detected at relatively low X-ray luminosities L {sub X} , appear to define such a line in the P {sub S} – L {sub X} diagram, characterized by a magnetic moment of μ = 3 × 10{sup 29} G cm{sup 3}. This value implies the presence of surface magnetic fields of B ≥ 3 × 10{sup 11} G in the compact objects of this class. Only a few quiescent HMXBs are found below the propeller line: LXP4.40 and SXP4.78, for which XMM-Newton and Chandra null detections respectively placed firm upper limits on their X-ray fluxes in deep quiescence; and A0538-66, for which many sub-Eddington detections have never measured any pulsations. On the other hand, the data from the XMM-Newton and Chandra archives show clearly that, during routine observation cycles, several sources have been detected below the propeller line in extremely faint, nonpulsating states that can be understood as the result of weak magnetospheric emission when accretion to the poles is centrifugally stalled or severely diminished. We also pay attention to the anomalous X-ray pulsar CXOU J010043.1-721134 that was reported in HMXB surveys. Its pulsations and locations near and above the propeller line indicate that this pulsar could be accreting from a fossil disk.

  13. Implementation of the Brazilian primary standard for x-rays

    International Nuclear Information System (INIS)

    Peixoto, J.G.P.; Almeida, C.E.V. de

    2002-01-01

    In the field of ionizing radiation metrology, a primary standard of a given physical quantity is essentially an experimental set-up which allows one to attribute a numerical value to a particular sample of that quantity in terms of a unit given by an abstract definition. The absolute measurement of the radiation quantity air kerma, is performed with a free-air ionization chamber. A great deal of research to determine the absolute measurement resulted in different designs for primary standard free-air ionization chambers such as cilindrics or plane parallel chambers. The implementation of primary standard dosimetry with free-air ionization chambers is limited to the National Metrology Institutes - NMIs. Since 1975, the Bureau International des Poids et Mesures - BIPM has been conducting comparisons of NMIs primary free-air standard chambers in the medium energy x-rays range. These comparisons are carried out indirectly through the calibration at both the BIPM and at the NMI of one or more transfer ionization chambers at a series of four reference radiation qualities. The scientific work programme of the National Laboratory for Ionizing Radiation Metrology - LNMRI of the Institute of Radioprotection and Dosimetry - IRD, which belongs to the National Commission of Nuclear Energy - CNEN, includes the establishment of a primary standard for x-rays of medium energy x-ray range. This activity is justified by the demand to calibrate periodically Brazilian network of the secondary standards without losing quality of the measurement. The LNMRI decided to implement four reference radiation qualities establishing the use of a transfer chamber calibrated at BIPM. The LNMRI decided to implement the primary standard dosimetry using a free-air ionization chamber with variable volume, made by Victoreen, model 480. Parameters related to the measurement of the quantity air kerma were evaluated, such as: air absorption, scattering inside the ionization chamber, saturation, beam

  14. Determination of trace elements in tea by wavelength dispersive X-ray fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Gong Chunhui; Zeng Guoqiang; Ge Liangquan; Li Jun; Wen Ziqiang

    2013-01-01

    Background: Measuring trace elements in tea can determine its nutritional value, verify the authenticity and place of origin, and detect the poisonous and harmful elements remaining in tea due to the application of chemical fertilizers and pesticides. Purpose: In order to reduce the time for sample preparation and the costs of equipment maintenance, wavelength dispersive X-ray fluorescence (WDXRF) spectroscopy was used to determine the trace elements in tea which is rapid, non-destructive and accurate. The contents of more than 20 elements can be measured simultaneously. Methods: Sample pieces were made by the sample preparation method of boric acid rebasing. To avoid the exogenous environmental pollution subjected in the growth of tea, we removed the residual dust of the tea by cleaning it. According to the principle that the standard samples should be similar types with the samples to be analyzed to select standard samples. The curves were built by SuperQ, which contained compiling the measurement conditions, establishing the measurement conditions, checking the angles, determining the measurement times, checking PHD and adding the contents and the names of sample pieces. The accuracy of the method can be obtained by comparing the measured values with the trace element contents of standard samples. The contents of trace elements in tea determined by WDXRF can be used to classify the tea attribution and the tea species through cluster analysis of SPSS software. Results: (1) The results show that the biggest relative standard deviation is 0.43% of Pb, and the precision is very good. (2) Five kinds of tea are taken separately in Fujian and Yunnan, measured three times with the established working curves. And tree diagram of cluster analysis can be obtained with SPSS software to analyze the measured average values with cluster analysis, coupling method between groups and Minkowski distance measurement techniques. It can be seen that in the tree diagram, when the

  15. Determination of trace elements in Katana (Japanese sword) by neutron activation analysis with multidimensional γ-ray spectrometry

    International Nuclear Information System (INIS)

    Okada, Y.; Hirai, S.; Ohya, S.; Kimura, Atsushi; Hatsukawa, Yuichi; Toh, Yosuke; Koizumi, Mitsuo; Oshima, Masumi

    2006-01-01

    In this study, we tried to measure trace elements (As and Sb) in Katana (Japanese swords) by multidimensional γ-ray spectrometry method (GEMINI-II) and conventional counting method for neutron activation analysis (NAA). The determined values by GEMINI-II and conventional counting were in good agreement with. Using the multidimensional γ-ray spectrometry (GEMINI-II) to determine As and Sb was improved by 7 times and 10 times compared with the conventional counting method. (author)

  16. Three-dimensional ray tracing for refractive correction of human eye ametropies

    Science.gov (United States)

    Jimenez-Hernandez, J. A.; Diaz-Gonzalez, G.; Trujillo-Romero, F.; Iturbe-Castillo, M. D.; Juarez-Salazar, R.; Santiago-Alvarado, A.

    2016-09-01

    Ametropies of the human eye, are refractive defects hampering the correct imaging on the retina. The most common ways to correct them is by means of spectacles, contact lenses, and modern methods as laser surgery. However, in any case it is very important to identify the ametropia grade for designing the optimum correction action. In the case of laser surgery, it is necessary to define a new shape of the cornea in order to obtain the wanted refractive correction. Therefore, a computational tool to calculate the focal length of the optical system of the eye versus variations on its geometrical parameters is required. Additionally, a clear and understandable visualization of the evaluation process is desirable. In this work, a model of the human eye based on geometrical optics principles is presented. Simulations of light rays coming from a punctual source at six meter from the cornea are shown. We perform a ray-tracing in three dimensions in order to visualize the focusing regions and estimate the power of the optical system. The common parameters of ametropies can be easily modified and analyzed in the simulation by an intuitive graphic user interface.

  17. Quantification and localization of trace metals in natural plankton using a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-01-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 (micro)m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence

  18. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    Energy Technology Data Exchange (ETDEWEB)

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  19. A simple way of characterizing X-ray downwards-deflecting mirror-bender assemblies using the long trace profiler

    International Nuclear Information System (INIS)

    Assoufid, L.; Her, P.

    1999-01-01

    A simple device composed of a modular double-pentaprism system that enables the long trace profiler (LTP) to measure mirrors in nonconventional ways, i.e., in the vertical-downward and sideways positions, has been devised and implemented in the Advanced Photon Source (APS) long trace profiler (LTP II). The systems is very useful in calibrating mirror-bender assemblies. This paper describes the system and gives results of measurements performed with it on a mirror used at the APS

  20. Implementation and assessment of high-resolution numerical methods in TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dean, E-mail: wangda@ornl.gov [Oak Ridge National Laboratory, 1 Bethel Valley RD 6167, Oak Ridge, TN 37831 (United States); Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-10-15

    Highlights: • Study and implement high-resolution numerical methods for two-phase flow. • They can achieve better numerical accuracy than the 1st-order upwind scheme. • They are of great numerical robustness and efficiency. • Great application for BWR stability analysis and boron injection. -- Abstract: The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax–Wendroff and Beam–Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency.

  1. Implementation and assessment of high-resolution numerical methods in TRACE

    International Nuclear Information System (INIS)

    Wang, Dean; Mahaffy, John H.; Staudenmeier, Joseph; Thurston, Carl G.

    2013-01-01

    Highlights: • Study and implement high-resolution numerical methods for two-phase flow. • They can achieve better numerical accuracy than the 1st-order upwind scheme. • They are of great numerical robustness and efficiency. • Great application for BWR stability analysis and boron injection. -- Abstract: The 1st-order upwind differencing numerical scheme is widely employed to discretize the convective terms of the two-phase flow transport equations in reactor systems analysis codes such as TRACE and RELAP. While very robust and efficient, 1st-order upwinding leads to excessive numerical diffusion. Standard 2nd-order numerical methods (e.g., Lax–Wendroff and Beam–Warming) can effectively reduce numerical diffusion but often produce spurious oscillations for steep gradients. To overcome the difficulties with the standard higher-order schemes, high-resolution schemes such as nonlinear flux limiters have been developed and successfully applied in numerical simulation of fluid-flow problems in recent years. The present work contains a detailed study on the implementation and assessment of six nonlinear flux limiters in TRACE. These flux limiters selected are MUSCL, Van Leer (VL), OSPRE, Van Albada (VA), ENO, and Van Albada 2 (VA2). The assessment is focused on numerical stability, convergence, and accuracy of the flux limiters and their applicability for boiling water reactor (BWR) stability analysis. It is found that VA and MUSCL work best among of the six flux limiters. Both of them not only have better numerical accuracy than the 1st-order upwind scheme but also preserve great robustness and efficiency

  2. The Use of Pro/Engineer CAD Software and Fishbowl Tool Kit in Ray-tracing Analysis

    Science.gov (United States)

    Nounu, Hatem N.; Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.

    2009-01-01

    This document is designed as a manual for a user who wants to operate the Pro/ENGINEER (ProE) Wildfire 3.0 with the NASA Space Radiation Program's (SRP) custom-designed Toolkit, called 'Fishbowl', for the ray tracing of complex spacecraft geometries given by a ProE CAD model. The analysis of spacecraft geometry through ray tracing is a vital part in the calculation of health risks from space radiation. Space radiation poses severe risks of cancer, degenerative diseases and acute radiation sickness during long-term exploration missions, and shielding optimization is an important component in the application of radiation risk models. Ray tracing is a technique in which 3-dimensional (3D) vehicle geometry can be represented as the input for the space radiation transport code and subsequent risk calculations. In ray tracing a certain number of rays (on the order of 1000) are used to calculate the equivalent thickness, say of aluminum, of the spacecraft geometry seen at a point of interest called the dose point. The rays originate at the dose point and terminate at a homogenously distributed set of points lying on a sphere that circumscribes the spacecraft and that has its center at the dose point. The distance a ray traverses in each material is converted to aluminum or other user-selected equivalent thickness. Then all equivalent thicknesses are summed up for each ray. Since each ray points to a direction, the aluminum equivalent of each ray represents the shielding that the geometry provides to the dose point from that particular direction. This manual will first list for the user the contact information for help in installing ProE and Fishbowl in addition to notes on the platform support and system requirements information. Second, the document will show the user how to use the software to ray trace a Pro/E-designed 3-D assembly and will serve later as a reference for troubleshooting. The user is assumed to have previous knowledge of ProE and CAD modeling.

  3. Accounting for partiality in serial crystallography using ray-tracing principles.

    Science.gov (United States)

    Kroon-Batenburg, Loes M J; Schreurs, Antoine M M; Ravelli, Raimond B G; Gros, Piet

    2015-09-01

    Serial crystallography generates `still' diffraction data sets that are composed of single diffraction images obtained from a large number of crystals arbitrarily oriented in the X-ray beam. Estimation of the reflection partialities, which accounts for the expected observed fractions of diffraction intensities, has so far been problematic. In this paper, a method is derived for modelling the partialities by making use of the ray-tracing diffraction-integration method EVAL. The method estimates partialities based on crystal mosaicity, beam divergence, wavelength dispersion, crystal size and the interference function, accounting for crystallite size. It is shown that modelling of each reflection by a distribution of interference-function weighted rays yields a `still' Lorentz factor. Still data are compared with a conventional rotation data set collected from a single lysozyme crystal. Overall, the presented still integration method improves the data quality markedly. The R factor of the still data compared with the rotation data decreases from 26% using a Monte Carlo approach to 12% after applying the Lorentz correction, to 5.3% when estimating partialities by EVAL and finally to 4.7% after post-refinement. The merging R(int) factor of the still data improves from 105 to 56% but remains high. This suggests that the accuracy of the model parameters could be further improved. However, with a multiplicity of around 40 and an R(int) of ∼50% the merged still data approximate the quality of the rotation data. The presented integration method suitably accounts for the partiality of the observed intensities in still diffraction data, which is a critical step to improve data quality in serial crystallography.

  4. Comparison and Extension of Existing 3D Propagation Models with Real-World Effects Based on Ray-tracing

    DEFF Research Database (Denmark)

    Kifle, Dereje W.; Gimenez, Lucas Chavarria; Wegmann, Bernhard

    2014-01-01

    antenna beam orientation like antenna tilting or when users are distributed in the third dimension (height) in multi-floor scenarios. Ray tracing based generated propagation maps that show the realistic propagation effect are used as 3D real world reference for investigation and model approval....

  5. Ray-tracing traveltime tomography versus wave-equation traveltime inversion for near-surface seismic land data

    KAUST Repository

    Fu, Lei; Hanafy, Sherif M.

    2017-01-01

    . This initial starting model can be obtained by inverting traveltimes with ray-tracing traveltime tomography (RT) or wave-equation traveltime (WT) inversion. We have found that WT can provide a more accurate tomogram than RT by inverting the first

  6. Do Peripheral Refraction and Aberration Profiles Vary with the Type of Myopia? - An Illustration Using a Ray-Tracing Approach

    Directory of Open Access Journals (Sweden)

    Ravi C. Bakaraju

    2009-01-01

    Conclusion: This study has indicated that myopic eyes with primarily an axial component may have a greater risk of progression than their refractive counterparts albeit with the same degree of refractive error. This prediction emerges from the presented theoretical ray tracing model and, therefore, requires clinical confirmation.

  7. Integration of Monte-Carlo ray tracing with a stochastic optimisation method: application to the design of solar receiver geometry.

    Science.gov (United States)

    Asselineau, Charles-Alexis; Zapata, Jose; Pye, John

    2015-06-01

    A stochastic optimisation method adapted to illumination and radiative heat transfer problems involving Monte-Carlo ray-tracing is presented. A solar receiver shape optimisation case study illustrates the advantages of the method and its potential: efficient receivers are identified using a moderate computational cost.

  8. A Monte Carlo Ray Tracing Model to Improve Simulations of Solar-Induced Chlorophyll Fluorescence Radiative Transfer

    Science.gov (United States)

    Halubok, M.; Gu, L.; Yang, Z. L.

    2017-12-01

    A model of light transport in a three-dimensional vegetation canopy is being designed and evaluated. The model employs Monte Carlo ray tracing technique which offers simple yet rigorous approach of quantifying the photon transport in a plant canopy. This method involves simulation of a chain of scattering and absorption events incurred by a photon on its path from the light source. Implementation of weighting mechanism helps avoid `all-or-nothing' type of interaction between a photon packet and a canopy element, i.e. at each interaction a photon packet is split into three parts, namely, reflected, transmitted and absorbed, instead of assuming complete absorption, reflection or transmission. Canopy scenes in the model are represented by a number of polygons with specified set of reflectances and transmittances. The performance of the model is being evaluated through comparison against established plant canopy reflectance models, such as 3D Radiosity-Graphics combined model which calculates bidirectional reflectance distribution function of a 3D canopy scene. This photon transport model is to be coupled to a leaf level solar-induced chlorophyll fluorescence (SIF) model with the aim of further advancing of accuracy of the modeled SIF, which, in its turn, has a potential of improving our predictive capability of terrestrial carbon uptake.

  9. Quantifying trace elements in individual aquatic protist cells with a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B.S.; Baines, S.B.; Fisher, N.S.; Maser, J.; Vogt, S.; Jacobsen, C.; Tovar-Sanchez, A.; Sanudo-Wihelmy, S.A.

    2003-01-01

    The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard 'bulk' element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10 -16 mol μm -2 for Si and between 5.0 x 10 -20 and 3.9 x 10 -19 mol μm -2 for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.

  10. Total reflection X-ray fluorescence analysis of trace-elements in candies marketed in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, T., E-mail: tmc@servidor.unam.m [Facultad de Quimica, Departamento de Quimica Inorganica y Nuclear. Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Lartigue, J. [Facultad de Quimica, Departamento de Quimica Inorganica y Nuclear. Universidad Nacional Autonoma de Mexico, Mexico, D.F. 04510 (Mexico); Zarazua, G.; Avila-Perez, P. [National Institute of Nuclear Research. Ocoyoacac, Edo. de Mexico, 05045 (Mexico); Navarrete, M. [Facultad de Quimica, Departamento de Quimica Inorganica y Nuclear. Universidad Nacional Autonoma de Mexico, Mexico, D.F. 04510 (Mexico); Tejeda, S. [National Institute of Nuclear Research. Ocoyoacac, Edo. de Mexico, 05045 (Mexico)

    2010-06-15

    Trace metals concentrations in food are significant for nutrition, due either to their nature or toxicity. Sweets, including chewing gum and candies, are not exactly a food, but they usually are unwearied consumed by children, the most vulnerable age-group to any kind of metal contamination in the food chain. The presence of relatively high concentrations of heavy metals such as Lead elicits concern since children are highly susceptible to heavy metals poisoning. Trace-metals concentrations were determined for six different flavors of a Mexican candy by means of Total X-ray Fluorescence Spectrometry. Triplicate samples of the various candy's flavours (strawberry, pineapple, lemon, blackberry, orange and chilli) were digested in 8 mL of a mix of supra-pure HNO{sub 3} and H{sub 2}O{sub 2} (6 mL: 2 mL) in a microwave oven MARS-X. Results show the presence of essential and toxic elements such as Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. All metal concentrations were higher and significantly different ({alpha} = 0.05) in chilli candy, compared to other candy flavours. Lead concentration fluctuated in the range of 0.102 to 0.342 {mu}g g{sup -1}. A discussion about risk consumption and concentration allowed by Mexican and International Norms is made. As a part of the Quality Control Program, a NIST standard of 'Citrus Leaves' and a blank were treated in the same way.

  11. Implementation of a cabin X-rays in hot cell

    International Nuclear Information System (INIS)

    Berduola, F.; Caral, L.

    2001-01-01

    The Fabrice process for the reconstituted short length irradiated rods in a hot cell was developed by the CEA especially for power ramp testing. This technique requires intricate operations in a hot cell with specially adapted equipment and great skill people. And end plug is inserted under pressure and fitted to the opening end of a cladding tube. The meeting surfaces of the en plug and the opening end are welded by a TIG (tunsten inert gas) process. Nevertheless, somo predominate defects may occur in the end plug weld joints, such as lack of penetration and cavity. So, particular attention must be paid to non-destructive examination in particular X-ray control of welding areas. A radioscopy technique has been applied to the control of TIG welds of the end plugs to rod assemblies in a hot cell mock-up to be tested under realistic geometric conditions. This X-rays method enables immediate monitoring of any welding defaults on a TV screen. A remote positioning system for the Fabrice rod is being developed to position fuel rods below a X-ray source. Radioscopy pictures will be recorded during remote positioning of the rod movement. This document presents the modifications achieved by the constructor in cooperation with our laboratory staff, concerning the nuclearization of the apparatus as well as its implementation in the shielded hot cell n paragraph 2 of the CEA-DEC/SLS/LECA Laboratory in Cadarache. Hot operation of the rod positioner is planned for september 2022 because of recent refurbishing works in the plant. (Author)

  12. A new hybrid algorithm using thermodynamic and backward ray-tracing approaches for modeling luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Ch. K.; Lim, Y. S.; Tan, S. G.; Rahman, F. A. [Faculty of Engineering and Science, University Tunku Abdul Rahman, Jalan Genting Klang, 53300, Kuala Lumpur (Malaysia)

    2010-12-15

    A Luminescent Solar Concentrator (LSC) is a transparent plate containing luminescent material with photovoltaic (PV) cells attached to its edges. Sunlight entering the plate is absorbed by the luminescent material, which in turn emits light. The emitted light propagates through the plate and arrives at the PV cells through total internal reflection. The ratio of the area of the relatively cheap polymer plate to that of the expensive PV cells is increased, and the cost per unit of solar electricity can be reduced by 75%. To improve the emission performance of LSCs, simulation modeling of LSCs becomes essential. Ray-tracing modeling is a popular approach for simulating LSCs due to its great ability of modeling various LSC structures under direct and diffuse sunlight. However, this approach requires substantial amount of measurement input data. Also, the simulation time is enormous because it is a forward-ray tracing method that traces all the rays propagating from the light source to the concentrator. On the other hand, the thermodynamic approach requires substantially less input parameters and simulation time, but it can only be used to model simple LSC designs with direct sunlight. Therefore, a new hybrid model was developed to perform various simulation studies effectively without facing the issues arisen from the existing ray-tracing and thermodynamic models. The simulation results show that at least 60% of the total output irradiance of a LSC is contributed by the light trapped and channeled by the LSC. The novelty of this hybrid model is the concept of integrating the thermodynamic model with a well-developed Radiance ray-tracing model, hence making this model as a fast, powerful and cost-effective tool for the design of LSCs. (authors)

  13. Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data

    Directory of Open Access Journals (Sweden)

    M. Parrot

    Full Text Available This paper is related to the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT. During this day, the spacecraft (SC 1, 2, and 4 are relatively close to each other but SC3 has been delayed by half an hour. We use the data recorded aboard CLUSTER by the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. Dedicated software processes this spectral matrix in order to determine the wave normal directions relative to the Earth’s magnetic field. This calculation is done for the 4 satellites at different times and different frequencies and allows us to check the directions of these waves. Measurements around the magnetic equator show that the parallel component of the Poynting vector changes its sign when the satellites cross the equator region. It indicates that the chorus waves propagate away from this region which is considered as the source area of these emissions. This is valid for the most intense waves observed on the magnetic and electric power spectrograms. But it is also observed on SC1, SC2, and SC4 that lower intensity waves propagate toward the equator simultaneously with the SC3 intense chorus waves propagating away from the equator. Both waves are at the same frequency. Using the wave normal directions of these waves, a ray tracing study shows that the waves observed by SC1, SC2, and SC4 cross the equatorial plane at the same location as the waves observed by SC3. SC3 which is 30 minutes late observes the waves that originate first from the equator; meanwhile, SC1, SC2, and SC4 observe the same waves that have suffered a Lower Hybrid Resonance (LHR reflection at low altitudes (based on the ray tracing analysis and now return to the equator at a different location with a lower intensity. Similar phenomenon is observed when all SC are on the other side

  14. Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data

    Directory of Open Access Journals (Sweden)

    M. Parrot

    2003-05-01

    Full Text Available This paper is related to the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT. During this day, the spacecraft (SC 1, 2, and 4 are relatively close to each other but SC3 has been delayed by half an hour. We use the data recorded aboard CLUSTER by the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. Dedicated software processes this spectral matrix in order to determine the wave normal directions relative to the Earth’s magnetic field. This calculation is done for the 4 satellites at different times and different frequencies and allows us to check the directions of these waves. Measurements around the magnetic equator show that the parallel component of the Poynting vector changes its sign when the satellites cross the equator region. It indicates that the chorus waves propagate away from this region which is considered as the source area of these emissions. This is valid for the most intense waves observed on the magnetic and electric power spectrograms. But it is also observed on SC1, SC2, and SC4 that lower intensity waves propagate toward the equator simultaneously with the SC3 intense chorus waves propagating away from the equator. Both waves are at the same frequency. Using the wave normal directions of these waves, a ray tracing study shows that the waves observed by SC1, SC2, and SC4 cross the equatorial plane at the same location as the waves observed by SC3. SC3 which is 30 minutes late observes the waves that originate first from the equator; meanwhile, SC1, SC2, and SC4 observe the same waves that have suffered a Lower Hybrid Resonance (LHR reflection at low altitudes (based on the ray tracing analysis and now return to the equator at a different location with a lower intensity. Similar phenomenon is observed when all SC are on the other side

  15. HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain

    Science.gov (United States)

    Jones, R. M.; Riley, J. P.; Georges, T. M.

    1986-08-01

    The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.

  16. Solar proton exposure of an ICRU sphere within a complex structure part II: Ray-trace geometry.

    Science.gov (United States)

    Slaba, Tony C; Wilson, John W; Badavi, Francis F; Reddell, Brandon D; Bahadori, Amir A

    2016-06-01

    A computationally efficient 3DHZETRN code with enhanced neutron and light ion (Z ≤ 2) propagation was recently developed for complex, inhomogeneous shield geometry described by combinatorial objects. Comparisons were made between 3DHZETRN results and Monte Carlo (MC) simulations at locations within the combinatorial geometry, and it was shown that 3DHZETRN agrees with the MC codes to the extent they agree with each other. In the present report, the 3DHZETRN code is extended to enable analysis in ray-trace geometry. This latest extension enables the code to be used within current engineering design practices utilizing fully detailed vehicle and habitat geometries. Through convergence testing, it is shown that fidelity in an actual shield geometry can be maintained in the discrete ray-trace description by systematically increasing the number of discrete rays used. It is also shown that this fidelity is carried into transport procedures and resulting exposure quantities without sacrificing computational efficiency. Published by Elsevier Ltd.

  17. Ray-tracing studies for a whole-viewing-angle retroreflector

    International Nuclear Information System (INIS)

    Yang, B.; Friedsam, H.

    2000-01-01

    The APS Survey and Alignment team uses LEICA laser trackers for the majority of their alignment tasks. These instruments utilize several different retroreflectors for tracking the path of the laser interferometer. Currently in use are open-air corner cubes with an acceptance angle of ±20 degree, corner cube prisms with an acceptance angle of ±50degree, and a Cat's eye with an acceptance angle of ±60degree. Best measurement results can be achieved by using an open-air corner cube that eliminates the need for the laser beam to travel through a different medium before it returns to the instrument detector. However, the trade off is a small acceptance angle. In order to overcome the limitations of the small acceptance angles, Takatsuji et al. has proposed the creation of a full-viewing-angle retroreflector. Based on the notion that the radius R 1 of a common Cat's eye is proportional to R 2 , one can write: R 1 = (n minus 1)R 2 . In the case that n, the refractive index of glass, equals 2, the radii R 1 and R 2 are identical, and one can create a solid sphere Cat's eye. This design has the advantages that no adhesives are used to bond the two hemispheres together, misalignments between the hemispheres are not an issue, and most importantly, larger acceptance angles are possible. This paper shows the results of their ray tracing calculations characterizing the geometrical optics

  18. Exploring Light’s Interactions with Bubbles and Light Absorbers in Photoelectrochemical Devices using Ray Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, John Colby [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Joint Center for Artificial Photosynthesis; Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    2012-12-01

    Ray tracing was used to perform optical optimization of arrays of photovoltaic microrods and explore the interaction between light and bubbles of oxygen gas on the surface of the microrods. The incident angle of light was varied over a wide range. The percent of incident light absorbed by the microrods and reflected by the bubbles was computed over this range. It was found that, for the 10 μm diameter, 100 μm tall SrTiO3 microrods simulated in the model, the optimal center-­to-­center spacing was 14 μm for a square grid. This geometry produced 75% average and 90% maximum absorbance. For a triangular grid using the same microrods, the optimal center-­to-­center spacing was 14 μm. This geometry produced 67% average and 85% maximum absorbance. For a randomly laid out grid of 5 μm diameter, 100 μm tall SrTiO3 microrods with an average center-­to-­center spacing of 20 μm, the average absorption was 23% and the maximum absorption was 43%. For a 50% areal coverage fraction of bubbles on the absorber surface, between 2%-­20% of the incident light energy was reflected away from the rods by the bubbles, depending upon incident angle and bubble morphology.

  19. Trace-element analysis of uranium ores by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Coetzee, P.P.; De Villiers, W.v Z.

    1985-01-01

    The determination of seventeen trace elements (As, Ba, Co, Cr, Cu, Mo, Nb, Ni, Pb, Sr, Th, U, V, Y, Zn, and Zr) in uranium ores by x-ray fluorescence spectrometry was investigated. For the elements with analyte lines in the vicinity of the U-L lines, large overlap corrections were necessary and only a few completely interference-free background positions were available. Consequently, the Feather and Willis method was used for determining the background intensity at the peak positions as well as mass absorption coefficients. As a result of the presence of the U-L absorption edges, both primary and secondary mass absorption coefficients had to be used for matrix corrections. Furthermore, it was observed that the background intensity in the region of the uranium lines increased with increasing uranium content of the sample, instead of the expected decrease due to the increasing mass absorption coefficient. This was attributed to the scattering of uranium lines in the spectrometer chamber. A method was developed to correct the measured intensities for this effect. The contribution from the scattering of uranium lines to the measured intensity at the various 20 positions was determined on samples with different uranium concentrations and for which the mass absorption coefficients and concentrations of the various elements were known

  20. Determination of trace elements and heavy metals in sediment using x-ray fluorescence

    International Nuclear Information System (INIS)

    Sidahmed, Muataz Ahmed Ibrahem

    2014-01-01

    In this study, 30 sediment samples were taken randomly from the area of Suba south of Khartoum state. Trace elements and heavy metal were determined in sediments samples using x-ray fluoresce spectroscopy (X RF). K, Ca, Ti, Mn, Fe, Cu, Zn, Pb, Rb, Sr, and Zr were determined by X RF. Standard Reference Material (SRM) from international Atomic Energy Agency (IAEA-Soil-7) has been used to achieve accuracy of X RF method. Measured values were found in agreements with certified values. The average elemental concentrations of K, Ca, Ti, Mn, Fe, Cu, Zn, Pb, Rb, Sr, and Zr were 5882.7, 20703.3, 6264.3, 460.97, 26713.3, 7.7, 43.4, 18.6, 28.6, 144.8, and 173.06, respectively. Correlation between elements was performed also cluster analysis was used to check the similarly between the samples result. The result of study were compared with previous studies and the concentrations of some elements found to be similar.(Author)

  1. Stratospheric particles: Synchrotron x-ray fluorescence determination of trace element contents

    International Nuclear Information System (INIS)

    Sutton, S.R.; Flynn, G.J.

    1987-01-01

    The first trace element analyses on stratospheric particles using synchrotron x-ray fluorescence (SXRF) are reported. Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Se and Br were detected. Concentrations for chondritic particle U2022G1 are within a factor of 1.7 of CI for all elements detected with the exception of Br which is 37 times CI. Chondritic particle W7029*A27 is also near CI for Cr, Mn, Fe, Ni, Cu, Zn and Ge but enriched in Ga, Se, and Br by factors of 5.8, 3.5 and 8.4, respectively. The third particle of the cosmic dust class also showed high Br enriched relative to CI by a factor of 28. Br was also detected at a high level in an aluminum-rich particle classified as probable artificial terrestrial contamination but exhibiting a chondritic Fe/Ni ratio. Br was not detected in a fifth particle also classified terrestrial and exhibiting a crustal Fe/Ni ratio. If the high Br has a pre-terrestrial origin, the ubiquity of the effect suggests that a large fraction of the chondritic interplanetary dust particles derive from a parent body (bodies) not sampled in the meteorite collection. 26 refs., 3 figs., 3 tabs

  2. Improving LED CCT uniformity using micropatterned films optimized by combining ray tracing and FDTD methods.

    Science.gov (United States)

    Ding, Xinrui; Li, Jiasheng; Chen, Qiu; Tang, Yong; Li, Zongtao; Yu, Binhai

    2015-02-09

    Although the light-emitting diode (LED) has revolutionized lighting, the non-uniformity of its correlated color temperature (CCT) still remains a major concern. In this context, to improve the light distribution performance of remote phosphor LED lamps, we employ a micropatterned array (MPA) optical film fabricated using a low-cost molding process. The parameters of the MPA, including different installation configurations, positioning, and diameters, are optimized by combining the finite-difference time-domain and ray-tracing methods. Results show that the sample with the upward-facing convex-cone MPA film that has a diameter of half of that of the remote phosphor glass, and is tightly affixed to the inward surface of the remote phosphor glass renders a superior light distribution performance. When compared with the case in which no MPA film is used, the deviation of the CCT distribution decreases from 1033 K to 223 K, and the corresponding output power of the sample is an acceptable level of 85.6%. We perform experiments to verify our simulation results, and the two sets of results exhibit a close agreement. We believe that our approach can be used to optimize MPA films for various lighting applications.

  3. A model of polarized-beam AGS in the ray-tracing code Zgoubi

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ahrens, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Glenn, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-12

    A model of the Alternating Gradient Synchrotron, based on the AGS snapramps, has been developed in the stepwise ray-tracing code Zgoubi. It has been used over the past 5 years in a number of accelerator studies aimed at enhancing RHIC proton beam polarization. It is also used to study and optimize proton and Helion beam polarization in view of future RHIC and eRHIC programs. The AGS model in Zgoubi is operational on-line via three different applications, ’ZgoubiFromSnaprampCmd’, ’AgsZgoubiModel’ and ’AgsModelViewer’, with the latter two essentially interfaces to the former which is the actual model ’engine’. All three commands are available from the controls system application launcher in the AGS ’StartUp’ menu, or from eponymous commands on shell terminals. Main aspects of the model and of its operation are presented in this technical note, brief excerpts from various studies performed so far are given for illustration, means and methods entering in ZgoubiFromSnaprampCmd are developed further in appendix.

  4. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler

    Science.gov (United States)

    Sheung, Janet; Qian, Jun; Sullivan, Joseph; Thomasset, Muriel; Manton, Jonathan; Bean, Sunil; Takacs, Peter; Dvorak, Joseph; Assoufid, Lahsen

    2017-09-01

    As resolving power targets have increased with each generation of beamlines commissioned in synchrotron radiation facilities worldwide, diffraction gratings are quickly becoming crucial optical components for meeting performance targets. However, the metrology of variable-line-spacing (VLS) gratings for high resolution beamlines is not widespread; in particular, no metrology facility at any US DOE facility is currently equipped to fully characterize such gratings. To begin to address this issue, the Optics Group at the Advanced Photon Source at Argonne, in collaboration with SOLEIL and with support from Brookhaven National Laboratory (BNL), has developed an alternative beam path addition to the Long Trace Profiler (LTP) at Argonne's Advanced Photon Source. This significantly expands the functionality of the LTP not only to measure mirrors surface slope profile at normal incidence, but also to characterize the groove density of VLS diffraction gratings in the Littrow incidence up to 79°, which covers virtually all diffraction gratings used at synchrotrons in the first order. The LTP light source is a 20mW HeNe laser, which yields enough signal for diffraction measurements to be performed on low angle blazed gratings optimized for soft X-ray wavelengths. We will present the design of the beam path, technical requirements for the optomechanics, and our data analysis procedure. Finally, we discuss challenges still to be overcome and potential limitations with use of the LTP to perform metrology on diffraction gratings.

  5. Trace metal determinations by total-reflection x-ray fluorescence analysis in the open Atlantic Ocean

    International Nuclear Information System (INIS)

    Schmidt, D.; Gerwinski, W.; Radke, I.

    1993-01-01

    The Intergovernmental Oceanographic Commission (IOC), as a major component of its programme ''Global Investigation of Pollution in the Marine Environment'' (GIPME), maintains a long-standing project on ''Open Ocean Baseline Studies of Trace Contaminants''. Initially, the Atlantic Ocean and trace metals were selected. Four deep-water stations in the Cape Basin, Angola Basin, Cape Verde Abyssal Plain and Seine Abyssal Plain were regularly sampled for at least 36 depths. Additional samples were taken between stations. Samples were distributed to participants and a similar number of additional laboratories. As a central part of our own contribution to the project, we determined the trace heavy metals manganese, nickel, copper, zinc and lead and the lighter selenium by total-reflection X-ray fluorescence analysis. For the TXRF, the pre-enrichment of the trace metals and the separation from the salt matrix were performed by complexation with sodium dibenzyldithiocarbamate and reverse-phase chromatography. Generally, very low levels of trace elements were found in filtered and unfiltered water samples from these remote areas of the open Atlantic Ocean. Typical examples of the distributions of trace metal concentrations on depth profiles from the four deep-water stations as well as intercomparisons between the stations are presented. (author)

  6. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    Science.gov (United States)

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  7. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    Science.gov (United States)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  8. Evaluation of simulation alternatives for the brute-force ray-tracing approach used in backlight design

    Science.gov (United States)

    Desnijder, Karel; Hanselaer, Peter; Meuret, Youri

    2016-04-01

    A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.

  9. A ray-tracing study of electron cyclotron resonance heating in Tokamak plasmas with a superthermal electron tail

    International Nuclear Information System (INIS)

    Montes, A.; Dendy, R.O.

    1987-09-01

    We consider a Tokamak plasma in which the distribution of electron velocities in the direction parallel to the magnetic field has a monotonically decreasing superthermal tail. A fully three-dimensional ray-tracing code, which includes a realistic antenna pattern, toroidal effects, and refaction, is used to calculate the absorption of the extraordinary mode in the nonrelativistic limit away from perpendicular incidence. The ray-tracing approach extends results previously obtained in slab geometry (3-8) to a more realistic configuration; it is also essential in dealing with strong refraction in high-density plasmas. Our analytical model for the tail makes available a wide range of tail shapes and parameters. At low densities small tails (tail fraction [pt

  10. A generalized ray-tracing procedure for an atmospheric Cherenkov imaging telescope and optical characteristics of the TACTIC light collector

    International Nuclear Information System (INIS)

    Tickoo, A.K.; Suthar, R.L.; Koul, R.; Sapru, M.L.; Kumar, N.; Kaul, C.L.; Yadav, K.K.; Thoudam, S.; Kaul, S.K.; Venugopal, K.; Kothari, M.; Goyal, H.C.; Chandra, P.; Dhar, V.K.; Rannot, R.C.; Koul, M.K.; Kaul, S.R.

    2005-01-01

    A generalized ray-tracing procedure has been developed, which facilitates the design of a multimirror-based light collector used in atmospheric Cherenkov telescopes. This procedure has been employed to study the optical characteristics of the 3.5 m diameter light collector of the TACTIC Imaging telescope. Comparison of the measured point-spread function of the light collector with the simulated performance of ideal Davies-Cotton and paraboloid designs has been made to determine an optimum arrangement of the 34 spherical mirror facets used in the telescope to obtain the best possible point-spread function. A description of the ray-tracing subroutine used for processing CORSIKA-generated Cherenkov data, required for carrying out Monte-Carlo simulation studies, is also discussed in the paper

  11. Three-dimensional ray tracing of electrostatic cyclotron harmonic waves and Z mode electromagnetic waves in the magnetosphere

    International Nuclear Information System (INIS)

    Hashimoto, K.; Yamaashi, K.; Kimura, I.; Kyoto Univ., Japan)

    1987-01-01

    Three-dimensional ray tracing is performed for electrostatic electron cyclotron harmonic waves and Z mode electromagnetic waves in the earth's magnetosphere using the hot dispersion relation. Propagation characteristics of cyclotron harmonic waves under the electrostatic approximation are considered, and it is noted that waves starting near the equator can propagate over a long distance without damping. Ray tracing without the electrostatic approximation confirms mode conversion from cyclotron harmonic waves to Z mode electromagnetic waves, and the conditions for the conversion are clarified. It is suggested that further conversion to the L-O mode continuum radiation is possible under strict constraints. The present results are not inconsistent with the conversion mechanism for the generation of escaping continuum radiation in the magnetosphere. 20 references

  12. Trace element analysis of single synthetic fibres by proton induced X-ray analysis in a helium atmosphere

    International Nuclear Information System (INIS)

    Ahmed, M.; Cookson, J.A.

    1976-10-01

    A technique for measuring the trace element content of synthetic fibres by detecting X-rays produced by 3 MeV proton bombardment has been developed. Largely to reduce the problems of removing heat from the fibres, an arrangement was used in which the beam was brought out of the vacuum into air or helium. Kapton, aluminium, nickel and molybdenum were tested for suitability as exit windows. Of these, aluminium produced significantly the most background in X-ray spectra while helium was found to be significantly better than air as the medium around the targets. With a kapton window, helium in the target chamber, and suitable collimation, trace element concentration down to a few parts per million could be measured when quantities of fibre of only a few times 10 -5 g were available for analysis. (author)

  13. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Weeratunga, S K

    2008-11-06

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can be easily shared between these two code frameworks and concludes with a set of recommendations for its development.

  14. Application of a portable total reflection x-ray fluorescence spectrometer to a trace elemental analysis of wines

    International Nuclear Information System (INIS)

    Kunimura, Shinsuke; Kawai, Jun

    2009-01-01

    A portable total reflection X-ray fluorescence (TXRF) spectrometer has been applied to a trace elemental analysis of wines. Sulfur, K, Mn, Fe, and Rb were detected. These five elements were quantified by using 1 ppm of Co as an internal standard. The quantified concentrations ranged from sub-ppm to several hundred ppm. Because of organic substances in wines, the scattering of the incident X-rays from the dry residues of wines becomes strong. Therefore, a high spectral background appears in TXRF spectra of wines. Because of this background, relative standard deviations of the quantified concentrations were from 4 to 28%. Although the high spectral background appeared in the TXRF spectra of the wines, a detection limit down to several tens of ppb was achieved. The present portable spectrometer can be applied to screening for trace elements in wines before an accurate and precise analysis using a large elemental analyzer. (author)

  15. Adaptation and implementation of the TRACE code for transient analysis on designs of cooled lead fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2014-01-01

    The article describes the changes implemented in the TRACE code to include thermodynamic tables of liquid lead drawn from experimental results. He then explains the process for developing a thermohydraulic model for the prototype ALFRED and analysis of a selection of representative transient conducted within the framework of international research projects. The study demonstrates the applicability of TRACE code to simulate designs of cooled lead fast reactors and exposes the high safety margins are there in this technology to accommodate the most severe transients identified in their security study. (Author)

  16. Ray-tracing studies for a whole-viewing-angle retro-reflector

    International Nuclear Information System (INIS)

    Yang, B.; Friedsam, H.

    1999-01-01

    The APS Survey and Alignment team uses LEICA laser trackers for the majority of their alignment tasks. These instruments utilize several different retro-reflectors for tracking the path of the laser interferometer. Currently in use are open-air comer cubes with an acceptance angle of ±20 deg C, comer cube prisms with an acceptance angle of ±50 deg C, and a Cat's eye with an acceptance angle of ±60 deg C. Best measurement results can be achieved by using an open-air comer cube that eliminates the need for the laser beam to travel through a different medium before it returns to the instrument detector. However, the trade off is a small acceptance angle. In order to overcome the limitations of the small acceptance angles, Takatsuji et al. have proposed the creation of a full-viewing-angle retro-reflector. Based on the notion that the radius R 1 of a common Cat's eye is proportional to R 2 , one can write: R 1 = (n-1)R 2 In the case that n, the refractive index of glass, equals 2, the radii R 1 and R 2 are identical, and one can create a solid sphere Cat's eye. This design has the advantages that no adhesives are used to bond the two hemispheres together, misalignments between the hemispheres are not an issue, and most importantly, larger acceptance angles are possible. This paper shows the results of our ray tracing calculations characterizing the geometrical optics. In Section 2 we derived the analytical expressions for choosing the index of refraction n of a glass sphere based on the specifications of the reflected beam. We also provided an approximation for calculating the minimum radius of a reflector sphere based on efficiency considerations. Finally, in section 3, the analytically derived results were confirmed in a design study for a Cat's eye. (authors)

  17. Modeling the reflectance of the lunar regolith by a new method combining Monte Carlo Ray tracing and Hapke's model with application to Chang'E-1 IIM data.

    Science.gov (United States)

    Wong, Un-Hong; Wu, Yunzhao; Wong, Hon-Cheng; Liang, Yanyan; Tang, Zesheng

    2014-01-01

    In this paper, we model the reflectance of the lunar regolith by a new method combining Monte Carlo ray tracing and Hapke's model. The existing modeling methods exploit either a radiative transfer model or a geometric optical model. However, the measured data from an Interference Imaging spectrometer (IIM) on an orbiter were affected not only by the composition of minerals but also by the environmental factors. These factors cannot be well addressed by a single model alone. Our method implemented Monte Carlo ray tracing for simulating the large-scale effects such as the reflection of topography of the lunar soil and Hapke's model for calculating the reflection intensity of the internal scattering effects of particles of the lunar soil. Therefore, both the large-scale and microscale effects are considered in our method, providing a more accurate modeling of the reflectance of the lunar regolith. Simulation results using the Lunar Soil Characterization Consortium (LSCC) data and Chang'E-1 elevation map show that our method is effective and useful. We have also applied our method to Chang'E-1 IIM data for removing the influence of lunar topography to the reflectance of the lunar soil and to generate more realistic visualizations of the lunar surface.

  18. Alpha particle excited x-ray fluorescence analysis for trace elements in cervical spinal cords of amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Mizumoto, Yoshihiko; Iwata, Shiro; Sasajima, Kazuhisa; Yase, Yoshio; Yoshida, Shohei.

    1980-01-01

    The mean contents of trace elements in anterior gray horn section of cervical spinal cords of six amyotrophic lateral sclerosis (ALS) cases were relatively determined against those of six control cases by α-particle excited X-ray fluorescence analysis. The anterior gray horn section of cervical spinal cord samples were excited by 1.6 MeV α-particle beam of 2 mm diameter accelerated with a Van de Graaff accelerator, and characteristic X-ray spectra were measured with a Si(Li) detector. From the peak areas on the X-ray spectra, the relative mean contents of the trace elements in cervical spinal cords of ALS and control cases were determined. As a result, the X-ray peaks of Al, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Cu and Zn were detected. The contents of Al, Si, P, Ca, Ti, V, Mn and Fe in ALS cases were higher than those in control cases. The contents of S, Cl, K, Cu and Zn in ALS and in control cases were equal to each other within standard deviation. The precipitation mechanisms of Al, Si, P, Ca, Ti, V, Mn and Fe into cervical spinal cord of ALS cases are discussed on the basis of the previous studies. (author)

  19. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    International Nuclear Information System (INIS)

    Sutton, S.R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique

  20. Trace elements determination in Syrian honey using x-ray fluorescence technique

    International Nuclear Information System (INIS)

    Khuder, A.; Ahmad, M.; Saour, G.

    2009-05-01

    Major and trace elements of S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr in 27 Syrian honey samples, which collected from different areas in the country, in addition to 3 imported honey samples, were determined by dry ashing method for XRF analysis. The samples were diluted and homogenized with a binder made from cellulose powder. The analyzed elements were divided into three groups, relating to the secondary targets used for X-ray excitation. The internal standard method for XRF analysis with a Mo secondary target was used for the determination of the first group of elements: Sr, Rb, Se, As, Zn, Cu, Ni, and Fe. While, the external standard method for XRF analysis with Cu and Ti secondary targets was used for the determination of the second: Mn, Cr, Ti, Ca, K, and third: Cl, and S group of elements, respectively. The results were accurate with a relative standard error less than 4.2 %. The problem of element loss was overcome by the complete drying of honey samples before their ashing. The moisture content was obtained using mass loss and refractive index methods. As a result, the lower limits of detection (LLD) obtained by Mo-XRF was in the range from 0.011 μg Sr/g to 0.064 μg Fe/g, resulting for samples containing 0.1 % ash and collecting live time 1000 s; while, LLD obtained by Cu-XRF was in the range 0.014 μg Mn/g to 0.057 μg K/g. LLD for S and Cl using Ti secondary target was with values of 0.503 μg/g and 1.96 μg/g, respectively. The enhancement factor obtained by drying method for XRF was in the range from 147 to 1667. Normal concentration of elements in Syrian honey was obtained. The concentration of elements was comparable to those obtained by other workers for honeys in different countries. Elements of K, Ca, and Cl were predominantly distributed in all Syrian honey samples. Elements of Sr, Zn, Cu, Fe, Ti, and S were well distributed in all honey samples. While, the concentrations of Rb, Ni, Mn, Cr elements in some honey samples were below the

  1. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    Science.gov (United States)

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  2. Determination of trace metals in sea waters of the albanian coast by energy-dispersive x-ray fluorescence

    International Nuclear Information System (INIS)

    Civici, N.

    1994-01-01

    Preconcentration of trace transition and heavy metal ions by precipitation with APDC has been combined with energy-dispersive X-ray fluorescence for environmental sea water analysis. The preconcentration procedure implies adding of 500 μg Mo ion and 10 ml of 1 % water solution of APDC to a 500 ml water sample at pH 4, filtering off on a Millipore filter and analyzing after drying. Realistic detection limits are at 1 μg * l -1 level and precision varies between 10 - 25% at about 5 μg * l -1 level, depending on the element. Eleven sea water samples, covering Albanian Adriatic and Ionian coast, are analyzed for trace metal ions. (author) 8 refs.; 2 figs.; 5 tabs

  3. [Comparison of ocular modulation transfer function measurements by ray tracing wavefront technology and double-pass system].

    Science.gov (United States)

    Qiao, Liya; Cai, Xiaogu; Wan, Xiuhua; Guan, Zheng; Xiong, Ying; Lin, Zhong; Zhang, Ye; Tan, Jiaxuan; Wang, Ningli

    2015-01-01

    To compare the agreement of the ocular modulation transfer function (MTF) measured by double-pass system and ray tracing wavefront aberrometry, and to analyze the correlations of two MTFs with the visual acuity and contrast sensitivity function results. Comparative study. Subjects with no ocular diseases were consecutively enrolled in an epidemic study field located at the Dongyangzhuang Health Center, Yongnian County, Handan City, Hebei Province, China. After comprehensive ophthalmic examinations, the mean values of subtracted lower order aberration MTF at 5, 10, 15, 20, 25, and 30 cycle/degree(c/d) spatial frequencies were obtained with a double-pass system (optical quality analysis system II, OQAS II system) and a ray tracing wavefront aberrometer (iTrace visual function analyzer, iTrace system) in the 4.0 mm and 6.0 mm pupil after dilation, respectively. Paired-sample t test and Bland-Altman analysis were used to compare the difference and agreement of MTFs obtained with two instruments. Correlation analysis was preformed between two MTF measurement results and subjective visual quality including visual acuity and contrast sensitivity function. Two hundred and fifty-one healthy eyes of 163 subjects were enrolled, aged 30 to 60, mean (44.1 ± 9.7) years, including 139 eyes of 81 males and 112 eyes of 82 females. The mean value of MTF at 5, 10, 15, 20.25, 30 c/d obtained by iTrace in 4.0 mm pupil were 0.730 ± 0.138, 0.431 ± 0.159, 0.262 ± 0.120, 0.169 ± 0.078, 0.118 ± 0.053, 0.094 ± 0.043. The value obtained by OQASII were 0.347 ± 0.123, 0.162 ± 0.086, 0.072 ± 0.049, 0.042 ± 0.033, 0.026 ± 0.022, 0.017 ± 0.022, The result of iTrace were all significant higher than OQAS in both 4mm(t = 38.72, 28.03, 27.32, 27.59, 29.23, 28.96, P < 0.01) and 6.0 mm(t = 4.60, 3.19, 9.34, 13.41, 16.96, 20.24, P < 0.01)pupil diameter. The iTrace-OQAS II MTF difference was smaller in the 6.0 mm pupil. Bland-Altman analysis indicated that the agreement of two instruments was

  4. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kolski, Jeffrey S. [Los Alamos National Laboratory; Barlow, David B. [Los Alamos National Laboratory; Macek, Robert J. [Los Alamos National Laboratory; McCrady, Rodney C. [Los Alamos National Laboratory

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improved model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.

  5. Theoretical estimation of proton induced X-ray emission yield of the trace elements present in the lung and breast cancer

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sowmya, N.

    2013-01-01

    X-rays may be produced following the excitation of target atoms induced by an energetic incident ion beam of protons. Proton induced X-ray emission (PIXE) analysis has been used for many years for the determination of elemental composition of materials using X-rays. Recent interest in the proton induced X-ray emission cross section has arisen due to their importance in the rapidly expanding field of PIXE analysis. One of the steps in the analysis is to fit the measured X-ray spectrum with theoretical spectrum. The theoretical cross section and yields are essential for the evaluation of spectrum. We have theoretically evaluated the PIXE cross sections for trace elements in the lung and breast cancer tissues such as Cl, K, Ca,Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, P, S, Sr, Hg and Pb. The estimated cross section is used in the evaluation of Proton induced X-ray emission spectrum for the given trace elements.We have also evaluated the Proton induced X-ray emission yields in the thin and thick target of the given trace elements. The evaluated Proton induced X-ray emission cross-section, spectrum and yields are graphically represented. Some of these values are also tabulated. Proton induced X-ray emission cross sections and a yield for the given trace elements varies with the energy. PIXE yield depends on a real density and does not on thickness of the target. (author)

  6. Ray Tracing for Dispersive Tsunamis and Source Amplitude Estimation Based on Green's Law: Application to the 2015 Volcanic Tsunami Earthquake Near Torishima, South of Japan

    Science.gov (United States)

    Sandanbata, Osamu; Watada, Shingo; Satake, Kenji; Fukao, Yoshio; Sugioka, Hiroko; Ito, Aki; Shiobara, Hajime

    2018-04-01

    Ray tracing, which has been widely used for seismic waves, was also applied to tsunamis to examine the bathymetry effects during propagation, but it was limited to linear shallow-water waves. Green's law, which is based on the conservation of energy flux, has been used to estimate tsunami amplitude on ray paths. In this study, we first propose a new ray tracing method extended to dispersive tsunamis. By using an iterative algorithm to map two-dimensional tsunami velocity fields at different frequencies, ray paths at each frequency can be traced. We then show that Green's law is valid only outside the source region and that extension of Green's law is needed for source amplitude estimation. As an application example, we analyzed tsunami waves generated by an earthquake that occurred at a submarine volcano, Smith Caldera, near Torishima, Japan, in 2015. The ray-tracing results reveal that the ray paths are very dependent on its frequency, particularly at deep oceans. The validity of our frequency-dependent ray tracing is confirmed by the comparison of arrival angles and travel times with those of observed tsunami waveforms at an array of ocean bottom pressure gauges. The tsunami amplitude at the source is nearly twice or more of that just outside the source estimated from the array tsunami data by Green's law.

  7. In vivo x-ray fluorescence of lead and other toxic trace elements

    International Nuclear Information System (INIS)

    Chettle, D.R.

    1995-01-01

    The first in vivo x-ray fluorescence measurements of lead in bone used y-rays from a 57 Co source to excite Pb K x-rays. Later systems used γ-rays from 109 Cd to excite Pb K x-rays or polarized x-rays to excite Ph L x-rays. All three approaches involve an extremely low effective dose to the subject. Of the two K x-ray techniques, 109 Cd is more precise and more flexible in choice of measurement site. Pb L x-ray fluorescence (L-XRF) effectively samples lead at bone surfaces, whereas Ph K x-ray fluorescence (K-XRF) samples through the bulk of a bone. Both the polarized L-XRF and 109 Cd K-XRF achieve similar precision. Renal mercury has recently been determined using a polarized x-ray source, Both renal and hepatic cadmium can be measured using polarized x-rays in conjunction with a Si(Li) detector. Platinum and gold have been measured both by radioisotopic source excitation and by using polarized x-rays, but the latter is to be preferred. Applications of Pb K-XRF have shown that measured bone lead relates strongly to cumulative lead exposure. Secondly, biological half lives of lead in different bone types have been estimated from limited longitudinal data sets and from some cross sectional surveys. Thirdly, the effect of bone lead as an endogenous source of lead has been demonstrated and it has been shown that a majority of circulating blood lead can be mobilized from bone, rather than deriving from new exposure, in some retired lead workers. 35 refs., 5 tabs

  8. Combination of ray-tracing and the method of moments for electromagnetic radiation analysis using reduced meshes

    Science.gov (United States)

    Delgado, Carlos; Cátedra, Manuel Felipe

    2018-05-01

    This work presents a technique that allows a very noticeable relaxation of the computational requirements for full-wave electromagnetic simulations based on the Method of Moments. A ray-tracing analysis of the geometry is performed in order to extract the critical points with significant contributions. These points are then used to generate a reduced mesh, considering the regions of the geometry that surround each critical point and taking into account the electrical path followed from the source. The electromagnetic analysis of the reduced mesh produces very accurate results, requiring a fraction of the resources that the conventional analysis would utilize.

  9. Trace element analysis of environmental samples by multiple prompt gamma-ray analysis method

    International Nuclear Information System (INIS)

    Oshima, Masumi; Matsuo, Motoyuki; Shozugawa, Katsumi

    2011-01-01

    The multiple γ-ray detection method has been proved to be a high-resolution and high-sensitivity method in application to nuclide quantification. The neutron prompt γ-ray analysis method is successfully extended by combining it with the γ-ray detection method, which is called Multiple prompt γ-ray analysis, MPGA. In this review we show the principle of this method and its characteristics. Several examples of its application to environmental samples, especially river sediments in the urban area and sea sediment samples are also described. (author)

  10. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    Science.gov (United States)

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  11. Tracing Clusters to High Red-shift Ray P. Norris & the EMU Team

    Indian Academy of Sciences (India)

    The outputs of the 96 dual-polarization receivers are combined in a beam-former to form up to 36 beams ... Initial observations will produce a global sky model (an accurate descrip- tion of all sources stronger than .... To use radio sources to trace clusters and large-scale structure, and explore the astrophysics of dark matter ...

  12. Advanced simulations of x-ray beam propagation through CRL transfocators using ray-tracing and wavefront propagation methods

    DEFF Research Database (Denmark)

    Baltser, Jana; Bergbäck Knudsen, Erik; Vickery, Anette

    2011-01-01

    Compound refractive lenses (CRL) are widely used to manipulate synchrotron radiation beams. Accurate modelling of X-ray beam propagation through individual lenses and through "transfocators" composed of a large number of CRLs is of high importance, since it allows for comprehensive optimization...

  13. Total reflection X-ray fluorescence as a convenient tool for determination of trace elements in microscale gasoline and diesel

    Science.gov (United States)

    Zhang, Airui; Jin, Axiang; Wang, Hai; Wang, Xiaokang; Zha, Pengfei; Wang, Meiling; Song, Xiaoping; Gao, Sitian

    2018-03-01

    Quantitative determination of trace elements like S, Fe, Cu, Mn and Pb in gasoline and S in diesel is of great importance due to the growing concerns over air pollution, human health and engine failure caused by utilization of gasoline and diesel with these harmful elements. A method of total reflection X-ray fluorescence (TXRF) was developed to measure these harmful trace elements in gasoline and diesel. A variety of factors to affect measurement results, including TXRF parameters, microwave-assisted digestion conditions and internal standard element and its addition, were examined to optimize these experimental procedures. The hydrophobic treatment of the surface of quartz reflectors to support the analyte with neutral silicone solutions could prepare thin films of gasoline and diesel digestion solutions for subsequent TXRF analysis. The proposed method shows good potential and reliability to determine the content of harmful trace elements in gasoline and diesel with high sensitivity and accuracy without drawing different standard calibration curves, and can be easily employed to screen gasoline and diesel in routine quality control and assurance.

  14. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron X-ray microscopy

    International Nuclear Information System (INIS)

    Bockman, R.S.; Repo, M.A.; Warrell, R.P. Jr.; Pounds, J.G.; Schidlovsky, G.; Gordon, B.M.; Jones, K.W.

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. The authors have used synchrotron X-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental targets of gallium

  15. Trace metal analysis in sea grasses from Mexican Caribbean Coast by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Solis, C.; Issac O, K.; Martinez, A.; Lavoisier, E.; Martinez, M. A.

    2008-01-01

    The growing urban and tourist activity in the Mexican Caribbean coasts has resulted in an increase of chemical substances, metals in particular, discharged to the coastal waters. In order to reach an adequate management and conservation of these marine ecosystems it is necessary to perform an inventory of the actual conditions that reflect the vulnerability and the level of damage. Sea-grasses are considered good biological indicators of heavy metal contamination in marine systems. The goal of this preliminary work is to evaluate the concentrations of trace metals such as Cr, Mn, Fe, Co, Cu, Zn, and Pb in Thalassia testudinum, a very common sea-grass in the Mexican Caribbean Sea. Samples were collected from several locations in the coasts of the Yucatan Peninsula: Holbox, Blanquizal and Punta Allen, areas virtually uninfluenced by anthropogenic activities. Trace elements in different part plants were determined by particle induced X-ray emission (PIXE). This is a very suitable technique since it offers a fast, accurate and multi-element analysis. Also, the analysis by PIXE can be performed directly on powdered leaves without a laborious sample preparation. The trace metal concentration determined in sea-grasses growing in Caribbean generally fall in the range of the lowest valuables reported for sea grasses from the Gulf of Mexico. The results indicate that the studied areas do not present contamination by heavy metals. (Author)

  16. Simultaneous Determination of 30 Trace Elements in Cancerous and Noncancerous Human Tissue Samples with Gamma-ray Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Samsahl, K; Brune, D; Wester, P O

    1963-10-15

    The following trace elements were quantitatively determined by gamma-ray spectrometry in T samples of non-cancerous and 5 samples of cancerous human tissue: P, Ca, Cr, Fe, Co, Cu, Zn, As, Se, Br, Rb, Mo, Ag, Cd, Sb, Cs, La, Au, and Hg. In some of the samples the following elements were qualitatively determined: Ti+Sc, Ga, Sr, In, Ba, Ce, Hf, Os, Pt, and U. Most of the trace elements were found to be present in much higher concentrations in the non-cancerous than in the corresponding cancerous liver samples. In a typical run one sample each of cancerous and non-cancerous tissue was irradiated together with standards of the elements to be determined in a thermal flux of 2.10{sup 13} n/cm{sup 2}/sec. for 24 hours. The radioactive trace elements were separated into 16, and in some cases 18, groups by means of a chemical group separation method. Subsequently, the gamma spectrometric measurements were performed. Two persons can manage the chemical separations and measure the different activities from a run in 1,5 days. A new method of comparing unknown samples with standards was developed.

  17. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles

    International Nuclear Information System (INIS)

    Okonda, J.J.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectroscopy is an analytical method for identification and quantification of elements in materials by measurement of their spectral energy and intensity. EDXRFS spectroscopic technique involves simultaneous non-invasive acquisition of both fluorescence and scatter spectra from samples for quantitative determination of trace elemental content in complex matrix materials. The objective is develop a chemometric-aided EDXRFS method for rapid diagnosis of cancer and its severity (staging) based on analysis of trace elements (Cu, Zn, Fe, Se and Mn), their speciation and multivariate alterations of the elements in cancerous body tissue samples as cancer biomarkers. The quest for early diagnosis of cancer is based on the fact that early intervention translates to higher survival rate and better quality of life. Chemometric aided EDXRFS cancer diagnostic model has been evaluated as a direct and rapid superior alternative for the traditional quantitative methods used in XRF such as FP method. PCA results of cultured samples indicate that it is possible to characterize cancer at early and late stage of development based on trace elemental profiles

  18. Spiral tracing on a touchscreen is influenced by age, hand, implement, and friction.

    Science.gov (United States)

    Heintz, Brittany D; Keenan, Kevin G

    2018-01-01

    Dexterity impairments are well documented in older adults, though it is unclear how these influence touchscreen manipulation. This study examined age-related differences while tracing on high- and low-friction touchscreens using the finger or stylus. 26 young and 24 older adults completed an Archimedes spiral tracing task on a touchscreen mounted on a force sensor. Root mean square error was calculated to quantify performance. Root mean square error increased by 29.9% for older vs. young adults using the fingertip, but was similar to young adults when using the stylus. Although other variables (e.g., touchscreen usage, sensation, and reaction time) differed between age groups, these variables were not related to increased error in older adults while using their fingertip. Root mean square error also increased on the low-friction surface for all subjects. These findings suggest that utilizing a stylus and increasing surface friction may improve touchscreen use in older adults.

  19. Implementation of a primary standard for x-ray exposure

    International Nuclear Information System (INIS)

    Peixoto, Jose Guilherme Pereira

    1991-04-01

    In the scientific program of the National Laboratory for Ionizing Radiation Metrology of the Instituto de Radioprotecao e Dosimetria, which belongs to the Comissao Nacional de Energia Nuclear, a free-air ionization chamber should be established as an exposure primary standard for X-ray s of 10OKV to 250kV of potential range. Preliminary results showed that the available free-air ionization chamber was suitable to be used. The absolute measurement of the radiation quantity exposure, is performed with a free-air ionization chamber. Its geometrical volume, which allows the determination of the air mass, is defined by the effective aperture area and by the length of the region where an electrical field is applied. Most of the ions produced in such volume are collected as an ionization current. Since the collecting rod is small, and positioned far away from the X-ray beam, only a negligible fraction of ionization (0,01 %) is lost due to interactions with it. Parameters related to the measurement of the quantity exposure were evaluated, such as: air absorption, scattering inside the ionization chamber, saturation , beam homogeneity, influence Of beam size and influences of temperature, humidity and atmospheric pressure.Preliminary determination of correction factors has showed good results with 99.9% of repeatability and has demonstrated the reliability of the checked chamber as a standard instrument. (author)

  20. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-01-01

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation

  1. Tracing Sustainability: An International Comparison of ESD Implementation into Lower Secondary Education

    Science.gov (United States)

    Bagoly-Simó, Péter

    2013-01-01

    With the progress of the DESD, increasing numbers of researchers have been developing indicators to effectively measure the implementation of ESD in formal, informal and non-formal education. This paper aims to measure the implementation of ESD in secondary school curricula in three countries carrying the fingerprints of a developed (Germany),…

  2. Tracing the Policy Mediation Process in the Implementation of a Change in the Life Sciences Curriculum

    Science.gov (United States)

    Singh-Pillay, Asheena; Alant, Busisiwe

    2015-01-01

    This paper accounts for the enacted realities of curriculum reform in South Africa, in particular the mediation of curriculum change. Curriculum implementation is viewed as a complex networked process of transforming or mediating policy into classroom practice. The fact that curriculum implementation is seen as problematic requires attention for…

  3. Trace elements in airborne particles in internal industrial environments: spectrometric analysis of x-ray fluorescence (XRF)

    International Nuclear Information System (INIS)

    Salazar Matarrita, Alfonso

    2001-01-01

    Fluorescence spectroscopy x-ray, is a technique of non-destructive analysis, that allows quantitative determination of the absolute concentration of chemical elements that make up a given matrix. The detected elements depend on atomic number and energy of the secondary target used for irradiation of samples. X-rays are detected and counted in a spectroscopy system based on a multichannel analyzer, that discriminates by energy and form a spectrum of independent photopeaks, whose energy identifies the element and its intensity is proportional to its concentration. The quantification requires the irradiation and counting of a set of pattern comparators, of the same elements identified in the samples. The x-ray emission shows only during the time that the selected sample is subjected to irradiation by x-ray tube. This irradiation does not change the structure nor the chemical composition of the matrix, so the sample remains unchanged, after irradiation. This condition non-destructive characterizes the fluorescence x-ray. The trace elements present in airborne particles, are determined and collected on a Nuclepore filter. The collection sites selected are: Taller de Mecanica de Precision de la Escuela de Fisica, Universidad de Costa Rica; Taller J. V. G. Precision, San Antonio de Coronado; Taller de Muflas, MUFLASA, Alto de Guadalupe; Industria Silvania S. A., Pavas. In addition, it is attached the service rendered to the enterprise Sellos Generales S. A. The working conditions and physical conditions of facilities were considered. An aerosol sampler with a temporal variation was used. Irradiation of samples and an evaluation of the concentrations have been made. (author) [es

  4. Trace analysis in cadmium telluride by heavy ion induced X-ray emission and by SIMS

    International Nuclear Information System (INIS)

    Scharager, C.; Stuck, R.; Siffert, P.; Cailleret, J.; Heitz, Ch.; Lagarde, G.; Tenorio, D.

    1979-01-01

    The possibilities of using both selective heavy ion induced X-ray emission and secondary ion mass spectroscopy (SIMS), for the identification of impurities present at low concentrations in cadmium telluride are examined. The relative concentrations of the impurities along CdTe crystals have been determined by exciting the X-ray emission of the elements in several slices with Ar and Kr ions and by comparing the relative characteristic X-ray emission yields. As a consequence of the quasimolecular inner shell ionization mechanism in heavy ion-atom collisions, Ar and Kr ions allow a strong excitation of the main impurities seen by SIMS namely Si, Cl and Ge, As, with only a minor contribution of Cd and Te. From the changes of the concentrations of the various impurities along the crystal, informations about segregation coefficients and compensation can be obtained

  5. Application of the nudged elastic band method to the point-to-point radio wave ray tracing in IRI modeled ionosphere

    Science.gov (United States)

    Nosikov, I. A.; Klimenko, M. V.; Bessarab, P. F.; Zhbankov, G. A.

    2017-07-01

    Point-to-point ray tracing is an important problem in many fields of science. While direct variational methods where some trajectory is transformed to an optimal one are routinely used in calculations of pathways of seismic waves, chemical reactions, diffusion processes, etc., this approach is not widely known in ionospheric point-to-point ray tracing. We apply the Nudged Elastic Band (NEB) method to a radio wave propagation problem. In the NEB method, a chain of points which gives a discrete representation of the radio wave ray is adjusted iteratively to an optimal configuration satisfying the Fermat's principle, while the endpoints of the trajectory are kept fixed according to the boundary conditions. Transverse displacements define the radio ray trajectory, while springs between the points control their distribution along the ray. The method is applied to a study of point-to-point ionospheric ray tracing, where the propagation medium is obtained with the International Reference Ionosphere model taking into account traveling ionospheric disturbances. A 2-dimensional representation of the optical path functional is developed and used to gain insight into the fundamental difference between high and low rays. We conclude that high and low rays are minima and saddle points of the optical path functional, respectively.

  6. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    International Nuclear Information System (INIS)

    Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.

    2009-01-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples

  7. 3-D x-ray mirror metrology with a vertical scanning long trace profiler

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Li, H.; Li, X.; Grindel, M.W.

    1996-01-01

    The long trace profiler (LTP) was originally developed at Brookhaven National Laboratory for the specific purpose of measuring the surface figure of large cylindrical mirrors used at grazing incidence in synchrotron radiation (SR) beamlines. In its original configuration, it could measure only along one line down the center of the cylinder. A single linear profile is often sufficient to gauge the quality of the optical surface on these kinds of mirrors. For some applications it is necessary to measure the topography of the entire surface, not just along one line but over a grid that covers the entire surface area. We have modified a standard LTP to enable measurement of the complete surface of Wolter telescope optics in a vertical configuration. The vertical scanning LTP (VSLTP) is capable of producing a complete 3-D map of the surface topography errors relative to the ideal desired surface on complete segments of paraboloids and hyperboloids. The instrument uses a penta prism assembly to scan the probe beam in the longitudinal direction parallel to the mirror symmetry axis and uses a precision rotary stage to provide scans in the azimuthal direction. A Risley prism pair and a dove prism are used to orient the probe beam in the proper direction for the azimuthal scans. The repeatability of the prototype instrument is better than 20 nm over trace lengths of 35 mm with a slope measurement accuracy of about 1 microradian. copyright 1996 American Institute of Physics

  8. Measurement of trace elements in KH2PO4 crystals by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ryon, R.W.; Duewer, T.I.

    1981-02-01

    A non-destructive method is described for the quantitative measurement of impurities in KDP (KH 2 PO 4 ) crystals. Part per million concentrations of impurities can be determined with good accuracy in about one hour of instrument time. An energy dispersive x-ray spectrometer is used. Both the crystals and the solutions from which they are grown may be analyzed

  9. Adaptation and implementation of the TRACE code for transient analysis in designs lead cooled fast reactors

    International Nuclear Information System (INIS)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2015-01-01

    Lead-Cooled Fast Reactor (LFR) has been identified as one of promising future reactor concepts in the technology road map of the Generation IVC International Forum (GIF)as well as in the Deployment Strategy of the European Sustainable Nuclear Industrial Initiative (ESNII), both aiming at improved sustainability, enhanced safety, economic competitiveness, and proliferation resistance. This new nuclear reactor concept requires the development of computational tools to be applied in design and safety assessments to confirm improved inherent and passive safety features of this design. One approach to this issue is to modify the current computational codes developed for the simulation of Light Water Reactors towards their applicability for the new designs. This paper reports on the performed modifications of the TRACE system code to make it applicable to LFR safety assessments. The capabilities of the modified code are demonstrated on series of benchmark exercises performed versus other safety analysis codes. (Author)

  10. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model

    International Nuclear Information System (INIS)

    Zhang Feng; Zhang Ning-Ning; Yan Sen; Song Sun; Jun Bao; Chen Gao; Zhang Yi

    2017-01-01

    Luminescent solar concentrators (LSC) can reduce the area of solar cells by collecting light from a large area and concentrating the captured light onto relatively small area photovoltaic (PV) cells, and thereby reducing the cost of PV electricity generation. LSCs with bottom-facing cells (BMP-LSC) can collect both direct light and indirect light, so further improving the efficiency of the PV cells. However, it is hard to analyze the effect of each parameter by experiment because there are too many parameters involved in the BMP-LSC. In this paper, all the physical processes of the light transmission and collection in the BMP-LSC were analyzed. A three-dimensional Monte Carlo ray tracing program was developed to study the transmission of photons in the LSC. A larger-size LSC was simulated, and the effects of dye concentration, the LSC thickness, the cell area, and the cell distance were systematically analyzed. (paper)

  11. A general ray-tracing algorithm for the solution of the neutron transport equation by the collision probability method

    International Nuclear Information System (INIS)

    Ball, G.

    1990-01-01

    The development and analysis of methods for generating first-flight collision probabilities in two-dimensional geometries consistent with Light Water Moderated (LWR) fuel assemblies are examined. A new ray-tracing algorithm is discussed. A number of numerical results are given demonstrating the feasibility of this algorithm and the effects of the moderator (and fuel) sectorizations on the resulting flux distributions. The collision probabilties have been introduced and their subsequent utilization in the flux calculation procedures illustrated. A brief description of the Coxy-1 and Coxy-2 programs (which were developed in the Reactor Theory Division of the Atomic Energy Agency of South Africa Ltd) has also been added. 41 figs., 9 tabs., 18 refs

  12. Determination of heavy metals at traces level in leached samples by energy dispersive x-ray fluorescence technique

    International Nuclear Information System (INIS)

    Simabuco, Silvana M.; Nascimento Filho, Virgilio F. do; Inacio, Graziela R.; Navarro, Angela N.

    1996-01-01

    In landfill solid residues are disposed in the soil. When made based on technical criteria and specifically operation patterns a safe confinement is warranted according to environmental and public health protection. However, when the disposal is made by a random and unsuitable way serious problems can be caused as groundwater and superficial water contamination through leach action, indicating the usefulness of monitoring landfills. In this way energy dispersive X-ray fluorescence analysis with radioisotopic excitation was applied to evaluate the concentrations of heavy metals at trace levels in leached samples from the Americana City Landfill with pre-concentration of the elements by a non-specific precipitating agent, called ammonium pyrrolidine dithiocarbamate (APDC). (author)

  13. Towards modeling of random lasing in dye doped bio-organic based systems: ray-tracing and cellular automaton analysis

    Science.gov (United States)

    Mitus, A. C.; Stopa, P.; Zaklukiewicz, W.; Pawlik, G.; Mysliwiec, J.; Kajzar, F.; Rau, I.

    2015-08-01

    One of many photonic applications of biopolymers as functional materials is random lasing resulting from an incorporation of highly luminescent dyes into biopolymeric matrix, which leads to a random but coherent light scattering in amplifying medium. In spite of numerous theoretical and experimental studies the origin of the coherence is still not clear and various scenarios are discussed. In particular, inhomogeneity of biopolymeric layers can hypothetically promote the feedback in the scattering of the emitted light resulting in coherent and incoherent random lasing. In this paper we analyze the light scattering in a model system of scattering centers of circular shapes and various dimensions using ray-tracing techniques. In the second part, which has mostly a tutorial character, we present the approach to the study of random lasing using a cellular automaton model of Wiersma et al.

  14. The use of synchrotron radiation for trace element analysis and element mapping by scanning X-ray fluorescence

    International Nuclear Information System (INIS)

    Davies, S.T.

    1983-01-01

    Synchrotron Radiation excited X-Ray Fluorescence is a potentially powerful tool for the routine quantitative chemical analysis of materials, with minimum detection limits typically of the order of a tenth of a ppm, and with the added advantages of simultaneous multi-element detection capability, spatial resolution on a micron scale, large signal to noise ratios and short analysis times. This paper presents a brief review of the use of Synchrotron Radiation in Trace Element Analysis and discusses the requirements for a microprobe for chemical analysis utilising SR. Data obtained at the Synchrotron Radiation Source, Daresbury Laboratory include XRF spectra of standard reference materials and an application of the technique to the study of ion implanted layers in semiconductors is outlined. (author)

  15. Trace analysis in the atmosphere, water bodies and uranium ores by means of X-ray fluorescence

    International Nuclear Information System (INIS)

    Perez Novara, A.M.

    1986-01-01

    Analysis with X-ray fluorescence is an instrumental method that evaluates concentrations, at trace levels, of elements in samples of all kinds. The applications of this method are broad, specially useful in the analysis of metals as contaminators in air and water, and as impurities in minerals. The preparation of the samples is very important to obtain good accuracy, and at the same time, you should make a series of standards of known concentrations so you can compare the counting of each sample against the standard, for each of the elements. You should make, depending on the nature of the sample, several corrections with respect to the background, interferences, overlaps, or for effects of a third element. (author)

  16. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    International Nuclear Information System (INIS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing. -- Highlights: • Bicontinuous random medium were used for real snow microstructure modeling. • Photon tracing technique with polarization status tracking ability was applied. • SSA–albedo relationship of snow is close to that of sphere based medium. • Validation of albedo and BRDF showed good results. • Validation of polarized reflectance showed good agreement with experiment data

  17. Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling

    Science.gov (United States)

    Lau, Lawrence; Cross, Paul

    2007-11-01

    Multipath is one of the most important error sources in Global Navigation Satellite System (GNSS) carrier-phase-based precise relative positioning. Its theoretical maximum is a quarter of the carrier wavelength (about 4.8 cm for the Global Positioning System (GPS) L1 carrier) and, although it rarely reaches this size, it must clearly be mitigated if millimetre-accuracy positioning is to be achieved. In most static applications, this may be accomplished by averaging over a sufficiently long period of observation, but in kinematic applications, a modelling approach must be used. This paper is concerned with one such approach: the use of ray-tracing to reconstruct the error and therefore remove it. In order to apply such an approach, it is necessary to have a detailed understanding of the signal transmitted from the satellite, the reflection process, the antenna characteristics and the way that the reflected and direct signal are processed within the receiver. This paper reviews all of these and introduces a formal ray-tracing method for multipath estimation based on precise knowledge of the satellite reflector antenna geometry and of the reflector material and antenna characteristics. It is validated experimentally using GPS signals reflected from metal, water and a brick building, and is shown to be able to model most of the main multipath characteristics. The method will have important practical applications for correcting for multipath in well-constrained environments (such as at base stations for local area GPS networks, at International GNSS Service (IGS) reference stations, and on spacecraft), and it can be used to simulate realistic multipath errors for various performance analyses in high-precision positioning.

  18. Incorporation of Trace Elements in Ancient and Modern Human Bone: An X-Ray Absorption Spectroscopy Study

    Science.gov (United States)

    Pingitore, N. E.; Cruz-Jimenez, G.; Price, T. D.

    2001-12-01

    X-ray absorption spectroscopy (XAS) affords the opportunity to probe the atomic environment of trace elements in human bone. We are using XAS to investigate the mode(s) of incorporation of Sr, Zn, Pb, and Ba in both modern and ancient (and thus possibly altered) human and animal bone. Because burial and diagenesis may add trace elements to bone, we performed XAS analysis on samples of pristine contemporary and ancient, buried human and animal bone. We assume that deposition of these elements during burial occurs by processes distinct from those in vivo, and this will be reflected in their atomic environments. Archaeologists measure strontium in human and animal bone as a guide to diet. Carnivores show lower Sr/Ca ratios than their herbivore prey due to discrimination against Sr relative to Ca up the food chain. In an initial sample suite no difference was observed between modern and buried bone. Analysis of additional buried samples, using a more sensitive detector, revealed significant differences in the distance to the second and third neighbors of the Sr in some of the buried samples. Distances to the first neighbor, oxygen, were similar in all samples. Zinc is also used in paleo-diet studies. Initial x-ray absorption spectroscopy of a limited suite of bones did not reveal any differences between modern and buried samples. This may reflect the limited number of samples examined or the low levels of Zn in typical aqueous solutions in soils. Signals from barium and lead were too low to record useful XAS spectra. Additional samples will be studied for Zn, Ba, and Pb. We conducted our XAS experiments on beam lines 4-1 and 4-3 at the Stanford Synchrotron Radiation Laboratory. Data were collected in the fluorescence mode, using a Lytle detector and appropriate filter, and a solid state, 13-element Ge-detector.

  19. Trace elements determination in red and white wines using total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Anjos, M.J.; Lopes, R.T.; Jesus, E.F.O. de; Moreira, S.; Barroso, R.C.; Castro, C.R.F.

    2003-01-01

    Several wines produced in different regions from south of Brazil and available in markets in Rio de Janeiro were analyzed for their contents of elements such as: P, S, Cl, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Rb and Sr. Multi-element analysis was possible with simple sample preparation and subsequent analysis by total-reflection X-ray fluorescence using synchrotron radiation. The measurement was carried at the X-ray fluorescence beamline in the Synchrotron Light Source Laboratory in Campinas, Brazil. The levels of the various elements obtained were lower in the Brazilian wines than the values generally found in the literature. The present study indicates the capability of multi-element analysis for determining the contents of various elements present in wines coming from Brazil vineyards by using a simple, sensitive and precise method

  20. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    International Nuclear Information System (INIS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-01-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples

  1. Laser ray tracing and power deposition on an unstructured three-dimensional grid

    International Nuclear Information System (INIS)

    Kaiser, Thomas B.

    2000-01-01

    A scheme is presented for laser beam evolution and power deposition on three-dimensional unstructured grids composed of hexahedra, prisms, pyramids, and tetrahedra. The geometrical-optics approximation to the electromagnetic wave equation is used to follow propagation of a collection of discrete rays used to represent the beam(s). Ray trajectory equations are integrated using a method that is second order in time, exact for a constant electron-density gradient, and capable of dealing with density discontinuities that arise in certain hydrodynamics formulations. Power deposition by inverse-bremsstrahlung is modeled with a scheme based on Gaussian quadrature to accommodate a deposition rate whose spatial variation is highly nonuniform. Comparisons with analytic results are given for a density ramp in three dimensions, and a ''quadratic-well'' density trough in two dimensions. (c) 2000 The American Physical Society

  2. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    Science.gov (United States)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  3. Analysis of trace elements in medicinal plants with energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Ekinci, N.; Polat, R.; Budak, G.; Ekinci, R.

    2004-01-01

    Mankind still depend on traditional herbal medicine for the treatment of various diseases and ailments. Elemental composition and concentration of medicinal plants have been investigated by energy dispersive X-ray fluorescence. The elements present in medicinal plants are P, Cl, K, Ca, S, Al, Ti, V, Rb, Sr, Zr, Nb, Mo, In, Sn, I and Ce. The physical basis of the used analytical method, the experimental set up and the procedure of sample preparation are presented. (author)

  4. Trace analysis by measurements of charged particle-excited X-rays

    International Nuclear Information System (INIS)

    Shiokawa, Takanobu; Morita, Susumu; Kaji, Harumi

    1974-01-01

    Following the introduction on the theory of analysis by charged particle x-ray excitation, experimental methods are explained together with actual examples of quantitative analysis. Protons or particles of 3 He are allowed to hit samples as ion beam. On one target, 4 samples are installed. Therefore, it is possible to analyze 4 samples without breaking vacuum. The x-ray is detected with an Si(Li) detector. The resolving power of this detector was 205 eV for the x-ray of 5.9 KeV. The most important thing is the preparation of samples in thin state. Metals of minerals are easily prepared in films by means of vacuum evaporation. In case of the samples that are hard to prepare in thin films, carbon foils are often used as backing material to support the samples. The limit of determination is about 10 -12 g, but the theoretical limit is about 10 -14 g. The demerits of this method is that the resolving power is not good enough for the determination of light elements. The improvement of S/N ratio is also important for the increase of sensitivity. The development of backing materials is the most important thing in this view. The merits of this method are that the amount of samples may be very small, and that a number of elements are simultaneously determined to very small contents. (Fukutomi, T.)

  5. Alternative methods for ray tracing in uniaxial media. Application to negative refraction

    Science.gov (United States)

    Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo

    2007-03-01

    In previous papers [C. Bellver-Cebreros, M. Rodriguez-Danta, Eikonal equation, alternative expression of Fresnel's equation and Mohr's construction in optical anisotropic media, Opt. Commun. 189 (2001) 193; C. Bellver-Cebreros, M. Rodriguez-Danta, Internal conical refraction in biaxial media and graphical plane constructions deduced from Mohr's method, Opt. Commun. 212 (2002) 199; C. Bellver-Cebreros, M. Rodriguez-Danta, Refraccion conica externa en medios biaxicos a partir de la construccion de Mohr, Opt. Pura AppliE 36 (2003) 33], the authors have developed a method based on the local properties of dielectric permittivity tensor and on Mohr's plane graphical construction in order to study the behaviour of locally plane light waves in anisotropic media. In this paper, this alternative methodology is compared with the traditional one, by emphasizing the simplicity of the former when studying ray propagation through uniaxial media (comparison is possible since, in this case, traditional construction becomes also plane). An original and simple graphical method is proposed in order to determine the direction of propagation given by the wave vector from the knowledge of the extraordinary ray direction (given by Poynting vector). Some properties of light rays in these media not described in the literature are obtained. Finally, two applications are considered: a description of optical birefringence under normal incidence and the study of negative refraction in uniaxial media.

  6. The Montessori Experiment in Rhode Island (1913-1940): Tracing Theory to Implementation over 25 Years

    Science.gov (United States)

    Zoll, Susan

    2017-01-01

    This article highlights archived documents pertaining to a 25-year experimental classroom implemented by Clara Craig, then supervisor of training at the Rhode Island Normal School. Craig is notable as she was the only participant in the first International Montessori Training Course in Rome, Italy, in 1913, to gain approval from the Rhode Island…

  7. Discrete curved ray-tracing method for radiative transfer in an absorbing-emitting semitransparent slab with variable spatial refractive index

    International Nuclear Information System (INIS)

    Liu, L.H.

    2004-01-01

    A discrete curved ray-tracing method is developed to analyze the radiative transfer in one-dimensional absorbing-emitting semitransparent slab with variable spatial refractive index. The curved ray trajectory is locally treated as straight line and the complicated and time-consuming computation of ray trajectory is cut down. A problem of radiative equilibrium with linear variable spatial refractive index is taken as an example to examine the accuracy of the proposed method. The temperature distributions are determined by the proposed method and compared with the data in references, which are obtained by other different methods. The results show that the discrete curved ray-tracing method has a good accuracy in solving the radiative transfer in one-dimensional semitransparent slab with variable spatial refractive index

  8. Strong disk winds traced throughout outbursts in black-hole X-ray binaries.

    Science.gov (United States)

    Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  9. Strong disk winds traced throughout outbursts in black-hole X-ray binaries

    Science.gov (United States)

    Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.

    2018-02-01

    Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.

  10. Streaming Model Based Volume Ray Casting Implementation for Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Jusub Kim

    2009-01-01

    Full Text Available Interactive high quality volume rendering is becoming increasingly more important as the amount of more complex volumetric data steadily grows. While a number of volumetric rendering techniques have been widely used, ray casting has been recognized as an effective approach for generating high quality visualization. However, for most users, the use of ray casting has been limited to datasets that are very small because of its high demands on computational power and memory bandwidth. However the recent introduction of the Cell Broadband Engine (Cell B.E. processor, which consists of 9 heterogeneous cores designed to handle extremely demanding computations with large streams of data, provides an opportunity to put the ray casting into practical use. In this paper, we introduce an efficient parallel implementation of volume ray casting on the Cell B.E. The implementation is designed to take full advantage of the computational power and memory bandwidth of the Cell B.E. using an intricate orchestration of the ray casting computation on the available heterogeneous resources. Specifically, we introduce streaming model based schemes and techniques to efficiently implement acceleration techniques for ray casting on Cell B.E. In addition to ensuring effective SIMD utilization, our method provides two key benefits: there is no cost for empty space skipping and there is no memory bottleneck on moving volumetric data for processing. Our experimental results show that we can interactively render practical datasets on a single Cell B.E. processor.

  11. Algorithms and interface for ocean acoustic ray-tracing (Developed in MATLAB)

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Rao, M.M.M.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.

    of refraction with respect to the appropriate coordinate. Eqns. (13) are the generalized form of Snell’s law. Let us consider the sound propagation problem in two dimension in x-z plane (see Fig. A1). Then along the ray path 10 ?cos?dsdx and ?sin... starting of the profile. ‘x’ indicates the range of the profile with reference to the previous profile File should contain two sets of profiles. (i) Range Independent – In this case the profile should be repeated twice (ii) Range Dependent...

  12. Old traces, read anew - 'The Reading Hermit' painting in the light of X-ray fluorescence

    OpenAIRE

    Seim, C.; Laurenze-Landsberg, C.; Schröder-Smeibidl, B.; Mantouvalou, I.; Boer, C. de; Kanngießer, B.

    2014-01-01

    There exist several very similar looking versions of the painting ‘The Reading Hermit’, all allegedly painted by Rembrandt Harmenszoon van Rijn (approx. in ∼1630 A.D., Leiden). The classification of Rembrandt's paintings, which were produced by Rembrandt himself, in his academy by his students and the ones being mere copies is a crucial and difficult task. We gathered background evidence and performed elemental analyses by non-destructive micro-X-ray fluorescence (micro-XRF) in order to eluci...

  13. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.

    Science.gov (United States)

    Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2015-08-18

    An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.

  14. Quantitative analysis of selected minor and trace elements through use of a computerized automatic x-ray spectrograph

    International Nuclear Information System (INIS)

    Fabbi, B.P.; Elsheimer, H.N.; Espos, L.F.

    1976-01-01

    Upgrading a manual X-ray spectrograph, interfacing with an 8K computer, and employment of interelement correction programs have resulted in a several-fold increase in productivity for routine quantitative analysis and an accompanying decrease in operator bias both in measurement procedures and in calculations. Factors such as dead time and self-absorption also are now computer corrected, resulting in improved accuracy. All conditions of analysis except for the X-ray tube voltage are controlled by the computer, which enhances precision of analysis. Elemental intensities are corrected for matrix effects, and from these the percent concentrations are calculated and printed via teletype. Interelement correction programs utilizing multiple linear regression are employed for the determination of the following minor and trace elements: K, S, Rb, Sr, Y, and Zr in silicate rocks, and Ba, As, Sb, and Zn in both silicate and carbonate rock samples. The last named elements use the same regression curves for both rock types. All these elements are determined in concentrations generally ranging from 0.0025 percent to 4.00 percent. The sensitivities obtainable range from 0.0001 percent for barium to 0.001 percent for antimony. The accuracy, as measured by the percent relative error for a variety of silicate and carbonate rocks, is on the order of 1-7 percent. The exception is yttrium

  15. Solar Ray Tracing Analysis to Determine Energy Availability in a CPC Designed for Use as a Residential Water Heater

    Directory of Open Access Journals (Sweden)

    Miguel Terrón-Hernández

    2018-01-01

    Full Text Available Compound parabolic concentrators are relevant systems used in solar thermal technology. With adequate tailoring, they can be used as an efficient and low-cost alternative in residential water heating applications. This work presents a simulation study using a ray tracing analysis. With this technique, we simulate the interaction between solar rays and solar concentrator to quantify the amount of energy that impinges on the receiver at a particular time. Energy availability is evaluated in a comparison of two configurations throughout the year: static setup at 21° and multi-position setup; tilted with respect to the horizontal, depending on three seasonal positions: 0° for summer, 16° for spring/autumn, and 32° for winter, with the aim to evaluate the amount of available energy in each season. The fact that a tracking system can be dispensed with also represents an economical option for the proposed application. The results showed that at 21°, the proposed solar Compound Parabolic Concentrator (CPC works satisfactorily; however, by carrying out the selected angular adjustments, the overall energy availability increased by 22%, resulting in a more efficient option. The most effective design was also built and analyzed outdoors. The obtained thermal efficiency was of ~43%. The optical design and its evaluation developed herein proved to be a valuable tool for prototype design and performance evaluation.

  16. Quantitative schemes in energy dispersive X-ray fluorescence implemented in AXIL

    International Nuclear Information System (INIS)

    Tchantchane, A.; Benamar, M.A.; Tobbeche, S.

    1995-01-01

    E.D.X.R.F (Energy Dispersive X-ray Fluorescence) has long been used for quantitative analysis of many types of samples including environment samples. the software package AXIL (Analysis of x-ray spectra by iterative least quares) is extensively used for the spectra analysis and the quantification of x-ray spectra. It includes several methods of quantitative schemes for evaluating element concentrations. We present the general theory behind each scheme implemented into the software package. The spectra of the performance of each of these quantitative schemes. We have also investigated their performance relative to the uncertainties in the experimental parameters and sample description

  17. Automated energy-dispersive x-ray determination of trace elements in stream sediments

    International Nuclear Information System (INIS)

    Hansel, J.M.; Martell, C.J.

    1977-01-01

    Nickel, copper, tungsten, lead, bismuth, niobium, silver, cadmium, and tin are determined in stream sediments using a computer-controlled energy-dispersive x-ray fluorescence system. The system consists of an automatic 20-position sample changer, a silicon lithium-drifted detector, a pulsed molybdenum transmission-target x-ray tube, a multichannel analyzer, and a minicomputer. Samples are analyzed as minus 325-mesh powders. A computer program positions the samples, unfolds overlapping peaks, determines peak intensities for each element, and calculates the ratio of the intensity of each peak to that of the molybdenum Kα Compton peak. Concentrations of each element are then calculated using equations obtained by analyzing prepared standards. Detection limits range from 5 ppM for silver, cadmium, lead, and bismuth to 20 ppM for niobium. The relative standard is 10 percent or less at the 100-ppM level and 20 percent at the 20-ppM level. Samples can be analyzed at the rate of sixty per day

  18. VizieR Online Data Catalog: RefleX : X-ray-tracing code (Paltani+, 2017)

    Science.gov (United States)

    Paltani, S.; Ricci, C.

    2017-11-01

    We provide here the RefleX executable, for both Linux and MacOSX, together with the User Manual and example script file and output file Running (for instance): reflex_linux will produce the file reflex.out Note that the results may differ slightly depending on the OS, because of slight differences in some implementations numerical computations. The difference are scientifically meaningless. (5 data files).

  19. Simulating an extreme over-the-horizon optical propagation event over Lake Michigan using a coupled mesoscale modeling and ray tracing framework

    NARCIS (Netherlands)

    Basu, S.

    2017-01-01

    Accurate simulation and forecasting of over-the-horizon propagation events are essential for various civilian and defense applications. We demonstrate the prowess of a newly proposed coupled mesoscale modeling and ray tracing framework in reproducing such an event. Wherever possible, routinely

  20. Technical Note : A direct ray-tracing method to compute integral depth dose in pencil beam proton radiography with a multilayer ionization chamber

    NARCIS (Netherlands)

    Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois

    2016-01-01

    Purpose: To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Methods: Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45x45 mm(2) field-of-view) of 9x9 spots capable

  1. Estimation of viscoelastic attenuation of real seismic data by use of ray tracing software: Application to the detection of gas hydrates and free gas

    Czech Academy of Sciences Publication Activity Database

    Bouchaala, Fateh; Guennou, C.

    2012-01-01

    Roč. 344, č. 2 (2012), s. 57-66 ISSN 1631-0713 Institutional research plan: CEZ:AV0Z30120515 Keywords : viscoelastic attenuation * gas hydrates * free gas * ray tracing Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.401, year: 2012

  2. Determination of trace metals in nuclear-grade uranium dioxide by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Salvador, V.L.R.; Imakuma, K.

    1988-04-01

    A method is described for the simultaneous determination of low concentrations of Ca, Cr, Cu, Fe, Mn and Ni in nuclear-grade uranium dioxide by X-ray fluorescence spectrometry, without the use of chemical treatment. The lower limits of detection range from 2 μg g -1 for nickel and manganese to 5 μg g -1 for copper. Samples are prepared in the form of double-layer pellets with boric acid as a binding agent. Standards are prepared in a U 3 O 8 matrix, which is more chemically stable than UO 2 and has similar matrix behaviour. The correlation coefficients for calibration curves are better than 0.999. Erros range from 2.4 % for chromium to 6.8 % for nickel. (author) [pt

  3. Determination of trace element levels in leaves of Nerium oleander using X-Ray Fluorescence

    International Nuclear Information System (INIS)

    Santos, Ramon S.; Sanches, Francis A.C.R.A.; Neves, Arthur O.P.; Oliveira, Luis F.; Oliveira, Davi F.; Anjos, Marcelino J.

    2013-01-01

    The environmental pollution by human activity has been one of the most concerns in the last years, principally due to rapid urban growth in the cities and the industrialization process. The air pollution can be increased due to several different kinds of emissions: urban traffic, industrial activities, burning fuel, civil industry of construction/demolition, fires and natural phenomena. Many of these emissions move from long distances due to convections currents and finally tend to deposit mainly in the plants leaves and in the soil. Thus, the plants leaves works as a natural sampler by the emissions deposit in these ones. In this study Nerium oleander leaves were used to measure the environmental pollutions levels in different sampling urban regions in the city of Rio de Janeiro/RJ: Andarai, Benfica, Bonsucesso, Caju, Engenho de Dentro, Engenho Novo, Estacio, Grajau, Inhauma, Lins, Maracana, Maria da Graca, Meier, Praca da Bandeira, Riachuelo, Rio Comprido, Sao Cristovao, Tijuca, Vila Isabel and city Center. The control samples were collected in Campo Grande near of Parque Nacional da Pedra Branca/RJ (National Park of Pedra Branca/RJ). The leaves were collected from adult plants and after the collection the samples were cleaned and placed in the greenhouse for drying, then were mashed and pressed into tablets forms. The analyses were performed using the energy dispersion X-ray fluorescence (EDXRF), developed on the own laboratory and based in a SiPIN detector and a mini X ray tube. It was possible to detect 16 elements in the analyzed samples: K, Ca, Cr, Mn, Fe, Cu, Zn, Br, Rb, Sr, Ba and Pb. The results shows that, in the studied areas, the analysis of the Nerium oleander plant shows a low-cost option and with a substantial efficiency as an environmental pollution biomonitor. (author)

  4. Determination of trace element levels in leaves of Nerium oleander using X-Ray Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ramon S.; Sanches, Francis A.C.R.A.; Neves, Arthur O.P.; Oliveira, Luis F.; Oliveira, Davi F.; Anjos, Marcelino J. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica Armando Dias Tavares. Dept. de Fisica Aplicada e Termodinamica

    2013-07-01

    The environmental pollution by human activity has been one of the most concerns in the last years, principally due to rapid urban growth in the cities and the industrialization process. The air pollution can be increased due to several different kinds of emissions: urban traffic, industrial activities, burning fuel, civil industry of construction/demolition, fires and natural phenomena. Many of these emissions move from long distances due to convections currents and finally tend to deposit mainly in the plants leaves and in the soil. Thus, the plants leaves works as a natural sampler by the emissions deposit in these ones. In this study Nerium oleander leaves were used to measure the environmental pollutions levels in different sampling urban regions in the city of Rio de Janeiro/RJ: Andarai, Benfica, Bonsucesso, Caju, Engenho de Dentro, Engenho Novo, Estacio, Grajau, Inhauma, Lins, Maracana, Maria da Graca, Meier, Praca da Bandeira, Riachuelo, Rio Comprido, Sao Cristovao, Tijuca, Vila Isabel and city Center. The control samples were collected in Campo Grande near of Parque Nacional da Pedra Branca/RJ (National Park of Pedra Branca/RJ). The leaves were collected from adult plants and after the collection the samples were cleaned and placed in the greenhouse for drying, then were mashed and pressed into tablets forms. The analyses were performed using the energy dispersion X-ray fluorescence (EDXRF), developed on the own laboratory and based in a SiPIN detector and a mini X ray tube. It was possible to detect 16 elements in the analyzed samples: K, Ca, Cr, Mn, Fe, Cu, Zn, Br, Rb, Sr, Ba and Pb. The results shows that, in the studied areas, the analysis of the Nerium oleander plant shows a low-cost option and with a substantial efficiency as an environmental pollution biomonitor. (author)

  5. Vapor phase treatment–total reflection X-ray fluorescence for trace elemental analysis of silicon wafer surface

    International Nuclear Information System (INIS)

    Takahara, Hikari; Mori, Yoshihiro; Shibata, Harumi; Shimazaki, Ayako; Shabani, Mohammad B.; Yamagami, Motoyuki; Yabumoto, Norikuni; Nishihagi, Kazuo; Gohshi, Yohichi

    2013-01-01

    Vapor phase treatment (VPT) was under investigation by the International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) to improve the detection limit of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis of silicon wafers. Round robin test results have confirmed that TXRF intensity increased by VPT for intentional contamination with 5 × 10 9 and 5 × 10 10 atoms/cm 2 Fe and Ni. The magnification of intensity enhancement varied greatly (1.2–4.7 in VPT factor) among the participating laboratories, though reproducible results could be obtained for average of mapping measurement. SEM observation results showed that various features, sizes, and surface densities of particles formed on the wafer after VPT. The particle morphology seems to have some impact on the VPT efficiency. High resolution SEM observation revealed that a certain number of dots with SiO 2 , silicate and/or carbon gathered to form a particle and heavy metals, Ni and Fe in this study were segregated on it. The amount and shape of the residue should be important to control VPT factor. - Highlights: • This paper presents a summary of study results of VPT–TXRF using ISO/TC201/WG2. • Our goal is to analyze the trace metallic contamination on silicon wafer with concentrations below 1 × 10 10 atoms/cm 2 . • The efficiency and mechanism of VPT are discussed under several round robin tests and systematic studies

  6. Determination of trace element and heavy metal in black tea and tea leaves using x-ray fluorescence

    International Nuclear Information System (INIS)

    Salih, Mohamed Abualgasim Abdalhakam

    2016-08-01

    The aim of this study was to provide information about the trace element and heavy metals concentrations in black tea and tea leaves. 23 different samples were collected from the Sudanese local market. The collected samples were characterized as the most common used items in Sudan. The concentration of trace and heavy elements were determined using x-ray fluorescence (X RF) technique. The standard reference materials (IAEA-V-10) and hay (powder) were used to evaluate the accuracy of the analytical result. The measured values were found in agreement with the certified values. The elements determined were K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Br, Rb, and Sr. The average concentration of the elements is black tea were 2277.43, 7245.71, 1.11, 1025.29, 334.29, 6.88, 11.24, 9.47, 1.02, 7.08, 97.4 and 63.21 respectively while the average concentration of the elements in leaves tea were 2644.44, 8805.56, 1.02, 571.81, 295.44, 6.19, 10.69, 9.26, 0.91, 13.42, 63.03 and 67.14 respectively. The results showed an increase in the concentration of some elements such as calcium, chromium, manganese, iron, nickel, copper, zinc, bromine, rubidium and strontium (22500, 6.75, 48.9, 194, 4.37, 9,77, 24.9, 8.23, 7.79, 40,9) ppm respectively compared to certified values. Correlation between concentration of certain element and cluster analysis were preformed and the results compared with values of literature and the concentrations of some elements found to be similar.(Author)

  7. Comparison of the results for quality implementation of low energy X rays

    International Nuclear Information System (INIS)

    Affonseca, M; Ochoa, R; Almeida, C.E. de; Peixoto, J.G.

    2001-01-01

    It describes the comparison of the results for qualities implementation of low energy X rays, using a pan tak tube, HF 160, which has tungsten white, beryllium window, is water-cooled and it has a 160 K B generator [es

  8. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Arindam Pal

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for 2×2 MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  9. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Directory of Open Access Journals (Sweden)

    Pal Arindam

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  10. Elemental trace analysis of hepatomas and normal tissues by proton induced x-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju; Shishido, Fumio; Sera, Koichiro; Sato, Tachio; Morita, Tasuku.

    1977-01-01

    Specimens taken from liver, brain, serum and ascites hepatoma 130 in rats, were bombarded with 3.5 MeV protons accelerated by a Van de graaff generator, and the induced x-ray fluorescence was analysed with a Si(Li) detector. Absolute concentrations were determined with reference to a known concentration of uranium in the specimen. Small amounts of Ga, Yb and Tl which are known as metals having tumor affinity were injected into rats implanted with ascites hepatoma and several of its derivatives. Twenty-four hours after injection, liver, brain, serum and hepatoma were removed from the rats and these specimens were analysed by the same method. Relative concentrations of Fe, Cu, Zn and Br in liver, brain, serum and hepatoma specimens showed characteristic patterns. Patterns of liver and ascites hepatoma were quite similar, but the total amount of metals in liver was greater. The serum contained a large quantity of Br. Each AH 130 tumor cell line and its derivatives showed a different accumulation rate for Ga, Yb and Tl. Tl accumulated peculiarly in the brain. There was excellent co-relation between the concentrations of the elements and the biological characteristics of the tumor. (Evans, J.)

  11. X-ray ordinance (RoeV) with regulations for implementation

    International Nuclear Information System (INIS)

    Bischof, W.

    1977-01-01

    The commentary contains, along with an introduction, a detailed survey of the implementation regulations issued by the Bundeslaender, and in those instances where individual regulations are commented upon, information is also given on which authority or institution is responsible for the administrative tasks in the various Laender according to the X-ray Ordinance. Special attention is paid to the application of X-rays in medicine (sections 20 through 29 RoeV), taking into consideration the recommendations of the ICRP. In the annex to the commentary, all guidelines for implementing the X-ray Ordinance, issued by the Federal Ministry for Youth, Family, and Health and the Federal Ministry for Labour and Social Affairs up to this date, are presented with their full wording. (orig./HP) [de

  12. Optimizing heliostat positions with local search metaheuristics using a ray tracing optical model

    Science.gov (United States)

    Reinholz, Andreas; Husenbeth, Christof; Schwarzbözl, Peter; Buck, Reiner

    2017-06-01

    The life cycle costs of solar tower power plants are mainly determined by the investment costs of its construction. Significant parts of these investment costs are used for the heliostat field. Therefore, an optimized placement of the heliostats gaining the maximal annual power production has a direct impact on the life cycle costs revenue ratio. We present a two level local search method implemented in MATLAB utilizing the Monte Carlo raytracing software STRAL [1] for the evaluation of the annual power output for a specific weighted annual time scheme. The algorithm was applied to a solar tower power plant (PS10) with 624 heliostats. Compared to former work of Buck [2], we were able to improve both runtime of the algorithm and quality of the output solutions significantly. Using the same environment for both algorithms, we were able to reach Buck's best solution with a speed up factor of about 20.

  13. Adaptation and implementation of the TRACE code for transient analysis on designs of cooled lead fast reactors; Adaptacion y aplicacion del codigo TRACE para el analisis de transitorios en disenos de reactores rapidos refrigerados por plomo

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2014-07-01

    The article describes the changes implemented in the TRACE code to include thermodynamic tables of liquid lead drawn from experimental results. He then explains the process for developing a thermohydraulic model for the prototype ALFRED and analysis of a selection of representative transient conducted within the framework of international research projects. The study demonstrates the applicability of TRACE code to simulate designs of cooled lead fast reactors and exposes the high safety margins are there in this technology to accommodate the most severe transients identified in their security study. (Author)

  14. Science Planning Implementation and Challenges for the ExoMars Trace Gas Orbiter

    Science.gov (United States)

    Ashman, Mike; Cardesin Moinelo, Alejandro; Frew, David; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Muñoz, Michela; Nespoli, Federico

    2018-05-01

    The ExoMars Science Operations Centre (SOC) is located at ESA's European Space Astronomy Centre (ESAC) in Madrid, Spain and is responsible for coordinating the science planning activities for TGO in order to optimize the scientific return of the mission. The SOC constructs, in accordance with Science Working Team (SWT) science priorities, and in coordination with the PI science teams and ESA's Mission Operations Centre (MOC), a plan of scientific observations and delivers conflict free operational products for uplink and execution on-board. To achieve this, the SOC employs a planning concept based on Long, Medium and Short Term planning cycles. Long Term planning covers mission segments of several months and is conducted many months prior to execution. Its goal is to establish a feasible science observation strategy given the science priorities and the expected mission profile. Medium Term planning covers a 1 month mission segment and is conducted from 3 to 2 months prior to execution whilst Short Term planning covers a 1 week segment and is conducted from 2 weeks to 1 week prior to execution. The goals of Medium and Short Term planning are to operationally instantiate and validate the Long Term plan such that the SOC may deliver to MOC a conflict free spacecraft pointing profile request (a Medium Term planning deliverable), and the final instrument telecommanding products (a Short Term planning deliverable) such that the science plan is achieved and all operational constraints are met. With a 2 hour-400km science orbit, the vast number of solar occultation, nadir measurement, and surface imaging opportunities, combined with additional mission constraints such as the necessary provision of TGO communication slots to support the ExoMars 2020 Rover & Surface Platform mission and NASA surface assets, creates a science planning task of considerable magnitude and complexity. In this paper, we detail how the SOC is developing and implementing the necessary planning

  15. [Rapid determination of major and trace elements in the salt lake clay minerals by X-ray fluorescence spectrometry].

    Science.gov (United States)

    Wang, Xiao-Huan; Meng, Qing-Fen; Dong, Ya-Ping; Chen, Mei-Da; Li, Wu

    2010-03-01

    A rapid multi-element analysis method for clay mineral samples was described. This method utilized a polarized wave-length dispersive X-ray fluorescence spectrometer--Axios PW4400, which had a maximum tube power of 4 000 watts. The method was developed for the determination of As, Mn, Co, Cu, Cr, Dy, Ga, Mo, P, Pb, Rb, S, Sr, Ni, ,Cs, Ta, Th, Ti, U, V, Y, Zn, Zr, MgO, K2O, Na2O, CaO, Fe2O3, Al2O3, SiO2 and so on. Thirty elements in clay mineral species were measured by X-ray fluorescence spectrometry with pressed powder pellets. Spectral interferences, in particular the indirect interferences of each element, were studied. A method to distinguish the interference between each other periodic elements in element periodic table was put forward. The measuring conditions and existence were mainly investigated, and the selected background position as well as corrected spectral overlap for the trace elements were also discussed. It was found that the indirect spectral overlap line was the same important as direct spectral overlap line. Due to inducing the effect of indirect spectral overlap, some elements jlike Bi, Sn, W which do not need analysis were also added to the elements channel. The relative standard deviation (RSD) was in the range of 0.01% to 5.45% except three elements Mo, Cs and Ta. The detection limits, precisions and accuracies for most elements using this method can meet the requirements of sample analysis in clay mineral species.

  16. μX-ray fluorescence analysis of traces and calcium phosphate phases on tooth-tartar interfaces using synchrotron radiation

    International Nuclear Information System (INIS)

    Abraham, J.A.; Grenon, M.S.; Sanchez, H.J.; Valentinuzzi, M.C.; Perez, C.A.

    2007-01-01

    Hard dental tissues like dentine and cementum with calcified deposits (dental calculi) were studied in several human dental pieces of adult individuals from the same geographic region. A couple of cross cuts were performed at dental root level resulting in a planar slice with calculus and dental tissue exposed for analysis. The elemental content along a linear path crossing the dentine-cementum-tartar interfaces and also all over a surface was measured by X-ray fluorescence microanalysis using synchrotron radiation (μSRXRF). The concentration of elemental traces like K, V, Cu, Zn, As, Br and Sr showed different features on the analyzed regions. The possible connections with the dynamic of mineralization and biological implications are discussed. The concentrations of major elements Ca and P were also determined and the measured Ca/P molar ratio was used to estimate the average composition of calcium phosphate phases in the measured points. A deeper knowledge of the variations of the elemental compositions and the changes of the different phases will help to a better understanding of the scarcely known mechanism of calculus growing

  17. Spectrophotometric study of Saturn's main rings by means of Monte Carlo ray-tracing and Hapke's theory

    Science.gov (United States)

    Ciarniello, Mauro; Filacchione, Gianrico; D'Aversa, Emiliano; Cuzzi, Jeffrey N.; Capaccioni, Fabrizio; Hedman, Matthew M.; Dalle Ore, Cristina M.; Nicholson, Philip D.; Clark, Roger Nelson; Brown, Robert H.; Cerroni, Priscilla; Spilker, Linda

    2017-10-01

    This work is devoted to the investigation of the spectrophotometric properties of Saturn's rings from Cassini-VIMS (Visible and Infrared Mapping Spectrometer) observations. The dataset used for this analysis is represented by ten radial spectrograms of the rings which have been derived in Filacchione et al. (2014) by radial mosaics produced by VIMS. Spectrograms report the measured radiance factor of the main Saturn's rings as a function of both radial distance (from 73.500 to 141.375 km) and wavelength (0.35-5.1 µm) for different observation geometries (phase angle ranging in the 1.9°-132.2° interval). We take advantage of a Monte Carlo ray-tracing routine to characterize the photometric behavior of the rings at each wavelength and derive the spectral Bond albedo of rings particles. This quantity is used to infer the composition of the regolith covering rings particles by applying Hapke's theory. Four different regions, characterized by different optical depths, and respectively located in the C ring, inner B ring, mid B ring and A ring, have been investigated. Results from spectral modeling indicate that rings spectrum can be described by water ice with minimal inclusion of organic materials (tholin, exogenous material, which is more effective in the less dense regions of the rings because of their lower content of pure water ice.

  18. Ray-tracing traveltime tomography versus wave-equation traveltime inversion for near-surface seismic land data

    KAUST Repository

    Fu, Lei

    2017-05-11

    Full-waveform inversion of land seismic data tends to get stuck in a local minimum associated with the waveform misfit function. This problem can be partly mitigated by using an initial velocity model that is close to the true velocity model. This initial starting model can be obtained by inverting traveltimes with ray-tracing traveltime tomography (RT) or wave-equation traveltime (WT) inversion. We have found that WT can provide a more accurate tomogram than RT by inverting the first-arrival traveltimes, and empirical tests suggest that RT is more sensitive to the additive noise in the input data than WT. We present two examples of applying WT and RT to land seismic data acquired in western Saudi Arabia. One of the seismic experiments investigated the water-table depth, and the other one attempted to detect the location of a buried fault. The seismic land data were inverted by WT and RT to generate the P-velocity tomograms, from which we can clearly identify the water table depth along the seismic survey line in the first example and the fault location in the second example.

  19. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model

    Institute of Scientific and Technical Information of China (English)

    Feng Zhang; Ning-Ning Zhang; Yi Zhang; Sen Yan; Song Sun; Jun Bao; Chen Gao

    2017-01-01

    Luminescent solar concentrators (LSC) can reduce the area of solar cells by collecting light from a large area and concentrating the captured light onto relatively small area photovoltaic (PV) cells,and thereby reducing the cost of PV electricity generation.LSCs with bottom-facing cells (BMP-LSC) can collect both direct light and indirect light,so further improving the efficiency of the PV cells.However,it is hard to analyze the effect of each parameter by experiment because there are too many parameters involved in the BMP-LSC.In this paper,all the physical processes of the light transmission and collection in the BMP-LSC were analyzed.A three-dimensional Monte Carlo ray tracing program was developed to study the transmission of photons in the LSC.A larger-size LSC was simulated,and the effects of dye concentration,the LSC thickness,the cell area,and the cell distance were systematically analyzed.

  20. Study of Propagation Mechanisms in Dynamical Railway Environment to Reduce Computation Time of 3D Ray Tracing Simulator

    Directory of Open Access Journals (Sweden)

    Siham Hairoud

    2013-01-01

    Full Text Available In order to better assess the behaviours of the propagation channel in a confined environment such as a railway tunnel for subway application, we present an optimization method for a deterministic channel simulator based on 3D ray tracing associated to the geometrical optics laws and the uniform theory of diffraction. This tool requires a detailed description of the environment. Thus, the complexity of this model is directly bound to the complexity of the environment and specifically to the number of facets that compose it. In this paper, we propose an algorithm to identify facets that have no significant impact on the wave propagation. This allows us to simplify the description of the geometry of the modelled environment by removing them and by this way, to reduce the complexity of our model and therefore its computation time. A comparative study between full and simplified environment is led and shows the impact of this proposed method on the characteristic parameters of the propagation channel. Thus computation time obtained from the simplified environment is 6 times lower than the one of the full model without significant degradation of simulation accuracy.

  1. Radiation characteristics of water droplets in a fire-inspired environment: A Monte Carlo ray tracing study

    Science.gov (United States)

    Wu, Bifen; Zhao, Xinyu

    2018-06-01

    The effects of radiation of water mists in a fire-inspired environment are numerically investigated for different complexities of radiative media in a three-dimensional cubic enclosure. A Monte Carlo ray tracing (MCRT) method is employed to solve the radiative transfer equation (RTE). The anisotropic scattering behaviors of water mists are modeled by a combination of the Mie theory and the Henyey-Greestein relation. A tabulation method considering the size and wavelength dependencies is established for water droplets, to reduce the computational cost associated with the evaluation of the nongray spectral properties of water mists. Validation and verification of the coupled MCRT solver are performed using a one-dimensional slab with gray gas in comparison with the analytical solutions. Parametric studies are then performed using a three-dimensional cubic box to examine radiation of two monodispersed and one polydispersed water mist systems. The tabulation method can reduce the computational cost by a factor of one hundred. Results obtained without any scattering model better conform with results obtained from the anisotropic model than the isotropic scattering model, when a highly directional emissive source is applied. For isotropic emissive sources, isotropic and anisotropic scattering models predict comparable results. The addition of different volume fractions of soot shows that soot may have a negative impact on the effectiveness of water mists in absorbing radiation when its volume fraction exceeds certain threshold.

  2. Dose distributions of a proton beam for eye tumor therapy: Hybrid pencil-beam ray-tracing calculations

    International Nuclear Information System (INIS)

    Rethfeldt, Ch.; Fuchs, H.; Gardey, K.-U.

    2006-01-01

    For the case of eye tumor therapy with protons, improvements are introduced compared to the standard dose calculation which implies straight-line optics and the constant-density assumption for the eye and its surrounding. The progress consists of (i) taking account of the lateral scattering of the protons in tissue by folding the entrance fluence distribution with the pencil beam distribution widening with growing depth in the tissue, (ii) rescaling the spread-out Bragg peak dose distribution in water with the radiological path length calculated voxel by voxel on ray traces through a realistic density matrix for the treatment geometry, yielding a trajectory dependence of the geometrical range. Distributions calculated for some specific situations are compared to measurements and/or standard calculations, and differences to the latter are discussed with respect to the requirements of therapy planning. The most pronounced changes appear for wedges placed in front of the eye, causing additional widening of the lateral falloff. The more accurate prediction of the dose dependence at the field borders is of interest with respect to side effects in the risk organs of the eye

  3. Dibenzylammonium and sodium dibenzyldithiocarbamates as precipitants for preconcentration of trace elements in water for analysis by energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Moore, R.V.

    1982-01-01

    Precipitation with combined dibenzylammonium dibenzyldithiocarbamate and sodium dibenzyldithiocarbamate at pH 5.0 can be used to separate 22 trace elements from water. Membrane filtration of the precipitate yielded a thin sample, suitable for analysis by energy dispersive X-ray fluorescence spectrometry. Alkalis, alkaline earths, lanthanides, and halides were not precipitated, permitting a clean separation of trace elements from the macro constituents of drinking water and drinking water supplies. Methods are given for preparation of reagents of higher purity than previously described

  4. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    Science.gov (United States)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  5. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    Energy Technology Data Exchange (ETDEWEB)

    Smieska, Louisa M.; Woll, Arthur R. [Cornell High Energy Synchrotron Source, Wilson Laboratory, Ithaca, NY (United States); Mullett, Ruth [Cornell University, Medieval Studies Program, Ithaca, NY (United States); Ferri, Laurent [Cornell University, Cornell Library Rare and Manuscript Collections, Ithaca, NY (United States)

    2017-07-15

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment. (orig.)

  6. Spin dynamics modeling in the AGS based on a stepwise ray-tracing method

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, Yann [Univ. of Grenoble (France)

    2006-08-07

    The AGS provides a polarized proton beam to RHIC. The beam is accelerated in the AGS from Gγ= 4.5 to Gγ = 45.5 and the polarization transmission is critical to the RHIC spin program. In the recent years, various systems were implemented to improve the AGS polarization transmission. These upgrades include the double partial snakes configuration and the tune jumps system. However, 100% polarization transmission through the AGS acceleration cycle is not yet reached. The current efficiency of the polarization transmission is estimated to be around 85% in typical running conditions. Understanding the sources of depolarization in the AGS is critical to improve the AGS polarized proton performances. The complexity of beam and spin dynamics, which is in part due to the specialized Siberian snake magnets, drove a strong interest for original methods of simulations. For that, the Zgoubi code, capable of direct particle and spin tracking through field maps, was here used to model the AGS. A model of the AGS using the Zgoubi code was developed and interfaced with the current system through a simple command: the AgsFromSnapRampCmd. Interfacing with the machine control system allows for fast modelization using actual machine parameters. Those developments allowed the model to realistically reproduce the optics of the AGS along the acceleration ramp. Additional developments on the Zgoubi code, as well as on post-processing and pre-processing tools, granted long term multiturn beam tracking capabilities: the tracking of realistic beams along the complete AGS acceleration cycle. Beam multiturn tracking simulations in the AGS, using realistic beam and machine parameters, provided a unique insight into the mechanisms behind the evolution of the beam emittance and polarization during the acceleration cycle. Post-processing softwares were developed to allow the representation of the relevant quantities from the Zgoubi simulations data. The Zgoubi simulations proved particularly

  7. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    International Nuclear Information System (INIS)

    Kolkoori, Sanjeevareddy

    2014-01-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  8. Quantitative evaluation of ultrasonic wave propagation in inhomogeneous anisotropic austenitic welds using 3D ray tracing method. Numerical and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Kolkoori, Sanjeevareddy

    2014-07-01

    Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non-destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austenitic weld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. The ultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb's reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase

  9. A study of accumulation of trace metals in coffee plants grown on ultisols fertilized with rock phosphates by energy dispersive x-ray fluorescence (EDXRF) technique

    International Nuclear Information System (INIS)

    Joseph, Daisy; Lal, Madan; D'Souza, T.J.

    1995-01-01

    Trace elements in soil and leaves of coffee plants have been analysed by a non-destructive Energy Dispersive X-ray Fluorescence (EDXRF) technique to study their accumulation due to repeated rock phosphate fertilization. Analysis of standard reference materials of soil and leaves through EDXRF yielded values within 5% error of the certified values. This method was therefore used to determine the trace metals (Fe, Cu, Zn, Rb, Sr, Nb, Zr and Y) concentrations of soils, rock phosphates and leaves of coffee grown in experimental ultisols. Results indicate that rock phosphate fertilization over a period of 10 years did not contribute significantly to high trace metal concentration in plants. (author). 6 refs., 5 tabs., 5 figs

  10. Implementing an X-ray validation pipeline for the Protein Data Bank

    International Nuclear Information System (INIS)

    Gore, Swanand; Velankar, Sameer; Kleywegt, Gerard J.

    2012-01-01

    The implementation of a validation pipeline, based on community recommendations, for future depositions of X-ray crystal structures in the Protein Data Bank is described. There is an increasing realisation that the quality of the biomacromolecular structures deposited in the Protein Data Bank (PDB) archive needs to be assessed critically using established and powerful validation methods. The Worldwide Protein Data Bank (wwPDB) organization has convened several Validation Task Forces (VTFs) to advise on the methods and standards that should be used to validate all of the entries already in the PDB as well as all structures that will be deposited in the future. The recommendations of the X-ray VTF are currently being implemented in a software pipeline. Here, ongoing work on this pipeline is briefly described as well as ways in which validation-related information could be presented to users of structural data

  11. Implementing an X-ray validation pipeline for the Protein Data Bank

    Energy Technology Data Exchange (ETDEWEB)

    Gore, Swanand; Velankar, Sameer; Kleywegt, Gerard J., E-mail: gerard@ebi.ac.uk [EMBL–EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom)

    2012-04-01

    The implementation of a validation pipeline, based on community recommendations, for future depositions of X-ray crystal structures in the Protein Data Bank is described. There is an increasing realisation that the quality of the biomacromolecular structures deposited in the Protein Data Bank (PDB) archive needs to be assessed critically using established and powerful validation methods. The Worldwide Protein Data Bank (wwPDB) organization has convened several Validation Task Forces (VTFs) to advise on the methods and standards that should be used to validate all of the entries already in the PDB as well as all structures that will be deposited in the future. The recommendations of the X-ray VTF are currently being implemented in a software pipeline. Here, ongoing work on this pipeline is briefly described as well as ways in which validation-related information could be presented to users of structural data.

  12. The determination of the C, N, O and trace element content of Triticum aestivum by activation analysis, X-ray excitation and mass spectrometry

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Dahn, E.; Dietze, H.J.; Freyer, K.; Geisler, M.; Hartmann, G.; Jung, K.; Schelhorn, H.

    1979-01-01

    The results of determinations of the C, N, O and trace element content of grains, sprouts and leaves of Triticum aestivum by means of various methods of activation analysis, X-ray excitation and mass spectrometry are presented. The C and O contents were determined by X-ray excitation; the O, N, P and Si contents were measured by NAA with 14-MeV neutrons, and the trace elements were determined by NAA with thermal neutrons. A mass-spectrometric survey analysis confirmed the results obtained by NAA. The use of neutron-induced nuclear reactions together with autoradiography enabled a representative picture to be formed of the spatial distribution in two dimensions of 14 N in biological specimens. (author)

  13. Ray-tracing techniques to assess the electromagnetic field radiated by radio base stations: Application and experimental validation in an urban environment

    International Nuclear Information System (INIS)

    Adda, S.; Anglesio, L.; D'Amore, G.; Mantovan, M.; Menegolli, M.

    2004-01-01

    This paper aims to validate a ray-tracing model for electromagnetic field calculation, which is used in urban environments to predict irradiation from radio base stations for population exposure evaluation. Validation was carried out through a measurement campaign by choosing measurement points in order to test different propagation environments and analysing broadcast control channels through narrow band measurements. Comparison of the calculated and measured fields indicates that the ray-tracing model used calculates electric field with good accuracy, in spite of the fact that the propagation environment is not described in detail, because of difficulties in modelling the geometrical and electrical characteristics of urban areas. Differences between the calculated and measured results remain below 1.5 dB, with a mean value of 1 dB. (authors)

  14. Biological X-ray absorption spectroscopy (BioXAS): a valuable tool for the study of trace elements in the life sciences.

    Science.gov (United States)

    Strange, Richard W; Feiters, Martin C

    2008-10-01

    Using X-ray absorption spectroscopy (XAS) the binding modes (type and number of ligands, distances and geometry) and oxidation states of metals and other trace elements in crystalline as well as non-crystalline samples can be revealed. The method may be applied to biological systems as a 'stand-alone' technique, but it is particularly powerful when used alongside other X-ray and spectroscopic techniques and computational approaches. In this review, we highlight how biological XAS is being used in concert with crystallography, spectroscopy and computational chemistry to study metalloproteins in crystals, and report recent applications on relatively rare trace elements utilised by living organisms and metals involved in neurodegenerative diseases.

  15. Advanced 3D tools used in reverse engineering and ray tracing simulation of phased array inspection of turbine components with complex geometry

    International Nuclear Information System (INIS)

    Daks, W.; Kovacshazy, C.; Mair, D.; Ciorau, P.

    2002-01-01

    This paper outlines the practical aspects of reverse engineering and the integration of multiple pieces of software (Drafting, CNC Machining, Ray Tracing, Inspection Simulation Scenario and Phased Array UT Analysis), in order to inspect turbine components comprised of complex geometry. The CNC software, Mastercam, and design software, CADKEY/FastSURF, were used to validate the phased-array automated and manual inspection of blade root, rotor steeples and disk-blade rim attachment. The integration of a 3D part in the software engine, Imagine 3D and SimScan, as well as Tomoview analysis (specimen feature) is based on CADKEY Developer Kit - IGES/SAT file format. A generic Ray Tracing simulation for multi-probe beam was integrated into Imagine 3D. Representative examples of reference blocks and mock-ups, UT simulation and phased-array data comparison are presented. (author)

  16. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.

    Science.gov (United States)

    Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V

    2014-05-06

    The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).

  17. Efficient Time-Domain Ray-Tracing Technique for the Analysis of Ultra-Wideband Indoor Environments including Lossy Materials and Multiple Effects

    Directory of Open Access Journals (Sweden)

    F. Saez de Adana

    2009-01-01

    Full Text Available This paper presents an efficient application of the Time-Domain Uniform Theory of Diffraction (TD-UTD for the analysis of Ultra-Wideband (UWB mobile communications for indoor environments. The classical TD-UTD formulation is modified to include the contribution of lossy materials and multiple-ray interactions with the environment. The electromagnetic analysis is combined with a ray-tracing acceleration technique to treat realistic and complex environments. The validity of this method is tested with measurements performed inside the Polytechnic building of the University of Alcala and shows good performance of the model for the analysis of UWB propagation.

  18. Combined Application of QEM-SEM and Hard X-ray Microscopy to Determine Mineralogical Associations and Chemcial Speciation of Trace Metals

    Energy Technology Data Exchange (ETDEWEB)

    M Grafe; M Landers; R Tappero; P Austin; B Gan; A Grabsch; C Klauber

    2011-12-31

    We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e.g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mXANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mXANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure.

  19. Contribution of a 3D ray tracing model in a complex medium to the localization of infra-sound sources

    International Nuclear Information System (INIS)

    Mialle, Pierrick

    2007-01-01

    Localisation of infra-sound sources is a difficult task due to large propagation distances at stake and because of the atmospheric complexity. In order to resolve this problem, one can seek as many necessary information as the comprehension of wave propagation, the role and influence of the atmosphere and its spatio-temporal variations, the knowledge of sources and detection parameters, but also the configuration of the stations and their global spreading. Two methods based on the construction of propagation tables depending on station, date and time are introduced. Those tables require a long range propagation tool to simulate the propagation through a complex medium, which are carried out by WASP-3D Sph a 3D paraxial ray tracing based-theory tool integrating both amplitude estimation and horizontal wind fields in space and time. Tables are centered on the receptor. They describe spatial variations of the main observation parameters and offer a snapshot of the atmospheric propagation depending on the range for every simulated phase. For each path, celerity, azimuth deviation, attenuation and return altitude are predicted and allow building the tables. The latter help to identify detected phases and are integrated in an accurate localization procedure. The procedure is tested on three case study, such as the explosion of gas-pipeline in Belgium 2004 near Ghislenghien, the explosion of a military facility in 2007 in Novaky, Slovakia and the explosion of the Buncefield oil depot in 2005 in the United Kingdom, where event specificities, propagation parameters and used configurations are introduced. The accuracy and optimization of the localization are discussed. A validation study is presented regarding International Monitoring System stations along a meridian - I18DK (Greenland, Denmark), I51UK (Bermuda, United Kingdom), I25FR (Guyane, France), I08BO (La Paz, Bolivia), I01AR (Paso Flores, Argentina), I02AR (Ushuaia, Argentina), I54US (Antarctica, U.S.A.) - to

  20. Ocular aberrations with ray tracing and Shack-Hartmann wave-front sensors: Does polarization play a role?

    Science.gov (United States)

    Marcos, Susana; Diaz-Santana, Luis; Llorente, Lourdes; Dainty, Chris

    2002-06-01

    Ocular aberrations were measured in 71 eyes by using two reflectometric aberrometers, employing laser ray tracing (LRT) (60 eyes) and a Shack-Hartmann wave-front sensor (S-H) (11 eyes). In both techniques a point source is imaged on the retina (through different pupil positions in the LRT or a single position in the S-H). The aberrations are estimated by measuring the deviations of the retinal spot from the reference as the pupil is sampled (in LRT) or the deviations of a wave front as it emerges from the eye by means of a lenslet array (in the S-H). In this paper we studied the effect of different polarization configurations in the aberration measurements, including linearly polarized light and circularly polarized light in the illuminating channel and sampling light in the crossed or parallel orientations. In addition, completely depolarized light in the imaging channel was obtained from retinal lipofuscin autofluorescence. The intensity distribution of the retinal spots as a function of entry (for LRT) or exit pupil (for S-H) depends on the polarization configuration. These intensity patterns show bright corners and a dark area at the pupil center for crossed polarization, an approximately Gaussian distribution for parallel polarization and a homogeneous distribution for the autofluorescence case. However, the measured aberrations are independent of the polarization states. These results indicate that the differences in retardation across the pupil imposed by corneal birefringence do not produce significant phase delays compared with those produced by aberrations, at least within the accuracy of these techniques. In addition, differences in the recorded aerial images due to changes in polarization do not affect the aberration measurements in these reflectometric aberrometers.

  1. Collision probability in two-dimensional lattice by ray-trace method and its applications to cell calculations

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-03-01

    A series of formulations to evaluate collision probability for multi-region cells expressed by either of three one-dimensional coordinate systems (plane, sphere and cylinder) or by the general two-dimensional cylindrical coordinate system is presented. They are expressed in a suitable form to have a common numerical process named ''Ray-Trace'' method. Applications of the collision probability method to two optional treatments for the resonance absorption are presented. One is a modified table-look-up method based on the intermediate resonance approximation, and the other is a rigorous method to calculate the resonance absorption in a multi-region cell in which nearly continuous energy spectra of the resonance neutron range can be solved and interaction effect between different resonance nuclides can be evaluated. Two works on resonance absorption in a doubly heterogeneous system with grain structure are presented. First, the effect of a random distribution of particles embedded in graphite diluent on the resonance integral is studied. Next, the ''Accretion'' method proposed by Leslie and Jonsson to define the collision probability in a doubly heterogeneous system is applied to evaluate the resonance absorption in coated particles dispersed in fuel pellet of the HTGR. Several optional models are proposed to define the collision rates in the medium with the microscopic heterogeneity. By making use of the collision probability method developed by the present study, the JAERI thermal reactor standard nuclear design code system SRAC has been developed. Results of several benchmark tests for the SRAC are presented. The analyses of critical experiments of the SHE, DCA, and FNR show good agreement of critical masses with their experimental values. (J.P.N.)

  2. A graphics-card implementation of Monte-Carlo simulations for cosmic-ray transport

    Science.gov (United States)

    Tautz, R. C.

    2016-05-01

    A graphics card implementation of a test-particle simulation code is presented that is based on the CUDA extension of the C/C++ programming language. The original CPU version has been developed for the calculation of cosmic-ray diffusion coefficients in artificial Kolmogorov-type turbulence. In the new implementation, the magnetic turbulence generation, which is the most time-consuming part, is separated from the particle transport and is performed on a graphics card. In this article, the modification of the basic approach of integrating test particle trajectories to employ the SIMD (single instruction, multiple data) model is presented and verified. The efficiency of the new code is tested and several language-specific accelerating factors are discussed. For the example of isotropic magnetostatic turbulence, sample results are shown and a comparison to the results of the CPU implementation is performed.

  3. A Pipelining Implementation for Parsing X-ray Diffraction Source Data and Removing the Background Noise

    International Nuclear Information System (INIS)

    Bauer, Michael A; Biem, Alain; McIntyre, Stewart; Xie Yuzhen

    2010-01-01

    Synchrotrons can be used to generate X-rays in order to probe materials at the atomic level. One approach is to use X-ray diffraction (XRD) to do this. The data from an XRD experiment consists of a sequence of digital image files which for a single scan could consist of hundreds or even thousands of digital images. Existing analysis software processes these images individually sequentially and is usually used after the experiment is completed. The results from an XRD detector can be thought of as a sequence of images, generated during the scan by the X-ray beam. If these images could be analyzed in near real-time, the results could be sent to the researcher running the experiment and used to improve the overall experimental process and results. In this paper, we report on a stream processing application to remove background from XRD images using a pipelining implementation. We describe our implementation techniques of using IBM Infosphere Streams for parsing XRD source data and removing the background. We present experimental results showing the super-linear speedup attained over a purely sequential version of the algorithm on a quad-core machine. These results demonstrate the potential of making good use of multi-cores for high-performance stream processing of XRD images.

  4. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  5. Design and implemention of a multi-functional x-ray computed tomography system

    Science.gov (United States)

    Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin; Zhang, Xiang; Deng, Lin; Chen, Siyu; Jin, Zhao; Li, Zengguang

    2015-10-01

    A powerful volume X-ray tomography system has been designed and constructed to provide an universal tool for the three-dimensional nondestructive testing and investigation of industrial components, automotive, electronics, aerospace components, new materials, etc. The combined system is equipped with two commercial X-ray sources, sharing one flat panel detector of 400mm×400mm. The standard focus 450kV high-energy x-ray source is optimized for complex and high density components such as castings, engine blocks and turbine blades. And the microfocus 225kV x-ray source is to meet the demands of micro-resolution characterization applications. Thus the system's penetration capability allows to scan large objects up to 200mm thick dense materials, and the resolution capability can meet the demands of 20μm microstructure inspection. A high precision 6-axis manipulator system is fitted, capable of offset scanning mode in large field of view requirements. All the components are housed in a room with barium sulphate cement. On the other hand, the presented system expands the scope of applications such as dual energy research and testing. In this paper, the design and implemention of the flexible system is described, as well as the preliminary tomographic imaging results of an automobile engine block.

  6. Direct determination of trace elements in boron nitride powders by slurry sampling total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Amberger, Martin A.; Hoeltig, Michael; Broekaert, Jose A.C.

    2010-01-01

    The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL -1 . As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL -1 of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 μg g -1 for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al 2 O 3 , powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective samples over a

  7. Direct determination of trace elements in boron nitride powders by slurry sampling total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Amberger, Martin A.; Hoeltig, Michael [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C., E-mail: jose.broekaert@chemie.uni-hamburg.d [University of Hamburg, Institute for Inorganic and Applied Chemistry, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2010-02-15

    The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL{sup -1}. As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL{sup -1} of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 mug g{sup -1} for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al{sub 2}O{sub 3}, powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective

  8. Implementation trial of high performance trace analysis/environmental sampling (HPTA/ES) in uranium centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Nackaerts, H.; Kloeckner, W.; Landresse, G.; MacLean, F.; Betti, M.; Forcina, V.; Hiernaut, T.; Tamborini, G.; Koch, L.; Schenkel, R.

    1999-01-01

    Field trials have demonstrated that the analysis of particles upon swipes obtained from inside nuclear installations provides clear signatures of past operations in that installation. This can offer a valuable tool for gaining assurance regarding the compliance with declared activities and the absence of undeclared activities (e.g. enrichment, reprocessing, and reactor operation) at such sites. This method, known as 'Environmental Sampling' (ES) or 'High Performance Trace Analysis' (HPTA) in EURATOM terminology, is at present being evaluated by the EURATOM Safeguards Directorate (ESD) in order to assess its possible use in nuclear installations within the European Union. It is expected that incorporation of HPTA/ES of sample collection and analysis into routine inspection activities will allow EURATOM to improve the effectiveness of safeguards in these installations and hopefully save inspection resources as well. The EURATOM Safeguards Directorate has therefore performed implementation trials involving the collection of particles by the so-called swipe sampling method in uranium centrifuge enrichment plants and hot cells in the European Union. These samples were subsequently analysed by the Joint Research Centre, Institute for Transuranium Elements (ITU) in Karlsruhe. Sampling points were chosen on the basis of the activities performed in the vicinity and by considering the possible ways through which particles are released, diffused and transported. The aim was to test the efficiency of the method as regards: the collection of enough representative material; the identification of a large enough number of uranium particles; the accurate measurement of the enrichment of the uranium particles found on the swipe; the representativity of the results in respect of past activities in the plant; the capability of detecting whether highly enriched uranium has been produced, used or occasionally transported in a location where low enriched uranium is routinely produced in

  9. Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: considerations for sample preparation and measurement conditions.

    Science.gov (United States)

    Parsons, Chris; Margui Grabulosa, Eva; Pili, Eric; Floor, Geerke H; Roman-Ross, Gabriela; Charlet, Laurent

    2013-11-15

    Recent technological improvements have led to the widespread adoption of field portable energy dispersive X-ray fluorescence (FP-XRF) by governmental agencies, environmental consultancies and research institutions. FP-XRF units often include analysis modes specifically designed for the quantification of trace elements in soils. Using these modes, X-ray tube based FP-XRF units can offer almost "point and shoot" ease of use and results comparable to those of laboratory based instruments. Nevertheless, FP-XRF analysis is sensitive to spectral interferences as well as physical and chemical matrix effects which can result in decreased precision and accuracy. In this study, an X-ray tube-based FP-XRF analyser was used to determine trace (low ppm) concentrations of As in a floodplain soil. The effect of different sample preparation and analysis conditions on precision and accuracy were systematically evaluated. We propose strategies to minimise sources of error and maximise data precision and accuracy, achieving in situ limits of detection and precision of 6.8 ppm and 14.4%RSD, respectively for arsenic. We demonstrate that soil moisture, even in relatively dry soils, dramatically affects analytical performance with a signal loss of 37% recorded for arsenic at 20 wt% soil moisture relative to dry soil. We also highlight the importance of the use of certified reference materials and independent measurement methods to ensure accurate correction of field values. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. DNA barcoding of Mobulid Ray Gill Rakers for Implementing CITES on Elasmobranch in China.

    Science.gov (United States)

    Zeng, Yan; Wu, Zhongze; Zhang, Chunguang; Meng, Zhibin; Jiang, Zhigang; Zhang, Jie

    2016-11-23

    The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) has been counted on for conserving threatened marine fish since it regulates the commercial international trade of these species. Implementation of the international treaty for Mantas included on CITES Appendix II is challenging due to insufficient information on species identification and markets management. To fill the gap in such aspects, we identified five species of Mobulid rays (Mobula spps. and Manta spp) by using COI and NADH2 mtDNA markers in dried ray gill rakers from Chinese markets, namely, Mobula japonica (representing 54.8% of the sample set), M. tarapacana (14.4%), M. kuhlii (13.3%), M. thurstoni (6.4%), along with Manta birostris (11.2%; CITES Appendix II). The utilization and conservation statuses of these species were discussed. Based on combination of DNA barcodes and key morphological characters, we developed a three-step process for identifying the gill rakers of Mobulid rays which has been adopted by frontline enforcement in China. We hope that our work can serve as a foundation and basis to reinforce objectives of international treaties, regulation of consumer-driven markets, regional cooperation, and national fishery management on endangered elasmobranchs in China as well as related countries.

  11. Implementation and outcomes of an active defaulter tracing system for HIV, prevention of mother to child transmission of HIV (PMTCT), and TB patients in Kibera, Nairobi, Kenya.

    Science.gov (United States)

    Thomson, Kerry A; Cheti, Erastus O; Reid, Tony

    2011-06-01

    Retention of patients in long term care and adherence to treatment regimens are a constant challenge for HIV, prevention of mother to child transmission of HIV (PMTCT), and TB programmes in sub-Saharan Africa. This study describes the implementation and outcomes of an active defaulter tracing system used to reduce loss to follow-up (LTFU) among HIV, PMTCT, TB, and HIV/TB co-infected patients receiving treatment at three Médecins Sans Frontières clinics in the informal settlement of Kibera, Nairobi, Kenya. Patients are routinely contacted by a social worker via telephone, in-person visit, or both very soon after they miss an appointment. Patient outcomes identified through 1066 tracing activities conducted between 1 April 2008 and 31 March 2009 included: 59.4% returned to the clinic, 9.0% unable to return to clinic, 6.3% died, 4.7% refused to return to clinic, 4.5% went to a different clinic, and 0.8% were hospitalized. Fifteen percent of patients identified for tracing could not be contacted. LTFU among all HIV patients decreased from 21.2% in 2006 to 11.5% in 2009. An active defaulter tracing system is feasible in a resource poor setting, solicits feedback from patients, retains a mobile population of patients in care, and reduces LTFU among HIV, PMTCT, and TB patients. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  12. Implementation of a patient dose monitoring system in conventional digital X-ray imaging: initial experiences

    Energy Technology Data Exchange (ETDEWEB)

    Heilmaier, Christina; Zuber, Niklaus; Weishaupt, Dominik [Stadtspital Triemli Zurich, Department of Radiology and Nuclear Medicine, Zurich (Switzerland)

    2017-03-15

    The purpose was to report on the initial experience after implementation of a patient dose-monitoring system in conventional X-ray imaging. A dose-monitoring system collected dose data relating to different radiographs (one projection) and studies (two or more projections). Images were acquired on digital X-ray systems equipped with flat-panel detectors. During period 1, examinations were performed in a routine fashion in 12,614 patients. After period 1, technical modifications were performed and radiographers underwent training in radiation protection. During period 2, examinations were performed in 14,514 patients, and the radiographers were advised to read dose data after each radiograph/study. Dose data were compared by means of kerma area product (KAP, gray x centimetre squared) and entrance surface air kerma (ESAK, milligray). During period 1, 13,955 radiographs and 8,466 studies were performed, and in period 2 16,090 radiographs and 10,389 studies. In period 2, KAP values for radiographs were an average of 25 % lower and for studies 7 % lower, and ESAK values for radiographs were 24 % lower and for studies 5 % lower. The reduction in KAP was significant in 8/13 radiographs and in 6/14 studies, and the reduction in ESAK was significant in 6/13 radiographs and 5/14 studies. Implementation of a patient dose-monitoring system in conventional X-ray imaging allows easy data collection, supports dose reduction efforts, and may increase radiographers' dose awareness. (orig.)

  13. The determination of trace quantities of thorium and uranium in thick ore samples by proton-induced x-ray emission

    International Nuclear Information System (INIS)

    Cohen, D.D.; Duerden, P.; Clayton, E.

    1979-07-01

    Proton-induced X-ray emission (PIXE) techniques have been used to estimate the concentrations of trace quantities of thorium and uranium in powdered rock and ore samples. Standards of known concentrations were prepared in a carbon matrix and the yields from these used to determine simultaneously the concentrations of thorium and uranium in the ore samples. The experimental detection limit of the technique was found to be 3 to 4 μg g -1 for a 100 μC irradiation. The appropriate matrix corrections for a carbon and ore matrix have been calculated for thick targets and taken into consideration

  14. Ray trace visualization of negative refraction of light in two-dimensional air-bridged silicon photonic crystal slabs at 1.55 microm.

    Science.gov (United States)

    Gan, Lin; Liu, Ya-Zhao; Li, Jiang-Yan; Zhang, Ze-Bo; Zhang, Dao-Zhong; Li, Zhi-Yuan

    2009-06-08

    We demonstrate design, fabrication, and ray trace observation of negative refraction of near-infrared light in a two-dimensional square lattice of air holes etched into an air-bridged silicon slab. Special surface morphologies are designed to reduce the impedance mismatch when light refracts from a homogeneous silicon slab into the photonic crystal slab. We clearly observed negative refraction of infrared light for TE-like modes in a broad wavelength range by using scanning near-field optical microscopy technology. The experimental results are in good agreement with finite-difference time-domain simulations. The results indicate the designed photonic crystal structure can serve as polarization beam splitter.

  15. Quantification of trace elements in protein bands by synchrotron radiation x-ray fluorescence after isoelectric focusing separation of human hemoglobin

    International Nuclear Information System (INIS)

    Gao Yuxi; Chen Chunying; Li Bai; He Wei; Huang Yuying; Chai Zhifang

    2005-01-01

    The role and effects of a trace element in a particular organism strongly depend on its particular chemical forms in which the element is present. Therefore, the bulk content or concentration of an element in the organism of interest is often meaningless in judging its biological significance. To understand bioavailability, transportation, cell uptake, metabolism, toxicity, and other biological behaviors of trace elements in the body, information is needed about speciation of trace element, especially about distribution of metal-containing proteins. Development of appropriate methods for speciation analysis is therefore required. Synchrotron radiation x-ray fluorescence (SRXRF) is a sensitive method for multielemental analysis with detection limit of 10 ng/g. It has been successfully used for imaging and quantifying trace elements in various pathological and healthy tissues, even in a single cell, to help understand the mechanism of diseases and the biochemistry of elements. In our previous work, the technique was combined with electrophoresis to study distribution of metalloproteins in biological samples, but the quantitative analysis of trace elements in protein bands after electrophoresis was still unrealized. In this study, a procedure has been proposed for quantification of Fe, Cu, and Zn in protein bands with SRXRF analysis after isoelectric focusing (IEF) separation. Calibration standards were prepared by adding certain amounts of metal ions and free-metal proteins to electrophoresis gel. Human hemoglobin was separated with IEF, and Fe, Cu, and Zn in protein bands were analyzed by SRXRF. The calibration curves can be obtained in a range of 0-8 mg/kg metals and a linear relationship between dosage of metals and fluorescent intensity can be observed (r 2 > 0.99). The method provides the detection limits of 2.43, 1.12, and 0.96 mg/kg for Fe, Cu and Zn, and the recoveries of 90.4 and 115.7 % for Fe and Zn, respectively. The hyphenated technique of SRXRF and IEF

  16. Studies of trace elements in biological systems by energy dispersive x-ray fluorescence (EDXRF) and proton induced x-ray emission (PIXE) methods

    International Nuclear Information System (INIS)

    Lal, Madan; Choudhury, R.K.

    1991-01-01

    Applicability of EDXRF and PIXE techniques for trace elemental analysis in biology and medicine is demonstrated. Due to increasing importance of the need to determine the role of essential and toxic trace elements in human health and disease, the method of PIXE analysis has assumed great importance in recent years. This method has been found to be particularly useful for biological samples. EDXRF also offers a complimentary method particularly in the range of elements of Z=45 to 60 where the sensitivity of PIXE analysis is not quite adequate. EDXRF can also be usefully employed for other elements of the periodic chart with relatively lesser sensitivity. The work being presented here includes trace element analysis of normal and cancer bearing tissues of Swiss mice, trace element profiles in cancerous human oesophageal tissues, investigations on the effect of toxic metals such as Hg from Ayurvedic drugs on Wister rats, and investigations of blood lead levels of children admitted to Sion Hospital from Dharavi slums of Bombay. The results of these investigations are presented and discussed. (author). 21 refs., 8 figs., 3 tabs

  17. Seasonal determination of trace and ultra-trace content in Macrocystis pyrifera from San Jorge Gulf (Patagonia) by Total Reflection X-ray Fluorescence

    Science.gov (United States)

    Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia

    2017-05-01

    Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.

  18. Upgrade of long trace profiler for characterization of high-precision X-ray mirrors at SPring-8

    International Nuclear Information System (INIS)

    Senba, Y.; Kishimoto, H.; Ohashi, H.; Yumoto, H.; Zeschke, T.; Siewert, F.; Goto, S.; Ishikawa, T.

    2010-01-01

    The long trace profiler (LTP) at SPring-8 has been upgraded to improve stability and resolution of slope measurement. The performances of the upgraded LTP at SPring-8 are presented by cross-checking measurements on a flat mirror with data obtained using Nanometer Optical Component Measuring Machine (NOM) at the Helmholtz Zentrum Berlin/BESSY-II.

  19. Application of neutron activation techniques and x-ray energy dispersion spectrometry, in analysis of metallic traces adsorbed by chelex-100 resin

    International Nuclear Information System (INIS)

    Fernandes, Jair C.; Amaral, Angela M.; Magalhaes, Jesus C.; Pereira, Jose S.J.; Silva, Juliana B. da; Auler, Lucia M.L.A.

    2000-01-01

    In this work, the authors have investigated optimal conditions of adsorption for several ion metallic groups (cations of heavy metals and transition metals, oxyanions metallics and metalloids and cations of rare earths), as traces (ppb), withdrawn and in mixture of groups, by chelex-100 resin. The experiments have been developed by bath techniques in ammonium acetate tamponade solution 40 mM pH 5,52 content 0,5 g of chelex-100 resin. After magnetic agitation for two hours, resins were dried and submitted to X-ray energy dispersion spectrometry, x-ray fluorescence spectrometry and neutron activation analysis. The results have demonstrated that chelex-100 resin adsorb quantitatively transition element groups and rare earth groups in two cases (withdrawn and simultaneously adsorption)

  20. Ray-Tracing-Based Modeling of Clad-Removed Step-Index Plastic Optical Fiber in Smart Textiles: Effect of Curvature in Plain Weave Fabric

    Directory of Open Access Journals (Sweden)

    Sun Hee Moon

    2018-01-01

    Full Text Available Plastic optical fiber was chosen for information delivery media in smart textile. Cladding layer was peeled off by chemical and mechanical methods to find optimal peeling conditions. Both radial side illumination and longitudinal end-tip illumination were measured for visible light of 627 µm wavelength. A half-cone-shaped jig was manufactured using 3D printing to give various curvature conditions to fibers. Also POFs were embedded in plain weave textile structure to measure the light dissipation effect. The waveguide phenomenon was modeled using discrete ray tracing technique and ray-to-interface collision detection algorithm. Results from the proposed modeling technique showed linear relationship with those from experiment.

  1. Assessment of trace element concentration distribution in human placenta by wavelength dispersive X-ray fluorescence: Effect of neonate weight and maternal age

    International Nuclear Information System (INIS)

    Ozdemir, Yueksel; Boerekci, Buenyamin; Levet, Aytac; Kurudirek, Murat

    2009-01-01

    Trace element status in human placenta is dependent on maternal-neonatal characteristics. This work was undertaken to investigate the correlation between essential trace element concentrations in the placenta and maternal-neonatal characteristics. Placenta samples were collected from total 61 healthy mothers at gestation between 37 and 41 weeks. These samples were investigated with the restriction that the mother's age was 20-40 years old and the neonate's weight was 1-4 kg. Percent concentrations of trace elements were determined using wavelength dispersive X-ray fluorescence (WDXRF). The placenta samples were prepared and analyzed without exposure to any chemical treatment. Concentrations of Fe, Cu and Zn in placenta tissues were found statistically to vary corresponding to the age of the mother and weight of the neonate. In the subjects, the concentration of Fe and Cu were increased in heavier neonates (p<0.05) and the concentration of Zn was increased with increasing mother age (p<0.05). Consequently, the Fe, Cu and Zn elements appear to have interactive connections in human placenta.

  2. Trace element determination in presolar SiC grains by synchrotron x-ray fluorescence: Commencement of a coordinated multimethod study

    International Nuclear Information System (INIS)

    Knight, K.B.; Sutton, S.R.; Newville, M.; Davis, A.M.; Dauphas, N.; Lewis, R.S.; Amari, S.; Steele, I.M.; Savina, M.R.; Pellin, M.J.

    2008-01-01

    We determined trace element compositions of individual ∼1-3 ?m presolar SiC grains from 6 KJG grains and 26 additionally cleaned KJG grains from the Murchison CM chondrite using nondestructive synchrotron X-ray fluorescence (SXRF). Presolar SiC grains are robust remnants of stellar matter ejected from stars. They survived processing in the early solar system and retain the nucleosynthetic fingerprints of their stellar progenitors. As such, they represent unique physical probes of the interiors of stars. Presolar SiC grains are commonly analyzed by mass spectrometric techniques that determine isotopic compositions and, to some degree, elemental concentrations. These techniques, however, are destructive, and can be subject to matrix effects. Elemental composition data on presolar grains remain scarce and affected by contamination and analytical artifacts. In addition, contamination has plagued isotopic characterization of some elements such as Mo and Ba. We determined trace element compositions of individual ∼1-3 (micro)m presolar SiC grains from the Murchison CM chondrite using nondestructive synchrotron X-ray fluorescence (SXRF). Samples included the KJG fraction, and a second KJG fraction that underwent additional cleaning. As every cleaning step results in some grain loss, one goal of this study was to justify additional cleaning of grains. Six KJG grains and 26 additionally cleaned KJG grains were analyzed, with location and identities of individual grains noted for future correlated isotopic study.

  3. Study of trace element correlations with drought tolerance in different sorghum genotypes using Energy Dispersive X-Rays Fluorescence (EDXRF) technique

    International Nuclear Information System (INIS)

    Abu Assar, A.H.; Joseph, Daisy; Choudhury, R.K.; Saxena, A.; Suprasanna, P.; Bapat, V.A.

    2000-01-01

    Drought tolerant and susceptible genotypes of sorghum plants were analysed by Energy Dispersive X-Ray Fluorescence (EDXRF) technique to study the correlation of trace elements with drought tolerance capacities for sorghum plants. Samples prepared from mature seeds, young seedlings and old plants were analyzed using 109 Cd radioisotope source and a Si(Li) semiconductor detector of resolution 170 eV for 5.9 keV Mn K α X-ray. The elements such as K, Fe, Cu, Zn, Rb and Sr and Y were seen to be present in varying concentrations in different samples. The trace element profile in the seeds of 11 genotypes and in seedlings (young and old) of four sorghum genotypes that were studied exhibited considerable variation in their concentrations. Some seed genotypes showed the presence of Hg in small amounts. It was observed that in most of the genotypes (seeds), K and Fe concentrations were more in the tolerant genotype as compared to the susceptible type. Concentration of Fe decreased with maturity in the tolerant group while it increased with maturity in the susceptible group. The genotype Arfa Gadamak (AG) showed a distinct abnormality in its young seedling with high level of Zn. (author)

  4. Implementing an X-ray validation pipeline for the Protein Data Bank.

    Science.gov (United States)

    Gore, Swanand; Velankar, Sameer; Kleywegt, Gerard J

    2012-04-01

    There is an increasing realisation that the quality of the biomacromolecular structures deposited in the Protein Data Bank (PDB) archive needs to be assessed critically using established and powerful validation methods. The Worldwide Protein Data Bank (wwPDB) organization has convened several Validation Task Forces (VTFs) to advise on the methods and standards that should be used to validate all of the entries already in the PDB as well as all structures that will be deposited in the future. The recommendations of the X-ray VTF are currently being implemented in a software pipeline. Here, ongoing work on this pipeline is briefly described as well as ways in which validation-related information could be presented to users of structural data.

  5. Implementation of a custom time-domain firmware trigger for RADAR-based cosmic ray detection

    Science.gov (United States)

    Prohira, S.; Besson, D.; Kunwar, S.; Ratzlaff, K.; Young, R.

    2018-05-01

    Interest in Radio-based detection schemes for ultra-high energy cosmic rays (UHECR) has surged in recent years, owing to the potentially very low cost/detection ratio. The method of radio-frequency (RF) scatter has been proposed as potentially the most economical detection technology. Though the first dedicated experiment to employ this method, the Telescope Array RADAR experiment (TARA) reported no signal, efforts to develop more robust and sensitive trigger techniques continue. This paper details the development of a time-domain firmware trigger that exploits characteristics of the expected scattered signal from an UHECR extensive-air shower (EAS). The improved sensitivity of this trigger is discussed, as well as implementation in two separate field deployments from 2016 to 2017.

  6. Study of the effect of some of the experimental parameters on the x-ray fluorescence determination of traces of hafnia in high purity zirconia

    International Nuclear Information System (INIS)

    Qurbani, J.M.; Khanna, P.P.; Agrawal, R.M.

    1974-01-01

    The effect of the following parameters : (i) analytical lines HfLsub(αsub(1)) or HfLsub(βsub(1,6)) or HfLsub(βsub(2)) (ii) detectors - scintillation or gas flow proportional (iii) collimators - fine or coarse (iv) x-ray tube voltage, current and power (v) order of diffraction : I or II of analysing crystal LiF (200), on the precision of the results and the sensitivity of the method in the x-ray fluorescence determination of traces of hafnia in high purity zirconia, has been studied. Philips semiautomatic x-ray spectrometer PW 1220 with associated equipment has been used. Synthetic standards containing HfO 2 in the range 20 ppm to 1 % in ZrO 2 , presented as double layer pellets have been used. LiF (200) analysing crystal, tungsten target x-ray tube, automatic pulse height selection and pulse height discrimination were used in all the cases. The set - 'HfLsub(βsub(1,6)) analytical line, fine collimator and gas flow proportional counter detector' - gave the best performance. (author)

  7. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    International Nuclear Information System (INIS)

    Kaniu, M.I.; Angeyo, K.H.; Mwala, A.K.; Mangala, M.J.

    2012-01-01

    Highlights: ► Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. ► The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. ► This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace ‘bioavailable’ macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using 109 Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R 2 > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g −1 for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors’ knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices.

  8. Trace metal analysis by laser ablation-inductively coupled plasmamass spectrometry and x-ray K-edge densitometry of forensic samples

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Jonna Elizabeth [Iowa State Univ., Ames, IA (United States)

    2016-10-25

    This dissertation describes a variety of studies on the determination of trace elements in samples with forensic importance. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine the trace element composition of numerous lipstick samples. Lipstick samples were determined to be homogeneous. Most lipstick samples of similar colors were readily distinguishable at a 95% confidence interval based on trace element composition. Numerous strands of a multi-strand speaker cable were analyzed by LA-ICP-MS. The strands in this study are spatially heterogeneous in trace element composition. In actual forensic applications, the possibility of spatial heterogeneity must be considered, especially in cases where only small samples (e.g., copper wire fragments after an explosion) are available. The effects of many unpredictable variables, such as weather, temperature, and human activity, on the retention of gunshot residue (GSR) around projectile wounds were assessed with LAICP- MS. Skin samples around gunshot and stab wounds and larvae feeding in and around the wounds on decomposing pig carcasses were analyzed for elements consistent with GSR (Sb, Pb, Ba, and Cu). These elements were detected at higher levels in skin and larvae samples around the gunshot wounds compared to the stab wounds for an extended period of time throughout decomposition in both a winter and summer study. After decomposition, radiographic images of the pig bones containing possible damage from bullets revealed metallic particles embedded within a number of bones. Metallic particles within the bones were analyzed with x-ray, K-edge densitometry and determined to contain lead, indicating that bullet residue can be retained throughout decomposition and detected within bones containing projectile trauma.

  9. Analysis of trace elements in ceramic prints on automobile glasses for forensic examination using high-energy synchrotron radiation x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Nishiwaki, Yoshinori; Takatsu, Masahisa; Miyamoto, Naoki; Watanabe, Seiya; Shimoda, Osamu; Muratsu, Seiji; Nakanishi, Toshio; Nakai, Izumi

    2007-01-01

    This study revealed that high-energy SRXRF (synchrotron radiation X-ray fluorescence spectrometry) utilizing 75.5 keV X-rays of SPring-8 is a powerful technique for trace elemental analysis of ceramic prints on automotive glasses for forensic examination. Fragments of 99 ceramic prints were collected from automobiles of various manufacturers, types and model years. Their major heavy element-components were found to be either Pb or Bi. Because of recent environment protection movement for lead-free material, there was a tendency of the shift of material from the Pb Type to the Bi Type with years of the production. A utilization of 75.5 keV X-rays as excitation source allowed us to detect trace heavy-elements, such as Sb, La, Ce, Hf and W, as well as relatively light-elements, such as V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr and Mo, in samples using K series of XRF emission lines. XRF intensities of these elements normalized by those of the major heavy-elements (Pb or Bi) became characteristic finger prints, showing the identity of each sample with a size of less than 0.5x0.5 mm 2 . The mean relative standard deviations of the normalized XRF intensities measured for the three fragments of each sample were less than 9.3%. These results show that the ceramic prints on automobile glasses contain rich elemental information for discrimination, and therefore the materials can be important evidence for practical forensic examinations. (author)

  10. Determination of trace elements in various kinds of bean by X-ray spectrometric techniques (1995-96)

    International Nuclear Information System (INIS)

    U Tin Maung Kyi; U Wai Zin Oo

    2001-01-01

    Various kinds of bean such as Peanut, Gram Whole, Black Eye Bean, Small Red Bean, Lab Lab Bean, Green Mung Bean, Filed Pea, Seasame Seed, Sultani, Maize, Butter Bean, Dolichos Lab Lab, Toor Whole, Small Yellow Bean, Cow Pea have been collected and analysed by EDXRF analysis for trace elements. The measurement system consists of a Cd-109 annual excitation source, a Si (Li) detector, H V power supply, a spectrometry amplifier, a multichannel analyser and a personal computer. The samples were prepared as pressed pellets and measured by Emission Transmission Technique. The accuracy was determined by analysing standard reference material, SOIL-7 form IAEA. (author)

  11. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    International Nuclear Information System (INIS)

    Baran, A.J.; Hesse, Evelyn; Sourdeval, Odran

    2017-01-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed. - Highlights: • A method of physical optics is shown to apply to size parameters as low as 18 in the mm and sub-mm-wave spectral regions. • Including ray tracing with diffraction on facets and diffraction at the cross-section of

  12. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT

    International Nuclear Information System (INIS)

    Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc

    2014-01-01

    The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called 'head wave' is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.

  13. Modelling of waves propagation on irregular surfaces using ray tracing and GTD approaches: Application to head waves simulation in TOFD inspections for NDT

    Science.gov (United States)

    Ferrand, Adrien; Darmon, Michel; Chatillon, Sylvain; Deschamps, Marc

    2014-04-01

    The Time of Flight Diffraction (TOFD) technique is a classical ultrasonic method used in ultrasonic non-destructive evaluation, which allows a precise positioning and a quantitative size evaluation of cracks in the inspected material. Among the typical phenomena arising in the current TOFD inspection, the so-called "head wave" is the first contribution reaching the receiver. The head wave propagation on a planar interface is well known and identified as a critical refraction taking place on the material surface. On irregular surfaces, it has been shown that the head wave results from the melting of surface and bulk waves mechanisms and that surface irregularities are responsible for numerous diffractions of the incident head wave. To simulate such behaviour, a model has been developed using a ray tracing technique based on time of flight minimization (generalized Fermat's principle). It enables the calculation of the ray path and the corresponding time of flight of all waves propagating in the material, including the head wave. To obtain a complete propagation model for these waves (both trajectory and amplitude), the integration of Geometrical Theory of Diffraction (GTD) models is currently performed by coupling them with the ray-based approach discussed above.

  14. Assessing Industry Business Practices in Implementing Radio Frequency Identification (RFID) in the Tracking and Tracing of Pharmaceuticals

    National Research Council Canada - National Science Library

    Gangadeen, Kevin E; Houston, Bernadette D

    2005-01-01

    ...) which was quite different from what was portrayed by the media. Our analysis of a few organizations will identify what market leaders do when considering the implementation of a new technology into its business practices...

  15. Energy-dispersive X-ray fluorescence analysis of traces of heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb, U) in mineral waters after separation on the cellulose-exchanger Hyphan

    International Nuclear Information System (INIS)

    Burba, P.; Lieser, K.H.

    1979-01-01

    Trace elements in mineral water are separated in small columns on the cellulose-exchanger Hyphan, eluted by diluted hydrochloric acid, bound on 100 mg of Hyphan by shaking and determined by energy-dispersive X-ray fluorescence. The following heavy metals can be analysed quantitatively if present in water in concentrations >= 1 ppb: Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb and U. Several commercial mineral waters, a sodium chloride spring and seawater were analyzed for trace elements. The results obtained by X-ray fluorescence and by atomic absorption agree within the limits of error. (orig.) [de

  16. Evaluation of light extraction efficiency for the light-emitting diodes based on the transfer matrix formalism and ray-tracing method

    Science.gov (United States)

    Pingbo, An; Li, Wang; Hongxi, Lu; Zhiguo, Yu; Lei, Liu; Xin, Xi; Lixia, Zhao; Junxi, Wang; Jinmin, Li

    2016-06-01

    The internal quantum efficiency (IQE) of the light-emitting diodes can be calculated by the ratio of the external quantum efficiency (EQE) and the light extraction efficiency (LEE). The EQE can be measured experimentally, but the LEE is difficult to calculate due to the complicated LED structures. In this work, a model was established to calculate the LEE by combining the transfer matrix formalism and an in-plane ray tracing method. With the calculated LEE, the IQE was determined and made a good agreement with that obtained by the ABC model and temperature-dependent photoluminescence method. The proposed method makes the determination of the IQE more practical and conventional. Project supported by the National Natural Science Foundation of China (Nos.11574306, 61334009), the China International Science and Technology Cooperation Program (No. 2014DFG62280), and the National High Technology Program of China (No. 2015AA03A101).

  17. The use of chelating ion exchanger in conjunction with radioisotope X-ray spectrometry for determination of trace amounts of metals in water

    International Nuclear Information System (INIS)

    Holynska, B.

    1974-01-01

    The chelating ion exchange resin Chelex-100 has been applied for collection of trace amounts of several metal ions from water solutions. The kinetics of the exchange reaction has been measured, as well as the influence of pH of the solution and Ca or Na ion concentrations on the metal collection. The radioisotope X-ray fluorescence method has been applied for determination of metal ions absorbed in the resin. The estimated limit of determination is 0.01 ppm for Fe 3+ , Zn 2+ , Cu 2+ , Hg 2+ , Pb 2+ and Cd 2+ . Total error (1 s) of the method varied from 3 to 15% depending on the metal concentration. (author)

  18. A global solution of the ICRH problem based on the combined use of a planar coupling model and hot-plasma ray-tracing in tokamak geometry

    International Nuclear Information System (INIS)

    Koch, R.; Bhatnagar, V.P.; Messiaen, A.M.; Eester, D. van

    1986-01-01

    The global solution of the theoretical problem of Ion Cyclotron Resonance Heating in tokamak plasmas is obtained by a subdivision of the problem into two simpler ones by virtue of the ''single pass absorption'' hypothesis. The coupling problem is solved in planar geometry, allowing computation of both the antenna electrical properties and the Radio-Frequency (RF) field distribution in the plasma facing the antenna. Starting from this field distribution, the initial conditions for ray-tracing are derived and the propagation and absorption of waves in the plasma bulk is solved in the geometric optics limit taking into account the full tokamak geometry and the kinetic wave description. In the minority heating, redistribution of the minority absorbed power to the other species is carred out using standard quasilinear theory. (orig.)

  19. The extended Beer-Lambert theory for ray tracing modeling of LED chip-scaled packaging application with multiple luminescence materials

    Science.gov (United States)

    Yuan, Cadmus C. A.

    2015-12-01

    Optical ray tracing modeling applied Beer-Lambert method in the single luminescence material system to model the white light pattern from blue LED light source. This paper extends such algorithm to a mixed multiple luminescence material system by introducing the equivalent excitation and emission spectrum of individual luminescence materials. The quantum efficiency numbers of individual material and self-absorption of the multiple luminescence material system are considered as well. By this combination, researchers are able to model the luminescence characteristics of LED chip-scaled packaging (CSP), which provides simple process steps and the freedom of the luminescence material geometrical dimension. The method will be first validated by the experimental results. Afterward, a further parametric investigation has been then conducted.

  20. Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.

    2006-01-01

    Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals (Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment

  1. Two-dimensional micro-beam imaging of trace elements in a single plankton measured by a synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Ezoe, Masako; Sasaki, Miho; Hokura, Akiko; Nakai, Izumi; Terada, Yasuko; Yoshinaga, Tatsuki; Tukamoto, Katsumi; Hagiwara, Atsushi

    2002-01-01

    Two-dimensional imaging and a quantitative analysis of trace elements in rotifer, Brachionus plicatilis, belonging to zooplankton, were carried out by a synchrotron radiation X-ray fluorescence analysis (SR-XRF). The XRF imaging revealed that female rotifers accumulated Fe and Zn in the digestive organ and Fe, Zn, Cu, and Ca in the sexual organs, while the Mn level was high in the head. From a quantitative analysis by inductively coupled plasma mass spectrometry (ICP-MS), we found that rotifers eat the chlorella and accumulate the above elements in the body. The result of quantitative analyses of Mn, Cu, and Zn by SR-XRF in a single sample is in fair agreement with the average values determined by ICP-MS analyses, which were obtained by measuring a large number of rotifers, digested by nitric acid. The present study has demonstrated that SR-XRF is an effective tool for the trace element analysis of a single individual of rotifer. (author)

  2. Two-dimensional micro-beam imaging of trace elements in a single plankton measured by a synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ezoe, Masako; Sasaki, Miho; Hokura, Akiko; Nakai, Izumi [Tokyo Univ. of Science, Faculty of Science, Tokyo (Japan); Terada, Yasuko [Japan Synchrotron Radiation Research Inst., Mikazuki, Hyogo (Japan); Yoshinaga, Tatsuki; Tukamoto, Katsumi [Tokyo Univ., Ocean Research Inst., Tokyo (Japan); Hagiwara, Atsushi [Nagasaki Univ., Graduate School of Science and Technology, Bunkyou, Nagasaki (Japan)

    2002-10-01

    Two-dimensional imaging and a quantitative analysis of trace elements in rotifer, Brachionus plicatilis, belonging to zooplankton, were carried out by a synchrotron radiation X-ray fluorescence analysis (SR-XRF). The XRF imaging revealed that female rotifers accumulated Fe and Zn in the digestive organ and Fe, Zn, Cu, and Ca in the sexual organs, while the Mn level was high in the head. From a quantitative analysis by inductively coupled plasma mass spectrometry (ICP-MS), we found that rotifers eat the chlorella and accumulate the above elements in the body. The result of quantitative analyses of Mn, Cu, and Zn by SR-XRF in a single sample is in fair agreement with the average values determined by ICP-MS analyses, which were obtained by measuring a large number of rotifers, digested by nitric acid. The present study has demonstrated that SR-XRF is an effective tool for the trace element analysis of a single individual of rotifer. (author)

  3. X-ray fluorescence analysis of high purity rare earth oxides for common trace rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Dixit, R.M.; Khanna, P.P.; Deshpande, S.S.; Machado, I.J.; Kapoor, S.K.

    1990-01-01

    Methods for the determination of individual trace common rare earth (RE) elements have been developed for fifteen RE oxide matrices viz. La 2 O 3 to Lu 2 O 3 and Y 2 O 3 . In general, for each matrix, two or three neighbouring elements on both sides of the matrix element are determined. The minimum determination limit (MDL) achieved is 0.002% for most of the elements. Special efforts were made to use a small amount of sample (as low as 400 mg) for the analysis by the use of double layer pellet technique and critical thickness studies. Practical experiences with 15 RE matrices, most of which are investigated for the first time, are discussed. Details of selection of instrumental parameters and analysis lines, precision and accuracy and preparation of samples and synthetic standards are given. Theoretical minimum detection limit (TMDL) for each analyte element is calculated in all the 15 matrices. (author). 50 tabs., 2 figs

  4. Trace element analysis of mineral and tap water samples using total reflection x-ray fluorescence (TXRF)

    International Nuclear Information System (INIS)

    Mangala, M.J.; Korir, K.A.; Maina, D.M.; Kinyua, A.M.

    2000-01-01

    Results of trace element analysis by TXRF of tap water and various brands of bottled mineral water samples which are representative of local and imported brands sold in Nairobi are reported. The variation in elemental concentrations in water samples analyzed were as follows: potassium (K) 0.2 to 28.9 μg/ml; calcium (Ca) 2.2 to 120 μg/ml; titanium (Ti) 11 to 60 μg/l; manganese (Mn) 8 to 670 μg/l; iron (Fe) 31 to 540 μg/l; copper (Cu) 8 to 30 μg/l; zinc (Zn) 8 to 4730 μg/l; bromine (Br) 9 to 248 μg/l; rubidium (Rb) 10 to 40 μg/l and strontium (Sr) 10 to 1000 μg/l. Local mineral water samples contain higher levels of trace elements; manganese (Mn), zinc (Zn), bromine (Br), rubidium (Rb) and strontium (Sr) as compared to the imported brands. Principal component analysis of the results revealed three component loading factors clusters for: rubidium (Rb), strontium (Sr) and calcium (Ca); titanium (Ti), iron (Fe), bromine (Br), and zinc (Zn); zinc (Zn), manganese (Mn) and potassium (K) respectively. The percentage of total variance explained by the components was 31.4, 27.3, and 14.8 respectively. In this study, we also found that a limited spread of 5-6 mm for a 10 μl sample was achieved when the quartz sample carrier was dried in a low pressure (300 mbar) oven at 70 o C for 10 hours. (author)

  5. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry.

    Science.gov (United States)

    Kaniu, M I; Angeyo, K H; Mwala, A K; Mangala, M J

    2012-06-04

    Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using (109)Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R(2)>0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g(-1) for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Application of proton induced x-ray emission (PIXE) in estimation of trace metals entrapped in silica matrix

    International Nuclear Information System (INIS)

    Jal, P.K.; Patel, Sabita; Mishra, B.K.; Sudarshan, M.; Saha, A.

    2005-01-01

    Proton induced x-ray emission technique is used for multielemental analysis of metal ions adsorbed on nanosilica surface. At pH 3.5, silica traps uranium selectively from a mixture of solutions of 13 different metal ions viz., K(I), Ca(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II). Ba(II), Hg(II) and UO 2 (VI). (author)

  7. Trace element analysis in geochemistry using a nuclear microprobe. Ionoluminescence and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Homman, P.

    1994-01-01

    In PIXE analysis of geological specimens based on X-ray detection with Si(Li) detectors, effects of detector tailing, pulse pileup, and gamma-ray production are pronounced. In this work the tailing effect has been addressed through characterization of the response function of a Si(Li) detector using an absorber technique. The pileup interval, in the pulse forming electronics of a PIXE detection system, has been improved to 100 ns X-ray energies above 8 keV by means of pulse shape analysis. Pulses due to tailing effects were also isolated but no major improvement was obtained. A means of reducing the increased background in the PIXE spectrum due to Compton scattering of high energetic gamma-rays in the Si(Li) crystal has been investigated by installation of an anti-Compton shield consisting of an organic scintillator mounted inside the detector cryostat and read out by a photomultiplier. Ionoluminescence, a new analytical technique for the nuclear microprobe, has shown to be a technique that can be employed as a fast diagnostic tool in imaging applications. The technique is based on analysis of the light that often can be observed when an ion beam impinges on a geological specimen. This light, luminescence, can often be associated with impurities in the crystal lattice or other structural defects. It can therefore be employed for revealing some chemical information about the specimens in contradiction to PIXE which is rather insensitive to chemical variations. The potential of the method is demonstrated and discussed both as an imaging tool and for spectroscopic studies. 19 refs, 10 figs

  8. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaniu, M.I., E-mail: ikaniu@uonbi.ac.ke [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Angeyo, K.H. [Department of Physics, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mwala, A.K. [Department of Land Resource Management and Agricultural Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mangala, M.J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya)

    2012-06-04

    Highlights: Black-Right-Pointing-Pointer Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. Black-Right-Pointing-Pointer The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. Black-Right-Pointing-Pointer This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using {sup 109}Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R{sup 2} > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 {mu}g g{sup -1} for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated

  9. Trace elemental analysis of leaching solutions of hijiki seaweeds by a portable total reflection X-ray fluorescence spectrometer

    International Nuclear Information System (INIS)

    Liu, Ying; Imashuku, Susumu; Kawai, Jun

    2014-01-01

    A portable total reflection X-ray fluorescence spectrometer (TXRF) was used to analyze leaching solutions of hijiki seaweeds. S, Cl, K, Ca, Ti, Fe, Ni, As and Br were detected in the solutions. Arsenic quantification results were compared to those from ICP-AES. The TXRF quantification results of arsenic were not significantly different from those of ICP-AES, as two-way analysis of variance (ANOVA) method was applied to the significance test. This kind of small and high sensitive TXRF spectrometer can be used in food quality and environmental pollution investigation. (author)

  10. Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations

    Science.gov (United States)

    Liu, Congliang; Kirchengast, Gottfried; Sun, Yueqiang; Zhang, Kefei; Norman, Robert; Schwaerz, Marc; Bai, Weihua; Du, Qifei; Li, Ying

    2018-04-01

    The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes, and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the higher-order residual ionospheric error (RIE) can still be significant, so it needs to be further mitigated for high-accuracy applications, especially from 35 km altitude upward, where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 µrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 µrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-ray-path analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects - where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity - and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are possible due to ionospheric asymmetries and, depending on prevailing horizontal refractivity gradients, are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper-stratospheric ones, likely due to

  11. Radioisotope x-ray fluorescence and neutron activation analyses of the trace element concentrations of the rainbow trout

    International Nuclear Information System (INIS)

    Akyuz, T.; Bassari, A.; Bolcal, C.; Sener, E.; Yildiz, M.; Kucer, R.; Kaplan, Z.; Dogan, G.; Akyuz, S.

    1999-01-01

    The muscles and livers of the ten rainbow trouts (Oncorhynchus mykiss; N, 1752) obtained from Sapanca, Aquaculture Facility of Aquatic Products Faculty, The University of Istanbul (Turkey), have been analysed quantitatively for some minor elements using the radioisotope energy dispersive X-ray fluorescence (EDXRF) and neutron activation analysis (NAA) methods. It was found that samples contain Na, K, Ca, Sc, Cs, Fe, Co, Cu, Zn, Se, Br, Rb, Sr, Au, La and Ce in different amounts. Comparison of the results with those of reference river fish samples indicated that agricultural rainbow trout samples from Sapanca region have higher Fe level. (author)

  12. Radioisotope X-ray fluorescence and neutron activation analyses of the trace element concentrations of the rainbow trout

    Science.gov (United States)

    Akyuz, T.; Bassari, A.; Bolcal, C.; Sener, E.; Yildiz, M.; Kucer, R.; Kaplan, Z.; Dogan, G.; Akyuz, S.

    1999-01-01

    The muscles and livers of the ten rainbow trouts ( Oncorhynchus mykiss; N, 1752) obtained from Sapanca, Aquaculture Facility of Aquatic Products Faculty, The University of Istanbul (Turkey), have been analysed quantitatively for some minor elements using the radioisotope energy dispersive X-ray fluorescence (EDXRF) and neutron activation analysis (NAA) methods. It was found that samples contain Na, K, Ca, Sc, Cs, Fe, Co, Cu, Zn, Se, Br, Rb, Sr, Au, La and Ce in different amounts. Comparison of the results with those of reference river fish samples indicated that agricultural rainbow trout samples from Sapanca region have higher Fe level.

  13. Worldwide Open Proficiency Test for X ray Fluorescence Laboratories PTXRFIAEA08: Determination of Minor and Trace Elements in Natural Soil

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA assists Member State laboratories to maintain their readiness by producing reference materials, developing standardized analytical methods, and conducting interlaboratory comparisons and proficiency tests as tools for quality control. To ensure a reliable, worldwide, rapid and consistent response, the IAEA Nuclear Spectrometry and Applications Laboratory organizes tests for Member State laboratories. This publication presents the results of the worldwide proficiency test PTXRFIAEA08 on the determination of minor and trace elements in natural soil. Methodologies, a data evaluation approach, a summary evaluation of each element and individual evaluation reports for each laboratory are also described. The test was carried out within the IAEA project Nuclear Spectrometry for Analytical Applications, under the Nuclear Science Programme. The main objective of the project was to enhance the capability of interested Member States in effective utilization of nuclear spectrometries and analytical services in industry, human health and agriculture, and in monitoring and evaluating environmental pollution. This proficiency test was designed to identify analytical problems and to support Member State laboratories in improving the quality of their analytical results, maintaining their accreditation and providing a regular forum for discussion and technology transfer in this area. The type of sample and the concentration levels of the analytes were designed to enable the identification of potential analytical problems

  14. Worldwide Open Proficiency Test for X Ray Fluorescence Laboratories PTXRFIAEA/06: Determination of Minor and Trace Elements in Grass Mixture

    International Nuclear Information System (INIS)

    2011-01-01

    The IAEA assists its Member States laboratories to maintain their readiness by producing reference materials, by developing standardized analytical methods, and by conducting interlaboratory comparisons and proficiency tests as tools for quality control. To ensure a reliable worldwide, rapid and consistent response, the IAEA Nuclear Spectrometry and Applications Laboratory in Seibersdorf, Austria organises tests. This summary report presents the results of the worldwide proficiency test IAEA-PTXRF-06 on the determination of minor and trace elements in a grass mixture. Methodologies, data evaluation approach, summary evaluation of each element and individual evaluation reports for each laboratory are also described. The test was carried out under IAEA Project 1.4.3.4 (D.3.03), Nuclear Spectrometry for Analytical Applications, under the Nuclear Science Programme. The main objective of this project is to enhance the capability of interested Member States in effective utilization of nuclear spectrometries and analytical services in industry, human health, agriculture, and in monitoring and evaluation of environmental pollution. This proficiency test was designed to identify analytical problems, to support IAEA Member States laboratories to improve the quality of their analytical results, to maintain their accreditation and to provide a regular forum for discussion and technology transfer in this area. The type of sample and the concentration levels of the analytes were designed in a way to enable identification of potential analytical problems. The next proficiency test exercise is expected to be organized in 2010

  15. Sulfur and trace metal relationships in nonurban and marine aerosols studied using proton induced X-ray emission

    International Nuclear Information System (INIS)

    Winchester, J.W.

    1977-01-01

    As an example of the application of the PIXE analysis technique to the study of sulfur and related trace metals in aerosol samples from nonurban locations, results obtained from a remote continental station in the Southern Hemisphere, Chacaltaya Mountain near La Paz, Bolivia, and a mid-ocean station in the Atlantic of the Northern Hemisphere, at Bermuda, are compared. In Bolivian filter samples, the proportions of Si, K, Ca, Ti, Fe, Rb, and Sr are within the ranges expected from the subaerial erosion of major rock types of the earth's crust. However, the proportions, relative to Fe, of S, Cu, Zn, As, and Pb are enriched 10-100 times in comparison with the compositions of major rock types. In Bermuda cascade impactor samples summed over all particle sizes, the ratio S/Zn and the relative proportions of K, Ca, and Fe resemble those observed in Bolivia. Total Fe concentrations in Bermuda average about 60 ng/m 3 , similar to concentrations observed in Bolivia. However, the ratios S/Fe and Zn/Fe are 10 times greater in Bermuda than in Bolivia, and these ratios are greatest for smallest particles and decrease sharply with increasing particle size. The higher S and Zn concentrations in Bermuda may result from the combined effect of natural processes which control the atmospheric enrichment of chalcophile elements of long range transport from pollution sources in urban and industrial centers. (Auth.)

  16. Main and trace element analysis of urinary stones by means of neutron activation and X-ray fluorescence

    International Nuclear Information System (INIS)

    Buehling, A.; Riotte, H.G.

    1978-01-01

    Metallosis, a tissue reaction to metal implants which is caused by corrosion of the implanted metal caused by body liquids, makes activation analysis interesting as a method to determine trace element distributions in tissue and organs. Osteosynthesis of the eft hind leg was carried out in 30 rabbits. The bone fragments were fixated with V4A steel plates and 3-4 screws each. One xear after implantation a total of 350 samples was taken in contact tissue, muscles, lymphatic tissue, kidneys, liver, lungs, and heart and investigated by instrumental neutron activation analysis. The elements Na, K, Cr, Fe, Co, Ni, Zn, Se, Rb, Mo, Cs, Ta, and W were quantitatively determinde. Four animals of the same strain hald under the same condition were used as controls. It was found that the alloy components of the V4A steel implants burden the body even at considerable distance. Of particular interest are the findings for lympatic tissue, liver and kidneys, which indicate tendencies of Cr and Ni accumulation. Element correlations showed that the tissues take up the metal ions in nearly constant ratios, with the exception of iron. The concentrations of other essential elements like Zn, Se, Rb, and k are also influenced by the implants. (orig.) [de

  17. 3-D Ray-tracing and 2-D Fokker-Planck Simulations of Radiofrequency Application to Tokamak Plasmas

    International Nuclear Information System (INIS)

    Cardinali, A.; Paoletti, F.; Bernabei, S.

    1999-01-01

    A state of the art numerical tool has been developed to simulate the propagation and the absorption of coexisting different types of waves in a tokamak geometry. The code includes a numerical solution of the three-dimensional (R, Z, Φ) toroidal wave equation for the electric field of the different waves in the WKBJ approximation. At each step of integration, the two-dimensional (v parallel, v perpendicular) Fokker-Planck equation is solved in the presence of quasilinear diffusion coefficients. The electron Landau damping of the waves is modeled taking into account the interaction of the wave electric fields with the quasilinearly modified distribution function. Consistently, the code calculates the radial profiles of non-inductively generated current densities, the transmitted power traces and the total power damping curves. Synergistic effects among the different type of waves (e.g., lower hybrid and ion Bernstein waves) are studied through the separation of the contributions of the single wave from the effects due to their coexistence

  18. Simple simultaneous determination of soluble and insoluble trace metal components in sea salts by a combined coprecipitation/X-ray fluorescence method

    International Nuclear Information System (INIS)

    Iwatsuki, Masaaki; Ali, Muhammad; Kyotani, Tomohiro; Fukasawa, Tsutomu

    1996-01-01

    An X-ray fluorescence method using the coprecipitation-preconcentration technique has been developed for simple determination of both acid-soluble and insoluble trace metal components, such as manganese, iron, nickel, copper and zinc in sea salts. A salt sample is dissolved in a nitric acid solution, and the residue is filtered off onto a membrane filter. After the pH is adjusted to 7-8, the filtrate is boiled, followed by addition of aluminum carrier, oxine and thionalide solutions. The solution is re-adjusted to pH 9, and kept at 80-85degC for 60 min. The precipitates are filtered off onto another membrane filter. X-Ray fluorescence intensities from two filters loaded with the residue and precipitates are measured and the concentrations of the elements are determined simultaneously using the calibration curves. Detection limits were 0.01 μg g -1 for manganese and copper, 0.04 μg g -1 for nickel and zinc, and 0.05 μg g -1 for iron, regardless of the soluble and the insoluble components. The present method was successfully applied to the analysis of sea salt samples. (author)

  19. Optimizing total reflection X-ray fluorescence for direct trace element quantification in proteins I: Influence of sample homogeneity and reflector type

    Science.gov (United States)

    Wellenreuther, G.; Fittschen, U. E. A.; Achard, M. E. S.; Faust, A.; Kreplin, X.; Meyer-Klaucke, W.

    2008-12-01

    Total reflection X-ray fluorescence (TXRF) is a very promising method for the direct, quick and reliable multi-elemental quantification of trace elements in protein samples. With the introduction of an internal standard consisting of two reference elements, scandium and gallium, a wide range of proteins can be analyzed, regardless of their salt content, buffer composition, additives and amino acid composition. This strategy also enables quantification of matrix effects. Two potential issues associated with drying have been considered in this study: (1) Formation of heterogeneous residues of varying thickness and/or density; and (2) separation of the internal standard and protein during drying (which has to be prevented to allow accurate quantification). These issues were investigated by microbeam X-ray fluorescence (μXRF) with special emphasis on (I) the influence of sample support and (II) the protein / buffer system used. In the first part, a model protein was studied on well established sample supports used in TXRF, PIXE and XRF (Mylar, siliconized quartz, Plexiglas and silicon). In the second part we imaged proteins of different molecular weight, oligomerization state, bound metals and solubility. A partial separation of protein and internal standard was only observed with untreated silicon, suggesting it may not be an adequate support material. Siliconized quartz proved to be the least prone to heterogeneous drying of the sample and yielded the most reliable results.

  20. Radiation heat transfer model using Monte Carlo ray tracing method on hierarchical ortho-Cartesian meshes and non-uniform rational basis spline surfaces for description of boundaries

    Directory of Open Access Journals (Sweden)

    Kuczyński Paweł

    2014-06-01

    Full Text Available The paper deals with a solution of radiation heat transfer problems in enclosures filled with nonparticipating medium using ray tracing on hierarchical ortho-Cartesian meshes. The idea behind the approach is that radiative heat transfer problems can be solved on much coarser grids than their counterparts from computational fluid dynamics (CFD. The resulting code is designed as an add-on to OpenFOAM, an open-source CFD program. Ortho-Cartesian mesh involving boundary elements is created based upon CFD mesh. Parametric non-uniform rational basis spline (NURBS surfaces are used to define boundaries of the enclosure, allowing for dealing with domains of complex shapes. Algorithm for determining random, uniformly distributed locations of rays leaving NURBS surfaces is described. The paper presents results of test cases assuming gray diffusive walls. In the current version of the model the radiation is not absorbed within gases. However, the ultimate aim of the work is to upgrade the functionality of the model, to problems in absorbing, emitting and scattering medium projecting iteratively the results of radiative analysis on CFD mesh and CFD solution on radiative mesh.

  1. Optimizing total reflection X-ray fluorescence for direct trace element quantification in proteins I: Influence of sample homogeneity and reflector type

    Energy Technology Data Exchange (ETDEWEB)

    Wellenreuther, G. [European Molecular Biology Laboratory, Notkestr. 85, 22603 Hamburg (Germany); Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Achard, M.E.S.; Faust, A.; Kreplin, X. [European Molecular Biology Laboratory, Notkestr. 85, 22603 Hamburg (Germany); Meyer-Klaucke, W. [European Molecular Biology Laboratory, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: Wolfram@embl-hamburg.de

    2008-12-15

    Total reflection X-ray fluorescence (TXRF) is a very promising method for the direct, quick and reliable multi-elemental quantification of trace elements in protein samples. With the introduction of an internal standard consisting of two reference elements, scandium and gallium, a wide range of proteins can be analyzed, regardless of their salt content, buffer composition, additives and amino acid composition. This strategy also enables quantification of matrix effects. Two potential issues associated with drying have been considered in this study: (1) Formation of heterogeneous residues of varying thickness and/or density; and (2) separation of the internal standard and protein during drying (which has to be prevented to allow accurate quantification). These issues were investigated by microbeam X-ray fluorescence ({mu}XRF) with special emphasis on (I) the influence of sample support and (II) the protein / buffer system used. In the first part, a model protein was studied on well established sample supports used in TXRF, PIXE and XRF (Mylar, siliconized quartz, Plexiglas and silicon). In the second part we imaged proteins of different molecular weight, oligomerization state, bound metals and solubility. A partial separation of protein and internal standard was only observed with untreated silicon, suggesting it may not be an adequate support material. Siliconized quartz proved to be the least prone to heterogeneous drying of the sample and yielded the most reliable results.

  2. Monte-Carlo RAY tracing simulation of a falling particle receiver in connection with a central receiver field

    Energy Technology Data Exchange (ETDEWEB)

    Alxneit, I [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The program RAY was developed to perform Monte-Carlo simulations of the flux distribution in solar reactors in connection with an arbitrary heliostat field. The code accounts for the shading of the incoming rays from the sun due to the reactor supporting tower as well as for full blocking and shading of the heliostats among themselves. A simplified falling particle reactor (FPR) was evaluated. A central receiver field was used with a total area of 311 m{sup 2} composed of 176 round, focusing heliostats. No attempt was undertaken to optimise either the geometry of the heliostat field nor the aiming strategy of the heliostats. The FPR was evaluated at two different geographic latitudes (-8.23W/47.542N; PSI and -8.23W/20.0N) and during the course of a day (May 30{sup th}). The incident power passing through the reactor aperture and the flux density distribution within the FPR was calculated. (author) 3 figs., 1 tab., 3 refs.

  3. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    International Nuclear Information System (INIS)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-01-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  4. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    Energy Technology Data Exchange (ETDEWEB)

    Maruthi, Y. A., E-mail: ymjournal2014@gmail.com [Associate professor, Dept of Environmental Studies, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Das, N. Lakshmana, E-mail: nldas9@gmail.com [Professor, Dept of Physics, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Ramprasad, S., E-mail: ramprasadsurakala@gmail.com [Research Scholar, Dept of Environmental science, GITAM Institute of Science, GITAM University, Visakhapatnam, A.P (India); Ram, S. S., E-mail: tracebio@gmail.com [Research Scholar, Dept of Trace element research, UGC-DAE Consortium Centre, Kolkata centre India (India); Sudarshan, M., E-mail: sude@alpha.iuc.res.in [Scientist-F, Dept of Trace element research, UGC-DAE Consortium Centre, Kolkata centre India (India)

    2015-08-28

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.

  5. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China.

    Science.gov (United States)

    Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng

    2014-08-01

    Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.

  6. Worldwide proficiency test for X ray fluorescence laboratories PTXRFIAEA/05 determination of minor and trace elements in marine sediment

    International Nuclear Information System (INIS)

    2009-01-01

    The proficiency test (code PTXRFIAEA05) was the fifth worldwide exercise organized by the IAEA Seibersdorf Laboratories in order to assist X ray fluorescence laboratories in assessment and improvement of their analytical performance. The test was carried out within the IAEA Project 1.4.3.4 (D.3.03) on Nuclear Spectrometry for Analytical Applications, under the Nuclear Science Programme. The main objective of the project was to enhance capability of interested Member States in effective utilization of nuclear spectrometries and analytical services in industry, human health, agriculture, and in monitoring and evaluation of environmental pollution. Marine sediment test samples with established homogeneity and well characterized known target values of the mass fractions of analytes were distributed to participating laboratories. The laboratories were requested to analyze the sample using established techniques following their analytical procedures. Based on the results of the proficiency test presented in the report each participating laboratory should assess its analytical performance results by using the specified criteria and, if appropriate, to identify discrepancies, and to correct relevant analytical procedures. The next proficiency test exercise will be executed in 2009

  7. The trace element analysis of ancient Indian coins using proton induced x-ray emission (PIXE) technique

    International Nuclear Information System (INIS)

    PURI, N.K.; HAJIVALIEI, M.; BEDI, S.C.; SINGH, N.; GOVIL, I.M.; GARG, M.L.; HANDA, D.K.; GOVIL, K.L.; ROUT, B.; VIJAYAN, V.

    2004-01-01

    Elemental analysis of ancient Indian coins viz. thirty-three punched marked coins (6 th century B.C.), fifty-nine coins belonging to Kusanas (78-250 A.D) and twenty-five coins belonging to medieval period (11 th -14 th century A.D), from India have been analysed using Proton Induced X-ray Emission (PIXE) technique. The elements namely S, Ca, Fe, Ag, Cu, Ni and Pb were detected in most of the punch-marked coins while elements namely S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, As and Zn were detected in most of the Kusanas coins and the S, Ca, Fe, Cu, Ag, Sn, Pb were detected in 11 th -14 th century A.D. coins. Based on the elemental analysis different hypotheses put forward in the earlier literature were examined. This is the first attempt where reasonable number of ancient coins belonging to different periods were analysed by modern non destructive multi-elemental technique such as PIXE and has put the importance of the elemental analysis of ancient Indian coins in the proper perspective

  8. In vivo energy dispersive X-ray fluorescence for measuring the content of essential and toxic trace elements in teeth

    International Nuclear Information System (INIS)

    Zaichick, V.; Ovchjarenko, N.; Zaichick, S.

    1999-01-01

    The calibration and application of a facility, based on energy dispersive X-ray fluorescent analysis (EDXRF) using 109 Cd as an excitation source, for in vivo and in vitro estimation of Ca, Pb, Sr and Zn in tooth enamel is described. During the in vivo measurements, the device ensures tissue protection of face and mouth cavity from radiation, and only a small part of tooth surface under study is irradiated. To calibrate the facility, the contents of Ca, Sr and Zn were analyzed simultaneously in the enamel of 50 teeth by EDXRF and instrumental neutron activation analysis (INAA). Standards prepared from powdered tooth enamel with additions of chemically pure lead compounds were used to calibrate for lead graduation. Enamel calcium is suggested as an internal standard during in vivo EDXRF of teeth. The content of enamel Sr, Zn and Pb was determined by EDXRF in 35 permanent intact teeth of teenagers and adults. It was shown that lead concentration didn't exceed 3 μg/g for all the teeth

  9. Major and minor elements and traces in igneous rocks from crystalline basement of Parana by X-ray fluorescence

    International Nuclear Information System (INIS)

    Ferreira, Ademar O.; Pecequilo, Brigitte R.S.; Scapin, Marcos A.; Salvador, Vera L.R.

    2015-01-01

    Major and minor components of 30 acid and basic igneous rocks (granites, syenites, riolites and a basalt) of the Parana state crystalline basement were determined by X-ray fluorescence spectrometry (WDXRF), in order to evaluate the similarity in terms of the compositional content. The corrections of interelements effects (absorption/intensification) were performed by means of the fundamental parameters (FP) method. The methodology was validated using a certificated reference material. The main oxides found associated with the quantified elements are SiO_2, Al_2O_3, Na_2O, K_2O, Fe_2O_3, CaO, MgO, TiO_2, P_2O_5, MnO, SO_3, NiO, ZnO, Rb_2O. Through statistical analysis, the studied samples were organized in 3 groups of similar compositions: syenites, light granites and basalt and dark granites. The results show that the WDXRF technique is a robust tool that enables distinction even between similar geological samples. (author)

  10. Influence of spatial curvature of a liquid jet on the rainbow positions: Ray tracing and experimental study

    Science.gov (United States)

    Duan, Qingwei; Zhong, Ruliang; Han, Xiang'e.; Ren, Kuan Fang

    2017-07-01

    Rainbow refractometry is largely used in optical metrology of particles thanks to its advantages of being non-intrusive, precise and fast. Many authors have contributed to its development and the application in the characterization of liquid jets/droplets. The researches reported in the literature are mainly for the spherical droplets or the liquid jets which can be considered as a cylinder of constant section. However, the section of a real liquid jet, even in the simplest configuration, varies with distance from the exit. The influence of the spatial curvature of the jets must, therefore, be taken into account. In this paper, we report experimental measurements of the shifts of the rainbow positions in the horizontal and vertical directions of a liquid jet and the theoretical investigation with the vectorial complex ray model. It is shown that the shifts of rainbow positions are very sensitive to the spatial curvature of the jets. This work is hoped to provide a new approach to characterizing the structure and the instability of liquid jets.

  11. Intra- and interobserver variability of MRI-based volume measurements of the hippocampus and amygdala using the manual ray-tracing method

    International Nuclear Information System (INIS)

    Achten, E.; Deblaere, K.; Damme, F. van; Kunnen, M.; Wagter, C. de; Boon, P.; Reuck, J. de

    1998-01-01

    We studied the intra- and interobserver variability of volume measurments of the hippocampus (HC) and the amygdala as applied to the detection of HC atrophy in patients with complex partial seizures (CPE), measuring the volumes of the HC and amygdala of 11 normal volunteers and 12 patients with presumed CPE, using the manual ray-tracing method. Two independent observers performed these measurements twice each using home-made software. The intra- and interobserver variability of the absolute volumes and of the normalised left-to-right volume differences (δV) between the HC (δV HC ), the amygdala (δV A ) and the sum of both (δV HCA) were assessed. In our mainly right-handed normals, the right HC and amygdala were on average 0.05 and 0.03 ml larger respectively than on the left. The interobserver variability for volume measurements in normal subjects was 1.80 ml for the HC and 0.82 ml for the amygdala, the intraobserver variability roughly one third of these values. The interobserver variability coefficient in normals was 3.6 % for δV HCA , 4.7 % for δV HC and 7.3 % for δV A . The intraobserver variability coefficient was 3.4 % for δV HCA , 4.2 % for δV HC amd 5.6 % for δV A . The variability in patients was the same for volume differences less than 5 % either side of the interval for normality, but was higher when large volume differences were encountered, is probably due to the lack of thresholding and/or normalisation. Cutoff values for lateralisation with the δV were defined. No intra- or interobserver lateralisation differences were encountered with δV HCA and δV HC . From these observations we conclude that the manual ray-tracing method is a robust method for lateralisation in patients with TLE. Due to its higher variability, this method is less suited to measure absolute volumes. (orig.) (orig.)

  12. Intra- and interobserver variability of MRI-based volume measurements of the hippocampus and amygdala using the manual ray-tracing method

    Energy Technology Data Exchange (ETDEWEB)

    Achten, E.; Deblaere, K.; Damme, F. van; Kunnen, M. [MR Department 1K12, University Hospital Gent (Belgium); Wagter, C. de [Department of Radiotherapy and Nuclear Medicine, University Hospital Gent (Belgium); Boon, P.; Reuck, J. de [Department of Neurology, University Hospital Gent (Belgium)

    1998-09-01

    We studied the intra- and interobserver variability of volume measurments of the hippocampus (HC) and the amygdala as applied to the detection of HC atrophy in patients with complex partial seizures (CPE), measuring the volumes of the HC and amygdala of 11 normal volunteers and 12 patients with presumed CPE, using the manual ray-tracing method. Two independent observers performed these measurements twice each using home-made software. The intra- and interobserver variability of the absolute volumes and of the normalised left-to-right volume differences ({delta}V) between the HC ({delta}V{sub HC}), the amygdala ({delta}V{sub A}) and the sum of both ({delta}V{sub HCA)} were assessed. In our mainly right-handed normals, the right HC and amygdala were on average 0.05 and 0.03 ml larger respectively than on the left. The interobserver variability for volume measurements in normal subjects was 1.80 ml for the HC and 0.82 ml for the amygdala, the intraobserver variability roughly one third of these values. The interobserver variability coefficient in normals was 3.6 % for {delta}V{sub HCA}, 4.7 % for {delta}V{sub HC} and 7.3 % for {delta}V{sub A}. The intraobserver variability coefficient was 3.4 % for {delta}V{sub HCA}, 4.2 % for {delta}V{sub HC} amd 5.6 % for {delta}V{sub A}. The variability in patients was the same for volume differences less than 5 % either side of the interval for normality, but was higher when large volume differences were encountered, is probably due to the lack of thresholding and/or normalisation. Cutoff values for lateralisation with the {delta}V were defined. No intra- or interobserver lateralisation differences were encountered with {delta}V{sub HCA} and {delta}V{sub HC}. From these observations we conclude that the manual ray-tracing method is a robust method for lateralisation in patients with TLE. Due to its higher variability, this method is less suited to measure absolute volumes. (orig.) (orig.) With 2 figs., 7 tabs., 23 refs.

  13. Determination of trace elements in freshwater rotifers and ciliates by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Woelfl, S.; Óvári, M.; Nimptsch, J.; Neu, T. R.; Mages, M.

    2016-02-01

    Element determination in plankton is important for the assessment of metal contamination of aquatic environments. Until recently, it has been difficult to determine elemental content in rotifers or ciliates derived from natural plankton samples because of the difficulty in handling and separation of these fragile organisms. The aim of this study was to evaluate methods for separation of rotifers and large ciliates from natural plankton samples (μg range dry weight) and subsequent analysis of their elemental content using total-reflection X-ray fluorescence spectrometry (TXRF). Plankton samples were collected from different aquatic environments (three lakes, one river) in Chile, Argentina and Hungary. From one to eighty specimens of five rotifer species (Brachionus calyciflorus, Brachionus falcatus, Asplanchna sieboldii, Asplanchna sp., Philodina sp.) and four to twelve specimens of one large ciliate (Stentor amethystinus) were prepared according to the dry method originally developed for microcrustaceans, and analysed by TRXF following in situ microdigestion. Our results demonstrated that it possible to process these small and fragile organisms (individual dry mass: 0.17-9.39 μg ind- 1) via careful washing and preparation procedures. We found species-dependent differences of the element mass fractions for some of the elements studied (Cr, Mn, Fe, Ni, Cu, Zn, As, Pb), especially for Cu, Fe and Mn. One large rotifer species (A. sieboldii) also showed a negative correlation between individual dry weight and the element content for Pb, Ni and Cr. We conclude that our application of the in situ microdigestion-TRXF method is suitable even for rotifers and ciliates, greatly expanding the possibilities for use of plankton in biomonitoring of metal contamination in aquatic environments.

  14. Trace spaces

    DEFF Research Database (Denmark)

    Fajstrup, Lisbeth; Goubault, Eric; Haucourt, Emmanuel

    2012-01-01

    in the interleaving semantics of a concurrent program, but rather some equivalence classes. The purpose of this paper is to describe a new algorithm to compute such equivalence classes, and a representative per class, which is based on ideas originating in algebraic topology. We introduce a geometric semantics...... of concurrent languages, where programs are interpreted as directed topological spaces, and study its properties in order to devise an algorithm for computing dihomotopy classes of execution paths. In particular, our algorithm is able to compute a control-flow graph for concurrent programs, possibly containing...... loops, which is “as reduced as possible” in the sense that it generates traces modulo equivalence. A preliminary implementation was achieved, showing promising results towards efficient methods to analyze concurrent programs, with very promising results compared to partial-order reduction techniques....

  15. Analysis of nutrition-relevant trace elements in human blood and serum by means of total reflection X-ray fluorescence (TXRF) spectroscopy

    International Nuclear Information System (INIS)

    Stosnach, Hagen; Mages, Margarete

    2009-01-01

    In clinical service laboratories, one of the most common analytical tasks with regard to inorganic traces is the determination of the nutrition-relevant elements Fe, Cu, Zn, and Se. Because of the high numbers of samples and the commercial character of these analyses, a time-consuming sample preparation must be avoided. In this presentation, the results of total reflection X-ray fluorescence measurements with a low-power system and different sample preparation procedures are compared with those derived from analysis with common methods like Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The results of these investigations indicate that the optimal total reflection X-ray fluorescence analysis of the nutrition-relevant elements Fe, Cu, Zn, and Se can be performed by preparing whole blood and serum samples after dilution with ultrapure water and transferring 10 μl of internally standardized sample to an unsiliconized quartz glass sample carrier with subsequent drying in a laboratory oven. Suitable measurement time was found to be 600 s. The enhanced sample preparation by means of microwave or open digestion, in parts combined with cold plasma ashing, led to an improvement of detection limits by a factor of 2 for serum samples while for whole blood samples an improvement was only observed for samples prepared by means of microwave digestion. As the matrix elements P, S, Cl, and for whole blood Fe have a major influence on the detection limits, most probably a further enhancement of analytical quality requires the removal of the organic matrix. However, for the routine analysis of the nutrition-relevant elements, the dilution preparation was found to be sufficient.

  16. Tracing the accretion history of supermassive black holes through X-ray variability: results from the ChandraDeep Field-South

    Science.gov (United States)

    Paolillo, M.; Papadakis, I.; Brandt, W. N.; Luo, B.; Xue, Y. Q.; Tozzi, P.; Shemmer, O.; Allevato, V.; Bauer, F. E.; Comastri, A.; Gilli, R.; Koekemoer, A. M.; Liu, T.; Vignali, C.; Vito, F.; Yang, G.; Wang, J. X.; Zheng, X. C.

    2017-11-01

    We study the X-ray variability properties of distant active galactic nuclei (AGNs) in the ChandraDeep Field-South region over 17 yr, up to z ˜ 4, and compare them with those predicted by models based on local samples. We use the results of Monte Carlo simulations to account for the biases introduced by the discontinuous sampling and the low-count regime. We confirm that variability is a ubiquitous property of AGNs, with no clear dependence on the density of the environment. The variability properties of high-z AGNs, over different temporal time-scales, are most consistent with a power spectral density (PSD) described by a broken (or bending) power law, similar to nearby AGNs. We confirm the presence of an anticorrelation between luminosity and variability, resulting from the dependence of variability on black hole (BH) mass and accretion rate. We explore different models, finding that our acceptable solutions predict that BH mass influences the value of the PSD break frequency, while the Eddington ratio λEdd affects the PSD break frequency and, possibly, the PSD amplitude as well. We derive the evolution of the average λEdd as a function of redshift, finding results in agreement with measurements based on different estimators. The large statistical uncertainties make our results consistent with a constant Eddington ratio, although one of our models suggest a possible increase of λEdd with lookback time up to z ˜ 2-3. We conclude that variability is a viable mean to trace the accretion history of supermassive BHs, whose usefulness will increase with future, wide-field/large effective area X-ray missions.

  17. The x-ray light valve: A potentially low-cost, digital radiographic imaging system-concept and implementation considerations

    International Nuclear Information System (INIS)

    Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J. A.

    2008-01-01

    New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed--the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks

  18. Tracing Africa’s progress towards implementing the Non-Communicable Diseases Global action plan 2013–2020: a synthesis of WHO country profile reports

    Directory of Open Access Journals (Sweden)

    Gertrude Nsorma Nyaaba

    2017-04-01

    Full Text Available Abstract Background Half of the estimated annual 28 million non-communicable diseases (NCDs deaths in low- and middle-income countries (LMICs are attributed to weak health systems. Current health policy responses to NCDs are fragmented and vertical particularly in the African region. The World Health Organization (WHO led NCDs Global action plan 2013–2020 has been recommended for reducing the NCD burden but it is unclear whether Africa is on track in its implementation. This paper synthesizes Africa’s progress towards WHO policy recommendations for reducing the NCD burden. Methods Data from the WHO 2011, 2014 and 2015 NCD reports were used for this analysis. We synthesized results by targets descriptions in the three reports and included indicators for which we could trace progress in at least two of the three reports. Results More than half of the African countries did not achieve the set targets for 2015 and slow progress had been made towards the 2016 targets as of December 2013. Some gains were made in implementing national public awareness programmes on diet and/or physical activity, however limited progress was made on guidelines for management of NCD and drug therapy and counselling. While all regions in Africa show waning trends in fully achieving the NCD indicators in general, the Southern African region appears to have made the least progress while the Northern African region appears to be the most progressive. Conclusion Our findings suggest that Africa is off track in achieving the NCDs indicators by the set deadlines. To make sustained public health gains, more effort and commitment is urgently needed from governments, partners and societies to implement these recommendations in a broader strategy. While donors need to suit NCD advocacy with funding, African institutions such as The African Union (AU and other sub-regional bodies such as West African Health Organization (WAHO and various country offices could potentially play

  19. Rapid determination of trace phosphorus, sulfur, chlorine, bromine and iodine by energy dispersive X-ray fluorescence analysis with monochromatic excitations

    International Nuclear Information System (INIS)

    Wakisaka, Tatsushi; Morita, Naoki; Hirabayashi, Tadashi; Nakahara, Taketoshi

    1998-01-01

    A useful and rapid procedure is described for the determination of trace phosphorus, sulfur, chlorine, bromine, and iodine by means of an energy dispersive X-ray fluorescence spectrometer (EDXRF) with monochromatic excitations. Using monochromatic excitations, the detection limits for phosphorus, sulfur, chlorine (Cr-Kα, 5.41 keV), bromine (Mo-Kα, 17.44 keV), and iodine (W-continuum, 40 keV) were found to be 4.6, 1.7, 0.7, 0.09 and 0.5 μg g -1 , respectively. The relative standard deviations in five replicate measurements were 0.9-1.3%. The proposed method was applied to the direct determination of sulfur in the NIST Residual Fuel Oil, and others. The results obtained by the proposed method were in good agreement with the certified values. Bromine in a seawater sample, as well as iodine and bromine in a brine sample were determined by the proposed method. The obtained results were in good agreement with those obtained by ion chromatography. (author)

  20. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    Science.gov (United States)

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. The determination of trace elements in commercial human serum albumin solutions by proton-induced X-ray emission spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Maenhaut, W.; De Reu, L.; Tomza, U.; Versieck, J.

    1982-01-01

    Particle induced X-ray emission (p.i.x.e.) and neutron activation analysis (n.a.a.) are proposed for determining the trace element content of human serum albumin. Application of these methods to some commercial albumin solutions provided concentration data for up to 19 elements, most of which were present at a level below a few μg ml -1 . The precision of the p.i.x.e. technique, as determined by irradiating up to 20 targets from one sample, was about 3% for those elements where counting statistics were good. A comparison between the p.i.x.e. and n.a.a. results showed close agreement, indicating that p.i.x.e. can yield data which are accurate to within 10%. Neutron activation showed very good sensitivity for the elements producing long-lived nuclides (tsub(1/2) >= 3 days), but had rather high detection limits for the other elements, unless radiochemical separations were used. (Auth.)

  2. Seismic modeling of fluvial-estuarine deposits in the Athabasca oil sands using ray-tracing techniques, Steepbank River area, northeastern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Langenberg, C. W.; Hein, F. J. [Alberta Energy and Utilities Board, Edmonton, AB (Canada); Lawton, D.; Cunningham, J. [Calgary Univ., Dept. of Geology and Geophysics, Calgary, AB (Canada)

    2002-03-01

    Seismic reflection characteristics of contrasting channel geometries in a five-section portion of the Steepbank River are modeled using ray-tracing techniques. Outcrop lithofacies associations are used to create a seismic model that can be used as a subsurface analog of other similar oil-sands successions. At least four channel complexes based on stratal bounding surfaces, arrangement of lithofacies, and consistent paleoflow patterns have been identified. The lower part of each channel complex contains trough crossbedded sandstone, exhibiting high porosity and permeability. These sandstones were deposited in channel axes and are the highest grade bitumen deposits in the area. The upper parts of the channels contain significantly lower bitumen saturation values due to common interbedded mudstone. Nearby wells contain cored and logged intervals that are similar to exposed outcrops in the riverbank. Overall modeling results indicate that channel complexes can be imaged seismically, given data of sufficient quality and frequency. Bitumen grade may be predicted in these seismic lines, which has important consequences for bitumen exploration and extraction in the Steepbank River region. 64 refs., 26 figs.

  3. Clinical implementation of x-ray phase-contrast imaging: Theoretical foundations and design considerations

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong

    2003-01-01

    Theoretical foundation and design considerations of a clinical feasible x-ray phase contrast imaging technique were presented in this paper. Different from the analysis of imaging phase object with weak absorption in literature, we proposed a new formalism for in-line phase-contrast imaging to analyze the effects of four clinically important factors on the phase contrast. These are the body parts attenuation, the spatial coherence of spherical waves from a finite-size focal spot, and polychromatic x-ray and radiation doses to patients for clinical applications. The theory presented in this paper can be applied widely in diagnostic x-ray imaging procedures. As an example, computer simulations were conducted and optimal design parameters were derived for clinical mammography. The results of phantom experiments were also presented which validated the theoretical analysis and computer simulations

  4. Relationship of college student characteristics and inquiry-based geometrical optics instruction to knowledge of image formation with light-ray tracing

    Science.gov (United States)

    Isik, Hakan

    This study is premised on the fact that student conceptions of optics appear to be unrelated to student characteristics of gender, age, years since high school graduation, or previous academic experiences. This study investigated the relationships between student characteristics and student performance on image formation test items and the changes in student conceptions of optics after an introductory inquiry-based physics course. Data was collected from 39 college students who were involved in an inquiry-based physics course teaching topics of geometrical optics. Student data concerning characteristics and previous experiences with optics and mathematics were collected. Assessment of student understanding of optics knowledge for pinholes, plane mirrors, refraction, and convex lenses was collected with, the Test of Image Formation with Light-Ray Tracing instrument. Total scale and subscale scores representing the optics instrument content were derived from student pretest and posttest responses. The types of knowledge, needed to answer each optics item correctly, were categorized as situational, conceptual, procedural, and strategic knowledge. These types of knowledge were associated with student correct and incorrect responses to each item to explain the existences and changes in student scientific and naive conceptions. Correlation and stepwise multiple regression analyses were conducted to identify the student characteristics and academic experiences that significantly predicted scores on the subscales of the test. The results showed that student experience with calculus was a significant predictor of student performance on the total scale as well as on the refraction subscale of the Test of Image Formation with Light-Ray Tracing. A combination of student age and previous academic experience with precalculus was a significant predictor of student performance on the pretest pinhole subscale. Student characteristic of years since high school graduation

  5. Evaluation of different X ray equipment and incubators for pediatric radiographic images implementation

    International Nuclear Information System (INIS)

    Carbi, E.D.O.; Souza, R.T.F.; Pina, D.R.

    2009-01-01

    The children frequent/y are exposed to the ionizing radiation and other emotional and physical risks in the attempts repeated to get radiographic images of quality. This study it has as objective to evaluate X ray beam about quality and intensity at three different equipment with single-phase generator of voltage and the absorption factors to 5 different incubators and 3 different cradles in the neonatal UTI of the Clinics Hospital on the Medicine College in Botucatu. The methodology consisted of carrying through measured of half Layer Value and Radiation output for the different X ray equipment with voltage with in between 45 and 100 kVp, applied at the X ray tube. The measures of the absorption factors had been carried through varying the thicknesses of attenuating material (phantom) for the different voltage value with in between 50 and 100kVp. The results had shown the same energy effective for the different X ray equipment and the same absorption factors for the different incubators and evaluated cradles, taking into account, the same thickness of attenuating material and same voltage. (author)

  6. Essential trace elements content in a sudanese meal of cooked Hibiscus Sp. leaves as determined by both X-ray florescence and atomic absorption spectroscopy techniques

    International Nuclear Information System (INIS)

    Mohamed, S.M; Taha, M.H.

    2003-01-01

    Essential trace elements content of a Sudanese meal of cooked Karkadi plant leaves (Hibiscus Sp)was determined and found to be several folds higher than the average trace element content of Sudanese food as determined in twenty nine daily consumed mixed diets. Therefore, this plant can act as a promising natural supplement in cases of deficiency provided it is grown in a trace element rich soil. (Author)

  7. The use of x-ray fluorescence technique (XRF) in the determination of trace elements in environmental study: a case study for sediments and soils

    International Nuclear Information System (INIS)

    Hamzah Mohamad

    1997-01-01

    A specific X-ray fluorescence technique (XRF) was developed to determine the concentrations of nine common and significant trace elements in sediments and soils, i.e. two of the common materials used in environmental studies. The elements are Ba, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn. A total of 22 international reference materials of rocks, soils, minerals, ores and sediments were employed to construct nine calibration curves, all of which depict linear correlation of concentration-intensity, with correlation coefficients of 0.9 or better. The accuracy of determination is implied from the relative differences between the observed and suggested values in four reference materials: USGS SCO-1, shale; CCRMP SO-1, soil; CCRMP CO-2, soil; and SARM 42, soil. The determinations of four elements are considered as accurate, with relative errors of smaller than 10%; they are Fe (5%), Mn (6%), Cr (8%), and Cu (9%). Only a moderate accuracy has been achieved in the determinations of Ba (13%), Zn (18%) and V (21 %). Ni and Ph results are associated with larger errors. The developed technique is considered rapid, whereby nine elements in 30 samples in the form of pressed powder briquettes can be analysed in 8 hours. Without extrapolating the calibration curves, the method is suitable to analyse elements in soils and sediments in the following ranges of concentrations: Ba, 0-1500 ppm; Cr, 0-3000 ppm; Cu, 0-300 ppm; Fe, 0.7%; Mn, 0-1000 ppm; Ni, 0-300 ppm; Pb, 0-70 ppm; V, 0-300 ppm and Zn, 0-270 ppm

  8. Full-sky Ray-tracing Simulation of Weak Lensing Using ELUCID Simulations: Exploring Galaxy Intrinsic Alignment and Cosmic Shear Correlations

    Science.gov (United States)

    Wei, Chengliang; Li, Guoliang; Kang, Xi; Luo, Yu; Xia, Qianli; Wang, Peng; Yang, Xiaohu; Wang, Huiyuan; Jing, Yipeng; Mo, Houjun; Lin, Weipeng; Wang, Yang; Li, Shijie; Lu, Yi; Zhang, Youcai; Lim, S. H.; Tweed, Dylan; Cui, Weiguang

    2018-01-01

    The intrinsic alignment of galaxies is an important systematic effect in weak-lensing surveys, which can affect the derived cosmological parameters. One direct way to distinguish different alignment models and quantify their effects on the measurement is to produce mock weak-lensing surveys. In this work, we use the full-sky ray-tracing technique to produce mock images of galaxies from the ELUCID N-body simulation run with WMAP9 cosmology. In our model, we assume that the shape of the central elliptical galaxy follows that of the dark matter halo, and that of the spiral galaxy follows the halo spin. Using the mock galaxy images, a combination of galaxy intrinsic shape and the gravitational shear, we compare the predicted tomographic shear correlations to the results of the Kilo-Degree Survey (KiDS) and Deep Lens Survey (DLS). We find that our predictions stay between the KiDS and DLS results. We rule out a model in which the satellite galaxies are radially aligned with the center galaxy; otherwise, the shear correlations on small scales are too high. Most importantly, we find that although the intrinsic alignment of spiral galaxies is very weak, they induce a positive correlation between the gravitational shear signal and the intrinsic galaxy orientation (GI). This is because the spiral galaxy is tangentially aligned with the nearby large-scale overdensity, contrary to the radial alignment of the elliptical galaxy. Our results explain the origin of the detected positive GI term in the weak-lensing surveys. We conclude that in future analyses, the GI model must include the dependence on galaxy types in more detail.

  9. Comparison of slope and height profiles for flat synchrotron x-ray mirrors measured with a long trace profiler and a Fizeau interferometer

    International Nuclear Information System (INIS)

    Qian, J.; Assoufid, L.; Macrander, A.

    2007-01-01

    Long trace profilers (LTPS) have been used at many synchrotron radiation laboratories worldwide for over a decade to measure surface slope profiles of long grazing incidence x-ray mirrors. Phase measuring interferometers (PMIs) of the Fizeau type, on the other hand, are being used by most mirror manufacturers to accomplish the same task. However, large mirrors whose dimensions exceed the aperture of the Fizeau interferometer require measurements to be carried out at grazing incidence, and aspheric optics require the use of a null lens. While an LTP provides a direct measurement of ID slope profiles, PMIs measure area height profiles from which the slope can be obtained by a differentiation algorithm. Measurements of the two types of instruments have been found by us to be in good agreement, but to our knowledge there is no published work directly comparing the two instruments. This paper documents that comparison. We measured two different nominally flat mirrors with both the LTP in operation at the Advanced Photon Source (a type-II LTP) and a Fizeau-type PMI interferometer (Wyko model 6000). One mirror was 500 mm long and made of Zerodur, and the other mirror was 350 mm long and made of silicon. Slope error results with these instruments agree within nearly 100% (3.11 ± 0.15 (micro)rad for the LTP, and 3.11 ± 0.02 (micro)rad for the Fizeau PMI interferometer) for the medium quality Zerodur mirror with 3 (micro)rad rms nominal slope error. A significant difference was observed with the much higher quality silicon mirror. For the Si mirror, slope error data is 0.39 ± 0.08 (micro)rad from LTP measurements but it is 0.35 ± 0.01 (micro)rad from PMI interferometer measurements. The standard deviations show that the Fizeau PMI interferometer has much better measurement repeatability.

  10. Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model

    Science.gov (United States)

    Krumer, Zachar; van Sark, Wilfried G. J. H. M.; de Mello Donegá, Celso; Schropp, Ruud E. I.

    2013-09-01

    Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species (fluorophores) have been incorporated.The fluorophores absorb the solar light and radiatively re-emit a part of the energy. Total internal reflection traps most of the emitted light inside the plate and wave-guides it to a narrow side facet with a solar cell attached, where conversion into electricity occurs. The eciency of such devices is as yet rather low, due to several loss mechanisms, of which self-absorption is of high importance. Combined ray-tracing and Monte-Carlosimulations is a widely used tool for efficiency estimations of LSC-devices prior to manufacturing. We have applied this method to a model experiment, in which we analysed the impact of self-absorption onto LSC-efficiency of fluorophores with different absorption/emission-spectral overlap (Stokes-shift): several organic dyes and semiconductor quantum dots (single compound and core/shell of type-II). These results are compared with the ones obtained experimentally demonstrating a good agreement. The validated model is used to investigate systematically the influence of spectral separation and luminescence quantum efficiency on the intensity loss inconsequence of increased self-absorption. The results are used to adopt a quantity called the self-absorption cross-section and establish it as reliable criterion for self-absorption properties of materials that can be obtained from fundamental data and has a more universal scope of application, than the currently used Stokes-shift.

  11. The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part I: The ray tracing with diffraction on facets method

    Science.gov (United States)

    Baran, A. J.; Hesse, Evelyn; Sourdeval, Odran

    2017-03-01

    Future satellite missions, from 2022 onwards, will obtain near-global measurements of cirrus at microwave and sub-millimetre frequencies. To realise the potential of these observations, fast and accurate light-scattering methods are required to calculate scattered millimetre and sub-millimetre intensities from complex ice crystals. Here, the applicability of the ray tracing with diffraction on facets method (RTDF) in predicting the bulk scalar optical properties and phase functions of randomly oriented hexagonal ice columns and hexagonal ice aggregates at millimetre frequencies is investigated. The applicability of RTDF is shown to be acceptable down to size parameters of about 18, between the frequencies of 243 and 874 GHz. It is demonstrated that RTDF is generally well within about 10% of T-matrix solutions obtained for the scalar optical properties assuming hexagonal ice columns. Moreover, on replacing electromagnetic scalar optical property solutions obtained for the hexagonal ice aggregate with the RTDF counterparts at size parameter values of about 18 or greater, the bulk scalar optical properties can be calculated to generally well within ±5% of an electromagnetic-based database. The RTDF-derived bulk scalar optical properties result in brightness temperature errors to generally within about ±4 K at 874 GHz. Differing microphysics assumptions can easily exceed such errors. Similar findings are found for the bulk scattering phase functions. This finding is owing to the scattering solutions being dominated by the processes of diffraction and reflection, both being well described by RTDF. The impact of centimetre-sized complex ice crystals on interpreting cirrus polarisation measurements at sub-millimetre frequencies is discussed.

  12. Web Implementation of Quality Assurance (QA) for X-ray Units in Balkanic Medical Institutions.

    Science.gov (United States)

    Urošević, Vlade; Ristić, Olga; Milošević, Danijela; Košutić, Duško

    2015-08-01

    Diagnostic radiology is the major contributor to the total dose of the population from all artificial sources. In order to reduce radiation exposure and optimize diagnostic x-ray image quality, it is necessary to increase the quality and efficiency of quality assurance (QA) and audit programs. This work presents a web application providing completely new QA solutions for x-ray modalities and facilities. The software gives complete online information (using European standards) with which the corresponding institutions and individuals can evaluate and control a facility's Radiation Safety and QA program. The software enables storage of all data in one place and sharing the same information (data), regardless of whether the measured data is used by an individual user or by an authorized institution. The software overcomes the distance and time separation of institutions and individuals who take part in QA. Upgrading the software will enable assessment of the medical exposure level to ionizing radiation.

  13. FPGA Implementation of an Efficient Algorithm for the Calculation of Charged Particle Trajectories in Cosmic Ray Detectors

    Science.gov (United States)

    Villar, Xabier; Piso, Daniel; Bruguera, Javier D.

    2014-02-01

    This paper presents an FPGA implementation of an algorithm, previously published, for the the reconstruction of cosmic rays' trajectories and the determination of the time of arrival and velocity of the particles. The accuracy and precision issues of the algorithm have been analyzed to propose a suitable implementation. Thus, a 32-bit fixed-point format has been used for the representation of the data values. Moreover, the dependencies among the different operations have been taken into account to obtain a highly parallel and efficient hardware implementation. The final hardware architecture requires 18 cycles to process every particle, and has been exhaustively simulated to validate all the design decisions. The architecture has been mapped over different commercial FPGAs, with a frequency of operation ranging from 300 MHz to 1.3 GHz, depending on the FPGA being used. Consequently, the number of particle trajectories processed per second is between 16 million and 72 million. The high number of particle trajectories calculated per second shows that the proposed FPGA implementation might be used also in high rate environments such as those found in particle and nuclear physics experiments.

  14. Implementation of Ray Safe i2 System for staff dose measuring in interventional radiology

    International Nuclear Information System (INIS)

    Gershan, Vesna; Atsovska, Violeta

    2013-01-01

    Interventional radiology procedures usually delivered the highest radiation dose to the patients as well as to medical personal. Beside another factors like patient size, fluoroscopy time, machine calibration etc., a good clinical practice has strong effects to staff and patient’s radiation dose. Materials and methods: In August 2012, a Ray Safe i2 system was installed in a private hospital in Skopje. The main purpose of this dosimetry system is to provide real time indication for the current exposure level of the medical personal. Knowing that, the staff has prerequisites to adjust their behavior to minimize unnecessary exposure like changing distance from exposed volume, C-ram angulations, field of view etc. and on this way to develop a good clinical practice. The Ray Safe i2 system is consisted by ten digital dosimeters, two dock stations, real time display, dose viewer and dose manager software. During interventional procedures, each involved staff wears dosimeter which measures and records X-Ray exposure every second and transfer the data wirelessly to the real time display. Color indication bars (green, yellow, red) represents the intensity of the currently received exposure, whereas green zone indicates < 0.2 mSv/h, yellow zone from 0.2 to 2 mSv/h and red zone indications from 2 to 20 mSv/h. Additionally, accumulated dose per individual is displayed next to the color indication bars. By using the software, information about personal dose history, such as annual dose, dose per particular session, hour, day or week, can be viewed and analyzed. Results: In this work it was found that staff accumulated doses were constantly increased over time, but reported number of procedures does not correspond to this tendency. Our assumption is that there is a misleading between reported number and actual performed procedures. Doctor1 received 55 times more dose than Doctor2 and Nurse1 received 11 to 3 times more dose than another Nurses. It was found a correlation of R2

  15. Trace metals in fugitive dust from unsurfaced roads in the Viburnum Trend resource mining District of Missouri--implementation of a direct-suspension sampling methodology.

    Science.gov (United States)

    Witt, Emitt C; Wronkiewicz, David J; Pavlowsky, Robert T; Shi, Honglan

    2013-09-01

    Fugitive dust from 18 unsurfaced roadways in Missouri were sampled using a novel cyclonic fugitive dust collector that was designed to obtain suspended bulk samples for analysis. The samples were analyzed for trace metals, Fe and Al, particle sizes, and mineralogy to characterize the similarities and differences between roadways. Thirteen roads were located in the Viburnum Trend (VT) mining district, where there has been a history of contaminant metal loading of local soils; while the remaining five roads were located southwest of the VT district in a similar rural setting, but without any mining or industrial process that might contribute to trace metal enrichment. Comparison of these two groups shows that trace metal concentration is higher for dusts collected in the VT district. Lead is the dominant trace metal found in VT district dusts representing on average 79% of the total trace metal concentration, and was found moderately to strongly enriched relative to unsurfaced roads in the non-VT area. Fugitive road dust concentrations calculated for the VT area substantially exceed the 2008 Federal ambient air standard of 0.15μgm(-3) for Pb. The pattern of trace metal contamination in fugitive dust from VT district roads is similar to trace metal concentrations patterns observed for soils measured more than 40years ago indicating that Pb contamination in the region is persistent as a long-term soil contaminant. Published by Elsevier Ltd.

  16. IXPE: The Imaging X-ray Polarimetry Explorer, Implementing a Dedicated Polarimetry Mission

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    Only a few experiments have conducted x-ray polarimetry of cosmic sources since Weisskopf et al confirmed the 19% polarization of the Crab Nebula with the Orbiting Solar Observatory (OSO-8) in the 70's center dot The challenge is to measure a faint polarized component against a background of non-polarized signal (as well as the other, typical background components) center dot Typically, for a few % minimum detectable polarization, 106 photons are required. center dot So, a dedicated mission is vital with instruments that are designed specifically to measure polarization (with minimal systematic effects) Over the proposed mission life (2- 3 years), IXPE will first survey representative samples of several categories of targets: magnetars, isolated pulsars, pulsar wind nebula and supernova remnants, microquasars, active galaxies etc. The survey results will guide detailed follow-up observations. Precise calibration of IXPE is vital to ensuring sensitivity goals are met. The detectors will be characterized in Italy, and then a full calibration of the complete instrument will be performed at MSFC's stray light facility. Polarized flux at different energies Heritage: X-ray Optics at MSFC polarimetry mission.

  17. Implementation of neutron-induced gamma-ray spectroscopy in industrial applications

    International Nuclear Information System (INIS)

    Abernethy, D. A.; Lim, C. S.

    2006-01-01

    Full text: Neutron based analytical techniques are commonly used in a wide variety of industrial applications, with new applications continually being found. As a result, despite popular concerns about the harmful health effects of radiation the number of these analysers is increasing. This is because neutron-induced gamma-ray techniques have the capability of combining elemental sensitivity with significant penetrating power, enabling non-intrusive and non-destructive bulk elemental measurements to be averaged over a large volume of material. Neutron induced gamma ray spectroscopy has been developed by several groups, including CSIRO Minerals, for on-line measurement of elemental composition in a range of industrial applications in vessels, pipes and on conveyor belts. Compared to those typically found in a scientific laboratory, conditions in industrial plants differ substantially in a number of ways, such as environmental variability, operator skill and training, and shielding requirements. As a result of these differences, equipment and techniques which are used as a matter of course in a laboratory often have to undergo major modification to render them suitable for use in an industrial context. This paper will discuss some of the factors that have to be considered when deciding such matters with particular emphasis on the implications of radiation safety requirements

  18. Preparatory procedure and equipment for the European x-ray free electron laser cavity implementation

    Directory of Open Access Journals (Sweden)

    D. Reschke

    2010-07-01

    Full Text Available The European x-ray free electron laser is under construction at Deutsches Elektronen-Synchrotron (DESY. The electron beam energy of up to 17.5 GeV will be achieved by using superconducting accelerator technology. Final prototyping, industrialization, and new infrastructure are the actual challenges with respect to the accelerating cavities. This paper describes the preparation strategy optimized for the cavity preparation procedure in industry. For the industrial fabrication and preparation, several new hardware components have been already developed at DESY. The design and construction of a semiautomated rf-measurement machine for dumbbells and end groups are described. In a collaboration among FNAL, KEK, and DESY, an automatic cavity tuning machine has been designed and four machines are under construction. The functionality of these machines with special attention to safety aspects is described in this paper. A new high pressure rinsing system has been developed and is operational.

  19. Automatic local beam steering systems for NSLS x-ray storage ring: Design and implementation

    International Nuclear Information System (INIS)

    Singh, O.V.; Nawrocky, R.; Flannigan, J.

    1991-01-01

    Recently, two local automatic steering systems, controlled by microprocessors, have been installed and commissioned in the NSLS X- Ray storage ring. In each system, the position of the electron beam is stabilized at two locations by four independent servo systems. This paper describes three aspects of the local feedback program: design; commissioning; and limitation. The system design is explained by identifying major elements such as beam position detectors, signal processors, compensation amplifiers, ratio amplifiers, trim equalizers and microprocessor feedback controllers. System commissioning involves steps such as matching trim compensation, determination of local orbit bumps, measurement of open loop responses and design of servo circuits. Several limitations of performance are also discussed. 7 refs., 2 figs

  20. Application of neutron activation and high resolution X-ray spectrometry to the development of analytical methods suitable for the assay of trace elements in biological materials. Part of a coordinated programme on comparative methods for the study of trace elements in human nutrition

    International Nuclear Information System (INIS)

    Mantel, J.

    1980-12-01

    A new method for determining trace elements in biological materials by instrumental neutron activation analysis (INAA) has been investigated. This method is based on the measurement of low-energy X-rays emitted by the sample after appropriate activation with thermal neutrons. The X-rays were detected by a Si(Li) diode connected to a multichannel analyser. The background in the energy region of interest was reduced by means of an electromagnet which deflects high-energy beta-particles away from the detector. This method of measurement has been evaluated by application to a number of different biological reference materials. The use of the electromagnet for background reduction was shown to be extremely effective for several radionuclides that are common sources of disturbance in INAA. For 32 P the background was only 0.8% of its original value. For real samples the background reduction depends somewhat on the matrix and therefore varies from one material to another. Practical detection limits for typical biological materials were derived for 18 different trace elements. The use of a perspex absorber was also considered as an alternative to magnetic deflection of the beta rays. In practice, magnetic deflection is preferable for the lower-energy X-ray emitters such as the activation products of Co, Cr, Cu and Zn

  1. Final Scientific/Technical Report, USDOE Award DE-FG-02ER54684, Recipient: CompX, Project Title: Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    International Nuclear Information System (INIS)

    Harvey, R.W.

    2009-01-01

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over the whole

  2. Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds

    International Nuclear Information System (INIS)

    Bi, Lei; Yang, Ping; Liu, Chao; Yi, Bingqi; Baum, Bryan A.; Diedenhoven, Bastiaan van; Iwabuchi, Hironobu

    2014-01-01

    A fundamental problem in remote sensing and radiative transfer simulations involving ice clouds is the ability to compute accurate optical properties for individual ice particles. While relatively simple and intuitively appealing, the conventional geometric-optics method (CGOM) is used frequently for the solution of light scattering by ice crystals. Due to the approximations in the ray-tracing technique, the CGOM accuracy is not well quantified. The result is that the uncertainties are introduced that can impact many applications. Improvements in the Invariant Imbedding T-matrix method (II-TM) and the Improved Geometric-Optics Method (IGOM) provide a mechanism to assess the aforementioned uncertainties. The results computed by the II-TM+IGOM are considered as a benchmark because the II-TM solves Maxwell's equations from first principles and is applicable to particle size parameters ranging into the domain at which the IGOM has reasonable accuracy. To assess the uncertainties with the CGOM in remote sensing and radiative transfer simulations, two independent optical property datasets of hexagonal columns are developed for sensitivity studies by using the CGOM and the II-TM+IGOM, respectively. Ice cloud bulk optical properties obtained from the two datasets are compared and subsequently applied to retrieve the optical thickness and effective diameter from Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Additionally, the bulk optical properties are tested in broadband radiative transfer (RT) simulations using the general circulation model (GCM) version of the Rapid Radiative Transfer Model (RRTMG) that is adopted in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM, version 5.1). For MODIS retrievals, the mean bias of uncertainties of applying the CGOM in shortwave bands (0.86 and 2.13 μm) can be up to 5% in the optical thickness and as high as 20% in the effective diameter, depending on cloud optical

  3. Implementation of a primary standard for a x-ray exposure

    International Nuclear Information System (INIS)

    peixoto, J.G.P.

    1991-04-01

    In the scientific program of the National Laboratory for Ionizing Radiation Metrology of the Instituto de Radioprotecao e Dosimetria, which belongs to the Comissao Nacional de Energia Nuclear, a free-air ionization chamber should be established as an exposure primary standard for X-rays of 100 K V to 250 K V of potential range. Preliminary results showed that the available free-air ionization chamber was suitable to be used. The absolute measurement of the radiation quantity exposure, is performed with a free-air ionization chamber. Its geometrical volume, which allows the determination of the air mass, is defined by the effective aperture area and by the length of the region where an electrical field is applied. Most of the ions produced in such volume are collected as an ionization current. Parameters related to the measurement of the quantity exposure were evaluated, such as: air absorption, scattering inside the ionization chamber, saturation, beam homogeneity, influence of beam size and influences of temperature, humidity and atmospheric pressure. Preliminary determination of correction factors has showed good results with 99.9% of repeatability and has demonstrated the reliability of the checked chamber as a standard instrument. (author)

  4. ATHENA: system design and implementation for a next generation x-ray telescope

    Science.gov (United States)

    Ayre, M.; Bavdaz, M.; Ferreira, I.; Wille, E.; Lumb, D.; Linder, M.

    2015-08-01

    ATHENA, Europe's next generation x-ray telescope, has recently been selected for the 'L2' slot in ESA's Cosmic Vision Programme, with a mandate to address the 'Hot and Energetic Universe' Cosmic Vision science theme. The mission is currently in the Assessment/Definition Phase (A/B1), with a view to formal adoption after a successful System Requirements Review in 2019. This paper will describe the reference mission architecture and spacecraft design produced during Phase 0 by the ESA Concurrent Design Facility (CDF), in response to the technical requirements and programmatic boundary conditions. The main technical requirements and their mapping to resulting design choices will be presented, at both mission and spacecraft level. An overview of the spacecraft design down to subsystem level will then be presented (including the telescope and instruments), remarking on the critically-enabling technologies where appropriate. Finally, a programmatic overview will be given of the on-going Assessment Phase, and a snapshot of the prospects for securing the `as-proposed' mission within the cost envelope will be given.

  5. Broad-band monitoring tracing the evolution of the jet and disc in the black hole candidate X-ray binary MAXI J1659-152

    NARCIS (Netherlands)

    van der Horst, A.J.; Curran, P.A.; Miller-Jonis, J.C.A.; Linford, J.D.; Gorosabel, J.; Russell, D.M.; De Ugarte Postigo, A.; Lundgren, A.A.; Taylor, G.B.; Maitra, D.; Guziy, S.; Belloni, T.M.; Kouveliotou, C.; Jonker, P.G.; Kamble, A.; Paragi, Z.; Homan, J.; Kuulkers, E.; Granot, J.; Altamirano, D.; Buxton, M.M.; Castro-Tirado, A.; Fender, R.P.; Garret, M.A.; Gehrels, N.; Hartmann, D.H.; Kennea, J.A.; Krimm, H.A.; Mangano, V.; Ramirez-Ruiz, E.; Romano, P.; Wijers, R.A.M.J.; Wijnands, R.; Yang, Y.J.

    2013-01-01

    MAXI J1659−152 was discovered on 2010 September 25 as a new X-ray transient, initially identified as a gamma-ray burst, but was later shown to be a new X-ray binary with a black hole as the most likely compact object. Dips in the X-ray light curves have revealed that MAXI J1659−152 is the shortest

  6. Trace analysis

    International Nuclear Information System (INIS)

    Warner, M.

    1987-01-01

    What is the current state of quantitative trace analytical chemistry? What are today's research efforts? And what challenges does the future hold? These are some of the questions addressed at a recent four-day symposium sponsored by the National Bureau of Standards (NBS) entitled Accuracy in Trace Analysis - Accomplishments, Goals, Challenges. The two plenary sessions held on the first day of the symposium reviewed the history of quantitative trace analysis, discussed the present situation from academic and industrial perspectives, and summarized future needs. The remaining three days of the symposium consisted of parallel sessions dealing with the measurement process; quantitation in materials; environmental, clinical, and nutrient analysis; and advances in analytical techniques

  7. Wavefield extrapolation in caustic-free normal ray coordinates

    KAUST Repository

    Ma, Xuxin

    2012-11-04

    Normal ray coordinates are conventionally constructed from ray tracing, which inherently requires smooth velocity profiles. To use rays as coordinates, the velocities have to be smoothed further to avoid caustics, which is detrimental to the mapping process. Solving the eikonal equation numerically for a line source at the surface provides a platform to map normal rays in complex unsmoothed velocity models and avoid caustics. We implement reverse-time migration (RTM) and downward continuation in the new ray coordinate system, which allows us to obtain efficient images and avoid some of the dip limitations of downward continuation.

  8. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    Science.gov (United States)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  9. Trace Element Mapping of a Biological Specimen by a Full-Field X-ray Fluorescence Imaging Microscope with a Wolter Mirror

    International Nuclear Information System (INIS)

    Hoshino, Masato; Yamada, Norimitsu; Ishino, Toyoaki; Namiki, Takashi; Watanabe, Norio; Aoki, Sadao

    2007-01-01

    A full-field X-ray fluorescence imaging microscope with a Wolter mirror was applied to the element mapping of alfalfa seeds. The X-ray fluorescence microscope was built at the Photon Factory BL3C2 (KEK). X-ray fluorescence images of several growing stages of the alfalfa seeds were obtained. X-ray fluorescence energy spectra were measured with either a solid state detector or a CCD photon counting method. The element distributions of iron and zinc which were included in the seeds were obtained using a photon counting method

  10. An Algorithm of an X-ray Hit Allocation to a Single Pixel in a Cluster and Its Test-Circuit Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, G. W. [AGH-UST, Cracow; Fahim, F. [Fermilab; Grybos, P. [AGH-UST, Cracow; Hoff, J. [Fermilab; Maj, P. [AGH-UST, Cracow; Siddons, D. P. [Brookhaven; Kmon, P. [AGH-UST, Cracow; Trimpl, M. [Fermilab; Zimmerman, T. [Fermilab

    2017-05-06

    An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels to one virtual pixel that recovers composite signals and event driven strobes to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32×32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3 μm X-ray beam. The results of these tests are given in the paper assessing physical implementation of the algorithm.

  11. Development of an approach for qualitative and quantitative analysis of trace elements present in canine breast tumors by energy dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Cozer, Thamara C.; Conceicao, Andre L.C.; Paschuk, Sergei A.; Rocha, Anna S.S. da; Fagundes, Alana C.F.; Maciel, Karla F.R.; Pimentel, Gustavo R.O.; Badelli, Juliana C.

    2015-01-01

    Studies performed with canines indicate that one of the main neoplasia which affect these animals are the breast tumors, representing from 25% to 50% of all kinds of tumors. Moreover, half of them are classified as malignant. In this sense, recent researches on humans have been associated the presence of certain trace elements with the development of breast neoplasia in those individuals. Then, as the breast tissue composition in canines is very similar to the humans, it is expected the same behavior. In this direction, a very effective technique to identify and to determinate trace elements concentration is the EDXRF. However, studies on this area are scarce in the literature. Therefore, in this work it was developed an approach to quantify the main trace elements present into these tumors with high sensitivity. For this purpose, it was determined calibration curves of standards samples diluted in water, with concentrations of Ca, Fe, Cu and Zn, ranging from 400mg/kg to 35mg/kg, from 20mg/kg to 2mg/kg, from 10mg/kg to 1mg/kg and from 100mg/kg to 10mg/kg, respectively. All calibration curves were linearly fitted and on basis in this behavior it was determined the sensitivity of our approach to quantify the concentration of the trace elements mentioned above. In addition, it is important to mention that studies in this area are of great potential, because EDXRF represents a quickly practical and non-destructive alternative to quantify trace elements. (author)

  12. Development of an approach for qualitative and quantitative analysis of trace elements present in canine breast tumors by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Cozer, Thamara C.; Conceicao, Andre L.C.; Paschuk, Sergei A.; Rocha, Anna S.S. da; Fagundes, Alana C.F.; Maciel, Karla F.R.; Pimentel, Gustavo R.O.; Badelli, Juliana C., E-mail: thamara.cozer@gmail.com, E-mail: alconceicao@utfpr.edu.br, E-mail: sergei@utfpr.edu.br, E-mail: anna@utfpr.edu.br, E-mail: alanacarolinef@gmail.com, E-mail: karla_rimanski@hotmail.com, E-mail: g_rop@hotmail.com, E-mail: jubadellin@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Lab. de Espectroscopia de Raio-X

    2015-07-01

    Studies performed with canines indicate that one of the main neoplasia which affect these animals are the breast tumors, representing from 25% to 50% of all kinds of tumors. Moreover, half of them are classified as malignant. In this sense, recent researches on humans have been associated the presence of certain trace elements with the development of breast neoplasia in those individuals. Then, as the breast tissue composition in canines is very similar to the humans, it is expected the same behavior. In this direction, a very effective technique to identify and to determinate trace elements concentration is the EDXRF. However, studies on this area are scarce in the literature. Therefore, in this work it was developed an approach to quantify the main trace elements present into these tumors with high sensitivity. For this purpose, it was determined calibration curves of standards samples diluted in water, with concentrations of Ca, Fe, Cu and Zn, ranging from 400mg/kg to 35mg/kg, from 20mg/kg to 2mg/kg, from 10mg/kg to 1mg/kg and from 100mg/kg to 10mg/kg, respectively. All calibration curves were linearly fitted and on basis in this behavior it was determined the sensitivity of our approach to quantify the concentration of the trace elements mentioned above. In addition, it is important to mention that studies in this area are of great potential, because EDXRF represents a quickly practical and non-destructive alternative to quantify trace elements. (author)

  13. Adaptation and implementation of the TRACE code for transient analysis in designs lead cooled fast reactors; Adaptacion y aplicacion del codigo TRACE para el analisis de transitorios en disenos de reactores rapidos refrigerados por plomo

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A.; Ammirabile, L.; Martorell, S.

    2015-07-01

    Lead-Cooled Fast Reactor (LFR) has been identified as one of promising future reactor concepts in the technology road map of the Generation IVC International Forum (GIF)as well as in the Deployment Strategy of the European Sustainable Nuclear Industrial Initiative (ESNII), both aiming at improved sustainability, enhanced safety, economic competitiveness, and proliferation resistance. This new nuclear reactor concept requires the development of computational tools to be applied in design and safety assessments to confirm improved inherent and passive safety features of this design. One approach to this issue is to modify the current computational codes developed for the simulation of Light Water Reactors towards their applicability for the new designs. This paper reports on the performed modifications of the TRACE system code to make it applicable to LFR safety assessments. The capabilities of the modified code are demonstrated on series of benchmark exercises performed versus other safety analysis codes. (Author)

  14. A track length estimator method for dose calculations in low-energy X-ray irradiations. Implementation, properties and performance

    Energy Technology Data Exchange (ETDEWEB)

    Baldacci, F.; Delaire, F.; Letang, J.M.; Sarrut, D.; Smekens, F.; Freud, N. [Lyon-1 Univ. - CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Centre Leon Berard (France); Mittone, A.; Coan, P. [LMU Munich (Germany). Dept. of Physics; LMU Munich (Germany). Faculty of Medicine; Bravin, A.; Ferrero, C. [European Synchrotron Radiation Facility, Grenoble (France); Gasilov, S. [LMU Munich (Germany). Dept. of Physics

    2015-05-01

    The track length estimator (TLE) method, an 'on-the-fly' fluence tally in Monte Carlo (MC) simulations, recently implemented in GATE 6.2, is known as a powerful tool to accelerate dose calculations in the domain of low-energy X-ray irradiations using the kerma approximation. Overall efficiency gains of the TLE with respect to analogous MC were reported in the literature for regions of interest in various applications (photon beam radiation therapy, X-ray imaging). The behaviour of the TLE method in terms of statistical properties, dose deposition patterns, and computational efficiency compared to analogous MC simulations was investigated. The statistical properties of the dose deposition were first assessed. Derivations of the variance reduction factor of TLE versus analogous MC were carried out, starting from the expression of the dose estimate variance in the TLE and analogous MC schemes. Two test cases were chosen to benchmark the TLE performance in comparison with analogous MC: (i) a small animal irradiation under stereotactic synchrotron radiation therapy conditions and (ii) the irradiation of a human pelvis during a cone beam computed tomography acquisition. Dose distribution patterns and efficiency gain maps were analysed. The efficiency gain exhibits strong variations within a given irradiation case, depending on the geometrical (voxel size, ballistics) and physical (material and beam properties) parameters on the voxel scale. Typical values lie between 10 and 103, with lower levels in dense regions (bone) outside the irradiated channels (scattered dose only), and higher levels in soft tissues directly exposed to the beams.

  15. Open-source implementation of an algorithm for photopeaks search and analysis in gamma-ray spectrometry with semiconductor detectors

    International Nuclear Information System (INIS)

    Maduar, Marcelo F.; Pecequilo, Brigitte R.S.

    2009-01-01

    Radioactivity quantification of gamma-ray emitter radionuclides in samples measured by HPGe gamma spectrometers relies on the analysis of the photopeaks present in the spectra, especially on the accurate determination of their net areas. This paper presents a methodology and an algorithm description for the peak search and analysis in order to obtain the relevant peaks parameters and their uncertainties. The procedure is performed on a three step approach: a preliminary search is done by using the second-difference method; experimental peaks widths are assessed in order to obtain a width vs. channel relationship and to define regions with single or overlapping peaks; a non-linear fit is applied to each region of the spectrum with candidate peaks. The final target function is in the form G(x) = B(x) + F(x), where B(x) is the baseline composed by a sum of a weighed left-side B L (x) and right-side B R (x) base-line quadratic functions and the photopeaks term F(x) is a sum of Gaussian functions. The computational implementation is released entirely in open-source license. The code was developed in C++ language and the interface was developed with Qt GUI software toolkit. GNU scientific library, GSL, was employed to perform linear and non-linear fitting procedures as needed. Spectra previously generated at our laboratories were analyzed with the presented methodology and with the commercial software package WinnerGamma. Results obtained are consistent with those obtained with the aforementioned package, suggesting that it could be safely used in general-purpose gamma-ray spectrometry. (author)

  16. Determination of some main elements and traces by x-ray fluorescence analysis in silicate rocks: a comparative study of two analytical techniques

    International Nuclear Information System (INIS)

    Andrade, M.D. de.

    1977-01-01

    The determinations of silicon, magnesium, iron, potassium, calcium, titanium, manganese, barium, strontium, rubidium, zirconium and scandium in felsic and mafic rocks, by X ray fluorescence analysis are presented. (author)

  17. Worldwide Open Proficiency Test for X Ray Fluorescence Laboratories PTXRFIAEA09: Determination of Major, Minor and Trace Elements in a River Clay

    International Nuclear Information System (INIS)

    2014-01-01

    This publication presents the results of the worldwide proficiency test PTXRFIAEA09 on the determination of major, minor and trace elements in river clay. Methodologies, a data evaluation approach, a summary evaluation of each element and individual evaluation reports for each laboratory are also described. The test was carried out within the IAEA project Nuclear Spectrometry for Analytical Applications, under the Nuclear Science Programme. The main objective of the project was to enhance the capability of interest Member States in effective utilization of nuclear spectrometries and analytical services in industry, human health and agriculture, and in monitoring and evaluating environmental pollution

  18. A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems

    DEFF Research Database (Denmark)

    McNeil, A.; Jonsson, C.J.; Appelfeld, David

    2013-01-01

    , or daylighting systems. However, such tools require users to provide bi-directional scattering distribution function (BSDF) data that describe the solar-optical performance of the CFS. A free, open-source Radiance tool genBSDF enables users to generate BSDF data for arbitrary CFS. Prior to genBSDF, BSDF data.......We explain the basis and use of the genBSDF tool and validate the tool by comparing results for four different cases to BSDF data produced via alternate methods. This validation demonstrates that BSDFs created with genBSDF are comparable to BSDFs generated analytically using TracePro and by measurement...

  19. Crystallization behavior of polyethylene on silicon wafers in solution casting processes traced by time-resolved measurements of synchrotron grazing-incidence small-angle and wide-angle X-ray scattering

    International Nuclear Information System (INIS)

    Sasaki, S; Masunaga, H; Takata, M; Itou, K; Tashiro, K; Okuda, H; Takahara, A

    2009-01-01

    Crystallization behavior of polyethylene (PE) on silicon wafers in solution casting processes has been successfully traced by time-resolved grazing-incidence small-angle and wide-angle X-ray scattering (GISWAXS) measurements utilizing synchrotron radiation. A p-xylene solution of PE kept at ca. 343 K was dropped on a silicon wafer at ca. 298 K. While the p-xylene evaporated naturally from the dropped solution sample, PE chains crystallized to be a thin film. Raman spectral measurements were performed simultaneously with the GISWAXS measurements to evaluate quantitatively the p-xylene the dropped solution contained. Grazing-incidence wide-angle X-ray scattering (GIWAXS) patterns indicated nucleation and crystal growth in the dropped solution and the following as-cast film. GIWAXS and Raman spectral data revealed that crystallization of PE was enhanced after complete evaporation of the p-xylene from the dropped solution. The [110] and [200] directions of the orthorhombic PE crystal became relatively parallel to the wafer surface with time, which implied that the flat-on lamellae with respect to the wafer surface were mainly formed in the as-cast film. On the other hand, grazing-incidence small-angle X-ray scattering (GISAXS) patterns implied formation of isolated lamellae in the dropped solution. The lamellae and amorphous might alternatively be stacked in the preferred direction perpendicular to the wafer surface. The synchrotron GISWAXS experimental method could be applied for kinetic study on hierarchical structure of polymer thin films.

  20. Proton Induced X-Ray Emission (PIXE) Analysis to Measure Trace Metals in Soil Along the East River in Queens, New York

    Science.gov (United States)

    Chalise, Sajju; Conlan, Skye; Porat, Zachary; Labrake, Scott; Vineyard, Michael

    2017-09-01

    The Union College Ion-Beam Analysis Lab's 1.1 MV tandem Pelletron accelerator is used to determine the presence of heavy trace metals in Queens, NY between Astoria Park and 3.5 miles south to Gantry State Park. A PIXE analysis was performed on 0.5 g pelletized soil samples with a 2.2 MeV proton beam. The results show the presence of elements ranging from Ti to Pb with the concentration of Pb in Astoria Park (2200 +/-200 ppm) approximately ten times that of the Gantry State Park. We hypothesize that the high lead concentration at Astoria Park is due to the nearby Hell Gate Bridge, painted in 1916 with lead based paint, then sandblasted and repainted in the '90s. If the lead is from the repair of the bridge, then we should see the concentration decrease as we go further from the bridge. To test this, soil samples were collected and analyzed from seven different locations north and south of the bridge. The concentrations of lead decreased drastically within a 500 m radius and were approximately constant at greater distances. More soil samples need to be collected within the 500 m radius from bridge to identify the potential source of Pb. We will describe the experimental procedure, the PIXE analysis of soil samples, and present preliminary results on the distribution of heavy trace metals.

  1. Trace determination of heavy metal concentrations in fauna, flora and salt samples from Black Sea waters by charged particles - induced X-rays

    International Nuclear Information System (INIS)

    Badica, T.; Ciortea, C.; Dima, S.; Petrovici, A.; Popescu, I.; Serbanescu, O.

    1977-01-01

    Studies were performed on Black Sea pollution by charged particles induced X-rays spectra analysis, using alpha and 16 O beams. Fauna, flora and salt samples were analysed. We found some of the concentrations of pollutant elements to be below the accepted levels. (author)

  2. Ray tracing through the liquid crystal point diffraction interferometer. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Turner, A.

    1999-03-01

    The Omega laser is a system with many different parts that may cause imperfections. There are a multitude of lenses and mirrors, for example, that may not be polished correctly and can cause the laser wave front to have aberrations. The Liquid Crystal Point Diffraction Interferometer (L.C.P.D.I.) is a device whose main purpose is to read the wave front of the laser and measure any aberrations that may be on it. The way the L.C.P.D.I. reads the laser wave front and measures these aberrations is very complicated and has yet to be perfected. A ray-tracing model of the L.C.P.D.I. has been built, which calculates and models the ray trajectories, the optical paths of the rays, the O.P.D. between the object and reference beams, the absorption of the rays in the liquid crystal, and the intensities of each beam. It can predict an actual experiment by manipulating the different parameters of the program. It will be useful in optimization and further development of the L.C.P.D.I. Evidently, it is necessary to develop a liquid crystal solution with an O.D. greater than 0.3, and possibly as high as 2.0. This new solution would be able to reduce the intensity of the object beam sufficiently to make it comparable with the reference beam intensity. If this were achieved, the contrast, or visibility of the fringes would be better, and the interferogram could be used to diagnose the aberrations in the laser beam front. Then the cause of the aberrations could be fixed. This would result in a near-perfect laser front. If this were achieved, then it is possible that laser fusion could be made more efficient and possibly used as an energy source

  3. Monitoring environmental pollution of trace elements in tree-rings by synchrotron radiation total reflection X-ray fluorescence analysis (SR-TXRF)

    International Nuclear Information System (INIS)

    Moreira, Silvana; Vives, Ana Elisa S. de; Brienza, Sandra Maria B.; Medeiros, Jean Gabriel S.; Tomazello Filho, Mario; Zucchi, Orgheda L.A.D.; Nascimento Filho, Virgilio F.

    2005-01-01

    This paper aims to study the environmental pollution in the tree development, as a manner to evaluate its use as bioindicator in urban and country sides. The sample collecting was carry out in Piracicaba city, Sao Paulo State, that presents high level of environmental contamination of the water, soil and air, due industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. It was selected the Caesalpinia peltophoroides ('Sibipiruna') specie because its very used in urban arborization. It was employed the analytical technique named total reflection X-ray fluorescence (TXRF) to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was done in the Brazilian Synchrotron Light Laboratory, using a white beam for excitation and a Si(Li) detector for characteristic X-ray detection. It was quantified the P, K, Ca, Ti, Fe, Sr, Ba e Pb elements. (author)

  4. Monitoring environmental pollution of trace elements in tree-rings by synchrotron radiation total reflection X-ray fluorescence analysis (SR-TXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Brienza, Sandra Maria B. [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil) Faculdade de Ciencias Matematicas, da Natureza e de Tecnologia da Informacao]. E-mail: sbrienza@unimep.br; Medeiros, Jean Gabriel S.; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Zucchi, Orgheda L.A.D. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    This paper aims to study the environmental pollution in the tree development, as a manner to evaluate its use as bioindicator in urban and country sides. The sample collecting was carry out in Piracicaba city, Sao Paulo State, that presents high level of environmental contamination of the water, soil and air, due industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. It was selected the Caesalpinia peltophoroides ('Sibipiruna') specie because its very used in urban arborization. It was employed the analytical technique named total reflection X-ray fluorescence (TXRF) to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was done in the Brazilian Synchrotron Light Laboratory, using a white beam for excitation and a Si(Li) detector for characteristic X-ray detection. It was quantified the P, K, Ca, Ti, Fe, Sr, Ba e Pb elements. (author)

  5. Tracing Clues

    DEFF Research Database (Denmark)

    Feldt, Liv Egholm

    The past is all messiness and blurred relations. However, we tend to sort the messiness out through rigorous analytical studies leaving the messiness behind. Carlo Ginzburgs´ article Clues. Roots of an Evidential Paradigm from 1986 invigorates methodological elements of (historical) research, which...... central methodological elements will be further elaborated and discussed through a historical case study that traces how networks of philanthropic concepts and practices influenced the Danish welfare state in the period from the Danish constitution of 1849 until today. The overall aim of this paper...

  6. Matrix effect on the detection limit and accuracy in total reflection X-ray fluorescence analysis of trace elements in environmental and biological samples

    International Nuclear Information System (INIS)

    Karjou, J.

    2007-01-01

    The effect of matrix contents on the detection limit of total reflection X-ray fluorescence analysis was experimentally investigated using a set of multielement standard solutions (500 ng/mL of each element) in variable concentrations of NH 4 NO 3 . It was found that high matrix concentration, i.e. 0.1-10% NH 4 NO 3 , had a strong effect on the detection limits for all investigated elements, whereas no effect was observed at lower matrix concentration, i.e. 0-0.1% NH 4 NO 3 . The effect of soil and blood sample masses on the detection limit was also studied. The results showed decreasing the detection limit (in concentration unit, μg/g) with increasing the sample mass. However, the detection limit increased (in mass unit, ng) with increasing sample mass. The optimal blood sample mass of ca. 200 μg was sufficient to improve the detection limit of Se determination by total reflection X-ray fluorescence. The capability of total reflection X-ray fluorescence to analyze different kinds of samples was discussed with respect to the accuracy and detection limits based on certified and reference materials. Direct analysis of unknown water samples from several sources was also presented in this work

  7. A new implementation of digital X-ray radiogrammetry and reference curves of four indices of cortical bone for healthy European adults

    DEFF Research Database (Denmark)

    Thodberg, Hans Henrik; Böttcher, Joachim; Lomholt, Jens

    2016-01-01

    UNLABELLED: Digital X-ray radiogrammetry performs measurements on a hand radiograph in digital form. We present an improved implementation of the method and provide reference curves for four indices for the amount of bone. We collected 1662 hand radiographs of healthy subjects of age 9-100 years....... PURPOSE: The digital X-ray radiogrammetry (DXR) method has been shown to be efficient for diagnosis of osteoporosis and for assessment of progression of rheumatoid arthritis. The aim of this work is to present a new DXR implementation and reference curves of four indices of cortical bone and to compare...... their relative SDs in healthy subjects at fixed age and gender. MATERIALS AND METHODS: A total of 1662 hand radiographs of healthy subjects of age 9-100 years were collected in Jena in 2001-2005. We also used a longitudinal study of 116 Danish children born in 1952 with on average 11 images taken over the age...

  8. Trace element measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1982-01-01

    Aspects of the application of synchrotron radiation to trace element determinations by x-ray fluorescence have been investigated using beams from the Cornell facility, CHESS. Fluoresced x rays were detected with a Si(Li) detector placed 4 cm from the target at 90 0 to the beam. Thick samples of NBS Standard Reference Materials were used to calibrate trace element sensitivity and estimate minimum detectable limits for this method

  9. FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy

    Science.gov (United States)

    A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...

  10. Determination of ultra trace contaminants on silicon wafer surfaces using total-reflection X-ray fluorescence TXRF 'state-of-the-art'

    Science.gov (United States)

    Pahlke, S.; Fabry, L.; Kotz, L.; Mantler, C.; Ehmann, T.

    2001-11-01

    In a well balanced system of highly motivated, well trained personnel and automated equipment, pure reagents and bulk media, cleanrooms and integrated data management, total-reflection X-ray fluorescence (TXRF) can and must contribute to quality assurance and process stability, support and canalize creative engineering by continuous learning about materials and processes. TXRF has the advantage of controlled one-point calibration, a linear dynamic range of three orders of magnitude, high grade of automation in operation and data management, high up-time, and a simple control of data plausibility.

  11. Comparison of the trace analysis of heavy metal aerosols by means of atom absorption spectroscopy and proton-induced X-ray spectrometry

    International Nuclear Information System (INIS)

    Nottrodt, K.H.; Georgii, H.W.; Groeneveld, K.O.; Frankfurt Univ.

    1977-01-01

    The comparative analyses of AAS and PIXE (Proton-Induced X-ray Emission) show very good agreement in the absolute values of the concentrations of all metals analyzed. The practical detection limits are about 10 -10 g for the investigated element in both measuring processes, so that the analysis of pure air samples is possible with both methods. PIXE is particularly suitable for the analysis of aerosol samples as it is not necessary to process the filter, the samples are not destroyed, and many elements can be simultaneously analyzed within a short time (5-10 min.). Furthermore, the possibility of automatization enables an efficient treatment of meteorological problems. (orig.) [de

  12. Trace element analysis of water using radioisotope induced X-ray fluorescence (Cd-109) and a preconcentration-internal standard method

    International Nuclear Information System (INIS)

    Alvarez, M.; Cano, W.

    1986-10-01

    Radioisotope induced X-ray fluorescence using Cd-109 was used for the determination of iron, nickel, copper, zinc, lead and mercury in water. These metals were concentrated by precipitation with the chelating agent APDC. The precipitated formed was filtered using a membrane filter. Cobalt was added as an internal standard. Minimum detection limit, sensitivities and calibration curves linearities have been obtained to find the limits of the method. The usefulness of the method is illustrated analysing synthetic standard solutions. As an application analytical results are given for water of a highly polluted river area. (Author)

  13. Feasibility of implementation of a "simplified, No-X-Ray, no-lead apron, two-catheter approach" for ablation of supraventricular arrhythmias in children and adults.

    Science.gov (United States)

    Stec, Sebastian; Śledź, Janusz; Mazij, Mariusz; Raś, Małgorzata; Ludwik, Bartosz; Chrabąszcz, Michał; Śledź, Arkadiusz; Banasik, Małgorzata; Bzymek, Magdalena; Młynarczyk, Krzysztof; Deutsch, Karol; Labus, Michał; Śpikowski, Jerzy; Szydłowski, Lesław

    2014-08-01

    Although the "near-zero-X-Ray" or "No-X-Ray" catheter ablation (CA) approach has been reported for treatment of various arrhythmias, few prospective studies have strictly used "No-X-Ray," simplified 2-catheter approaches for CA in patients with supraventricular tachycardia (SVT). We assessed the feasibility of a minimally invasive, nonfluoroscopic (MINI) CA approach in such patients. Data were obtained from a prospective multicenter CA registry of patients with regular SVTs. After femoral access, 2 catheters were used to create simple, 3D electroanatomic maps and to perform electrophysiologic studies. Medical staff did not use lead aprons after the first 10 MINI CA cases. A total of 188 patients (age, 45 ± 21 years; 17% 0.05), major complications (0% vs. 0%, P > 0.05) and acute (98% vs. 98%, P > 0.05) and long-term (93% vs. 94%, P > 0.05) success rates were similar in the "No-X-Ray" and control groups. Implementation of a strict "No-X-Ray, simplified 2-catheter" CA approach is safe and effective in majority of the patients with SVT. This modified approach for SVTs should be prospectively validated in a multicenter study. © 2014 Wiley Periodicals, Inc.

  14. Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Sirito de Vives, Ana Elisa [School of Civil Engineering, Architecture and Urban Design Methodist University of Piracicaba, Rodovia Santa Barbara D' Oeste/Iracemapolis, km 01, 13450-000 Santa Barbara D' Oeste, SP (Brazil)]. E-mail: aesvives@unimep.br; Moreira, Silvana [State University of Campinas - UNICAMP/FEC (Brazil); Brienza, Sandra Maria Boscolo [School of Civil Engineering, Architecture and Urban Design Methodist University of Piracicaba, Rodovia Santa Barbara D' Oeste/Iracemapolis, km 01, 13450-000 Santa Barbara D' Oeste, SP (Brazil); Silva Medeiros, Jean Gabriel [University of Sao Paulo - USP/ ESALQ (Brazil); Tomazello Filho, Mario Tomazello [University of Sao Paulo - USP/ ESALQ (Brazil); Araujo Domingues Zucchi, Orgheda Luiza [University of Sao Paulo - USP/FCFRP (Brazil); Nascimento Filho, Virgilio Franco do [University of Sao Paulo - USP/CENA (Brazil)

    2006-11-15

    This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, Sao Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ('Sibipiruna') was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark.

  15. Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Sirito de Vives, Ana Elisa; Moreira, Silvana; Brienza, Sandra Maria Boscolo; Silva Medeiros, Jean Gabriel; Tomazello Filho, Mario Tomazello; Araujo Domingues Zucchi, Orgheda Luiza; Nascimento Filho, Virgilio Franco do

    2006-01-01

    This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, Sao Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ('Sibipiruna') was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark

  16. Analysis of trace in Rhododendron ferrigineum leaves for monitoring of urban atmospheric pollution by x-ray fluorescence with Synchrotron Radiation Excitation technique

    International Nuclear Information System (INIS)

    Pinto, Jefferson F.; Simabuco, Silvana M.; Jesus, E.F.O. de

    2000-01-01

    The purpose of this work was perform the biomonitoring of the atmospheric pollution in Campinas City (SP), applying the Energy Dispersive X-ray Fluorescence with Synchrotron Radiation Excitation technique. For this were performed the elemental analysis of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se and Pb in Rhododendron ferrigineum leaves, employed here as bioindicator from environmental pollution in order to evaluate the effects of spatial and climatic contribution on the elemental concentration on the vegetable. Urban and rural sites were sampling in different seasons. The collected leaves were divided in two parts, one of them was washed by detergent and deionized water, in order to quantify the losses due the washing, and the second one was not washed, following the both parts of material were dried in stove, crushed and so the samples were submitted to an nitric-perchloric digestion. The samples were preconcentrated with ammonium pyrrolidinedithiocarbamate (APDC), and the suspension was separated by filtration in cellulose membrane, then the samples were analyzed with X-ray tube and synchrotron radiation excitations. The results obtained shown that the vehicle flow can be associated to the distribution of the elements in the Rhododendrom ferrigineum leaves therefore the climatic contribution was not conclusive. (author)

  17. Characterisation and quantification of trace metal elements in atmospheric deposition and particularities in the Aspe valley (Pyrenees): implementation of road traffic air quality indicators

    International Nuclear Information System (INIS)

    Veschambre, S.

    2006-04-01

    This study of inputs of trace metal elements (TME) in the Aspe valley (Pyrenees Atlantiques) has two objectives: (1) to define a reference state of metallic contaminants for the monitoring of road traffic emissions since the opening of the Somport tunnel and, (2) to evaluate sources and climatic conditions which contribute to TME inputs in the Aspe valley. To establish air quality indicators, TME (Al, Na, Mg, K, V, Mn, Cr, Zn, Cu, Rb, Cd, Sn, Sb, Ba, Ce, Pb and U) and lead isotopic ratios ( 208 Pb/ 206 Pb, 206 Pb/ 207 Pb and 208 Pb/ 207 Pb) were determined in the atmospheric receptors (fresh snow, wet deposition, atmospheric particulates and lichen). Sampling and analyses with ultra clean procedures were employed for TME quantification. Variability of atmospheric receptors studied, allows integration on a daily and pluri-annual temporal scale and a spatial scale in the North-South axis of the valley and as a function of the altitude from the road. The Aspe valley presents a level of contamination characteristic of remote European areas and the metallic contaminants identified are Cd, Sb, Zn, Cu, Pb and Sn. In the low valley, air quality indicators indicate contaminant contributions (i) from local emissions of domestic heat sources, from agricultural burning practices and road traffic, and (ii) from regional anthropogenic sources of waste incinerators, metallurgic industries and urban centres. In altitude, the valley is significantly influenced by wind erosion and long range transport of TME in the Northern Hemisphere. Characterisation of TME and the isotopic ratios of Pb in the Somport tunnel indicate (i) a significant emission of Cu, Sb, Zn and Ba and (ii) an isotopic composition from a slightly radiogenic source even though Pb concentrations indicate low emissions from road traffic emissions. Nevertheless, the low traffic volume in the Aspe valley prevents conclusive evidence of significant contamination from road traffic. (author)

  18. Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Carvalho, M.L.; Marques, A.F.; Lima, M.T.; Reus, U.

    2004-01-01

    The purpose of the present work is to investigate the suitability of TXRF technique to study the distribution of trace elements along human bones of the 13th century, to conclude about environmental conditions and dietary habits of old populations and to study the uptake of some elements from the surrounding soil. In this work, we used TXRF to quantify and to make profiles of the elements through long bones. Two femur bones, one from a man and another from a woman, buried in the same grave were cross-sectioned in four different points at a distance of 1 cm. Microsamples of each section were taken at a distance of 1 mm from each other. Quantitative analysis was performed for Ca, Mn, Fe, Cu, Zn, Sr, Ba and Pb. Very high concentrations of Mn and Fe were obtained in the whole analysed samples, reaching values higher than 2% in some samples of trabecular tissue, very much alike to the concentrations in the burial soil. A sharp decrease for both elements was observed in cortical tissue. Zn and Sr present steady concentration levels in both kinds of bone tissues. Pb and Cu show very low concentrations in the inner tissue of cortical bone. However, these concentrations increase in the regions in contact to trabecular tissue and external surface in contact with the soil, where high levels of both elements were found. We suggest that contamination from the surrounding soil exists for Mn and Fe in the whole bone tissue. Pb can be both from post-mortem and ante-mortem origin. Inner compact tissue might represent in vivo accumulation and trabecular one corresponds to uptake during burial. The steady levels of Sr and Zn together with soil concentration lower levels for these elements may allow us to conclude that they are originated from in vivo incorporation in the hydroxyapatite bone matrix

  19. Analysis of trace element compositions in adhesive cloth tapes using high-energy x-ray fluorescence spectrometer with three-dimensional polarization optics for forensic discrimination

    International Nuclear Information System (INIS)

    Goto, Akiko; Hokura, Akiko; Nakai, Izumi

    2008-01-01

    The forensic discrimination of adhesive cloth tapes often used in crimes was developed using a high-energy energy-dispersive X-ray fluorescence spectrometer with 3-dimensional polarization optics. The best measurement condition for discrimination of the tape was as follows: secondary targets, Rh and Al 2 O 3 ; measurement time, 300 s for Rh and 600 s for Al 2 O 3 ; 14 elements (Ca, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Zr, Nb, Mo, Sb, Ba and Pb) were used for discrimination. It is found that the combined information of yarn density and the XRF peak intensity of the 14 elements successfully discriminated 29 out of 31 samples, of which 2 probably had the same origin. This technique is useful for forensic analysis, because it is nondestructive, rapid and easy. Therefore, it can be applied to actual forensic identification. (author)

  20. TraceContract: A Scala DSL for Trace Analysis

    Science.gov (United States)

    Barringer, Howard; Havelund, Klaus

    2011-01-01

    In this paper we describe TRACECONTRACT, an API for trace analysis, implemented in the SCALA programming language. We argue that for certain forms of trace analysis the best weapon is a high level programming language augmented with constructs for temporal reasoning. A trace is a sequence of events, which may for example be generated by a running program, instrumented appropriately to generate events. The API supports writing properties in a notation that combines an advanced form of data parameterized state machines with temporal logic. The implementation utilizes SCALA's support for defining internal Domain Specific Languages (DSLs). Furthermore SCALA's combination of object oriented and functional programming features, including partial functions and pattern matching, makes it an ideal host language for such an API.

  1. Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments.

    Science.gov (United States)

    Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C

    2015-04-01

    The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.

  2. An experimental implementation of the 90 .deg. compton scattering inspection method for identifying explosive materials using dual energy x-ray

    International Nuclear Information System (INIS)

    Park, Ji Sung

    2012-02-01

    In order to obtain the physical properties of an inspection object using an X-ray source, the energy-resolving X-ray method, reflecting the characteristic of continuous energy, is a very useful tool. In this study, the effective atomic number (Z eff ) and normal density (ρ) obtained by the source weighting method on a dual energy X-ray inspection system are presented and demonstrated by experimental implementation. Two X-ray beams of the suggested method were designed using the XCOMP5r code. The filter design of a high energy X-ray source was fixed as 3.5 mm Sn at 150 kVp tube voltage, and the new high energy X-ray beam was named as IN150. The filter design of a low energy X-ray source was also fixed as 0.5 mm Sn at 90 kVp tube voltage, and the new beam was named as IN90. Benchmark calculations by MCNP simulation experiments were performed using four different materials, i.e., Polyethylene, Acetal, Urethane, and TNT. The results of the benchmark calculation showed that the new method can estimate the effective atomic number and the normal density of a scattered object accurately, even when the object was arbitrarily located in samples. Finally to verify the proposed new method, scattering experiments using various polymerized compounds were carried out. The effective attenuation coefficients (μ 1 , μ 2 ) of the experiment objects at the source energies E 1 and E 2 , were calculated using scattered spectra. The effective atomic number and the normal density were then calculated by using the ratio of μ 1 to μ 2 . As a result in case of all sample geometries, the relative differences between the calculation value and the reference value for the effective atomic numbers of each material were within 14 %, and the relative differences for the normal densities were within 12 %. This observation led us to the conclusion that the new 90 .deg. Compton scattering method for identifying explosive materials using a dual-energy X-ray is valid for calculating effective

  3. Implementing displacement damage calculations for electrons and gamma rays in the Particle and Heavy-Ion Transport code System

    Science.gov (United States)

    Iwamoto, Yosuke

    2018-03-01

    In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.

  4. Management of radiodiagnostic equipment: Implementation of self-maintenance project of the conventional x-ray equipment of Hospital Universitario Clementino Fraga Filho - HUCFF-UFRJ

    International Nuclear Information System (INIS)

    Couto, N.F. do; Azevedo, A.C.P.; Koch, H.A.

    2001-01-01

    The project aims the implantation of a management program, for the maintenance of the conventional X-ray equipment at HUCFF. It has been implemented through the training of the electronic technicians who work at the Hospital. Essential courses were organized such as: Basics of Radioprotection, Radiographs Techniques, and Maintenance of equipment of X-Rays. Equipment: a library with the schemes of the equipment is being assembled in collaboration with UNICAMP. In order to manage the process, a software was created using the tools of the total quality for control of the maintenance. Preliminary tests: the equipment and their working conditions were evaluated, as well as the level of the employees' satisfaction with their use. The creation of a new routine for maintenance seeks to assist the demands of the new legislation in Brazil 5, and also reduce the costs to improve the quality of the images in the Radiodiagnostic Service. (author)

  5. Two different preparation techniques for trace element determination of single Daphnia specimen using total reflection x-ray fluorescence analysis (TXRF)

    International Nuclear Information System (INIS)

    Woelfl, S.; Mages, M.

    2000-01-01

    Bio accumulation gives first information about the bio-availability of elements in waters and becomes more and more important for the characterization of the water quality. The use of common analytical techniques like ICP-MS and AAS requires large quantities of biologic sample material. Single preparation for example of Daphnia, a common species for bio-test experiments, are hardly possible with these procedures. Therefore alternatively quantitative TXRF element determination of individually prepared Daphnia was developed. Two preparation techniques for single freshwater crustacean specimen from a eutrophic branch of the river Elbe in the 'Rothehorn Park', Magdeburg (Daphnia: dry weight: 10 - 50 μg individuum -1 ) had been tested: (1) Wet preparation: the single Daphnia specimen had been washed with 0.45 μm filtered lake water and put onto quartz sample carriers. After air drying, the body length were determined in order to calculate the dry weight according to previously established body lengths-dry weight relationships. (2) Dry preparation: after collection specimen were washed with 0.45 μm filtered lake water and frozen in liquid nitrogen. The individual lyophilisated dried Daphnia were weighted using an ultrafine micro-balance and put onto quartz sample carriers. After preparation, addition of some μl Gallium standard solution and air drying the individual Daphnia were digested at the quartz sample carriers with 10 μl HNO 3 on a hot plate and dried once more. Finally the element concentrations were determined using a EXTRA IIA total-reflection x-ray fluorescence spectrometer. As a result of these investigations we can conclude that both, the 'dry' and 'wet' preparation method can be used for the element determination in small single crustaceans using TXRF spectrometry. It seems that the 'dry' method yields more precise results, but the wet method is easier to handle in field when samples cannot be fixed with liquid nitrogen. (author)

  6. Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals.

    Science.gov (United States)

    Kerisit, Sebastien; Bylaska, Eric J; Massey, Michael S; McBriarty, Martin E; Ilton, Eugene S

    2016-11-21

    Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U L III -edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO 2 ), and constrained the S 0 2 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H + , +1 e - ). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with

  7. Information-theoretical feature selection using data obtained by Scanning Electron Microscopy coupled with and Energy Dispersive X-ray spectrometer for the classification of glass traces

    International Nuclear Information System (INIS)

    Ramos, Daniel; Zadora, Grzegorz

    2011-01-01

    Highlights: → A selection of the best features for multivariate forensic glass classification using SEM-EDX was performed. → The feature selection process was carried out by means of an exhaustive search, with an Empirical Cross-Entropy objective function. → Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows or containers. - Abstract: In this work, a selection of the best features for multivariate forensic glass classification using Scanning Electron Microscopy coupled with an Energy Dispersive X-ray spectrometer (SEM-EDX) has been performed. This has been motivated by the fact that the databases available for forensic glass classification are sparse nowadays, and the acquisition of SEM-EDX data is both costly and time-consuming for forensic laboratories. The database used for this work consists of 278 glass objects for which 7 variables, based on their elemental compositions obtained with SEM-EDX, are available. Two categories are considered for the classification task, namely containers and car/building windows, both of them typical in forensic casework. A multivariate model is proposed for the computation of the likelihood ratios. The feature selection process is carried out by means of an exhaustive search, with an Empirical Cross-Entropy (ECE) objective function. The ECE metric takes into account not only the discriminating power of the model in use, but also its calibration, which indicates whether or not the likelihood ratios are interpretable in a probabilistic way. Thus, the proposed model is applied to all the 63 possible univariate, bivariate and trivariate combinations taken from the 7 variables in the database, and its performance is ranked by its ECE. Results show remarkable accuracy of the best variables selected following the proposed procedure for the task of classifying glass fragments into windows (from cars or buildings) or containers

  8. Tracing the contribution of debris flow-dominated channels to gravel-bed torrential river channel: implementing pit-tags in the upper Guil River (French Alps)

    Science.gov (United States)

    Arnaud-Fassetta, Gilles; Lissak, Candide; Fort, Monique; Bétard, François; Carlier, Benoit; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier

    2014-05-01

    In the upper, wider reaches of Alpine valleys, shaping of active channels is usually subject to rapid change. It mostly depends upon hydro-climatic variability, runoff concentration and sediment supply, and may result in alternating sequences of fluvial and debris-flow pulses, as recorded in alluvial fans and terraces. Our study, carried in the frame of SAMCO (ANR) project, focuses on the upper Guil River Valley (Queyras, Southern French Alps) cut into the slaty shale "schistes lustrés". Steep, lower order drains carry a contrasted solid discharge, including predominantly sandy-loam particles mixed with gravels and boulders (sandstone schists, ophiolites). Abundant sediment supply by frost shattering, snow avalanche and landslides is then reworked during snowmelt or summer storm runoff events, and may result in catastrophic, very destructive floods along the main channel, as shown by historical records. Following the RI-30 year 2000 flood, our investigations included sediment budgets, i.e. balance of erosion and deposition, and the mapping of the source, transport and storage of various sediments (talus, colluvium, torrential fans, terraces). To better assess sediment fluxes and sediment delivery into the main channel network, we implemented tracers (pit-tags) in selected sub-catchments, significantly contributing to the sediment yield of the valley bottoms during the floods and/or avalanches: Maloqueste, Combe Morel, Bouchouse and Peyronnelle catchments. The first three are direct tributaries of the Guil River whereas the Peyronnelle is a left bank tributary of the Peynin River, which joins the Guil River via an alluvial cone with high human and material stakes. The Maloqueste and the Combe Morel are two tributaries facing each other in the Guil valley, representing a double lateral constraint for the road during flood events of the Guil River. After pit-tag initialisation in laboratory, we set them up along the four tributaries: Maloqueste (20 pit-tags), Combe

  9. MODERN PECULIARITIES OF THE MEDICAL EXPOSURE LEVELS FORMING OF THE TATARSTAN REPUBLIC POPULATION DURING X-RAY PROCEDURES IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    S. A. Ryzhkin

    2015-01-01

    Full Text Available The purpose. The purpose of the investigation is an assessment of the peculiarities of forming and registration of the collective doses of patients and the population of the Tatarsatan Republic (RT from medical exposure and the development of measures for optimization of this radiation factor.Materials and methods. The analysis is based on the forms of the Federal statistical observation № 3-DOZ «Data on the exposure doses to patients obtained during medical radiological examination» (form № 3-DOZ and radiation-hygienic passports of RT for the period from 2006 to 2013.The results. Annually in RT there is an increase of the number of performed X-ray procedures, which reached the value of 6279696 (1.64 procedures per resident per year in 2013. During the reporting period (from 2006 to 2013 the structure of the performed X-ray procedures has also changed. It is observed that the percentage of fluorography procedures in the overall structure decreased from 41.3% to 31.3% at the same time the level of absolute value of annually performed fluorography procedures is stable. There is an increase in the absolute number of radiographic procedures performed during the period from 2578754 to 4072810 X-rays per year, that is 1.58 times higher. Absolute and relative values related to X-ray fluoroscopy examinations decreased from 1.1% to 0.7%. In contrast, the absolute number of annually performed X-ray computed tomography examinations (CT has increased over the period by 3.3 times and percentage of CT in overall structure of X-ray procedure is 2.7%. The number of special investigations has increased in 2.1 times, but the relative value remained at average level of 0.4% on general background of the increasing of X-ray activity in the region. This fact influenced the change in the radiation-hygienic indexes of medical radiation exposure of the population of RT. According to №3-DOZ forms and radiation-hygienic passports of the

  10. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.

    2007-07-01

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/{delta}t{sub Jmax} for the n-alcohols are in the range of 1.10{sup 17}ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.10{sup 12}

  11. New insights into nucleation. Pressure trace measurements and the first small angle X-ray scattering experiments in a supersonic laval nozzle

    International Nuclear Information System (INIS)

    Ghosh, D.

    2007-01-01

    Homogeneous nucleation rates of the n-alcohols and the n-alkanes have been determined by combining information from two sets of supersonic Laval nozzle expansion experiments under identical conditions. The nucleation rates J=N/Δt Jmax for the n-alcohols are in the range of 1.10 17 -3 s -1 17 for the temperatures 207≤T/K≤249, the nucleation rates for the n-alkanes lie in the range of 5.10 15 -3 s -1 18 for the temperatures 143 ≤T/K≤215. For the first time it is shown that the nucleation rate is not only a function of the supersaturation and temperature but clearly also sensitive to the expansion rate during supersonic nozzle expansion. A good agreement between the experimental results and those available in literature is found by applying Hale's scaling formalism [Hale, B., Phys. Rev. A 33, 4256 (1986); Hale, B., Metall. Trans. A 23, 1863 (1992)]. The scaling parameters from this work are also in good agreement with those shown by Rusyniak et al. [Rusyniak, M., M. S. El-Shall, J. Phys. Chem. B 105, 11873 (2001)] and Brus et al. [Brus, D., V. Zdimal F. Stratmann, J. Chem Phys. 124, 164306 (2006)]. In the first experiment static pressure measurements were conducted for the n-alkanes to determine the condensible partial pressure, temperature, supersaturation, characteristic time, and the expansion rate corresponding to the maximum nucleation rate. Characteristic times in the range of 13≤Δt Jmax /μs≤34 were found. In the second set of experiments, the first flow rate resolved Small Angle X-ray Scattering experiments are conducted to determine the particle number density for both substance classes. Particle number densities in the range of 1.10 12 -3 12 and 1.10 11 -3 12 for the n-alcohols and n-alkanes are found, respectively. Additionally, by analyzing the radially averaged scattering spectrum, information on the mean radius and the width of the size distribution of the aerosols is obtained. Mean radii for the n-alcohols in the range of 4< left angle r

  12. Implementation of a radiation protection framework for medical and dental X-ray diagnostic services in Minas Gerais/Brazil

    International Nuclear Information System (INIS)

    Silva, Teogenes A. da; Pereira, Elton G.; Nogueira, Maria do S.; Ferreira, Hudson R.; Alonso, Thessa C.; Castro, Jose G.L. de; Andrade, Mauricio C.; Joana, Georgia S.; Oliveira, Mauricio de; Cezar, Adriana C. Z.

    2008-01-01

    The Brazilian Sanitary Vigilance Agency is the regulatory authority for radiation protection and quality control of all practices with X-rays for diagnostic purpose. In 1998, the technical regulation 'Guidelines for Radiation Protection in Medical and Dental Radiodiagnostic' was issued by the government that reflected the most updated policy recommended by the International Basic Safety Standards for Protection against Ionizing Radiation. To accomplish the objective of improving radiation protection conditions in the state of Minas Gerais, the Development Centre of Nuclear Technology (CDTN) and the Superintendence of Sanitary Vigilance (SVS) signed a formal cooperation agreement that included: an accreditation process for radiation protection professionals, a follow-up program of the services provided by those professionals, technical support from CDTN for audits carried out by SVS and training of SVS inspectors. Actions to improve and assure metrological reliability of the radiation measurements and special attention to mammography services were done. This paper provides details and results of the radiation protection framework for X-ray radiodiagnostic services in Minas Gerais; the success of the adopted model suggests that it can be used as a basic model to other regions. (author)

  13. Epidemic contact tracing via communication traces.

    Directory of Open Access Journals (Sweden)

    Katayoun Farrahi

    Full Text Available Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.

  14. Epidemic contact tracing via communication traces.

    Science.gov (United States)

    Farrahi, Katayoun; Emonet, Rémi; Cebrian, Manuel

    2014-01-01

    Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.

  15. SU-D-207-07: Implementation of Full/half Bowtie Filter Model in a Commercial Treatment Planning System for Kilovoltage X-Ray Imaging Dose Estimation

    International Nuclear Information System (INIS)

    Kim, S; Alaei, P

    2015-01-01

    Purpose: To implement full/half bowtie filter models in a commercial treatment planning system (TPS) to calculate kilovoltage (kV) x-ray imaging dose of Varian On-Board Imager (OBI) cone beam CT (CBCT) system. Methods: Full/half bowtie filters of Varian OBI were created as compensator models in Pinnacle TPS (version 9.6) using Matlab software (version 2011a). The profiles of both bowtie filters were acquired from the manufacturer, imported into the Matlab system and hard coded in binary file format. A Pinnacle script was written to import each bowtie filter data into a Pinnacle treatment plan as a compensator. A kV x-ray beam model without including the compensator model was commissioned per each bowtie filter setting based on percent depth dose and lateral profile data acquired from Monte Carlo simulations. To validate the bowtie filter models, a rectangular water phantom was generated in the planning system and an anterior/posterior beam with each bowtie filter was created. Using the Pinnacle script, each bowtie filter compensator was added to the treatment plan. Lateral profile at the depth of 3cm and percent depth dose were measured using an ion chamber and compared with the data extracted from the treatment plans. Results: The kV x-ray beams for both full and half bowtie filter have been modeled in a commercial TPS. The difference of lateral and depth dose profiles between dose calculations and ion chamber measurements were within 6%. Conclusion: Both full/half bowtie filter models provide reasonable results in kV x-ray dose calculations in the water phantom. This study demonstrates the possibility of using a model-based treatment planning system to calculate the kV imaging dose for both full and half bowtie filter modes. Further study is to be performed to evaluate the models in clinical situations

  16. The implementation of modern digital technology in x-ray medical diagnosis in Republic of Moldova - a stringent necessity

    International Nuclear Information System (INIS)

    Rosca, Andrei

    2011-01-01

    The study includes analyses of current technical state of radiodiagnostic equipment from the Public Medico-Sanitary Institution of Ministry of Health of Republic of Moldova (IMSP MS RM). The traditional radiodiagnostic apparatuses were morally and physically outrun at 96,6% (in regional MSPI - 93,5%), inclusive the dental one - 92,0% (in raional MSPI - 97,2%), X-Ray exam -100%, mobile - 84,1% etc. The exploitation of the traditional radiodiagnostic apparatuses with high degree of physical and moral wear essentially diminished the quality of profile investigation, creates premises for diagnostic error perpetrating, increase the collective ionizing irradiation of population etc. In recent years the subvention of MSPI HM RM with digital radiodiagnostic equipment was started. This process is very hard unfold because of grave socio-economic crises in Republic of Moldova. Despite these obstacles the subvention of MSPI HM RM with digital equipment represents a stringent necessity and a time request.

  17. Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in central nervous system tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chwiej, J. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)]. E-mail: jchwiej@novell.ftj.agh.edu.pl; Szczerbowska-Boruchowska, M. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Wojcik, S. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Lankosz, M. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Chlebda, M. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Adamek, D. [Institute of Neurology, Collegium Medicum, Jagiellonian University, ul. Botaniczna-3, 31-503 Cracow (Poland); Tomik, B. [Institute of Neurology, Collegium Medicum, Jagiellonian University, ul. Botaniczna-3, 31-503 Cracow (Poland); Setkowicz, Z. [Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, ul. Ingardena 6, 30-060 Cracow (Poland); Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg (Germany); Stegowski, Z. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Szczudlik, A. [Institute of Neurology, Collegium Medicum, Jagiellonian University, ul. Botaniczna-3, 31-503 Cracow (Poland)

    2005-09-29

    The microbeam synchrotron radiation X-ray fluorescence technique (micro-SRXRF) was applied to topographic and quantitative elemental analysis of human spinal cord tissue sections. The feasibility of this technique for the determination of elemental abnormalities caused by neurodegenerative disorder, i.e. amyotrophic lateral sclerosis (ALS), was verified. The applied measurement conditions allowed detecting: P, S, Cl, K, Ca, Fe, Cu, Zn and Br in thin tissue slices. Two-dimensional maps of the elemental distribution were recorded. Quantitative differences in elemental concentration between gray matter, nerve cells and white matter were observed for all analyzed cases. For the motor neuron bodies higher accumulation of S, Cl, K, Fe, Zn and Br was noticed. The results showed significant differences of elemental accumulation between the analyzed ALS cases. Moreover, the feasibility of using tissue sections fixed and embedded in paraffin for micro-SRXRF analysis was tested. These studies were performed on the samples of rat brain.

  18. Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in central nervous system tissue

    International Nuclear Information System (INIS)

    Chwiej, J.; Szczerbowska-Boruchowska, M.; Wojcik, S.; Lankosz, M.; Chlebda, M.; Adamek, D.; Tomik, B.; Setkowicz, Z.; Falkenberg, G.; Stegowski, Z.; Szczudlik, A.

    2005-01-01

    The microbeam synchrotron radiation X-ray fluorescence technique (micro-SRXRF) was applied to topographic and quantitative elemental analysis of human spinal cord tissue sections. The feasibility of this technique for the determination of elemental abnormalities caused by neurodegenerative disorder, i.e. amyotrophic lateral sclerosis (ALS), was verified. The applied measurement conditions allowed detecting: P, S, Cl, K, Ca, Fe, Cu, Zn and Br in thin tissue slices. Two-dimensional maps of the elemental distribution were recorded. Quantitative differences in elemental concentration between gray matter, nerve cells and white matter were observed for all analyzed cases. For the motor neuron bodies higher accumulation of S, Cl, K, Fe, Zn and Br was noticed. The results showed significant differences of elemental accumulation between the analyzed ALS cases. Moreover, the feasibility of using tissue sections fixed and embedded in paraffin for micro-SRXRF analysis was tested. These studies were performed on the samples of rat brain

  19. Clinical implementation of a low energy x-ray therapy device in the treatment of breast cancer

    International Nuclear Information System (INIS)

    Haworth, A.; University of Western Australia, WA; Joseph, D.; Lanzon, P.; Caswell, N.; Ebert, M.; University of Western Asutralia, WA

    2001-01-01

    Full text: A low energy device producing x-rays of maximum operating potential of 50kV is used to treat primary breast tumours intraoperatively. In pathologically favourable cases, the treatment replaces conventional external beam irradiation. For patients at greater risk of local recurrence, the treatment replaces conventional 'boost' therapy. The dosimetry of the device will be described in a companion paper. QA tests prior to irradiation include: output calibration/verification; isotropy verification and external radiation monitor (the secondary beam termination device) functionality. The internal radiation monitor count (similar to setting monitor units on a linac) for a prescribed dose is calculated from tables of measured depth dose and applicator factors. The spherical applicator which best suits the size of the excised tumour is lightly sutured into position maintaining as much distance between the skin surface as possible to minimise skin erythema. Radiation protection is achieved with the use of portable lead shields and tungsten impregnated silicon drapes. Patients entered into a TROG randomised clinical trial comparing intraoperative with conventional postoperative radiotherapy after conservative breast surgery for women with early stage breast cancer will be studied in collaboration with the CRC/University College London, Cancer Trials Centre (UK) to record the effects of local tumour control, cosmesis, patient satisfaction and health economics. QA tests take approximately 15 minutes to perform and a treatment prescription of 5Gy at 1cm depth with a 5cm applicator would take approximately 30 minutes. A low energy x-ray device may be used intraoperatively in selected cases to replace conventional radiotherapy minimising the inconvenience for patients and reducing waiting lists on treatment machines. Copyright (2001) Australasian College of Physical Scientists and Engineers in Medicine

  20. Real ray tracing in anisotropic viscoelastic media

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2008-01-01

    Roč. 175, č. 2 (2008), s. 617-626 ISSN 0956-540X R&D Projects: GA AV ČR IAA300120801 Grant - others:EC(XE) MTKI-CT-2004-517242 Institutional research plan: CEZ:AV0Z30120515 Keywords : elasticity and anelasticity * body waves * seismic anisotropy * seismic attenuation * wave propagation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.219, year: 2008

  1. Tracing the X-Ray Trail

    Science.gov (United States)

    ... finalizado el examen, el radiólogo, médico entrenado para la lectura de imágenes para diagnóstico, examina las películas. El radiólogo dicta un informe que describe las técnicas utilizadas para adquirir la imagen, el motivo del examen, antecedentes relevantes del ...

  2. Implementation of 3D tomographic visualisation through planar ICT data from experimental gamma-ray tomographic system

    International Nuclear Information System (INIS)

    Umesh Kumar; Singh, Gursharan; Ravindran, V.R.

    2001-01-01

    Industrial Computed Tomography (ICT) is one of the latest methods of non-destructive testing and examination. Different prototypes of Computed Industrial Tomographic Imaging System (CITIS) have been developed and experimental data have been generated in Isotope Applications Division. The experimental gamma-rays based tomographic imaging system comprises of beam generator containing approx. 220 GBq (6 Curies) of 137 Cs, a single NaI(Tl) -PMT integral assembly in a thick shielding and associated electronics, stepper motor controlled mechanical manipulator, collimators and required software. CITIS data is normally acquired in one orientation of the sample. It may be sometimes required to view a tomographic plane in a different orientation. Also, 3D visualization may be required with the available 2D data set. All these can be achieved by processing the available data. We have customized some of the routines for this purpose provided IDL (Integrated Data Language) package to suit our requirements. The present paper discusses methodology adopted for this purpose with an illustrative example. (author)

  3. Implementation of chitosan inductively modified by γ-rays copolymerization with acrylamide in the decontamination of aqueous basic dye solution

    Directory of Open Access Journals (Sweden)

    R.O. Aly

    2017-02-01

    Full Text Available The modification induced by gamma rays for the natural polymer, chitosan, was established using the monomer acrylamide. The hydrogel obtained was characterized using Fourier transform infrared spectroscopy and the thermal properties were investigated by thermogravimetric analysis (TGA. The effect of absorbed dose (kGy and chitosan:acrylamide ratio on the gel % was studied. The impact of the polymerization variables was observed on the swelling % of the prepared hydrogel with water. The highest equilibrium degree of swelling of the prepared chitosan–AAm hydrogel, 380 g/g was predicted at 75% AAm and absorbed dose of 10 kGy for 97.7% gel. The removal of the basic blue dye (Astrazone Blue BG-200% from aqueous solutions was discussed. The adsorption capacity of basic dye on chitosan–AAm increased from 24.5 to 47.2 mg/g by increasing pH from 4.0 to 9.0. The effect of pH, absorbed dose, chitosan:AAm ratio and the concentration of the dye on the effectiveness of the adsorption process was studied.

  4. Automation in airport security X-ray screening of cabin baggage: Examining benefits and possible implementations of automated explosives detection.

    Science.gov (United States)

    Hättenschwiler, Nicole; Sterchi, Yanik; Mendes, Marcia; Schwaninger, Adrian

    2018-10-01

    Bomb attacks on civil aviation make detecting improvised explosive devices and explosive material in passenger baggage a major concern. In the last few years, explosive detection systems for cabin baggage screening (EDSCB) have become available. Although used by a number of airports, most countries have not yet implemented these systems on a wide scale. We investigated the benefits of EDSCB with two different levels of automation currently being discussed by regulators and airport operators: automation as a diagnostic aid with an on-screen alarm resolution by the airport security officer (screener) or EDSCB with an automated decision by the machine. The two experiments reported here tested and compared both scenarios and a condition without automation as baseline. Participants were screeners at two international airports who differed in both years of work experience and familiarity with automation aids. Results showed that experienced screeners were good at detecting improvised explosive devices even without EDSCB. EDSCB increased only their detection of bare explosives. In contrast, screeners with less experience (tenure automated decision provided better human-machine detection performance than on-screen alarm resolution and no automation. This came at the cost of slightly higher false alarm rates on the human-machine system level, which would still be acceptable from an operational point of view. Results indicate that a wide-scale implementation of EDSCB would increase the detection of explosives in passenger bags and automated decision instead of automation as diagnostic aid with on screen alarm resolution should be considered. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Implementation of the method air-kerma product area in KAP camera calibration with reference qualities of X-ray series at the SSDL RQR of Mexico

    International Nuclear Information System (INIS)

    Cejudo, Jesus; Tovar, Victor M.

    2013-01-01

    The X-Ray machines, at a reference laboratory for the instrument calibration in diagnostic radiology, should compliance with the ISO requirements. Sometimes there is not available as much laboratories as needed in Latin American countries. So this project shows the KAP ionization chamber implementation method using the TRS-457 radiation quality from the IAEA at the SSDL of Mexico. The KAP instruments calibration method consists in doing a substitution comparison using a standard reference with traceability to a primary laboratory and a transmission-monitoring chamber that measures the number of photons of the X-ray primary beam. A KAP chamber calibration requires a special array that consists in collocating the chamber in two different positions of its calibration process. Then, with air kerma-area product coefficient together with a corrected electrometer measure at referential conditions, the patient dosimetry magnitudes are calculated. The dosimetry necessity at hospitals always will be in function of possessing a highly reliable calibration coefficient chamber for making these measures. That dosimetry results will help in reducing the total or partial irradiation emitted to the human body of the patient. This is how stochastic risks will be lessened due to diagnostic studies. The purpose of this project is to have a synergy with calibration for making known that the SSDL of Mexico has the technical capacity to act as a link between primary standard dosimetry laboratories and the ionizing radiation equipment users who require that their KAP chamber have traceability from the primary standard to the user. (author)

  6. Double-trace deformations of conformal correlations

    Science.gov (United States)

    Giombi, Simone; Kirilin, Vladimir; Perlmutter, Eric

    2018-02-01

    Large N conformal field theories often admit unitary renormalization group flows triggered by double-trace deformations. We compute the change in scalar four-point functions under double-trace flow, to leading order in 1/ N. This has a simple dual in AdS, where the flow is implemented by a change of boundary conditions, and provides a physical interpretation of single-valued conformal partial waves. We extract the change in the conformal dimensions and three-point coefficients of infinite families of double-trace composite operators. Some of these quantities are found to be sign-definite under double-trace flow. As an application, we derive anomalous dimensions of spinning double-trace operators comprised of non-singlet constituents in the O( N) vector model.

  7. Analysis of trace elements in opal using PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Ruth, E-mail: ruth.hinrichs@ufrgs.br [Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Bertol, A.P.L. [Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Vasconcellos, M.A.Z. [Programa de Pós-graduação em Física, UFRGS, Porto Alegre, RS (Brazil); Instituto de Física, UFRGS, Porto Alegre, RS (Brazil)

    2015-11-15

    Particle induced X-ray emission (PIXE) analysis is particularly important for the analysis of trace elements of precious samples, being one of the few methods to determine elements with ppm concentration that does not affect sample integrity. A PIXE methodology for trace element analysis in opal was developed. To avoid detector count saturation due to the high number of Si-Kα X-rays generated in the sample, several filters were employed to optimize the reduction of the Si-Kα signal, while maintaining acceptable intensities of the other relevant X-ray lines. Two proton beam energies were tested, to establish the signal to noise ratio in different X-ray energies. Spectra were fitted with the software GUPIX, using a matrix composition determined with electron beam excited energy dispersive X-ray spectrometry. Above the energy of the silicon X-ray, several trace elements were quantified.

  8. Biological trace element measurements using synchrotron radiation

    International Nuclear Information System (INIS)

    Giauque, R.D.; Jaklevic, J.M.; Thompson, A.C.

    1985-07-01

    The feasibility of performing x-ray fluorescence trace element determinations at concentrations substantially below the ppM level for biological materials is demonstrated. Conditions for achieving optimum sensitivity were ascertained. Results achieved for five standard reference materials were, in most cases, in excellent agreement with listed values. Minimum detectable limits of 20 ppM were measured for most elements

  9. Abstract ID: 176 Geant4 implementation of inter-atomic interference effect in small-angle coherent X-ray scattering for materials of medical interest.

    Science.gov (United States)

    Paternò, Gianfranco; Cardarelli, Paolo; Contillo, Adriano; Gambaccini, Mauro; Taibi, Angelo

    2018-01-01

    Advanced applications of digital mammography such as dual-energy and tomosynthesis require multiple exposures and thus deliver higher dose compared to standard mammograms. A straightforward manner to reduce patient dose without affecting image quality would be removal of the anti-scatter grid, provided that the involved reconstruction algorithms are able to take the scatter figure into account [1]. Monte Carlo simulations are very well suited for the calculation of X-ray scatter distribution and can be used to integrate such information within the reconstruction software. Geant4 is an open source C++ particle tracking code widely used in several physical fields, including medical physics [2,3]. However, the coherent scattering cross section used by the standard Geant4 code does not take into account the influence of molecular interference. According to the independent atomic scattering approximation (the so-called free-atom model), coherent radiation is indistinguishable from primary radiation because its angular distribution is peaked in the forward direction. Since interference effects occur between x-rays scattered by neighbouring atoms in matter, it was shown experimentally that the scatter distribution is affected by the molecular structure of the target, even in amorphous materials. The most important consequence is that the coherent scatter distribution is not peaked in the forward direction, and the position of the maximum is strongly material-dependent [4]. In this contribution, we present the implementation of a method to take into account inter-atomic interference in small-angle coherent scattering in Geant4, including a dedicated data set of suitable molecular form factor values for several materials of clinical interest. Furthermore, we present scatter images of simple geometric phantoms in which the Rayleigh contribution is rigorously evaluated. Copyright © 2017.

  10. Nordic working group on x-ray diagnostics - Practical implementation of the directive on medical exposures in the Nordic EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Waltenburg, H.N.; Groen, P. [National Institute of Radiation Hygiene, Herlev (Denmark); Leitz, W. [Swedish Radiation Protection Authority, Stockholm (Sweden); Servomaa, A. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Einarsson, G. [Icelandic Radiation Protection Institute, Reykjavik (Iceland); Olerud, H. [Norwegian Radiation Protection Authority, Oslo (Norway)

    2003-06-01

    The EU directive on medical exposure, 97/43/EURATOM (referred to in the following as MED) imposes new requirements on hospital departments using ionising radiation for either diagnostics or treatment of illnesses. The directive was approved on 30 June 1997, and the member states were obliged to implement the requirements into national legislation before 13 May 2000. The implementation of a directive of this kind is a complicated process requiring time as well as other resources. The Nordic EU countries (Sweden, Finland and Denmark) must comply with the rules in MED, while this is not the case for Norway and Iceland as EFTA (European Free Trade Association) members, since the agreements between EFTA and EU does not cover the EURATOM treaty. The issues that have to be addressed in the national legislation are justification, optimisation, responsibilities, procedures, training, equipment, special protection during pregnancy and breast-feeding, and potential exposure. A central aspect in MED is the requirement for quality assurance programmes to be established in radiological departments (and in other departments employing ionising radiation). A change of this magnitude in legislation requires adjustments in the routines of the individual departments. The staff in each department needs to prepare and follow procedures and instructions for daily work and also participate in day-to-day quality assurance. A considerable burden has also been laid on the radiation protection authorities in the member states, first in the process of transposing MED into national law or regulations, and secondly in guiding the process of practical implementation. Here we will describe how the individual Nordic EU countries have chosen to implement MED in national legislation and how far the process of complying with the requirements has come so far. Although Norway and Iceland are not required to follow MED, it is still interesting for comparison to include the situation in these countries

  11. Nordic working group on x-ray diagnostics - Practical implementation of the directive on medical exposures in the Nordic EU countries

    International Nuclear Information System (INIS)

    Waltenburg, H.N.; Groen, P.; Leitz, W.; Servomaa, A.; Einarsson, G.; Olerud, H.

    2003-01-01

    The EU directive on medical exposure, 97/43/EURATOM (referred to in the following as MED) imposes new requirements on hospital departments using ionising radiation for either diagnostics or treatment of illnesses. The directive was approved on 30 June 1997, and the member states were obliged to implement the requirements into national legislation before 13 May 2000. The implementation of a directive of this kind is a complicated process requiring time as well as other resources. The Nordic EU countries (Sweden, Finland and Denmark) must comply with the rules in MED, while this is not the case for Norway and Iceland as EFTA (European Free Trade Association) members, since the agreements between EFTA and EU does not cover the EURATOM treaty. The issues that have to be addressed in the national legislation are justification, optimisation, responsibilities, procedures, training, equipment, special protection during pregnancy and breast-feeding, and potential exposure. A central aspect in MED is the requirement for quality assurance programmes to be established in radiological departments (and in other departments employing ionising radiation). A change of this magnitude in legislation requires adjustments in the routines of the individual departments. The staff in each department needs to prepare and follow procedures and instructions for daily work and also participate in day-to-day quality assurance. A considerable burden has also been laid on the radiation protection authorities in the member states, first in the process of transposing MED into national law or regulations, and secondly in guiding the process of practical implementation. Here we will describe how the individual Nordic EU countries have chosen to implement MED in national legislation and how far the process of complying with the requirements has come so far. Although Norway and Iceland are not required to follow MED, it is still interesting for comparison to include the situation in these countries

  12. Wavefield extrapolation in caustic-free normal ray coordinates

    KAUST Repository

    Ma, Xuxin; Alkhalifah, Tariq Ali

    2012-01-01

    Normal ray coordinates are conventionally constructed from ray tracing, which inherently requires smooth velocity profiles. To use rays as coordinates, the velocities have to be smoothed further to avoid caustics, which is detrimental to the mapping

  13. Benchmark of the non-parametric Bayesian deconvolution method implemented in the SINBAD code for X/γ rays spectra processing

    Energy Technology Data Exchange (ETDEWEB)

    Rohée, E. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Coulon, R., E-mail: romain.coulon@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Carrel, F. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Dautremer, T.; Barat, E.; Montagu, T. [CEA, LIST, Laboratoire de Modélisation et Simulation des Systèmes, F-91191 Gif-sur-Yvette (France); Normand, S. [CEA, DAM, Le Ponant, DPN/STXN, F-75015 Paris (France); Jammes, C. [CEA, DEN, Cadarache, DER/SPEx/LDCI, F-13108 Saint-Paul-lez-Durance (France)

    2016-11-11

    Radionuclide identification and quantification are a serious concern for many applications as for in situ monitoring at nuclear facilities, laboratory analysis, special nuclear materials detection, environmental monitoring, and waste measurements. High resolution gamma-ray spectrometry based on high purity germanium diode detectors is the best solution available for isotopic identification. Over the last decades, methods have been developed to improve gamma spectra analysis. However, some difficulties remain in the analysis when full energy peaks are folded together with high ratio between their amplitudes, and when the Compton background is much larger compared to the signal of a single peak. In this context, this study deals with the comparison between a conventional analysis based on “iterative peak fitting deconvolution” method and a “nonparametric Bayesian deconvolution” approach developed by the CEA LIST and implemented into the SINBAD code. The iterative peak fit deconvolution is used in this study as a reference method largely validated by industrial standards to unfold complex spectra from HPGe detectors. Complex cases of spectra are studied from IAEA benchmark protocol tests and with measured spectra. The SINBAD code shows promising deconvolution capabilities compared to the conventional method without any expert parameter fine tuning.

  14. Proton exciting X ray analysis

    International Nuclear Information System (INIS)

    Ma Xinpei

    1986-04-01

    The analyzing capability of proton exciting X ray analysis for different elements in organisms was discussed, and dealing with examples of trace element analysis in the human body and animal organisms, such as blood serum, urine, and hair. The sensitivity, accuracy, and capability of multielement analysis were discussed. Its strong points for the trace element analysis in biomedicine were explained

  15. Application of neutron activation techniques and x-ray energy dispersion spectrometry, in analysis of metallic traces adsorbed by chelex-100 resin; Ativacao das tecnicas de ativacao neutronica e espectrometria por dispersao de onda e de energia de raios X, na analise de tracos metalicos adsorvidos pela resina chelex-100

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Jair C.; Amaral, Angela M.; Magalhaes, Jesus C.; Pereira, Jose S.J.; Silva, Juliana B. da; Auler, Lucia M.L.A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: jcf@urano.cdtn.br

    2000-07-01

    In this work, the authors have investigated optimal conditions of adsorption for several ion metallic groups (cations of heavy metals and transition metals, oxyanions metallics and metalloids and cations of rare earths), as traces (ppb), withdrawn and in mixture of groups, by chelex-100 resin. The experiments have been developed by bath techniques in ammonium acetate tamponade solution 40 mM pH 5,52 content 0,5 g of chelex-100 resin. After magnetic agitation for two hours, resins were dried and submitted to X-ray energy dispersion spectrometry, x-ray fluorescence spectrometry and neutron activation analysis. The results have demonstrated that chelex-100 resin adsorb quantitatively transition element groups and rare earth groups in two cases (withdrawn and simultaneously adsorption)

  16. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  17. Nuclear traces in glass

    International Nuclear Information System (INIS)

    Segovia A, M. de N.

    1978-01-01

    The charged particles produce, in dielectric materials, physical and chemical effects which make evident the damaged zone along the trajectory of the particle. This damaged zone is known as the latent trace. The latent traces can be enlarged by an etching of the detector material. This treatment attacks preferently the zones of the material where the charged particles have penetrated, producing concavities which can be observed through a low magnification optical microscope. These concavities are known as developed traces. In this work we describe the glass characteristics as a detector of the fission fragments traces. In the first chapter we present a summary of the existing basic theories to explain the formation of traces in solids. In the second chapter we describe the etching method used for the traces development. In the following chapters we determine some chatacteristics of the traces formed on the glass, such as: the development optimum time; the diameter variation of the traces and their density according to the temperature variation of the detector; the glass response to a radiation more penetrating than that of the fission fragments; the distribution of the developed traces and the existing relation between this ditribution and the fission fragments of 252 Cf energies. The method which has been used is simple and cheap and can be utilized in laboratories whose resources are limited. The commercial glass which has been employed allows the registration of the fission fragments and subsequently the realization of experiments which involve the counting of the traces as well as the identification of particles. (author)

  18. Tracing And Control Of Engineering Requirements

    Science.gov (United States)

    Turner, Philip R.; Stoller, Richard L.; Neville, Ted; Boyle, Karen A.

    1991-01-01

    TRACER (Tracing and Control of Engineering Requirements) is data-base/word-processing software system created to document and maintain order of both requirements and descriptions associated with engineering project. Implemented on IBM PC under PC-DOS. Written with CLIPPER.

  19. TraceLink: A model of amnesia and consolidation.

    NARCIS (Netherlands)

    Meeter, M.; Murre, J.M.J.

    2005-01-01

    A connectionist model is presented, the TraceLink model, that implements an autonomous "off-line" consolidation process. The model consists of three subsystems: (1) a trace system (neocortex), (2) a link system (hippocampus and adjacent regions), and (3) a modulatory system (basal forebrain and

  20. Traces of Drosophila Memory

    Science.gov (United States)

    Davis, Ronald L.

    2012-01-01

    Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352