WorldWideScience

Sample records for ray science team

  1. Science and Team Development

    Directory of Open Access Journals (Sweden)

    Bryan R. Cole

    2006-07-01

    Full Text Available This paper explores a new idea about the future development of science and teams, and predicts its possible applications in science, education, workforce development and research. The inter-relatedness of science and teamwork developments suggests a growing importance of team facilitators’ quality, as well as the criticality of detailed studies of teamwork processes and team consortiums to address the increasing complexity of exponential knowledge growth and work interdependency. In the future, it will become much easier to produce a highly specialised workforce, such as brain surgeons or genome engineers, than to identify, educate and develop individuals capable of the delicate and complex work of multi-team facilitation. Such individuals will become the new scientists of the millennium, having extraordinary knowledge in variety of scientific fields, unusual mix of abilities, possessing highly developed interpersonal and teamwork skills, and visionary ideas in illuminating bold strategies for new scientific discoveries. The new scientists of the millennium, through team consortium facilitation, will be able to build bridges between the multitude of diverse and extremely specialised knowledge and interdependent functions to improve systems for the further benefit of mankind.

  2. Building the team for team science

    Science.gov (United States)

    Read, Emily K.; O'Rourke, M.; Hong, G. S.; Hanson, P. C.; Winslow, Luke A.; Crowley, S.; Brewer, C. A.; Weathers, K. C.

    2016-01-01

    The ability to effectively exchange information and develop trusting, collaborative relationships across disciplinary boundaries is essential for 21st century scientists charged with solving complex and large-scale societal and environmental challenges, yet these communication skills are rarely taught. Here, we describe an adaptable training program designed to increase the capacity of scientists to engage in information exchange and relationship development in team science settings. A pilot of the program, developed by a leader in ecological network science, the Global Lake Ecological Observatory Network (GLEON), indicates that the training program resulted in improvement in early career scientists’ confidence in team-based network science collaborations within and outside of the program. Fellows in the program navigated human-network challenges, expanded communication skills, and improved their ability to build professional relationships, all in the context of producing collaborative scientific outcomes. Here, we describe the rationale for key communication training elements and provide evidence that such training is effective in building essential team science skills.

  3. Team science for science communication.

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Strauss, Benjamin H

    2014-09-16

    Natural scientists from Climate Central and social scientists from Carnegie Mellon University collaborated to develop science communications aimed at presenting personalized coastal flood risk information to the public. We encountered four main challenges: agreeing on goals; balancing complexity and simplicity; relying on data, not intuition; and negotiating external pressures. Each challenge demanded its own approach. We navigated agreement on goals through intensive internal communication early on in the project. We balanced complexity and simplicity through evaluation of communication materials for user understanding and scientific content. Early user test results that overturned some of our intuitions strengthened our commitment to testing communication elements whenever possible. Finally, we did our best to negotiate external pressures through regular internal communication and willingness to compromise.

  4. Advancing the Science of Team Science

    Science.gov (United States)

    Falk‐Krzesinski, Holly J.; Börner, Katy; Contractor, Noshir; Fiore, Stephen M.; Hall, Kara L.; Keyton, Joann; Spring, Bonnie; Stokols, Daniel; Trochim, William; Uzzi, Brian

    2010-01-01

    Abstract The First Annual International Science of Team Science (SciTS) Conference was held in Chicago, IL April 22–24, 2010. This article presents a summary of the Conference proceedings. Clin Trans Sci 2010; Volume 3: 263–266. PMID:20973925

  5. Improving Care Teams' Functioning: Recommendations from Team Science.

    Science.gov (United States)

    Fiscella, Kevin; Mauksch, Larry; Bodenheimer, Thomas; Salas, Eduardo

    2017-07-01

    Team science has been applied to many sectors including health care. Yet there has been relatively little attention paid to the application of team science to developing and sustaining primary care teams. Application of team science to primary care requires adaptation of core team elements to different types of primary care teams. Six elements of teams are particularly relevant to primary care: practice conditions that support or hinder effective teamwork; team cognition, including shared understanding of team goals, roles, and how members will work together as a team; leadership and coaching, including mutual feedback among members that promotes teamwork and moves the team closer to achieving its goals; cooperation supported by an emotionally safe climate that supports expression and resolution of conflict and builds team trust and cohesion; coordination, including adoption of processes that optimize efficient performance of interdependent activities among team members; and communication, particularly regular, recursive team cycles involving planning, action, and debriefing. These six core elements are adapted to three prototypical primary care teams: teamlets, health coaching, and complex care coordination. Implementation of effective team-based models in primary care requires adaptation of core team science elements coupled with relevant, practical training and organizational support, including adequate time to train, plan, and debrief. Training should be based on assessment of needs and tasks and the use of simulations and feedback, and it should extend to live action. Teamlets represent a potential launch point for team development and diffusion of teamwork principles within primary care practices. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  6. Science team participation in the ARM program

    International Nuclear Information System (INIS)

    Cess, R.D.

    1993-01-01

    This progress report discusses the Science Team participation in the Atmospheric Radiation Measurement (ARM) Program for the period of October 31, 1992 to November 1, 1993. This report summarized the research accomplishments of six papers

  7. 2017 Landsat Science Team Summer Meeting Summary

    Science.gov (United States)

    Crawford, Christopher J.; Loveland, Thomas R.; Wulder, Michael A.; Irons, James R.

    2018-01-01

    The summer meeting of the U.S. Geological Survey (USGS)-NASA Landsat Science Team (LST) was held June 11-13, 2017, at the USGS’s Earth Resources Observation and Science (EROS) Center near Sioux Falls, SD. This was the final meeting of the Second (2012-2017) LST.1 Frank Kelly [EROS—Center Director] welcomed the attendees and expressed his thanks to the LST members for their contributions. He then introduced video-recorded messages from South Dakota’s U.S. senators, John Thune and Mike Rounds, in which they acknowledged the efforts of the team in advancing the societal impacts of the Landsat Program.

  8. Multidisciplinary Teams: The Next Step in Science.

    Directory of Open Access Journals (Sweden)

    Aldo Leal-Egaña.

    2006-07-01

    Full Text Available One of the current characteristics in science, is the high complexity and technical character that becomes over the last years. This has induced the development of a specific type of professionals, highly specialized in the disciplines that they are involved in, which has produced a communicational breach between the scientists involved on different branches of the science. One of the strategies intended to cross this breach, is the generation of multidisciplinary research strategies, in which professionals of every field of the science can take part, being a kind of scientific and human bridge between the different research teams where they are involved in. This new style to do investigation has made possible the generation of new branches in science, such as for example Biotechnology. In this field -Tissue Engineering- becomes to be a very interesting example of the potential to work in multidisciplinary teams. The reason for this is mainly to avoid technical mistakes, which could cause the death of some patients and which can only be solved by developing research under a multidisciplinary strategy. Nevertheless, and in spite of the success working with multidisciplinary teams, this kind of strategy is rarely used in Latin-American, where the reasons seems to be centered in some aspects personal and cultural. This work shows an example of the new style to develop complex research, which could suggest a new way of working in Latin-American, granted that there is the will to enhance current scientific level.

  9. Team Science, Justice, and the Co-Production of Knowledge.

    Science.gov (United States)

    Tebes, Jacob Kraemer

    2018-06-08

    Science increasingly consists of interdisciplinary team-based research to address complex social, biomedical, public health, and global challenges through a practice known as team science. In this article, I discuss the added value of team science, including participatory team science, for generating scientific knowledge. Participatory team science involves the inclusion of public stakeholders on science teams as co-producers of knowledge. I also discuss how constructivism offers a common philosophical foundation for both community psychology and team science, and how this foundation aligns well with contemporary developments in science that emphasize the co-production of knowledge. I conclude with a discussion of how the co-production of knowledge in team science can promote justice. © Society for Community Research and Action 2018.

  10. Landsat Science Team: 2017 Winter Meeting Summary

    Science.gov (United States)

    Schroeder, Todd A.; Loveland, Thomas; Wulder, Michael A.; Irons, James R.

    2017-01-01

    The summer meeting of the joint U.S. Geological Survey (USGS)-NASA Landsat Science Team (LST) was held July 26-28, 2016, at South Dakota State University (SDSU) in Brookings, SD. LST co-chair Tom Loveland [USGS’s Earth Resources Observation and Science Center (EROS)] and Kevin Kephart [SDSU] welcomed more than 80 participants to the three-day meeting. That attendance at such meetings continues to increase—likely due to the development of new data products and sensor systems—further highlights the growing interest in the Landsat program. The main objectives of this meeting were to provide a status update on Landsat 7 and 8, review team member research activities, and to begin identifying priorities for future Landsat missions.

  11. Landsat Science Team meeting: Winter 2015

    Science.gov (United States)

    Schroeder, Todd A.; Loveland, Thomas; Wulder, Michael A.; Irons, James R.

    2015-01-01

    The summer meeting of the joint U.S. Geological Survey (USGS)–NASA Landsat Science Team (LST) was held at the USGS’s Earth Resources Observation and Science (EROS) Center July 7-9, 2015, in Sioux Falls, SD. The LST co-chairs, Tom Loveland [EROS—Senior Scientist] and Jim Irons [NASA’s Goddard Space Flight Center (GSFC)—Landsat 8 Project Scientist], opened the three-day meeting on an upbeat note following the recent successful launch of the European Space Agency’s Sentinel-2 mission on June 23, 2015 (see image on page 14), and the news that work on Landsat 9 has begun, with a projected launch date of 2023.With over 60 participants in attendance, this was the largest LST meeting ever held. Meeting topics on the first day included Sustainable Land Imaging and Landsat 9 development, Landsat 7 and 8 operations and data archiving, the Landsat 8 Thermal Infrared Sensor (TIRS) stray-light issue, and the successful Sentinel-2 launch. In addition, on days two and three the LST members presented updates on their Landsat science and applications research. All presentations are available at landsat.usgs.gov/science_LST_Team_ Meetings.php.

  12. Bringing the Science of Team Training to School-Based Teams

    Science.gov (United States)

    Benishek, Lauren E.; Gregory, Megan E.; Hodges, Karin; Newell, Markeda; Hughes, Ashley M.; Marlow, Shannon; Lacerenza, Christina; Rosenfield, Sylvia; Salas, Eduardo

    2016-01-01

    Teams are ubiquitous in schools in the 21st Century; yet training for effective teaming within these settings has lagged behind. The authors of this article developed 5 modules, grounded in the science of team training and adapted from an evidence-based curriculum used in medical settings called TeamSTEPPS®, to prepare instructional and…

  13. Landsat science team meeting: Summer 2015

    Science.gov (United States)

    Schroeder, Todd; Loveland, Thomas; Wulder, Michael A.; Irons, James R.

    2015-01-01

    The summer meeting of the joint U.S. Geological Survey (USGS)–NASA Landsat Science Team (LST) was held at the USGS’s Earth Resources Observation and Science (EROS) Center July 7-9, 2015, in Sioux Falls, SD. The LST co-chairs, Tom Loveland [EROS—Senior Scientist] and Jim Irons [NASA’s Goddard Space Flight Center (GSFC)—Landsat 8 Project Scientist], opened the three-day meeting on an upbeat note following the recent successful launch of the European Space Agency’s Sentinel-2 mission on June 23, 2015 (see image on page 14), and the news that work on Landsat 9 has begun, with a projected launch date of 2023.

  14. Collaboration and Team Science Field Guide - Center for Research Strategy

    Science.gov (United States)

    Collaboration and Team Science: A Field Guide provides insight into the practices of conducting collaborative work. Since its 2010 publication, the authors have worked and learned from teams and organizations all over the world. Learn from these experiences in the second edition of the Team Science Field Guide.

  15. NRAO Teams With NASA Gamma-Ray Satellite

    Science.gov (United States)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  16. European team gauges a gamma-ray star

    Science.gov (United States)

    1996-03-01

    satellite COS-B had defined the position of the gamma-ray source to within half a degree -- well enough to prompt renewed efforts to identify it. Radio searches still drew a blank, but in the early 1980s Bignami and others found X-rays coming from Geminga in observations with NASA's Einstein satellite. They narrowed down Geminga's position to within a twentieth of a degree. There was no obvious counterpart to Geminga in visible light. Between 1983 and 1987 the Milanese team hunted for it with large telescopes in Hawaii and Chile. Eventually they selected a very faint object, peculiar in colour, as the visible Geminga. In 1992 a further sighting from Chile established Geminga's rate of movement across the sky. Meanwhile, the German/US/UK satellite Rosat revealed that Geminga pulsates in X-rays four times a second -- every 237 milliseconds to be precise. The same pulsation was found in gamma-rays by NASA's Gamma-Ray Observatory. Bignami and his colleagues then returned to the gamma-ray data from ESA's COS-B. They found the pulsation hidden there too and were able to compute the slowdown in Geminga's pulse-rate. From the slowdown they estimated the age of Geminga at 340,000 years. The distance measurement completes the gradual transformation of the enigmatic gamma-ray source into a well-characterized object. The Italian team calculates that Geminga is travelling at a speed of at least 120 kilometres per second. The neutron star's radiation in gamma-rays and X-rays is equivalent in energy to ten times the visible light of the Sun. More importantly, the way in which the neutron star distributes its energy output at different wavelengths is now known. "Neutron stars are radio sources for only a small fraction of their lives," says Giovanni Bignami. "So while we know 700 pulsars, there are probably millions of radio-silent neutron stars like Geminga. Thousands of them may be among X-ray sources already known but so far unidentified. I look forward to searching for new Gemingas

  17. Strategies for effective collaborative manuscript development in interdisciplinary science teams

    Science.gov (United States)

    Oliver, Samantha K.; Fergus, C. Emi; Skaff, Nicholas K.; Wagner, Tyler; Tan, Pang-Ning; Cheruvelil, Kendra Spence; Soranno, Patricia A.

    2018-01-01

    Science is increasingly being conducted in large, interdisciplinary teams. As team size increases, challenges can arise during manuscript development, where achieving one team goal (e.g., inclusivity) may be in direct conflict with other goals (e.g., efficiency). Here, we present strategies for effective collaborative manuscript development that draw from our experiences in an interdisciplinary science team writing collaborative manuscripts for six years. These strategies are rooted in six guiding principles that were important to our team: to create a transparent, inclusive, and accountable research team that promotes and protects team members who have less power to influence decision‐making while fostering creativity and productivity. To help alleviate the conflicts that can arise in collaborative manuscript development, we present the following strategies: understand your team composition, create an authorship policy and discuss authorship early and often, openly announce manuscript ideas, identify and communicate the type of manuscript and lead author management style, and document and describe authorship contributions. These strategies can help reduce the probability of group conflict, uphold individual and team values, achieve fair authorship practices, and increase science productivity.

  18. Developing your Career in an Age of Team-Science

    Science.gov (United States)

    Zucker, Deborah

    2013-01-01

    Academic institutions and researchers are becoming increasingly involved in translational research to spur innovation in addressing many complex biomedical and societal problems, and in response to the focus of the NIH and other funders. One approach to translational research is to development interdisciplinary research teams. By bringing together collaborators with diverse research backgrounds and perspectives, these teams seek to blend their science and the workings of the scientists to push beyond the limits of current research. While team-science promises individual and team benefits in creating and implementing innovations, its increased complexity poses challenges. In particular, since academic career advancement commonly focuses on individual achievement, team-science might differentially impact early stage researchers. This need to be recognized for individual accomplishments in order to move forward in an academic career may give rise to research-team conflicts. Raising awareness to career-related aspects of team science will help individuals (particularly trainees and junior faculty) take steps to align their excitement and participation with the success of both the team and their personal career advancement. PMID:22525235

  19. The Perspective of Women Managing Research Teams in Social Sciences

    Science.gov (United States)

    Tomas, Marina; Castro, Diego

    2013-01-01

    This article presents a research study that focuses on how women manage research teams. More specifically, the study aims to ascertain the perception of female researchers who are leaders of research groups in social sciences with regard to the formation, operation and management of their research teams. Fifteen interviews were carried out, eight…

  20. A quantitative perspective on ethics in large team science.

    Science.gov (United States)

    Petersen, Alexander M; Pavlidis, Ioannis; Semendeferi, Ioanna

    2014-12-01

    The gradual crowding out of singleton and small team science by large team endeavors is challenging key features of research culture. It is therefore important for the future of scientific practice to reflect upon the individual scientist's ethical responsibilities within teams. To facilitate this reflection we show labor force trends in the US revealing a skewed growth in academic ranks and increased levels of competition for promotion within the system; we analyze teaming trends across disciplines and national borders demonstrating why it is becoming difficult to distribute credit and to avoid conflicts of interest; and we use more than a century of Nobel prize data to show how science is outgrowing its old institutions of singleton awards. Of particular concern within the large team environment is the weakening of the mentor-mentee relation, which undermines the cultivation of virtue ethics across scientific generations. These trends and emerging organizational complexities call for a universal set of behavioral norms that transcend team heterogeneity and hierarchy. To this end, our expository analysis provides a survey of ethical issues in team settings to inform science ethics education and science policy.

  1. Team Mentoring for Interdisciplinary Team Science: Lessons From K12 Scholars and Directors.

    Science.gov (United States)

    Guise, Jeanne-Marie; Geller, Stacie; Regensteiner, Judith G; Raymond, Nancy; Nagel, Joan

    2017-02-01

    Mentoring is critical for academic success. As science transitions to a team science model, team mentoring may have advantages. The goal of this study was to understand the process, benefits, and challenges of team mentoring relating to career development and research. A national survey was conducted of Building Interdisciplinary Research Careers in Women's Health (BIRCWH) program directors-current and former scholars from 27 active National Institutes of Health (NIH)-funded BIRCWH NIH K12 programs-to characterize and understand the value and challenges of the team approach to mentoring. Quantitative data were analyzed descriptively, and qualitative data were analyzed thematically. Responses were received from 25/27 (93%) program directors, 78/108 (72%) current scholars, and 91/162 (56%) former scholars. Scholars reported that team mentoring was beneficial to their career development (152/169; 90%) and research (148/169; 88%). Reported advantages included a diversity of opinions, expanded networking, development of stronger study designs, and modeling of different career paths. Challenges included scheduling and managing conflicting opinions. Advice by directors offered to junior faculty entering team mentoring included the following: not to be intimidated by senior mentors, be willing to navigate conflicting advice, be proactive about scheduling and guiding discussions, have an open mind to different approaches, be explicit about expectations and mentors' roles (including importance of having a primary mentor to help navigate discussions), and meet in person as a team. These findings suggest that interdisciplinary/interprofessional team mentoring has many important advantages, but that skills are required to optimally utilize multiple perspectives.

  2. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  3. Genesis Science Team Report on Mission Status

    Science.gov (United States)

    Burnett, D. S.

    2005-12-01

    The Genesis Discovery Mission exposed pure materials to the solar wind at the L1 Lagrangian point for 27 months between December 2001 and April 2004. These were returned for analysis in terrestrial laboratories in Sept 2004. The general science objectives for Genesis are: (1) measure solar isotopic abundance ratios to the precision required for planetary science problems, (2) improve the accuracy of photospheric elemental abundances by a least a factor of three, (3) provide independent analyses of the 3 major solar wind regimes and (4) provide a reservoir of solar matter for subsequent studies. Based on these general objectives, we are working towards a list of 18 specific prioritized measurement objectives, the first 5 of which are isotopic measurements. The two highest priority objectives are the isotopic compositions of O and N; to obtain a higher signal to background ratio for these elements, a concentrator (focusing ion telescope) was built at LANL to provide a factor of 20 fluence enhancement for elements lighter than P on a 30 mm radius target. The concentrator performed well in flight. A variety of other collector materials, tailored to specific analytical approaches, were mounted in 5 arrays of 55 hexagons, 4 cm point to point. Three of the arrays were used to provide the independent regime (coronal hole, low speed interstream, and coronal mass ejection) samples. The solar wind regime was measured by LANL Solar Wind Monitors on the Genesis spacecraft and the appropriate array exposed while the inappropriate array remained shielded. Array switchouts were carried out flawlessly during flight. Sample analyses have been slowed considerably by a parachute deployment failure which caused a crash of the sample return capsule upon reentry and by the presence of an in-flight contamination film, affectionately referred to as the brown stain. The crash has led to major loss of collector materials, along with significant pitting and scratching of the surviving

  4. Mercury Orbiter: Report of the Science Working Team

    Science.gov (United States)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  5. A dynamical approach toward understanding mechanisms of team science: change, kinship, tension, and heritage in a transdisciplinary team.

    Science.gov (United States)

    Lotrecchiano, Gaetano R

    2013-08-01

    Since the concept of team science gained recognition among biomedical researchers, social scientists have been challenged with investigating evidence of team mechanisms and functional dynamics within transdisciplinary teams. Identification of these mechanisms has lacked substantial research using grounded theory models to adequately describe their dynamical qualities. Research trends continue to favor the measurement of teams by isolating occurrences of production over relational mechanistic team tendencies. This study uses a social constructionist-grounded multilevel mixed methods approach to identify social dynamics and mechanisms within a transdisciplinary team. A National Institutes of Health-funded research team served as a sample. Data from observations, interviews, and focus groups were qualitatively coded to generate micro/meso level analyses. Social mechanisms operative within this biomedical scientific team were identified. Dynamics that support such mechanisms were documented and explored. Through theoretical and emergent coding, four social mechanisms dominated in the analysis-change, kinship, tension, and heritage. Each contains relational social dynamics. This micro/meso level study suggests such mechanisms and dynamics are key features of team science and as such can inform problems of integration, praxis, and engagement in teams. © 2013 Wiley Periodicals, Inc.

  6. The National Virtual Observatory Science Definintion Team: Report and Status

    Science.gov (United States)

    Djorgovski, S. G.; NVO SDT Team

    2002-05-01

    Astronomy has become an enormously data-rich science, with numerous multi-Terabyte sky surveys and archives over the full range of wavelengths, and Petabyte-scale data sets already on the horizon. The amount of the available information is growing exponentially, largely driven by the progress in detector and information technology, and the quality and complexity of the data are unprecedented. This great quantitative advance will result in qualitative changes in the way astronomy is done. The Virtual Observatory concept is the astronomy community's organized response to the challenges posed by efficient handling and scientific exploration of new, massive data sets. The NAS Decadal Survey, Astronomy and Astrophysics in the New Millennium, recommends as the first priority in the ``small'' projects category creation of the National Virtual Observatory (NVO). In response to this, the NSF and NASA formed in June 2001 the NVO Science Definition Team (SDT), with a mandate to: (1) Define and formulate a joint NASA/NSF initiative to pursue the NVO goals; (2) Solicit input from the U.S. astronomy community, and incorporate it in the NVO definition documents and recommendations for further actions; and (3) Serve as liaison to broader space science, computer science, and statistics communities for the NVO initiative, and as liaison with the similar efforts in Europe, looking forward towards a truly Global Virtual Observatory. The Team has delivered its report to the agencies and made it publicly available on its website (http://nvosdt.org), where many other relevant links can be found. We will summarize the report, its conclusions, and recommendations.

  7. TEAM.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This document presents materials covering the television campaign against drunk driving called "TEAM" (Techniques for Effective Alcohol Management). It is noted that TEAM's purpose is to promote effective alcohol management in public facilities and other establishments that serve alcoholic beverages. TEAM sponsors are listed, including…

  8. Team Structure and Scientific Impact of "Big Science" Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn; Jeppesen, Jacob

    This paper summarizes preliminary results from a project studying how the organizational and cognitive features of research carried out in a Large Scale Research Facility (LSRF) affect scientific impact. The study is based on exhaustive bibliometric mapping of the scientific publications...... of the Neutron Science Department of Oak Ridge National Laboratories in 2006-2009. Given the collaborative nature of research carried out at LSRFs, it is important to understand how its organization affects scientific impact. Diversity of teams along the institutional and cognitive dimensions affects both...... opportunities for combination of knowledge and coordination costs. The way specific collaborative configurations strike this trade-offs between these opportunities and costs have notable effects on research performance. The findings of the paper show that i.) scientists combining affiliations to both...

  9. Progress Towards AIRS Science Team Version-7 at SRT

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Kouvaris, Louis

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing level-3 Climate Data Records (CDRs) from AIRS that have been proven useful to scientists in understanding climate processes. CDRs are gridded level-3 products which include all cases passing AIRS Climate QC. SRT has made significant further improvements to AIRS Version-6. At the last Science Team Meeting, we described results using SRT AIRS Version-6.22. SRT Version-6.22 is now an official build at JPL called 6.2.4. Version-6.22 results are significantly improved compared to Version-6, especially with regard to water vapor and ozone profiles. We have adapted AIRS Version-6.22 to run with CrIS/ATMS, at the Sounder SIPS which processed CrIS/ATMS data for August 2014. JPL AIRS Version-6.22 uses the Version-6 AIRS tuning coefficients. AIRS Version-6.22 has at least two limitations which must be improved before finalization of Version-7: Version-6.22 total O3 has spurious high values in the presence of Saharan dust over the ocean; and Version-6.22 retrieved upper stratospheric temperatures are very poor in polar winter. SRT Version-6.28 addresses the first concern. John Blaisdell ran the analog of AIRS Version-6.28 in his own sandbox at JPL for the 14th and 15th of every month in 2014 and all of July and October for 2014. AIRS Version-6.28a is hot off the presses and addresses the second concern.

  10. Pioneering the Transdisciplinary Team Science Approach: Lessons Learned from National Cancer Institute Grantees.

    Science.gov (United States)

    Vogel, Amanda L; Stipelman, Brooke A; Hall, Kara L; Nebeling, Linda; Stokols, Daniel; Spruijt-Metz, Donna

    2014-01-01

    The National Cancer Institute has been a leader in supporting transdisciplinary (TD) team science. From 2005-2010, the NCI supported Transdisciplinary Research on Energetic and Cancer I (TREC I), a center initiative fostering the TD integration of social, behavioral, and biological sciences to examine the relationships among obesity, nutrition, physical activity and cancer. In the final year of TREC I, we conducted qualitative in-depth-interviews with 31 participating investigators and trainees to learn more about their experiences with TD team science, including challenges, facilitating factors, strategies for success, and impacts. Five main challenges emerged: (1) limited published guidance for how to engage in TD team science, when TREC I was implemented; (2) conceptual and scientific challenges inherent to efforts to achieve TD integration; (3) discipline-based differences in values, terminology, methods, and work styles; (4) project management challenges involved in TD team science; and (5) traditional incentive and reward systems that do not recognize or reward TD team science. Four main facilitating factors and strategies for success emerged: (1) beneficial attitudes and beliefs about TD research and team science; (2) effective team processes; (3) brokering and bridge-building activities by individuals holding particular roles in a research center; and (4) funding initiative characteristics that support TD team science. Broad impacts of participating in TD team science in the context of TREC I included: (1) new positive attitudes about TD research and team science; (2) new boundary-crossing collaborations; (3) scientific advances related to research approaches, findings, and dissemination; (4) institutional culture change and resource creation in support of TD team science; and (5) career advancement. Funding agencies, academic institutions, and scholarly journals can help to foster TD team science through funding opportunities, institutional policies on

  11. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    Directory of Open Access Journals (Sweden)

    Carol R. Horowitz

    2017-02-01

    Full Text Available Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities.

  12. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    Science.gov (United States)

    Horowitz, Carol R.; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N.; Smith, Geoffrey W.; Dudley, Joel; Manning, Rachel; Bickell, Nina A.; Galvez, Maida P.

    2017-01-01

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities. PMID:28241508

  13. Opportunities in Participatory Science and Citizen Science with MRO's High Resolution Imaging Science Experiment: A Virtual Science Team Experience

    Science.gov (United States)

    Gulick, Ginny

    2009-09-01

    We report on the accomplishments of the HiRISE EPO program over the last two and a half years of science operations. We have focused primarily on delivering high impact science opportunities through our various participatory science and citizen science websites. Uniquely, we have invited students from around the world to become virtual HiRISE team members by submitting target suggestions via our HiRISE Quest Image challenges using HiWeb the team's image suggestion facility web tools. When images are acquired, students analyze their returned images, write a report and work with a HiRISE team member to write a image caption for release on the HiRISE website (http://hirise.lpl.arizona.edu). Another E/PO highlight has been our citizen scientist effort, HiRISE Clickworkers (http://clickworkers.arc.nasa.gov/hirise). Clickworkers enlists volunteers to identify geologic features (e.g., dunes, craters, wind streaks, gullies, etc.) in the HiRISE images and help generate searchable image databases. In addition, the large image sizes and incredible spatial resolution of the HiRISE camera can tax the capabilities of the most capable computers, so we have also focused on enabling typical users to browse, pan and zoom the HiRISE images using our HiRISE online image viewer (http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/). Our educational materials available on the HiRISE EPO web site (http://hirise.seti.org/epo) include an assortment of K through college level, standards-based activity books, a K through 3 coloring/story book, a middle school level comic book, and several interactive educational games, including Mars jigsaw puzzles, crosswords, word searches and flash cards.

  14. Research and development portfolio of the sustainability science team national sustainable operations USDA Forest Service

    Science.gov (United States)

    Trista Patterson; David Nicholls; Jonathan Long

    2015-01-01

    The Sustainability Science Team (SST) of the U.S. Department of Agriculture (USDA) Forest Service Sustainable Operations Initiative is a 18-member virtual research and development team, located across five regions and four research stations of the USDA Forest Service. The team provides research, publication, systems analysis, and decision support to the Sustainable...

  15. Materials Science and X-ray Techniques

    International Nuclear Information System (INIS)

    Brock, J.; Sutton, M.

    2008-01-01

    Many novel synchrotron-based X-ray techniques directly address the core questions of modern materials science but are not yet at the stage of being easy to use because of the lack of dedicated beamlines optimized for specific measurements. In this article, we highlight a few of these X-ray techniques and discuss why, with ongoing upgrades of existing synchrotrons and with new linear-accelerator-based sources under development, now is the time to ensure that these techniques are readily available to the larger materials research community.

  16. AmeriFlux Measurement Network: Science Team Research

    Energy Technology Data Exchange (ETDEWEB)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  17. Requirements, Science, and Measurements for Landsat 10 and Beyond: Perspectives from the Landsat Science Team

    Science.gov (United States)

    Crawford, C. J.; Masek, J. G.; Roy, D. P.; Woodcock, C. E.; Wulder, M. A.

    2017-12-01

    The U.S. Geological Survey (USGS) and NASA are currently prioritizing requirements and investing in technology options for a "Landsat 10 and beyond" mission concept as part of the Sustainable Land Imaging (SLI) architecture. Following the successful February 2013 launch of the Landsat 8, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have now added over 1 million images to the USGS Landsat archive. The USGS and NASA support and co-lead a Landsat Science Team made up largely of university and government experts to offer independent insight and guidance of program activities and directions. The rapid development of Landsat 9 reflects, in part, strong input from the 2012-2017 USGS Landsat Science Team (LST). During the last two years of the LST's tenure, individual LST members and within LST team working groups have made significant contributions to Landsat 10 and beyond's science traceability and future requirements justification. Central to this input, has been an effort to identify a trade space for enhanced measurement capabilities that maintains mission continuity with eight prior multispectral instruments, and will extend the Landsat Earth observation record beyond 55+ years with an approximate launch date of 2027. The trade space is framed by four fundamental principles in remote sensing theory and practice: (1) temporal resolution, (2) spatial resolution, (3) radiometric resolution, and (4) spectral coverage and resolution. The goal of this communication is to provide a synopsis of past and present 2012-2017 LST contributions to Landsat 10 and beyond measurement science and application priorities. A particular focus will be to document the links between new science and societal benefit areas with potential technical enhancements to the Landsat mission.

  18. 21st Century Science as a Relational Process: From Eureka! to Team Science and a Place for Community Psychology

    Science.gov (United States)

    Tebes, Jacob Kraemer; Thai, Nghi D.; Matlin, Samantha L.

    2014-01-01

    In this paper we maintain that 21st century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of 21st century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: 1) trends in science show that research is increasingly being conducted in teams; 2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; 3) transdisciplinary scientific teams are part of the larger, 21st century transformation in science; 4) the concept of heterarchy is a heuristic for team science aligned with this transformation; 5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance 21st century science; and 6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the 21st century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are extraordinarily well-prepared to help advance these developments, and thus have much to offer 21st century science. PMID:24496718

  19. Ada training evaluation and recommendations from the Gamma Ray Observatory Ada Development Team

    International Nuclear Information System (INIS)

    1985-10-01

    The Ada training experiences of the Gamma Ray Observatory Ada development team are related, and recommendations are made concerning future Ada training for software developers. Training methods are evaluated, deficiencies in the training program are noted, and a recommended approach, including course outline, time allocation, and reference materials, is offered

  20. Proceedings of the second Atmospheric Radiation Measurement (ARM) Science Team Meeting

    International Nuclear Information System (INIS)

    1992-12-01

    The second Atmospheric Radiation Measurement (ARM) Science Team Meeting was held in Denver, Colorado, in October 1991. The five-day meeting provided a forum for a technical exchange among the members of the ARM Science Team and a discussion of the technical aspects of the project infrastructure. The meeting included several activities: Science Team presentations, discussions of the first site occupation plan, experiment design sessions, and poster sessions. This Proceedings document includes papers presented at the meeting. The papers included are those from the technical sessions, the experiment design sessions, the first site occupation, and descriptions of locales for future sites. Individual projects are processed separately for the database

  1. The Role of Project Science in the Chandra X-Ray Observatory

    Science.gov (United States)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  2. A Multi-Level Systems Perspective for the Science of Team Science

    Science.gov (United States)

    Börner, Katy; Contractor, Noshir; Falk-Krzesinski, Holly J.; Fiore, Stephen M.; Hall, Kara L.; Keyton, Joann; Spring, Bonnie; Stokols, Daniel; Trochim, William; Uzzi, Brian

    2012-01-01

    This Commentary describes recent research progress and professional developments in the study of scientific teamwork, an area of inquiry termed the “science of team science” (SciTS, pronounced “sahyts”). It proposes a systems perspective that incorporates a mixed-methods approach to SciTS that is commensurate with the conceptual, methodological, and translational complexities addressed within the SciTS field. The theoretically grounded and practically useful framework is intended to integrate existing and future lines of SciTS research to facilitate the field’s evolution as it addresses key challenges spanning macro, meso, and micro levels of analysis. PMID:20844283

  3. An Interdisciplinary Team Project: Psychology and Computer Science Students Create Online Cognitive Tasks

    Science.gov (United States)

    Flannery, Kathleen A.; Malita, Mihaela

    2014-01-01

    We present our case study of an interdisciplinary team project for students taking either a psychology or computer science (CS) course. The project required psychology and CS students to combine their knowledge and skills to create an online cognitive task. Each interdisciplinary project team included two psychology students who conducted library…

  4. The evaluation of the irradiation of medical team in critical X-ray diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, R [Inst. of Nuclear Science Vinca, Belgrade (Yugoslavia). Radiation and Environmental Protection Lab.; Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    A good realized assessment of the irradiation for any exposed group of population serves as the base for the radiation protection measures (emergency radiation preparedness, radiation protection optimization etc.). This is especially important, by the radiation protection point of view, in contrast X-ray diagnostic techniques - angiographies. This paper presents the way for the realization of the medical team irradiation assessment, based on originally derived simple equations for the scattered radiation field around patient. (author) 1 fig., 3 figs.

  5. Translational Science Project Team Managers: Qualitative Insights and Implications from Current and Previous Postdoctoral Experiences.

    Science.gov (United States)

    Wooten, Kevin C; Dann, Sara M; Finnerty, Celeste C; Kotarba, Joseph A

    2014-07-01

    The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle.

  6. Communication and relationship skills for rapid response teams at hamilton health sciences.

    Science.gov (United States)

    Cziraki, Karen; Lucas, Janie; Rogers, Toni; Page, Laura; Zimmerman, Rosanne; Hauer, Lois Ann; Daniels, Charlotte; Gregoroff, Susan

    2008-01-01

    Rapid response teams (RRT) are an important safety strategy in the prevention of deaths in patients who are progressively failing outside of the intensive care unit. The goal is to intervene before a critical event occurs. Effective teamwork and communication skills are frequently cited as critical success factors in the implementation of these teams. However, there is very little literature that clearly provides an education strategy for the development of these skills. Training in simulation labs offers an opportunity to assess and build on current team skills; however, this approach does not address how to meet the gaps in team communication and relationship skill management. At Hamilton Health Sciences (HHS) a two-day program was developed in collaboration with the RRT Team Leads, Organizational Effectiveness and Patient Safety Leaders. Participants reflected on their conflict management styles and considered how their personality traits may contribute to team function. Communication and relationship theories were reviewed and applied in simulated sessions in the relative safety of off-site team sessions. The overwhelming positive response to this training has been demonstrated in the incredible success of these teams from the perspective of the satisfaction surveys of the care units that call the team, and in the multi-phased team evaluation of their application to practice. These sessions offer a useful approach to the development of the soft skills required for successful RRT implementation.

  7. CERN and Google team up for Science Fair

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    CERN partners up with Google to present the world’s first online global science competition: the Google Science Fair.   The Google Science Fair invites young people aged 13-18 to conduct innovative science projects and present their results for the chance to win once-in-a-lifetime experiences and opportunities. CERN will offer a three-day visit to the Laboratory to one of the winners, and Rolf Heuer, CERN Director-General, will be on the prestigious panel of judges. Nobel laureates, science entrepreneurs, and science communicators will have the difficult task of choosing the winners. “Google is a company that was born from scientific experimentation and in that spirit we are interested in promoting science, technology, engineering and maths (best known as STEM) education all over the world,” says Samantha Peter, Education Product Marketing Manager at Google. “By creating a large competition where students can get immersed in these subjects and have the op...

  8. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    Science.gov (United States)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  9. Report of the NASA Science Definition Team for the Mars Science Orbiter (MSO)

    Science.gov (United States)

    Smith, Michael

    2007-01-01

    NASA is considering that its Mars Exploration Program (MEP) will launch an orbiter to Mars in the 2013 launch opportunity. To further explore this opportunity, NASA has formed a Science Definition Team (SDT) for this orbiter mission, provisionally called the Mars Science Orbiter (MSO). Membership and leadership of the SDT are given in Appendix 1. Dr. Michael D. Smith chaired the SDT. The purpose of the SDT was to define the: 1) Scientific objectives of an MSO mission to be launched to Mars no earlier than the 2013 launch opportunity, building on the findings for Plan A [Atmospheric Signatures and Near-Surface Change] of the Mars Exploration Program Analysis Group (MEPAG) Second Science Analysis Group (SAG-2); 2) Science requirements of instruments that are most likely to make high priority measurements from the MSO platform, giving due consideration to the likely mission, spacecraft and programmatic constraints. The possibilities and opportunities for international partners to provide the needed instrumentation should be considered; 3) Desired orbits and mission profile for optimal scientific return in support of the scientific objectives, and the likely practical capabilities and the potential constraints defined by the science requirements; and 4) Potential science synergies with, or support for, future missions, such as a Mars Sample Return. This shall include imaging for evaluation and certification of future landing sites. As a starting point, the SDT was charged to assume spacecraft capabilities similar to those of the Mars Reconnaissance Orbiter (MRO). The SDT was further charged to assume that MSO would be scoped to support telecommunications relay of data from, and commands to, landed assets, over a 10 Earth year period following orbit insertion. Missions supported by MSO may include planned international missions such as EXOMARS. The MSO SDT study was conducted during October - December 2007. The SDT was directed to complete its work by December 15, 2007

  10. The systematic review team: contributions of the health sciences librarian.

    Science.gov (United States)

    Dudden, Rosalind F; Protzko, Shandra L

    2011-01-01

    While the role of the librarian as an expert searcher in the systematic review process is widely recognized, librarians also can be enlisted to help systematic review teams with other challenges. This article reviews the contributions of librarians to systematic reviews, including communicating methods of the review process, collaboratively formulating the research question and exclusion criteria, formulating the search strategy on a variety of databases, documenting the searches, record keeping, and writing the search methodology. It also discusses challenges encountered such as irregular timelines, providing education, communication, and learning new technologies for record keeping. Rewards include building relationships with researchers, expanding professional expertise, and receiving recognition for contributions to health care outcomes.

  11. The AGING Initiative experience: a call for sustained support for team science networks.

    Science.gov (United States)

    Garg, Tullika; Anzuoni, Kathryn; Landyn, Valentina; Hajduk, Alexandra; Waring, Stephen; Hanson, Leah R; Whitson, Heather E

    2018-05-18

    Team science, defined as collaborative research efforts that leverage the expertise of diverse disciplines, is recognised as a critical means to address complex healthcare challenges, but the practical implementation of team science can be difficult. Our objective is to describe the barriers, solutions and lessons learned from our team science experience as applied to the complex and growing challenge of multiple chronic conditions (MCC). MCC is the presence of two or more chronic conditions that have a collective adverse effect on health status, function or quality of life, and that require complex healthcare management, decision-making or coordination. Due to the increasing impact on the United States society, MCC research has been identified as a high priority research area by multiple federal agencies. In response to this need, two national research entities, the Healthcare Systems Research Network (HCSRN) and the Claude D. Pepper Older Americans Independence Centers (OAIC), formed the Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative to build nationwide capacity for MCC team science. This article describes the structure, lessons learned and initial outcomes of the AGING Initiative. We call for funding mechanisms to sustain infrastructures that have demonstrated success in fostering team science and innovation in translating findings to policy change necessary to solve complex problems in healthcare.

  12. Science Goals, Objectives, and Investigations of the 2016 Europa Lander Science Definition Team Report

    Science.gov (United States)

    Hand, Kevin P.; Murray, Alison; Garvin, James; and the Europa Lander Science Definition Team, Project Science Team, and Project Engineering Team.

    2017-10-01

    In June of 2016 NASA convened a 21-person team of scientists to establish the science goals, objectives, investigations, measurement requirements, and model payload of a Europa lander mission concept. The NASA HQ Charter goals, in priority order, are as follows:1) Search for evidence of life on Europa, 2) Assess the habitability of Europa via in situ techniques uniquely available to a lander mission, 3) Characterize surface and subsurface properties at the scale of the lander to support future exploration of Europa.Within Goal 1, four Objectives were developed for seeking signs of life. These include the need to: a) detect and characterize any organic indicators of past or present life, b) identify and characterize morphological, textural, and other indicators of life, c) detect and characterize any inorganic indicators of past or present life, and d) determine the provenance of Lander-sampled material. Goal 2 focuses on Europa’s habitability and ensures that even in the absence of the detection of any potential biosignatures, significant ocean world science is still achieved. Goal 3 ensures that the landing site region is quantitatively characterized in the context needed for Goals 1 and 2, and that key measurements about Europa’s ice shell are made to enable future exploration.Critically, scientific success cannot be, and should never be, contingent on finding signs of life - such criteria would be levying requirements on how the universe works. Rather, scientific success is defined here as achieving a suite of measurements such that if convincing signs of life are present on Europa’s surface they could be detected at levels comparable to those found in benchmark environments on Earth, and, further, that even if no potential biosignatures are detected, the science return of the mission will significantly advance our fundamental understanding of Europa’s chemistry, geology, geophysics, and habitability.

  13. Network Science Center Research Teams Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a gift from the Government of China, and consists of a 2,500...first glimpse into what became a common thread throughout the trip: the presence of a gap between microfinance and large corporate investments in the...cutting out other middlemen and increasing their own profits. Some even sell directly to major coffee names (such as Starbucks ). In our discussion it

  14. NASA Microgravity Science Competition for High-school-aged Student Teams

    Science.gov (United States)

    DeLombard, Richard; Stocker, Dennis; Hodanbosi, Carol; Baumann, Eric

    2002-01-01

    NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA and student teams which are mentored by NASA centers. This participation by NASA in public forums serves to bring the excitement of aerospace science to students and educators. A new competition for highschool-aged student teams involving projects in microgravity has completed two pilot years and will have national eligibility for teams during the 2002-2003 school year. A team participating in the Dropping In a Microgravity Environment will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a microgravity drop tower facility. A team of NASA scientists and engineers will select the top proposals and those teams will then design and build their experiment apparatus. When the experiment apparatus are completed, team representatives will visit NASA Glenn in Cleveland, Ohio for operation of their facility and participate in workshops and center tours. Presented in this paper will be a description of DIME, an overview of the planning and execution of such a program, results from the first two pilot years, and a status of the first national competition.

  15. Transnational organizational considerations for sociocultural differences in ethics and virtual team functioning in laboratory animal science.

    Science.gov (United States)

    Pritt, Stacy L; Mackta, Jayne

    2010-05-01

    Business models for transnational organizations include linking different geographies through common codes of conduct, policies, and virtual teams. Global companies with laboratory animal science activities (whether outsourced or performed inhouse) often see the need for these business activities in relation to animal-based research and benefit from them. Global biomedical research organizations can learn how to better foster worldwide cooperation and teamwork by understanding and working with sociocultural differences in ethics and by knowing how to facilitate appropriate virtual team actions. Associated practices include implementing codes and policies transcend cultural, ethnic, or other boundaries and equipping virtual teams with the needed technology, support, and rewards to ensure timely and productive work that ultimately promotes good science and patient safety in drug development.

  16. Solar Sentinels: Report of the Science and Technology Definition Team

    Science.gov (United States)

    2006-01-01

    The goal of NASA s Living With a Star (LWS) program is to develop the scientific understanding necessary to effectively address those aspects of the connected Sun Earth system that directly affect life and society. Along with the other elements of LWS, Solar Sentinels aims to discover, understand, and model the heliospheric initiation, propagation, and solar connection of those energetic phenomena that adversely affect space exploration and life and society here on Earth. The Solar Sentinels mission will address the following questions: (1) How, where, and under what circumstances are solar energetic particles (SEPs) accelerated to high energies and how do they propagate through the heliosphere? And (2) How are solar wind structures associated with these SEPs, like CMEs, shocks, and high-speed streams, initiated, propagate, evolve, and interact in the inner heliosphere? The Sentinels STDT recommends implementing this mission in two portions, one optimized for inner heliospheric in-situ measurements and the other for solar remote observations. Sentinels will greatly enhance the overall LWS science return.

  17. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  18. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  19. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    International Nuclear Information System (INIS)

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately

  20. Team science and the physician-scientist in the age of grand health challenges.

    Science.gov (United States)

    Steer, Clifford J; Jackson, Peter R; Hornbeak, Hortencia; McKay, Catherine K; Sriramarao, P; Murtaugh, Michael P

    2017-09-01

    Despite remarkable advances in medical research, clinicians face daunting challenges from new diseases, variations in patient responses to interventions, and increasing numbers of people with chronic health problems. The gap between biomedical research and unmet clinical needs can be addressed by highly talented interdisciplinary investigators focused on translational bench-to-bedside medicine. The training of talented physician-scientists comfortable with forming and participating in multidisciplinary teams that address complex health problems is a top national priority. Challenges, methods, and experiences associated with physician-scientist training and team building were explored at a workshop held at the Second International Conference on One Medicine One Science (iCOMOS 2016), April 24-27, 2016, in Minneapolis, Minnesota. A broad range of scientists, regulatory authorities, and health care experts determined that critical investments in interdisciplinary training are essential for the future of medicine and healthcare delivery. Physician-scientists trained in a broad, nonlinear, cross-disciplinary manner are and will be essential members of science teams in the new age of grand health challenges and the birth of precision medicine. Team science approaches have accomplished biomedical breakthroughs once considered impossible, and dedicated physician-scientists have been critical to these achievements. Together, they translate into the pillars of academic growth and success. © 2017 New York Academy of Sciences.

  1. Political Science and Speech Communication--A Team Approach to Teaching Political Communication.

    Science.gov (United States)

    Blatt, Stephen J.; Fogel, Norman

    This paper proposes making speech communication more interdisciplinary and, in particular, combining political science and speech in a team-taught course in election campaigning. The goals, materials, activities, and plan of such a course are discussed. The goals include: (1) gaining new insights into the process of contemporary campaigns and…

  2. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  3. Cocitation or Capacity-Building? Defining Success within an Interdisciplinary, Sustainability Science Team

    Directory of Open Access Journals (Sweden)

    Abby J. Roche

    2017-10-01

    Full Text Available To address gaps in knowledge and to tackle complex social–ecological problems, scientific research is moving toward studies that integrate multiple disciplines and ways of knowing to explore all parts of a system. Yet, how these efforts are being measured and how they are deemed successful is an up-and-coming and pertinent conversation within interdisciplinary research spheres. Using a grounded theory approach, this study addresses how members of a sustainability science-focused team at a Northeastern U.S. university funded by a large, National Science Foundation (NSF grant contend with deeply normative dimensions of interdisciplinary research team success. Based on semi-structured interviews (N = 24 with researchers (e.g., faculty and graduate students involved in this expansive, interdisciplinary team, this study uses participants’ narrative accounts to progress our understanding of success on sustainability science teams and addresses the tensions arising between differing visions of success present within the current literature, and perpetuated by U.S. funding agencies like NSF. Study findings reveal that team members are forming definitions of interdisciplinary success that both align with, and depart from, those appearing in the literature. More specifically, some respondents’ notions of team success appear to mirror currently recognized outcomes in traditional academic settings (i.e., purpose driven outcomes—citations, receipt of grant funding, etc.. At the same time, just as many other respondents describe success as involving elements of collaborative research not traditionally acknowledged as a forms of “success” in their own right (i.e., capacity building processes and outcomes—relationship formation, deep understandings of distinct epistemologies, etc.. Study results contribute to more open and informed discussions about how we gauge success within sustainability science collaborations, forming a foundation for

  4. Using Team-based Learning to teach a Large-enrollment Environmental Science Course Online

    Science.gov (United States)

    Harder, V.

    2013-12-01

    Student enrollment in many online courses is usually limited to small classes, ranging from 20-25 students. Over two summers Environmental Science 1301, with an enrollment of 50, has been piloted online using team-based learning (TBL) methods. Teams, consisting of 7 members, were assigned randomly using the group manager tool found in the learning management system. The course was organized around Learning Modules, which consisted of a quiz (individual) over the reading, a team assignment, which covered a topic from one of the chapters was completed for each learning module, and a class/group discussion. The discussion usually entailed a presentation of findings to the class by each team. This allowed teams to interact with one another and was also designed to encourage competition among the teams. Over the course of the class it was observed that as the students became comfortable with the course procedures they developed a commitment to the goals and welfare of their team. They found that as a team they could accomplish much more than an individual; they discovered strengths in their team mates that they, themselves, lacked, and they helped those team mates who struggled with the material. The teams tackled problems that would be overwhelming to an individual in the time allotted, such as running multiple scenarios with the simulations and tackling a large amount of data. Using TBL shifted the majority of responsibility of learning the material to the student with the instructor functioning as a facilitator instead of dispenser of knowledge. Dividing the class into teams made the course load manageable for the instructor while at the same time created a small-class environment for the students. In comparing this course to other, nonTBL-based online courses taught, the work load was very manageable. There were only 7-10 items to be graded per Learning Module and only 7-10 teams to monitor and provide guidance to instead of 50 individuals. Retention rates (86

  5. Modeling the Office of Science ten year facilities plan: The PERI Architecture Tiger Team

    International Nuclear Information System (INIS)

    Supinski, Bronis R de; Gamblin, Todd; Schulz, Martin

    2009-01-01

    The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort optimizing key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

  6. The ecology of team science: understanding contextual influences on transdisciplinary collaboration.

    Science.gov (United States)

    Stokols, Daniel; Misra, Shalini; Moser, Richard P; Hall, Kara L; Taylor, Brandie K

    2008-08-01

    Increased public and private investments in large-scale team science initiatives over the past two decades have underscored the need to better understand how contextual factors influence the effectiveness of transdisciplinary scientific collaboration. Toward that goal, the findings from four distinct areas of research on team performance and collaboration are reviewed: (1) social psychological and management research on the effectiveness of teams in organizational and institutional settings; (2) studies of cyber-infrastructures (i.e., computer-based infrastructures) designed to support transdisciplinary collaboration across remote research sites; (3) investigations of community-based coalitions for health promotion; and (4) studies focusing directly on the antecedents, processes, and outcomes of scientific collaboration within transdisciplinary research centers and training programs. The empirical literature within these four domains reveals several contextual circumstances that either facilitate or hinder team performance and collaboration. A typology of contextual influences on transdisciplinary collaboration is proposed as a basis for deriving practical guidelines for designing, managing, and evaluating successful team science initiatives.

  7. Inelastic X-ray Scattering Beamline Collaborative Development Team Final Report

    International Nuclear Information System (INIS)

    Burns, Clement

    2008-01-01

    This is the final report for the project to create a beam line for inelastic x-ray scattering at the Advanced Photon Source. The facility is complete and operating well, with spectrometers for both high resolution and medium resolution measurements. With the advent of third generation synchrotron sources, inelastic x-ray scattering (IXS) has become a valuable technique to probe the electronic and vibrational states of a wide variety of systems of interest in physics, chemistry, and biology. IXS is a weak probe, and experimental setups are complex and require well-optimized spectrometers which need a dedicated beamline to function efficiently. This project was the result of a proposal to provide a world-class, user friendly beamline for IXS at the Advanced Photon Source. The IXS Collaborative Development Team (IXS-CDT) was formed from groups at the national laboratories and a number of different universities. The beamline was designed from the front end to the experimental stations. Two different experimental stations were provided, one for medium resolution inelastic x-ray scattering (MERIX) and a spectrometer for high resolution inelastic x-ray scattering (HERIX). Funding for this project came from several sources as well as the DOE. The beamline is complete with both spectrometers operating well. The facility is now open to the general user community and there has been a tremendous demand to take advantage of the beamline's capabilities. A large number of different experiments have already been carried out on the beamline. A detailed description of the beamline has been given in the final design report (FDR) for the beamline from which much of the material in this report came. The first part of this report contains a general overview of the project with more technical details given later.

  8. Frontiers in X-Ray Science

    International Nuclear Information System (INIS)

    Young, Linda

    2011-01-01

    The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

  9. Transnational Organizational Considerations for Sociocultural Differences in Ethics and Virtual Team Functioning in Laboratory Animal Science

    OpenAIRE

    Pritt, Stacy L; Mackta, Jayne

    2010-01-01

    Business models for transnational organizations include linking different geographies through common codes of conduct, policies, and virtual teams. Global companies with laboratory animal science activities (whether outsourced or performed inhouse) often see the need for these business activities in relation to animal-based research and benefit from them. Global biomedical research organizations can learn how to better foster worldwide cooperation and teamwork by understanding and working wit...

  10. High-school Student Teams in a National NASA Microgravity Science Competition

    Science.gov (United States)

    DeLombard, Richard; Hodanbosi, Carol; Stocker, Dennis

    2003-01-01

    The Dropping In a Microgravity Environment or DIME competition for high-school-aged student teams has completed the first year for nationwide eligibility after two regional pilot years. With the expanded geographic participation and increased complexity of experiments, new lessons were learned by the DIME staff. A team participating in DIME will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a NASA microgravity drop tower. A team of NASA scientists and engineers will select the top proposals and then the selected teams will design and build their experiment apparatus. When completed, team representatives will visit NASA Glenn in Cleveland, Ohio to operate their experiment in the 2.2 Second Drop Tower and participate in workshops and center tours. NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA (e.g. NASA Student Involvement Program) and student teams mentored by NASA centers (e.g. For Inspiration and Recognition of Science and Technology Robotics Competition). This participation by NASA in these public forums serves to bring the excitement of aerospace science to students and educators.Researchers from academic institutions, NASA, and industry utilize the 2.2 Second Drop Tower at NASA Glenn Research Center in Cleveland, Ohio for microgravity research. The researcher may be able to complete the suite of experiments in the drop tower but many experiments are precursor experiments for spaceflight experiments. The short turnaround time for an experiment's operations (45 minutes) and ready access to experiment carriers makes the facility amenable for use in a student program. The pilot year for DIME was conducted during the 2000-2001 school year with invitations sent out to Ohio- based schools and organizations. A second pilot year was conducted during the 2001-2002 school year for teams in the six-state region

  11. Planning meeting to form the CMSN Team: Building a unified computational model for the resonant X-ray scattering of strongly correlated materials. Final report

    International Nuclear Information System (INIS)

    van Veenendaal, M.

    2008-01-01

    The planning meeting was held May 21-23 2008 at Argonne National Laboratory (ANL). The purpose of the meeting was to establish a network on building computational model for resonant elastic and inelastic x-ray scattering. This course of action was recommended by program officer Dale Koelling after the initial submission of a proposal for a Computational Materials Science Network to Basic Energy Sciences. The meeting consisted of talks and discussion. At the end of the meeting three subgroups were formed. After the successful formation of the team, a new proposal was written which was funded by BES. Since this was a planning meeting there were no proceedings. The program and titles of talks are given.

  12. Honorary Authorship Practices in Environmental Science Teams: Structural and Cultural Factors and Solutions.

    Science.gov (United States)

    Elliott, Kevin C; Settles, Isis H; Montgomery, Georgina M; Brassel, Sheila T; Cheruvelil, Kendra Spence; Soranno, Patricia A

    2017-01-01

    Overinclusive authorship practices such as honorary or guest authorship have been widely reported, and they appear to be exacerbated by the rise of large interdisciplinary collaborations that make authorship decisions particularly complex. Although many studies have reported on the frequency of honorary authorship and potential solutions to it, few have probed how the underlying dynamics of large interdisciplinary teams contribute to the problem. This article reports on a qualitative study of the authorship standards and practices of six National Science Foundation-funded interdisciplinary environmental science teams. Using interviews of the lead principal investigator and an early-career member on each team, our study explores the nature of honorary authorship practices as well as some of the motivating factors that may contribute to these practices. These factors include both structural elements (policies and procedures) and cultural elements (values and norms) that cross organizational boundaries. Therefore, we provide recommendations that address the intersection of these factors and that can be applied at multiple organizational levels.

  13. The potential improvement of team-working skills in Biomedical and Natural Science students using a problem-based learning approach

    OpenAIRE

    Forough L. Nowrouzian; Anne Farewell

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled. This development requires that students gain experience of team-work before they start their professional career. Students working in teams this may ...

  14. Convergence of advances in genomics, team science, and repositories as drivers of progress in psychiatric genomics.

    Science.gov (United States)

    Lehner, Thomas; Senthil, Geetha; Addington, Anjené M

    2015-01-01

    After many years of unfilled promise, psychiatric genetics has seen an unprecedented number of successes in recent years. We hypothesize that the field has reached an inflection point through a confluence of four key developments: advances in genomics; the orientation of the scientific community around large collaborative team science projects; the development of sample and data repositories; and a policy framework for sharing and accessing these resources. We discuss these domains and their effect on scientific progress and provide a perspective on why we think this is only the beginning of a new era in scientific discovery. Published by Elsevier Inc.

  15. Team Science Approach to Developing Consensus on Research Good Practices for Practice-Based Research Networks: A Case Study.

    Science.gov (United States)

    Campbell-Voytal, Kimberly; Daly, Jeanette M; Nagykaldi, Zsolt J; Aspy, Cheryl B; Dolor, Rowena J; Fagnan, Lyle J; Levy, Barcey T; Palac, Hannah L; Michaels, LeAnn; Patterson, V Beth; Kano, Miria; Smith, Paul D; Sussman, Andrew L; Williams, Robert; Sterling, Pamela; O'Beirne, Maeve; Neale, Anne Victoria

    2015-12-01

    Using peer learning strategies, seven experienced PBRNs working in collaborative teams articulated procedures for PBRN Research Good Practices (PRGPs). The PRGPs is a PBRN-specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. This paper describes the team science processes which culminated in the PRGPs. Skilled facilitators used team science strategies and methods from the Technology of Participation (ToP®), and the Consensus Workshop Method to support teams to codify diverse research expertise in practice-based research. The participatory nature of "sense-making" moved through identifiable stages. Lessons learned include (1) team input into the scope of the final outcome proved vital to project relevance; (2) PBRNs with diverse domains of research expertise contributed broad knowledge on each topic; and (3) ToP® structured facilitation techniques were critical for establishing trust and clarifying the "sense-making" process. © 2015 Wiley Periodicals, Inc.

  16. Organizational and training factors that promote team science: A qualitative analysis and application of theory to the National Institutes of Health's BIRCWH career development program.

    Science.gov (United States)

    Guise, Jeanne-Marie; Winter, Susan; Fiore, Stephen M; Regensteiner, Judith G; Nagel, Joan

    2017-04-01

    Research organizations face challenges in creating infrastructures that cultivates and sustains interdisciplinary team science. The objective of this paper is to identify structural elements of organizations and training that promote team science. We qualitatively analyzed the National Institutes of Health's Building Interdisciplinary Research Careers in Women's Health, K12 using organizational psychology and team science theories to identify organizational design factors for successful team science and training. Seven key design elements support team science: (1) semiformal meta-organizational structure, (2) shared context and goals, (3) formal evaluation processes, (4) meetings to promote communication, (5) role clarity in mentoring, (6) building interpersonal competencies among faculty and trainees, and (7) designing promotion and tenure and other organizational processes to support interdisciplinary team science. This application of theory to a long-standing and successful program provides important foundational elements for programs and institutions to consider in promoting team science.

  17. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  18. Scientific retreats with 'speed dating': networking to stimulate new interdisciplinary translational research collaborations and team science.

    Science.gov (United States)

    Ranwala, Damayanthi; Alberg, Anthony J; Brady, Kathleen T; Obeid, Jihad S; Davis, Randal; Halushka, Perry V

    2017-02-01

    To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical and Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with 'speed dating' networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat begins with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 min scientific 'speed dating' period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. Copyright © 2016 American Federation for Medical Research.

  19. Outreach with Team eS Through Science Festivals and Interactive Art Installations

    Science.gov (United States)

    Yoho, Amanda; Starkman, Glenn

    2014-03-01

    The Team eS project aims to acclimate (pre)teens to scientific concepts subtly, with fun, accessible, and engaging art and activities hosted at public community festivals, online at a dedicated website, and using social media. Our festivals will be centered around an interactive art installation inspired by a scientific concept. We hope to provide a positive experience inspired by science that these teens can reflect upon when encountering similar concepts in the future, especially in settings like a classroom where fear and anxiety can cloud interest or performance. We want to empower teens to not feel lost or out of the loop - we want to remove the fear of facing science.

  20. Sports Biostatistician: a critical member of all sports science and medicine teams for injury prevention.

    Science.gov (United States)

    Casals, Martí; Finch, Caroline F

    2017-12-01

    Sports science and medicine need specialists to solve the challenges that arise with injury data. In the sports injury field, it is important to be able to optimise injury data to quantify injury occurrences, understand their aetiology and most importantly, prevent them. One of these specialty professions is that of Sports Biostatistician. The aim of this paper is to describe the emergent field of Sports Biostatistics and its relevance to injury prevention. A number of important issues regarding this profession and the science of sports injury prevention are highlighted. There is a clear need for more multidisciplinary teams that incorporate biostatistics, epidemiology and public health in the sports injury area. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Materials science with SR using x-ray imaging

    International Nuclear Information System (INIS)

    Kuriyama, Masao

    1990-01-01

    Some examples of applications of synchrotron radiation to materials science demonstrate the importance of microstructure information within structural as well as functional materials in order to control their properties and quality as designed for industrial purposes. To collect such information, x-ray imaging in quasi real time is required in either the microradiographic mode or the diffraction (in transmission) mode. New measurement technologies based on imaging are applied to polycrystalline materials, single crystal materials and multilayered device materials to illustrate what kind of synchrotron radiation facility is most desirable for materials science and engineering. (author)

  2. The role of NIGMS P50 sponsored team science in our understanding of multiple organ failure.

    Science.gov (United States)

    Moore, Frederick A; Moore, Ernest E; Billiar, Timothy R; Vodovotz, Yoram; Banerjee, Anirban; Moldawer, Lyle L

    2017-09-01

    The history of the National Institute of General Medical Sciences (NIGMS) Research Centers in Peri-operative Sciences (RCIPS) is the history of clinical, translational, and basic science research into the etiology and treatment of posttraumatic multiple organ failure (MOF). Born out of the activism of trauma and burn surgeons after the Viet Nam War, the P50 trauma research centers have been a nidus of research advances in the field and the training of future academic physician-scientists in the fields of trauma, burns, sepsis, and critical illness. For over 40 years, research conducted under the aegis of this funding program has led to numerous contributions at both the bedside and at the bench. In fact, it has been this requirement for team science with a clinician-scientist working closely with basic scientists from multiple disciplines that has led the RCIPS to its unrivaled success in the field. This review will briefly highlight some of the major accomplishments of the RCIPS program since its inception, how they have both led and evolved as the field moved steadily forward, and how they are responsible for much of our current understanding of the etiology and pathology of MOF. This review is not intended to be all encompassing nor a historical reference. Rather, it serves as recognition to the foresight and support of many past and present individuals at the NIGMS and at academic institutions who have understood the cost of critical illness and MOF to the individual and to society.

  3. Theory and Theorizing in Nursing Science: Commentary from the Nursing Research Special Issue Editorial Team.

    Science.gov (United States)

    Jairath, Nalini N; Peden-McAlpine, Cynthia J; Sullivan, Mary C; Vessey, Judith A; Henly, Susan J

    Articles from three landmark symposia on theory for nursing-published in Nursing Research in 1968-1969-served as a key underpinning for the development of nursing as an academic discipline. The current special issue on Theory and Theorizing in Nursing Science celebrates the 50th anniversary of publication of these seminal works in nursing theory. The purpose of this commentary is to consider the future of nursing theory development in light of articles published in the anniversary issue. The Editorial Team for the special issue identified core questions about continued nursing theory development, as related to the nursing metaparadigm, practice theory, big data, and doctoral education. Using a dialogue format, the editors discussed these core questions. The classic nursing metaparadigm (health, person, environment, nursing) was viewed as a continuing unifying element for the discipline but is in need of revision in today's scientific and practice climates. Practice theory and precision healthcare jointly arise from an emphasis on individualization. Big data and the methods of e-science are challenging the assumptions on which nursing theory development was originally based. Doctoral education for nursing scholarship requires changes to ensure that tomorrow's scholars are prepared to steward the discipline by advancing (not reifying) past approaches to nursing theory. Ongoing reexamination of theory is needed to clarify the domain of nursing, guide nursing science and practice, and direct and communicate the unique and essential contributions of nursing science to the broader health research effort and of nursing to healthcare.

  4. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    Science.gov (United States)

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  5. Science in a Team Environment (AKA, How to Play Nicely with Others)

    Science.gov (United States)

    Platts, S. H.; Primeaux, L.; Swarmer, T.; Yarbough, P. O

    2017-01-01

    So you want to do NASA funded research in a spaceflight analog? There are several things about participating in an HRP managed analog that may be different from the way you normally do work in your laboratory. The purpose of this presentation is to highlight those differences and explain some of the unique aspects of doing this research. Participation in an HRP funded analog study complement, even if initially selected for funding, is not automatic and involves numerous actions from ISSMP, HRP, and the PI. There are steps that have to be taken and processes to follow before approval and ISSMP-FA integration. After the proposal and acceptance process the Investigator works closely with the Flight Analog team to ensure full integration of their study requirements into a compliment. A complement is comprised of a group of studies requiring a common platform and/or scenario that are able to be integrated on a non-interference basis for implementation. Full integration into the analog platform can be broken down into three phases: integration, preparation, and implementation. These phases occur in order with some overlap in the integration and preparation phase. The ISSMP-FA team integrates, plans and implements analog study complements. Properly defining your research requirements and getting them documented is one of the most critical components to ensure successful integration and implementation of your study, but is also one of the most likely to be neglected by PIs. Requirements that are not documented, or that are documented poorly are unlikely to get done, no matter how much you push. The process to document requirements is two-fold, consisting of an initial individual requirements integration and then a compliment requirements integration. Understanding the requirements in detail and early ensures that the science is not compromised by outside influences. This step is vital to the integration, preparation, and implementation phases. The individual requirements

  6. TEAM Science Advances STEM through Experiential Learning about Karst Geology at the Ozark Underground Laboratory.

    Science.gov (United States)

    Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.

    2017-12-01

    Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)

  7. The Open Science Grid – Support for Multi-Disciplinary Team Science – the Adolescent Years

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    As it enters adolescence the Open Science Grid (OSG) is bringing a maturing fabric of Distributed High Throughput Computing (DHTC) services that supports an expanding HEP community to an increasingly diverse spectrum of domain scientists. Working closely with researchers on campuses throughout the US and in collaboration with national cyberinfrastructure initiatives, we transform their computing environment through new concepts, advanced tools and deep experience. We discuss examples of these including: the pilot-job overlay concepts and technologies now in use throughout OSG and delivering 1.4 Million CPU hours/day; the role of campus infrastructures- built out from concepts of sharing across multiple local faculty clusters (made good use of already by many of the HEP Tier-2 sites in the US); the work towards the use of clouds and access to high throughput parallel (multi-core and GPU) compute resources; and the progress we are making towards meeting the data management and access needs of non-HEP communiti...

  8. Designing a CTSA-Based Social Network Intervention to Foster Cross-Disciplinary Team Science.

    Science.gov (United States)

    Vacca, Raffaele; McCarty, Christopher; Conlon, Michael; Nelson, David R

    2015-08-01

    This paper explores the application of network intervention strategies to the problem of assembling cross-disciplinary scientific teams in academic institutions. In a project supported by the University of Florida (UF) Clinical and Translational Science Institute, we used VIVO, a semantic-web research networking system, to extract the social network of scientific collaborations on publications and awarded grants across all UF colleges and departments. Drawing on the notion of network interventions, we designed an alteration program to add specific edges to the collaboration network, that is, to create specific collaborations between previously unconnected investigators. The missing collaborative links were identified by a number of network criteria to enhance desirable structural properties of individual positions or the network as a whole. We subsequently implemented an online survey (N = 103) that introduced the potential collaborators to each other through their VIVO profiles, and investigated their attitudes toward starting a project together. We discuss the design of the intervention program, the network criteria adopted, and preliminary survey results. The results provide insight into the feasibility of intervention programs on scientific collaboration networks, as well as suggestions on the implementation of such programs to assemble cross-disciplinary scientific teams in CTSA institutions. © 2015 Wiley Periodicals, Inc.

  9. The Potential Improvement of Team-Working Skills in Biomedical and Natural Science Students Using a Problem-Based Learning Approach

    Science.gov (United States)

    Nowrouzian, Forough L.; Farewell, Anne

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled.…

  10. The Open Science Grid – Support for Multi-Disciplinary Team Science – the Adolescent Years

    International Nuclear Information System (INIS)

    Bauerdick, Lothar; Ernst, Michael; Fraser, Dan; Livny, Miron; Pordes, Ruth; Sehgal, Chander; Würthwein, Frank

    2012-01-01

    As it enters adolescence the Open Science Grid (OSG) is bringing a maturing fabric of Distributed High Throughput Computing (DHTC) services that supports an expanding HEP community to an increasingly diverse spectrum of domain scientists. Working closely with researchers on campuses throughout the US and in collaboration with national cyberinfrastructure initiatives, we transform their computing environment through new concepts, advanced tools and deep experience. We discuss examples of these including: the pilot-job overlay concepts and technologies now in use throughout OSG and delivering 1.4 Million CPU hours/day; the role of campus infrastructures- built out from concepts of sharing across multiple local faculty clusters (made good use of already by many of the HEP Tier-2 sites in the US); the work towards the use of clouds and access to high throughput parallel (multi-core and GPU) compute resources; and the progress we are making towards meeting the data management and access needs of non-HEP communities with general tools derived from the experience of the parochial tools in HEP (integration of Globus Online, prototyping with IRODS, investigations into Wide Area Lustre). We will also review our activities and experiences as HTC Service Provider to the recently awarded NSF XD XSEDE project, the evolution of the US NSF TeraGrid project, and how we are extending the reach of HTC through this activity to the increasingly broad national cyberinfrastructure. We believe that a coordinated view of the HPC and HTC resources in the US will further expand their impact on scientific discovery.

  11. The Open Science Grid - Support for Multi-Disciplinary Team Science - the Adolescent Years

    Science.gov (United States)

    Bauerdick, Lothar; Ernst, Michael; Fraser, Dan; Livny, Miron; Pordes, Ruth; Sehgal, Chander; Würthwein, Frank; Open Science Grid

    2012-12-01

    As it enters adolescence the Open Science Grid (OSG) is bringing a maturing fabric of Distributed High Throughput Computing (DHTC) services that supports an expanding HEP community to an increasingly diverse spectrum of domain scientists. Working closely with researchers on campuses throughout the US and in collaboration with national cyberinfrastructure initiatives, we transform their computing environment through new concepts, advanced tools and deep experience. We discuss examples of these including: the pilot-job overlay concepts and technologies now in use throughout OSG and delivering 1.4 Million CPU hours/day; the role of campus infrastructures- built out from concepts of sharing across multiple local faculty clusters (made good use of already by many of the HEP Tier-2 sites in the US); the work towards the use of clouds and access to high throughput parallel (multi-core and GPU) compute resources; and the progress we are making towards meeting the data management and access needs of non-HEP communities with general tools derived from the experience of the parochial tools in HEP (integration of Globus Online, prototyping with IRODS, investigations into Wide Area Lustre). We will also review our activities and experiences as HTC Service Provider to the recently awarded NSF XD XSEDE project, the evolution of the US NSF TeraGrid project, and how we are extending the reach of HTC through this activity to the increasingly broad national cyberinfrastructure. We believe that a coordinated view of the HPC and HTC resources in the US will further expand their impact on scientific discovery.

  12. Making Sense of Conflict in Distributed Teams: A Design Science Approach

    Science.gov (United States)

    Zhang, Guangxuan

    2016-01-01

    Conflict is a substantial, pervasive activity in team collaboration. It may arise because of differences in goals, differences in ways of working, or interpersonal dissonance. The specific focus for this research is the conflict in distributed teams. As opposed to traditional teams, participants of distributed teams are geographically dispersed…

  13. Comparison of Two Team Learning and Team Entrepreneurship Models at a Finnish University of Applied Sciences. Setting the Scene for Future Development

    Directory of Open Access Journals (Sweden)

    Pasi Juvonen

    2017-02-01

    Full Text Available This team learning and team entre-preneurship model of education has been deployed at the Bachelor’s level in the degree programmes of IT and Business Administration (BA. In BA studies the students who take part in team learning have specialized in marketing since 2009 at the Saimaa University of Applied Sciences (SUAS. The model called ICT entrepreneurship study path (ICT-ESP has been developed for IT education. The ICT-ESP has been built on the theory of experien-tal learning and theories of knowledge creation and knowledge management. The students study and complete their degree as team entrepreneurs. The model has been further developed in the Business Administration Degree Programme with students who specialize in marketing. The Degree Programme in IT at the Bachelor’s level was terminated in 2011 by Finnish Min-istry of Education and Culture. Cur-rently, there are severe discussions on bringing it back – not as an IT but as an ICT Degree Programme. This article makes a cross-section of what has already been explored with the team learning and team entrepreneurship model and what the next steps will be. It makes a comparison of two originally sep-arately developed models and dis-cusses their best practices. The arti-cle also argues whether the upcom-ing ICT education should be orga-nized in a conventional way – as curriculum of courses, or as expan-sion of the current team learning and team entrepreneurship model. The data consists of field notes, meeting memos, and dozens of un-official discussions with colleagues and company representatives. Liter-ature studies made during the ongo-ing research, development, and in-novation (RDI projects offered an extra view of how the business con-text is changing and what should be done to make benefit out of the change. The results suggest that the up-coming ICT Degree Programme at SUAS should be integrated into the existing deployment of team learning and team entrepreneurship learning

  14. LAT Onboard Science: Gamma-Ray Burst Identification

    International Nuclear Information System (INIS)

    Kuehn, Frederick; Hughes, Richard; Smith, Patrick; Winer, Brian; Bonnell, Jerry; Norris, Jay; Ritz, Steven; Russell, James

    2007-01-01

    The main goal of the Large Area Telescope (LAT) onboard science program is to provide quick identification and localization of Gamma Ray Bursts (GRB) onboard the LAT for follow-up observations by other observatories. The GRB identification and localization algorithm will provide celestial coordinates with an error region that will be distributed via the Gamma ray burst Coordinate Network (GCN). We present results that show our sensitivity to bursts as characterized using Monte Carlo simulations of the GLAST observatory. We describe and characterize the method of onboard track determination and the GRB identification and localization algorithm. Onboard track determination is considerably different than in the on-ground case, resulting in a substantially altered point spread function. The algorithm contains tunable parameters which may be adjusted after launch when real bursts characteristics at very high energies have been identified

  15. Proceedings of the fifth Atmospheric Radiation Measurement (ARM) science team meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This document contains the summaries of papers presented at the 1995 Atmospheric Radiation Measurement (ARM) Science Team meeting held in San Diego, California. To put these papers in context, it is useful to consider the history and status of the ARM program at the time of the meeting. The history of the project has several themes. First, the Program has from its very beginning attempted to respond to most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. Indeed, the Program reflects an unprecedented collaboration among various elements of the federal research community, among the US Department of Energy`s national laboratories, and between an agency`s research program and the related international programs, such as Global Energy and Water Experiment and TOGA. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically. This introduction covers the first three points--the papers themselves speak to the last point. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  16. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    Science.gov (United States)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  17. Deploying Team Science Principles to Optimize Interdisciplinary Lung Cancer Care Delivery: Avoiding the Long and Winding Road to Optimal Care.

    Science.gov (United States)

    Osarogiagbon, Raymond U; Rodriguez, Hector P; Hicks, Danielle; Signore, Raymond S; Roark, Kristi; Kedia, Satish K; Ward, Kenneth D; Lathan, Christopher; Santarella, Scott; Gould, Michael K; Krasna, Mark J

    2016-11-01

    The complexity of lung cancer care mandates interaction between clinicians with different skill sets and practice cultures in the routine delivery of care. Using team science principles and a case-based approach, we exemplify the need for the development of real care teams for patients with lung cancer to foster coordination among the multiple specialists and staff engaged in routine care delivery. Achieving coordinated lung cancer care is a high-priority public health challenge because of the volume of patients, lethality of disease, and well-described disparities in quality and outcomes of care. Coordinating mechanisms need to be cultivated among different types of specialist physicians and care teams, with differing technical expertise and practice cultures, who have traditionally functioned more as coactively working groups than as real teams. Coordinating mechanisms, including shared mental models, high-quality communication, mutual trust, and mutual performance monitoring, highlight the challenge of achieving well-coordinated care and illustrate how team science principles can be used to improve quality and outcomes of lung cancer care. To develop the evidence base to support coordinated lung cancer care, research comparing the effectiveness of a diverse range of multidisciplinary care team approaches and interorganizational coordinating mechanisms should be promoted.

  18. The P50 Research Center in Perioperative Sciences: How the investment by the National Institute of General Medical Sciences in team science has reduced postburn mortality.

    Science.gov (United States)

    Finnerty, Celeste C; Capek, Karel D; Voigt, Charles; Hundeshagen, Gabriel; Cambiaso-Daniel, Janos; Porter, Craig; Sousse, Linda E; El Ayadi, Amina; Zapata-Sirvent, Ramon; Guillory, Ashley N; Suman, Oscar E; Herndon, David N

    2017-09-01

    Since the inception of the P50 Research Center in Injury and Peri-operative Sciences (RCIPS) funding mechanism, the National Institute of General Medical Sciences has supported a team approach to science. Many advances in critical care, particularly burns, have been driven by RCIPS teams. In fact, burns that were fatal in the early 1970s, prior to the inception of the P50 RCIPS program, are now routinely survived as a result of the P50-funded research. The advances in clinical care that led to the reduction in postburn death were made by optimizing resuscitation, incorporating early excision and grafting, bolstering acute care including support for inhalation injury, modulating the hypermetabolic response, augmenting the immune response, incorporating aerobic exercise, and developing antiscarring strategies. The work of the Burn RCIPS programs advanced our understanding of the pathophysiologic response to burn injury. As a result, the effects of a large burn on all organ systems have been studied, leading to the discovery of persistent dysfunction, elucidation of the underlying molecular mechanisms, and identification of potential therapeutic targets. Survival and subsequent patient satisfaction with quality of life have increased. In this review article, we describe the contributions of the Galveston P50 RCIPS that have changed postburn care and have considerably reduced postburn mortality.

  19. The Implementation of an Interdisciplinary Co-planning Team Model Among Mathematics and Science Teachers

    Science.gov (United States)

    Brown, Michelle Cetner

    In recent years, Science, Technology, Engineering, and Mathematics (STEM) education has become a significant focus of numerous theoretical and commentary articles as researchers have advocated for active and conceptually integrated learning in classrooms. Drawing connections between previously isolated subjects, especially mathematics and science, has been shown to increase student engagement, performance, and critical thinking skills. However, obstacles exist to the widespread implementation of integrated curricula in schools, such as teacher knowledge and school structure and culture. The Interdisciplinary Co-planning Team (ICT) model, in which teachers of different subjects come together regularly to discuss connections between content and to plan larger interdisciplinary activities and smaller examples and discussion points, offers a method for teachers to create sustainable interdisciplinary experiences for students within the bounds of the current school structure. The ICT model is designed to be an iterative, flexible model, providing teachers with both a regular time to come together as "experts" and "teach" each other important concepts from their separate disciplines, and then to bring their shared knowledge and language back to their own classrooms to implement with their students in ways that fit their individual classes. In this multiple-case study, which aims to describe the nature of the co-planning process, the nature of plans, and changes in teacher beliefs as a result of co-planning, three pairs of secondary mathematics and science teachers participated in a 10-week intervention with the ICT model. Each pair constituted one case. Data included observations, interviews, and artifact collection. All interviews, whole-group sessions, and co-planning sessions were transcribed and coded using both theory-based and data-based codes. Finally, a cross-case comparison was used to present similarities and differences across cases. Findings suggest that the

  20. The potential improvement of team-working skills in Biomedical and Natural Science students using a problem-based learning approach

    Directory of Open Access Journals (Sweden)

    Forough L. Nowrouzian

    2013-08-01

    Full Text Available Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled. This development requires that students gain experience of team-work before they start their professional career. Students working in teams this may increase productivity, confidence, innovative capacity and improvement of interpersonal skills. Problem-based learning (PBL is an instructional approach focusing on real analytical problems as a means of training an analytical scientist. PBL may have a positive impact on team-work skills that are important for undergraduates and postgraduates to enable effective collaborative work. This survey of the current literature explores the development of the team-work skills in Biomedical Science students using PBL.

  1. Thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED). The TIMED mission and science program report of the science definition team. Volume 1: Executive summary

    Science.gov (United States)

    1991-01-01

    A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.

  2. Proceedings of the sixth Atmospheric Radiation Measurement (ARM) Science Team meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This document contains the summaries of papers presented at the 1996 Atmospheric Radiation Measurement (ARM) Science Team meeting held at San Antonio, Texas. The history and status of the ARM program at the time of the meeting helps to put these papers in context. The basic themes have not changed. First, from its beginning, the Program has attempted to respond to the most critical scientific issues facing the US Global Change Research Program. Second, the Program has been strongly coupled to other agency and international programs. More specifically, the Program reflects an unprecedented collaboration among agencies of the federal research community, among the US Department of Energy`s (DOE) national laboratories, and between DOE`s research program and related international programs, such as Global Energy and Water Experiment (GEWEX) and the Tropical Ocean Global Atmosphere (TOGA) program. Next, ARM has always attempted to make the most judicious use of its resources by collaborating and leveraging existing assets and has managed to maintain an aggressive schedule despite budgets that have been much smaller than planned. Finally, the Program has attracted some of the very best scientific talent in the climate research community and has, as a result, been productive scientifically.

  3. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  4. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  5. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    Science.gov (United States)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  6. Interprofessional Health Team Communication About Hospital Discharge: An Implementation Science Evaluation Study.

    Science.gov (United States)

    Bahr, Sarah J; Siclovan, Danielle M; Opper, Kristi; Beiler, Joseph; Bobay, Kathleen L; Weiss, Marianne E

    The Consolidated Framework for Implementation Research guided formative evaluation of the implementation of a redesigned interprofessional team rounding process. The purpose of the redesigned process was to improve health team communication about hospital discharge. Themes emerging from interviews of patients, nurses, and providers revealed the inherent value and positive characteristics of the new process, but also workflow, team hierarchy, and process challenges to successful implementation. The evaluation identified actionable recommendations for modifying the implementation process.

  7. Evaluation of quality control in the college of medical radiological sciences, conventional x-ray department

    International Nuclear Information System (INIS)

    Babiker, Esameldeen Mohamed Tom

    2002-02-01

    Quality control in diagnostic radiography aims to ensure continuous production of diagnostic images with optimum quality, using minimum necessary dose to the patients and staff. Therefore an ineffective quality control program can lead to poor quality images that can impair diagnosis, increase operating costs and contribute to unnecessary radiation exposure to both patients and staff. Apply basic quality control program is responsibility of each x-ray facility, and to achieve maximum benefits, all levels of management and technical staff must support and participate in operating the programme. The main parameters to be monitored during the quality control programme include: dose consistency, k Vp accuracy, k Vp variations, exposure timer accuracy, besides checking image receptors, recording system and processing conditions. The aims of this project is to evaluate the quality control in the x-ray department of the college of medical radiologic sciences. The evaluation was an experimental study done by checking the operational status of the radiographic equipment, beside data collection using questionnaires regarding quality control. In the applied experiments the results show that there is a noted variation in the accuracy of k Vp, exposure timer and also in the dose consistency. The obtained results from image receptors and processing system showed noted variations too. The results of the questionnaire and direct interviewing showed other causes of quality degradation such as absence of test tools, the status of the equipment, absence of regular quality control testing, in addition to absence of an organized team to deal with quality. (Author)

  8. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system

  9. Actinide science with soft x-ray synchrotron radiation

    International Nuclear Information System (INIS)

    Shuh, D.

    2002-01-01

    Several workshops, some dating back more than fifteen years, recognised both the potential scientific impact and opportunities that would be made available by the capability to investigate actinide materials in the vacuum ultraviolet (VUV)/soft X-ray region of the synchrotron radiation (SR) spectrum. This spectral region revolutionized the approach to surface materials chemistry and physics nearly two decades ego. The actinide science community was unable to capitalize on these SR methodologies for the study of actinide materials until recently because of radiological safety concerns. ,The Advanced Light Source (ALS) at LBNL is a third-generation light source providing state-of-the-art performance in the VUV/soft X-ray region. Along with corresponding improvements in detector and vacuum technology, the ALS has rendered experiments with small amounts of actinide materials possible. In particular, it has been the emergence and development of micro-spectroscopic techniques that have enabled investigations of actinide materials at the ALS. The primary methods for the experimental investigation of actinide materials in the VUV/soft X-ray region are the complementary photoelectron spectroscopies, near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectroscopy (XES) techniques. Resonant photo-emission is capable of resolving the 5f electron contributions to actinide bonding and can be used to characterise the electronic structure of actinide materials. This technique is clearly a most important methodology afforded by the tunable SR source. Core level and valence band photoelectron spectroscopies are valuable for the characterisation of the electronic properties of actinide materials, as well as for general analytical purposes. High-resolution core-level photo-emission and resonant photo-emission measurements from the a (monoclinic) and δ (FCC) allotropic phases of plutonium metal have been collected on beam line 7.0 at the ALS and the spectra show

  10. From EXOSAT to the High Energy Astrophysics Science Archive (HEASARC): X-ray Astronomy Comes of Age

    Science.gov (United States)

    White, Nicholas E.

    2012-01-01

    In May 1983 the European Space Agency launched EXOSAT, its first X-ray astronomy observatory. Even though it lasted only 3 short years, this mission brought not only new capabilities that resulted in unexpected discoveries, but also a pioneering approach to operations and archiving that changed X-ray astronomy from observations led by small instrument teams, to an observatory approach open to the entire community through a guest observer program. The community use of the observatory was supported by a small dedicated team of scientists, the precursor to the data center activities created to support e.g. Chandra and XMM-Newton. The new science capabilities of EX OS AT included a 90 hr highly eccentric high earth orbit that allow unprecedented continuous coverage of sources as well as direct communication with the satellite that allowed real time decisions to respond to unexpected events through targets of opportunity. The advantages of this orbit demonstrated by EXOSAT resulted in Chandra and XMM-Newton selecting similar orbits. The three instruments on board the EXOSAT observatory were complementary, designed to give complete coverage over a wide energy band pass of 0.05-50 keY. An onboard processor could be programmed to give multiple data modes that could be optimized in response to science discoveries: These new capabilities resulted in many new discoveries including the first comprehensive study of AGN variability, new orbital periods in X-ray binaries and cataclysmic variables, new black holes, quasi-periodic oscillations from neutron stars and black holes and broad band X-ray spectroscopy. The EXOSAT team generated a well-organized database accessible worldwide over the nascent internet, allowing remote selection of data products, making samples and undertaking surveys from the data. The HEASARC was established by NASA at Goddard Space Flight Center in 1990 as the repository of NASA X-ray and Gamma-ray data. The proven EXOSAT database system became the core

  11. Synchrotron x-ray sources and new opportunities in the soil and environmental sciences

    International Nuclear Information System (INIS)

    Schulze, D.; Anderson, S.; Mattigod, S.

    1990-07-01

    This report contains the following papers: characteristics of the advanced photon source and comparison with existing synchrotron facilities; x-ray absorption spectroscopy: EXAFS and XANES -- A versatile tool to study the atomic and electronic structure of materials; applications of x-ray spectroscopy and anomalous scattering experiments in the soil and environmental sciences; X-ray fluorescence microprobe and microtomography

  12. Report on the Global Data Assembly Center (GDAC) to the 12th GHRSST Science Team Meeting

    Science.gov (United States)

    Armstrong, Edward M.; Bingham, Andrew; Vazquez, Jorge; Thompson, Charles; Huang, Thomas; Finch, Chris

    2011-01-01

    In 2010/2011 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational Group for High Resolution Sea Surface Temperature (GHRSST) datastreams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Here we report on our data management activities and infrastructure improvements since the last science team meeting in June 2010.These include the implementation of all GHRSST datastreams in the new PO.DAAC Data Management and Archive System (DMAS) for more reliable and timely data access. GHRSST dataset metadata are now stored in a new database that has made the maintenance and quality improvement of metadata fields more straightforward. A content management system for a revised suite of PO.DAAC web pages allows dynamic access to a subset of these metadata fields for enhanced dataset description as well as discovery through a faceted search mechanism from the perspective of the user. From the discovery and metadata standpoint the GDAC has also implemented the NASA version of the OpenSearch protocol for searching for GHRSST granules and developed a web service to generate ISO 19115-2 compliant metadata records. Furthermore, the GDAC has continued to implement a new suite of tools and services for GHRSST datastreams including a Level 2 subsetter known as Dataminer, a revised POET Level 3/4 subsetter and visualization tool, a Google Earth interface to selected daily global Level 2 and Level 4 data, and experimented with a THREDDS catalog of GHRSST data collections. Finally we will summarize the expanding user and data statistics, and other metrics that we have collected over the last year demonstrating the broad user community and applications that the GHRSST project continues to serve via the GDAC distribution mechanisms. This report also serves by extension to summarize the

  13. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    International Nuclear Information System (INIS)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J.; Mesot, J.; Shiroka, T.; Veen, J.F. van der; Mesot, J.

    2009-09-01

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over the past few years and by

  14. NASA Physical Sciences - Presentation to Annual Two Phase Heat Transfer International Topical Team Meeting

    Science.gov (United States)

    Chiaramonte, Francis; Motil, Brian; McQuillen, John

    2014-01-01

    The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.

  15. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  16. Regenerative medicine: A ray of light for medical science

    Directory of Open Access Journals (Sweden)

    Swapna Supekar

    2016-01-01

    Full Text Available The perimeters of medical science have expanded to include regenerative medicine as a translational science, which has the potential to revolutionize the treatment of incapacitating diseases and chronic disorders.

  17. Network Science Center Research Team’s Visit to Kampala, Uganda

    Science.gov (United States)

    2013-04-15

    TERMS Network Analysis, Economic Networks, Entrepreneurial Ecosystems , Economic Development, Data Collection 16. SECURITY CLASSIFICATION OF: 17...the Project Synopsis, Developing Network Models of Entrepreneurial Ecosystems in Developing Economies, on the Network Science Center web site.) A...Thomas visited Kampala, Uganda in support of an ongoing Network Science Center project to develop models of entrepreneurial networks. Our Center has

  18. Scientific Retreats with ‘Speed Dating’: Networking to Stimulate New Interdisciplinary Translational Research Collaborations and Team Science

    Science.gov (United States)

    Alberg, Anthony J.; Brady, Kathleen T.; Obeid, Jihad S.; Davis, Randal; Halushka, Perry V.

    2016-01-01

    To stimulate the formation of new interdisciplinary translational research teams and innovative pilot projects, the South Carolina Clinical & Translational Research (SCTR) Institute (South Carolina Clinical and Translational Science Award, CTSA) initiated biannual scientific retreats with “speed dating” networking sessions. Retreat themes were prioritized based on the following criteria; cross-cutting topic, unmet medical need, generation of novel technologies and methodologies. Each retreat commences with an external keynote speaker followed by a series of brief research presentations by local researchers focused on the retreat theme, articulating potential areas for new collaborations. After each session of presentations, there is a 30 minute scientific “speed dating” period during which the presenters meet with interested attendees to exchange ideas and discuss collaborations. Retreat attendees are eligible to compete for pilot project funds on the topic of the retreat theme. The 10 retreats held have had a total of 1004 participants, resulted in 61 pilot projects with new interdisciplinary teams, and 14 funded projects. The retreat format has been a successful mechanism to stimulate novel interdisciplinary research teams and innovative translational research projects. Future retreats will continue to target topics of cross-cutting importance to biomedical and public health research. PMID:27807146

  19. There’s More to Science than Research: A Team-Based Role Game to Develop School Students’ Understanding of Science Careers in Pharmaceutical Quality Control

    Directory of Open Access Journals (Sweden)

    Rachael Collins

    2015-08-01

    Full Text Available School students lack information about STEM based careers, a subject that is not sufficiently embedded in the national science curriculum. As a result, students feel they receive insufficient advice to support their choice of subjects at GCSE level and beyond. Students struggle to envisage potential career pathways leading on from studying science at school, and especially for younger students it is difficult to convey typical science-based career pictures in a way that is easily accessible to them. To address this need, we developed an interactive team-based activity which uses role play to help students envisage typical work processes within a science-based career—microbial quality control in a pharmaceutical industrial environment. This activity addresses children’s curiosity about science-based careers, by enabling them to experience typical every day work processes in an industrial environment in a hands-on fashion. Additionally, the activity helps to convey abstract concepts, such as the abundance of microbes in the natural environment, microbial contamination and the importance of hygiene, which link to the science curriculum.

  20. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    International Nuclear Information System (INIS)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron

  1. Proposal to DOE Basic Energy Sciences: Ultrafast X-ray science facility at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schoenlein, Robert W.; Falcone, Roger W.; Abela, R.; Alivisatos, A.P.; Belkacem, A.; Berrah, N.; Bozek, J.; Bressler, C.; Cavalleri, A.; Chergui, M.; Glover, T.E.; Heimann, P.A.; Hepburn, J.; Larsson, J.; Lee, R.W.; McCusker, J.; Padmore, H.A.; Pattison, P.; Pratt, S.T.; Shank, C.V.; Wark, J.; Chang, Z.; Robin, D.W.; Schlueter, R.D.; Zholents, A.A.; Zolotorev, M.S.

    2001-12-12

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  2. Proposal to DOE Basic Energy Sciences Ultrafast X-ray science facility at the Advanced Light Source

    CERN Document Server

    Schönlein, R W; Alivisatos, A P; Belkacem, A; Berrah, N; Bozek, J; Bressler, C; Cavalleri, A; Chang, Z; Chergui, M; Falcone, R W; Glover, T E; Heimann, P A; Hepburn, J; Larsson, J; Lee, R W; McCusker, J; Padmore, H A; Pattison, P; Pratt, S T; Robin, D W; Schlüter, Ross D; Shank, C V; Wark, J; Zholents, A A; Zolotorev, M S

    2001-01-01

    We propose to develop a true user facility for ultrafast x-ray science at the Advanced Light Source. This facility will be unique in the world, and will fill a critical need for the growing ultrafast x-ray research community. The development of this facility builds upon the expertise from long-standing research efforts in ultrafast x-ray spectroscopy and the development of femtosecond x-ray sources and techniques at both the Lawrence Berkeley National Laboratory and at U.C. Berkeley. In particular, the technical feasibility of a femtosecond x-ray beamline at the ALS has already been demonstrated, and existing ultrafast laser technology will enable such a beamline to operate near the practical limit for femtosecond x-ray flux and brightness from a 3rd generation synchrotron.

  3. Teacher Design in Teams as a Professional Development Arrangement for Developing Technology Integration Knowledge and Skills of Science Teachers in Tanzania

    Science.gov (United States)

    Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke

    2016-01-01

    This study investigated the impact of teacher design teams as a professional development arrangement for developing technology integration knowledge and skills among in-service science teachers. The study was conducted at a secondary school in Tanzania, where 12 in-service science teachers participated in a workshop about technology integration in…

  4. Integrated Concentration in Science (iCons): Undergraduate Education Through Interdisciplinary, Team-Based, Real-World Problem Solving

    Science.gov (United States)

    Tuominen, Mark

    2013-03-01

    Attitude, Skills, Knowledge (ASK) - In this order, these are fundamental characteristics of scientific innovators. Through first-hand practice in using science to unpack and solve complex real-world problems, students can become self-motivated scientific leaders. This presentation describes the pedagogy of a recently developed interdisciplinary undergraduate science education program at the University of Massachusetts Amherst focused on addressing global challenges with scientific solutions. Integrated Concentration in Science (iCons) is an overarching concentration program that supplements the curricula provided within each student's chosen major. iCons is a platform for students to perform student-led research in interdisciplinary collaborative teams. With a schedule of one course per year over four years, the cohort of students move through case studies, analysis of real-world problems, development of potential solutions, integrative communication, laboratory practice, and capstone research projects. In this presentation, a track emphasizing renewable energy science is used to illustrate the iCons pedagogical methods. This includes discussion of a third-year laboratory course in renewable energy that is educationally scaffolded: beginning with a boot camp in laboratory techniques and culminating with student-designed research projects. Among other objectives, this course emphasizes the practice of using reflection and redesign, as a means of generating better solutions and embedding learning for the long term. This work is supported in part by NSF grant DUE-1140805.

  5. Citizen Science: Sally Shuttleworth and her Team Interviewed by Carolyn Burdett

    Directory of Open Access Journals (Sweden)

    Geoffrey Belknap

    2015-12-01

    Full Text Available In this podcast interview Carolyn Burdett joins Sally Shuttleworth, Gowan Dawson, Geoffrey Belknap, and Alison Moulds to discuss their project ‘Constructing Scientific Communities: Citizen Science in the 19th and 21st Centuries’. From Charles Darwin, nineteenth-century scientific periodicals, scientific communities, and amateur scientists to their twenty-first century virtual counterparts in digital platforms such as Zooniverse, the project illuminates the inclusive nature of science in action, and the strategies of public engagement to respond to the challenge of big data through intergenerational crowdsourcing projects extending from postgraduate research to child scientists.

  6. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    Science.gov (United States)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  7. New Worlds / New Horizons Science with an X-ray Astrophysics Probe

    Science.gov (United States)

    Smith, Randall K.; Bookbinder, Jay A.; Hornschemeier, Ann E.; Bandler, Simon; Brandt, W. N.; Hughes, John P.; McCammon, Dan; Matsumoto, Hironori; Mushotzky, Richard; Osten, Rachel A.; hide

    2014-01-01

    In 2013 NASA commenced a design study for an X-ray Astrophysics Probe to address the X-ray science goals and program prioritizations of the Decadal Survey New World New Horizons (NWNH) with a cost cap of approximately $1B. Both the NWNH report and 2011 NASA X-ray mission concept study found that high-resolution X-ray spectroscopy performed with an X-ray microcalorimeter would enable the most highly rated NWNH X-ray science. Here we highlight some potential science topics, namely: 1) a direct, strong-field test of General Relativity via the study of accretion onto black holes through relativistic broadened Fe lines and their reverberation in response to changing hard X-ray continuum, 2) understanding the evolution of galaxies and clusters by mapping temperatures, abundances and dynamics in hot gas, 3) revealing the physics of accretion onto stellar-mass black holes from companion stars and the equation of state of neutron stars through timing studies and time-resolved spectroscopy of X-ray binaries and 4) feedback from AGN and star formation shown in galaxy-scale winds and jets. In addition to these high-priority goals, an X-ray astrophysics probe would be a general-purpose observatory that will result in invaluable data for other NWNH topics such as stellar astrophysics, protostars and their impact on protoplanetary systems, X-ray spectroscopy of transient phenomena such as high-z gamma-ray bursts and tidal capture of stars by massive black holes, and searches for dark matter decay.

  8. Naturalistic decision making in forensic science: toward a better understanding of decision making by forensic team leaders.

    Science.gov (United States)

    Helsloot, Ira; Groenendaal, Jelle

    2011-07-01

    This study uses the naturalistic decision-making (NDM) perspective to examine how Dutch forensic team leaders (i.e., the officers in charge of criminal forensic research from the crime scene until the use of laboratory assistance) make decisions in real-life settings and identifies the contextual factors that might influence those decisions. First, a focus group interview was conducted to identify four NDM mechanisms in day-to-day forensic decision making. Second, a serious game was conducted to examine the influence of three of these contextual mechanisms. The results uncovered that forensic team leaders (i) were attracted to obtain further information when more information was initially made available, (ii) were likely to devote more attention to emotionally charged cases, and (iii) used not only forensic evidence in the decision making but also tactical, unverified information of the police inquiry. Interestingly, the measured contextual influences did not deviate significantly from a control group of laypeople. © 2011 American Academy of Forensic Sciences.

  9. Network Science Center Research Team’s Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    by China State Construction Engineering 3 | P a g e Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a...between microfinance and large corporate investments in the business market. The creative environment in Ethiopia is energetic, with a large population...coffee names (such as Starbucks ). In our discussion it seemed that TechnoServe emphasized the business aspect of their organization model over

  10. Synchrotron X-ray fluorescence analysis in environmental and earth sciences

    Directory of Open Access Journals (Sweden)

    Adams F.

    2010-12-01

    Full Text Available Compared to other microscopic analytical tools X-ray microscopy techniques have the advantage that the large penetration depth of X-rays in matter allows one to investigate the interior of an object without destructive sample preparation. In combination with X-ray fluorescence tomography, analytical information from inside of a specimen can be obtained. Different X-ray analytical techniques can be used to produce contrast, X-ray absorption, fluorescence, and diffraction, to yield chemical, elemental, and structural information about the sample. Scanning microscopy on the basis of various lens systems in synchrotron radiation sources provides a routine spatial resolution of now about 100 nanometer but in the foreseeable future a 10–20 nanometer spatial resolution can be expected. X-ray absorption spectrometry can also provide chemical (speciation information on the sample. All this makes X-ray microscopy attractive to many fields of science. In this paper the techniques are briefly reviewed and a number of applications in the earth, planetary and cosmos sciences are illustrated with state-of-the art examples, while applications in the environmental sciences and biology are also briefly discussed.

  11. Science with the Advanced Gamma Ray Imaging System (AGIS)

    Science.gov (United States)

    Coppi, Paolo

    2009-05-01

    We present the scientific drivers for the Advanced Gamma Ray Imaging System (AGIS), a concept for the next-generation ground- based gamma-ray experiment, comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes. Design requirements for AGIS include achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present here an overview of the scientific goals of AGIS, including the prospects for understanding VHE phenomena in the vicinity of accreting black holes, particle acceleration in a variety of astrophysical environments, indirect detection of dark matter, study of cosmological background radiation fields, and particle physics beyond the standard model.

  12. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  13. Time-resolved materials science opportunities using synchrotron x-ray sources

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1995-06-01

    The high brightness, high intensity, and pulsed time-structure of synchrotron sources provide new opportunities for time-resolved x-ray diffraction investigations. With third generation synchrotron sources coming on line, high brilliance and high brightness are now available in x-ray beams with the highest flux. In addition to the high average flux, the instantaneous flux available in synchrotron beams is greatly enhanced by the pulsed time structure, which consists of short bursts of x-rays that are separated by ∼tens to hundreds of nanoseconds. Time-resolved one- and two-dimensional position sensitive detection techniques that take advantage of synchrotron radiation for materials science x-ray diffraction investigations are presented, and time resolved materials science applications are discussed in terms of recent diffraction and spectroscopy results and materials research opportunities

  14. Ultrafast phenomena at the nanoscale: science opportunities at the SwissFEL X-ray laser

    Energy Technology Data Exchange (ETDEWEB)

    Abela, R.; Braun, H.; Ming, P.; Pedrozzi, M.; Quitmann, Ch.; Reiche, S.; Daalen, M. van; Veen, J.F. van der; Mesot, J. [Paul Scherrer Intitute (PSI), Villigen (Switzerland); Mesot, J.; Shiroka, T.; Veen, J.F. van der [Swiss Federal Institute of Technology (ETHZ), Zuerich (Switzerland); Mesot, J. [Swiss Federal Institute of Technology (EPFL), Lausanne (Switzerland)

    2009-09-15

    In today's fast-moving society, standing still is effectively synonymous with being left behind. If it is to maintain, beyond the coming 10-15 years, its high international standing as a complex of large research infrastructures, the Paul Scherrer Institute (PSI) must now lay the foundation for a competitive future. Experts worldwide foresee a strongly growing demand within science and technology for photon sources delivering ultra-short, coherent X-ray pulses. Such a source, called a free electron laser (FEL), is nothing less than a gigantic flash camera, allowing us to take a deeper look into matter than with any other machine before. By literally seeing molecules in action, scientists will be able not only to capture chemical and biological processes of direct relevance and benefit to society but also to improve them. It is a dream coming true. For the first time, it will not only be possible to take pictures of molecular structures, we will be able to make movies of their motion. The new X-ray laser project at PSI, known as SwissFEL, will be an important addition to the existing complex of PSI facilities that serve interdisciplinary and international research teams from academia and industry. The SwissFEL is an essential element of Switzerland's strategic focus and will prolong our nation's leading position in scientific research for years to come. It will attract top scientists from Switzerland and abroad, and will strengthen the position of PSI as a world-class research institute. This new high-tech facility will also provide an important incentive for Swiss industry, through which existing highly-qualified jobs will be maintained and new ones created. In this report we present a wide range of important, open questions within science and engineering disciplines that SwissFEL will contribute towards solving. These questions, which form the 'scientific case' for SwissFEL, have been identified through a range of workshops organized over

  15. Research collaboration and team science a state-of-the-art review and agenda

    CERN Document Server

    Bozeman, Barry

    2014-01-01

    Today in most scientific and technical fields more than 90% of research studies and publications are collaborative, often resulting in high-impact research and development of commercial applications, as reflected in patents. Nowadays in many areas of science, collaboration is not a preference but, literally, a work prerequisite. The purpose of this book is to review and critique the burgeoning scholarship on research collaboration. The authors seek to identify gaps in theory and research and identify the ways in which existing research can be used to improve public policy for collaboration and to improve project-level management of collaborations using Scientific and Technical Human Capital (STHC) theory as a framework. Broadly speaking, STHC is the sum of scientific and technical and social knowledge, skills and resources embodied in a particular individual. It is both human capital endowments, such as formal education and training and social relations and network ties that bind scientists and the users of ...

  16. Patterns in professional growth of science teachers involved in a team-based PD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    and learning and subsequent discussion of this material. Repeated interviews were analyzed using an adapted version of the interconnected model of teachers’ professional growth. The results show various ways of experimenting with new approaches to be important for three of the teachers while a novice teacher...... the participants refer to. Conclusion is that there are professional growth patterns, especially a pattern involving experimenting, which have a forward-pointing potential to be used to inform school based PD. The results implicate that the same PD project can frame experimenting into practice in various tempi...... and with differentiated facilitation aligned to the individual teacher’s current needs and that external support of science resource teachers can be an integrated part of school based PD....

  17. Trends in environmental science using microscopic X-ray fluorescence

    International Nuclear Information System (INIS)

    Fittschen, Ursula Elisabeth Adriane; Falkenberg, Gerald

    2011-01-01

    Microscopic X-ray fluorescence (micro-XRF) is a versatile tool in environmental analysis. We review work done in this field from 2008 to 2010 and highlight new aspects. Overall, there is a strong trend to combine fluorescence data with other data like diffraction or absorption spectroscopy. Also, the use of laboratory based instrumentation has become wide spread as more commercial instruments are available. At laboratories and synchrotron sites the trend towards higher spatial resolution is still persistent hitting sub micrometer values in case of synchrotron set ups.

  18. Trends in environmental science using microscopic X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Falkenberg, Gerald [Deutsches Elektronen-Synchrotron, Notkestr. 85, 22603 Hamburg (Germany)

    2011-08-15

    Microscopic X-ray fluorescence (micro-XRF) is a versatile tool in environmental analysis. We review work done in this field from 2008 to 2010 and highlight new aspects. Overall, there is a strong trend to combine fluorescence data with other data like diffraction or absorption spectroscopy. Also, the use of laboratory based instrumentation has become wide spread as more commercial instruments are available. At laboratories and synchrotron sites the trend towards higher spatial resolution is still persistent hitting sub micrometer values in case of synchrotron set ups.

  19. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  20. Development of Environmental Knowledge, Team Working Skills and Desirable Behaviors on Environmental Conservation of Matthayomsuksa 6 Students Using Good Science Thinking Moves Method with Metacognition Techniques

    Science.gov (United States)

    Ladawan, Charinrat; Singseewo, Adisak; Suksringarm, Paitool

    2015-01-01

    The research aimed to investigate environmental knowledge, team working skills, and desirable behaviors of students learning through the good science thinking moves method with metacognition techniques. The sample group included Matthayomsuksa 6 students from Nadoon Prachasan School, Nadoon District, Maha Sarakham Province. The research tools were…

  1. Team Teaching an Interdisciplinary First-Year Seminar on Magic, Religion, and the Origins of Science: A "Pieces-to-Picture" Approach

    Science.gov (United States)

    Nungsari, Melati; Dedrick, Maia; Patel, Shaily

    2017-01-01

    Interdisciplinary teaching has been advocated as a means to foster cooperation between traditionally separate fields and broaden students' perspectives in the classroom. We explored the pedagogical difficulties of interdisciplinary team teaching through a first-year seminar in magic, religion, and the origins of science. Although many accounts in…

  2. Recent developments in plant science involving use of gamma-ray imaging technology

    International Nuclear Information System (INIS)

    Kawachi, Naoki

    2014-01-01

    Gamma-ray imaging technologies based on the use of radiotracers enable us to clearly determine the physiological function of an organ not only during pre-clinical and clinical studies but also in the field of plant science. Serial time-course images can be used to indicate the changing spatial distribution of a radiotracer within a living plant system and to describe the dynamics and kinetics of a substance in an intact plant. Gamma-rays almost completely penetrate a plant body, and the image data obtained using them can potentially be used to quantitatively analyze physiological function parameters. This paper briefly reviews recent progress in the field of plant science to explore the use of positron emission tomography, a gamma camera, and the positron-emitting tracer imaging system, which is one of the most advanced gamma-ray imaging systems available for studying plant physiology, for solving problems in the field of environment and agriculture. (author)

  3. Submicron x-ray diffraction and its applications to problems in materials and environmental science

    Science.gov (United States)

    Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.

    2002-03-01

    The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  4. Submicron X-Ray Diffraction and its Applications to Problems in Materials and Environmental Science

    Energy Technology Data Exchange (ETDEWEB)

    Patel, J. R.

    2002-08-16

    The availability of high brilliance 3rd generation synchrotron sources together with progress in achromatic focusing optics allow to add submicron spatial resolution to the conventional century-old X-ray diffraction technique. The new capabilities include the possibility to map in-situ, grain orientations, crystalline phase distribution and full strain/stress tensors at a very local level, by combining white and monochromatic X-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron X-ray diffraction techniques at the ALS, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  5. Submicron X-ray diffraction and its applications to problems in materials and environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; Celestre, R.S.; MacDowell, A.A.; Padmore, H.A.; Spolenak, R.; Valek, B.C.; Meier Chang, N.; Manceau, A.; Patel, J.R.

    2002-03-26

    The availability of high brilliance 3rd generation synchrotron sources together with progress in achromatic focusing optics allow to add submicron spatial resolution to the conventional century-old X-ray diffraction technique. The new capabilities include the possibility to map in-situ, grain orientations, crystalline phase distribution and full strain/stress tensors at a very local level, by combining white and monochromatic X-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron X-ray diffraction techniques at the ALS, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  6. Applications of Novel X-Ray Imaging Modalities in Food Science

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Schou

    science for understanding and designing food products. In both of these aspects, X-ray imaging methods such as radiography and computed tomography provide a non-destructive solution. However, since the conventional attenuation-based modality suers from poor contrast in soft matter materials, modalities...... with improved contrast are needed. Two possible candidates in this regard are the novel X-ray phase-contrast and X-ray dark-eld imaging modalities. The contrast in phase-contrast imaging is based on dierences in electron density which is especially useful for soft matter materials whereas dark-eld imaging....... Furthermore, the process of translating the image in image analysis was addressed. For improved handling of multimodal image data, a multivariate segmentation scheme of multimodal X-ray tomography data was implemented. Finally, quantitative data analysis was applied for treating the images. Quantitative...

  7. Are real teams healthy teams?

    NARCIS (Netherlands)

    Buljac, M.; van Woerkom, M.; van Wijngaarden, P.

    2013-01-01

    This study examines the impact of real-team--as opposed to a team in name only--characteristics (i.e., team boundaries, stability of membership, and task interdependence) on team processes (i.e., team learning and emotional support) and team effectiveness in the long-term care sector. We employed a

  8. Botanical sciences team

    Science.gov (United States)

    1982-01-01

    Improvements in vegetation monitoring and mapping which would result from increased spectral and spatial resolution in multispectral systems are discussed. Current knowledge of the spectral properties of vegetation is reviewed and areas where existing knowledge is incomplete are identified. In addition, the effects of the atmosphere on the remote sensing of vegetation are examined.

  9. Information science team

    Science.gov (United States)

    Billingsley, F.

    1982-01-01

    Concerns are expressed about the data handling aspects of system design and about enabling technology for data handling and data analysis. The status, contributing factors, critical issues, and recommendations for investigations are listed for data handling, rectification and registration, and information extraction. Potential supports to individual P.I., research tasks, systematic data system design, and to system operation. The need for an airborne spectrometer class instrument for fundamental research in high spectral and spatial resolution is indicated. Geographic information system formatting and labelling techniques, very large scale integration, and methods for providing multitype data sets must also be developed.

  10. A 36-pixel superconducting tunnel junction soft X-ray detector for environmental science applications

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Cramer, Stephen P.; Green, Peter G.

    2006-01-01

    We are operating a superconducting tunnel junction detector for high-resolution soft X-ray spectroscopy at the Advanced Biological and Environmental X-ray Facility at the Advanced Light Source synchrotron. We have recently upgraded the instrument from 9 to 36 pixels for increased sensitivity. We have also acquired a new digital signal readout to increase the total count rate capabilities to ∼10 6 counts/s while maintaining a high peak-to-background ratio. We report on the performance of the spectrometer, and discuss speciation measurements of chromium in welding aerosols as a typical application of the instrument in environmental science

  11. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. (and others)

    1999-01-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  12. Using zone plates for X-ray microimaging and microspectroscopy in environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Kemner, K.M.; Yun, W.; Cai, Z. [and others

    1999-11-01

    Understanding the transport and ultimate fate of environmental contaminants is of fundamental importance for developing effective remediation strategies and determining the risk associated with the contaminants. Focusing X-rays by using recently developed zone plates allows determination of the spatial distribution and chemical speciation of contaminants at the micron and submicron length scales. This ability is essential for studying the microscopic physical, geological, chemical, and biological interfaces that play a crucial role in determining contaminant fate and mobility. The following is an overview of some current problems in environmental science that are being addressed with synchrotron-based X-ray microimaging and microspectroscopy. (au) 7 refs.

  13. A 36-pixel superconducting tunnel junction soft X-ray detector for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Avenue, L-270, Livermore, CA 94550 (United States) and Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States)]. E-mail: friedrich1@llnl.gov; Drury, Owen B. [Lawrence Livermore National Laboratory, Advanced Detector Group, 7000 East Avenue, L-270, Livermore, CA 94550 (United States); Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cramer, Stephen P. [Lawrence Berkeley National Laboratory, Advanced Biological and Environmental X-ray Facility, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Green, Peter G. [University of California Davis, Department of Civil and Environmental Engineering, 1 Shields Avenue, Davis, CA 95616 (United States)

    2006-04-15

    We are operating a superconducting tunnel junction detector for high-resolution soft X-ray spectroscopy at the Advanced Biological and Environmental X-ray Facility at the Advanced Light Source synchrotron. We have recently upgraded the instrument from 9 to 36 pixels for increased sensitivity. We have also acquired a new digital signal readout to increase the total count rate capabilities to {approx}10{sup 6} counts/s while maintaining a high peak-to-background ratio. We report on the performance of the spectrometer, and discuss speciation measurements of chromium in welding aerosols as a typical application of the instrument in environmental science.

  14. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kärtner, F.X., E-mail: franz.kaertner@cfel.de [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA (United States); Ahr, F. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Calendron, A.-L. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Çankaya, H. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Carbajo, S. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Chang, G.; Cirmi, G. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Dörner, K. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Dorda, U. [DESY, Hamburg (Germany); Fallahi, A. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Hartin, A. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Hemmer, M. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); and others

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  15. Developing team cognition: A role for simulation

    Science.gov (United States)

    Fernandez, Rosemarie; Shah, Sachita; Rosenman, Elizabeth D.; Kozlowski, Steve W. J.; Parker, Sarah Henrickson; Grand, James A.

    2016-01-01

    SUMMARY STATEMENT Simulation has had a major impact in the advancement of healthcare team training and assessment. To date, the majority of simulation-based training and assessment focuses on the teamwork behaviors that impact team performance, often ignoring critical cognitive, motivational, and affective team processes. Evidence from team science research demonstrates a strong relationship between team cognition and team performance and suggests a role for simulation in the development of this team-level construct. In this article we synthesize research from the broader team science literature to provide foundational knowledge regarding team cognition and highlight best practices for using simulation to target team cognition. PMID:28704287

  16. BraX-Ray: an X-ray of the Brazilian computer science graduate programs.

    Science.gov (United States)

    Digiampietri, Luciano A; Mena-Chalco, Jesús P; Vaz de Melo, Pedro O S; Malheiro, Ana P R; Meira, Dânia N O; Franco, Laryssa F; Oliveira, Leonardo B

    2014-01-01

    Research productivity assessment is increasingly relevant for allocation of research funds. On one hand, this assessment is challenging because it involves both qualitative and quantitative analysis of several characteristics, most of them subjective in nature. On the other hand, current tools and academic social networks make bibliometric data web-available to everyone for free. Those tools, especially when combined with other data, are able to create a rich environment from which information on research productivity can be extracted. In this context, our work aims at characterizing the Brazilian Computer Science graduate programs and the relationship among themselves. We (i) present views of the programs from different perspectives, (ii) rank the programs according to each perspective and a combination of them, (iii) show correlation between assessment metrics, (iv) discuss how programs relate to another, and (v) infer aspects that boost programs' research productivity. The results indicate that programs with a higher insertion in the coauthorship network topology also possess a higher research productivity between 2004 and 2009.

  17. How Diversity Matters in the US Science and Engineering Workforce: A Critical Review Considering Integration in Teams, Fields, and Organizational Contexts

    Directory of Open Access Journals (Sweden)

    Laurel Smith-Doerr

    2017-04-01

    Full Text Available How the race and gender diversity of team members is related to innovative science and technology outcomes is debated in the scholarly literature. Some studies find diversity is linked to creativity and productivity, other studies find that diversity has no effect or even negative effects on team outcomes. Based on a critical review of the literature, this paper explains the seemingly contradictory findings through careful attention to the organizational contexts of team diversity. We distinguish between representational diversity and full integration of minority scientists. Representational diversity, where organizations have workforces that match the pool of degree recipients in relevant fields, is a necessary but not sufficient condition for diversity to yield benefits. Full integration of minority scientists (i.e., including women and people of color in an interaction context that allows for more level information exchange, unimpeded by the asymmetrical power relationships that are common across many scientific organizations, is when the full potential for diversity to have innovative outcomes is realized. Under conditions of equitable and integrated work environments, diversity leads to creativity, innovation, productivity, and positive reputational (status effects. Thus, effective policies for diversity in science and engineering must also address integration in the organizational contexts in which diverse teams are embedded.

  18. Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    OpenAIRE

    Lewis, Cara; Darnell, Doyanne; Kerns, Suzanne; Monroe-DeVita, Maria; Landes, Sara J.; Lyon, Aaron R.; Stanick, Cameo; Dorsey, Shannon; Locke, Jill; Marriott, Brigid; Puspitasari, Ajeng; Dorsey, Caitlin; Hendricks, Karin; Pierson, Andria; Fizur, Phil

    2016-01-01

    Table of contents Introduction to the 3rd Biennial Conference of the Society for Implementation Research Collaboration: advancing efficient methodologies through team science and community partnerships Cara Lewis, Doyanne Darnell, Suzanne Kerns, Maria Monroe-DeVita, Sara J. Landes, Aaron R. Lyon, Cameo Stanick, Shannon Dorsey, Jill Locke, Brigid Marriott, Ajeng Puspitasari, Caitlin Dorsey, Karin Hendricks, Andria Pierson, Phil Fizur, Katherine A. Comtois A1: A behavioral economic perspective ...

  19. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Reischig, P.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes....... A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape...

  20. Interactive Team Cognition

    Science.gov (United States)

    Cooke, Nancy J.; Gorman, Jamie C.; Myers, Christopher W.; Duran, Jasmine L.

    2013-01-01

    Cognition in work teams has been predominantly understood and explained in terms of shared cognition with a focus on the similarity of static knowledge structures across individual team members. Inspired by the current zeitgeist in cognitive science, as well as by empirical data and pragmatic concerns, we offer an alternative theory of team…

  1. Climate Action Team

    Science.gov (United States)

    Science Partnerships Contact Us Climate Action Team & Climate Action Initiative The Climate Action programs and the state's Climate Adaptation Strategy. The CAT members are state agency secretaries and the . See CAT reports Climate Action Team Pages CAT Home Members Working Groups Reports Back to Top

  2. Application of X-ray topography to USSR and Russian space materials science.

    Science.gov (United States)

    Shul'pina, I L; Prokhorov, I A; Serebryakov, Yu A; Bezbakh, I Zh

    2016-05-01

    The authors' experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo-Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals.

  3. The discovery of X-ray diffraction by crystals and its great impact on science

    International Nuclear Information System (INIS)

    Mai Zhenhong

    2012-01-01

    In April 1912, Friedrich, Knipping and Laue discovered X-ray diffraction in a CuSO 4 crystal. Later, Laue derived the famous Laue equations which explain the diffraction phenomenon. For this, Laue was awarded a Nobel Prize for Physics in 1914. In 1912 W. H. Bragg and W. L. Bragg received news of Laue 's discovery, and from X-ray diffraction experiments in a ZnS crystal they derived the famous Bragg equation. For this work, father and son were together awarded the Nobel Prize for Physics in 1915, To commemorate the 100th anniversary of the discovery of X-ray diffraction, this article reviews the important contributions of the early pioneers and their historic impact on science and technology worldwide. (author)

  4. Raios-x: fascinação, medo e ciência X-rays: fascination, fear and science

    Directory of Open Access Journals (Sweden)

    Rodrigo da Silva Lima

    2009-01-01

    Full Text Available This work presents the discovery and the use of x-rays at the end of the XIXth and the beginning of the XXth century. X-rays greatly impacted science and everyday life. Their existence broke the idea that knowledge had reached a limiting step. In general, people regarded x-rays as a marvel of science, but reactions against their use were also found. Several applications were proposed, especially in medicine. However, little or no attention was paid to security measures, leading to health damages and even death. The development of the radiological protection took into account the accidents with the x-rays.

  5. Asteroid team

    International Nuclear Information System (INIS)

    Matson, D.L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue

  6. Asteroid team

    Science.gov (United States)

    Matson, D. L.

    1988-01-01

    The purpose of this task is to support asteroid research and the operation of an Asteroid Team within the Earth and Space Sciences Division at the Jet Propulsion Laboratory (JPL). The Asteroid Team carries out original research on asteroids in order to discover, better characterize and define asteroid properties. This information is needed for the planning and design of NASA asteroid flyby and rendezvous missions. The asteroid Team also provides scientific and technical advice to NASA and JPL on asteroid related programs. Work on asteroid classification continued and the discovery of two Earth-approaching M asteroids was published. In the asteroid photometry program researchers obtained N or Q photometry for more than 50 asteroids, including the two M-earth-crossers. Compositional analysis of infrared spectra (0.8 to 2.6 micrometer) of asteroids is continuing. Over the next year the work on asteroid classification and composition will continue with the analysis of the 60 reduced infrared spectra which we now have at hand. The radiometry program will continue with the reduction of the N and Q bandpass data for the 57 asteroids in order to obtain albedos and diameters. This year the emphasis will shift to IRAS follow-up observations; which includes objects not observed by IRAS and objects with poor or peculiar IRAS data. As in previous year, we plan to give top priority to any opportunities for observing near-Earth asteroids and the support (through radiometric lightcurve observations from the IRTF) of any stellar occultations by asteroids for which occultation observation expeditions are fielded. Support of preparing of IRAS data for publication and of D. Matson for his participation in the NASA Planetary Astronomy Management and Operations Working Group will continue.

  7. Management Teams

    CERN Document Server

    Belbin, R Meredith Meredith

    2012-01-01

    Meredith Belbin's work on teams has become part of everyday language in organizations all over the world. All kinds of teams and team behaviours are covered. At the end of the book is a self-perception inventory so that readers can match their own personalities to particular team roles. Management Teams is required reading for managers concerned with achieving results by getting the best from their key personnel.

  8. Possibilities and Challenges of Scanning Hard X-ray Spectro-microscopy Techniques in Material Sciences

    Directory of Open Access Journals (Sweden)

    Andrea Somogyi

    2015-06-01

    Full Text Available Scanning hard X-ray spectro-microscopic imaging opens unprecedented possibilities in the study of inhomogeneous samples at different length-scales. It gives insight into the spatial variation of the major and minor components, impurities and dopants of the sample, and their chemical and electronic states at micro- and nano-meter scales. Measuring, modelling and understanding novel properties of laterally confined structures are now attainable. The large penetration depth of hard X-rays (several keV to several 10 keV beam energy makes the study of layered and buried structures possible also in in situ and in operando conditions. The combination of different X-ray analytical techniques complementary to scanning spectro-microscopy, such as X-ray diffraction, X-ray excited optical luminescence, secondary ion mass spectrometry (SIMS and nano-SIMS, provides access to optical characteristics and strain and stress distributions. Complex sample environments (temperature, pressure, controlled atmosphere/vacuum, chemical environment are also possible and were demonstrated, and allow as well the combination with other analysis techniques (Raman spectroscopy, infrared imaging, mechanical tensile devices, etc. on precisely the very same area of the sample. The use of the coherence properties of X-rays from synchrotron sources is triggering emerging experimental imaging approaches with nanometer lateral resolution. New fast analytical possibilities pave the way towards statistically significant studies at multi- length-scales and three dimensional tomographic investigations. This paper gives an overview of these techniques and their recent achievements in the field of material sciences.

  9. On teams, teamwork, and team performance: discoveries and developments.

    Science.gov (United States)

    Salas, Eduardo; Cooke, Nancy J; Rosen, Michael A

    2008-06-01

    We highlight some of the key discoveries and developments in the area of team performance over the past 50 years, especially as reflected in the pages of Human Factors. Teams increasingly have become a way of life in many organizations, and research has kept up with the pace. We have characterized progress in the field in terms of eight discoveries and five challenges. Discoveries pertain to the importance of shared cognition, the measurement of shared cognition, advances in team training, the use of synthetic task environments for research, factors influencing team effectiveness, models of team effectiveness, a multidisciplinary perspective, and training and technological interventions designed to improve team effectiveness. Challenges that are faced in the coming decades include an increased emphasis on team cognition; reconfigurable, adaptive teams; multicultural influences; and the need for naturalistic study and better measurement. Work in human factors has contributed significantly to the science and practice of teams, teamwork, and team performance. Future work must keep pace with the increasing use of teams in organizations. The science of teams contributes to team effectiveness in the same way that the science of individual performance contributes to individual effectiveness.

  10. Team Learning Ditinjau dari Team Diversity dan Team Efficacy

    OpenAIRE

    Pohan, Vivi Gusrini Rahmadani; Ancok, Djamaludin

    2010-01-01

    This research attempted to observe team learning from the level of team diversity and team efficacy of work teams. This research used an individual level of analysis rather than the group level. The team members measured the level of team diversity, team efficacy and team learning of the teams through three scales, namely team learning scale, team diversity scale, and team efficacy scale. Respondents in this research were the active team members in a company, PT. Alkindo Mitraraya. The total ...

  11. Team Learning Ditinjau dari Team Diversity dan Team Efficacy

    OpenAIRE

    Vivi Gusrini Rahmadani Pohan; Djamaludin Ancok

    2015-01-01

    This research attempted to observe team learning from the level of team diversity and team efficacy of work teams. This research used an individual level of analysis rather than the group level. The team members measured the level of team diversity, team efficacy and team learning of the teams through three scales, namely team learning scale, team diversity scale, and team efficacy scale. Respondents in this research were the active team members in a company, PT. Alkindo Mitraraya. The total ...

  12. 100th anniversary of the discovery of cosmic rays (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 24 October 2012)

    International Nuclear Information System (INIS)

    2013-01-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled ''100th anniversary of the discovery of cosmic rays'', was held on 24 October 2012 in the conference hall of the Lebedev Physical Institute, RAS. The agenda of the session announced on the RAS Physical Sciences Division website www.gpad.ac.ru included the following reports: (1) Panasyuk M I (Skobeltsyn Institute of Nuclear Physics of the Lomonosov State University, Moscow) T he contribution of Russian scientists to the centennial history of the development of the physics of cosmic rays ; (2) Ryazhskaya O G (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) O n experiments in underground physics ; (3) Krymskii G F, Berezhko E G (Shafer Institute of Cosmophysical Research and Aeronomy, Siberian Branch of the Russian Academy of Sciences, Yakutsk) T he origin of cosmic rays ; (4) Stozhkov Yu I (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) C osmic rays in the heliosphere ; (5) Troitsky S V (Institute for Nuclear Research, Russian Academy of Sciences, Moscow) ''Cosmic particles of energies >10 19 eV: a short review of results''. Papers based on reports 2 and 5 are presented below. . On experiments in Underground Physics, O G Ryazhskaya Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 296–304 . Cosmic particles with energies above 10 19 eV: a brief summary of results, S V Troitsky Physics-Uspekhi, 2013, Volume 56, Number 3, Pages 304–310 (conferences and symposia)

  13. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    Science.gov (United States)

    Ice, G. E.; Larson, B. C.; Liu, W.; Barabash, R. I.; Specht, E. D.; Pang, J. W. L.; Budai, J. D.; Tischler, J. Z.; Khounsary, A.; Liu, C.; Macrander, A. T.; Assoufid, L.

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization.

  14. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    International Nuclear Information System (INIS)

    Ice, G.E.; Larson, Ben C.; Liu, Wenjun; Barabash, Rozaliya; Specht, Eliot D; Pang, Judy; Budai, John D.; Tischler, Jonathan Zachary; Khounsary, Ali; Liu, Chian; Macrander, Albert T.; Assoufid, Lahsen

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization

  15. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater

    Science.gov (United States)

    Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Sarrazin, P.; Morrison, S. M.; Downs, R. T.; Achilles, C. N.; Yen, A. S.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Farmer, J. D.; Rampe, E. B.; Stolper, E. M.; Spanovich, N.; Achilles, Cherie; Agard, Christophe; Verdasca, José Alexandre Alves; Anderson, Robert; Anderson, Ryan; Archer, Doug; Armiens-Aparicio, Carlos; Arvidson, Ray; Atlaskin, Evgeny; Atreya, Sushil; Aubrey, Andrew; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Bean, Keri; Beegle, Luther; Behar, Alberto; Bell, James; Bender, Steve; Benna, Mehdi; Bentz, Jennifer; Berger, Gilles; Berger, Jeff; Berman, Daniel; Bish, David; Blake, David F.; Avalos, Juan J. Blanco; Blaney, Diana; Blank, Jen; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, Bill; Breves, Elly; Bridges, John; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John "Iain"; Cantor, Bruce; Caplinger, Michael; Rodríguez, Javier Caride; Carmosino, Marco; Blázquez, Isaías Carrasco; Charpentier, Antoine; Chipera, Steve; Choi, David; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy; Cros, Alain; Cucinotta, Frank; d'Uston, Claude; Davis, Scott; Day, Mackenzie "Kenzie"; Juarez, Manuel de la Torre; DeFlores, Lauren; DeLapp, Dorothea; DeMarines, Julia; DesMarais, David; Dietrich, William; Dingler, Robert; Donny, Christophe; Downs, Bob; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher; Edwards, Laurence; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jen; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Farley, Ken; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Feldman, Sabrina; Fisk, Marty; Fitzgibbon, Mike; Flesch, Greg; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fraeman, Abby; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Gaboriaud, Alain; Gailhanou, Marc; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez, Felipe Gómez; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Grant, John; Griffes, Jennifer; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Vicky; Hardgrove, Craig; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alex; Herkenhoff, Ken; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Steve; Israël, Guy; Jackson, Ryan; Jacob, Samantha; Jakosky, Bruce; Jensen, Elsa; Jensen, Jaqueline Kløvgaard; Johnson, Jeffrey; Johnson, Micah; Johnstone, Steve; Jones, Andrea; Jones, John; Joseph, Jonathan; Jun, Insoo; Kah, Linda; Kahanpää, Henrik; Kahre, Melinda; Karpushkina, Natalya; Kasprzak, Wayne; Kauhanen, Janne; Keely, Leslie; Kemppinen, Osku; Keymeulen, Didier; Kim, Myung-Hee; Kinch, Kjartan; King, Penny; Kirkland, Laurel; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kozyrev, Alexander; Krezoski, Jill; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lasue, Jeremie; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lees, David; Lefavor, Matthew; Lemmon, Mark; Malvitte, Alain Lepinette; Leshin, Laurie; Léveillé, Richard; Lewin-Carpintier, Éric; Lewis, Kevin; Li, Shuai; Lipkaman, Leslie; Little, Cynthia; Litvak, Maxim; Lorigny, Eric; Lugmair, Guenter; Lundberg, Angela; Lyness, Eric; Madsen, Morten; Mahaffy, Paul; Maki, Justin; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gérard; Manning, Heidi; Marchand, Geneviève; Jiménez, Mercedes Marín; García, César Martín; Martin, Dave; Martin, Mildred; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitrofanov, Igor; Moersch, Jeff; Mokrousov, Maxim; Jurado, Antonio Molina; Moores, John; Mora-Sotomayor, Luis; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Mueller-Mellin, Reinhold; Muller, Jan-Peter; Caro, Guillermo Muñoz; Nachon, Marion; López, Sara Navarro; Navarro-González, Rafael; Nealson, Kenneth; Nefian, Ara; Nelson, Tony; Newcombe, Megan; Newman, Claire; Newsom, Horton; Nikiforov, Sergey; Niles, Paul; Nixon, Brian; Dobrea, Eldar Noe; Nolan, Thomas; Oehler, Dorothy; Ollila, Ann; Olson, Timothy; Owen, Tobias; Hernández, Miguel Ángel de Pablo; Paillet, Alexis; Pallier, Etienne; Palucis, Marisa; Parker, Timothy; Parot, Yann; Patel, Kiran; Paton, Mark; Paulsen, Gale; Pavlov, Alex; Pavri, Betina; Peinado-González, Verónica; Pepin, Robert; Peret, Laurent; Perez, Rene; Perrett, Glynis; Peterson, Joe; Pilorget, Cedric; Pinet, Patrick; Pla-García, Jorge; Plante, Ianik; Poitrasson, Franck; Polkko, Jouni; Popa, Radu; Posiolova, Liliya; Posner, Arik; Pradler, Irina; Prats, Benito; Prokhorov, Vasily; Purdy, Sharon Wilson; Raaen, Eric; Radziemski, Leon; Rafkin, Scot; Ramos, Miguel; Rampe, Elizabeth; Raulin, François; Ravine, Michael; Reitz, Günther; Rennó, Nilton; Rice, Melissa; Richardson, Mark; Robert, François; Robertson, Kevin; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio J.; Rowland, Scott; Rubin, David; Saccoccio, Muriel; Salamon, Andrew; Sandoval, Jennifer; Sanin, Anton; Fuentes, Sara Alejandra Sans; Saper, Lee; Sarrazin, Philippe; Sautter, Violaine; Savijärvi, Hannu; Schieber, Juergen; Schmidt, Mariek; Schmidt, Walter; Scholes, Daniel "Dan"; Schoppers, Marcel; Schröder, Susanne; Schwenzer, Susanne; Martinez, Eduardo Sebastian; Sengstacken, Aaron; Shterts, Ruslan; Siebach, Kirsten; Siili, Tero; Simmonds, Jeff; Sirven, Jean-Baptiste; Slavney, Susie; Sletten, Ronald; Smith, Michael; Sánchez, Pablo Sobrón; Spanovich, Nicole; Spray, John; Squyres, Steven; Stack, Katie; Stalport, Fabien; Steele, Andrew; Stein, Thomas; Stern, Jennifer; Stewart, Noel; Stipp, Susan Louise Svane; Stoiber, Kevin; Stolper, Ed; Sucharski, Bob; Sullivan, Rob; Summons, Roger; Sumner, Dawn; Sun, Vivian; Supulver, Kimberley; Sutter, Brad; Szopa, Cyril; Tan, Florence; Tate, Christopher; Teinturier, Samuel; ten Kate, Inge; Thomas, Peter; Thompson, Lucy; Tokar, Robert; Toplis, Mike; Redondo, Josefina Torres; Trainer, Melissa; Treiman, Allan; Tretyakov, Vladislav; Urqui-O'Callaghan, Roser; Van Beek, Jason; Van Beek, Tessa; VanBommel, Scott; Vaniman, David; Varenikov, Alexey; Vasavada, Ashwin; Vasconcelos, Paulo; Vicenzi, Edward; Vostrukhin, Andrey; Voytek, Mary; Wadhwa, Meenakshi; Ward, Jennifer; Webster, Chris; Weigle, Eddie; Wellington, Danika; Westall, Frances; Wiens, Roger Craig; Wilhelm, Mary Beth; Williams, Amy; Williams, Joshua; Williams, Rebecca; Williams, Richard B. "Mouser"; Wilson, Mike; Wimmer-Schweingruber, Robert; Wolff, Mike; Wong, Mike; Wray, James; Wu, Megan; Yana, Charles; Yen, Albert; Yingst, Aileen; Zeitlin, Cary; Zimdar, Robert; Mier, María-Paz Zorzano

    2013-09-01

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe3+- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

  16. PREFACE: Buried Interface Sciences with X-rays and Neutrons 2010

    Science.gov (United States)

    Sakurai, Kenji

    2011-09-01

    The 2010 summer workshop on buried interface science with x-rays and neutrons was held at Nagoya University, Japan, on 25-27 July 2010. The workshop was organized by the Japan Applied Physics Society, which established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. The workshop was the latest in a series held since 2001; Tsukuba (December 2001), Niigata (September 2002), Nagoya (July 2003), Tsukuba (July 2004), Saitama (March 2005), Yokohama (July 2006), Kusatsu (August 2006), Tokyo (December 2006), Sendai (July 2007), Sapporo (September 2007), Tokyo (December 2007), Tokyo-Akihabara (July 2009) and Hiratsuka (March 2010). The 2010 summer workshop had 64 participants and 34 presentations. Interfaces mark the boundaries of different material systems at which many interesting phenomena take place, thus making it extremely important to design, fabricate and analyse the structures of interfaces at both the atomic and macroscopic scale. For many applications, devices are prepared in the form of multi-layered thin films, with the result that interfaces are not exposed but buried under multiple layers. Because of such buried conditions, it is generally not easy to analyse such interfaces. In certain cases, for example, when the thin surface layer is not a solid but a liquid such as water, scientists can observe the atomic arrangement of the liquid-solid interface directly by using a scanning probe microscope, of which the tip is soaked in water. However, it has become clear that the use of a stylus tip positioned extremely close to the interface might change the structure of the water molecules. Therefore it is absolutely crucial to develop non-contact, non-destructive probes for buried interfaces. It is known that analysis using x-rays and neutrons is one of the most powerful tools for exploring near-surface structures including interfaces buried under several layers. In particular, x-ray analysis using 3rd

  17. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  18. New light for science: European X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Sobierajski, R.; Lawniczak-Jablonska, K.

    2006-01-01

    The execution of the X-Ray Free Electron Laser (XFEL) project begins January 2007. The unique combination of the radiation wavelength, pulse duration and peak brightness provided by XFEL will enable to study processes which occur in both atomic scales - time and space. It will create new scientific opportunities in physics, chemistry, biology and material sciences. In the paper the principles of the XFEL radiation generation, technical design and main radiation parameters are described. They are followed by short description of the project organization. (author) [pl

  19. Supporting teachers’ collaboration in design teams to develop Technological Pedagogical Content Knowledge: the case of science teachers in Tanzania

    NARCIS (Netherlands)

    Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke; McBride, R.; Searson, M.

    2013-01-01

    This study assessed the effect of support on the teachers’ collaboration in design teams and development of Technological Pedagogical Content Knowledge (TPACK). The study was carried out in two secondary schools in Tanzania: Chang’ombe and Jitegemee secondary schools. From each school 10 teachers

  20. Rockets and ray guns the sci-fi science of the Cold War

    CERN Document Server

    May, Andrew

    2018-01-01

    The Cold War saw scientists in East and West racing to create amazing new technologies, the like of which the world had never seen. Yet not everyone was taken by surprise. From super-powerful atomic weapons to rockets and space travel, readers of science fiction (SF) had seen it all before. Sometimes reality lived up to the SF vision, at other times it didn’t. The hydrogen bomb was as terrifyingly destructive as anything in fiction, while real-world lasers didn't come close to the promise of the classic SF ray gun. Nevertheless, when the scientific Cold War culminated in the Strategic Defence Initiative of the 1980s, it was so science-fictional in its aspirations that the media dubbed it “Star Wars”. This entertaining account, offering a plethora of little known facts and insights from previously classified military projects, shows how the real-world science of the Cold War followed in the footsteps of SF – and how the two together changed our perception of both science and scientists, and paved the w...

  1. Scanning transmission x-ray microscope for materials science spectromicroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, T.; Seal, S.; Shin, H. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The brightness of the Advanced Light Source will be exploited by several new instruments for materials science spectromicroscopy over the next year or so. The first of these to become operational is a scanning transmission x-ray microscope with which near edge x-ray absorption spectra (NEXAFS) can be measured on spatial features of sub-micron size. Here the authors describe the instrument as it is presently implemented, its capabilities, some studies made to date and the developments to come. The Scanning Transmission X-ray Microscope makes use of a zone plate lens to produce a small x-ray spot with which to perform absorption spectroscopy through thin samples. The x-ray beam from ALS undulator beamline 7.0 emerges into the microscope vessel through a silicon nitride vacuum window 160nm thick and 300{mu}m square. The vessel is filled with helium at atmospheric pressure. The zone plate lens is illuminated 1mm downstream from the vacuum window and forms an image in first order of a pinhole which is 3m upstream in the beamline. An order sorting aperture passes the first order converging light and blocks the unfocused zero order. The sample is at the focus a few mm downstream of the zone plate and mounted from a scanning piezo stage which rasters in x and y so that an image is formed, pixel by pixel, by an intensity detector behind the sample. Absorption spectra are measured point-by-point as the photon energy is scanned by rotating the diffraction grating in the monochromator and changing the undulator gap.

  2. Team Sports

    Science.gov (United States)

    ... Games. USA Hockey offers additional information and resources. Softball It's not easy to field full teams of ... an annual tournament sponsored by the National Wheelchair Softball Association , where thirty or so teams show up ...

  3. Teaming up

    DEFF Research Database (Denmark)

    Warhuus, Jan; Günzel-Jensen, Franziska; Robinson, Sarah

    2016-01-01

    types of team formation: random teacher pre-assigned, student selection, and teacher directed diversity. In each of these modules, ethnographic methods (interviews and observations) were employed. Additionally, we had access to students learning logs, formative and summative assessments, and final exams...... functioning entrepreneurial student teams as most teams lack personal chemistry which makes them anchor their work too much in a pre-defined project. In contrast, we find that students that can form their own teams aim for less diverse teams than what is achieved by random assignment. However, the homophily......Questions we care about (Objectives): When students have to work on challenging tasks, as it is often the case in entrepreneurship classrooms that leverage experiential learning, team success becomes central to the students learning. Yet, the formation of teams is often left up to the students...

  4. Team dynamics within quality improvement teams: a scoping review.

    Science.gov (United States)

    Rowland, Paula; Lising, Dean; Sinclair, Lynne; Baker, G Ross

    2018-03-31

    This scoping review examines what is known about the processes of quality improvement (QI) teams, particularly related to how teams impact outcomes. The aim is to provide research-informed guidance for QI leaders and to inform future research questions. Databases searched included: MedLINE, EMBASE, CINAHL, Web of Science and SCOPUS. Eligible publications were written in English, published between 1999 and 2016. Articles were included in the review if they examined processes of the QI team, were related to healthcare QI and were primary research studies. Studies were excluded if they had insufficient detail regarding QI team processes. Descriptive detail extracted included: authors, geographical region and health sector. The Integrated (Health Care) Team Effectiveness Model was used to synthesize findings of studies along domains of team effectiveness: task design, team process, psychosocial traits and organizational context. Over two stages of searching, 4813 citations were reviewed. Of those, 48 full-text articles are included in the synthesis. This review demonstrates that QI teams are not immune from dysfunction. Further, a dysfunctional QI team is not likely to influence practice. However, a functional QI team alone is unlikely to create change. A positive QI team dynamic may be a necessary but insufficient condition for implementing QI strategies. Areas for further research include: interactions between QI teams and clinical microsystems, understanding the role of interprofessional representation on QI teams and exploring interactions between QI team task, composition and process.

  5. Applications of synchrotron-based X-ray fluorescence technique in materials science-possibilities at INDUS-2

    International Nuclear Information System (INIS)

    Tiwari, Manoj K.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy has seen remarkable progress over the last few decades. Numerous applications in basic and applied sciences demonstrate its importance. Various advantages of XRF technique have motivated us to construct a microfocus XRF beamline (BL-16) on Indus-2 national synchrotron radiation facility. The BL-16 beamline offers a wide range of usages - both from research laboratories and industries; and for researchers working in diverse fields. Apart from the fields of pure sciences like physics and chemistry, the beamline provides an attractive platform to exercise material science applications, interdisciplinary applied sciences like medical, forensic and environmental studies etc. In addition to micro-XRF characterization, BL-16 beamline allows a user to perform studies using other advanced synchrotron based experimental methodologies, viz; grazing incidence X-ray fluorescence (GIXRF) analysis, chemical speciation, near-edge absorption spectroscopy and X-ray reflectivity studies of thin layered materials etc. The combined XRR-GIXRF analysis feature of the BL-16 beamline offers a novel capability to perform GIXRF assisted depth resolved X-ray studies to investigate chemical state and electronic structure of the thin nano-structured materials. The design aspects and various salient features of the BL-16 beamline X-ray reflectometer will be presented along with the measured performance. (author)

  6. Teaming up

    DEFF Research Database (Denmark)

    Warhuus, Jan; Günzel-Jensen, Franziska; Robinson, Sarah

    or pre-arranged at random. Therefore we investigate the importance of team formation in the entrepreneurial classroom and ask: (i) What are the underlying factors that influence outcomes of teamwork in student groups? (ii) How does team formation influence student perception of learning?, and (iii) Do...... different team formation strategies produce different teamwork and learning outcomes? Approach: We employed a multiple case study design comprising of 38 student teams to uncover potential links between team formation and student perception of learning. This research draws on data from three different....... A rigorous coding and inductive analysis process was undertaken. Pattern and relationship coding were used to reveal underlying factors, which helped to unveil important similarities and differences between student in different teams’ project progress and perception of learning. Results: When students...

  7. PREFACE: Workshop on 'Buried' Interface Science with X-rays and Neutrons

    Science.gov (United States)

    Sakurai, Kenji

    2007-06-01

    The 2007 workshop on `buried' interface science with X-rays and neutrons was held at the Institute of Materials Research, Tohoku University, in Sendai, Japan, on July 22-24, 2007. The workshop was the latest in a series held since 2001; Tsukuba (December 2001), Niigata (September 2002), Nagoya (July 2003), Tsukuba (July 2004), Saitama (March 2005), Yokohama (July 2006), Kusatsu (August 2006) and Tokyo (December 2006). The 2007 workshop had 64 participants and 34 presentations. There are increasing demands for sophisticated metrology in order to observe multilayered materials with nano-structures (dots, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. Unlike many other surface-sensitive methods, X-ray and neutron analysis is known for its ability to see even `buried' function interfaces as well as the surface. It is highly reliable in practice, because the information, which ranges from the atomic to mesoscopic scale, is quantitative and reproducible. The non-destructive nature of this type of analytical method ensures that the same specimen can be measured by other techniques. However, we now realize that the method should be upgraded further to cope with more realistic problems in nano sciences and technologies. In the case of the reflectivity technique and other related methods, which have been the main topics in our workshops over the past 7 years, there are three important directions as illustrated in the Figure. Current X-ray methods can give atomic-scale information for quite a large area on a scale of mm2-cm2. These methods can deliver good statistics for an average, but sometimes we need to be able to see a specific part in nano-scale rather than an average structure. In addition, there is a need to see unstable changing structures and related phenomena in order to understand more about the mechanism of the functioning of nano materials. Quick measurements are therefore important. Furthermore, in order to apply

  8. Interdisciplinarity and Team Teaching

    Science.gov (United States)

    Goodwin, William M.; LeBold, William K.

    1975-01-01

    Describes eight experimental courses in a series called the Man Series, instituted at Purdue University to improve the social dimensions of engineering education. Each course is team taught by engineering, humanities, and social science faculty members and is interdisciplinary in nature. (MLH)

  9. Clear as Crystal: The Story of the Braggs--How X-Ray Crystallography Has Contributed to Science

    Science.gov (United States)

    George, Robert; Patterson, John

    2014-01-01

    Here is a brief history of the work of two of Australia's most famous scientists, Sir William Bragg and his son Sir Lawrence Bragg. Jointly awarded the Nobel Prize in 1915 for their groundbreaking research into the use of X-rays to study the chemical structure and function of molecules, they have contributed to our heritage and to science at an…

  10. Developing Marine Science Instructional Materials Using Integrated Scientist-Educator Collaborative Design Teams: A Discussion of Challenges and Success Developing Real Time Data Projects for the COOL Classroom

    Science.gov (United States)

    McDonnell, J.; Duncan, R. G.; Glenn, S.

    2007-12-01

    , in which students use real-time-data (RTD) to generate explanations about important ocean phenomena. We will discuss our use of an Instructional Design Model (Gauge 1987) to: 1) assess our audience need, 2) develop an effective collaborative design team, 3) develop and evaluate the instructional product, and 4) implement professional development designed to familiarize teachers with oceans sciences as a context for scientific inquiry.

  11. Natural hazards Early career scientist Team (NhET), a newborn group bridging science to a broader community

    Science.gov (United States)

    Lombardo, Luigi; Cigala, Valeria; Rizzi, Jonathan; Craciun, Iulya; Gain, Animesh Kumar; Albano, Raffaele

    2017-04-01

    Alongside with other major EGU divisions, Natural Hazard has recently formed his Early Career Scientist (ECS) team, known as NhET. NhET was born in 2016 and its scope includes various activities for the EGU members, the international scientific community as well as for the general public. We are a group of six early career researchers, either PhDs or Post-Docs, from different fields of Natural Hazard, keen to promote knowledge exchanges and collaborations. This is done by organizing courses, training sessions and social activities, especially targeting ECSs, during the EGU General Assembly for this year and the next to come. Outside the timeframe of the EGU conference, we constantly promote EGU contents for our division. This is done through the division website (http://www.egu.eu/nh), a mailing list (https://groups.google.com/forum/#!forum/nhet) and social media. With respect to the latter, a new Facebook page will be launched shortly and other platforms such as Twitter will be used to reach a broader audience. These platforms will foster the transmission of Natural Hazard topics to anyone who is interested. The main content will be researchers' interviews, information about open positions, trainings, open source software, conferences together with news on hazards and their anthropic and environmental impacts. We are NhET and we invite you all to follow and collaborate with us for a more dynamic, efficient and widespread scientific communication.

  12. Roles in Innovative Software Teams

    DEFF Research Database (Denmark)

    Aaen, Ivan

    2010-01-01

    With inspiration from role-play and improvisational theater, we are developing a framework for innovation in software teams called Essence. Based on agile principles, Essence is designed for teams of developers and an onsite customer. This paper reports from teaching experiments inspired by design...... science, where we tried to assign differentiated roles to team members. The experiments provided valuable insights into the design of roles in Essence. These insights are used for redesigning how roles are described and conveyed in Essence....

  13. Five Years of NASA Science and Engineering in the Classroom: The Integrated Product Team/NASA Space Missions Course

    Science.gov (United States)

    Hakkila, Jon; Runyon, Cassndra; Benfield, M. P. J.; Turner, Matthew W.; Farrington, Phillip A.

    2015-08-01

    We report on five years of an exciting and successful educational collaboration in which science undergraduates at the College of Charleston work with engineering seniors at the University of Alabama in Huntsville to design a planetary science mission in response to a mock announcement of opportunity. Alabama high schools are also heavily involved in the project, and other colleges and universities have also participated. During the two-semester course students learn about scientific goals, past missions, methods of observation, instrumentation, and component integration, proposal writing, and presentation. More importantly, students learn about real-world communication and teamwork, and go through a series of baseline reviews before presenting their results at a formal final review for a panel of NASA scientists and engineers. The project is competitive, with multiple mission designs competing with one another for the best review score. Past classes have involved missions to Venus, Europa, Titan, Mars, asteroids, comets, and even the Moon. Classroom successes and failures have both been on epic scales.

  14. Heliophysical Explorers (HELEX): Solar Orbiter and Sentinels - Report of the Joint Science and Technology Definition Team (JSTDT)

    Science.gov (United States)

    2008-01-01

    Heliophysical Explorers (HELEX) brings together and augments the unique capabilities of ESA's Solar Orbiter mission (near-Sun and out-of-ecliptic in-situ plus remote-sensing observations) with those of NASA's Inner Heliospheric Sentinels (in-situ observations from multiple platforms arrayed at varying radial distances and azimuthal locations in the near-ecliptic plane)to investigate, characterize, and understand how the Sun determines the environment of the inner solar system and, more broadly, generates the heliosphere itself. This joint ESA-NASA science program offers a unique opportunity for coordinated, correlative measurements, resulting in a combined observational capability and science return that far outweighs that of either mission alone. Building on the knowledge gained from missions like Helios and Ulysses, and STEREO, HELEX will bring to bear the power of multipoint, in-situ measurements using previously unavailable instrumental capabilities in combination with remote-sensing observations from a new, inner heliospheric perspective to answer fundamental questions about the Sun-heliosphere linkage.

  15. Virtual Teams.

    Science.gov (United States)

    Geber, Beverly

    1995-01-01

    Virtual work teams scattered around the globe are becoming a feature of corporate workplaces. Although most people prefer face-to-face meetings and interactions, reality often requires telecommuting. (JOW)

  16. What the cardiothoracic surgeon wants to know from the radiologist: from X-ray reporting to imaging consultancy and Heart Team membership

    Energy Technology Data Exchange (ETDEWEB)

    Bogers, Ad J.J.C. [Erasmus MC, Department of Cardiothoracic Surgery, Thoraxcentre, Bd 557, P.O. Box 2040, Rotterdam (Netherlands); Head, Stuart J.; Kappetein, A.P. [Erasmus MC, Department of Cardiothoracic Surgery, Rotterdam (Netherlands)

    2015-01-01

    In the early days of cardiac surgery, the pretreatment multidisciplinary discussion involved a presentation of the case history and diagnostic imaging by the clinical cardiologist. At this time, most, if not all, cardiac imaging techniques were in the hands of the cardiologist. If the radiologist made a report, this was done relatively late in the clinical process and only concerned the perioperative radiographs. In recent years, multidisciplinary decision-making in the context of a Heart Team has gained an increasingly important role in the process of decision-making with regard to the available therapy options in individual patients. Nevertheless, the concept of the Heart Team is still evolving. The minimal requirements for the Heart Team include the presence of the attending cardiologist, an interventional cardiologist and a cardiac surgeon. Those members of the Heart Team should be aware of the local possibilities, should correctly make conclusions about the available data and should put this information into the clinical context and preference of the patient. In addition, in areas where expertise in cardiac imaging such as CT and MRI is relevant, this would explicitly require expertise of the Heart Team in these specific areas, most often by involving a radiologist, to provide the optimal joint treatment strategy recommendation. (orig.)

  17. Ortak Çalışma ve Ekip Bilimi: Teoriden Pratiğe=Collaboration and Team Science: From Theory to Practice

    Directory of Open Access Journals (Sweden)

    L. Michelle Bennett

    2013-07-01

    research efforts. Highly integrated and interactive research teams share a number of features that contribute to their success in developing and sustaining their efforts over time. Through analysis of in-depth interviews with members of highly successful research teams and others who did not meet their goals or ended because of conflicts, we identified key elements that are critical for team success and effectiveness. There is no debate that the scientific goal sits at the center of the collaborative effort. However, supporting features need to be in place to avoid the derailment of the team. Among the most important of these is trust: without trust, the team dynamic runs the risk of deteriorating over time. Other critical factors of which both leaders and participants need to be aware include developing a shared vision, strategically identifying team members and purposefully building the team, promoting disagreement while containing conflict, and setting clear expectations for sharing credit and authorship. Self-awareness and strong communication skills contribute greatly to effective leadership and management strategies of scientific teams. While all successful teams share the characteristic of effectively carrying out these activities, there is no single formula for execution with every leader exemplifying different strengths and weaknesses. Successful scientific collaborations have strong leaders who are self-aware and are mindful of the many elements critical for supporting the science at the center of the effort.

  18. Work team

    Directory of Open Access Journals (Sweden)

    RBE Editorial

    2016-06-01

    Full Text Available Work Team 2016 (Jan-Jul1. Editorial TeamChief-editorsBayardo Bapstista Torres, Instituto de Química (USP, BrasilEduardo Galembeck, Depto. Bioquímica, Instituto de Biologia, Universidade de Campinas (Unicamp, Brasil Co-editorsGabriel Gerber Hornink, Depto. Bioquímica, Instituto de Ciências Biomédicas, Universidade - Federal de Alfenas (Unifal-MG, BrasilVera Maria Treis Trindade, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS, Brasil Editorial BoardAdriana Cassina, Department of Biochemistry, Facultad de Medicina, Universidad de la República, UruguayAngel Herráez, Departamento de Bioquímica y Biología molecular, Universidad de Alcalá de Henares, Madrid, SpainAndré Amaral Gonçalves Bianco, Universidade Federal de São Paulo (Unifesp, BrasilDenise Vaz de Macedo, Depto. Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp, BrasilEneida de Paula, Depto. Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp, BrasilJose Antonio Martinez Oyanedel, Universidad de Concepción, ChileJosep Maria Fernández Novell, Department of Molecular Biology & Biochemistry, Universitat de Barcelona, SpainLeila Maria Beltramini, Instituto de Física de São Carlos, Universidade Estadual de São Paulo (USP, BrasilManuel João da Costa, Escola de Ciências da Saúde, Universidade do Minho, PortugalMaria Lucia Bianconi, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro (UFRJ, BrasilMaría Noel Alvarez, Department of Biochemistry, Facultad de Medicina, Universidad de la República, UruguayMiguel Ángel Medina Torres, Department of Molecular Biology & Biochemistry Faculty of Sciences University of Málaga, SpainNelma Regina Segnini Bossolan, Instituto de Física de São Carlos, Universidade de São Paulo (USP, BrasilPaulo De Avila Junior, Centro de Ciências Naturais e Humanas (CCNH Universidade Federal do ABC (UFABC

  19. White Paper on the Status and Future of Ground-based Gamma-Ray Astronomy - Extragalactic Science Working Group

    Science.gov (United States)

    Krawczynski, H.; Coppi, P.; Dermer, C.; Dwek, E.; Georganopoulos, M.; Horan, D.; Jones, T.; Krennrich, F.; Mukherjee, R.; Perlman, E.; Vassiliev, V.

    2007-04-01

    In fall 2006, the Division of Astrophysics of the American Physical Society requested a white paper about the status and future of ground based gamma-ray astronomy. The white paper will largely be written in the year 2007. Interested scientists are invited to join the science working groups. In this contribution, we will report on some preliminary results of the extragalactic science working group. We will discuss the potential of future ground based gamma-ray experiments to elucidate how supermassive black holes accrete matter, form jets, and accelerate particles, and to study in detail the acceleration and propagation of cosmic rays in extragalactic systems like infrared galaxies and galaxy clusters. Furthermore, we discuss avenues to constrain the spectrum of the extragalactic infrared to optical background radiation, and to measure the extragalactic magnetic fields based on gamma-ray observations. Eventually, we discuss the potential of ground based experiments for conducting gamma-ray source surveys. More information about the white paper can be found at: http://cherenkov.physics.iastate.edu/wp/

  20. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, W., E-mail: ludwig@esrf.fr [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); King, A. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Reischig, P. [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Herbig, M. [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); Lauridsen, E.M.; Schmidt, S. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark); Proudhon, H.; Forest, S. [MINES ParisTech, Centre des materiaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex (France); Cloetens, P.; Roscoat, S. Rolland du [European Synchrotron Radiation Facility, BP220, 38043 Grenoble (France); Buffiere, J.Y. [Universite de Lyon, INSA-Lyon, MATEIS CNRS UMR 5510, 69621Villeurbanne (France); Marrow, T.J. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Poulsen, H.F. [Riso National Laboratory for Sustainable Energy, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2009-10-25

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  1. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    International Nuclear Information System (INIS)

    Ludwig, W.; King, A.; Reischig, P.; Herbig, M.; Lauridsen, E.M.; Schmidt, S.; Proudhon, H.; Forest, S.; Cloetens, P.; Roscoat, S. Rolland du; Buffiere, J.Y.; Marrow, T.J.; Poulsen, H.F.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems. A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape, crystallographic orientation and local attenuation coefficient distribution. The technique applies to the larger range of plastically undeformed, polycrystalline mono-phase materials, provided some conditions on grain size and texture are fulfilled. The straightforward combination with high-resolution microtomography opens interesting new possibilities for the observation of microstructure related damage and deformation mechanisms in these materials.

  2. What is optimal timing for trauma team alerts? A retrospective observational study of alert timing effects on the initial management of trauma patients

    Directory of Open Access Journals (Sweden)

    Lillebo B

    2012-08-01

    Full Text Available Borge Lillebo,1 Andreas Seim,2 Ole-Petter Vinjevoll,3 Oddvar Uleberg31Norwegian EHR Research Centre, Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; 2Department of Computer and Information Science, Faculty of Information Technology, Mathematics and Electrical Engineering, NTNU, Trondheim, Norway; 3Department of Anaesthesia and Emergency Medicine, St Olav's University Hospital, Trondheim, NorwayBackground: Trauma teams improve the initial management of trauma patients. Optimal timing of trauma alerts could improve team preparedness and performance while also limiting adverse ripple effects throughout the hospital. The purpose of this study was to evaluate how timing of trauma team activation and notification affects initial in-hospital management of trauma patients.Methods: Data from a single hospital trauma care quality registry were matched with data from a trauma team alert log. The time from patient arrival to chest X-ray, and the emergency department length of stay were compared with the timing of trauma team activations and whether or not trauma team members received a preactivation notification.Results: In 2009, the trauma team was activated 352 times; 269 times met the inclusion criteria. There were statistically significant differences in time to chest X-ray for differently timed trauma team activations (P = 0.003. Median time to chest X-ray for teams activated 15–20 minutes prearrival was 5 minutes, and 8 minutes for teams activated <5 minutes before patient arrival. Timing had no effect on length of stay in the emergency department (P = 0.694. We found no effect of preactivation notification on time to chest X-ray (P = 0.474 or length of stay (P = 0.684.Conclusion: Proactive trauma team activation improved the initial management of trauma patients. Trauma teams should be activated prior to patient arrival.Keywords: emergency medical service communication systems

  3. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy: Annual progress report

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1987-01-01

    The research programs reported span virtually the entire range of condensed matter studies involving the fields of solid state physics, chemistry, electrochemistry, materials science and biochemistry. Results are discussed for various groups. Topics reported include work on amorphous chalcogenide semiconductors, particularly photostructural changes, kinetics of structural changes and rapid quenching, bond strengths, force constants and phonons. Also reported are temperature dependent EXAFS studies of bonding in high temperature alloys, amorphous systems, disordered alloys and studies of resolve electronic structure, EXAFS and XANES studies of permanent magnet systems based on Nd 2 Fe 14 B, glancing angle EXAFS study of Nb/Al and Nb/Si interfacial systems, x-ray absorption of krypton-implanted solids and high dose implants into silicon, and x-ray absorption and EXAFS studies of superconducting oxide compounds of Cu and related magnetic systems. Work is also reported on XAFS measurements on the icosahedral phase

  4. Team-based learning increases active engagement and enhances development of teamwork and communication skills in a first-year course for veterinary and animal science undergraduates.

    Science.gov (United States)

    Hazel, Susan J; Heberle, Nicole; McEwen, Margaret-Mary; Adams, Karen

    2013-01-01

    Team-based learning (TBL) was implemented into a first-year course (Principles in Animal Behaviour, Welfare and Ethics) for BSc Veterinary Bioscience (VB) and Animal Science (AS) students. TBL is now used widely in teaching medical students, but has had more limited uptake in veterinary education. This study reports its use over 2 years with cohorts of 126 and 138 students in 2011 and 2012, respectively. Average individual marks for multiple-choice question (MCQ) tests in the Readiness Assurance component of TBL were higher for the teams than for individuals for each session, explicitly demonstrating the advantages of teamwork. Students reported that they felt actively involved and that TBL helped them both with their learning and in developing other important skills, such as teamwork and communication. Qualitative analysis of written feedback from the students revealed positive themes of discussion, application, revelation, socializing, engagement, clarification, and retention/revision. In 2011 negative comments included the need to shorten the TBL sessions, but in 2012 tightening of the timelines meant that this was no longer a major concern. Requests to provide better introductory and background materials and ambiguity in questions in the TBL activities were what students least liked about the TBL. However, most comments were positive rather than negative in nature, and many students preferred the TBL to lectures. With requirements for curricula to teach professional skills, such as communication and teamwork, and the positive results from TBL's implementation, it is hoped that this study will encourage others to trial the use of TBL in veterinary education.

  5. The discovery of X-rays diffraction: From crystals to DNA. A case study to promote understanding of the nature of science and of its interdisciplinary character

    International Nuclear Information System (INIS)

    Guerra, Francesco; Leone, Matteo; Robotti, Nadia

    2015-01-01

    The advantages of introducing history of science topics into the teaching of science has been advocated by a large number of scholars within the science education community. One of the main reasons given for using history of science in teaching is its power to promote understanding of the nature of science (NOS). In this respect, the historical case of X-rays diffraction, from the discovery of Max von Laue (1912) to the first X-rays diffraction photographs of DNA (1953), is a case in point for showing that a correct experimental strategy and a favourable theoretical context are not enough to make a scientific discovery.

  6. Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science

    International Nuclear Information System (INIS)

    Liu, Yi-Sheng; Glans, Per-Anders; Chuang, Cheng-Hao; Kapilashrami, Mukes; Guo, Jinghua

    2015-01-01

    Highlights: • In-situ/operando soft X-ray RXES and RIXS offer unique perspectives in the energy material science. - Abstract: Growing environmental concerns have renewed the interest for light induced catalytic reactions to synthesize cleaner chemical fuels from syngas. This, however, requires a sound understanding for the dynamics taking place at molecular level as a result of light – matter interaction. We present herein the principles of soft X-ray resonant emission spectroscopy (RXES) and resonant inelastic scattering (RIXS) and the importance of these spectroscopic techniques in materials science in light of their unique ability to emanate characteristic fingerprints on the geometric structure, chemical bonding charge and spin states in addition to chemical sensitivity. The addition of in situ/operando RXES and RIXS capability offers new opportunities to project important material properties and functionalities under conditions nearly identical to the operational modes.

  7. Perspectives of in situ/operando resonant inelastic X-ray scattering in catalytic energy materials science

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi-Sheng; Glans, Per-Anders [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chuang, Cheng-Hao [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Physics, Tamkang University, Tamsui 250, Taiwan, ROC (China); Kapilashrami, Mukes [Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Guo, Jinghua, E-mail: jguo@lbl.gov [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 (United States)

    2015-04-15

    Highlights: • In-situ/operando soft X-ray RXES and RIXS offer unique perspectives in the energy material science. - Abstract: Growing environmental concerns have renewed the interest for light induced catalytic reactions to synthesize cleaner chemical fuels from syngas. This, however, requires a sound understanding for the dynamics taking place at molecular level as a result of light – matter interaction. We present herein the principles of soft X-ray resonant emission spectroscopy (RXES) and resonant inelastic scattering (RIXS) and the importance of these spectroscopic techniques in materials science in light of their unique ability to emanate characteristic fingerprints on the geometric structure, chemical bonding charge and spin states in addition to chemical sensitivity. The addition of in situ/operando RXES and RIXS capability offers new opportunities to project important material properties and functionalities under conditions nearly identical to the operational modes.

  8. Team Learning and Team Composition in Nursing

    Science.gov (United States)

    Timmermans, Olaf; Van Linge, Roland; Van Petegem, Peter; Elseviers, Monique; Denekens, Joke

    2011-01-01

    Purpose: This study aims to explore team learning activities in nursing teams and to test the effect of team composition on team learning to extend conceptually an initial model of team learning and to examine empirically a new model of ambidextrous team learning in nursing. Design/methodology/approach: Quantitative research utilising exploratory…

  9. DIFFERENT DIMENSIONS OF TEAMS

    OpenAIRE

    Goparaju Purna SUDHAKAR

    2013-01-01

    Popularity of teams is growing in 21st Century. Organizations are getting their work done through different types of teams. Teams have proved that the collective performance is more than the sum of the individual performances. Thus, the teams have got different dimensions such as quantitative dimensions and qualitative dimensions. The Quantitative dimensions of teams such as team performance, team productivity, team innovation, team effectiveness, team efficiency, team decision making and tea...

  10. TEAM ORGANISERING

    DEFF Research Database (Denmark)

    Levisen, Vinie; Haugaard, Lena

    2004-01-01

    organisation som denne? Når teams i samtiden anses for at være en organisationsform, der fremmer organisatorisk læring, beror det på, at teamet antages at udgøre et ikke-hierarkisk arbejdsfællesskab, hvor erfaringer udveksles og problemer løses. Teamorganisering kan imidlertid udformes på mange forskellige...

  11. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; Andersson, Klas J.; Araki, Tohru; Benzerara, Karim; Brown, Gordon E.; Dynes, Jay J.; Ghosal, Sutapa; Gilles, Mary K.; Hansen, Hans C.; Hemminger, J. C.; Hitchcock, Adam P.; Ketteler, Guido; Kilcoyne, Arthur L.; Kneedler, Eric M.; Lawrence, John R.; Leppard, Gary G.; Majzlam, Juraj; Mun, B. S.; Myneni, Satish C.; Nilsson, Anders R.; Ogasawara, Hirohito; Ogletree, D. F.; Pecher, Klaus H.; Salmeron, Miquel B.; Shuh, David K.; Tonner, Brian; Tyliszczak, Tolek; Warwick, Tony; Yoon, T. H.

    2006-02-01

    We present examples of the application of synchrotron-based spectroscopies and microscopies to environmentally-relevant samples. The experiments were performed at the Molecular Environmental Science beamline (11.0.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Examples range from the study of water monolayers on Pt(111) single crystal surfaces using X-ray emission spectroscopy and the examination of alkali halide solution/water vapor interfaces using ambient pressure photoemission spectroscopy, to the investigation of actinides, river-water biofilms, Al-containing colloids and mineral-bacteria suspensions using scanning transmission X-ray spectromicroscopy. The results of our experiments show that spectroscopy and microscopy in the soft X-ray energy range are excellent tools for the investigation of environmentally relevant samples under realistic conditions, i.e. with water or water vapor present at ambient temperature.

  12. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  13. Study of cosmic rays reveals secrets of solar-terrestrial science

    Science.gov (United States)

    Jokipii, J. R.

    For many years cosmic rays provided the most important source of energetic particles for studies of subatomic physics. Today, cosmic rays are being studied as a natural phenomenon that can tell us much about both the Earth's environment in space and distant astrophysical processes. Cosmic rays are naturally occurring energetic particles—mainly ions—with kinetic energies extending from just above thermal energies to more than 1020 electron volts (eV). They constantly bombard the Earth from all directions, with more than 1018 particles having energies >1 MeV striking the top of the Earth's atmosphere each second. Figure 1 illustrates the continuous cosmic ray energy spectrum.

  14. Physics Of, and Science With, the X-Ray Free-Electron Laser: 19th Advanced ICFA Beam Dynamics Workshop

    International Nuclear Information System (INIS)

    Sutton, M.

    2003-01-01

    The workshop brought together scientists working on the development of x-ray free-electron lasers, and its applications. X-ray free-electron lasers produce high intensity, subpicosecond long, coherent, X-ray pulses, and will open a new frontier to study the structure of matter at the molecular and atomic levels. Some fields of interest are structural changes in chemical reactions, single biological molecule, warm plasmas, nanosystems. Summary of discussions and conclusions of Group 1: Physics and Technology of the XFEL - The main issues that were discussed by the 50 participants in this group were the photo-injector, the production of ultra-short pulses, the effects of wake-fields induced by the electron bunch, the operation at lower charge and emittance, the possibility of harmonic generation and the diagnostics in the undulator. The following is a short summary of the discussions and their conclusions. Summary of discussions and conclusions of Group 2: Science with the XFEL - About 25 people attended sessions to discuss the possible scientific applications of a x-ray FEL. Because of the recent focus on the first experiments with the proposed Linac Coherent Light Source at Stanford, the discussions were mainly focussed on these proposals. The extension of the characteristics beyond the initial stage and the further developments of the source were also part of the program. Six scientific areas were discussed: Atomic Physics, Warm Dense Matter, Femtosecond Chemistry, Imaging/Holography, Bio-molecular Structures and X-Ray Fluctuations Spectroscopy.

  15. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  16. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy: Annual progress report

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1986-01-01

    Although only in operation since May, 1985, the X-11 participation research team (PRT) at the NSLS has already demonstrated that it is one of the leading centers of x-ray absorption spectroscopy (XAS). During this time, results have been obtained and programs initiated in a number of areas, for example: interfaces, including deposited metal-metal and metal-semiconductor systems, multilayers and ion implanted layers; electrochemical systems, including Pt electrode fuel cells, Ni oxide battery electrodes, conducting polymers, passivation and corrosion; catalysts, including highly-dispersed supported metal catalysts and zeolite systems; quasi-crystals, heavy fermion systems, uranium and neptunium compounds, rare gas clusters, disordered metals and semiconductors, ferroelectric transition; and, biological systems and related models, including synthetic porphyrins and a number of metalloproteins. In concert with these scientific results have been a number of developments involving the technique itself. These include implementation of unique optical systems on both the A and B lines for optical performance over their designed energy ranges, advances in experimental capability, particular in glancing angle studies, optimization of ion chambers for surface studies, the improvement of electron yield detectors, and improved software for data acquisition and analysis. This report emphasizes some of the research highlights and significant developments of our PRT which occurred during the past year. A detailed bibliography of papers and talks resulting from work done at our beamline and the progress reports for our PRT which were in the 1985 NSLS Annual Report are appended

  17. Role Allocation and Team Structure in Command and Control Teams

    Science.gov (United States)

    2014-06-01

    organizational psychology and management sciences literature show concepts such as empowered self-management and self-regulating work teams (see Cooney, 2004...tankers (FT), search units (S) and rescue units (R). Each unit is represented on the map by a numbered icon. Each type of unit is colour -coded and...Understanding team adaptation: A conceptual analysis and model. Journal of Applied Psychology , 91, 1189-1207. Cannon-Bowers, J. A., Tannenbaum

  18. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    International Nuclear Information System (INIS)

    Barty, C.P.J.

    2000-01-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  19. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  20. Refinement of the AdEPT Medium-Energy Gamma-Ray Science

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to explore the theoretical framework for the relatively unexplored field of medium energy (5--200 MeV) gamma-ray astronomy for a mission concept...

  1. Three-Dimensional X-Ray Diffraction Technique for Metals Science

    DEFF Research Database (Denmark)

    Zhang, Yubin; Fan, Guohua

    2017-01-01

    The three-dimensional X-ray diffraction (3DXRD) is a new, advanced technique for materials characterization. This technique utilizes high-energy synchrotron X-rays to characterize the 3D crystallographic structure and strain/stress state of bulk materials. As the measurement is non......-destructive, the microstructural evolution as a function of time can be followed, i.e. it allows 4D (x, y, z characterizations, t). The high brilliance of synchrotron X-rays ensures that diffraction signals from volumes of micrometer scale can be quickly detected and distinguished from the background noise, i.e. its spatial...... implemented in several large synchrotron facilities, e.g. the Advanced Photon Source (APS) in USA and the Spring-8 in Japan. Another family of 3DXRD technique that utilizes white beam synchrotron X-rays has also been developed in parallel in cooperation between Oak Ridge National Laboratory and APS...

  2. Team designing

    DEFF Research Database (Denmark)

    Denise J. Stokholm, Marianne

    2012-01-01

    Future wellbeing is depending on human competences in order to strengthen a sustainable development. This requires system thinking and ability to deal with complexity, dynamic and a vast of information. `We need to move away from present principles of breaking down problems into components and gi...... thinking and communication in design. Trying to answer the question: How can visual system models facilitate learning in design thinking and team designing?......Future wellbeing is depending on human competences in order to strengthen a sustainable development. This requires system thinking and ability to deal with complexity, dynamic and a vast of information. `We need to move away from present principles of breaking down problems into components and give...... in relation to a design-engineering education at Aalborg University. It will exemplify how the model has been used in workshops on team designing, challenged design learning and affected design competence. In specific it will investigate the influence of visual models of the perception of design, design...

  3. Linac Coherent Light Source soft x-ray materials science instrument optical design and monochromator commissioning

    Czech Academy of Sciences Publication Activity Database

    Heimann, P.; Krupin, O.; Schlotter, W.F.; Turner, J.; Krzywinski, J.; Sorgenfrei, F.; Messerschmidt, M.; Bernstein, D.; Chalupský, Jaromír; Hájková, Věra; Hau-Riege, S.; Holmes, M.; Juha, Libor; Kelez, N.; Lüning, J.; Nordlund, D.; Perea, M.F.; Scherz, A.; Soufli, R.; Wurth, W.; Rowen, M.

    2011-01-01

    Roč. 82, č. 9 (2011), 093104/1-093104/8 ISSN 0034-6748 R&D Projects: GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffraction gratings * light sources * linear accelerators * optical materials * x-ray monochromators * x-ray optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.367, year: 2011

  4. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY

    International Nuclear Information System (INIS)

    FENG, H.; JONES, K.W.; MCGUIGAN, M.; SMITH, G.J.; SPILETIC, J.

    2001-01-01

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data

  5. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  6. Illusions of team working in health care.

    Science.gov (United States)

    West, Michael A; Lyubovnikova, Joanne

    2013-01-01

    The ubiquity and value of teams in healthcare are well acknowledged. However, in practice, healthcare teams vary dramatically in their structures and effectiveness in ways that can damage team processes and patient outcomes. The aim of this paper is to highlight these characteristics and to extrapolate several important aspects of teamwork that have a powerful impact on team effectiveness across healthcare contexts. The paper draws upon the literature from health services management and organisational behaviour to provide an overview of the current science of healthcare teams. Underpinned by the input-process-output framework of team effectiveness, team composition, team task, and organisational support are viewed as critical inputs that influence key team processes including team objectives, leadership and reflexivity, which in turn impact staff and patient outcomes. Team training interventions and care pathways can facilitate more effective interdisciplinary teamwork. The paper argues that the prevalence of the term "team" in healthcare makes the synthesis and advancement of the scientific understanding of healthcare teams a challenge. Future research therefore needs to better define the fundamental characteristics of teams in studies in order to ensure that findings based on real teams, rather than pseudo-like groups, are accumulated.

  7. Imagery Integration Team

    Science.gov (United States)

    Calhoun, Tracy; Melendrez, Dave

    2014-01-01

    The Human Exploration Science Office (KX) provides leadership for NASA's Imagery Integration (Integration 2) Team, an affiliation of experts in the use of engineering-class imagery intended to monitor the performance of launch vehicles and crewed spacecraft in flight. Typical engineering imagery assessments include studying and characterizing the liftoff and ascent debris environments; launch vehicle and propulsion element performance; in-flight activities; and entry, landing, and recovery operations. Integration 2 support has been provided not only for U.S. Government spaceflight (e.g., Space Shuttle, Ares I-X) but also for commercial launch providers, such as Space Exploration Technologies Corporation (SpaceX) and Orbital Sciences Corporation, servicing the International Space Station. The NASA Integration 2 Team is composed of imagery integration specialists from JSC, the Marshall Space Flight Center (MSFC), and the Kennedy Space Center (KSC), who have access to a vast pool of experience and capabilities related to program integration, deployment and management of imagery assets, imagery data management, and photogrammetric analysis. The Integration 2 team is currently providing integration services to commercial demonstration flights, Exploration Flight Test-1 (EFT-1), and the Space Launch System (SLS)-based Exploration Missions (EM)-1 and EM-2. EM-2 will be the first attempt to fly a piloted mission with the Orion spacecraft. The Integration 2 Team provides the customer (both commercial and Government) with access to a wide array of imagery options - ground-based, airborne, seaborne, or vehicle-based - that are available through the Government and commercial vendors. The team guides the customer in assembling the appropriate complement of imagery acquisition assets at the customer's facilities, minimizing costs associated with market research and the risk of purchasing inadequate assets. The NASA Integration 2 capability simplifies the process of securing one

  8. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  9. Travelling with football teams

    African Journals Online (AJOL)

    ultimately on the performance of the teams on the playing field and not so much ... However, travelling with a football team presents the team physician .... physician to determine the nutritional ..... diarrhoea in elite athletes: an audit of one team.

  10. Quantitative x-ray microanalysis in an AEM: instrumental considerations and applications to materials science

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-01-01

    There are a wide variety of instrumental problems which are present to some degree in all AEM instruments. The nature and magnitude of these artifacts can in some instances preclude the simple quantitative interpretation of the recorded x-ray emission spectrum using a thin-film electron excitation model; however, by judicious modifications to the instrument these complications can be effectively eliminated. The specific operating conditions of the microscope necessarily vary from one analysis to another depending on the type of specimen and experiment being performed. In general, however, the overall performance of the AEM system during x-ray analysis is optimized using the highest attainable incident electron energy; selecting the maximum probe diameter and probe current consistent with experimental limitations; and positioning the x-ray detector in a geometry such that it records information from the electron entrance surface of the specimen

  11. Study on team evaluation. Team process model for team evaluation

    International Nuclear Information System (INIS)

    Sasou Kunihide; Ebisu, Mitsuhiro; Hirose, Ayako

    2004-01-01

    Several studies have been done to evaluate or improve team performance in nuclear and aviation industries. Crew resource management is the typical example. In addition, team evaluation recently gathers interests in other teams of lawyers, medical staff, accountants, psychiatrics, executive, etc. However, the most evaluation methods focus on the results of team behavior that can be observed through training or actual business situations. What is expected team is not only resolving problems but also training younger members being destined to lead the next generation. Therefore, the authors set the final goal of this study establishing a series of methods to evaluate and improve teams inclusively such as decision making, motivation, staffing, etc. As the first step, this study develops team process model describing viewpoints for the evaluation. The team process is defined as some kinds of power that activate or inactivate competency of individuals that is the components of team's competency. To find the team process, the authors discussed the merits of team behavior with the experienced training instructors and shift supervisors of nuclear/thermal power plants. The discussion finds four team merits and many components to realize those team merits. Classifying those components into eight groups of team processes such as 'Orientation', 'Decision Making', 'Power and Responsibility', 'Workload Management', 'Professional Trust', 'Motivation', 'Training' and 'staffing', the authors propose Team Process Model with two to four sub processes in each team process. In the future, the authors will develop methods to evaluate some of the team processes for nuclear/thermal power plant operation teams. (author)

  12. Team responsibility structure and team performance

    NARCIS (Netherlands)

    Doorewaard, J.A.C.M.; Hootegem, G. van; Huys, R.

    2002-01-01

    The purpose is to analyse the impact of team responsibility (the division of job regulation tasks between team leader and team members) on team performance. It bases an analysis on 36 case studies in The Netherlands which are known to have implemented team‐based work. The case studies were executed

  13. The Venera-D Mission Concept: Evaluation by a Joint Science Definition Team of a Means for the Comprehensive Scientific Exploration of Venus

    Science.gov (United States)

    Senske, D.; Zasova, L. V.; Economou, T.; Eismont, N.; Esposito, L. W.; Gerasimov, M.; Ignatiev, N. I.; Ivanov, M.; Jessup, K. L.; Korablev, O.; Tibor, K.; Limaye, S. S.; Martynov, A.; Ocampo, A.

    2016-12-01

    Located in the same part of the solar system and formed out of the same protoplanetary material, Venus is Earth's twin. Although these siblings have nearly the same size, mass, and density, the climate of Venus, fueled by a massive CO2 atmosphere has an enormous greenhouse effect with a surface pressure of 90 atm. and a temperature of 470°C. Shrouded in clouds of sulfuric acid, the surface lacks water and has been sculpted by volcanism and deformed by faulting and folding forming rifts and belts of mountains. The lack of an intrinsic magnetic field suggests the planet's interior structure may be different than that of the earth. The study of Venus will aid in better understanding our own world and the possible future evolution of our climate. In particular, the instability of our climate and the increase in amount of greenhouse gases-can our climate be slowly going in Venus' direction? Despite the advancement in understanding achieved from previous and ongoing missions, the key questions concerning the origin and evolution of Venus and its climate cannot be solved by observations from orbit alone. Direct measurements in the atmosphere and on the surface are required. In this regard, a Joint Science Definition Team (JSDT) chartered by NASA and IKI/Roscosmos has been studying a concept for the comprehensive investigation of Venus that would consist of an orbiter (>3 yr. of operation) and a lander (2 hrs. on the surface). The scientific goals of the concept are tied closely to the key objectives established by VEXAG and the NASA Planetary Decadal Survey and include: investigation of the thermal structure and chemical composition of the atmosphere and clouds, abundances and isotopic ratios of the light and noble gases; study of the thermal balance, dynamics, and super-rotation of the atmosphere; determination of the surface mineralogy and elemental composition including key radioactive isotopes; study of potential current volcanic and electrical activity; and study of

  14. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    International Nuclear Information System (INIS)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-01-01

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for 'next-generation' x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop 'Science for a New Class of Soft X-Ray Light Sources' was held in Berkeley in October 2007. From an analysis of the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions

  15. Toward Control of Matter: Basic Energy Science Needs for a New Class of X-Ray Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Belkacem, Ali; Cocke, Lew; Corlett, John; Falcone, Roger; Fischer, Peter; Fleming, Graham; Gessner, Oliver; Hasan, M. Zahid; Hussain, Zahid; Kevan, Steve; Kirz, Janos; McCurdy, Bill; Nelson, Keith; Neumark, Dan; Nilsson, Anders; Siegmann, Hans; Stocks, Malcolm; Schafer, Ken; Schoenlein, Robert; Spence, John; Weber, Thorsten

    2008-09-24

    Over the past quarter century, light-source user facilities have transformed research in areas ranging from gas-phase chemical dynamics to materials characterization. The ever-improving capabilities of these facilities have revolutionized our ability to study the electronic structure and dynamics of atoms, molecules, and even the most complex new materials, to understand catalytic reactions, to visualize magnetic domains, and to solve protein structures. Yet these outstanding facilities still have limitations well understood by their thousands of users. Accordingly, over the past several years, many proposals and conceptual designs for"next-generation" x-ray light sources have been developed around the world. In order to survey the scientific problems that might be addressed specifically by those new light sources operating below a photon energy of about 3 keV and to identify the scientific requirements that should drive the design of such facilities, a workshop"Science for a New Class of Soft X-Ray Light Sources" was held in Berkeley in October 2007. From an analysisof the most compelling scientific questions that could be identified and the experimental requirements for answering them, we set out to define, without regard to the specific technologies upon which they might be based, the capabilities such light sources would have to deliver in order to dramatically advance the state of research in the areas represented in the programs of the Department of Energy's Office of Basic Energy Sciences (BES). This report is based on the workshop presentations and discussions.

  16. Recent advances in X-ray compatible microfluidics for applications in soft materials and life sciences

    DEFF Research Database (Denmark)

    Ghazal, Aghiad; Lafleur, Josiane P; Mortensen, Kell

    2016-01-01

    The increasingly narrow and brilliant beams at X-ray facilities reduce the requirements for both sample volume and data acquisition time. This creates new possibilities for the types and number of sample conditions that can be examined but simultaneously increases the demands in terms of sample p...

  17. AXAF FITS standard for ray trace interchange

    Science.gov (United States)

    Hsieh, Paul F.

    1993-07-01

    A standard data format for the archival and transport of x-ray events generated by ray trace models is described. Upon review and acceptance by the Advanced X-ray Astrophysics Facility (AXAF) Software Systems Working Group (SSWG), this standard shall become the official AXAF data format for ray trace events. The Flexible Image Transport System (FITS) is well suited for the purposes of the standard and was selected to be the basis of the standard. FITS is both flexible and efficient and is also widely used within the astronomical community for storage and transfer of data. In addition, software to read and write FITS format files are widely available. In selecting quantities to be included within the ray trace standard, the AXAF Mission Support team, Science Instruments team, and the other contractor teams were surveyed. From the results of this survey, the following requirements were established: (1) for the scientific needs, each photon should have associated with it: position, direction, energy, and statistical weight; the standard must also accommodate path length (relative phase), and polarization. (2) a unique photon identifier is necessary for bookkeeping purposes; (3) a log of individuals, organizations, and software packages that have modified the data must be maintained in order to create an audit trail; (4) a mechanism for extensions to the basic kernel should be provided; and (5) the ray trace standard should integrate with future AXAF data product standards.

  18. Design of a radiation hard silicon pixel sensor for X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Schwandt, Joern

    2014-06-15

    At DESY Hamburg the European X-ray Free-Electron Laser (EuXFEL) is presently under construction. The EuXFEL has unique properties with respect to X-ray energy, instantaneous intensity, pulse length, coherence and number of pulses/sec. These properties of the EuXFEL pose very demanding requirements for imaging detectors. One of the detector systems which is currently under development to meet these challenges is the Adaptive Gain Integrating Pixel Detector, AGIPD. It is a hybrid pixel-detector system with 1024 x 1024 p{sup +} pixels of dimensions 200 μm x 200 μm, made of 16 p{sup +}nn{sup +}- silicon sensors, each with 10.52 cm x 2.56 cm sensitive area and 500 μm thickness. The particular requirements for the AGIPD are a separation between noise and single photons down to energies of 5 keV, more than 10{sup 4} photons per pixel for a pulse duration of less than 100 fs, negligible pile-up at the EuXFEL repetition rate of 4.5 MHz, operation for X-ray doses up to 1 GGy, good efficiency for X-rays with energies between 5 and 20 keV, and minimal inactive regions at the edges. The main challenge in the sensor design is the required radiation tolerance and high operational voltage, which is required to reduce the so-called plasma effect. This requires a specially optimized sensor. The X-ray radiation damage results in a build-up of oxide charges and interface traps which lead to a reduction of the breakdown voltage, increased leakage current, increased interpixel capacitances and charge losses. Extensive TCAD simulations have been performed to understand the impact of X-ray radiation damage on the detector performance and optimize the sensor design. To take radiation damage into account in the simulation, radiation damage parameters have been determined on MOS capacitors and gate-controlled diodes as function of dose. The optimized sensor design was fabricated by SINTEF. Irradiation tests on test structures and sensors show that the sensor design is radiation hard and

  19. Development of an Integrated Team Training Design and Assessment Architecture to Support Adaptability in Healthcare Teams

    Science.gov (United States)

    2016-10-01

    chosen for their expertise and to ensure geographical representation. COMPLETED Human Research Protection Office IRB 3 The HRPO has granted exempt... taxonomy (Figure 3) can help guide the selection of appropriate training targets and can help educators target correct task complexity, appropriate...team assessment. We extended this knowledge by investigating the team science, safety science, and human factors literature. Because our work

  20. Chandra X-ray Center Science Data Systems Regression Testing of CIAO

    Science.gov (United States)

    Lee, N. P.; Karovska, M.; Galle, E. C.; Bonaventura, N. R.

    2011-07-01

    The Chandra Interactive Analysis of Observations (CIAO) is a software system developed for the analysis of Chandra X-ray Observatory observations. An important component of a successful CIAO release is the repeated testing of the tools across various platforms to ensure consistent and scientifically valid results. We describe the procedures of the scientific regression testing of CIAO and the enhancements made to the testing system to increase the efficiency of run time and result validation.

  1. Radioisotope induced energy dispersive X-ray fluorescence - a diagnostic tool in clinical science

    International Nuclear Information System (INIS)

    Joseph, Daisy

    2010-01-01

    Full text: Energy dispersive X-ray fluorescence (EDXRF) - an ideal technique for detecting trace elements in drugs have been used for analyzing drugs marked as Zn supplements (Jasad Bhasm) used for growth in children and Ayurvedic medicines containing toxic elements such as Arsenic (As) and Mercury (Hg). Folklore medicines obtained as plants extracts from Manipur plants were also analyzed for their composition. Zn supplements (Jasad Bhasm) manufactured by various manufacturers were analyzed for their trace elements besides Zn and were compared with laboratory preparations. Similarly the Ayurvedic medicines from different companies were analyzed for their metal composition. All samples in powder form were pelletized and analyzed using an X-ray spectrometer consisting of a Cd 109 radioisotope source, Si (Li) detector of resolution 170 eV at 5.9 KeV Mn X-ray, preamplifier, amplifier and a PC based multichannel analyzer. Varying amounts of trace elements were detected in Jasad Bhasm and interesting results (As and Hg) were seen in the Ayurvedic medicines in addition to other trace elements such as K,Ca,Fe,Cu and Zn. In Manipur plant extracts Sr was predominantly seen in most samples. Their levels of toxicity and significance to human health and diseases will be discussed in the remaining sections of the paper

  2. Archimedes' Oldest Writings Under X-ray vision (BNL Women in Science Lecture Series)

    International Nuclear Information System (INIS)

    Bergmann, Uwe

    2009-01-01

    Archimedes of Syracuse (287-212 B.C.) is considered one of the most brilliant mathematicians and thinkers of all times. The tenth-century parchment document known as the Archimedes Palimpsest is the oldest surviving copy of works by the Greek genius. Currently, the privately owned Palimpsest is the subject of an integrated campaign of conservation, imaging, and scholarship being undertaken at the Walters Art Museum in Baltimore. Much of the text has been imaged by various optical techniques, but significant gaps in the legibility of the writing have remained on several pages. Large parts of these writings were recently deciphered at the Stanford Synchrotron Radiation Lightsource at SLAC. A special x-ray technique showed maps of iron in faint traces of partially erased ink. The x-ray images revealed Archimedes writings from some of his most important works that were hidden by twelfth-century biblical texts, mold and forged gold paintings. Join Bergmann in a fascinating journey of a 1,000-year-old parchment from its origin in the Mediterranean city of Constantinople to an x-ray beam line at SLAC in California.

  3. Ray Guns and Radium: Radiation in the Public Imagination as Reflected in Early American Science Fiction

    Science.gov (United States)

    Slaughter, Aimee

    2014-01-01

    The 1920s and 1930s were a period which saw great popular interest in radiation and radioactivity in America, and the establishment of a new genre of pulp literature, science fiction. Radiation was prevalent in American popular culture at the time, and sf stories were dependent upon radiation for much of their color and excitement. In this case…

  4. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1989-01-01

    At the time of the submission of the original proposal more than 7 years ago, the X-11 PRT had set as a goal to develop one of the leading and most comprehensive x-ray absorption beam lines in the world. By any measure we have been successful. As is well documented in previous annual progress report and in the NSLS annual reports, our PRT has been extremely productive in a wide range of topics in materials science, solid state physics, chemistry and biology. Well over 100 papers have been published acknowledging the support of this contract and this continues at a rate of about 30 papers per year and about 20 invited presentations per year. Significant in this report are major studies in high T c compounds, advances in interface studies, new results in premelting phenomena, several pioneering studies in application of XAS to electrochemistry and significant progress in our understanding of the structure of amorphous chalcogenide systems and their photostructural changes

  5. The Advanced Gamma-ray Imaging System (AGIS)-Science Highlights

    Science.gov (United States)

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of ~50 atmospheric Cherenkov telescopes distributed over an area of ~1 km2, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of γ-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view (~4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of ~10-13 erg cm-2 sec-1 will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent background rejection and very large effective area

  6. Better team management--better team care?

    Science.gov (United States)

    Shelley, P; Powney, B

    1994-01-01

    Team building should not be a 'bolt-on' extra, it should be a well planned, integrated part of developing teams and assisting their leaders. When asked to facilitate team building by a group of NHS managers we developed a framework which enabled individual members of staff to become more effective in the way they communicated with each other, their teams and in turn within the organization. Facing the challenge posed by complex organizational changes, staff were able to use 3 training days to increase and develop their awareness of the principles of teamwork, better team management, and how a process of leadership and team building could help yield better patient care.

  7. Team dynamics in complex projects

    NARCIS (Netherlands)

    Oeij, P.; Vroome, E.E.M. de; Dhondt, S.; Gaspersz, J.B.R.

    2012-01-01

    Complexity of projects is hotly debated and a factor which affects innovativeness of team performance. Much attention in the past is paid to technical complexity and many issues are related to natural and physical sciences. A growing awareness of the importance of socioorganisational issues is

  8. Geospatial Information Response Team

    Science.gov (United States)

    Witt, Emitt C.

    2010-01-01

    Extreme emergency events of national significance that include manmade and natural disasters seem to have become more frequent during the past two decades. The Nation is becoming more resilient to these emergencies through better preparedness, reduced duplication, and establishing better communications so every response and recovery effort saves lives and mitigates the long-term social and economic impacts on the Nation. The National Response Framework (NRF) (http://www.fema.gov/NRF) was developed to provide the guiding principles that enable all response partners to prepare for and provide a unified national response to disasters and emergencies. The NRF provides five key principles for better preparation, coordination, and response: 1) engaged partnerships, 2) a tiered response, 3) scalable, flexible, and adaptable operations, 4) unity of effort, and 5) readiness to act. The NRF also describes how communities, tribes, States, Federal Government, privatesector, and non-governmental partners apply these principles for a coordinated, effective national response. The U.S. Geological Survey (USGS) has adopted the NRF doctrine by establishing several earth-sciences, discipline-level teams to ensure that USGS science, data, and individual expertise are readily available during emergencies. The Geospatial Information Response Team (GIRT) is one of these teams. The USGS established the GIRT to facilitate the effective collection, storage, and dissemination of geospatial data information and products during an emergency. The GIRT ensures that timely geospatial data are available for use by emergency responders, land and resource managers, and for scientific analysis. In an emergency and response capacity, the GIRT is responsible for establishing procedures for geospatial data acquisition, processing, and archiving; discovery, access, and delivery of data; anticipating geospatial needs; and providing coordinated products and services utilizing the USGS' exceptional pool of

  9. Team Orientations, Interpersonal Relations, and Team Success

    Science.gov (United States)

    Nixon, Howard L.

    1976-01-01

    Contradictions in post research on the concepts of "cohesiveness" and team success seem to arise from the ways in which cohesiveness is measured and the nature of the teams investigated in each study. (MB)

  10. Team cohesion and team success in sport.

    Science.gov (United States)

    Carron, Albert V; Bray, Steven R; Eys, Mark A

    2002-02-01

    The main aim of this study was to examine the relationship between task cohesiveness and team success in elite teams using composite team estimates of cohesion. A secondary aim was to determine statistically the consistency (i.e. 'groupness') present in team members' perceptions of cohesion. Elite university basketball teams (n = 18) and club soccer teams (n = 9) were assessed for cohesiveness and winning percentages. Measures were recorded towards the end of each team's competitive season. Our results indicate that cohesiveness is a shared perception, thereby providing statistical support for the use of composite team scores. Further analyses indicated a strong relationship between cohesion and success (r = 0.55-0.67). Further research using multi-level statistical techniques is recommended.

  11. Ted Hall and the science of biological microprobe X-ray analysis: a historical perspective of methodology and biological dividends.

    Science.gov (United States)

    Gupta, B L

    1991-06-01

    This review surveys the emergence of electron probe X-ray microanalysis as a quantitative method for measuring the chemical elements in situ. The extension of the method to the biological sciences under the influence of Ted Hall is reviewed. Some classical experiments by Hall and his colleagues in Cambridge, UK, previously unpublished, are described; as are some of the earliest quantitative results from the cryo-sections obtained in Cambridge and elsewhere. The progress of the methodology is critically evaluated from the earliest starts to the present state of the art. Particular attention has been focused on the application of the method in providing fresh insights into the role of ions in cell and tissue physiology and pathology. A comprehensive list of references is included for a further pursuit of the topics by the interested reader.

  12. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    Science.gov (United States)

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  13. Application of the gamma-ray attenuation technique to forest sciences in Brazil

    International Nuclear Information System (INIS)

    Rezende, Marcos Antonio de; Costa, Vladimir Eliodoro; Bruder, Edson Marcelo

    2005-01-01

    The study of the physical characteristics of wood is fundamental to its correct utilization by the industry and to an efficient exploitation of this raw material. The most important characteristics of wood are the specific gravity, the shrinkage and the porosity. Those traits are related one to each other and to mechanic resistance and hygroscopicity. The present work proposes the utilization of the gamma-ray attenuation technique, through a sealed source of the radioisotope 241 Am with an activity of 7.4 GBq and an energy of 60 keV, to the determination of physical characteristics of the wood of Pinus tecunumannii, Liquidambar styraciflua and Eucalyptus grandis from cultivated fields of Duratex S/A, in Agudos, Sao Paulo State, Brazil. This work presents the advantages and the facilities of the utilization of this technique in the qualitative and quantitative study of the wood from reforestation fields. This technique is employed to determine the specific gravity of a material through the attenuation of gamma-ray after crossing a sample of uniform thickness. Results revealed superior quality of wood to the species L. styraciflua, followed by E. grandis. Considerable variation in the physical properties of the sample of P. tecunumannii was observed along the radial sense, indicating that this species is highly responsive to climatic factors. The more uniform wood of E. grandis and L. styraciflua suggest that these species may be more adapted to the climatic conditions of the Sao Paulo State than P. tecunumannii. (author)

  14. X-ray absorption fine structure (XAFS) spectroscopy: a tool for structural studies in material sciences (abstract)

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    2011-01-01

    XAFS spectroscopy has revealed itself as a powerful technique for structural characterization of the local atomic environment of individual atomic species, including bond distances, coordination numbers and type of nearest neighbors surrounding the central atom. This technique is particularly useful for materials that show considerable structural and chemical disorder. XAFS spectroscopy has found extensive applications in determining the local atomic and electronic structure of the absorbing centers (atoms) in the materials science, physics, chemistry, biology and geophysics. X-ray absorption edges contain a variety of information on the chemical state and the local structure of the absorbing atom. On the higher energy side of an absorption edge fine structure is observed due to backscattering of the emitted photoelectron. The post-edge region can be divided into two parts. The X-ray Absorption Near Edge Structure (XANES) which extends up to 50 eV of an absorption edge, the spectrum is interpreted in terms of the appropriate components of the local density of states, which would be expected to be sensitive to the valence state of the atom. The intensity, shape and location of the absorption edge features provide information on the valence state, electronic structure and coordination geometry of the absorbing atom.The Extended X-ray Absorption Fine Structure (EXAFS) region is dominated by the single scattering processes and extends up to 1000 eV above the edge and provides information on the radial distribution (coordination number, radial distance and type of neighboring atoms) around the central atom. The results on perovskite based and spinel ferrites systems will be presented, where valence state and cation distributions are determined; the present study will show focus on SrFeO/sub 3/, MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/ materials. (author)

  15. Elpasolite Planetary Ice and Composition Spectrometer (EPICS): A Low-Resource Combined Gamma-Ray and Neutron Spectrometer for Planetary Science

    Science.gov (United States)

    Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.

    2017-12-01

    The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.

  16. Observing Aggression of Teachers in School Teams

    Science.gov (United States)

    Ben Sasson, Dvora; Somech, Anit

    2015-01-01

    To fill the gap in theoretical and empirical knowledge on workplace aggression by teachers working in teams, this study explored its components, its targets, and its contextual determinants. Data were collected through three observations at different schools and at different times on 29 math, homeroom, language, and science studies teams.…

  17. Creating Teams Increases Extension Educator Productivity

    Science.gov (United States)

    Chalker-Scott, Linda; Daniels, Catherine H.; Martini, Nicole

    2016-01-01

    The Garden Team at Washington State University is a transdisciplinary group of faculty, staff, and students with expertise in applied plant and soil sciences and an interest in Extension education. The team's primary mission is to create current, relevant, and peer-reviewed materials as Extension publications for home gardeners. The average yearly…

  18. Your cancer care team

    Science.gov (United States)

    ... gov/ency/patientinstructions/000929.htm Your cancer care team To use the sharing features on this page, ... help your body heal. Working with Your Care Team Each member of your care team plays an ...

  19. Three-Dimensional X-Ray Diffraction Technique for Metals Science

    DEFF Research Database (Denmark)

    Zhang, Yubin; Fan, Guohua

    2017-01-01

    resolution can be micrometer scale and the measurement can be conducted within a reasonable time frame (a few hours). The 3DXRD microscope has originally been developed in cooperation between former Risø National Laboratory and the European Synchrotron Radiation Facility. Currently, this technique has been...... implemented in several large synchrotron facilities, e.g. the Advanced Photon Source (APS) in USA and the Spring-8 in Japan. Another family of 3DXRD technique that utilizes white beam synchrotron X-rays has also been developed in parallel in cooperation between Oak Ridge National Laboratory and APS...... analysis during tensile deformation, recrystallization growth kinetics, recrystallization nucleation, growth of individual recrystallized grain, grain growth after recrystallization, and local residual strain/stress analysis. The recent development of the 3DXRD technique and its potential use for materials...

  20. SphinX soft X-ray spectrophotometer: Science objectives, design and performance

    Science.gov (United States)

    Gburek, S.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Kordylewski, Z.; Podgorski, P.; Plocieniak, S.; Siarkowski, M.; Sylwester, B.; Trzebinski, W.; Kuzin, S. V.; Pertsov, A. A.; Kotov, Yu. D.; Farnik, F.; Reale, F.; Phillips, K. J. H.

    2011-06-01

    The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8-15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations.

  1. Auger- and X-ray photoelectron spectroscopy in materials science a user-oriented guide

    CERN Document Server

    Hofmann, Siegfried

    2013-01-01

    To anyone who is interested in surface chemical analysis of materials on the nanometer scale, this book is prepared to give appropriate information. Based on typical application examples in materials science, a concise approach to all aspects of quantitative analysis of surfaces and thin films with AES and XPS is provided. Starting from basic principles which are step by step developed into practically useful equations, extensive guidance is given to graduate students as well as to experienced researchers. Key chapters are those on quantitative surface analysis and on quantitative depth profiling, including recent developments in topics such as surface excitation parameter and backscattering correction factor. Basic relations are derived for emission and excitation angle dependencies in the analysis of bulk material and of fractional nano-layer structures, and for both smooth and rough surfaces. It is shown how to optimize the analytical strategy, signal-to-noise ratio, certainty and detection limit. Worked e...

  2. Central Laboratory of X-ray and Electron Microscopy Research at the Institute of Physics of the Polish Academy of Sciences, Warsaw

    International Nuclear Information System (INIS)

    Zymierska, D.

    2008-01-01

    The beginning and history of the Central Laboratory of X-ray and Electron Microscopy at the Institute of Physics of the Polish Academy of Sciences in Warsaw is described. Then, recent scientific achievements are presented. Organising activities of the Laboratory staff are also mentioned. (author)

  3. Team Learning in Teacher Teams: Team Entitativity as a Bridge between Teams-in-Theory and Teams-in-Practice

    Science.gov (United States)

    Vangrieken, Katrien; Dochy, Filip; Raes, Elisabeth

    2016-01-01

    This study aimed to investigate team learning in the context of teacher teams in higher vocational education. As teacher teams often do not meet all criteria included in theoretical team definitions, the construct "team entitativity" was introduced. Defined as the degree to which a group of individuals possesses the quality of being a…

  4. TomoBank: a tomographic data repository for computational x-ray science

    Science.gov (United States)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; Joost Batenburg, K.; Ludwig, Wolfgang; Mancini, Lucia; Marone, Federica; Mokso, Rajmund; Pelt, Daniël M.; Sijbers, Jan; Rivers, Mark

    2018-03-01

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology have made sub-second and multi-energy tomographic data collection possible (Gibbs et al 2015 Sci. Rep. 5 11824), but have also increased the demand to develop new reconstruction methods able to handle in situ (Pelt and Batenburg 2013 IEEE Trans. Image Process. 22 5238-51) and dynamic systems (Mohan et al 2015 IEEE Trans. Comput. Imaging 1 96-111) that can be quickly incorporated in beamline production software (Gürsoy et al 2014 J. Synchrotron Radiat. 21 1188-93). The x-ray tomography data bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging datasets and their descriptors.

  5. Team Work

    Directory of Open Access Journals (Sweden)

    Journal of Biochemistry Education

    2015-12-01

    Full Text Available  Equipe de Trabalho 2015 (Jan-Jul1. Equipe editorialEditor-ChefeBayardo Bapstista Torres, Instituto de Química - USP, BrasilEduardo Galembeck, Departamento de Bioquímica, Instituto de Biologia, UNICAMP, Brasil Co-editoresGabriel Gerber Hornink, Depto. Bioquímica, Instituto de Ciências Biomédicas, Universidade - Federal de Alfenas - Unifal-MG, BrasilVera Maria Treis Trindade, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Brasil Corpo EditorialAdriana Cassina, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, UruguaiAngel Herráez, Departamento de Bioquímica y Biología molecular, Universidad de Alcalá de Henares, Madrid, EspanhaAndré Amaral Gonçalves Bianco, Universidade Federal de São Paulo (Unifesp, BrasilDenise Vaz de Macedo, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas - Unicamp, BrasilEneida de Paula, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas - Unicamp, BrasilGuilherme Andrade Marson, Instituto de Química - USP, BrasilJose Antonio Martinez Oyanedel, Universidad de Concepción, ChileJosep Maria Fernández Novell, Dept. Bioquímica i Biologia Molecular Universitat de Barcelona, EspanhaLeila Maria Beltramini, Instituto de Física de São Carlos, Universidade Estadual de São Paulo - USP, BrasilManuel João da Costa, Escola de Ciências da Saúde, Universidade do Minho, PortugalMaria Lucia Bianconi, Instituto de Bioquímica Médica Universidade Federal do Rio de Janeiro (UFRJ, BrasilMaría Noel Alvarez, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, UruguaiMiguel Ángel Medina Torres, Department of Molecular Biology & Biochemistry Faculty of Sciences University of Málaga, EspanhaNelma Regina Segnini Bossolan, Instituto de Física de São Carlos, Universidade de São Paulo - USP, BrasilPaulo De Avila Junior, Centro

  6. Assessing Team Leadership in Emergency Medicine: The Milestones and Beyond

    Science.gov (United States)

    Rosenman, Elizabeth D.; Branzetti, Jeremy B.; Fernandez, Rosemarie

    2016-01-01

    Background Team leadership is a critical skill for emergency medicine physicians that directly affects team performance and the quality of patient care. There exists a robust body of team science research supporting team leadership conceptual models and behavioral skill sets. However, to date, this work has not been widely incorporated into health care team leadership education. Objective This narrative review has 3 aims: (1) to synthesize the team science literature and to translate important concepts and models to health care team leadership; (2) to describe how team leadership is currently represented in the health care literature and in the Accreditation Council for Graduate Medical Education Milestones for emergency medicine; and (3) to propose a novel, evidence-based framework for the assessment of team leadership in emergency medicine. Methods We conducted a narrative review of the team science and health care literature. We summarized our findings and identified a list of team leadership behaviors that were then used to create a framework for team leadership assessment. Results Current health care team leadership measurement tools do not incorporate evidence-based models of leadership concepts from other established domains. The emergency medicine milestones include several team leadership behaviors as part of a larger resident evaluation program. However, they do not offer a comprehensive or cohesive representation of the team leadership construct. Conclusions Despite the importance of team leadership to patient care, there is no standardized approach to team leadership assessment in emergency medicine. Based on the results of our review, we propose a novel team leadership assessment framework that is supported by the team science literature. PMID:27413434

  7. Assessing Team Leadership in Emergency Medicine: The Milestones and Beyond.

    Science.gov (United States)

    Rosenman, Elizabeth D; Branzetti, Jeremy B; Fernandez, Rosemarie

    2016-07-01

    Team leadership is a critical skill for emergency medicine physicians that directly affects team performance and the quality of patient care. There exists a robust body of team science research supporting team leadership conceptual models and behavioral skill sets. However, to date, this work has not been widely incorporated into health care team leadership education. This narrative review has 3 aims: (1) to synthesize the team science literature and to translate important concepts and models to health care team leadership; (2) to describe how team leadership is currently represented in the health care literature and in the Accreditation Council for Graduate Medical Education Milestones for emergency medicine; and (3) to propose a novel, evidence-based framework for the assessment of team leadership in emergency medicine. We conducted a narrative review of the team science and health care literature. We summarized our findings and identified a list of team leadership behaviors that were then used to create a framework for team leadership assessment. Current health care team leadership measurement tools do not incorporate evidence-based models of leadership concepts from other established domains. The emergency medicine milestones include several team leadership behaviors as part of a larger resident evaluation program. However, they do not offer a comprehensive or cohesive representation of the team leadership construct. Despite the importance of team leadership to patient care, there is no standardized approach to team leadership assessment in emergency medicine. Based on the results of our review, we propose a novel team leadership assessment framework that is supported by the team science literature.

  8. The use of the Climate-science Computational End Station (CCES) development and grand challenge team for the next IPCC assessment: an operational plan

    International Nuclear Information System (INIS)

    Washington, W M; Buja, L; Gent, P; Drake, J; Erickson, D; Anderson, D; Bader, D; Dickinson, R; Ghan, S; Jones, P; Jacob, R

    2008-01-01

    The grand challenge of climate change science is to predict future climates based on scenarios of anthropogenic emissions and other changes resulting from options in energy and development policies. Addressing this challenge requires a Climate Science Computational End Station consisting of a sustained climate model research, development, and application program combined with world-class DOE leadership computing resources to enable advanced computational simulation of the Earth system. This project provides the primary computer allocations for the DOE SciDAC and Climate Change Prediction Program. It builds on the successful interagency collaboration of the National Science and the U.S. Department of Energy in developing and applying the Community Climate System Model (CCSM) for climate change science. It also includes collaboration with the National Aeronautics and Space Administration in carbon data assimilation and university partners with expertise in high-end computational climate research

  9. Speeding Up Team Learning.

    Science.gov (United States)

    Edmondson, Amy; Bohmer, Richard; Pisano, Gary

    2001-01-01

    A study of 16 cardiac surgery teams looked at how the teams adapted to new ways of working. The challenge of team management is to implement new processes as quickly as possible. Steps for creating a learning team include selecting a mix of skills and expertise, framing the challenge, and creating an environment of psychological safety. (JOW)

  10. Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams

    Science.gov (United States)

    van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien

    2017-01-01

    Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader’s verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time. PMID:28490856

  11. Team Leader Structuring for Team Effectiveness and Team Learning in Command-and-Control Teams.

    Science.gov (United States)

    van der Haar, Selma; Koeslag-Kreunen, Mieke; Euwe, Eline; Segers, Mien

    2017-04-01

    Due to their crucial and highly consequential task, it is of utmost importance to understand the levers leading to effectiveness of multidisciplinary emergency management command-and-control (EMCC) teams. We argue that the formal EMCC team leader needs to initiate structure in the team meetings to support organizing the work as well as facilitate team learning, especially the team learning process of constructive conflict. In a sample of 17 EMCC teams performing a realistic EMCC exercise, including one or two team meetings (28 in sum), we coded the team leader's verbal structuring behaviors (1,704 events), rated constructive conflict by external experts, and rated team effectiveness by field experts. Results show that leaders of effective teams use structuring behaviors more often (except asking procedural questions) but decreasingly over time. They support constructive conflict by clarifying and by making summaries that conclude in a command or decision in a decreasing frequency over time.

  12. Trust in Diverse Teams

    DEFF Research Database (Denmark)

    Clausen, Lisbeth

    , maintaining team cohesiveness in multicultural teams to collaborate effectively presents a number of challenges. The present study employs the concept of trust to explore influences on team collaboration in high performing teams. The study is based on observation of teams in seven multinational corporations...... and interviews with managers from the US, Europe, China and Japan. The study presents a conceptual framework - a ‘trust buffer’ – which enables analysis and exemplification of the dynamics and challenges of teams as drivers of change. Each team has strategically important tasks, unique capacities and deal...... with change in particular ways: Each team is analyzed in relation to its global (HQ) mandate, local (national) stakeholders and organizational context. It is found that communication energy, resources and team mandate underscore the sense of trust in high performing teams. Diversity is understood...

  13. Developing Your Dream Team

    Science.gov (United States)

    Gatlin, Kenda

    2005-01-01

    Almost anyone has held various roles on a team, be it a family unit, sports team, or a project-oriented team. As an educator, one must make a conscious decision to build and invest in a team. Gathering the best team possible will help one achieve one's goals. This article explores some of the key reasons why it is important to focus on the team…

  14. Team Effectiveness and Team Development in CSCL

    Science.gov (United States)

    Fransen, Jos; Weinberger, Armin; Kirschner, Paul A.

    2013-01-01

    There is a wealth of research on computer-supported cooperative work (CSCW) that is neglected in computer-supported collaborative learning (CSCL) research. CSCW research is concerned with contextual factors, however, that may strongly influence collaborative learning processes as well, such as task characteristics, team formation, team members'…

  15. MANAGING MULTICULTURAL PROJECT TEAMS

    Directory of Open Access Journals (Sweden)

    Cezar SCARLAT

    2014-06-01

    Full Text Available The article is based on literature review and authors’ own recent experience in managing multicultural project teams, in international environment. This comparative study considers two groups of projects: technical assistance (TA projects versus information technology (IT projects. The aim is to explore the size and structure of the project teams – according to the team formation and its lifecycle, and to identify some distinctive attributes of the project teams – both similarities and differences between the above mentioned types of projects. Distinct focus of the research is on the multiculturalism of the project teams: how the cultural background of the team members influences the team performance and team management. Besides the results of the study are the managerial implications: how the team managers could soften the cultural clash, and avoid inter-cultural misunderstandings and even conflicts – in order to get a better performance. Some practical examples are provided as well.

  16. When Science caught up with fiction Our Focus team explores the Large Hadron Collider, one of the world's largest scientific experiments

    CERN Multimedia

    2007-01-01

    "You could be forgiven for thinking that what follows is an extract from a science fiction novel. Modern physics now has a a weel-established traditin of befogging the intuition of the tidiest minds, so readers are urged to leave behing their workaday common sense at the end of this paragraph." (6 pages)

  17. A study of the effects of gender and different instructional media (computer-assisted instruction tutorials vs. textbook) on student attitudes and achievement in a team-taught integrated science class

    Science.gov (United States)

    Eardley, Julie Anne

    The purpose of this study was to determine the effect of different instructional media (computer assisted instruction (CAI) tutorial vs. traditional textbook) on student attitudes toward science and computers and achievement scores in a team-taught integrated science course, ENS 1001, "The Whole Earth Course," which was offered at Florida Institute of Technology during the Fall 2000 term. The effect of gender on student attitudes toward science and computers and achievement scores was also investigated. This study employed a randomized pretest-posttest control group experimental research design with a sample of 30 students (12 males and 18 females). Students had registered for weekly lab sessions that accompanied the course and had been randomly assigned to the treatment or control group. The treatment group used a CAI tutorial for completing homework assignments and the control group used the required textbook for completing homework assignments. The Attitude toward Science and Computers Questionnaire and Achievement Test were the two instruments administered during this study to measure students' attitudes and achievement score changes. A multivariate analysis of covariance (MANCOVA), using hierarchical multiple regression/correlation (MRC), was employed to determine: (1) treatment versus control group attitude and achievement differences; and (2) male versus female attitude and achievement differences. The differences between the treatment group's and control group's homework averages were determined by t test analyses. The overall MANCOVA model was found to be significant at p factor set independent variables separately resulted in gender being the only variable that significantly contributed in explaining the variability in a dependent variable, attitudes toward science and computers. T test analyses of the homework averages showed no significant differences. Contradictory to the findings of this study, anecdotal information from personal communication, course

  18. EFFECTIVENESS OF QUIZ TEAM AND MURDER METHOD ON LEARNING ACTIVITIES AND PROBLEM SOLVING SKILLS IN SOCIAL SCIENCE LEARNING FOR 8th GRADE STUDENTS AT UPI LABORATORY JUNIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Darwanti Darwanti

    2017-06-01

    Full Text Available There are three objectives that shape the study, first, the study is aimed at identifying different problem-solving skills of the students' who were acquainted with quiz team, lecture and MURDER method. Secondly, the study is to point out the difference of students' problem-solving skills when they are exposed to the three methods in a high, moderate, and low intensity. The third objective is to determine interactions among learning methods, learning activities and problem-solving skills. Quasi experiment is used as a method of the study by applying two experiment classes, and one controlled factorial designed class. In analyzing the data, a two-way Anova analysis and variants analysis are implemented to measure the interaction level among the three variables. The results of the study indicate that (1 there are differences in students' problem-solving skills who were exposed to quiz team, lecture and MURDER method; (2 there are also differences in students' problem-solving skills when they were exposed by the mentioned methods in a high, moderate, and low intensity; there are no relevant interactions among learning methods, learning activities and problem-solving skills. The current results are presented such that they can be used as an aid to the methods of social science learning.

  19. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  20. Tiger Team audits

    International Nuclear Information System (INIS)

    Cheney, G.T.

    1992-01-01

    This paper will address the purpose, scope, and approach of the Department of Energy Tiger Team Assessments. It will use the Tiger Team Assessment experience of Sandia National Laboratories at Albuquerque, New Mexico, as illustration

  1. Transforming Virtual Teams

    DEFF Research Database (Denmark)

    Bjørn, Pernille

    2005-01-01

    Investigating virtual team collaboration in industry using grounded theory this paper presents the in-dept analysis of empirical work conducted in a global organization of 100.000 employees where a global virtual team with participants from Sweden, United Kingdom, Canada, and North America were...... studied. The research question investigated is how collaboration is negotiated within virtual teams? This paper presents findings concerning how collaboration is negotiated within a virtual team and elaborate the difficulties due to invisible articulation work and managing multiple communities...... in transforming the virtual team into a community. It is argued that translucence in communication structures within the virtual team and between team and management is essential for engaging in a positive transformation process of trustworthiness supporting the team becoming a community, managing the immanent...

  2. Leadership Team | Wind | NREL

    Science.gov (United States)

    Leadership Team Leadership Team Learn more about the expertise and technical skills of the wind Initiative and provides leadership in the focus areas of high-fidelity modeling, wind power plant controls

  3. Teaming up for learning

    NARCIS (Netherlands)

    Fransen, Jos

    2012-01-01

    Fransen, J. (2012). Teaming up for learning: Team effectiveness in collaborative learning in higher education (Doctoral dissertation). November, 16, 2012, Open University in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  4. Culture and teams.

    Science.gov (United States)

    Kirkman, Bradley L; Shapiro, Debra L; Lu, Shuye; McGurrin, Daniel P

    2016-04-01

    We first review research on culture effects in teams, illustrating that mean levels of team cultural values have main (i.e. direct) effects, indirect effects (i.e. mediated by intervening variables), and moderating influences on team processes and outcomes. Variance in team cultural values or on country of origin (i.e. nationality diversity) also has main effects on team functioning, and we highlight contextual variables that strengthen or weaken these main effects. We next review research examining the effect of variance in team cultural values on global virtual teams, specifically. Finally, we review research on how cultural values shape employees' receptivity to empowering leadership behavior in teams. We conclude by discussing critical areas for future research. Published by Elsevier Ltd.

  5. Your Dialysis Care Team

    Science.gov (United States)

    ... A to Z Health Guide Your Dialysis Care Team Tweet Share Print Email Good health care is ... dialyzers (artificial kidneys) for reuse. Vascular Access Care Team If you are a hemodialysis patient, another group ...

  6. Building multidisciplinary business teams

    International Nuclear Information System (INIS)

    Dyson, C.J.; Winte, N.C.

    1991-01-01

    This paper is a description of an approach to managing Exploration and Production assets through the operation of multidisciplinary business teams. The business team approach can assist in improved asset performance in terms of efficiency, motivation and business results, compared with more traditional matrix style hierarchies. Within this paper certain critical success factors for the long term success of multidiscipline teams are outlined, together with some of the risk of business team operation

  7. Toward Learning Teams

    DEFF Research Database (Denmark)

    Hoda, Rashina; Babb, Jeff; Nørbjerg, Jacob

    2013-01-01

    to sacrifice learning-focused practices. Effective learning under pressure involves conscious efforts to implement original agile practices such as retrospectives and adapted strategies such as learning spikes. Teams, their management, and customers must all recognize the importance of creating learning teams......Today's software development challenges require learning teams that can continuously apply new engineering and management practices, new and complex technical skills, cross-functional skills, and experiential lessons learned. The pressure of delivering working software often forces software teams...

  8. Formalization of Team Creation

    OpenAIRE

    Cerman, Tomáš

    2010-01-01

    This paper is divided to practical and theoretical part. Theoretical part defines essential background of personality and work psychology which are pillars for using the personality and roles typology in practical part. I also define conceptions such as group, team, procedures of making the team. Practical part is focused at making the repertoary grid which outlines proximity of team roles, anchored in the repertoary grids upon personal atributes basis and picked team positions.

  9. Incorporating Library School Interns on Academic Library Subject Teams

    Science.gov (United States)

    Sargent, Aloha R.; Becker, Bernd W.; Klingberg, Susan

    2011-01-01

    This case study analyzes the use of library school interns on subject-based teams for the social sciences, humanities, and sciences in the San Jose State University Library. Interns worked closely with team librarians on reference, collection development/management, and instruction activities. In a structured focus group, interns reported that the…

  10. Structuring Effective Student Teams.

    Science.gov (United States)

    Dickson, Ellen L.

    1997-01-01

    Experience with student teams working on policy analysis projects indicates the need for faculty supervision of teams in the process of addressing complex issues. The problem-solving approach adopted in one policy analysis course is described, including assignments and tasks, issues and sponsors, team dynamics, conflict management, and the…

  11. Fostering teachers' team learning

    NARCIS (Netherlands)

    Bouwmans, Machiel; Runhaar, Piety; Wesselink, Renate; Mulder, Martin

    2017-01-01

    The implementation of educational innovations by teachers seems to benefit from a team approach and team learning. The study's goal is to examine to what extent transformational leadership is associated with team learning, and to investigate the mediating roles of participative decision-making,

  12. Leadership for Distributed Teams

    NARCIS (Netherlands)

    De Rooij, J.P.G.

    2009-01-01

    The aim of this dissertation was to study the little examined, yet important issue of leadership for distributed teams. Distributed teams are defined as: “teams of which members are geographically distributed and are therefore working predominantly via mediated communication means on an

  13. Microbeam X-ray analysis in Poland - past and future

    International Nuclear Information System (INIS)

    Kusinski, J

    2010-01-01

    The article provides an overview of the development of electron beam X-ray microanalysis (EPMA) in Poland. Since the introduction by Prof. Bojarski of EMPA over 45 years ago, tremendous advances in methodologies and in instrumentation have been made in order to improve the precision of quantitative compositional analysis, spatial resolution and analytical sensitivity. This was possible due to the activity of Applied Crystallography Committee at the Polish Academy of Sciences, as well as the groups of researches working in the Institute for Ferrous Metallurgy (Gliwice), the Technical University of Warsaw, the Silesian Technical University (Katowice), the AGH-University of Sciences and Technology (Krakow), and the Institute of Materials Science and Metallurgy Polish Academy of Sciences (Krakow). Based on the research examples realized by these teams, conferences, seminars and congresses organized, as well as books and academic textbooks issued, the evolution of electron beam X-ray microanalysis in Poland is demonstrated.

  14. The impact of team familiarity and team leader experience on team coordination errors: A panel analysis of professional basketball teams

    NARCIS (Netherlands)

    Sieweke, Jost; Zhao, B.

    2015-01-01

    To explore the dynamics involved in team coordination, we examine the impact of team familiarity and team leader experience on team coordination errors (TCEs). We argue that team familiarity has a U-shaped effect on TCEs. We study the moderating effects of team leader prior experience and team

  15. Big science

    CERN Multimedia

    Nadis, S

    2003-01-01

    " "Big science" is moving into astronomy, bringing large experimental teams, multi-year research projects, and big budgets. If this is the wave of the future, why are some astronomers bucking the trend?" (2 pages).

  16. Team knowledge research: emerging trends and critical needs.

    Science.gov (United States)

    Wildman, Jessica L; Thayer, Amanda L; Pavlas, Davin; Salas, Eduardo; Stewart, John E; Howse, William R

    2012-02-01

    This article provides a systematic review of the team knowledge literature and guidance for further research. Recent research has called attention to the need for the improved study and understanding of team knowledge. Team knowledge refers to the higher level knowledge structures that emerge from the interactions of individual team members. We conducted a systematic review of the team knowledge literature, focusing on empirical work that involves the measurement of team knowledge constructs. For each study, we extracted author degree area, study design type, study setting, participant type, task type, construct type, elicitation method, aggregation method, measurement timeline, and criterion domain. Our analyses demonstrate that many of the methodological characteristics of team knowledge research can be linked back to the academic training of the primary author and that there are considerable gaps in our knowledge with regard to the relationships between team knowledge constructs, the mediating mechanisms between team knowledge and performance, and relationships with criteria outside of team performance, among others. We also identify categories of team knowledge not yet examined based on an organizing framework derived from a synthesis of the literature. There are clear opportunities for expansion in the study of team knowledge; the science of team knowledge would benefit from a more holistic theoretical approach. Human factors researchers are increasingly involved in the study of teams. This review and the resulting organizing framework provide researchers with a summary of team knowledge research over the past 10 years and directions for improving further research.

  17. National Science Bowl | NREL

    Science.gov (United States)

    Science Bowl National Science Bowl The Department of Energy's Office of Science sponsors the National Science Bowl competition. This fun, fast-paced academic tournament tests the brainpower of middle and high school student teams on science and math topics. The National Science Bowl provides an

  18. Self-Identified Vampirism and Risk for False Positives: A Case Example of Team Homicide and Implications for Forensic Behavioral Science.

    Science.gov (United States)

    Williams, D J

    2017-05-01

    Historically, reported cases of self-identified vampirism typically have been associated with psychopathology and sometimes a propensity for violence. However, scholars recently have noted a wide range of diverse practices and meanings that all fall under the general description of self-identified vampirism. This brief report focuses on a homicide case (male and female partnered offenders), wherein a single victim was murdered and dismembered. Due to specific case evidence, there was controversy regarding whether or not the homicide was motivated by ritualistic self-identified vampirism. Court documents were reviewed and assessed, and findings suggest that the evidence used to support assertions that homicidal motivations occurred due to ritualistic vampirism was misinterpreted due to the omission of a growing multidisciplinary literature on self-identified vampirism. It is important for forensic experts to be aware of emerging research on alternative identities, including vampirism, that challenge traditional theories and assumptions. © 2016 American Academy of Forensic Sciences.

  19. Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

    CERN Multimedia

    2004-01-01

    Thanks to CERN's team of surveyors, the Organization's stand at the Night of Science attracted a large number of visitors : the technology and tools used by the surveyors, such as the Terrameter shown here, attracted many visitors to the CERN stand

  20. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams.

    Science.gov (United States)

    Van Hooft, Edwin A J; Van Mierlo, Heleen

    2018-01-01

    Models of team development have indicated that teams typically engage in task delay during the first stages of the team's life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams' composition in terms of individual-level trait procrastination, as well as the teams' motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy) predicted team procrastination. Team procrastination related positively to team members' stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams' collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination.

  1. Interpersonal team leadership skills.

    Science.gov (United States)

    Nelson, M

    1995-05-01

    To say that a team leader's job is a tough one is certainly not saying enough. It is up to the team leader to manage a group of people to be individuals but yet work as a team. The team leader must keep the peace and yet create a revolution with this group all at the same time. The good leader will require a lot of education, training, and tons of practical application to be a success. The good news, however, is that the team leader's job is a rewarding one, one that they'll always feel good about if they do it right. How many of us get the opportunity to take a group of wonderful, thinking individual minds and pull from them ideas that a whole team can take to success? Yes, the job is indeed tough, but the paybacks are many.

  2. Managing multicultural teams.

    Science.gov (United States)

    Brett, Jeanne; Behfar, Kristin; Kern, Mary C

    2006-11-01

    Multicultural teams offer a number of advantages to international firms, including deep knowledge of different product markets, culturally sensitive customer service, and 24-hour work rotations. But those advantages may be outweighed by problems stemming from cultural differences, which can seriously impair the effectiveness of a team or even bring itto a stalemate. How can managers best cope with culture-based challenges? The authors conducted in-depth interviews with managers and members of multicultural teams from all over the world. Drawing on their extensive research on dispute resolution and teamwork and those interviews, they identify four problem categories that can create barriers to a team's success: direct versus indirect communication, trouble with accents and fluency, differing attitudes toward hierarchy and authority, and conflicting norms for decision making. If a manager--or a team member--can pinpoint the root cause of the problem, he or she is likelier to select an appropriate strategy for solving it. The most successful teams and managers, the authors found, dealt with multicultural challenges in one of four ways: adaptation (acknowledging cultural gaps openly and working around them), structural intervention (changing the shape or makeup of the team), managerial intervention (setting norms early or bringing in a higher-level manager), and exit (removing a team member when other options have failed). Which strategy is best depends on the particular circumstances--and each has potential complications. In general, though, managers who intervene early and set norms; teams and managers who try to engage everyone on the team; and teams that can see challenges as stemming from culture, not personality, succeed in solving culture-based problems with good humor and creativity. They are the likeliest to harvest the benefits inherent in multicultural teams.

  3. The NPD team conflict

    DEFF Research Database (Denmark)

    Ma, Zheng; Lin, Chih-Cheng; Tanev, Stoyan

    2012-01-01

    elaborates on the role of culture diversity and geographical dispersion in NPD team conflict. A simulation is conducted where organizations may be regarded as complex systems to affect the team conflict with a variety of influences. The results firstly indicate that there are two dimensions of NPD team...... conflict: stable and unstable dimensions with four elements: task characteristics, group members’ relationship, cultural diversity and geographical dispersion; secondly, there are two phenomena whereby the geographical dispersion influences the NPD team interaction, and the influence between cultural...

  4. Path to 'Stardom' in Globally Distributed Hybrid Teams

    DEFF Research Database (Denmark)

    Sarker, Suprateek; Hove-Kirkeby, Sarah; Sarker, Saonee

    2011-01-01

    recognition that specific individuals within such teams are often critical to the team's performance. Consequently, existing knowledge about such teams may be enhanced by examining the factors that affect the performance of individual team members. This study attempts to address this need by identifying...... individuals who emerge as “stars” in globally distributed teams involved in knowledge work such as information systems development (ISD). Specifically, the study takes a knowledge-centered view in explaining which factors lead to “stardom” in such teams. Further, it adopts a social network approach consistent......Although distributed teams have been researched extensively in information systems and decision science disciplines, a review of the literature suggests that the dominant focus has been on understanding the factors affecting performance at the team level. There has however been an increasing...

  5. Laboratory and In-Flight In-Situ X-ray Imaging and Scattering Facility for Materials, Biotechnology and Life Sciences

    Science.gov (United States)

    2003-01-01

    We propose a multifunctional X-ray facility for the Materials, Biotechnology and Life Sciences Programs to visualize formation and behavior dynamics of materials, biomaterials, and living organisms, tissues and cells. The facility will combine X-ray topography, phase micro-imaging and scattering capabilities with sample units installed on the goniometer. This should allow, for the first time, to monitor under well defined conditions, in situ, in real time: creation of imperfections during growth of semiconductors, metal, dielectric and biomacromolecular crystals and films, high-precision diffraction from crystals within a wide range of temperatures and vapor, melt, solution conditions, internal morphology and changes in living organisms, tissues and cells, diffraction on biominerals, nanotubes and particles, radiation damage, also under controlled formation/life conditions. The system will include an ultrabright X-ray source, X-ray mirror, monochromator, image-recording unit, detectors, and multipurpose diffractometer that fully accommodate and integrate furnaces and samples with other experimental environments. The easily adjustable laboratory and flight versions will allow monitoring processes under terrestrial and microgravity conditions. The flight version can be made available using a microsource combined with multilayer or capillary optics.

  6. Instruments for radiation measurement in life sciences (5). 'Development of imaging Technology in life sciences'. 5. X-ray CT for laboratory animals

    International Nuclear Information System (INIS)

    Tamegai, Toshiaki

    2007-01-01

    X-ray computed tomography, commercialized by EMI Co., UK, in 1973 and now used world-widely, is used not only for medical use but also for laboratory animals such as rats and mice to measure bone density and to obtain fine structures of bones. This paper introduces X-ray CT apparatus specifically designed for laboratory animals. Besides general explanations about the method, followed by emphasis on important performance of the measuring system, the paper explains technical aspects for obtaining the CT imaging scan procedure thus showing several photographs as example and introducing some clinical applications. (S. Ohno)

  7. Expanding the Advising Team.

    Science.gov (United States)

    Glennen, Robert E.; And Others

    1989-01-01

    The process and results of team building by Emporia State University's centralized advising center are examined from the perspectives of president, enrollment management, centralized advising, and faculty. The effort demonstrates that administrative, state, and team commitment can produce positive results in freshman retention, higher graduation…

  8. Cooperative Team Networks

    Science.gov (United States)

    2016-06-01

    team processes, such as identifying motifs of dynamic communication exchanges which goes well beyond simple dyadic and triadic configurations; as well...new metrics and ways to formulate team processes, such as identifying motifs of dynamic communication exchanges which goes well beyond simple dyadic ...sensing, communication , information, and decision networks - Darryl Ahner (AFIT: Air Force Inst Tech) Panel Session: Mathematical Models of

  9. Team Leadership in Practice.

    Science.gov (United States)

    Neck, Christopher; Manz, Charles C.; Manz, Karen P.

    1998-01-01

    Although educational teams can help reduce teachers' feelings of isolation and enhance instruction, ineffective leadership often dooms their efforts. This article describes four team leadership approaches: "strong-man,""transactor,""visionary hero," and "SuperLeadership." The last is superior, since it…

  10. Gender diversity in teams

    OpenAIRE

    Ghazala Azmat

    2014-01-01

    Women’s representation on corporate boards, political committees, and other teams is increasing, in part because of legal mandates. Data on team dynamics and gender differences in preferences (risk-taking behavior, taste for competition, prosocial behavior) show how gender composition influences group decision-making and subsequent performance through channels such as investment decisions, internal management, corporate governance, and social responsibility.

  11. Trust in agile teams

    DEFF Research Database (Denmark)

    Tjørnehøj, Gitte; Fransgård, Mette; Skalkam, Signe

    2012-01-01

    actions influenced this. We see two important lessons from the analysis. First the agile practices of daily Scrum and self organizing team can empower DSD teams to manage their own development of trust and thereby alleviate the obstacles of DSD. Second if management fails to support the development...

  12. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  13. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams

    Science.gov (United States)

    Van Hooft, Edwin A. J.; Van Mierlo, Heleen

    2018-01-01

    Models of team development have indicated that teams typically engage in task delay during the first stages of the team’s life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams’ composition in terms of individual-level trait procrastination, as well as the teams’ motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy) predicted team procrastination. Team procrastination related positively to team members’ stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams’ collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination. PMID:29674991

  14. When Teams Fail to Self-Regulate: Predictors and Outcomes of Team Procrastination Among Debating Teams

    Directory of Open Access Journals (Sweden)

    Edwin A. J. Van Hooft

    2018-04-01

    Full Text Available Models of team development have indicated that teams typically engage in task delay during the first stages of the team’s life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The present study introduces the concept of team procrastination as a lens through which we can examine whether teams collectively engage in unplanned, voluntary, and irrational delay of team tasks. Based on theory and research on self-regulation, team processes, and team motivation we developed a conceptual multilevel model of predictors and outcomes of team procrastination. In a sample of 209 student debating teams, we investigated whether and why teams engage in collective procrastination as a team, and what consequences team procrastination has in terms of team member well-being and team performance. The results supported the existence of team procrastination as a team-level construct that has some stability over time. The teams’ composition in terms of individual-level trait procrastination, as well as the teams’ motivational states (i.e., team learning goal orientation, team performance-approach goal orientation in interaction with team efficacy predicted team procrastination. Team procrastination related positively to team members’ stress levels, especially for those low on trait procrastination. Furthermore, team procrastination had an indirect negative relationship with team performance, through teams’ collective stress levels. These findings add to the theoretical understanding of self-regulatory processes of teams, and highlight the practical importance of paying attention to team-level states and processes such as team goal orientation and team procrastination.

  15. Leading Teams of Leaders: What Helps Team Member Learning?

    Science.gov (United States)

    Higgins, Monica; Young, Lissa; Weiner, Jennie; Wlodarczyk, Steven

    2010-01-01

    School districts are moving toward a new form of management in which superintendents need to form and nurture leadership teams. A study of 25 such teams in Connecticut suggests that a team's effectiveness is maximized when the team members are coached by other team members, not the superintendent, and when they are coached on task-related…

  16. Team Psychological Safety and Team Learning: A Cultural Perspective

    Science.gov (United States)

    Cauwelier, Peter; Ribière, Vincent M.; Bennet, Alex

    2016-01-01

    Purpose: The purpose of this paper was to evaluate if the concept of team psychological safety, a key driver of team learning and originally studied in the West, can be applied in teams from different national cultures. The model originally validated for teams in the West is applied to teams in Thailand to evaluate its validity, and the views team…

  17. Measuring Team Learning Behaviours through Observing Verbal Team Interaction

    Science.gov (United States)

    Raes, Elisabeth; Boon, Anne; Kyndt, Eva; Dochy, Filip

    2015-01-01

    Purpose: This study aims to explore, as an answer to the observed lack of knowledge about actual team learning behaviours, the characteristics of the actual observed basic team learning behaviours and facilitating team learning behaviours more in-depth of three project teams. Over time, team learning in an organisational context has been…

  18. Team Learning Beliefs and Behaviours in Response Teams

    Science.gov (United States)

    Boon, Anne; Raes, Elisabeth; Kyndt, Eva; Dochy, Filip

    2013-01-01

    Purpose: Teams, teamwork and team learning have been the subject of many research studies over the last decades. This article aims at investigating and confirming the Team Learning Beliefs and Behaviours (TLB&B) model within a very specific population, i.e. police and firemen teams. Within this context, the paper asks whether the team's…

  19. Groups Meet . . . Teams Improve: Building Teams That Learn

    Science.gov (United States)

    Hillier, Janet; Dunn-Jensen, Linda M.

    2013-01-01

    Although most business students participate in team-based projects during undergraduate or graduate course work, the team experience does not always teach team skills or capture the team members' potential: Students complete the task at hand but the explicit process of becoming a team is often not learned. Drawing from organizational learning…

  20. Team flow - The Magic of Collaboration

    NARCIS (Netherlands)

    M. Makowski; Dr. Paul Breman

    2008-01-01

    This paper is about the conceptual framework of team flow and the action research project at the Hogeschool Utrecht (University of Applied Sciences) which has been launched recently. Have you ever linked the performance of The Rolling Stones - as a long - standing successful music business - to

  1. Robotics Team Lights Up New Year's Eve

    Science.gov (United States)

    LeBlanc, Cheryl

    2011-01-01

    A robotics team from Muncie, Indiana--the PhyXTGears--is made up of high school students from throughout Delaware County. The group formed as part of the FIRST Robotics program (For Inspiration and Recognition of Science and Technology), an international program founded by inventor Dean Kamen in which students work with professional engineers and…

  2. Managing teams performing complex innovation projects

    NARCIS (Netherlands)

    Oeij, P.R.A.; Vroome, E.M.M. de; Dhondt, S.; Gaspersz, J.B.R.

    2012-01-01

    Complexity of projects is hotly debated and a factor which affects innovativeness of team performance. Much attention in the past is paid to technical complexity and many issues are related to natural and physical sciences. A growing awareness of the importance of socio-organisational issues is

  3. Jyotiranjan S Ray

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Jyotiranjan S Ray. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 39-47. Emplacement of Amba Dongar Carbonatite-alkaline Complex at Cretaceous/Tertiary Boundary: Evidence from 40Ar-39Ar Chronology · Jyotiranjan S Ray ...

  4. Next generation red teaming

    CERN Document Server

    Dalziel, Henry

    2015-01-01

    Red Teaming is can be described as a type of wargaming.In private business, penetration testers audit and test organization security, often in a secretive setting. The entire point of the Red Team is to see how weak or otherwise the organization's security posture is. This course is particularly suited to CISO's and CTO's that need to learn how to build a successful Red Team, as well as budding cyber security professionals who would like to learn more about the world of information security. Teaches readers how to dentify systemic security issues based on the analysis of vulnerability and con

  5. Project team motyvation

    OpenAIRE

    Jasionis, Dominykas

    2016-01-01

    The term paper is to analyze the formation of the team and its - motyvation, and interviews from four different companies and find out the leaders in terms of your team, and what principle he tries to motivate her. The Tasks of this paper is to review the organization formed by a team; investigate the promotion of employees in enterprises; The four firms interviewed; Assess how you can work in different organizations. Methods used To analyze the topic, I decided to interview four different co...

  6. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    Science.gov (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  7. Hearing Conservation Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Hearing Conservation Team focuses on ways to identify the early stages of noise-induced damage to the human ear.Our current research involves the evaluation of...

  8. Forging Provincial Reconstruction Teams

    National Research Council Canada - National Science Library

    Honore, Russel L; Boslego, David V

    2007-01-01

    The Provincial Reconstruction Team (PRT) training mission completed by First U.S. Army in April 2006 was a joint Service effort to meet a requirement from the combatant commander to support goals in Afghanistan...

  9. Critical Care Team

    Science.gov (United States)

    ... often uphold the patient's wishes. The critical care nurse becomes an important part of decision-making with the patient, the family and the care team. A registered nurse (RN) who is certified in critical care is ...

  10. Integrated Transdisciplinary Teams.

    Science.gov (United States)

    Gallivan-Fenlon, Amanda

    1994-01-01

    This article reviews the use of transdisciplinary teaming and integrated therapy for young children with multiple disabilities. It presents examples and suggestions for implementation, in the areas of flexibility, Individualized Education Program development, and parent participation. (JDD)

  11. Submarine Medicine Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Submarine Medicine Team conducts basic and applied research on biomedical aspects of submarine and diving environments. It focuses on ways to optimize the health...

  12. Virtual Project Teams

    DEFF Research Database (Denmark)

    Bjørn, Pernille

    technology in six real-life virtual teams, two in industry and four in education, applying interpretative research and action research methods. Two main lines of investigation are pursued: the first involves an examination of the organisational issues related to groupware adaptation in virtual project teams......, professional disciplines, time differences and technology. This thesis comprises a general introduction, referred to as the summary report, and seven research papers, which deal in detail with the results and findings of the empirical cases. The summary report provides a general introduction to the research......, while the second looks at the social context and practices of virtual project teams. Two of the key findings are 1) that the process of groupware adaptation by virtual project teams can be viewed as a process of expanding and aligning the technological frames of the participants, which includes mutual...

  13. Virtual team collaboration

    DEFF Research Database (Denmark)

    Bjørn, Pernille; Ngwenyama, Ojelanki

    2009-01-01

    Managing international teams with geographically distributed participants is a complex task. The risk of communication breakdowns increases due to cultural and organizational differences grounded in the geographical distribution of the participants. Such breakdowns indicate general misunderstandi...

  14. Media and Security Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Media And Security Team led by Prof. Min Wu was established in Fall 2001 at University of Maryland, College Park. A number of research and education activities...

  15. PPB | Study Team

    Science.gov (United States)

    The Pleuropulmonary Blastoma (PPB) DICER1 Syndrome Study team is made up of researchers from the National Cancer Institute, Children¹s National Medical Center, the International Pleuropulmonary Blastoma Registry, and Washington University in St. Louis.

  16. Leading Strategic Leader Teams

    National Research Council Canada - National Science Library

    Burleson, Willard M

    2008-01-01

    .... Although only 1 to 2 percent of the Army's senior leaders will attain a command position of strategic leadership, they are assisted by others, not only by teams specifically designed and structured...

  17. Magnetosphere imager science definition team: Executive summary

    Science.gov (United States)

    Armstrong, T. P.; Gallagher, D. L.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report summarizes the scientific rationale for such a magnetospheric imaging mission and outlines a mission concept for its implementation.

  18. Magnetosphere imager science definition team interim report

    Science.gov (United States)

    Armstrong, T. P.; Johnson, C. L.

    1995-01-01

    For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in may different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data nd help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report documents the scientific rational for such a magnetospheric imaging mission and provides a mission concept for its implementation.

  19. Making Teamwork Work: Team Knowledge for Team Effectiveness.

    Science.gov (United States)

    Guchait, Priyanko; Lei, Puiwa; Tews, Michael J

    2016-01-01

    This study examined the impact of two types of team knowledge on team effectiveness. The study assessed the impact of taskwork knowledge and teamwork knowledge on team satisfaction and performance. A longitudinal study was conducted with 27 service-management teams involving 178 students in a real-life restaurant setting. Teamwork knowledge was found to impact both team outcomes. Furthermore, team learning behavior was found to mediate the relationships between teamwork knowledge and team outcomes. Educators and managers should therefore ensure these types of knowledge are developed in teams along with learning behavior for maximum effectiveness.

  20. Teams make it work: how team work engagement mediates between social resources and performance in teams.

    Science.gov (United States)

    Torrente, Pedro; Salanova, Marisa; Llorens, Susana; Schaufeli, Wilmar B

    2012-02-01

    In this study we analyze the mediating role of team work engagement between team social resources (i.e., supportive team climate, coordination, teamwork), and team performance (i.e., in-role and extra-role performance) as predicted by the Job Demands-Resources Model. Aggregated data of 533 employees nested within 62 teams and 13 organizations were used, whereas team performance was assessed by supervisor ratings. Structural equation modeling revealed that, as expected, team work engagement plays a mediating role between social resources perceived at the team level and team performance as assessed by the supervisor.

  1. Interdisciplinary Team Teaching versus Departmentalization in Middle Schools.

    Science.gov (United States)

    Alspaugh, John W.; Harting, Roger D.

    1998-01-01

    Studied the effects of interdisciplinary teaming versus departmentalization on student achievement in middle schools. Found no significant differences for reading, math, science, and social studies achievement. Results suggest that team teaching merits further investigation as a potential strategy for mediating the student achievement loss…

  2. Creation of Exercises for Team-Based Learning in Business

    Science.gov (United States)

    Timmerman, John E.; Morris, R. Franklin, Jr.

    2015-01-01

    Team-based learning (TBL) is an approach that builds on both the case method and problem-based learning and has been widely adopted in the sciences and healthcare disciplines. In recent years business disciplines have also discovered the value of this approach. One of the key characteristics of the team-based learning approach consists of…

  3. When teams fail to self-regulate: Predictors and outcomes of team procrastination among debating teams

    NARCIS (Netherlands)

    E.A.J. van Hooft (Edwin); H. van Mierlo (Heleen)

    2018-01-01

    textabstractModels of team development have indicated that teams typically engage in task delay during the first stages of the team's life cycle. An important question is to what extent this equally applies to all teams, or whether there is variation across teams in the amount of task delay. The

  4. Application of the proton induced X-ray emission (PIXE) technique to the study of problems in forensic science

    International Nuclear Information System (INIS)

    Sen, S.; Varier, K.M.; Mehta, G.K.; Sen, P.; Panigrahi, N.

    1981-01-01

    The PIXE technique has been successfully applied to study crime related problems in forensic science. The experimental arrangements and various practical problems involved are discussed. Consistency and reproducibility checks are presented. The results from the gun-shot residue profiles of the associated elements about the bullet hole obtained for various firing distances showed that the sensitivity of the PIXE technique could play a vital role in forensic science in assigning the distance from the gun to the victim and identifying the type of bullet used. PIXE runs on other forensic related specimens demonstrate its usefulness in indetification and evaluation of vital parameters related to a crime. The reliability and the importance of the PIXE method in solving criminal and related problems in forensic science are discussed. (orig.)

  5. The Impact of Gender Diversity on the Performance of Business Teams: Evidence from a Field Experiment

    OpenAIRE

    Hoogendoorn, Sander; Oosterbeek, Hessel; van Praag, Mirjam

    2011-01-01

    This discussion paper resulted in an article in Management Science . Volume 59 issue 7, pages 1514-1528. This paper reports on a field experiment conducted to estimate the impact of the share of women in business teams on their performance. Teams consisting of undergraduate students in business studies start up a venture as part of their curriculum. We manipulated the gender composition of teams and assigned students randomly to teams, conditional on their gender. We find that teams with an e...

  6. Relationships among Team Trust, Team Cohesion, Team Satisfaction and Project Team Effectiveness as Perceived by Project Managers in Malaysia

    OpenAIRE

    Han-Ping Fung

    2014-01-01

    Today, more and more project teams are formed to achieve organizational objectives as organizations generally recognized the importance and benefits of project teams. There is a compelling reason to study what are the team outcome factors that can predict project team effectiveness as it is unclear whether these team outcome factors can yield the same result in project setting whereby there is resource and time constraint compare to normal work teams which are ongoing and operational in natur...

  7. The Research of Self-Management Team and Superior-Direction Team in Team Learning Influential Factors

    OpenAIRE

    Zhang Wei

    2013-01-01

    Team learning is a cure for bureaucracy; it facilitates team innovation and team performance. But team learning occurs only when necessary conditions were met. This research focused on differences of team learning influential factors between self-management team and superior-direction team. Four variables were chosen as predictors of team learning though literature review and pilot interview. The 4 variables are team motivation, team trust, team conflict and team leadership. Selected 54 self ...

  8. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    International Nuclear Information System (INIS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-01-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors

  9. MapX An In Situ, Full-frame X-Ray Spectroscopic Imager for Planetary Science and Astrobiology

    Science.gov (United States)

    Blake, David; Sarrazin, Philippe; Thompson, Kathleen; Bristow, Thomas

    2017-01-01

    Microbial life exploits micron-scale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms - 10's to 100's of microns. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist under habitable conditions? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an in situ robotic spacecraft instrument that images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. MapX provides element maps with less than or equal to100 microns resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground- or instrument-selected Regions of Interest (ROI). XRF spectra are converted to mineralogies using ground- or instrument-based algorithms. Either X-ray tube or radioisotope sources such as 244Cm (Alpha-particle and gamma- ray fluorescence) can be used. Fluoresced sample Xrays are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection / identification of habitable environments will be presented.

  10. X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaguo

    2013-06-15

    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of Xray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations left angle 100 right angle and left angle 111 right angle produced by four vendors, CiS, Hamamatsu, Canberra and Sintef have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron-light source. Using capacitance/ conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the densities of oxide charges and interface traps at the Si-SiO{sub 2} interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the oxide-charge density, the interface-trap density and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the oxide-charge density, the interface-trap density and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO{sub 2} to the Si-SiO{sub 2} interface. To verify the long-term stability of irradiated silicon sensors, annealing studies have been performed at 60 C and 80 C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy as well, and the annealing kinetics of oxide charges and surface current were determined. Moreover, the macroscopic electrical properties of segmented sensors have slao been investigated as function of dose. It is found that the defects introduced by X-rays increase the full depletion voltage, the surface leakage current and the inter-electrode capacitance of the segmented sensor. An

  11. X-ray radiation damage studies and design of a silicon pixel sensor for science at the XFEL

    International Nuclear Information System (INIS)

    Zhang, Jiaguo

    2013-06-01

    Experiments at the European X-ray Free Electron Laser (XFEL) require silicon pixel sensors which can withstand X-ray doses up to 1 GGy. For the investigation of Xray radiation damage up to these high doses, MOS capacitors and gate-controlled diodes built on high resistivity n-doped silicon with crystal orientations left angle 100 right angle and left angle 111 right angle produced by four vendors, CiS, Hamamatsu, Canberra and Sintef have been irradiated with 12 keV X-rays at the DESY DORIS III synchrotron-light source. Using capacitance/ conductance-voltage, current-voltage and thermal dielectric relaxation current measurements, the densities of oxide charges and interface traps at the Si-SiO 2 interface, and the surface-current densities have been determined as function of dose. Results indicate that the dose dependence of the oxide-charge density, the interface-trap density and the surface-current density depend on the crystal orientation and producer. In addition, the influence of the voltage applied to the gates of the MOS capacitor and the gate-controlled diode during X-ray irradiation on the oxide-charge density, the interface-trap density and the surface-current density has been investigated at doses of 100 kGy and 100 MGy. It is found that both strongly depend on the gate voltage if the electric field in the oxide points from the surface of the SiO 2 to the Si-SiO 2 interface. To verify the long-term stability of irradiated silicon sensors, annealing studies have been performed at 60 C and 80 C on MOS capacitors and gate-controlled diodes irradiated to 5 MGy as well, and the annealing kinetics of oxide charges and surface current were determined. Moreover, the macroscopic electrical properties of segmented sensors have slao been investigated as function of dose. It is found that the defects introduced by X-rays increase the full depletion voltage, the surface leakage current and the inter-electrode capacitance of the segmented sensor. An electron

  12. Team Creative Environment as a Mediator Between CWX and R&D Team Performance and Moderating Boundary Conditions.

    Science.gov (United States)

    Bornay-Barrachina, Mar; Herrero, Inés

    2018-01-01

    The purpose of this study was to investigate how high-quality dyadic co-worker relationships (CWXs) favour or hinder team performance. Specifically, we examine the role played by CWX, team creative environment, job complexity and task interdependence to achieve higher levels of team performance. We analyse data from 410 individuals belonging to 81 R&D teams in technology sciences to examine the quality of the dyadic relationships between team members under the same supervisor (co-workers) and team performance measured by the number of publications as their research output. Higher levels of team average CWX relationships are positively related to the establishment of a favourable creative team environment, ending into higher levels of team performance. Specifically, the role played by team average CWX in such relationship is stronger when job complexity and task interdependence are also high. Team's output not only depends on the leader and his/her relationships with subordinates but also on quality relationships among team members. CWXs contribute to creative team environments, but they are essential where jobs are complex and tasks are highly dependent. This study provides evidence of the important role played by CWXs in determining a creative environment, irrespective of their leaders. Previous research has provided information about how leader's role affects team outcomes, but the role of dyadic co-worker relationships in a team remains still relatively unknown. Considering job complexity and task interdependence variables, the study provides with a better understanding about how and when high-quality CWXs should be promoted to achieve higher team performance.

  13. The Relationship between Management Team Size and Team Performance: The Mediating Effect of Team Psychological Safety

    OpenAIRE

    Midthaug, Mari Bratterud

    2017-01-01

    The purpose of this thesis is to explore the relationship between team size (number of team members) and team performance in management teams. There is a lack of empirical research exploring the potential links between these two elements within management teams. Further, little attention has been paid to potential mechanisms affecting this relationship. In this study, team psychological safety has been examined as a potential mediator in the size-performance relationship, hypothesizing that t...

  14. Team skills training

    International Nuclear Information System (INIS)

    Coe, R.P.; Carl, D.R.

    1991-01-01

    Numerous reports and articles have been written recently on the importance of team skills training for nuclear reactor operators, but little has appeared on the practical application of this theoretical guidance. This paper describes the activities of the Training and Education Department at GPU Nuclear (GPUN). In 1987, GPUN undertook a significant initiative in its licensed operator training programs to design and develop initial and requalification team skills training. Prior to that time, human interaction skills training (communication, stress management, supervisory skills, etc.) focused more on the individual rather than a group. Today, GPU Nuclear conducts team training at both its Three Mile Island (YMI), PA and Oyster Creek (OC), NJ generating stations. Videotaped feedback is sued extensively to critique and reinforce targeted behaviors. In fact, the TMI simulator trainer has a built-in, four camera system specifically designed for team training. Evaluations conducted on this training indicated these newly acquired skills are being carried over to the work environment. Team training is now an important and on-going part of GPUN operator training

  15. Increasing Student-Learning Team Effectiveness with Team Charters

    Science.gov (United States)

    Hunsaker, Phillip; Pavett, Cynthia; Hunsaker, Johanna

    2011-01-01

    Because teams are a ubiquitous part of most organizations today, it is common for business educators to use team assignments to help students experientially learn about course concepts and team process. Unfortunately, students frequently experience a number of problems during team assignments. The authors describe the results of their research and…

  16. When Teams Go Crazy

    DEFF Research Database (Denmark)

    Kuhrmann, Marco; Münch, Jürgen

    2016-01-01

    Software development consists to a large extend of human-based processes with continuously increasing demands regarding interdisciplinary team work. Understanding the dynamics of software teams can be seen as highly important to successful project execution. Hence, for future project managers......, knowledge about non-technical processes in teams is significant. In this paper, we present a course unit that provides an environment in which students can learn and experience the impact of group dynamics on project performance and quality. The course unit uses the Tuckman model as theoretical framework......, and borrows from controlled experiments to organize and implement its practical parts in which students then experience the effects of, e.g., time pressure, resource bottlenecks, staff turnover, loss of key personnel, and other stress factors. We provide a detailed design of the course unit to allow...

  17. Creativity and Creative Teams

    Science.gov (United States)

    Wood, Richard M.; Bauer, Steven X. S.; Hunter, Craig A.

    2001-01-01

    A review of the linkage between knowledge, creativity, and design is presented and related to the best practices of multidisciplinary design teams. The discussion related to design and design teams is presented in the context of both the complete aerodynamic design community and specifically the work environment at the NASA Langley Research Center. To explore ways to introduce knowledge and creativity into the research and design environment at NASA Langley Research Center a creative design activity was executed within the context of a national product development activity. The success of the creative design team activity gave rise to a need to communicate the experience in a straightforward and managed approach. As a result the concept of creative potential its formulated and assessed with a survey of a small portion of the aeronautics research staff at NASA Langley Research Center. The final section of the paper provides recommendations for future creative organizations and work environments.

  18. Multiwavelength Study of Gamma-Ray Bright Blazars

    Science.gov (United States)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  19. Team Leadership: Leadership Role Achievement in Supervision Teams in Turkey

    OpenAIRE

    Ali Sabanci; Izzet Ozdemir

    2015-01-01

    The purpose of this paper is to explore the views of team leaders and team members of supervision teams about the extent that team leaders achieve their team leadership roles in Turkey. This research was conducted as a survey. The population of the study consisted of approximately 2650 supervisors (inspectors) working in 81 provinces distributed to seven geographical regions in Turkey. The sample consisted of 563 supervisors which were selected out by random sampling. The data were gathered b...

  20. Beautiful Teams Inspiring and Cautionary Tales from Veteran Team Leaders

    CERN Document Server

    Stellman, Andrew

    2009-01-01

    What's it like to work on a great software development team facing an impossible problem? How do you build an effective team? Beautiful Teams takes you behind the scenes with some of the most interesting teams in software engineering history. You'll learn from veteran team leaders' successes and failures, told through a series of engaging personal stories -- and interviews -- by leading programmers, architects, project managers, and thought leaders.

  1. SPQR Team Description Paper

    OpenAIRE

    Cherubini , Andrea; Leonetti , M; Marchetti , L; De Luca , A; Iocchi , L; Nardi , D; Oriolo , G; Vendittelli , M

    2008-01-01

    International audience; SPQR is the group of the Faculty of Engineering at Sapienza University of Rome in Italy, that is involved in RoboCup competitions since 1998 in different leagues (Middle-size 1998-2002, Four-legged since 2000, Real-rescue-robots 2003-2006, Virtual-rescue since 2006 and @Home in 2006). In RoboCup 2008, SPQR team will participate in the Standard Platform League with Nao humanoid robots and in the Virtual Rescue League.The team for 2008 is composed by two groups from the C...

  2. Autonomous mobile robot teams

    Science.gov (United States)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  3. Predictors of Team Work Satisfaction

    Science.gov (United States)

    Hamlyn-Harris, James H.; Hurst, Barbara J.; von Baggo, Karola; Bayley, Anthony J.

    2006-01-01

    The ability to work in teams is an attribute highly valued by employers of information technology (IT) graduates. For IT students to effectively engage in team work tasks, the process of working in teams should be satisfying for the students. This work explored whether university students who were involved in compulsory team work were satisfied…

  4. Teamwork education improves trauma team performance in undergraduate health professional students.

    Science.gov (United States)

    Baker, Valerie O'Toole; Cuzzola, Ronald; Knox, Carolyn; Liotta, Cynthia; Cornfield, Charles S; Tarkowski, Robert D; Masters, Carolynn; McCarthy, Michael; Sturdivant, Suzanne; Carlson, Jestin N

    2015-01-01

    Effective trauma resuscitation requires efficient and coordinated care from a team of providers; however, providers are rarely instructed on how to be effective members of trauma teams. Team-based learning using Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS) has been shown to improve team dynamics among practicing professionals, including physicians and nurses. The impact of TeamSTEPPS on students being trained in trauma management in an undergraduate health professional program is currently unknown. We sought to determine the impact of TeamSTEPPS on team dynamics among undergraduate students being trained in trauma resuscitation. We enrolled teams of undergraduate health professional students from four programs: nursing, physician assistant, radiologic science, and respiratory care. After completing an online training on trauma resuscitation principles, the participants completed a trauma resuscitation scenario. The participants then received teamwork training using TeamSTEPPS and completed a second trauma resuscitation scenario identical to the first. All resuscitations were recorded and scored offline by two blinded research assistants using both the Team Emergency Assessment Measure (TEAM) and Trauma Team Performance Observation Tool (TPOT) scoring systems. Pre-test and post-test TEAM and TPOT scores were compared. We enrolled a total of 48 students in 12 teams. Team leadership, situational monitoring, and overall communication improved with TeamSTEPPS training (P=0.04, P=0.02, and P=0.03, respectively), as assessed by the TPOT scoring system. TeamSTEPPS also improved the team's ability to prioritize tasks and work together to complete tasks in a rapid manner (P<0.01 and P=0.02, respectively) as measured by TEAM. Incorporating TeamSTEPPS into trauma team education leads to improved TEAM and TPOT scores among undergraduate health professionals.

  5. Refinement of the Compton–Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Perrett, G.M. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); Maxwell, J.A. [3A 47 Surrey St. East, Guelph, Ontario, Canada N1H 3P6 (Canada); Nield, E.; Gellert, R. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada); King, P.L. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia); Lee, M.; O’Meara, J.M.; Pradler, I. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, Canada N1G 2W1 (Canada)

    2013-05-01

    Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument’s {sup 244}Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light “invisible” constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.

  6. Ability Dispersion and Team Performance

    DEFF Research Database (Denmark)

    Hoogendoorn, Sander; Parker, Simon C.; Van Praag, Mirjam

    What is the effect of dispersed levels of cognitive ability of members of a (business) team on their team's performance? This paper reports the results of a field experiment in which 573 students in 49 (student) teams start up and manage real companies under identical circumstances for one year. We...... ensured exogenous variation in otherwise random team composition by assigning students to teams based on their measured cognitive abilities. Each team performs a variety of tasks, often involving complex decision making. The key result of the experiment is that the performance of business teams first...... increases and then decreases with ability dispersion. We seek to understand this finding by developing a model in which team members of different ability levels form sub- teams with other team members with similar ability levels to specialize in different productive tasks. Diversity spreads production over...

  7. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  8. Advanced Technology in Small Packages Enables Space Science Research Nanosatellites: Examples from the NASA Miniature X-ray Solar Spectrometer CubeSat

    Science.gov (United States)

    Woods, T. N.

    2017-12-01

    Nanosatellites, including the CubeSat class of nanosatellites, are about the size of a shoe box, and the CubeSat modular form factor of a Unit (1U is 10 cm x 10 cm x 10 cm) was originally defined in 1999 as a standardization for students developing nanosatellites. Over the past two decades, the satellite and instrument technologies for nanosatellites have progressed to the sophistication equivalent to the larger satellites, but now available in smaller packages through advanced developments by universities, government labs, and space industries. For example, the Blue Canyon Technologies (BCT) attitude determination and control system (ADCS) has demonstrated 3-axis satellite control from a 0.5-Unit system with 8 arc-second stability using reaction wheels, torque rods, and a star tracker. The first flight demonstration of the BCT ADCS was for the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat. The MinXSS CubeSat mission, which was deployed in May 2016 and had its re-entry in May 2017, provided space weather measurements of the solar soft X-rays (SXR) variability using low-power, miniaturized instruments. The MinXSS solar SXR spectra have been extremely useful for exploring flare energetics and also for validating the broadband SXR measurements from the NOAA GOES X-Ray Sensor (XRS). The technology used in the MinXSS CubeSat and summary of science results from the MinXSS-1 mission will be presented. Web site: http://lasp.colorado.edu/home/minxss/

  9. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  10. Affirmative action and team performance

    OpenAIRE

    Kölle, Felix

    2016-01-01

    We experimentally investigate spillover effects of affirmative action policies in tournaments on subsequent team performance and the willingness to work in teams. In three different team environments, we find that such policies in form of gender quotas do not harm performance and cooperation within teams, and do not weaken people's willingness to work in teams. Our results, thus, provide further evidence that gender quotas can have the desired effect of promoting women without harming efficie...

  11. AA magnet measurement team

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    Quickly improvised measurement equipment for the AA (Antiproton Accumulator) was all the tight schedule permitted, but the high motivation of the team made up for the lack of convenience. From left to right: Roy Billinge (Joint AA Project Leader, the other one was Simon van der Meer); Bruno Autin, Brian Pincott, Colin Johnson.

  12. Materials Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-08-01

    Roadmap identifying the efforts of the Materials Technical Team (MTT) to focus primarily on reducing the mass of structural systems such as the body and chassis in light-duty vehicles (including passenger cars and light trucks) which enables improved vehicle efficiency regardless of the vehicle size or propulsion system employed.

  13. Aircrew team management program

    Science.gov (United States)

    Margerison, Charles; Mccann, Dick; Davies, Rod

    1987-01-01

    The key features of the Aircrew Team Management Workshop which was designed for and in consultation with Trans Australia Airlines are outlined. Five major sections are presented dealing with: (1) A profile of the airline and the designers; (2) Aircrew consultation and involvement; (3) Educational design and development; (4) Implementation and instruction; and (5) Evaluation and assessment. These areas are detailed.

  14. The Team We Got.

    Science.gov (United States)

    Soos, Frank

    1992-01-01

    Discusses the importance of high school basketball in rural West Virginia and what it felt like to win and to lose. Reflects on how playing team sports builds character, and suggests that, although life goes on regardless of game outcomes, it is still difficult to think of high school basketball as just a game. (LP)

  15. Web Team Development

    Science.gov (United States)

    Church, Jennifer; Felker, Kyle

    2005-01-01

    The dynamic world of the Web has provided libraries with a wealth of opportunities, including new approaches to the provision of information and varied internal staffing structures. The development of self-managed Web teams, endowed with authority and resources, can create an adaptable and responsive culture within libraries. This new working team…

  16. National Response Team

    Science.gov (United States)

    Response planning and coordination (not direct response itself) is accomplished at the federal level through the U.S. National Response Team (NRT), an interagency group co-chaired by EPA and U.S. Coast Guard. NRT distributes information, plans, and trains.

  17. Multidisciplinary team functioning.

    Science.gov (United States)

    Kovitz, K E; Dougan, P; Riese, R; Brummitt, J R

    1984-01-01

    This paper advocates the need to move beyond interdisciplinary team composition as a minimum criterion for multidisciplinary functioning in child abuse treatment. Recent developments within the field reflect the practice of shared professional responsibility for detection, case management and treatment. Adherence to this particular model for intervention requires cooperative service planning and implementation as task related functions. Implicitly, this model also carries the potential to incorporate the supportive functioning essential to effective group process. However, explicit attention to the dynamics and process of small groups has been neglected in prescriptive accounts of multidisciplinary child abuse team organization. The present paper therefore focuses upon the maintenance and enhancement aspects of multidisciplinary group functioning. First, the development and philosophy of service for the Alberta Children's Hospital Child Abuse Program are reviewed. Second, composition of the team, it's mandate for service, and the population it serves are briefly described. Third, the conceptual framework within which the program functions is outlined. Strategies for effective group functioning are presented and the difficulties encountered with this model are highlighted. Finally, recommendations are offered for planning and implementing a multidisciplinary child abuse team and for maintaining its effective group functioning.

  18. The CHIK Team

    Indian Academy of Sciences (India)

    The CHIK Team. Arankalle VA, Mishra AC. Tandale BV Clinical. Yergolkar P, Sudeep Balan Virus Isolations. Cherian S, Walimbe A Bioinformatics. Sathe PS, Supriya Serology. Swati, Shubham, Supriya Sequence analysis. Tripathy AS Immunological. Parashar D Real time PCR. Gokhale M, Jacob George Entomological ...

  19. A social-cognitive framework of multidisciplinary team innovation.

    Science.gov (United States)

    Paletz, Susannah B F; Schunn, Christian D

    2010-01-01

    The psychology of science typically lacks integration between cognitive and social variables. We present a new framework of team innovation in multidisciplinary science and engineering groups that ties factors from both literatures together. We focus on the effects of a particularly challenging social factor, knowledge diversity, which has a history of mixed effects on creativity, most likely because those effects are mediated and moderated by cognitive and additional social variables. In addition, we highlight the distinction between team innovative processes that are primarily divergent versus convergent; we propose that the social and cognitive implications are different for each, providing a possible explanation for knowledge diversity's mixed results on team outcomes. Social variables mapped out include formal roles, communication norms, sufficient participation and information sharing, and task conflict; cognitive variables include analogy, information search, and evaluation. This framework provides a roadmap for research that aims to harness the power of multidisciplinary teams. Copyright © 2009 Cognitive Science Society, Inc.

  20. Replicated x-ray optics for space applications

    Science.gov (United States)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of X-ray optics for space applications in the Czech Republic. Having more than 30 years background in X-ray optics development for space applications (for use in astronomical X-ray telescopes onboard spacecrafts, before 1989 mostly for Soviet and East European INTERKOSMOS program), we focus nowadays on novel technologies and approaches, thin shell replicated mirrors, as well as studies of light-weight mirrors based on innovative materials such as ceramics. The collaboration includes teams from the Academy of Sciences, Universities, and industry. We will describe and discuss both the history of the development of Xray optics in the Czech Republic and the developed technologies and approaches (with focus on replication technology) as well as recent activities and developments including our participation on the ESA XEUS mirror technology development based on the Agreement between ESA and Czech Government.

  1. A Project Team: a Team or Just a Group?

    Directory of Open Access Journals (Sweden)

    Kateřina

    2014-06-01

    Full Text Available This paper deals with issues related to work in either teams or groups. The theoretical part discusses a team and a group with regards to its definition, classification and basic distinction, brings in more on the typology of team roles, personality assessment and sociometric methods. The analytical part tests the project (work team of a medical center represented in terms of personality and motivational types, team roles and interpersonal team relations concerning the willingness of cooperation and communication. The main objective of this work is to verify the validity of the assumptions that the analyzed team represents a very disparate group as for its composition from the perspective of personality types, types of motivation, team roles and interpersonal relations in terms of the willingness of cooperation and communication. A separate output shall focus on sociometric investigation of those team members where willingness to work together and communicate is based on the authors’ assumption of tight interdependence.

  2. Effects of team emotional authenticity on virtual team performance

    Directory of Open Access Journals (Sweden)

    Catherine E Connelly

    2016-08-01

    Full Text Available Members of virtual teams lack many of the visual or auditory cues that are usually used as the basis for impressions about fellow team members. We focus on the effects of the impressions formed in this context, and use social exchange theory to understand how these impressions affect team performance. Our pilot study, using content analysis (n = 191 students, suggested that most individuals believe that they can assess others’ emotional authenticity in online settings by focusing on the content and tone of the messages. Our quantitative study examined the effects of these assessments. Structural equation modeling (SEM analysis (n = 81 student teams suggested that team-level trust and teamwork behaviors mediate the relationship between team emotional authenticity and team performance, and illuminate the importance of team emotional authenticity for team processes and outcomes.

  3. Putting the "Team" in the Fine Arts Team: An Application of Business Management Team Concepts

    Science.gov (United States)

    Fisher, Ryan

    2007-01-01

    In this article, the author discusses current challenges to the idea of teamwork in fine arts teams, redefines the terms team and collaboration using a business management perspective, discusses the success of effective teams in the business world and the characteristics of those teams, and proposes the implementation of the business model of…

  4. Employee Knowledge Sharing in Work Teams: Effects of Team Diversity, Emergent States, and Team Leadership

    Science.gov (United States)

    Noh, Jae Hang

    2013-01-01

    Knowledge sharing in work teams is one of the critical team processes. Without sharing of knowledge, work teams and organizations may not be able to fully utilize the diverse knowledge brought into work teams by their members. The purpose of this study was to investigate antecedents and underlying mechanisms influencing the extent to which team…

  5. Cosmic rays and climate

    CERN Multimedia

    2009-01-01

    Inside the new chamber the CLOUD team will be able to recreate the conditions of any part of the atmosphere, from the polar stratosphere to the low level tropics (top). The new chamber safely in position in the East hall. Once carefully cleaned the chamber will be turned sideways onto its legs ready for the beam of 'cosmic rays' (bottom).

  6. Personality and community prevention teams: Dimensions of team leader and member personality predicting team functioning.

    Science.gov (United States)

    Feinberg, Mark E; Kim, Ji-Yeon; Greenberg, Mark T

    2008-11-01

    The predictors and correlates of positive functioning among community prevention teams have been examined in a number of research studies; however, the role of personality has been neglected. In this study, we examined whether team member and leader personality dimensions assessed at the time of team formation predicted local prevention team functioning 2.5-3.5 years later. Participants were 159 prevention team members in 14 communities participating in the PROSPER study of prevention program dissemination. Three aspects of personality, aggregated at the team level, were examined as predictors: Openness to Experience, Conscientiousness, and Agreeableness. A series of multivariate regression analyses were performed that accounted for the interdependency of five categories of team functioning. Results showed that average team member Openness was negatively, and Conscientiousness was positively linked to team functioning. The findings have implications for decisions about the level and nature of technical assistance support provided to community prevention teams.

  7. Sounds like Team Spirit

    Science.gov (United States)

    Hoffman, Edward

    2002-01-01

    I recently accompanied my son Dan to one of his guitar lessons. As I sat in a separate room, I focused on the music he was playing and the beautiful, robust sound that comes from a well-played guitar. Later that night, I woke up around 3 am. I tend to have my best thoughts at this hour. The trouble is I usually roll over and fall back asleep. This time I was still awake an hour later, so I got up and jotted some notes down in my study. I was thinking about the pure, honest sound of a well-played instrument. From there my mind wandered into the realm of high-performance teams and successful projects. (I know this sounds weird, but this is the sort of thing I think about at 3 am. Maybe you have your own weird thoughts around that time.) Consider a team in relation to music. It seems to me that a crack team can achieve a beautiful, perfect unity in the same way that a band of brilliant musicians can when they're in harmony with one another. With more than a little satisfaction I have to admit, I started to think about the great work performed for you by the Knowledge Sharing team, including this magazine you are reading. Over the past two years I personally have received some of my greatest pleasures as the APPL Director from the Knowledge Sharing activities - the Masters Forums, NASA Center visits, ASK Magazine. The Knowledge Sharing team expresses such passion for their work, just like great musicians convey their passion in the music they play. In the case of Knowledge Sharing, there are many factors that have made this so enjoyable (and hopefully worthwhile for NASA). Three ingredients come to mind -- ingredients that have produced a signature sound. First, through the crazy, passionate playing of Alex Laufer, Michelle Collins, Denise Lee, and Todd Post, I always know that something startling and original is going to come out of their activities. This team has consistently done things that are unique and innovative. For me, best of all is that they are always

  8. Teamwork education improves trauma team performance in undergraduate health professional students

    Directory of Open Access Journals (Sweden)

    Valerie O’Toole Baker

    2015-06-01

    Full Text Available Purpose: Effective trauma resuscitation requires efficient and coordinated care from a team of providers; however, providers are rarely instructed on how to be effective members of trauma teams. Team-based learning using Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS has been shown to improve team dynamics among practicing professionals, including physicians and nurses. The impact of TeamSTEPPS on students being trained in trauma management in an undergraduate health professional program is currently unknown. We sought to determine the impact of TeamSTEPPS on team dynamics among undergraduate students being trained in trauma resuscitation. Methods: We enrolled teams of undergraduate health professional students from four programs: nursing, physician assistant, radiologic science, and respiratory care. After completing an online training on trauma resuscitation principles, the participants completed a trauma resuscitation scenario. The participants then received teamwork training using TeamSTEPPS and completed a second trauma resuscitation scenario identical to the first. All resuscitations were recorded and scored offline by two blinded research assistants using both the Team Emergency Assessment Measure (TEAM and Trauma Team Performance Observation Tool (TPOT scoring systems. Pre-test and post-test TEAM and TPOT scores were compared. Results: We enrolled a total of 48 students in 12 teams. Team leadership, situational monitoring, and overall communication improved with TeamSTEPPS training (P=0.04, P=0.02, and P=0.03, respectively, as assessed by the TPOT scoring system. TeamSTEPPS also improved the team’s ability to prioritize tasks and work together to complete tasks in a rapid manner (P<0.01 and P=0.02, respectively as measured by TEAM. Conclusions: Incorporating TeamSTEPPS into trauma team education leads to improved TEAM and TPOT scores among undergraduate health professionals.

  9. AGILE Data Center and AGILE science highlights

    International Nuclear Information System (INIS)

    Pittori, C.

    2013-01-01

    AGILE is a scientific mission of the Italian Space Agency (ASI) with INFN, INAF e CIFS participation, devoted to gamma-ray astrophysics. The satellite is in orbit since April 23rd, 2007. Gamma-ray astrophysics above 100 MeV is an exciting field of astronomical sciences that has received a strong impulse in recent years. Despite the small size and budget, AGILE produced several important scientific results, among which the unexpected discovery of strong and rapid gamma-ray flares from the Crab Nebula. This discovery won to the AGILE PI and the AGILE Team the prestigious Bruno Rossi Prize for 2012, an international recognition in the field of high energy astrophysics. We present here the AGILE data center main activities, and we give an overview of the AGILE scientific highlights after 5 years of operations

  10. Astronaut Norman Thagard rests on middeck while other team is on duty

    Science.gov (United States)

    1985-01-01

    Astronaut Norman E. Thagard, mission specialist for the 'silver' team, rests on the middeck while the 'gold' team is on duty in the science module. Don L. Lind, left, 'gold' team member, meanwhile participates in autogenic feedback training (AFT), designed to help flight crewmembers overcome the effects of zero-gravity adaptation.

  11. Handbook of X-Ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  12. Career Concerns in Teams

    OpenAIRE

    Auriol, Emmanuelle; Friebel, Guido; Pechlivanos, Lambros

    2002-01-01

    We investigate how changes in the commitment power of a principal affect cooperation among agents who work in a team. When the principal and her agents are symmetrically uncertain about the agents' innate abilities, workers have career concerns. Then, unless the principal can commit herself to long-term wage contracts, an implicit sabotage incentive emerges. Agents become reluctant to help their teammates. Anticipating this risk, and in order to induce the desired level of cooperation, the pr...

  13. Professional Team Sports Clubs

    DEFF Research Database (Denmark)

    Storm, Rasmus K.

    Professional football in Europe is characterized by persistent deficits, growing debts and additional financial problems among the majority of the top league clubs. Despite these problems, these clubs have an abnormally high survival rate. This paper focuses on this apparent paradox and poses the...... in Europe, this paper argues that professional team sports clubs (PTSCs) are cases of an economic phenomenon normally found in socialist or post-socialist economies....

  14. The Motivated Project Team

    Science.gov (United States)

    2009-12-01

    Financial incentives that match level of achievement • Regular, constructive feedback. Hierarchy of Needs ( Abraham H. Maslow ) Team members can be...Much has been written regarding motivational Defense AT&L: November-December 2009 58 theory . To further complicate mat- ters, some motivational... theories clearly contradict others, and a manager’s ability to motivate is, to no small degree, related to his or her leadership approach and inter

  15. Rapid improvement teams.

    Science.gov (United States)

    Alemi, F; Moore, S; Headrick, L; Neuhauser, D; Hekelman, F; Kizys, N

    1998-03-01

    Suggestions, most of which are supported by empirical studies, are provided on how total quality management (TQM) teams can be used to bring about faster organizationwide improvements. Ideas are offered on how to identify the right problem, have rapid meetings, plan rapidly, collect data rapidly, and make rapid whole-system changes. Suggestions for identifying the right problem include (1) postpone benchmarking when problems are obvious, (2) define the problem in terms of customer experience so as not to blame employees nor embed a solution in the problem statement, (3) communicate with the rest of the organization from the start, (4) state the problem from different perspectives, and (5) break large problems into smaller units. Suggestions for having rapid meetings include (1) choose a nonparticipating facilitator to expedite meetings, (2) meet with each team member before the team meeting, (3) postpone evaluation of ideas, and (4) rethink conclusions of a meeting before acting on them. Suggestions for rapid planning include reducing time spent on flowcharting by focusing on the future, not the present. Suggestions for rapid data collection include (1) sample patients for surveys, (2) rely on numerical estimates by process owners, and (3) plan for rapid data collection. Suggestions for rapid organizationwide implementation include (1) change membership on cross-functional teams, (2) get outside perspectives, (3) use unfolding storyboards, and (4) go beyond self-interest to motivate lasting change in the organization. Additional empirical investigations of time saved as a consequence of the strategies provided are needed. If organizations solve their problems rapidly, fewer unresolved problems may remain.

  16. Building multidisciplinary business teams

    International Nuclear Information System (INIS)

    Dyson, C.J.; Winter, N.C.

    1992-01-01

    This paper describes an approach to managing oil and gas industry E and P assets through the operation of multidisciplinary business teams (MBT's). This approach can result in improved asset performance in terms of efficiency, motivation, and business results compared with more traditional matrix-style hierarchies. This paper also outlines certain critical success factors for the long-term success of MBT's and discusses some of the risks of MBT operation

  17. Nutrition in team sports.

    Science.gov (United States)

    Mujika, Iñigo; Burke, Louise M

    2010-01-01

    Team sports are based on intermittent high-intensity activity patterns, but the exact characteristics vary between and within codes, and from one game to the next. Despite the challenge of predicting exact game demands, performance in team sports is often dependent on nutritional factors. Chronic issues include achieving ideal levels of muscle mass and body fat, and supporting the nutrient needs of the training program. Acute issues, both for training and in games, include strategies that allow the player to be well fuelled and hydrated over the duration of exercise. Each player should develop a plan of consuming fluid and carbohydrate according to the needs of their activity patterns, within the breaks that are provided in their sport. In seasonal fixtures, competition varies from a weekly game in some codes to 2-3 games over a weekend road trip in others, and a tournament fixture usually involves 1-3 days between matches. Recovery between events is a major priority, involving rehydration, refuelling and repair/adaptation activities. Some sports supplements may be of value to the team athlete. Sports drinks, gels and liquid meals may be valuable in allowing nutritional goals to be met, while caffeine, creatine and buffering agents may directly enhance performance. Copyright © 2011 S. Karger AG, Basel.

  18. Collocation Impact on Team Effectiveness

    Directory of Open Access Journals (Sweden)

    M Eccles

    2010-11-01

    Full Text Available The collocation of software development teams is common, specially in agile software development environments. However little is known about the impact of collocation on the team’s effectiveness. This paper explores the impact of collocating agile software development teams on a number of team effectiveness factors. The study focused on South African software development teams and gathered data through the use of questionnaires and interviews. The key finding was that collocation has a positive impact on a number of team effectiveness factors which can be categorised under team composition, team support, team management and structure and team communication. Some of the negative impact collocation had on team effectiveness relate to the fact that team members perceived that less emphasis was placed on roles, that morale of the group was influenced by individuals, and that collocation was invasive, reduced level of privacy and increased frequency of interruptions. Overall through it is proposed that companies should consider collocating their agile software development teams, as collocation might leverage overall team effectiveness.

  19. Cohesion in Online Student Teams versus Traditional Teams

    Science.gov (United States)

    Hansen, David E.

    2016-01-01

    Researchers have found that the electronic methods in use for online team communication today increase communication quality in project-based work situations. Because communication quality is known to influence group cohesion, the present research examined whether online student project teams are more cohesive than traditional teams. We tested…

  20. Using artificial team members for team training in virtual environments

    NARCIS (Netherlands)

    Diggelen, J. van; Muller, T.; Bosch, K. van den

    2010-01-01

    In a good team, members do not only perform their individual task, they also coordinate their actions with other members of the team. Developing such team skills usually involves exercises with all members playing their role. This approach is costly and has organizational and educational drawbacks.

  1. Hoe teams deadlines halen : een aanzet tot team-timemanagement

    NARCIS (Netherlands)

    Gevers, J.M.P.; Rutte, C.G.

    2014-01-01

    Dit artikel geeft een overzicht van de stand van zaken in de wetenschappelijk literatuur ten aanzien van de vraag hoe teams hun deadlines halen. Het beschikbare materiaal wijst erop dat teams beter in staat zijn om deadlines te halen als teamleden, naast een gemeenschappelijke visie op het team en

  2. Teams, Team Motivation, and the Theory of the Firm

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Lindenberg, Siegwart

    A concern with teams was central to early attempts to grasp the nature of the firm, but fell out of favor in later work. We encourage a return to the emphasis on teams, but argue that the idea of teams as central to the nature of the firm needs to be grounded in an appreciation of the importance...

  3. Leadership Team | Water Power | NREL

    Science.gov (United States)

    Leadership Team Leadership Team Learn more about the expertise and technical skills of the water Initiative and provides leadership in the focus areas of high-fidelity modeling, wind power plant controls

  4. Diverse Teams Drive Leadership Development

    DEFF Research Database (Denmark)

    Holck, Lotte; Hjortlund Andersen, Lotte

    New research from ISS Denmark shows that leading diverse teams strengthens leaders’ competencies within communication, relationship building and talent development and ensures inclusion. This has a reinforcing effect as the better the leadership, the better the heterogeneous team will function....

  5. Team Dynamics. Implications for Coaching.

    Science.gov (United States)

    Freishlag, Jerry

    1985-01-01

    A recent survey of coaches ranks team cohesion as the most critical problem coaches face. Optimal interpersonal relationships among athletes and their coaches can maximize collective performance. Team dynamics are discussed and coaching tips are provided. (MT)

  6. Cultural Diversity and Team Performance

    DEFF Research Database (Denmark)

    Hoogendoorn, Sander; Van Praag, Mirjam

    One of the most salient and relevant dimensions of team heterogeneity is cultural background. We measure the impact of cultural diversity on the performance of business teams using a field experiment. Companies are set up by teams of undergraduate students in business studies in realistic though...... similar circumstances. We vary the cultural composition of otherwise randomly composed teams in a multi-cultural student population. Our data indicate that a moderate level of cultural diversity has no effect on team performance in terms of business outcomes (sales, profits and profits per share). However......, if at least the majority of team members is culturally diverse then more cultural diversity seems to affect the performance of teams positively. Our data suggest that this might be related to the more diverse pool of relevant knowledge facilitating (mutual) learning within culturally diverse teams....

  7. Canal rays

    International Nuclear Information System (INIS)

    Goldstein, Eugen

    2010-01-01

    For more than fifty years the German physicist Eugen Goldstein was engaged in an obscure fringe field of physics, on which he has impressed like no other: Electrical gas discharges. Goldstein describes in this book his discovery of canal rays, which has given important impulses for modern atomic physics. For his research Goldstein received the Prix Hebert of the Parisienne Academie des sciences, the Hughes medal, and was repeatedly proposed for the Nobel prize. In Germany for the Jewish scientist the acknowledgement remained far-reachingly refused until after the war.

  8. It's a team game: exploring factors that influence team experience

    OpenAIRE

    Martin, Eleanor

    2015-01-01

    Many multiplayer games feature teams, and whether they are pitted against each other or against the game itself it seems likely that the way these teams bond will affect the players' experience. What are the factors that influence the experience of being a team member in a game? To what extent can the game designer manipulate the cohesion of the teams by changing the game design? How does the satisfaction of the player with their team relate to their feeling of cohesion? How does cohesion dif...

  9. A Systematic Review of Tools Used to Assess Team Leadership in Health Care Action Teams.

    Science.gov (United States)

    Rosenman, Elizabeth D; Ilgen, Jonathan S; Shandro, Jamie R; Harper, Amy L; Fernandez, Rosemarie

    2015-10-01

    To summarize the characteristics of tools used to assess leadership in health care action (HCA) teams. HCA teams are interdisciplinary teams performing complex, critical tasks under high-pressure conditions. The authors conducted a systematic review of the PubMed/MEDLINE, CINAHL, ERIC, EMBASE, PsycINFO, and Web of Science databases, key journals, and review articles published through March 2012 for English-language articles that applied leadership assessment tools to HCA teams in all specialties. Pairs of reviewers assessed identified articles for inclusion and exclusion criteria and abstracted data on study characteristics, tool characteristics, and validity evidence. Of the 9,913 abstracts screened, 83 studies were included. They described 61 team leadership assessment tools. Forty-nine tools (80%) provided behaviors, skills, or characteristics to define leadership. Forty-four tools (72%) assessed leadership as one component of a larger assessment, 13 tools (21%) identified leadership as the primary focus of the assessment, and 4 (7%) assessed leadership style. Fifty-three studies (64%) assessed leadership at the team level; 29 (35%) did so at the individual level. Assessments of simulated (n = 55) and live (n = 30) patient care events were performed. Validity evidence included content validity (n = 75), internal structure (n = 61), relationship to other variables (n = 44), and response process (n = 15). Leadership assessment tools applied to HCA teams are heterogeneous in content and application. Comparisons between tools are limited by study variability. A systematic approach to team leadership tool development, evaluation, and implementation will strengthen understanding of this important competency.

  10. The cohesiveness of sourcing teams

    DEFF Research Database (Denmark)

    Lidegaard, Nina

    2015-01-01

    Sourcing teams are introduced as an approach to achieving the interdepartmental integration necessary for companies to address the complexity of strategic sourcing. Companies aim at facilitating teams capable of balancing the goals and tasks of the team with departmental expectations; however...

  11. Entrepreneurial team cognition: A review

    NARCIS (Netherlands)

    de Mol, E.; Khapova, S.N.; Elfring, T.

    2015-01-01

    Entrepreneurial team scholars highlight the importance of studying entrepreneurial team cognition in gaining a better understanding of why some entrepreneurial teams are capable of developing teamwork leading to successful entrepreneurial outcomes while others are not. However, in the absence of a

  12. Ability Dispersion and Team Performance

    DEFF Research Database (Denmark)

    Hoogendoorn, Sander; Parker, Simon C.; Van Praag, Mirjam

    What is the effect of dispersed levels of cognitive ability of members of a (business) team on their team's performance? This paper reports the results of a field experiment in which 573 students in 49 teams start up and manage real companies under identical circumstances. We ensured exogenous va...

  13. Team Based Engineering Design Thinking

    Science.gov (United States)

    Mentzer, Nathan

    2014-01-01

    The objective of this research was to explore design thinking among teams of high school students. This objective was encompassed in the research question driving the inquiry: How do teams of high school students allocate time across stages of design? Design thinking on the professional level typically occurs in a team environment. Many…

  14. Enabling Team Learning in Healthcare

    Science.gov (United States)

    Boak, George

    2016-01-01

    This paper is based on a study of learning processes within 35 healthcare therapy teams that took action to improve their services. The published research on team learning is introduced, and the paper suggests it is an activity that has similarities with action research and with those forms of action learning where teams address collective…

  15. A Project Team: A Team or Just a Group?

    Directory of Open Access Journals (Sweden)

    Katerina Hrazdilova Bockova

    2013-11-01

    Full Text Available This paper deals with issues related to work in either teams or groups. The theoretical part which discusses a team and a group with regards to its definition, classification and basic distinction brings in more on the typology of team roles, personality assessment and sociometric methods. The analytical part tests the project (work team of a medical center represented in terms of personality and motivational types, team roles and interpersonal team relations concerning the willingness of cooperation and communication. The main objective of this work was to determine whether the existing team is not by its nature rather a working group that contributes to the generally perceived stagnation of that field.

  16. Survey team on

    DEFF Research Database (Denmark)

    Niss, Mogens Allan; Bruder, Regina; Planas, Núria

    2016-01-01

    This paper presents the outcomes of the work of the ICME 13 Survey Team on ‘Conceptualisation and the role of competencies, knowing and knowledge in mathematics education research’. It surveys a variety of historical and contemporary views and conceptualisations of what it means to master...... mathematics, focusing on notions such as mathematical competence and competencies, mathematical proficiency, and mathematical practices, amongst others. The paper provides theoretical analyses of these notions—under the generic heading of mathematical competencies—and gives an overview of selected research...

  17. Volunteer Team Management

    OpenAIRE

    Monych, Maria

    2015-01-01

    This thesis looked into volunteer team management in a project in AIESEC in Finland through the action research method. AIESEC in Finland is a non-profit non-government organization with a purpose of “peace and fulfilment of humankinds potential” through development of the youth’s future leadership. AIESEC was not a commissioning party; the project was the basis for the thesis without the supervision of the company. The thesis is based on a project that the author was in charge of, in ...

  18. Launch team training system

    Science.gov (United States)

    Webb, J. T.

    1988-01-01

    A new approach to the training, certification, recertification, and proficiency maintenance of the Shuttle launch team is proposed. Previous training approaches are first reviewed. Short term program goals include expanding current training methods, improving the existing simulation capability, and scheduling training exercises with the same priority as hardware tests. Long-term goals include developing user requirements which would take advantage of state-of-the-art tools and techniques. Training requirements for the different groups of people to be trained are identified, and future goals are outlined.

  19. APS Science 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J. M; Mills, D. M.; Gerig, R.

    2010-05-01

    ), the challenge of sustainable energy provides an opportunity for expanded involvement with industrial research. We were privileged to recruit several outstanding new leaders at the APS. Linda Young, from Argonne's Chemical Sciences Division, became the new Director of the X-ray Science Division (XSD). Chris Jacobsen (from Stony Brook University) has been added to Linda's team as an XSD Associate Division Director, joining George Srajer. Alexander (Sasha) Zholents (formerly of Berkeley Lab) became Director of the Accelerator Systems Division. Sasha is the inventor of the short-pulse x-ray scheme that we plan to implement in the APS-U to obtain very high average brightness, broadband, 1-ps x-ray pulses. Walter Lowe (formerly of Howard University) has taken a new position as senior advisor for outreach and development of the user community. Walter's role is to increase the diversity of the user community (with diversity read broadly to include users, institutions, and technical disciplines that are underrepresented at APS). Walter is also leading an effort to increase access for industrial users. I am confident that we have in place a great team to help our users and the APS take fullest advantage of the APS-U opportunity. In planning with users for the proposed APS-U, we focused on the need to study 'real materials under real conditions in real time' on spatial and temporal scales unavailable today. Only by studying materials as they are made-or as they perform-in difficult environments can we solve the grand challenge of higher-performance, sustainable materials for energy and health. The proposed APS-U will improve the brightness of penetrating x-rays produced by the APS over 100 times, and support our efforts in developing state-of-the-art instruments to address these challenges.

  20. Team player styles, team design variables and team work effectiveness in Egypt

    OpenAIRE

    El-Kot, Ghada Awed Hassan

    2001-01-01

    The literature has revealed few studies of management in Arab countries in general and particularly in Egypt. Many Egyptian organisations implemented the team concept a number of years ago, however, there do not appear to be any studies investicitaýt inc",D team work effectiveness in Egypt. The literature review and the findings of a pilot study emphasised the need for empirical research in team work in Egypt. Team effectiveness models are examined in order to identify the fact...

  1. Performance of the undulator based ultraviolet and soft x-ray beamline for catalysis and surface science at National Synchrotron Radiation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liangliang [University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui 230029 (China); University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Du, Xuewei, E-mail: xwdu@ustc.edu.cn [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Wei, Shen [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Li, Chaoyang [China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Pan, Congyuan; Ju, Huanxin [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Wang, Qiuping, E-mail: qiuping@ustc.edu.cn [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Zhu, Junfa [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China)

    2016-12-01

    The undulator based ultraviolet and soft x-ray beamline BL11U for catalysis and surface science at National Synchrotron Radiation Laboratory (NSRL) has been under opteration for months and the present performance is described. This beamline utilizes radiation from an in-vacuum undulator, which has 30 magnetic periods with the period length of 40 mm. A varied-line-spacing plane grating monochromator is employed tto cover the photon energy region of 20–600 eV by two gratings with nominal groove densities of 400 llmm and 1200 l/mm respectively. The energy resolution power E/ΔE is measured with a gas ionization chamber and the photon flux is measured by a photodiode. Results show that the resolution power is better than 10,000 at a photon energy of 29.2 eV. And the flux is higher than 1×10{sup 10} phs/s under 300 mA ring beam current for most of the covered photon energy.

  2. Approach to team skills training

    International Nuclear Information System (INIS)

    Koontz, J.L.; Roe, M.L.; Gaddy, C.D.

    1987-01-01

    The US commercial nuclear power industry has recognized the importance of team skills in control room operation. The desire to combine training of team interaction skills, like communications, with technical knowledge of reactor operations requires a unique approach to training. An NRC-sponsored study identified a five-phase approach to team skills training designed to be consistent with the systems approach to training currently endorsed by the NRC Policy Statement on Training and Qualification. This paper describes an approach to team skills training with emphasis on the nuclear power plant control room crew. An approach to team skills training

  3. Leadership by Confidence in Teams

    OpenAIRE

    Kobayashi, Hajime; Suehiro, Hideo

    2008-01-01

    We study endogenous signaling by analyzing a team production problem with endogenous timing. Each agent of the team is privately endowed with some level of confidence about team productivity. Each of them must then commit a level of effort in one of two periods. At the end of each period, each agent observes his partner' s move in this period. Both agents are rewarded by a team output determined by team productivity and total invested effort. Each agent must personally incur the cost of effor...

  4. Professional Team Foundation Server 2010

    CERN Document Server

    Blankenship, Ed; Holliday, Grant; Keller, Brian

    2011-01-01

    Authoritative guide to TFS 2010 from a dream team of Microsoft insiders and MVPs!Microsoft Visual Studio Team Foundation Server (TFS) has evolved until it is now an essential tool for Microsoft?s Application Lifestyle Management suite of productivity tools, enabling collaboration within and among software development teams. By 2011, TFS will replace Microsoft?s leading source control system, VisualSourceSafe, resulting in an even greater demand for information about it. Professional Team Foundation Server 2010, written by an accomplished team of Microsoft insiders and Microsoft MVPs, provides

  5. Multicultural Ground Teams in Space Programs

    Science.gov (United States)

    Maier, M.

    2012-01-01

    In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.

  6. The High Energy Transient Explorer (HETE): Mission and science overview

    International Nuclear Information System (INIS)

    Ricker, G.R.; Crew, G.B.; Doty, J.P.; Vanderspek, R.; Villasenor, J.; Atteia, J.-L.; Fenimore, E.E.; Galassi, M.; Graziani, C.; Lamb, D.Q.; Hurley, K.; Jernigan, J.G.; Kawai, N.; Matsuoka, M.; Pizzichini, G.; Shirasaki, Y.; Tamagawa, T.; Vedrenne, G.; Woosley, S.E.; Yoshida, A.

    2003-01-01

    The High Energy Transient Explorer (HETE ) mission is devoted to the study of gamma-ray bursts (GRBs) using soft X-ray, medium X-ray, and gamma-ray instruments mounted on a compact spacecraft. The HETE satellite was launched into equatorial orbit on 9 October 2000. A science team from France, Japan, Brazil, India, Italy, and the US is responsible for the HETE mission, which was completed for ∼ 1/3 the cost of a NASA Small Explorer (SMEX). The HETE mission is unique in that it is entirely 'self-contained', insofar as it relies upon dedicated tracking, data acquisition, mission operations, and data analysis facilities run by members of its international Science Team. A powerful feature of HETE is its potential for localizing GRBs within seconds of the trigger with good precision (∼ 10') using medium energy X-rays and, for a subset of bright GRBs, improving the localization to ∼ 30''accuracy using low energy X-rays. Real-time GRB localizations are transmitted to ground observers within seconds via a dedicated network of 14 automated 'Burst Alert Stations', thereby allowing prompt optical, IR, and radio follow-up, leading to the identification of counterparts for a large fraction of HETE -localized GRBs. HETE is the only satellite that can provide near-real time localizations of GRBs, and that can localize GRBs that do not have X-ray, optical, and radio afterglows, during the next two years. These capabilities are the key to allowing HETE to probe further the unique physics that produces the brightest known photon sources in the universe. To date (December 2002), HETE has produced 31 GRB localizations. Localization accuracies are routinely in the 4'- 20' range; for the five GRBs with SXC localization, accuracies are ∼1-2'. In addition, HETE has detected ∼ 25 bursts from soft gamma repeaters (SGRs), and >600 X-ray bursts (XRBs)

  7. Leading Teams of Higher Education Administrators: Integrating Goal Setting, Team Role, and Team Life Cycle Theories

    Science.gov (United States)

    Posthuma, Richard; Al-Riyami, Said

    2012-01-01

    Leaders of higher education institutions can create top management teams of academic administrators to guide and improve their organizations. This study illustrates how the leadership of top management teams can be accomplished successfully through a combination of goal setting (Doran, 1981; Locke & Latham, 1990), understanding of team roles…

  8. Team-based global organizations

    DEFF Research Database (Denmark)

    Zander, Lena; Butler, Christina; Mockaitis, Audra

    2015-01-01

    diversity in enhancing team creativity and performance, and 2) the sharing of knowledge in team-based organizations, while the other two themes address global team leadership: 3) the unprecedented significance of social capital for the success of global team leader roles; and 4) the link between shared......This chapter draws on a panel discussion of the future of global organizing as a team-based organization at EIBA 2014 in Uppsala, Sweden. We began by discussing contemporary developments of hybrid forms of hierarchy and teams-based organizing, but we venture to propose that as organizations become...... characterized by decreased importance of hierarchal structures, more fluidity across borders, even a possible dissolution of firm boundaries, we move towards team-based organizing as an alternative to more traditional forms of hierarchical-based organizing in global firms. To provide input for a discussion...

  9. Team errors: definition and taxonomy

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Reason, James

    1999-01-01

    In error analysis or error management, the focus is usually upon individuals who have made errors. In large complex systems, however, most people work in teams or groups. Considering this working environment, insufficient emphasis has been given to 'team errors'. This paper discusses the definition of team errors and its taxonomy. These notions are also applied to events that have occurred in the nuclear power industry, aviation industry and shipping industry. The paper also discusses the relations between team errors and Performance Shaping Factors (PSFs). As a result, the proposed definition and taxonomy are found to be useful in categorizing team errors. The analysis also reveals that deficiencies in communication, resource/task management, excessive authority gradient, excessive professional courtesy will cause team errors. Handling human errors as team errors provides an opportunity to reduce human errors

  10. Effective healthcare process redesign through an interdisciplinary team approach.

    Science.gov (United States)

    Snyder, Rita; Huynh, Nathan; Cai, Bo; Vidal, José; Bennett, Kevin

    2013-01-01

    Healthcare process redesign is a complex and often high risk undertaking. Typically, there is a limited understanding of the baseline process and often inadequate tools by which to assess it. This can be confounded by narrow redesign team expertise that can result in unanticipated and/or unintended redesign consequences. Interdisciplinary research teams of healthcare, biostatistics, engineering and computer science experts provide broad support for a more effective and safer approach to healthcare process redesign. We describe an interdisciplinary research team focused on medication administration process (MAP)redesign and its achievements and challenges.

  11. Cheap Talk: “Team Factors and Management Practices Influence on Team Trust”

    OpenAIRE

    Doris Padmini Selvaratnam; Aini Aman; Muhamad Maziz Mahyuddin Bin Kamaludin; Gary Lynn; Richard Reilly

    2016-01-01

    Team trust has been cited as a contributing factor towards team performance. This paper looks at the antecedents of team trust and to what extent they influence team trust. The antecedents of team trust are team factors like team autonomy, team stability and team member experience; and the management practices are top management involvement and management support. The results demonstrated that team factors and management practices influence team trust individually. The key find...

  12. A Data Scheduling and Management Infrastructure for the TEAM Network

    Science.gov (United States)

    Andelman, S.; Baru, C.; Chandra, S.; Fegraus, E.; Lin, K.; Unwin, R.

    2009-04-01

    . References • TEAM Network, http://www.teamnetwork.org • Center for Applied Biodiversity Science, Conservation International. http://science.conservation.org/portal/server.pt • TEAM Data Query and Download Application, http://www.teamnetwork.org/en/data/query

  13. The Physics of Teams: Interdependence, Measurable Entropy, and Computational Emotion

    Directory of Open Access Journals (Sweden)

    William F. Lawless

    2017-08-01

    Full Text Available Most of the social sciences, including psychology, economics, and subjective social network theory, are modeled on the individual, leaving the field not only a-theoretical, but also inapplicable to a physics of hybrid teams, where hybrid refers to arbitrarily combining humans, machines, and robots into a team to perform a dedicated mission (e.g., military, business, entertainment or to solve a targeted problem (e.g., with scientists, engineers, entrepreneurs. As a common social science practice, the ingredient at the heart of the social interaction, interdependence, is statistically removed prior to the replication of social experiments; but, as an analogy, statistically removing social interdependence to better study the individual is like statistically removing quantum effects as a complication to the study of the atom. Further, in applications of Shannon's information theory to teams, the effects of interdependence are minimized, but even there, interdependence is how classical information is transmitted. Consequently, numerous mistakes are made when applying non-interdependent models to policies, the law and regulations, impeding social welfare by failing to exploit the power of social interdependence. For example, adding redundancy to human teams is thought by subjective social network theorists to improve the efficiency of a network, easily contradicted by our finding that redundancy is strongly associated with corruption in non-free markets. Thus, built atop the individual, most of the social sciences, economics, and social network theory have little if anything to contribute to the engineering of hybrid teams. In defense of the social sciences, the mathematical physics of interdependence is elusive, non-intuitive and non-rational. However, by replacing determinism with bistable states, interdependence at the social level mirrors entanglement at the quantum level, suggesting the applicability of quantum tools for social science. We report

  14. Individual and team performance in team-handball: a review.

    Science.gov (United States)

    Wagner, Herbert; Finkenzeller, Thomas; Würth, Sabine; von Duvillard, Serge P

    2014-12-01

    Team handball is a complex sport game that is determined by the individual performance of each player as well as tactical components and interaction of the team. The aim of this review was to specify the elements of team-handball performance based on scientific studies and practical experience, and to convey perspectives for practical implication. Scientific studies were identified via data bases of PubMed, Web of Knowledge, SPORT Discus, Google Scholar, and Hercules. A total of 56 articles met the inclusion criteria. In addition, we supplemented the review with 13 additional articles, proceedings and book sections. It was found that the specific characteristics of team-handball with frequent intensity changes, team-handball techniques, hard body confrontations, mental skills and social factors specify the determinants of coordination, endurance, strength and cognition. Although we found comprehensive studies examining individual performance in team-handball players of different experience level, sex or age, there is a lack of studies, particularly for team-handball specific training, as well as cognition and social factors. Key PointsThe specific characteristics of team-handball with frequent intensity changes, specific skills, hard body confrontations, mental skills and social factors define the determinants of coordination, endurance, strength and cognition.To increase individual and team performance in team-handball specific training based on these determinants have been suggested.Although there are comprehensive studies examining individual performance in team-handball players of different experience level, sex, or age are published, there is a lack of training studies, particularly for team-handball specific techniques and endurance, as well as cognition and social factors.

  15. Working as a Team

    Science.gov (United States)

    Brooks, Hannah

    2017-01-01

    In most STEM industries, teamwork is essential. Engineers, scientists, statisticians, and medical professionals, for example, must communicate with one another and work together. Someday, students may enter the STEM (science, technology, engineering, and math) workforce, where they also will need to collaborate effectively. This article describes…

  16. TEAM ATTITUDE EVALUATION: AN EVALUATION IN HOSPITAL COMMITTEES.

    Science.gov (United States)

    Hekmat, Somayeh Noori; Dehnavieh, Reza; Rahimisadegh, Rohaneh; Kohpeima, Vahid; Jahromi, Jahromi Kohpeima

    2015-12-01

    Patients' health and safety is not only a function of complex treatments and advanced therapeutic technologies but also a function of a degree based on which health care professionals fulfill their duties effectively as a team. The aim of this study was to determine the attitude of hospital committee members about teamwork in Kerman hospitals. This study was conducted in 2014 on 171 members of clinical teams and committees of four educational hospitals in Kerman University of Medical Sciences. To collect data, the standard "team attitude evaluation" questionnaire was used. This questionnaire consisted of five domains which evaluated the team attitude in areas related to the team structure, leadership, situation monitoring, mutual support, and communication in the form of a 5-point Likert type scale. To analyze data, descriptive statistical tests, T-test, ANOVA, and linear regression were used. The average score of team attitude for hospital committee members was 3.9 out of 5. The findings showed that leadership had the highest score among the subscales of team work attitude, while mutual support had the lowest score. We could also observe that responsibility was an important factor in participants' team work attitude (β = -0.184, p = 0.024). Comparing data in different subgroups revealed that employment, marital status, and responsibility were the variables affecting the participants' attitudes in the team structure domain. Marital status played a role in leadership; responsibility had a role in situation monitoring; and work experience played a role in domains of communication and mutual support. Hospital committee members had a positive attitude towards teamwork. Training hospital staff and paying particular attention to key elements of effectiveness in a health care team can have a pivotal role in promoting the team culture.

  17. Virtual Teams and Knowledge Communication

    DEFF Research Database (Denmark)

    Lehtonen, Miikka; Kampf, Constance Elizabeth

    2014-01-01

    How does culture affect virtual teams and the knowledge communication processes in which they engage? As virtual spaces are increasingly used to support teams and establish collaboration in cross-cultural projects, the notion of cross-cultural communication can be understood as shifting from...... contextual perspective to a semiotic perspective. That is to say, although the team members are using the same vocabulary they might attach different meanings to and have different knowledge about them thus highlighting the importance of approaching virtual teams and collaboration from a semiotic perspective....... To look at how knowledge about virtual work is established in a multinational context, we interviewed members of a team that connects Finland and India. Results reveal five objects shared between the team members with varying knowledge about them. By making these differences in knowledge visible through...

  18. New lenses on team learning

    DEFF Research Database (Denmark)

    Musaeus, Peter

    Team læring er sjældent blevet studeret fra et sociokulturelt perspektiv (vygotskiansk). Denne poster er et teoretisk bidrag til team læring, der fokuserer på dialog, tegn-mediering og kulturel historisk praksis for at udvikle en forståelse af team læring som mere end forøgelse i adfærd, viden og...

  19. Team Training through Communications Control

    Science.gov (United States)

    1982-02-01

    training * operational environment * team training research issues * training approach * team communications * models of operator beharior e...on the market soon, it certainly would be investigated carefully for its applicability to the team training problem. ce A text-to-speech voice...generation system. Votrax has recently marketed such a device, and others may soon follow suit. ’ d. A speech replay system designed to produce speech from

  20. Science Operations Management

    Science.gov (United States)

    Squibb, Gael F.

    1984-10-01

    The operation teams for the Infrared Astronomical Satellite (IRAS) included scientists from the IRAS International Science Team. The scientific decisions on an hour-to-hour basis, as well as the long-term strategic decisions, were made by science team members. The IRAS scientists were involved in the analysis of the instrument performance, the analysis of the quality of the data, the decision to reacquire data that was contaminated by radiation effects, the strategy for acquiring the survey data, and the process for using the telescope for additional observations, as well as the processing decisions required to ensure the publication of the final scientific products by end of flight operations plus one year. Early in the project, two science team members were selected to be responsible for the scientific operational decisions. One, located at the operations control center in England, was responsible for the scientific aspects of the satellite operations; the other, located at the scientific processing center in Pasadena, was responsible for the scientific aspects of the processing. These science team members were then responsible for approving the design and test of the tools to support their responsibilities and then, after launch, for using these tools in making their decisions. The ability of the project to generate the final science data products one year after the end of flight operations is due in a large measure to the active participation of the science team members in the operations. This paper presents a summary of the operational experiences gained from this scientific involvement.

  1. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    new gamma-ray satellite, called `Swift', will be launched as part of a collaboration between the USA, United Kingdom and Italy. Swift will add to the flotilla of satellites providing fast and accurate locations of gamma-ray bursts on the sky, which can then be followed with XMM-Newton. This will provide even more opportunities for new discoveries in this cutting-edge field. Notes to editors A scientific paper describing this discovery by Dr. Simon Vaughan and his collaborators has been accepted for publication in ``The Astrophysical Journal'' (see http://arxiv.org/abs/astro-ph/0312603). The other members in Vaughan's team are R. Willingale, P. O'Brien, J. Osborne, A. Levan, M. Watson and J. Tedds from the University of Leicester, United Kingdom; J. Reeves from NASA's Goddard Space Flight Center in Greenbelt, USA; D. Watson from the Neils Bohr Institute for Astronomy in Copenhagen, Denmark; M. Santos-Lleo, P. Rodriguez-Pascual and N. Schartel from ESA's XMM-Newton Science Operations Centre in Villafranca, Spain. Figure caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. Credit: ESA, S. Vaughan (University of Leicester) Video caption XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the

  2. UT-CT: A National Resource for Applications of High-Resolution X-ray Computed Tomography in the Geological Sciences

    Science.gov (United States)

    Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.

    2002-12-01

    An NSF-sponsored (EAR-IF) shared multi-user facility dedicated to research applications of high-resolution X-ray computed tomography (CT) in the geological sciences has been in operation since 1997 at the University of Texas at Austin. The centerpiece of the facility is an industrial CT scanner custom-designed for geological applications. Because the instrument can optimize trade-offs among penetrating ability, spatial resolution, density discrimination, imaging modes, and scan times, it can image a very broad range of geological specimens and materials, and thus offers significant advantages over medical scanners and desktop microtomographs. Two tungsten-target X-ray sources (200-kV microfocal and 420-kV) and three X-ray detectors (image-intensifier, high-sensitivity cadmium tungstate linear array, and high-resolution gadolinium-oxysulfide radiographic line scanner) can be used in various combinations to meet specific imaging goals. Further flexibility is provided by multiple imaging modes: second-generation (translate-rotate), third-generation (rotate-only; centered and variably offset), and cone-beam (volume CT). The instrument can accommodate specimens as small as about 1 mm on a side, and as large as 0.5 m in diameter and 1.5 m tall. Applications in petrology and structural geology include measuring crystal sizes and locations to identify mechanisms governing the kinetics of metamorphic reactions; visualizing relationships between alteration zones and abundant macrodiamonds in Siberian eclogites to elucidate metasomatic processes in the mantle; characterizing morphologies of spiral inclusion trails in garnet to test hypotheses of porphyroblast rotation during growth; measuring vesicle size distributions in basaltic flows for determination of elevation at the time of eruption to constrain timing and rates of continental uplift; analysis of the geometry, connectivity, and tortuosity of migmatite leucosomes to define the topology of melt flow paths, for numerical

  3. Team performance: Pitfalls and solutions

    International Nuclear Information System (INIS)

    Lee, R.R.; Eckert, M.J.

    1988-01-01

    Team building is often used as a focal point and process for improving performance. In many cases these efforts are successful in achieving the desired goals and the team building is confirmed as an effective approach. The authors have been involved in a number of successful, and some unsuccessful, efforts. This paper is concerned primarily with those cases where a team approach did not achieve the desired improvement. These experiences offer an opportunity to better understand the conditions under which team building works and to identify how a complete assessment of the prevailing conditions can provide corrections to improve the probability of success

  4. Commodity team motivation and performance

    DEFF Research Database (Denmark)

    Englyst, Linda; Jørgensen, Frances; Johansen, John

    2008-01-01

    In this article, an in-depth single case study is presented in order to explore and discuss the functioning of commodity teams in a global sourcing context. Specifically, the study aimed at identifying factors that may influence team members' motivation to participate in activities that create...... opportunities for synergy and coordination of purchasing. In the teams studied, motivation appeared to be influenced to some degree by a number of factors, including rewards, leadership behaviours, goal setting, and the career goals of the commodity team members. In some cases, inconsistencies between...

  5. Commodity Team Motivation and Performance

    DEFF Research Database (Denmark)

    Englyst, Linda; Jørgensen, Frances; Johansen, John

    2008-01-01

    In this article, an in-depth single case study is presented in order to explore and discuss the functioning of commodity teams in a global sourcing context. Specifically, the study aimed at identifying factors that may influence team members' motivation to participate in activities that create...... opportunities for synergy and coordination of purchasing. In the teams studied, motivation appeared to be influenced to some degree by a number of factors, including rewards, leadership behaviours, goal setting, and the career goals of the commodity team members. In some cases, inconsistencies between...

  6. Red Teaming: Past and Present

    National Research Council Canada - National Science Library

    Longbine, David F

    2008-01-01

    .... Key aspects of the Army red teaming definition are its emphasis on independent thinking, challenging organizational thinking, incorporating alternative perspectives, and incorporating alternative analysis...

  7. Investigating Team Learning in a Military Context

    Science.gov (United States)

    Veestraeten, Marlies; Kyndt, Eva; Dochy, Filip

    2014-01-01

    As teams have become fundamental parts of today's organisations, the need for these teams to function and learn efficiently and effectively is widely emphasised. Also in military contexts team learning is vital. The current article examines team learning behaviour in military teams as it aims to cross-validate a team learning model that was…

  8. Leadership for Team Learning: The Case of University Teacher Teams

    Science.gov (United States)

    Koeslag-Kreunen, Mieke G. M.; Van der Klink, Marcel R.; Van den Bossche, Piet; Gijselaers, Wim H.

    2018-01-01

    Teacher team involvement is considered a key factor in achieving sustainable innovation in higher education. This requires engaging in team learning behaviors that should result in new knowledge and solutions. However, university teachers are not used to discussing their work practices with one another and tend to neglect any innovation in their…

  9. Practice effects on intra-team synergies in football teams.

    Science.gov (United States)

    Silva, Pedro; Chung, Dante; Carvalho, Thiago; Cardoso, Tiago; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2016-04-01

    Developing synchronised player movements for fluent competitive match play is a common goal for coaches of team games. An ecological dynamics approach advocates that intra-team synchronization is governed by locally created information, which specifies shared affordances responsible for synergy formation. To verify this claim we evaluated coordination tendencies in two newly-formed teams of recreational players during association football practice games, weekly, for fifteen weeks (thirteen matches). We investigated practice effects on two central features of synergies in sports teams - dimensional compression and reciprocal compensation here captured through near in-phase modes of coordination and time delays between coupled players during forward and backwards movements on field while attacking and defending. Results verified that synergies were formed and dissolved rapidly as a result of the dynamic creation of informational properties, perceived as shared affordances among performers. Practising once a week led to small improvements in the readjustment delays between co-positioning team members, enabling faster regulation of coordinated team actions. Mean values of the number of player and team synergies displayed only limited improvements, possibly due to the timescales of practice. No relationship between improvements in dimensional compression and reciprocal compensation were found for number of shots, amount of ball possession and number of ball recoveries made. Findings open up new perspectives for monitoring team coordination processes in sport. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The impact of team and work characteristics on team functioning

    NARCIS (Netherlands)

    Molleman, E.; Slomp, J.

    2006-01-01

    In this article, the authors seek to strengthen the theoretical foundation of team and cell formation through the inclusion of human factors. They distinguish three types of team characteristics: global, shared, and compositional attributes. In this last category, they also deal with diversity in

  11. Facilitating Team Cognition : How designers mirror what NPD teams do

    NARCIS (Netherlands)

    Stompff, G.

    2012-01-01

    Products are developed by large multi-disciplinary teams. The teams deal with many topics requiring the expertise of several specialists simultaneously. They have to decide together if something is a problem; propose multi-disciplinary solutions; and align their activities into a seamless whole.

  12. Stimulating teachers’ team performance through team-oriented HR practices

    NARCIS (Netherlands)

    Bouwmans, Machiel; Runhaar, Piety; Wesselink, Renate; Mulder, Martin

    2017-01-01

    Teams of teachers are increasingly held accountable for the quality of education and educational reforms in vocational education and training institutions. However, historically teachers have not been required to engage in deep-level collaboration, thus team-oriented HR practices are being used

  13. Diversity in goal orientation, team reflexivity, and team performance

    NARCIS (Netherlands)

    Pieterse, Anne Nederveen; van Knippenberg, Daan; van Ginkel, Wendy P.

    Although recent research highlights the role of team member goal orientation in team functioning, research has neglected the effects of diversity in goal orientation. In a laboratory study with groups working on a problem-solving task, we show that diversity in learning and performance orientation

  14. The innovative rehabilitation team: an experiment in team building.

    Science.gov (United States)

    Halstead, L S; Rintala, D H; Kanellos, M; Griffin, B; Higgins, L; Rheinecker, S; Whiteside, W; Healy, J E

    1986-06-01

    This article describes an effort by one rehabilitation team to create innovative approaches to team care in a medical rehabilitation hospital. The major arena for implementing change was the weekly patient rounds. We worked to increase patient involvement, developed a rounds coordinator role, used a structured format, and tried to integrate research findings into team decision making. Other innovations included use of a preadmission questionnaire, a discharge check list, and a rounds evaluation questionnaire. The impact of these changes was evaluated using the Group Environment Scale and by analyzing participation in rounds based on verbatim transcripts obtained prior to and 20 months after formation of the Innovative Rehabilitation Team (IRT). The results showed decreased participation by medical personnel during rounds, and increased participation by patients. The rounds coordinator role increased participation rates of staff from all disciplines and the group environment improved within the IRT. These data are compared with similar evaluations made of two other groups, which served as control teams. The problems inherent in making effective, lasting changes in interdisciplinary rehabilitation teams are reviewed, and a plea is made for other teams to explore additional ways to use the collective creativity and resources latent in the team membership.

  15. Basketball Teams as Strategic Networks

    Science.gov (United States)

    Fewell, Jennifer H.; Armbruster, Dieter; Ingraham, John; Petersen, Alexander; Waters, James S.

    2012-01-01

    We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as “uphill/downhill” flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness. PMID:23139744

  16. Basketball teams as strategic networks.

    Science.gov (United States)

    Fewell, Jennifer H; Armbruster, Dieter; Ingraham, John; Petersen, Alexander; Waters, James S

    2012-01-01

    We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as "uphill/downhill" flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.

  17. Basketball teams as strategic networks.

    Directory of Open Access Journals (Sweden)

    Jennifer H Fewell

    Full Text Available We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1 whether teams consistently moved the ball towards their shooting specialists, measured as "uphill/downhill" flux, and (2 whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players and network entropy (unpredictability of ball movement had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.

  18. Team work on international projects

    International Nuclear Information System (INIS)

    Hayfield, F.

    1983-01-01

    A successful team will result in Project efficiency and so lead to a better achievement of the Project objectives. Such a team will be self-motivating and have a high level of morale. An effective team will also create a better context for transfer of know-how and so better prepare its members for greater roles on future Project teams. The nature of Project work forces the process of team building to recognize several facts of life. A Project team can have a life as short as one year and as long as ten years. A team usually consists of people on temporary transfer from different departments yet retaining a link of some sort to their departments of origin. It may consist of members of one company only or of several as in a joint-venture and may include Client personnel. On International Projects, the members of a team may have different nationalities and be working in a language foreign to many of them. Many of the Project people may be expatriates to the Project area on a bachelor or on a married status well away from their head or usual office. Team building is a complex organizational and human process, with no mathematical formula for the ideal solution. It starts with the selection of the right Project Manager who should be a leader, a technocrat manager and an integrator all at the same time. The Project Manager must have the authority to create the organizational and human climate that will motivate to a maximum each member of the team. Each member must understand clearly his role and realize that this contribution to the Project will influence his career development. Loyalty to the Project Manager must be possible and the Departmental Manager has to recognize this necessity. This presentation will indicate the basic steps of a team building process on a typical major international Project

  19. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bansil, Arun [Northeastern Univ., Boston, MA (United States)

    2016-12-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering—density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization—to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  20. Building a Unified Computational Model for the Resonant X-Ray Scattering of Strongly Correlated Materials

    International Nuclear Information System (INIS)

    Bansil, Arun

    2016-01-01

    Basic-Energy Sciences of the Department of Energy (BES/DOE) has made large investments in x-ray sources in the U.S. (NSLS-II, LCLS, NGLS, ALS, APS) as powerful enabling tools for opening up unprecedented new opportunities for exploring properties of matter at various length and time scales. The coming online of the pulsed photon source literally allows us to see and follow the dynamics of processes in materials at their natural timescales. There is an urgent need therefore to develop theoretical methodologies and computational models for understanding how x-rays interact with matter and the related spectroscopies of materials. The present project addressed aspects of this grand challenge of X-ray science. In particular, our Collaborative Research Team (CRT) focused on understanding and modeling of elastic and inelastic resonant X-ray scattering processes. We worked to unify the three different computational approaches currently used for modeling X-ray scattering-density functional theory, dynamical mean-field theory, and small-cluster exact diagonalization-to achieve a more realistic material-specific picture of the interaction between X-rays and complex matter. To achieve a convergence in the interpretation and to maximize complementary aspects of different theoretical methods, we concentrated on the cuprates, where most experiments have been performed. Our team included both US and international researchers, and it fostered new collaborations between researchers currently working with different approaches. In addition, we developed close relationships with experimental groups working in the area at various synchrotron facilities in the US. Our CRT thus helped toward enabling the US to assume a leadership role in the theoretical development of the field, and to create a global network and community of scholars dedicated to X-ray scattering research.

  1. EVA Glove Research Team

    Science.gov (United States)

    Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.

    1992-01-01

    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.

  2. Data Teams for School Improvement

    Science.gov (United States)

    Schildkamp, Kim; Poortman, Cindy L.; Handelzalts, Adam

    2016-01-01

    The use of data for educational decision making has never been more prevalent. However, teachers and school leaders need support in data use. Support can be provided by means of professional development in the form of "data teams". This study followed the functioning of 4 data teams over a period of 2 years, applying a qualitative case…

  3. Diversity Management in Global Teams

    DEFF Research Database (Denmark)

    Clausen, Lisbeth

    2016-01-01

    implemented in the local organization? How are organizational culture, vision and images aligned with the team processes to accomplish the task? Does professional (functional) expertise influence team collaboration and finally how do individual experiences and coping strategies matter? The US and Japan...

  4. Team Teaching. IDEA Paper #55

    Science.gov (United States)

    Plank, Kathryn M.

    2013-01-01

    Team teaching has the potential to have a profound impact on both teaching and learning. Many who have taught as part of a team report the break from solitary practice brings renewed excitement for teaching and the course that makes them better teachers. It also creates a learning environment in which students can explore multiple perspectives and…

  5. The Benefits of Team Teaching.

    Science.gov (United States)

    Morganti, Deena J.; Buckalew, Flora C.

    1991-01-01

    Discussion of team teaching focuses on librarians team teaching a course on information search strategy at the Pennsylvania State Berks Campus Library. Course requirements are described, planning for the course is discussed, grading practices are reviewed, and course and instructor evaluations are described. (two references) (LRW)

  6. Improving supervision: a team approach.

    Science.gov (United States)

    1993-01-01

    This issue of "The Family Planning Manager" outlines an interactive team supervision strategy as a means of improving family planning service quality and enabling staff to perform to their maximum potential. Such an approach to supervision requires a shift from a monitoring to a facilitative role. Because supervisory visits to the field are infrequent, the regional supervisor, clinic manager, and staff should form a team to share ongoing supervisory responsibilities. The team approach removes individual blame and builds consensus. An effective team is characterized by shared leadership roles, concrete work problems, mutual accountability, an emphasis on achieving team objectives, and problem resolution within the group. The team supervision process includes the following steps: prepare a visit plan and schedule; meet with the clinic manager and staff to explain how the visit will be conducted; supervise key activity areas (clinical, management, and personnel); conduct a problem-solving team meeting; conduct a debriefing meeting with the clinic manager; and prepare a report on the visit, including recommendations and follow-up plans. In Guatemala's Family Planning Unit, teams identify problem areas on the basis of agreement that a problem exists, belief that the problem can be solved with available resources, and individual willingness to accept responsibility for the specific actions identified to correct the problem.

  7. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy. Progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1984-01-01

    Research is reported for x-ray studies at NSLS. Energy-loss spectroscopy experiments (EXAFS) were performed on various materials including iron, silicon, gold, glass, niobium-aluminum alloys, and metglass

  8. Extra-team connections for knowledge transfer between staff teams

    Science.gov (United States)

    Ramanadhan, Shoba; Wiecha, Jean L.; Emmons, Karen M.; Gortmaker, Steven L.; Viswanath, Kasisomayajula

    2009-01-01

    As organizations implement novel health promotion programs across multiple sites, they face great challenges related to knowledge management. Staff social networks may be a useful medium for transferring program-related knowledge in multi-site implementation efforts. To study this potential, we focused on the role of extra-team connections (ties between staff members based in different site teams) as potential channels for knowledge sharing. Data come from a cross-sectional study of afterschool childcare staff implementing a health promotion program at 20 urban sites of the Young Men's Christian Association of Greater Boston. We conducted a sociometric social network analysis and attempted a census of 91 program staff members. We surveyed 80 individuals, and included 73 coordinators and general staff, who lead and support implementation, respectively, in this study. A multiple linear regression model demonstrated a positive relationship between extra-team connections (β = 3.41, P knowledge transfer. We also found that intra-team connections (within-team ties between staff members) were also positively related to skill receipt. Connections between teams appear to support knowledge transfer in this network, but likely require greater active facilitation, perhaps via organizational changes. Further research on extra-team connections and knowledge transfer in low-resource, high turnover environments is needed. PMID:19528313

  9. Model of Team Organization and Behavior and Team Description Method

    Science.gov (United States)

    1984-10-01

    PERFORMING ORG& REPORT’ NUMBER 7.AUTHIOR(&) 0. CONTRACT OR GRANT NUMOSR(ej J. Thomas Roth Rohn J. Hritz HDA 903-81-C-0198: VEa Donald W. McGill 9...team descriptions are included, acid procedures for data recording are provided. 4q-4 4 iv, G OP S• . . • ,," $1 . . ’ __ _ _ _ ’ / . • , Utilization...Listing of thi! number acid identification of the roles adopted by team members in the actual team structure, along with KOS and primary equipment

  10. The importance of team functioning to natural resource planning outcomes.

    Science.gov (United States)

    Stern, Marc J; Predmore, S Andrew

    2012-09-15

    In its recent history, the U.S. Forest Service is among many federal land management agencies struggling with questions concerning why its planning procedures are sometimes inefficient, perform poorly in the eyes of the public, and fail to deliver outputs that advance agency mission. By examining a representative sample of National Environmental Policy Act (NEPA) processes conducted by the agency between 2007 and 2009, we provide new insights into what drives outcomes in these planning processes. We examined team leaders' perceptions of the following outcomes: achievement of agency goals and NEPA mandates, process efficiency, public relations, and team outcomes. The most consistently important predictors of positive outcomes were team harmony and a clearly empowered team leader. Other factors, such as perceptions of the use of best science, a clear and unambiguous purpose and need, team turnover (personnel changes during the process), extra-agency engagement, and intra-agency relations, were also important, but played a less consistent role. The findings suggest the importance of empowering team leaders and team members through enhancing elements of discretion, responsibility, clear role definition, collaborative interdisciplinary deliberation, and perceived self-efficacy. The results also suggest the importance of genuine concern and respect for participating publics and effective inter-agency coordination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  12. The physics of teams: Interdependence, measurable entropy and computational emotion

    Science.gov (United States)

    Lawless, William F.

    2017-08-01

    Most of the social sciences, including psychology, economics and subjective social network theory, are modeled on the individual, leaving the field not only a-theoretical, but also inapplicable to a physics of hybrid teams, where hybrid refers to arbitrarily combining humans, machines and robots into a team to perform a dedicated mission (e.g., military, business, entertainment) or to solve a targeted problem (e.g., with scientists, engineers, entrepreneurs). As a common social science practice, the ingredient at the heart of the social interaction, interdependence, is statistically removed prior to the replication of social experiments; but, as an analogy, statistically removing social interdependence to better study the individual is like statistically removing quantum effects as a complication to the study of the atom. Further, in applications of Shannon’s information theory to teams, the effects of interdependence are minimized, but even there, interdependence is how classical information is transmitted. Consequently, numerous mistakes are made when applying non-interdependent models to policies, the law and regulations, impeding social welfare by failing to exploit the power of social interdependence. For example, adding redundancy to human teams is thought by subjective social network theorists to improve the efficiency of a network, easily contradicted by our finding that redundancy is strongly associated with corruption in non-free markets. Thus, built atop the individual, most of the social sciences, economics and social network theory have little if anything to contribute to the engineering of hybrid teams. In defense of the social sciences, the mathematical physics of interdependence is elusive, non-intuitive and non-rational. However, by replacing determinism with bistable states, interdependence at the social level mirrors entanglement at the quantum level, suggesting the applicability of quantum tools for social science. We report how our quantum

  13. Fresh Impact Crater and Rays in Tharsis

    Science.gov (United States)

    2002-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission has included dozens of opportunities to point the spacecraft directly at features of interest so that pictures of things not seen during the earlier Mapping Mission can be obtained. The example shown here is a small meteorite impact crater in northern Tharsis near 17.2oN, 113.8oW. Viking Orbiter images from the late 1970's showed at this location what appeared to be a dark patch with dark rays emanating from a brighter center. The MOC team surmised that the dark rays may be indicating the location of afresh crater formed by impact sometime in the past few centuries (since dark ray are quickly covered by dust falling out of the martian atmosphere). All through MOC's Mapping Mission in 1999 and 2000, attempts were made to image the crater as predictions indicated that the spacecraft would pass over the site, but the crater was never seen. Finally, in June 2001, Extended Mission operations allowed the MOC team to point the spacecraft (and hence the camera, which is fixed to the spacecraft)directly at the center of the dark rays, where we expected to find the crater.The picture on the left (above, A) is a mosaic of three MOC high resolution images and one much lower-resolution Viking image. From left to right, the images used in the mosaic are: Viking 1 516A55, MOC E05-01904, MOCM21-00272, and MOC M08-03697. Image E05-01904 is the one taken in June 2001 by pointing the spacecraft. It captured the impact crater responsible for the rays. A close-up of the crater, which is only 130 meters (427 ft)across, is shown on the right (above, B). This crater is only one-tenth the size of the famous Meteor Crater in northern Arizona.The June 2001 MOC image reveals many surprises about this feature. For one, the crater is not located at the center of the bright area from which the dark rays radiate. The rays point to the center of this bright area, not the crater. Further, the dark material ejected from the

  14. Harnessing members' positive mood for team-directed learning behaviour and team innovation : The moderating role of perceived team feedback

    NARCIS (Netherlands)

    Walter, Frank; van der Vegt, Gerben S.

    2013-01-01

    This study examines the role of individual team members' positive mood and perceived team feedback for their team-directed learning behaviour. Results obtained in a sample of 186 members from 27 work teams showed that positive mood was positively associated with team-directed learning behaviour if

  15. Recommendations for e-learning in New Product Development teams

    NARCIS (Netherlands)

    Bitter-Rijpkema, Marlies; Pannekeet, Kees; Rutjens, Marjo

    2009-01-01

    Bitter-Rijpkema, M., Pannekeet, K., & Rutjens, M. (2009). Recommendations for e-learning in New Product Development teams. In S. Hambach, A. Martens, D. Tavangarian & B. Urban (Eds.), Proceedings of the 2nd International eLBa Science Conference (pp. 135-145). June, 17-19, 2009, Rostock, Germany:

  16. Six world-class research teams to investigate overcoming ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Six world-class research teams to investigate overcoming therapeutic resistance in high fatality cancers. 26 octobre 2017. Together with our partners the Canadian Institutes of Health Research, the Azrieli Foundation and the Israel Science Foundation we are pleased to announce the recipients of the Joint Canada-Israel ...

  17. Teaching Engineering Students Team Work

    Science.gov (United States)

    Levi, Daniel

    1998-01-01

    The purpose of this manual is to provide professor's in engineering classes which the background necessary to use student team projects effectively. This manual describes some of the characteristics of student teams and how to use them in class. It provides a set of class activities and films which can be used to introduce and support student teams. Finally, a set of teaching modules used in freshmen, sophomore, and senior aeronautical engineering classes are presented. This manual was developed as part of a NASA sponsored project to improve the undergraduate education of aeronautical engineers. The project has helped to purchase a set of team work films which can be checked out from Cal Poly's Learning Resources Center in the Kennedy Library. Research for this project has included literature reviews on team work and cooperative learning; interviews, observations, and surveys of Cal Poly students from Industrial and Manufacturing Engineering, Aeronautical Engineering and Psychology; participation in the Aeronautical Engineering senior design lab; and interviews with engineering faculty. In addition to this faculty manual, there is a student team work manual which has been designed to help engineering students work better in teams.

  18. Diversity in Teams: was macht diverse Teams erfolgreich?

    NARCIS (Netherlands)

    Buengeler, C.; Homan, A.C.; Genkova, P.; Ringeisen, T.

    2015-01-01

    Teams in Organisationen sind zunehmend divers zusammengesetzt. Mit Diversity sind neben Unterschieden bezüglich demografischer Merkmale beispielsweise auch Differenzen in unmittelbar aufgabenbezogenen Merkmalen sowie in Werten, Einstellungen und Eigenschaften gemeint, welche oftmals nicht sofort

  19. Leading a Virtual Intercultural Team. Implications for Virtual Team Leaders

    OpenAIRE

    Chutnik, Monika; Grzesik, Katarzyna

    2009-01-01

    Increasing number of companies operate in the setup of teams whose members are geographically scattered and have different cultural origins. They work through access to the same digital network and communicate by means of modern technology. Sometimes they are located in different time zones and have never met each other face to face. This is the age of a virtual team leader. Virtual leadership in intercultural groups requires special skills from leaders. Many of these reflect leadership s...

  20. Team networking in palliative care

    Directory of Open Access Journals (Sweden)

    Odette Spruyt

    2011-01-01

    Full Text Available "If you want to travel quickly, go alone. But if you want to travel far, you must go together". African proverb. The delivery of palliative care is often complex and always involves a group of people, the team, gathered around the patient and those who are close to them. Effective communication and functional responsive systems of care are essential if palliative care is to be delivered in a timely and competent way. Creating and fostering an effective team is one of the greatest challenges for providers of palliative care. Teams are organic and can be life giving or life sapping for their members.

  1. Commodity Team Motivation and Performance

    DEFF Research Database (Denmark)

    Englyst, Linda; Jørgensen, Frances; Johansen, John

    2007-01-01

    This article explores factors influencing the motivation and performance of commodity teams in a global sourcing context. Several challenges are related to the classical dilemma of matrix organization, but with particular implications in this specific context of purchasing. We report on a reward...... system which was intended to support collective team effort, yet enhanced conflicts of interest in the matrix structure, discuss leadership, goal alignment and career tracks, and debate when and whether a team structure is appropriate in the pursuit of corporate purchasing synergies. The article is based...

  2. Voluntary versus Enforced Team Effort

    Directory of Open Access Journals (Sweden)

    Claudia Keser

    2011-08-01

    Full Text Available We present a model where each of two players chooses between remuneration based on either private or team effort. Although at least one of the players has the equilibrium strategy to choose private remuneration, we frequently observe both players to choose team remuneration in a series of laboratory experiments. This allows for high cooperation payoffs but also provides individual free-riding incentives. Due to significant cooperation, we observe that, in team remuneration, participants make higher profits than in private remuneration. We also observe that, when participants are not given the option of private remuneration, they cooperate significantly less.

  3. Team Networking in Palliative Care

    Science.gov (United States)

    Spruyt, Odette

    2011-01-01

    “If you want to travel quickly, go alone. But if you want to travel far, you must go together”. African proverb. The delivery of palliative care is often complex and always involves a group of people, the team, gathered around the patient and those who are close to them. Effective communication and functional responsive systems of care are essential if palliative care is to be delivered in a timely and competent way. Creating and fostering an effective team is one of the greatest challenges for providers of palliative care. Teams are organic and can be life giving or life sapping for their members. PMID:21811361

  4. Cognitive model supported team skill training

    NARCIS (Netherlands)

    Doesburg, W.A. van; Stroomer, S.M.

    2006-01-01

    Complex tasks require coordinated performance by multiple team members. To perform the task effectively each team member must not only master the individual task component but also needs to function in the overall team. To increase team performance, each team member will need to acquire the relevant

  5. Peer Assessment of Elementary Science Teaching Skills

    Science.gov (United States)

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  6. Hydrogen Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Hydrogen Storage Technical Team is to accelerate research and innovation that will lead to commercially viable hydrogen-storage technologies that meet the U.S. DRIVE Partnership goals.

  7. Valuing gender diversity in teams

    DEFF Research Database (Denmark)

    Lauring, Jakob; Villeseche, Florence

    2015-01-01

    Team gender diversity has been much debated in many different contexts – not least since the search for a main effect of diversity on performance was launched. However, results have so far been inconclusive, and a number of scholars suggest that more attention should be directed at contextual...... factors which could influence the effect of gender diversity on team performance. In this study, we explore the effect of positive diversity attitudes and assess the degree of gender diversity where such group attitudes have greater impact. This is done by using a sample of 1085 leaders of academic...... research teams. Findings show that positive diversity attitude in the form of group openness to diversity is strongly associated with team performance. We also find a moderating effect of gender diversity meaning that the effect of openness to diversity is stronger when gender groups are more balanced...

  8. The Origins of Team Management

    Science.gov (United States)

    Swift, James S.

    1971-01-01

    An analysis of the factors that have led to team management, including classical principles of management, the human relations or behavioral school of management, and the systems theory both closed and open. (JF)

  9. Family, Team or Something Else?

    Directory of Open Access Journals (Sweden)

    John Murtha

    2017-02-01

    Full Text Available When referring to staff, is the term "family" or "team" most accurate? John Murtha explores the importance of setting a company's core value to create and maintain a positive culture, expectations, and support hiring practices.

  10. Diving and Environmental Simulation Team

    Data.gov (United States)

    Federal Laboratory Consortium — The Diving and Environmental Simulation Team focuses on ways to optimize the performance and safety of Navy divers. Our goal is to increase mission effectiveness by...

  11. SYNERGY EFFECTS IN WORK TEAMS

    Directory of Open Access Journals (Sweden)

    Raluca C. ZOLTAN

    2014-06-01

    Full Text Available Today’s organization increasingly utilizes all kind of teams in order to surpass their competitors through flexibility, adaptability and innovation, features which are seen to characterize the teams. For this purpose, the concept of synergy in teams’ activity is often mentioned as the prime reason for which collective work is considered to be superior comparative with individual work. But what exactly does it mean? The present paper aims to shed some light on the concept of synergy in work teams and its positive effects, namely, the social consequences of collective work such as social compensation, social indispensability, social comparison, social identity, but also its negative effects, such as free-riding, social loafing and sucker effect. These are important group phenomena that managers should be aware of because they have a major impact on team performance, and consequently, on organization performance.

  12. <300> GeV team

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    The 300 GeV team had been assembled. In the photograph are Hans Horisberger, Clemens Zettler, Roy Billinge, Norman Blackburne, John Adams, Hans-Otto Wuster, Lars Persson, Bas de Raad, Hans Goebel, Simon Van der Meer.

  13. Multidisciplinary team care in rehabilitation

    DEFF Research Database (Denmark)

    Momsen, A.-M.; Nielsen, C.V.; Rasmussen, J.O.

    2012-01-01

    Objectives: To systematically investigate current scientific evidence about the effectiveness of multidisciplinary team rehabilitation for different health problems. Data sources: A comprehensive literature search was conducted in Cochrane, Medline, DARE, Embase, and Cinahl databases, and research...... for adults, without restrictions in terms of study population or outcomes. The most recent reviews examining a study population were selected. Data extraction: Two reviewers independently extracted information about study populations, sample sizes, study designs, rehabilitation settings, the team...

  14. SYNERGY EFFECTS IN WORK TEAMS

    OpenAIRE

    Raluca C. Zoltan

    2014-01-01

    Today’s organization increasingly utilizes all kind of teams in order to surpass their competitors through flexibility, adaptability and innovation, features which are seen to characterize the teams. For this purpose, the concept of synergy in teams’ activity is often mentioned as the prime reason for which collective work is considered to be superior comparative with individual work. But what exactly does it mean? The present paper aims to shed some light on the concept of synergy in work te...

  15. Structuring Successful Global Virtual Teams

    Science.gov (United States)

    2015-01-01

    e.g., email) to a lot (e.g., video conferencing ). Finally, global teams can vary in their level of synchronicity, or the degree to which a team’s... electronic communication. Thus, we view these types of teams as analogous enough that they can be discussed together under the overarching term of “global...emergence. Balthazard, Waldman, and Warren (2009) found that communication media that mim- ics face-to-face interactions (e.g., video conferencing

  16. The Impact of Environmental Complexity and Team Training on Team Processes and Performance in Multi-Team Environments

    National Research Council Canada - National Science Library

    Cobb, Marshall

    1999-01-01

    This study examined how manipulating the level of environmental complexity and the type of team training given to subject volunteers impacted important team process behaviors and performance outcomes...

  17. Learning to Fly? First Experiences on Team Learning of Icaros Cooperative

    Science.gov (United States)

    Juvonen, Pasi

    2013-01-01

    Icaros is an information technology (IT) cooperative that was originally owned by 11 IT degree programme students of Saimaa University of Applied Sciences. This article describes experiences and challenges of team building of these students who are called "teampreneurs" during their first year as team entrepreneurs. The findings provided…

  18. Proceedings from the second science team meeting of the United States of America Department of Energy and the People's Republic of China Academia Sinica Joint Research Program on CO/sub 2/-Induced Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    The six papers presented here as the proceedings of this second Joint CO/sub 2/ Research Team Meeting are examples of the research progress during the last two years. The first paper is documentation of the first numerical climate simulation model developed by the Institute of Atmospheric Physics in Beijing. Two papers from the National Oceanic and Atmospheric Administration's National Climatic Data Center at Asheville, North Carolina, demonstrate the work being done on the United States Historical Climatology Network data (the time series of temperature, precipitation, and sunshine) in the US. The fourth paper speaks of climate variability on a regional scale being much larger than that based on averages of global-wide data and therefore more difficult to predict. The China Precipitation Proxy Index covers a period of 510 years. This permits comparison of contemporary climate patterns (i.e., the last 100 years) with the period of the Little Ice Age when the mean temperature over China was 2/degree/ colder than present. The fifth paper is fascinating documentation of the effects of climate change upon the wild elephants whose habitat has shifted from as far north as Beijing, in historical times, to a currently small, sequestered section in the southwest corner of the country. The final paper demonstrates the pragmatic exchange of both data and technical assistance between the two countries.

  19. Monitoring and Detecting X-ray Transients with the Swift Observatory

    Science.gov (United States)

    Markwardt, Craig

    2002-01-01

    Swift is a multi-wavelength observatory specifically designed to detect transients sources in the gamma-ray energy band 15-200 keV. The primary goals of the mission involve gamma ray burst (GRB) astronomy, namely to determine the origin of GRBs and their afterglows, and use bursts to probe the early Universe. However, Swift will also discover new X-ray transient sources, and it will be possible to bring Swift's considerable multi-wavelength capabilities to bear on these sources, and those discovered by other means. The Burst Alert Telescope (BAT) is a coded mask instrument sensitive to 15-200 keV gamma rays, and has a field of view which covers approximately 1/8th of the sky in a single pointing. Over a typical observing day, the almost the entire sky will be observed and monitored for new transient sources. Sources will be detected within several hours of observation. The two narrow field instruments, the X-ray Telescope and Ultra-Violet Optical Telescope, can provide sensitive simultaneous imaging and spectroscopy observations in the optical through soft X-ray bands. The Swift science operations team will entertain requests for targets of opportunity for sources which are astrophysically significant. Swift will be ideally suited for the detection of transients which produce hard X-rays, such as black hole binaries and some neutron star systems.

  20. Teaming for Speech and Auditory Training.

    Science.gov (United States)

    Nussbaum, Debra B.; Waddy-Smith, Bettie

    1985-01-01

    The article suggests three strategies for the audiologist and speech/communication specialist to use in assisting the preschool teacher to implement student's individualized education program: (1) demonstration teaming, (2) dual teaming; and (3) rotation teaming. (CL)